



### QΑ

## 65 Maygrove Road, West Hampstead NW6 2EH

## **Energy Statement**

| Issue/Revision: | Draft 01                   | Final 01                   |
|-----------------|----------------------------|----------------------------|
| Date:           | 18 October 2011            | 30 November 2011           |
| Comments:       |                            |                            |
| Prepared by:    | Jane Wakiwaka              | Jane Wakiwaka              |
| Signature:      | Sen D.                     | Au D.                      |
| Authorised by:  | Iain Fraser                | Iain Fraser                |
| Signature:      | lain Fram                  | Pain Fram                  |
| File Reference: | 550275if18Oct11DR01 Energy | 550275if30Nov11FD01 Energy |





### **CONTENTS**

| 1.0 | EXECUTIVE SUMMARY                        | 1  |
|-----|------------------------------------------|----|
| 2.0 | BACKGROUND                               | 2  |
|     | INTRODUCTION                             | 2  |
|     | THE PROPOSED DEVELOPMENT                 | 2  |
| 3.0 | PLANNING POLICY & LEGISLATIVE CONTEXT    | 3  |
|     | International Policy Drivers             | 3  |
|     | National Policy Drivers                  | 3  |
|     | Regional Policy Drivers                  | 4  |
|     | Local Policy Drivers                     | 9  |
|     | BUILDING REGULATIONS                     | 11 |
|     | CODE FOR SUSTAINABLE HOMES               | 13 |
| 4.0 | ENERGY ASSESSMENT METHODOLOGY            | 15 |
|     | BASELINE EMISSIONS - RESIDENTIAL ELEMENT | 15 |
|     | BASELINE EMISSIONS - ANCILLIARY AREAS    | 16 |
|     | UNREGULATED EMISSIONS                    | 17 |
|     | BASELINE SUMMARY                         | 18 |
| 5.0 | ENERGY EFFICIENCY MEASURES - BE LEAN     | 19 |
|     | THE MAYOR'S ENERGY HIERARCHY             | 19 |
|     | ENERGY EFFICIENCY MEASURES               | 20 |
|     | Passive Solar Design                     | 20 |
|     | Energy Efficient Systems Design          | 21 |
|     | Energy Efficiency Measures Summary       | 21 |
| 6.0 | SUPPLYING LOW CARBON ENERGY - BE CLEAN   | 23 |
|     | Communal Gas Boiler System               | 24 |
|     | COMBINED HEAT & POWER OPTION             | 25 |



|      | CALCULATION OF EMISSIONS SAVINGS FROM CHP                                                       | 28  |
|------|-------------------------------------------------------------------------------------------------|-----|
| 7.0  | LOW & ZERO CARBON TECHNOLOGIES - BE GREEN                                                       | 30  |
|      | Solar Hot Water                                                                                 | 30  |
|      | Ground Source Heat Pumps                                                                        | 31  |
|      | Air Source Heat Pump                                                                            | 32  |
|      | Biofuelled Heating                                                                              | 33  |
|      | ELECTRICAL PROVISION                                                                            | 34  |
|      | Photovoltaic Cells                                                                              | 34  |
|      | Rooftop Building Integrated Wind Turbines                                                       | 35  |
| 8.0  | LOW AND ZERO CARBON TECHNOLOGY ASSESSMENT FOR MAYGROVE ROAD                                     | 36  |
|      | HEATING AND HOT WATER PROVISION                                                                 | 36  |
|      | Solar Hot Water                                                                                 | 36  |
|      | Ground Source Heat Pumps                                                                        | 36  |
|      | Air Source Heat Pump                                                                            | 36  |
|      | Biofuelled Heating                                                                              | 37  |
|      | ELECTRICAL PROVISION                                                                            | 37  |
|      | Rooftop Building Integrated Wind Turbines                                                       | 37  |
|      | Photovoltaic Cells                                                                              | 37  |
| 9.0  | CONCLUSION                                                                                      | 39  |
|      | ENDIX 1.0 – CODE FOR SUSTAINABLE HOMES ENE 7 LOW OR ZERO CARE<br>TECHNOLOGIES CREDIT COMPLIANCE | вом |
|      | ACCREDITED ENERGY ASSESSOR                                                                      | 42  |
|      | STANDARD CASE CO <sub>2</sub> EMISSIONS                                                         | 42  |
|      | ACTUAL CASE CO <sub>2</sub> EMISSIONS                                                           | 43  |
| APP  | ENDIX 1.1 SAP CALCULATIONS STANDARD CASE                                                        |     |
| APP  | ENDIX 1.2 SAP CALCULATIONS ACTUAL CASE                                                          |     |
| APPI | ENDIX 2.0 - FINANCING OPTIONS                                                                   | 50  |



|      | ENERGY SERVICES COMPANIES (ESCOS)         | 50 |
|------|-------------------------------------------|----|
|      | FEED IN TARIFFS                           | 51 |
|      | RENEWABLE HEAT INCENTIVE                  | 53 |
|      | RENEWABLES OBLIGATION CERTIFICATES (ROCS) | 54 |
| 10.0 | REFERENCES                                | 56 |



### 1.0 EXECUTIVE SUMMARY

- 1.1 This report considers the approach to the energy use for the application of a residential development situated on Maygrove Road within the London Borough of Camden.
- 1.2 This report sets out how the proposal responds, in terms of energy, to the replacement London Plan, the Mayor's Energy Strategy; Camden Council's Unitary Development Plan; and the Sustainability Checklist issued by Camden as Supplementary Planning Guidance.
- 1.3 In accordance with best practice, the design of the buildings at the Maygrove Road development will conform to the principles of the Energy Hierarchy that provides a set of guiding principles to reduce energy consumption and associated carbon emissions to a minimum. Consequently, energy efficiency will be incorporated into the design of the dwellings before the application of low or zero carbon technologies.
- 1.4 Taking into account best practice guidance for passive energy efficient design published by the Energy Savings Trust (EST), the dwellings will exceed the 2010 Building Regulations Part L1A Target Emission Rating (TER). The proposed development as a whole will achieve a 5-10% reduction against the TER through the use of energy efficiency measures alone.
- 1.5 In response to the second tier of the Energy Hierarchy, a preliminary investigation into the appropriateness of connection to existing or proposed district heating schemes has been undertaken. Unfortunately, due to the distance between the proposed development and other schemes, installation costs are prohibitive to connection. Additionally, as part of the second tier of the Energy Hierarchy, a stand-alone communal heating scheme incorporating a Combined Heat and Power (CHP) engine for the proposed development has been undertaken.
- 1.6 In response to the third tier of the Energy Hierarchy, this study has considered a number of renewable technologies.
- 1.7 As the proposed development is seeking to achieve a Level 4 under the Code for Sustainable Homes (CSH) it must demonstrate that it has met the mandatory requirement under 'Ene1', which is equivalent to a 25% improvement against the baseline 2010 Building Regulations. However, the CSH does not require unregulated emissions be included as part of the assessment method. Consequently, when these are removed from the energy calculations using the building compliance SAP (Standard Assessment Procedure), the proposed development meets the 25% target for emissions reduction.



### 2.0 BACKGROUND

### **INTRODUCTION**

2.1 Environmental Perspectives LLP were commissioned by REP Maygrove Road Developments to coordinate the production of an Energy Statement for the redevelopment of a brownfield site situated within the administrative boundaries of the London Borough of Camden (LB Camden). Within the Borough, the site is located on Maygrove Road, and is for a new, high quality, residential development comprising 68 units in two new buildings, with associated soft and hard landscaping.

### THE PROPOSED DEVELOPMENT

- 2.2 The application site is located at 65 Maygrove Road within the LB Camden, and covers an area of approximately 0.3 hectares (ha) and is located in Camden, centred on Ordnance Survey Reference 525042,184693.
- 2.3 The application site is in an area of dense urban development surrounded by residential housing. There is a small area of amenity grassland to the north and east of the site with some areas of scattered woodland containing mature Sycamore and Cherry trees along the eastern and north eastern site borders and an area of Laurel with a ground covering of mulch.
- 2.4 The assessment site is dominated by buildings and hardstanding. There are ornamental shrub planters along the south of the site containing *Miscanthus* grass species and Privet hedge species. The site currently comprises a three storey office building and existing car park, which will be demolished for the construction of two interconnected buildings, comprised of 56 market and 12 affordable/intermediate units consisting of one to three bedroom flats and 4 bedroom houses. The proposed development will also incorporate soft landscaping, basement parking and provision of safe and secure cycle spaces.



### 3.0 PLANNING POLICY & LEGISLATIVE CONTEXT

3.1 There are a number of international and national policy drivers for energy efficiency and reduced carbon dioxide (CO<sub>2</sub>) emissions, which have been introduced to address the issue of global warming and the implications of climate change. This includes the Kyoto Protocol on an international level, and in response to the UK Government's commitment, national policies have been developed including the *Energy White Paper* and *Planning Policy Statement 22: Renewable Energy* (PPS22) and *Planning Policy Statement 1.* On a regional level, the replacement *London Plan* and the Mayor's *Energy Strategy* provides the policy drivers for major developments within Greater London and at the local level; the Unitary Development Plan outlines the approach for projects located in the LB Camden.

### **International Policy Drivers**

### Kyoto Protocol (1997)

3.2 The Kyoto Protocol was agreed at the 1997 UN Convention on Climate Change. The UK's target is to cut its emissions by 12.5% below 1990 levels by 2008-2012. The UK Government has committed to a more challenging target to cut the UK's  $CO_2$  emissions to 20% below 1990 levels by 2010.

### **National Policy Drivers**

### Energy White Paper

- 3.3 The Energy White Paper: Our Energy Future Creating a Low Carbon Economy<sup>1</sup> is a change in direction for energy policy in response to the increasing challenges faced by the UK, including climate change, decreasing domestic supplies of fossil fuel and escalating energy prices. The Energy White Paper sets four priorities:
  - Cutting the UK's carbon dioxide emissions the main contributor to global warming - by some 60% by about 2050, with real progress by 2020;
  - Security of supply;
  - A competitive market for the benefit of businesses, industries and households;
     and
  - Affordable energy for the poor.
- 3.4 Meeting the Challenge A White Paper on Energy<sup>2</sup> published in 2007 sets out the Government's international and domestic energy strategy to respond to changing circumstances; address long-term energy challenges; and how to deliver on the four energy policy goals set in the Energy White Paper<sup>1</sup>.



### Climate Change Act 2008

3.5 On 26<sup>th</sup> November 2008, the UK Government published the Climate Change Act 2008<sup>3</sup>, the world's first long-term legally binding framework to mitigate against climate change. Within this framework, the Act sets legally binding targets to increase greenhouse gas emission reductions through action in the UK and abroad from the 60% target to 80% by 2050. In addition, there is an interim target that the carbon budget (i.e. the CO<sub>2</sub> emissions) must be at least 26% lower than the 1990 baseline.

### Planning Policy Statement: Planning and Climate Change - Supplement to Planning Policy Statement 1

3.6 Policy Statement: Planning and Climate Change - Supplement to Planning Policy Statement 1<sup>4</sup> strengthens the drivers for energy efficiency, low and zero carbon (LZC) technologies and the setting of specific carbon reduction targets. Planning and Climate Change - Supplement to PPS1 specifically requires planning authorities to 'expect a proportion of the energy supply of new development to be secured from decentralised and renewable or low-carbon energy sources' and to 'set out a target percentage of the energy to be used in new development to come from decentralised and renewable or low-carbon energy sources where it is viable' within Local Development Documents.

### Planning Policy Statement 22: Renewable Energy (PPS22)

3.7 PPS22<sup>5</sup> seeks to deliver the Government's vision for a low carbon economy as detailed in the *Energy White Paper*<sup>1</sup> and promotes the generation of renewable energy.

### **Regional Policy Drivers**

# The Replacement London Plan: Spatial Development Strategy for Greater London

- 3.8 Following the election of Boris Johnson as the Mayor in May 2008, a consultation document for the draft replacement London Plan was published in October 2009. The consultation document was open for public comment between 12 October 2009 to 12 January 2010, which was followed by the Examination in Public in summer and autumn of 2010. In May 2011, the inspectorate declared the document to be 'sound', and has been sent to the Secretary of State for consideration. Following his approval, the replacement London Plan<sup>6</sup> was formally published and adopted in July 2011.
- 3.9 The replacement London Plan is comprised of separate chapters relating to a number of areas, including London's Places, People, Economy and Transport. Chapter 5 relates specifically to how the Mayor seeks to tackle climate change by reducing London's carbon dioxide emissions, managing resources more effectively, and helping the city to cope with the effects of a changing climate. This chapter includes the following policies



that are relevant to this Energy Strategy report, which provides guidance on the Mayor's expectations of how developments can make the fullest contribution to the mitigation of climate change.

### Policy 5.2 Minimising Carbon Dioxide Emissions

'A - Development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy:

1 Be lean: use less energy

2 Be clean: supply energy efficiently

3 Be green: use renewable energy

B – The Mayor will work with boroughs and developers to ensure that major developments meet the following targets for carbon dioxide emissions reduction in buildings. These targets are expressed as minimum improvements over the Target Emissions Rate (TER) outlined in the national Building Regulations leading to zero carbon residential buildings from 2016 and zero carbon non-domestic buildings from 2019.

| Residential buildings |                                                                                 |   | Non-domestic buildings                                    |
|-----------------------|---------------------------------------------------------------------------------|---|-----------------------------------------------------------|
| •                     | 2010-2013 25% improvement on 2010<br>Building Regulations (Code for Sustainable | • | 2010-2013 25% improvement on 2010<br>Building Regulations |
|                       | Homes Level 4) 2013-2016 40% improvement on 2010                                | • | 2013-2016 40% improvement on 2010<br>Building Regulations |
|                       | Building Regulations<br>2016-2031 Zero carbon                                   | • | 2016-2019 As building regulations requirements            |
|                       |                                                                                 | • | 2019-2031 Zero carbon                                     |

C - Major developments proposals should include a detailed energy assessment to demonstrate how the targets for carbon dioxide emissions reduction outlined above are to be met within the framework of the energy hierarchy.

D - As a minimum, energy assessments should include the following details:

a Calculation of the energy demand and carbon dioxide emissions covered by the Building Regulations and, separately, the energy demand and carbon dioxide emissions from any other part of the development, including plant or equipment, that are not covered by the Building Regulations... at each stage of the energy hierarchy

b Proposals to reduce carbon dioxide emissions through the energy efficient design of the site, buildings and services



- c Proposals to further reduce carbon dioxide emissions through the use of decentralised energy where feasible, such as district heating and cooling and combined heat and power (CHP)
- d Proposals to further reduce carbon dioxide emissions through the use of on-site renewable energy technologies.
- E The carbon dioxide reduction targets should be met on-site. Where it is clearly demonstrated that the specific targets cannot be fully achieved on-site, any shortfall may be provided off-site or through a cash in lieu contribution to the relevant borough to be ring fenced to secure delivery of carbon dioxide savings elsewhere.'

### Policy 5.3 Sustainable Design and Construction

- 'A The highest standards of sustainable design and construction should be achieved in London to improve the environmental performance of new developments and to adapt to the effects of climate change over their lifetime.
- B Development proposals should demonstrate that sustainable design standards are integral to the proposal, including its construction and operation, and ensure that they are considered at the beginning of the design process.
- C Major development proposals should meet the minimum standards outlined in the Mayor's supplementary planning guidance and this should be demonstrated within a design and access statement. The standards include measures to achieve other policies in this Plan and the following sustainable design principles:
  - a minimising carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems)
  - b avoiding internal overheating and contributing to the urban heat island effect
  - c efficient use of natural resources (including water), including making the most of natural systems both within and around the buildings...'

### Policy 5.5 Decentralised Energy Networks

- 'A The Mayor expects 25 per cent of the heat and power used in London to be generated through the use of localised decentralised energy systems by 2025. In order to achieve this target the Mayor prioritises the development of decentralised heating and cooling networks at the development and area wide levels, including larger scale heat transmission networks.
- B Within LDFs boroughs should develop policies and proposals to identify and establish decentralised energy network opportunities. Boroughs may choose to develop this as a supplementary planning document and work jointly with neighbouring boroughs to realise wider decentralised energy network opportunities. As a minimum boroughs should:



a identify and safeguard existing heating and cooling networks

b identify opportunities for expanding existing networks and establishing new networks. Boroughs should use the London Heat Map tool and consider any new developments, planned major infrastructure works and energy supply opportunities which may arise

c develop energy master plans for specific decentralised energy opportunities which identify:

- Major heat loads (including anchor heat loads, with particular reference to sites such as universities, hospitals and social housing)
- Major heat supply plant
- Possible opportunities to utilise energy from waste
- Possible heating and cooling network routes
- o Implementation options for delivering feasible projects, considering issues of procurement, funding and risk and the role of the public sector

d require developers to prioritise connection to existing or planned decentralised energy networks where feasible.'

### Policy 5.6 Decentralised Energy in Development Proposals

- 'A Development proposals should evaluate the feasibility of Combined Heat and Power (CHP) systems, and where a new CHP system is appropriate also examine opportunities to extend the system beyond the site boundary to adjacent sites.
- B Major development proposals should select energy systems in accordance with the following hierarchy:
  - 1 Connection to existing heating or cooling networks
  - 2 Site wide CHP network
  - 3 Communal heating and cooling.
- C Potential opportunities to meet the first priority in this hierarchy are outlined in the London Heat Map tool. Where future network opportunities are identified, proposals should be designed to connect to these networks.'

### Policy 5.7 Renewable Energy

"...B - Within the framework of the energy hierarchy, major development proposals should provide a reduction in expected carbon dioxide emissions through the use of on-site renewable energy generation, where feasible....



...D - All renewable energy systems should be located and designed to minimise any potential adverse impacts on biodiversity, the natural environment and historical assets.'

### Policy 5.9 Overheating and Cooling

- "...B Major development proposals should reduce potential overheating and reliance on air conditioning systems and demonstrate this in accordance with the following cooling hierarchy:
  - Minimise internal heat generation through energy efficient design
  - Reduce the amount of heat entering a building in summer through shading,
     albedo, fenestration, insulation and green roofs and walls
  - Manage the heat within the building through exposed internal thermal mass and high ceilings
  - Passive ventilation
  - Mechanical ventilation
  - o Active cooling systems (ensuring they are the lowest carbon options).
- ...D Major development proposals should demonstrate how the design, materials, construction and operation of the development would minimise overheating and also meet its cooling needs. New development in London should also be designed to avoid the need for energy intensive air conditioning systems as much as possible. Further details and guidance regarding overheating and cooling are outlined in the London Climate Change Adaptation Strategy.'

#### Policy 5.10 Urban Greening

- 'A The Mayor will promote and support urban greening, such as new planting in the public realm (including streets, squares and plazas) and green infrastructure, to contribute to the adaptation to, and mitigation of, the effects of climate change.
- B The Mayor seeks to increase the amount of surface area greened in the Central Activities Zone by at least five per cent by 2030, and a further five per cent by 2050.
- C Development proposals should integrate green infrastructure from the beginning of the design process to contribute to urban greening, including the public realm. Elements that can contribute to this include tree planting, green roofs and walls, and soft landscaping. Major development proposals within the Central Activities Zone should demonstrate how green infrastructure has been incorporated.'



### GLA Energy Team Guidance on Planning Energy Assessments

- 3.10 The GLA Energy team published this guidance note which provides further detail on addressing the London Plan's energy hierarchy through the provision of an energy assessment. The most recent version 1.1 published in October 2010 describes the means by which development proposals can demonstrate that climate change mitigation measures are integral to the context of the development.
- 3.11 The document has provided a guide to the structure and content of the energy assessment which has been adopted by this report.

### **Local Policy Drivers**

### LB Camden Local Development Framework

- 3.12 Due to changes in national government planning legislation, all local authorities have updated and replaced their Unitary Development Plans with a new suite of documents called the Local Development Framework (LDF). Camden's LDF replaced the UDP in November 2010, and sets out their strategy for managing growth and development in the borough, including where new homes, jobs and infrastructure will be located.
- 3.13 Within the LDF, the Core Strategy<sup>7</sup> and Development Policies<sup>8</sup> documents have been identified as having particular relevance on how the sustainability objectives of the Council should be met in new developments, as outlined in the following policies:

# Core Strategy Policy CS13 - Tackling climate change through promoting higher environmental standards

### Reducing the effects of and adapting to climate change

The Council will require all development to take measures to minimise the effects of, and adapt to, climate change and encourage all development to meet the highest feasible environmental standards that are financially viable during construction and occupation by:

- a) Ensuring patterns of land use that minimise the need to travel by car and help support local energy networks;
- b) Promoting the efficient use of land and building;
- c) Minimising carbon emissions from the redevelopment, construction and occupation of buildings by implementing, in order, all of the elements of the following energy hierarchy:
  - 1. Ensuring developments use less energy,
  - 2. Making use of energy from efficient sources, such as the King's Cross, Gower Street, Bloomsbury and proposed Euston Road decentralised energy networks;



- 3. Generating renewable energy on-site; and
- d) Ensuring buildings and spaces rare designed to cope with, and minimise the effects of, climate change.

The Council will have regard to the cost of installing measures to tackle climate change as well as the cumulative future costs of delaying reduction in carbon dioxide emissions.

### Local energy generation

The Council will promote local energy generation and networks by:

- e) Working with our partners and developers to implement local energy networks in the parts of Camden most likely to support them, i.e. in the vicinity of:
  - Housing estates with community heating or the potential for community heating and other uses with large heating loads;
  - The growth areas of King's Cross; Euston; Tottenham Court Road, West Hampstead Interchange and Holborn;
  - Schools to be redeveloped as part of Building Schools for the Future programme;
  - o existing or approved combined heat and power/local energy networks;
  - and other locations where land ownerships would facilitate their implementation
- f) Protecting existing local energy networks where possible (e.g. at Gower Street and Bloomsbury) and safeguarding potential network routes (e.g. Euston Road);

### Camden's carbon reduction measures

The Council will take a lead in tackling climate change by:

- j) Taking measures to reduce its own carbon emissions;
- k) Trialling new energy efficient technologies, where feasible; and
- I) Raising awareness on mitigation and adaptation measures.'

## Development Plan Policy DP22 – Promoting sustainable design and construction

'The Council will require development to incorporate sustainable design and construction measures. Schemes must:

a) Demonstrate how sustainable development principles.... Have been incorporated in the design and proposed implementation; and



b) Incorporate green or brown roofs and green walls wherever suitable.

The Council will promote and measure sustainable design and construction by:

- c) Expecting new build housing to meet Code for Sustainable Homes Level 3 by 2010 and Code level 4 by 2013 and encouraging Code Level 6 (zero carbon) by 2016;
- d) Expecting developments (except new build) of 500 sq m of residential floorspace or above or 5 or more dwellings to achieve "very good" in EcoHomes assessment prior to 2013 and encouraging "excellent" from 2013;
- e) Expecting non-domestic developments of 500 sqm of floorspace or above to achieve "very good" in BREEAM assessments and "excellent" from 2016 and encouraging zero carbon from 2019.

The Council will require development to be resilient to climate change by ensuring schemes including appropriate climate change adaption measures, such as:

- f) Summer shading and planting;
- *g)* Limiting run-off;
- h) Reducing water consumption;
- i) Reducing air pollution; and
- j) Not locating vulnerable uses in basements in flood-prone areas.'

### Camden Planning Guidance 3 - Sustainability

- 3.14 In addition to the adopted policy documents within the LDF, the LB of Camden has also provided a number of supplementary planning documents (SPDs) that provide information on how planning policies are to be applied in the Borough. The Camden Planning Guidance documents in particular, support the policies within the LDF, and form an additional 'material consideration' in planning guidance. The Guidance covers a range of topics, including sustainability.
- 3.15 In relation to energy the *Camden Planning Guidance on Sustainability*<sup>9</sup> provides information on how energy statements should be structured and information the council requires to evaluate applications. The document also highlights the Council's requirements and guidelines where technologies are to be included on development proposals.

#### **BUILDING REGULATIONS**

3.16 The Building Regulations 2000 (England & Wales) set out standards and requirements that individual aspects of building design and construction must achieve. The 'functional' requirements are also considered in a series of Approved Documents that provide general guidance in common building situations.



3.17 In total, there are 14 technical areas that each Approved Document provides practical guidance on, including fire safety, ventilation, hygiene, drainage and access. Approved Document Part L (Conservation of Fuel and Power) of the Building Regulations deals with the energy efficiency requirements:

### Approved Document Part L - the Conservation of Fuel and Power

'Reasonable provision shall be made for the conservation of fuel and power in buildings by:

- a. Limiting heat gains and losses:
- i) through thermal elements and other parts of the building fabric; and
- ii) From pipes, ducts and vessels used for space heating, space cooling and hot water services;
- b. Providing and commissioning energy efficient fixed building services with effective controls; and
- c. Providing to the owner sufficient information about the building, the fixed building services and their maintenance requirements so that the building can be operated in such a manner as to use no more fuel and power than is reasonable in the circumstances.'
- 3.18 On 1<sup>st</sup> April 2002, Part L of the Building Regulations came into force, with a view of reducing heating costs, conserving fuel and protecting the environment from the effects of climate change. However, to ensure that Part L of the Building Regulations was in line with the commitments made in the Energy White Paper (2003) of reducing CO<sub>2</sub> emissions from buildings, and to implement the Energy Performance of Buildings Directive (EPBD), amendments to the Approved Document were made in 2006.
- 3.19 On 6<sup>th</sup> April 2006, the amends to the 2002 version of Part L of the Building Regulations were implemented, introducing new energy efficiency requirements and other relevant changes, which included:
  - Introduction of a single calculation method (setting maximum CO<sub>2</sub> emissions for the whole building), that replaced the previous three methods of demonstrating compliance;
  - An increase in the CO<sub>2</sub> emissions standards for new buildings by between 20% and 28% compared to 2002 standards (dependant on the type and size of building); and
  - Higher standards for work on the existing buildings than were generally required in 2002.
- 3.20 More recently, with the introduction of new planning policy and legislative drivers, identified above, a need to reconsider and revise the 2006 editions of the Approved



Documents L was identified. The latest revision to the document, the 2010 version of Part L, has been adopted from October 2010.

- 3.21 Within the updated 2010 version of Part L, a number of changes have been made, including the following:
  - The Target Emissions Rate (TER) is no longer based on a 2002 notional building and an improvement factor but will take an 'aggregate approach' for the non-dwellings sector. The TER will be based on a building of the same size and shape as the actual building, constructed to a concurrent specification, provided in the 2010 NCM modelling guide. This approach has been adopted, as the level of improvement that can be reasonably expected is considered to vary significantly across the building sector; a blanket improvement factor is therefore inequitable. Therefore, some buildings (e.g. those buildings that use a higher load of lighting versus, say, hot water) will be expected to exceed the 25% reductions target, while other buildings will be allowed to achieve less than 25%;
  - In order to assist Building Control Officers to enforce regulations, design-stage submissions must be accompanied by a copy of the design specifications. This will also increase the emphasis on commissioning to ensure that systems perform as intended. This is also to enable the Building Controls Officer to be able to check that the relevant elements are in place. Should any changes be made to the building to the design stage list of specifications, a list of these changes must be provided to the Building Control Officers, as well as a certificate signed off by a suitably accredited energy assessor; and
  - Accredited construction details that cover building elements, such as thermal bridging will no longer make assumptions. Under the 2010 Building Regulations, each of the junctions will need to be measured, multiplied by the appropriate psi value (values supplied by the SAP 2009 document), and added up to produce an 'effective' y value.
- 3.22 In addition to the revisions that have been implemented from October 2010, the Government have also announced further revisions to Part L that will be used as a catalyst of achieving the target for zero carbon dwellings by 2016 and zero carbon non-domestic buildings by 2019. It is expected that amendments to the Part L documents will expect a 44% improvement of the Target Emission Rate (TER) or the CO<sub>2</sub> emissions of a new building in the 2013 revision (relative to the 2006 requirements) for domestic buildings and an aggregated 44% improvement of the TER for non-domestic buildings.

### **CODE FOR SUSTAINABLE HOMES**

3.23 The proposed development is being assessed under the UK Government's Code for Sustainable Homes (CSH), which aims to encourage and reward best practice through



the recognition of improvements made to the design of residential buildings against a number of environmental criteria, including energy. The design team for the proposed development at Maygrove Road have committed to achieving a CSH rating of Level 4 for all the proposed residential dwellings on-site, which exceeds the minimum requirements as set by the Council. The scheme has been registered against the November 2010 version of the CSH.

- 3.24 Under the CSH, mandatory standards for energy (as well as other environmental categories) must be met, before even the lowest level of CSH can be achieved. In addition, the CSH demands incrementally higher standards for energy to be met at each performance level. For Credit Ene 1 (Dwelling emission rate as defined by 2010 Building Regulations), in order to secure a Level 4 rating, dwellings must achieve an improvement of the Dwelling Emissions Rate (DER) over the Target Emissions Rate (TER) greater than or equal to 25% demonstrated using SAP2009 software, which is equivalent to 3 credits.
- 3.25 In addition, other specific energy related CSH Credits have been targeted by the design team at the pre-assessment meeting (as detailed within the Sustainability Statement and accompanying CSH Pre-Certification Assessment Report submitted within this application), which include those that relate to building fabric, internal and external lighting, drying space, energy labelled white goods and LZC technologies.
- 3.26 As part of the credit requirements for Ene 7 Low and Zero Carbon Technologies, the CSH requires an energy feasibility study to be produced and provides clear guidance regarding the minimum content of the study. Credit compliant details for Ene 7 are set out within Appendix 1.0 of this document.



### 4.0 ENERGY ASSESSMENT METHODOLOGY

- 4.1 The application is for a proposed development encompassing two buildings with a total of 68 dwellings. The residential dwellings are comprised of a combination of one, two, three and four bed units.
- 4.2 The assessment methodology for this Energy Strategy Report has been informed by the following guidance:
  - The replacement London Plan<sup>6</sup>;
  - The London Borough of Camden, Camden Planning Guidance 3 Sustainability<sup>9</sup>;
  - The Mayor's Sustainable Design and Construction Supplementary Planning Guidance<sup>10</sup> (SPG);
  - The Standard Assessment Procedure 2009;
  - NHER v5.3;
  - Energy Savings Trust Guidance on Energy Efficiency and Code for Sustainable Homes<sup>11</sup>;
  - The London Renewables Toolkit for Planners, Developers and Consultants<sup>12</sup>.

### **BASELINE EMISSIONS - RESIDENTIAL ELEMENT**

- 4.3 In forming the baseline standard for this assessment (a building compliant with Part L of the 2010 Building Regulations), initial energy demand SAP calculations using approved NHER calculation software and based upon a sample set of the proposed apartments have been undertaken. Using this baseline, further calculations to identify energy efficient measures with regard to the building fabric etc., efficient supply, and, renewable energy systems have then been progressed.
- 4.4 A sample set of eight apartments has been selected to give a representation of the development's performance. The selected apartments are a mixture of the size, aspect and various elevations (from ground, mid, and top floor levels) of the 68 dwellings proposed for the site as follows:
  - Flat A, a four Bed duplex north-facing end terrace flat located on the ground/first floor;
  - Flat 1, a two Bed duplex south-facing corner flat located on the basement/ground floor;
  - Flat 5, a three Bed duplex south-facing mid-terrace flat located on the basement/ground floor;
  - Flat 8, a one Bed west-facing corner flat located on the ground floor;



- Flat 17, a one Bed south-facing mid-terrace flat located on the first floor;
- Flat 28, a one Bed south-facing mid-terrace flat located on the second floor;
- Flat 47, a two Bed north-facing corner flat located on the third floor; and
- Flat 51, a two Bed south-facing corner flat located on the fourth floor.
- 4.5 From this, an average was estimated for one, two, three and four bed flats to calculate the baseline emissions for the residential element of the proposed development as built to meet the TER and comply with 2010 Building Regulations. Table 4.1 below shows the baseline TER that has been applied to each of the different dwelling types:

Table 4.1 Average residential Element Baseline SAP calculations Target Emission Ratings

| Dwelling Type | Average TER<br>(kgCO <sub>2</sub> /m²/yr) | Baseline CO <sub>2</sub><br>Emissions (kgCO <sub>2</sub> /yr) |  |
|---------------|-------------------------------------------|---------------------------------------------------------------|--|
| One Bed       | 13.7                                      | 19,800                                                        |  |
| Two Bed       | 22.8                                      | 47,200                                                        |  |
| Three Bed     | 9.7                                       | 7,800                                                         |  |
| Four Bed      | 23.6                                      | 9,300                                                         |  |

Note: SAP 2009 calculations undertaken using approved NHER calculation software 'NHER Plan Assessor Version 5.3' in November 2011

### **BASELINE EMISSIONS - ANCILLIARY AREAS**

4.6 In forming the baseline standard for this assessment (a building compliant with Part L of the 2010 Building Regulations), initial energy demand iSBEM calculations using approved NCM calculation software and based upon the geometry/servicing of the car parking area at 65 Maygrove Road. Using this baseline, further calculations to identify energy efficient measures with regard to the ventilation and lighting systems have been progressed. The area is not expected to generate any unregulated emissions.

Table 4.2 Ancillary Element Baseline iSBEM calculation Target Emission Ratings

| Area                                | TER (kgCO <sub>2</sub> /m²/yr) | Baseline CO <sub>2</sub><br>Emissions (kgCO <sub>2</sub> /yr) |
|-------------------------------------|--------------------------------|---------------------------------------------------------------|
| Car Parking/Lifts/Communal<br>Areas | 9.15                           | 18,400                                                        |

Note: iSBEM calculations undertaken using approved NCM calculation software 'iSBEM v4.1.c' in November 2011



### **UNREGULATED EMISSIONS**

- 4.7 Part L1A regulates the emissions relating to the provision of heat and light to dwellings. Small power loads, i.e. electrical energy for domestic appliances such as televisions, refrigerators and washing machines, are not considered within the regulations yet the associated emissions with these appliances can be significant compared to the overall emissions from a dwelling.
- 4.8 As stated within GLA Energy Team Guidance<sup>13</sup>, the baseline energy consumption and CO<sub>2</sub> emissions should include both regulated and unregulated energy use. Therefore, in order to demonstrate compliance with London policy, unregulated emissions have been included within the calculations to ensure that the overall total emissions of the proposed development have been considered.
- 4.9 However, it should be noted that the CSH assessment process does not require unregulated emissions to be included and therefore, for the CSH Ene 1 calculation only, unregulated emissions have been excluded.
- 4.10 Within the current version of the NHER SAP software (version 5.3), there is at present no procedure available to calculate unregulated emissions. The NHER has advised that unregulated emissions relating to cooking and appliances should in the interim be based on the previous NHER SAP software (version 4.5 which used the BREDEM12 calculation method), which has been used for this assessment.
- 4.11 Given the basic function of the communal and car parking areas, the only additional, unregulated energy uses or emissions associated with these areas is the use of the lifts serving the upper floors of the proposed development.
- 4.12 Based on these outputs, Table 4.3 below shows the baseline for regulated and unregulated emissions for the residential element of the proposed development.

**Table 4.3 Annual Carbon Dioxide Emissions** 

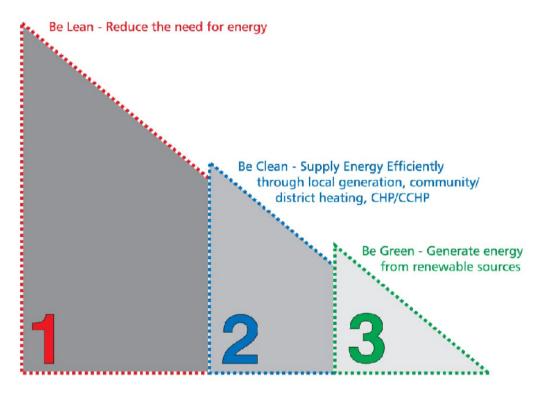
| Dwelling Type/Area                  | Regulated<br>emissions<br>(kgCO <sub>2</sub> /yr) | Unregulated<br>emissions<br>(kgCO <sub>2</sub> /yr) | Total annual<br>emissions<br>(kgCO <sub>2</sub> /yr) |
|-------------------------------------|---------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|
| One Bed                             | 19,800                                            | 14,900                                              | 34,700                                               |
| Two Bed                             | 47,200                                            | 17,900                                              | 65,100                                               |
| Three Bed                           | 7,800                                             | 7,900                                               | 15,700                                               |
| Four Bed                            | 9,300                                             | 3,900                                               | 13,200                                               |
| Car Parking/Lifts/Communal<br>Areas | 18,400                                            | 17,000                                              | 35,400                                               |
| Total                               | 102,500                                           | 61,600                                              | 164,100                                              |



### **BASELINE SUMMARY**

4.13 This section has described a baseline of Part L 2010 compliant buildings, for both residential and communal areas, for the application site (as summarised in Table 4.4 below). From this platform, energy efficiency measures and LZC technologies considered for incorporation into the proposed development have been assessed. Analysis has been carried out in accordance with the methods contained within the London Renewables Toolkit for Planners, Developers and Consultants with the selected energy efficiency measures and LZC technologies discussed in Section 5.0 and Section 6.0.

**Table 4.4 Summary of Baseline Energy Demand** 


| Type of Emissions     | Annual CO <sub>2</sub> Emissions (tonneCO <sub>2</sub> /yr) |  |
|-----------------------|-------------------------------------------------------------|--|
| Regulated Emissions   | 102                                                         |  |
| Unregulated Emissions | 62                                                          |  |
| TOTAL                 | 164                                                         |  |



### 5.0 ENERGY EFFICIENCY MEASURES - BE LEAN

### THE MAYOR'S ENERGY HIERARCHY

- 5.1 The Mayor's Energy Strategy adopts a set of principles to guide design development and decisions regarding energy, balanced with the need to optimise environmental and economic benefits. These guiding principles have been reordered since the publication of the Mayor's Energy Strategy in Feb 2004 and the recently published London Plan<sup>6</sup> states that 'The following hierarchy should be used to assess applications:
  - Using less energy, in particular by adopting sustainable design and construction measures;
  - Supplying energy efficiency, in particular by prioritising decentralised energy generation; and
  - Using renewable energy.'



5.2 It is considered that the above principles for carbon reduction form the most appropriate approach from both a practical and financial perspective. The industry is broadly in agreement that energy efficiency and low carbon technologies have the greatest impact in offsetting CO<sub>2</sub> emissions. Therefore, it is logical to encourage enhanced mitigation through energy efficiency and low carbon technologies in the first instance, as opposed to applying renewables as a first option at a significantly greater cost.



5.3 Consequently, as a result of the above principles, the first stage in the energy strategy for the proposed development is the consideration of energy efficiency measures to ensure that the base energy demand is minimised.

#### **ENERGY EFFICIENCY MEASURES**

- 5.4 In order to achieve a building that complies with 2010 Building Regulations Part L1A and Part L2A, and exceeds the TER, measures to make the building energy efficient must be incorporated within the scheme design.
- 5.5 The TER will be calculated using the Standard Assessment Procedure (SAP) approved for the task by the DCLG and will be a function of the form and fuel selected for use within the dwellings. It is estimated that passive energy efficient design measures, including those set out within the best practice guidance document produced by the EST, will improve upon the TER by **5-10%** as a result of energy efficiency measures for the proposed development.
- 5.6 The following key passive energy efficient design measures to improve upon the TER have been included based on discussions between the design team as follows:
  - U values of:
    - Floors: 0.13 W/m<sup>2</sup>K;
    - o Roof: 0.13 W/m<sup>2</sup>K;
    - External walls: 0.2 W/m<sup>2</sup>K;
    - Windows: 1.5 W/m<sup>2</sup>K;
    - Doors: 1.0 W/m<sup>2</sup>K (solid);
    - Doors: 1.5 W/m<sup>2</sup>K (glazed);
  - 100% of all fixed internal lighting have dedicated low energy fittings with suitable lighting controls;
  - Air permeability of 3m<sup>3</sup>/m<sup>2</sup>hr @ 50Pa or less;
  - Energy metering.

### **Passive Solar Design**

- 5.7 Passive design measures manage internal heating through solar gain and as such reduce the need for cooling. Where feasible, passive design measures have been considered such as building orientation and solar shading. However, due to the constrained nature of the application site, including the relative locations of the nearby listed buildings, the ability to orientate buildings to reduce solar gains is limited.
- 5.8 Where possible, layouts of dwellings and window design have been configured to maximise the available daylight to the dwellings, which will seek to passively reduce



- energy demand from lighting and will also allow for solar gain from low winter sun, while balancing the need to reduce the risk of overheating especially in summer.
- 5.9 The building fabric will be designed to have low U-values, improving upon maximum Building Regulation values, to help retain heat in winter months and exclude heat during summer months.
- 5.10 The need for heating and cooling will further be reduced by constructing a more airtight building and reducing the air permeability to well below the maximum values described in the Building Regulations.
- 5.11 The residential flats will be provided with mechanical extract ventilation, in order to remove both cooking odours from kitchens and reduce indoor humidity in bath and shower rooms. Living spaces will be ventilated by trickle vents with the specification of openable windows to additionally help to manage solar gain and minimise cooling loads.

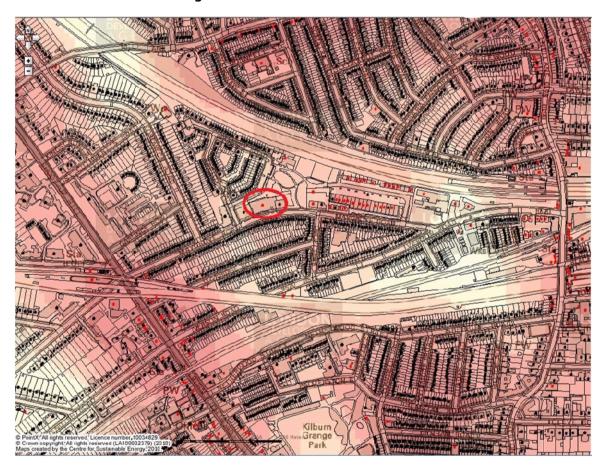
### **Energy Efficient Systems Design**

- 5.12 A number of measures are proposed to be included in the design of the dwellings to limit the use of energy. The heating system will include the use of a programmer to allow occupants to match the supply of heat for their house to their demand and the use of thermostatic radiator valves for the isolation of rooms that do not require heat.
- 5.13 The common areas will also include measures to reduce their use of power. Energy efficient lifts will be assessed for installation while operation of the car park ventilation system will be demand-led, based on readings from gas monitors, rather than a permanently operating system.
- 5.14 The lighting systems for the proposed development will also be designed to provide adequate lighting while minimising the use of energy for this building service.

### **Energy Efficiency Measures Summary**

- 5.15 The incorporation of energy efficiency measures proposed for the whole development is expected to exceed 2010 Building Regulations compared with the baseline building by up to 10% for the residential element. Whilst there will be measures included to reduce unregulated emissions (e.g. provision of Home User Guide and display energy metering, which will encourage occupants to utilise buildings in a sustainable and energy efficient manner), at this stage, no quantitative assessment has been made on the reduction of unregulated emissions. Therefore, this assessment has taken a conservative approach, and at this stage, has assumed that the unregulated emissions have not changed from the baseline scenario.
- 5.16 Therefore, when taking into account of total site emissions, the specification of energy efficient measures will result in a **3.1-6.2%** reduction against the baseline building.




5.17 The approaches to be adopted will ensure that the proposed development is a carbon efficient development.



### 6.0 SUPPLYING LOW CARBON ENERGY - BE CLEAN

- 6.1 In response to the second tier of the Energy Hierarchy and Camden's requirement that developments seek to connect to optimise energy supply, a preliminary investigation into the adjacent heat loads and infrastructure has been undertaken.
- 6.2 Using the mapping system developed by the LDA<sup>14</sup>, an investigation into the potential for connection to an existing or proposed scheme was undertaken, as shown in the figure below.

Figure 6.1 London Heat Map for the Application Site (circled in red) and Surrounding Areas

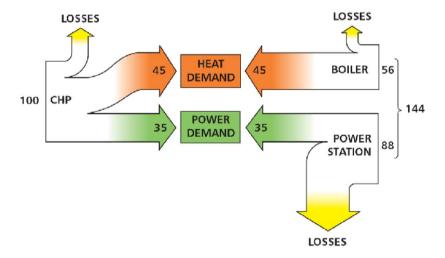


6.3 From the heat map shown above the predominant characteristic of the area is of a residential area which are likely to have individual heat generating equipment. The Sidings Community Centre could be a potential supplier/user of heat in the vicinity of the site however the distance from the site to the Community Centre is likely to make the installation of such a connection uneconomic.



### **Communal Gas Boiler System**

- 6.4 In accordance with the second principle of the Energy Hierarchy, a number of different options were considered to develop the energy study during the feasibility stage, which included:
  - Individual condensing gas boiler systems;
  - An electrically based system; and
  - A communal gas boiler system.
- 6.5 The electrically based system was immediately ruled out; based on concerns relating to fuel poverty, and the associated higher carbon intensity of an all-electric system, this approach was not favourable. On this basis, this option was not considered further as part of the energy strategy for the development.
- 6.6 Whilst highly efficient condensing gas boilers serving individual dwellings can provide CO<sub>2</sub> savings compared to other systems, the communal gas boiler system was identified as being the more favourable option. The communal system would enable future connection to a decentralised heat network and would be more efficient over time given the superior maintenance of a single centralised boiler versus 68 individual boilers. In terms of CO<sub>2</sub> savings between the centralised or individual boiler options, the communal system significantly outperformed the individual systems based on the SAP calculation procedure.
- 6.7 A communal gas boiler system provides an opportunity for the proposed development to be 'future-proofed' so that it makes the best use of efficient distribution, with current and future technologies. In particular, such a system enables the necessary infrastructure to be brought forward to link with other potential decentralised energy generation schemes coming forward in the vicinity, following completion of the proposed development. This ability to link with wider decentralised infrastructure is consistent with the requirements of the Mayor's London Plan. It should be noted, however, that permission to connect to decentralised schemes in the vicinity is subject to agreement with third parties and not guaranteed.
- 6.8 Subject to discussions and agreements with third parties, the proposed development could therefore, benefit from this potential network as it comes online. The integration of the proposed development into the energy from a district heating infrastructure would result in significant carbon reductions. As a result of this potential, the development at Maygrove Road will include for a future connection to a district heating system within the incoming utility meter plant-room/boiler-room.
- 6.9 Finally, the provision of the communal heating system and the accessibility of the central plant for the proposed development (in addition to the ability to connect to potential energy distribution networks in the vicinity) also facilitates the adoption of




emerging, and as yet undeveloped technologies, such as fuel cells and 'the hydrogen economy', once these become commercially and practically viable.

### **COMBINED HEAT & POWER OPTION**

- 6.10 CHP is only a renewable source when it is powered by biofuel. However, even when it is used in combination with fossil fuels such as gas and diesel, it is still more energy efficient than obtaining energy from the National Grid (the Grid).
- 6.11 Power stations that generate electricity for the Grid are only 35%-45% efficient. This is reduced by a further 5% due to the transmission losses arising from the long distances between the power stations and the buildings that are served. This is a poor use of fossil fuel and has high carbon emissions per unit of electricity produced. CHP can increase the efficiency of power generation and the fuel use up to 75-80% (see Figure 6.2) by making use of the waste heat created as a by product of producing electricity, and using this heat buildings. Transmission losses are minimised by on-site generation and, as such, a gas-fired CHP can be seen as a relatively carbon efficient means of energy supply.

Figure 6.2 Sankey Diagram of Gas fired CHP versus Grid Electricity and Gas
Fired Heating



- 6.12 Although the use of CHP results in an overall net reduction in emissions, as identified in Figure 6.2, the increase in fuel combustion from the proposed development would result in higher localised emissions and an impact upon local air quality. Increased emissions locally from a CHP do have minor air quality implications locally but crucially result in a net reduction of overall emissions.
- 6.13 CHP is effectively a mini power station with heat reclaim and minimal distribution losses due to its close proximity to the load. The power and heat produced serves a building, or buildings, where they are in close proximity.



- 6.14 As CHP incurs a significantly higher capital cost compared to conventional gas fired boilers, to maximise efficiency, it is important that the CHP plant operates for as many hours as possible and matches closely the base heat and power loads so that neither heat nor electricity is generated but not utilised (resulting in 'dumping'). For example, although it would be more cost-effective to size the CHP to match electricity demand, this would require an unacceptable amount of heat dumping. In terms of running hours, as a 'rule of thumb', CHP should be running for approximately 5,000 hours per year.
- 6.15 Therefore, as the thermal demand is usually the limiting factor and to ensure the CHP system operates for as many hours as possible, the summer thermal demand (principally hot water) is generally a key factor used for sizing a gas-fired CHP. It should be noted that if a CHP system is sized to provide the majority of the site's thermal demand, a significant proportion of the generated electricity would be dumped. Excess electricity can be exported to the Grid but as gas and diesel CHP is not considered a renewable technology, the electricity does not attract Renewable Obligation Certificates (ROCs) and, as such, the financial gains are minimal when compared to the capital cost of a large CHP system.
- 6.16 It is assumed that conventional gas fired boilers will provide the top up heat for the site's peak winter requirements. It will be necessary, however, to balance the summertime thermal demand with the site's electrical demand for optimum efficiency.
- 6.17 As this is a predominantly residential development of 68 dwellings in total with a comparatively minor communal area element, the load profiles and running hours are not ideal for large-scale CHP which would generate improved electricity to heat ratios. The small heat loads generated from 68 dwellings would enable a micro, sub-25kWe, CHP plant to operate for the 5,000 running hours necessary to deliver a good quality CHP.
- One micro CHP unit could be incorporated within the proposed development to provide heat for the base thermal load. To house the CHP, an extra spatial requirement on top of the space required for the communal boilers will be allocated. A plantroom has been allocated in the basement of the proposed development for the installation of the CHP, back-up boilers, pumps and pressurisation vessels and is shown in:



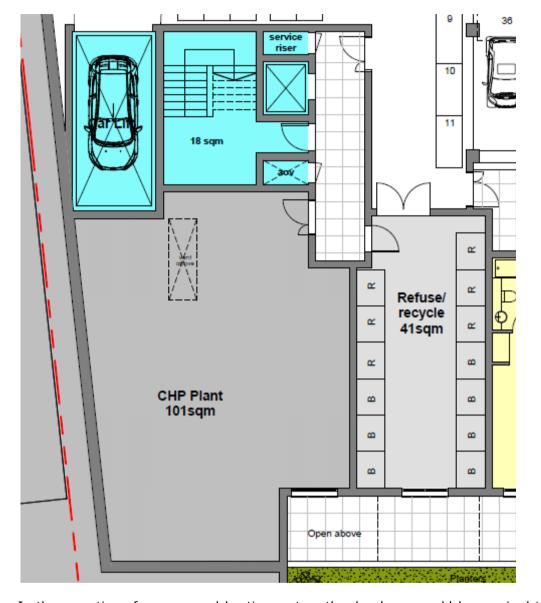



Figure 6.3 Basement plant area for CHP at Maygrove Road (Smith Lam Architects Ltd drawing 20045/A102rev.B)

- 6.19 In the operation of a communal heating system the developer would be required to create a management, maintenance and billing system that would operate the communal heating system and provide their customers with competitively priced low carbon heat.
- 6.20 Involvement of an ESCo (Energy Services Company) or MUSCo (Multi-Utility Services Company) may help to raise initial capital to contribute towards the costs of constructing an energy centre and a district heating network. ESCos may reach an agreement with a developer, usually prior to the design and construction of a project, to supply the energy services for the owners/tenants for a set period, usually 20-30 years. For this exclusivity of supply, the ESCo will make a capital contribution towards the central plant, which contains a CHP, and will oversee the management and



- operation of the equipment and billing arrangements (further information on ESCos can be found in Appendix 2.0).
- 6.21 Unfortunately, due to the relatively small heating loads of the proposed development, the likely revenues to be generated from the sale of heating and power to the residents (or management company) is likely to be so small that the business case for an ESCo to get involved is poor. Most ESCos do not entertain proposals from developers unless they can provide their services to 250 homes, thus the 68 residential dwellings of the proposed development are not likely to generate interest. Therefore the operation of the communal heating system is likely to be overlooked by a contracted facilities management company.

### **CALCULATION OF EMISSIONS SAVINGS FROM CHP**

- 6.22 There are two means by which the emissions savings from CHP can be accounted for in the assessment of the technology. The first uses the SAP calculation spreadsheet to estimate emissions reductions based on the improved DER (Dwelling Emission Rate) from the inclusion of the technology. The second is based on the selection of a CHP and using an estimation of its annual running hours the calculation of the additional local emissions offset against the emissions reductions from the cogeneration of heat and power.
- 6.23 The more accurate means of calculation is based on the selection of a CHP to estimate emissions reductions rather than the use of SAP. SAP after all is a Building Regulations compliance tool and is not geared towards calculating emissions reducing potential of communal heating schemes.
- 6.24 Based on the selection of a 10kWe machine running for 17 hours per day, the use of CHP at 65 Maygrove Road is estimated to reduce emissions by 12.8tonnes of  $CO_2$  per annum, equating to an emissions reduction of **7.8%** from the overall emissions baseline.
- 6.25 Using the SAP calculation results for the sample dwellings indicates that the 25% emissions reduction target has been met through the use of CHP within a communal heating system as described by Table 6.1:



Table 6.1 Dwelling Emission Ratings (DERs) from SAP calculations for sample apartments using CHP within communal heating system

| Dwelling Type | Average TER<br>(kgCO <sub>2</sub> /m²/yr) | Average DER<br>(kgCO <sub>2</sub> /m²/yr) | Percentage<br>Improvement<br>(%) |
|---------------|-------------------------------------------|-------------------------------------------|----------------------------------|
| One Bed       | 13.7                                      | 5.2                                       | 62                               |
| Two Bed       | 22.8                                      | 8.2                                       | 64                               |
| Three Bed     | 9.7                                       | 4.0                                       | 59                               |
| Four Bed      | 23.6                                      | 11.4                                      | 52                               |

Note: SAP 2009 calculations undertaken using approved NHER calculation software `NHER Plan Assessor Version 5.3' in November 2011

- 6.26 Table 6.1 is based on the assumption that around 60% of the dwellings heat demand is met by heat from the CHP with the other 40% being met by communal boilers and an allowance for heat losses from the distribution network. Note that as the communal spaces are not to be heated, no emissions reduction benefit can be associated to these spaces from the CHP.
- 6.27 Using the SAP output figures, the use of CHP at 65 Maygrove Road is estimated to reduce emissions by 43tonnes of CO<sub>2</sub> per annum, equating to an emissions reduction of **26.2%** from the overall emissions baseline.



## 7.0 LOW & ZERO CARBON TECHNOLOGIES - BE GREEN

- 7.1 This section describes the low and zero carbon (LZC) technologies which have been considered for the development. Readers familiar with these technologies may prefer to proceed to Section 8.0 of this report where the technologies that are appropriate for the proposed development are considered for this planning application.
- 7.2 When addressing the third tier of the Energy Hierarchy, the aim is to integrate renewable energy technologies that are appropriate to the design of the buildings at the development. Furthermore the integration of renewables must not compromise or detract from the adoption of energy efficiency measures and decentralised energy infrastructure.
- 7.3 From the suggested renewable energy systems listed in the *London Renewables*  $Toolkit^{12}$ , a number of potential technologies were identified; in each case the site location and/or development design provided, in principle, is a key determinant for the selection of each technology.

### **Solar Hot Water**

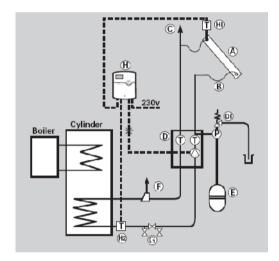

- 7.4 Solar thermal panels are used to produce hot water and consist of roof mounted collector panels that make use of heat energy from the sun to heat water circulating in a closed loop. Usually this heat is then transferred via a heat exchanger into a hot water storage tank that is also heated by a gas or other boiler.
- 7.5 Two main types of solar water heating system are used in the UK; flat plate collectors and evacuated glass heat tubes. Flat plate collectors circulate water around a black coloured receiver plate that is heated by direct sunlight and to some extent by indirect light, heat being retained by a thermally glazed panel above. Evacuated glass heat tubes are more efficient, particularly in the UK, as they can work more effectively at low solar radiation levels. These consist of rows of parallel transparent glass tubes, each containing an absorber tube which converts the sunlight into heat energy. They are, however, more expensive than flat plate collectors.

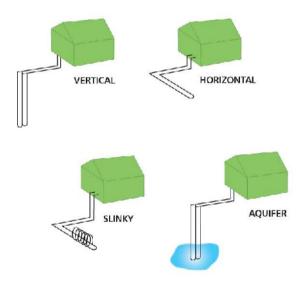


Figure 7.1 Solar Thermal Evacuated Tube Panels



Figure 7.2 Typical schematic of Solar Thermal Installation




## **Ground Source Heat Pumps**

- 7.6 Ground source heat pumps (GSHPs) extract heat from the ground. GSHPs work on the principle that the below ground temperature is more constant compared to that above ground. In the winter months, the below ground temperature is warmer than above and the heat carrier fluid circulating within the absorber pipes absorbs the heat. This heat energy is then raised by a compressor (using the compression cycle) and through a heat exchanger, distributed via a low temperature distribution system such as under floor heating to satisfy a proportion of the space heating requirements. GSHP systems are not suitable for satisfying high temperature hot water demands.
- 7.7 As Figure 7.3 shows, there are a number of configurations for GSHP systems. A vertical collector system is considered to be the most appropriate in the context of the proposed development given the large scale of the system and limited area available for horizontal collectors. Vertical collectors can be between 15–180m deep and



- minimum spacing between adjacent boreholes should be maintained at 5-15m to prevent thermal interference.
- 7.8 A key component of this technology is the heat exchanger. Larger heat exchangers deliver greater heat transfer and are, therefore, more efficient but have a higher capital cost.
- 7.9 It is important to establish ground conditions (depth of soil cover, the type of soil or rock and the ground temperature) at the application site and the presence of underlying London Clay is considered appropriate. This would, however, be subject to a ground survey.
- 7.10 'Reversible' heat pump systems are also available that give the potential for provision of space cooling, if required. These systems extract coolth from the ground during the summer months and heat during the winter months. Groundwater can also be used to cool buildings where a suitable source exists, abstraction and discharge permissions can be obtained and test bores are favourable.

Figure 7.3 Diagram showing ground coupling options



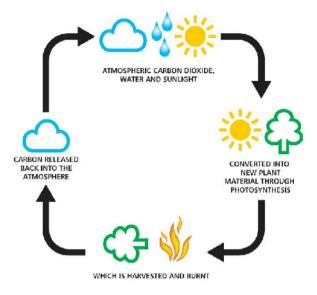
7.11 Under this feasibility study, the GSHP system has been assessed for use with the proposed development, and has been sized based on the available site footprint. As horizontal collectors require a relatively large area, and given the small size of the application site in relation to the density of the buildings, it is considered that the most appropriate option for the scheme would be to incorporate closed loop vertical heat pumps, which provide better efficiencies due to the larger heat transfer surface area found at depth.

## **Air Source Heat Pump**

7.12 Air source heat pumps (ASHPs) absorb heat from the outside air; the heat is then used to warm water for radiators or underfloor heating systems, or to warm the air within a



dwelling. ASHPs work on a similar principle to a fridge, which extracts heat from its inside. An evaporator coil, mounted outside absorbs the heat; a compressor unit then drives refrigerant through the heat pump and compresses it to the right level to suit the heat distribution system. Finally, a heat exchanger transfers the heat from the refrigerant for use, depending on which of the two main types of systems (identified below) is installed:


- Air to air systems produce warm air which is circulated by fans to heat a home;
   and
- Air to water systems use heat to warm water. Heat pumps heat water to a lower temperature than a standard boiler system; therefore, these systems are more suitable for underfloor heating than radiator systems, requiring less space to incorporate, compared with an air to air system.
- 7.13 The efficiency of ASHPs is measured by a coefficient of performance (CoP) the amount of heat produced compared to the amount of electricity needed to run them. As ASHPs produce less heat than traditional boilers, buildings must be well insulated and draught-proofed to ensure that the heating system is effective.
- 7.14 Using air instead of the earth as a heat source mean that ASHPs have a lower CoP than GSHPs, resulting in less carbon savings for a similar sized heat pump. However, the key issue when considering the potential carbon savings of ASHPs is the carbon content of grid electricity. The cleaner the grid electricity, the better the carbon savings from ASHPs; given the legally binding UK carbon reduction targets, it is likely that ASHPs installed with an estimated operational period of 25 years will be better in carbon terms compared with traditional condensing gas fired boilers.
- 7.15 In addition, ASHPs are becoming increasingly popular in the UK, largely due to the fact that there is no need for extensive excavation, requiring far less space and are more easily installed than GSHPs. Buildings do not have to be re-engineered to obtain heat from a different fuel source should gas become scarce, expensive or a 'dirty' fuel, compared to electricity.

## **Biofuelled Heating**

- 7.16 Biomass boilers replace conventionally powered boilers with an almost carbon neutral fuel such as wood pellets. The fuel is classed as almost carbon neutral because the  $CO_2$  released during the burning of biomass is balanced by that absorbed by the plants during their growth, see Figure 7.4.
- 7.17 The proposed development could allocate space for these boilers and storage of the fuel and it may be possible to source the fuel from within the south of England. It should be noted, however, that fossil fuels are utilised in the production, processing and transportation of biomass fuels and therefore, care should be taken when choosing the fuel supplier and the distance and method for transportation.



Figure 7.4 Biomass Life Cycle



## **ELECTRICAL PROVISION**

### **Photovoltaic Cells**

7.18 Solar Photovoltaics (PVs) are solar panels which generate electricity through photon-to-electron energy transfer, which takes place in the dielectric materials that make up the cells. The cells are made up from layers of semi-conducting silicon material which, when illuminated by the sun, produce an electrical field that generates an electrical current. PVs can generate electricity even on overcast days, requiring daylight, rather than direct sunlight. This makes them viable even in the UK, although peak output is obtained at midday on a sunny summer's day. PVs offer a simple, proven solution to generating renewable electricity.

Figure 7.5 Photovoltaic (PV) Panels





# **Rooftop Building Integrated Wind Turbines**

7.19 Wind turbines are an established means of capturing wind energy and converting it into usable electricity. Wind turbines come in various sizes depending on the location and the electrical requirements. A wind turbine usually consists of a nacelle containing a generator connected, sometimes via a gearbox, to a rotor consisting of three blades.



# 8.0 LOW AND ZERO CARBON TECHNOLOGY ASSESSMENT FOR MAYGROVE ROAD

### **HEATING AND HOT WATER PROVISION**

### **Solar Hot Water**

- As part of the feasibility of appropriate low and zero carbon technologies, available roofspace was identified to accommodate solar technologies (i.e. solar thermal panels or photovoltaic panels). It is not considered appropriate to specify solar thermal heating to individual flats, as this would require a dedicated link between the panels to hot water cylinders in each flat, involving additional floorspace for risers between the roof and dwellings.
- 8.2 Further, as discussed in Section 6.0 of this report, the proposed development will benefit from a communal heating system with CHP, in accordance with the second principle of the Energy Hierarchy. The use of a renewable heating technology to compete with the supply of low carbon heating is unwise given that both technologies look to serve the base heat load, or that associated with domestic hot water demand for the proposed development.
- 8.3 Following discussions with the design team, it was considered that this approach was not considered cost-effective or favourable, and as such, alternative low and zero carbon technologies are considered more appropriate to the development.

### **Ground Source Heat Pumps**

8.4 The use of GSHPs would not only be cost-prohibitive (these types of systems would require instruction of a specialist installer with groundworks which are likely to lengthen the construction programme) but also involve the additional project risk of buried systems which is not considered acceptable to the operation of the scheme. On this basis, GSHPs have not been considered appropriate for the proposed development at Maygrove Road.

### Air Source Heat Pump

8.5 Though there will be future carbon benefits from the use of ASHPs (given the greening of electricity supplies in the UK) they only offer marginal carbon savings at the present time and many local authorities are set against their use due to fuel poverty concerns. In addition, the use of ASHPs requires that outdoor units are installed on the facade or roof of the building, which is unlikely to be possible without creating an unacceptable visual intrusion to the development. Therefore, ASHPs have not been selected for inclusion at the proposed development in favour of other heat generating technologies.

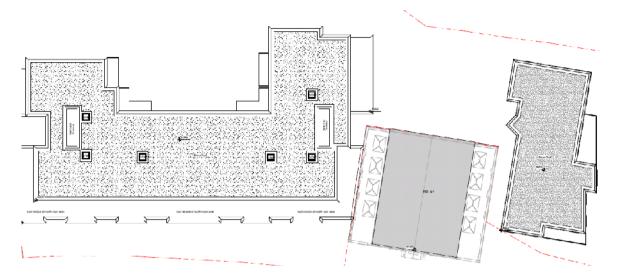


## **Biofuelled Heating**

- 8.6 Although many biomass burners will meet Clean Air Act requirements, combustion of woody biomass releases higher quantities of NO<sub>x</sub> compared to a comparable system fuelled by natural gas. As a consequence, many London boroughs have concerns about the potential impact on air quality that the widespread uptake of biomass boilers would have. In light of these concerns, London boroughs recently commissioned a report<sup>15</sup> to review the potential impacts of biomass use in London. The report, whilst acknowledging the problems widespread biomass combustion would cause, does not advocate the rejection of biomass as a renewable fuel for London but indicates a general approval of schemes that are linked to large-scale biomass CHP.
- 8.7 In addition, the ability of the application site to accommodate space required for deliveries and storage of biomass has been questioned within the design of the buildings. The management burden of checking fuel quality, scheduling fuel deliveries and disposal of ash from a biomass system further reduces its attractiveness. For these reasons and those highlighted above, the integration of biomass boilers is not preferred for the proposed development.

#### **ELECTRICAL PROVISION**

## **Rooftop Building Integrated Wind Turbines**


8.8 Owing to site constraints, micro-wind turbines have not been considered as part of this feasibility study. Constraints include low wind speeds in this area, averaging 2.5 m/s assuming a mid-rotor height above the landscape (high height and density)<sup>16</sup>. Wind turbines are also likely to have an impact on the landscape and sensitive local environment, as well as health and safety implications for occupiers or users on-site and on adjacent areas as a result of noise and light flicker associated with the wind turbines. Finally, it should also be noted that the rated power and energy output of micro-wind turbines is also the subject of further independent investigation into whether these devices meet their rated power outputs and therefore deliver the anticipated energy yields.

#### **Photovoltaic Cells**

8.9 It is considered technically feasible to utilise the roofspace on the buildings of the proposed development to accommodate photovoltaic panels including spacing required for access and to prevent overshadowing. The roofspace shown on Figure 8.1 below indicates that there is free space upon which PV panels could be located.



Figure 8.1 Roof space at 65 Maygrove Road



- 8.10 Though there is space for the inclusion of PV panels at the development, from a cost analysis point of view it is preferred to invest capital into both passive design measures (improved U-values for building fabric and higher levels of airtightness) and the creation of a communal heating system powered by CHP. These measures will ensure the development can achieve greater carbon dioxide reductions rather than designing to a lower standard and then including renewable technologies.
- 8.11 The installation of PV panels is therefore technically feasible but has been ruled out on an economic basis.



## 9.0 CONCLUSION

- 9.1 The Energy Statement has shown how the proposed development will be designed using the Energy Hierarchy and will deliver significant carbon dioxide savings as compared to Part L 2010 compliant, 'business as usual' buildings.
- 9.2 In response to the first tier of the Energy Hierarchy, it is estimated that passive energy efficient design measures are likely to exceed the TER as a result of energy efficiency measures alone.
- 9.3 The overall savings from applying the principles of the Energy Hierarchy are summarised in Table 9.1 below.

Table 9.1 Overall carbon dioxide emissions reductions

|                                                                                           | Total CO <sub>2</sub><br>emissions<br>(tonne CO <sub>2</sub> /yr) | Total CO₂ saving<br>(%) |
|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|
| Baseline emissions                                                                        | 164                                                               | -                       |
| Savings from<br>Energy Efficiency                                                         | 10                                                                | 6.2                     |
| Savings from Low<br>or Zero Carbon<br>Technologies After<br>Energy Efficiency<br>Measures | 43                                                                | 26.2                    |
| Emissions savings                                                                         | 53                                                                | 32.4                    |

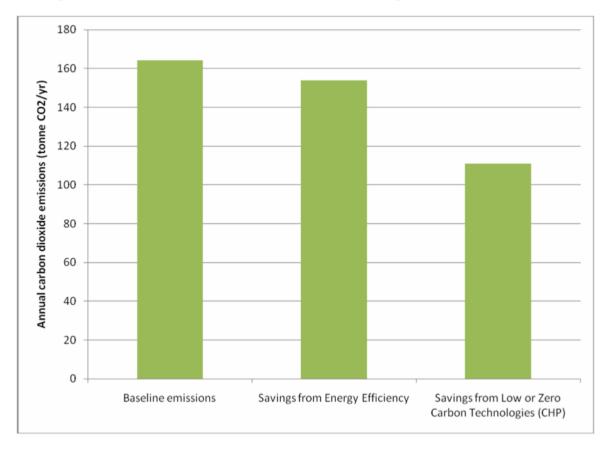



Figure 9.1 Calculation of Total Carbon Dioxide Savings

- 9.4 Of the technologies that can be practically applied at the development, photovoltaic systems are considered to be most appropriate when technical and spatial constraints have been taken into account.
- 9.5 Thus, the proposed development can achieve a **32.4%** carbon dioxide saving as a result of the inclusion of energy efficiency measures and CHP beyond the energy baseline demand of both regulated and unregulated emissions.
- 9.6 The target for the overall carbon dioxide saving (when using SAP and accounting for regulated emissions alone) exceeds the 25% improvement upon the TER and achieves the mandatory requirement under 'Ene1', for Level 4 of the Code for Sustainable Homes.



- END -



# APPENDIX 1.0 – CODE FOR SUSTAINABLE HOMES ENE 7 LOW OR ZERO CARBON TECHNOLOGIES CREDIT COMPLIANCE

In order to meet the requirements of the Code for Sustainable Homes (Technical Guidance November 2010) Credit Ene 7 the following section details the additional features of the Low or Zero Carbon (LZC) feasibility study that are not considered within the main body of the Energy Strategy Report produced in support of the planning application. This Low or Zero Carbon feasibility study has been undertaken at the outline proposals stage, Royal Institute of British Architects (RIBA) stage C.

### ACCREDITED ENERGY ASSESSOR

This section of the report has been undertaken by an accredited Low Carbon Consultant and Low Carbon Energy Assessor of a government recognised competent person's scheme run by the Chartered Institution of Building Services Engineers. Environmental Perspectives operate as independent energy specialists without any professional ties to a particular manufacturer or technology.

## STANDARD CASE CO<sub>2</sub> EMISSIONS

The Standard Case CO<sub>2</sub> emissions are included in the SAP output documents listed in Appendix 1.2. The specification assumptions are described in the following table:



Table 9.2 Standard  ${\rm CO_2}$  emissions calculation – specification assumptions

| Elem | ent or System                                                              | Value                                                                     |
|------|----------------------------------------------------------------------------|---------------------------------------------------------------------------|
| [1]  | Main heating fuel (space and water)                                        | Mains gas                                                                 |
| [2]  | Main water heating system (and second main heating system where specified) | Communal Boiler Fully pumped circulation Water pump in heated space       |
| [2a] | Boiler                                                                     | SEDBUK (2011) Fanned flue On/off burner control                           |
| [2b] | Heating system controls                                                    | Charging system linked to use Programmer Room thermostats TRVs            |
| [3]  | Secondary heating fuel                                                     | Electricity                                                               |
| [3a] | Secondary heating system                                                   | Panel, convector or radiant heaters                                       |
| [4]  | Hot water system                                                           | From main                                                                 |
| [4a] | Hot water storage                                                          | None                                                                      |
| [4b] | Primary water heating losses                                               | Primary pipework insulated  Cylinder temperature controlled by thermostat |
| [4c] | Technologies covered by Appendix H of SAP                                  | None specified                                                            |
| [5]  | Technologies covered by Appendix M of SAP                                  | None specified                                                            |

# **ACTUAL CASE CO<sub>2</sub> EMISSIONS**

The Actual Case  $CO_2$  emissions are included in the SAP output documents listed in Appendix 1.3. The specification assumptions are described in the following table:



Table 9.3 Actual case CO<sub>2</sub> emissions calculation – specification assumptions

| Elem | ent or System                                                              | Value                                                                       |
|------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| [1]  | Main heating fuel (space and water)                                        | Mains gas                                                                   |
| [2]  | Main water heating system (and second main heating system where specified) | Communal Boiler and CHP Fully pumped circulation Water pump in heated space |
| [2a] | Boiler                                                                     | SEDBUK (2011) Fanned flue On/off burner control                             |
| [2b] | Heating system controls                                                    | Charging system linked to use Programmer Room thermostats TRVs              |
| [3]  | Secondary heating fuel                                                     | Electricity                                                                 |
| [3a] | Secondary heating system                                                   | Panel, convector or radiant heaters                                         |
| [4]  | Hot water system                                                           | From main                                                                   |
| [4a] | Hot water storage                                                          | None                                                                        |
| [4b] | Primary water heating losses                                               | Primary pipework insulated Cylinder temperature controlled by thermostat    |
| [4c] | Technologies covered by Appendix H of SAP                                  | None specified                                                              |
| [5]  | Technologies covered by Appendix M of SAP                                  | None specified                                                              |

Following calculation of emissions using the Standard Assessment Procedure (SAP) for scenarios with and without low or zero carbon technologies the following summary table indicates the reduction in  $CO_2$  emissions in percentage terms:



# Table 9.4 Reduction in CO<sub>2</sub> emissions Flat A

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 13.55 |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 11.35 |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 16.24 |

# Table 9.5 Reduction in $CO_2$ emissions Flat 1

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 7.2   |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 6.29  |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 12.64 |

# Table 9.6 Reduction in CO<sub>2</sub> emissions Flat 5

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 4.54  |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 4.00  |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 11.89 |



# Table 9.7 Reduction in CO<sub>2</sub> emissions Flat 8

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 3.68  |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 3.2   |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 13.04 |

# Table 9.8 Reduction in CO<sub>2</sub> emissions Flat 17

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 7.04  |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 6.13  |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 12.93 |

# Table 9.9 Reduction in CO<sub>2</sub> emissions Flat 28

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 7.03  |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 6.12  |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 12.94 |



Table 9.10 Reduction in CO<sub>2</sub> emissions Flat 47

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 7.72  |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 6.63  |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 14.12 |

Table 9.11 Reduction in CO<sub>2</sub> emissions Flat 51

|     | Value Required                          | Data Source<br>Guidance         | Unit Required                | Value |
|-----|-----------------------------------------|---------------------------------|------------------------------|-------|
| [1] | Standard case CO <sub>2</sub> emissions | SAP section 16<br>[SAP box ZC8] | + kgCO <sub>2</sub> /m²/yr   | 13.69 |
| [2] | Actual case CO <sub>2</sub> emissions   | SAP section 16<br>[SAP box ZC8] | +/- kgCO <sub>2</sub> /m²/yr | 11.43 |
| [3] | Reduction in CO <sub>2</sub> emissions  | 100x(1-<br>([2]/[1]))           | +/- %                        | 16.5  |

We therefore recommend that at least one credit can be awarded under the Ene 7 section of the Code for Sustainable Homes given the performance described above on a sample set of SAP calculations undertaken for the proposed development. It is likely that dwellings with greater heat loss, namely the larger four bedroom dwellings and the top level apartments can achieve an additional credit given the emissions reducing ability of the communal heating system.



# **APPENDIX 1.1 SAP CALCULATIONS STANDARD CASE**

1. Overall dwelling dimensions



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                   | Assessor number | 1422       |
|---------------|-----------------------------------------------------|-----------------|------------|
| Client        |                                                     | Last modified   | 14/12/2011 |
| Address       | 1 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

|                                |                                                 | Area (m²)                       | Average storey height (m)  | Volume (m³)             |
|--------------------------------|-------------------------------------------------|---------------------------------|----------------------------|-------------------------|
| Lowest occupied                |                                                 | 56.00 (1a) x                    | 2.85 (2a)                  | = 159.60 (3a)           |
| +1                             |                                                 | 34.00 (1b) x                    | 2.85 (2b)                  | = 96.90 (3b)            |
| Total floor area               | (1a) + (1b) + (1c) + (1d)(1n) =                 | 90.00 (4)                       |                            |                         |
| Dwelling volume                |                                                 |                                 | (3a) + (3b) + (3c) + (3d   | )(3n) = 256.50 (5)      |
| 2. Ventilation rate            |                                                 |                                 |                            |                         |
|                                |                                                 |                                 |                            | m³ per hour             |
| Number of chimneys             |                                                 |                                 | 0 x                        | 40 = 0 (6a)             |
| Number of open flues           |                                                 |                                 | 0 x                        | 20 = 0 (6b)             |
| Number of intermittent fans    | S                                               |                                 | 0 x                        | 10 = 0 (7a)             |
| Number of passive vents        |                                                 |                                 | 0 x                        | 10 = 0 (7b)             |
| Number of flueless gas fires   |                                                 |                                 | 0 x                        | 40 = 0 (7c)             |
|                                |                                                 |                                 |                            | Air changes per<br>hour |
| Infiltration due to chimneys,  | , flues, fans, PSVs                             | (6a) + (6b) + (7a) + (7b) + (7  | 7c) = 0 ÷                  | (5) = 0.00 (8)          |
| If a pressurisation test has b | een carried out or is intended, proceed         | d to (17), otherwise continue f | from (9) to (16)           |                         |
| Air permeability value, q50,   | expressed in cubic metres per hour pe           | er square metre of envelope a   | irea                       | 3.00 (17)               |
| If based on air permeability   | value, then (18) = $[(17) \div 20] + (8)$ , oth | erwise (18) = (16)              |                            | 0.15 (18)               |
| Air permeability value applie  | es if a pressurisation test has been don        | e, or a design or specified air | permeability is being used |                         |
| Number of sides on which d     | welling is sheltered                            |                                 |                            | 4 (19)                  |

Number of sides on which dwelling is sheltered

Mar

1 - [0.075 x (19)] = 0.70 (20)

Nov

Oct

Adjusted infiltration rate

Shelter factor

(18)  $\times$  (20) = 0.10 (21)

Dec

Infiltration rate modified for monthly wind speed:

Feb

Jan

| Monthly average v | vind speed  | from Table | · 7  |      |      |      |      |      |      |         |       |       |       |
|-------------------|-------------|------------|------|------|------|------|------|------|------|---------|-------|-------|-------|
| (22)m             | 5.40        | 5.10       | 5.10 | 4.50 | 4.10 | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  | ]     |
|                   |             |            |      |      |      |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a) | m = (22)m ÷ | ÷ 4        |      |      |      |      |      |      |      |         |       |       | _     |
| (22a)m            | 1.35        | 1.27       | 1.27 | 1.12 | 1.02 | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  | ]     |
|                   |             |            |      |      |      |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |

Jun

Jul

Aug

Sep

May

Apr

Adjusted infiltration rate (allowing for shelter and wind speed) =  $(21) \times (22a)m$ 

| rajustea mineratio | on race jame | , , , , , , , , , , , , , , , , , , , | icitci aiia v | ·ma speca, | (==) · · (= |      |      |      |      |      |      |      |
|--------------------|--------------|---------------------------------------|---------------|------------|-------------|------|------|------|------|------|------|------|
| (22b)m             | 0.14         | 0.13                                  | 0.13          | 0.12       | 0.11        | 0.10 | 0.10 | 0.10 | 0.11 | 0.12 | 0.13 | 0.13 |
|                    |              |                                       |               |            |             |      |      |      |      |      |      |      |

 $\Sigma(22b)1...12 = 1.42$  (22b)

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

0.5 (23a)

| If exhaust air     | heat pump ι                     | ısing Appen   | ndix N, (23b      | ) = (23a) × F  | -mv (equa                 | ition (N5)), d    | otherwise ( | (23b) = (23a | a)            |               |            | 0.5          | (23b)  |
|--------------------|---------------------------------|---------------|-------------------|----------------|---------------------------|-------------------|-------------|--------------|---------------|---------------|------------|--------------|--------|
| If balanced w      | ith heat reco                   | very: efficie | ency in % al      | lowing for i   | in-use fact               | tor (from Ta      | ble 4h) =   |              |               |               |            | N/A          | (23c)  |
| c) If whole ho     | use extract \<br>< 0.5 x (23b), |               | •                 | •              |                           |                   | 3b)         |              |               |               |            |              |        |
| (24c)m             | 0.50                            | 0.50          | 0.50              | 0.50           | 0.50                      | 0.50              | 0.50        | 0.50         | 0.50          | 0.50          | 0.50       | 0.50         | (24c)  |
| Effective air char |                                 |               |                   |                |                           |                   |             |              |               |               |            |              | ] ( -7 |
| (25)m              | 0.50                            | 0.50          | 0.50              | 0.50           | 0.50                      | 0.50              | 0.50        | 0.50         | 0.50          | 0.50          | 0.50       | 0.50         | (25)   |
| 3. Heat losses a   | nd heat loss                    | parameter     |                   |                |                           |                   |             |              |               |               |            |              |        |
| The κ-value is the | e heat capac                    | ity per unit  | area, see T       | able 1e.       |                           |                   |             |              |               |               |            |              |        |
| E                  | lement                          |               | Gross<br>Area, m² | Open<br>m      | -                         | Net area<br>A, m² |             | alue,<br>m²K | A x U,<br>W/K | к-val<br>kJ/n | •          | Αxκ,<br>kJ/K |        |
| Window*            |                                 |               |                   |                |                           | 10.00             | x 1.        | .42 =        | 14.15         | N/            | 'A         | N/A          | (27)   |
| Basement floor     |                                 |               |                   |                |                           | 56.00             | x 0.        | .13 =        | 7.28          | N/            | 'A         | N/A          | (28)   |
| External wall      |                                 |               |                   |                |                           | 27.90             | x 0.        | .20 =        | 5.58          | N/            | 'A         | N/A          | (29a)  |
| Total area of exte | ernal elemer                    | nts ∑A, m²    |                   |                |                           | 93.90             | (31)        |              |               |               |            |              | -      |
| * for windows an   | nd roof windo                   | ows, effecti  | ve window         | U-value is c   | alculated                 | using formu       | ıla 1/[(1/U | Value)+0.0   | 4] paragrap   | oh 3.2        |            |              |        |
| Fabric heat loss,  | $W/K = \sum (A \times$          | U)            |                   |                |                           |                   |             |              | (2            | 6)(30) + (3   | 2) =       | 27.01        | (33)   |
| Heat capacity Cm   |                                 | ,             |                   |                |                           |                   |             | (28)         |               | + (32a)(32    |            | N/A          | (34)   |
| Thermal mass pa    |                                 | 1P) in kJ/m²  | K                 |                |                           |                   |             |              |               | ted separate  |            | 100.00       | (35)   |
| Thermal bridges:   |                                 |               |                   | кK             |                           |                   |             |              |               | •             |            | 14.08        | (36)   |
| if details of th   |                                 |               |                   |                | 5 x (31)                  |                   |             |              |               |               |            |              | ] ( /  |
| Total fabric heat  | _                               | <b>J</b>      |                   | (,             | (= )                      |                   |             |              |               | (33) + (3     | 6) =       | 41.10        | (37)   |
| Ventilation heat   |                                 | ed monthly    | 0 33 x (25        | i)m x (5)      |                           |                   |             |              |               | (55) (5       | ·          |              | ] (0.) |
| (38)m              | 42.32                           | 42.32         | 42.32             | 42.32          | 42.32                     | 42.32             | 42.32       | 42.32        | 42.32         | 42.32         | 42.32      | 42.32        | (38)   |
| Heat transfer coe  | efficient. W/I                  |               | (38)m             | l              |                           |                   |             |              | 1             |               |            |              | , ,    |
| (39)m              | 83.42                           | 83.42         | 83.42             | 83.42          | 83.42                     | 83.42             | 83.42       | 83.42        | 83.42         | 83.42         | 83.42      | 83.42        |        |
|                    |                                 |               |                   |                |                           |                   |             | •            | Average = 2   | Σ(39)112/     | 12 =       | 83.42        | (39)   |
| Heat loss parame   | eter (HLP), W                   | //m²K (39)    | m ÷ (4)           |                |                           |                   |             |              |               |               |            |              | _      |
| (40)m              | 0.93                            | 0.93          | 0.93              | 0.93           | 0.93                      | 0.93              | 0.93        | 0.93         | 0.93          | 0.93          | 0.93       | 0.93         | ]      |
|                    |                                 |               |                   |                |                           |                   |             |              | Average = 2   | Σ(40)112/     | 12 =       | 0.93         | (40)   |
|                    |                                 |               |                   |                |                           |                   |             |              |               |               |            |              |        |
| 4. Water heatin    | g energy red                    | quirement     |                   |                |                           |                   |             |              |               |               |            |              |        |
|                    |                                 |               |                   |                |                           |                   |             |              |               |               |            | Wh/year      |        |
| Assumed occupa     | ncy, N                          |               |                   |                |                           |                   |             |              |               | 2.63          | (42        | )            |        |
| If TFA > 13.9,     | N = 1 + 1.76                    | x [1 - exp(-0 | 0.000349 x        | (TFA - 13.9)   | ) <sup>2</sup> )] + 0.001 | 13 x (TFA - 1     | .3.9)       |              |               |               |            |              |        |
| If TFA ≤ 13.9,     | N = 1                           |               |                   |                |                           |                   |             |              |               |               |            |              |        |
| Annual average h   | not water us                    | age in litres | per day Vd        | l,average =    | (25 x N) +                | 36                |             |              |               | 96.56         | (43        | )            |        |
| Annual average l   |                                 | _             |                   | by 5% if the   | dwelling                  | is designed       | to achieve  | a water us   | e target of   | not more th   | an 125 lit | res          |        |
| per person per de  | ay (all water                   | use, hot an   | d cold)           |                |                           |                   |             |              |               |               |            |              |        |
|                    | Jan                             | Feb           | Mar               | Apr            | May                       | Jun               | Jul         | Aug          | Sep           | Oct           | Nov        | Dec          |        |
| Hot water usage    |                                 |               |                   | 1              |                           | 1                 | 00.00       | 00.77        | 04.63         | 00.40         | 102.25     | 100.00       | 1      |
| (44)m              | 106.22                          | 102.35        | 98.49             | 94.63          | 90.77                     | 86.90             | 86.90       | 90.77        | 94.63         | 98.49         | 102.35     | 106.22       | ]      |
| _                  | 61 .                            |               |                   |                |                           |                   |             |              |               | ∑(44)1        | 12 = [     | 1158.73      | (44)   |
| Energy content o   |                                 |               |                   |                |                           |                   |             |              | 1             |               | 140.04     | 153.04       | 1      |
| (45)m              | 157.89                          | 138.09        | 142.50            | 124.24         | 119.21                    | 102.87            | 95.32       | 109.38       | 110.69        | 129.00        | 140.81     | 152.91       | ] (45) |
| If the state of    |                                 |               | - <b>.</b>        | -4             |                           | 40: '             | (46) :      | C41          |               | ∑(45)1        | 12 =       | 1522.91      | (45)   |
| If instantaneous   |                                 | -             |                   |                |                           |                   |             | 61)          |               |               |            |              |        |
| For community h    | _                               |               | on ioss whe       | בנוופו טר ווסנ | . not wate                | i turik is pre    | sent        |              |               |               |            |              |        |
| Distribution loss  | υ.15 X (45)ñ                    | 1             |                   |                |                           |                   |             |              |               |               |            |              |        |
|                    |                                 |               |                   |                |                           |                   |             |              |               |               |            |              |        |

| (46)m                | 23.68         | 20.71         | 21.38         | 18.64          | 17.88         | 15.43        | 14.30          | 16.41        | 16.60        | 19.35       | 21.12   | 22.94  | (46)     |
|----------------------|---------------|---------------|---------------|----------------|---------------|--------------|----------------|--------------|--------------|-------------|---------|--------|----------|
| Water storage loss   | s:            |               |               |                |               |              |                |              |              |             |         |        |          |
| b) If manufacturer   | 's declared   | cylinder lo   | ss factor is  | not known      | :             |              |                |              |              |             |         |        |          |
| Cylinder volum       | e (litres) in | cluding any   | solar stora   | age within s   | ame cylind    | er           |                |              | 110.00       | (50)        |         |        |          |
| If community h       | eating and    | no tank in    | dwelling, e   | nter 110 lit   | res in box (: | 50)          |                |              |              |             |         |        |          |
| Otherwise if no      | stored hot    | water (this   | s includes ir | nstantaneo     | us combi bo   | oilers) ente | r '0' in box ( | (50)         |              |             |         |        |          |
| Hot water stor       | age loss fac  | tor from Ta   | able 2 (kWh   | n/litre/day)   |               |              |                |              | 0.02         | (51)        |         |        |          |
| If community h       | eating see    | SAP 2009 s    | ection 4.3    |                |               |              |                |              |              | _           |         |        |          |
| Volume factor        | from Table    | 2a            |               |                |               |              |                |              | 1.03         | (52)        |         |        |          |
| Temperature fa       | actor from    | Table 2b      |               |                |               |              |                |              | 1.00         | (53)        |         |        |          |
| Energy lost from     | m water sto   | orage, kWl    | h/day (50)    | ) x (51) x (5  | 2) x (53)     |              |                |              | 1.72         | (54)        |         |        |          |
| Enter (49) or (54) i | in (55)       |               |               |                |               |              |                |              | 1.72         | (55)        |         |        |          |
| Water storage loss   | s calculated  | I for each m  | nonth = (55   | ) x (41)m      |               |              |                |              |              |             |         |        |          |
| (56)m                | 53.36         | 48.19         | 53.36         | 51.64          | 53.36         | 51.64        | 53.36          | 53.36        | 51.64        | 53.36       | 51.64   | 53.36  | (56)     |
| If cylinder contain  | s dedicated   | l solar stora | ige, = (56)n  | n x [(50) - (H | H11)] ÷ (50)  | , else = (56 | )m where (     | H11) is froi | m Appendix   | хН          |         |        |          |
| (57)m                | 53.36         | 48.19         | 53.36         | 51.64          | 53.36         | 51.64        | 53.36          | 53.36        | 51.64        | 53.36       | 51.64   | 53.36  | (57)     |
| Primary circuit los  | s (annual) f  | rom Table 3   | 3             |                |               |              |                | 3            | 360.00       | (58)        |         |        |          |
| Primary circuit los  | s for each n  | nonth (58)    | ÷ 365 × (41   | .)m            |               |              |                |              |              |             |         |        |          |
| (modified by facto   | r from Tabl   | le H5 if the  | re is solar v | vater heatir   | ng and a cyl  | linder theri | mostat)        |              |              |             |         |        |          |
| (59)m                | 30.58         | 27.62         | 30.58         | 29.59          | 30.58         | 29.59        | 30.58          | 30.58        | 29.59        | 30.58       | 29.59   | 30.58  | (59)     |
| Combi loss for eac   | h month fr    | om Table 3    | a, 3b or 3c   | (enter '0' if  | not a coml    | bi boiler)   |                |              |              |             |         |        |          |
| (61)m                | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00         | 0.00           | 0.00         | 0.00         | 0.00        | 0.00    | 0.00   | (61)     |
| Total heat require   | d for water   | heating ca    | lculated fo   | r each mon     | th 0.85 × (4  | 15)m + (46)  | m + (57)m +    | + (59)m + (6 | 61)m         |             |         |        | _        |
| (62)m                | 241.83        | 213.90        | 226.43        | 205.46         | 203.14        | 184.09       | 179.25         | 193.32       | 191.91       | 212.93      | 222.04  | 236.84 | (62)     |
| Solar DHW input o    |               |               |               |                | -             | iantity) (en | ter '0' if no  | solar contr  | ibution to v | water heati | ng)     |        |          |
| (add additional lin  | es if FGHRS   | and/or W\     | WHRS appli    | ies, see App   | pendix G)     |              |                |              |              |             |         |        | 7        |
| (63)m                | 0.00          | 0.00          | 0.00          | 0.00           | 0.00          | 0.00         | 0.00           | 0.00         | 0.00         | 0.00        | 0.00    | 0.00   | _        |
|                      |               |               |               |                |               |              |                |              |              | ∑(63)1      | .12 =   | 0.00   | (63)     |
| Output from wate     |               |               |               |                |               |              |                |              | 1            |             | 1       |        | ٦        |
| (64)m                | 241.83        | 213.90        | 226.43        | 205.46         | 203.14        | 184.09       | 179.25         | 193.32       | 191.91       | 212.93      | 222.04  | 236.84 | ]        |
|                      |               |               |               |                |               |              |                |              |              | ∑(64)1      | .12 = 2 | 511.15 | (64)     |
| if (64)m < 0 then s  | et to 0       |               |               |                |               |              |                |              |              |             |         |        |          |
| Heat gains from w    |               |               |               |                |               |              |                |              |              |             | 1       |        | 7        |
| (65)m                | 119.65        | 106.56        | 114.53        | 106.29         | 106.78        | 99.18        | 98.84          | 103.52       | 101.78       | 110.04      | 111.80  | 117.99 | (65)     |
| include (57)         | m in calcul   | ation of (65  | )m only if o  | cylinder is ir | n the dwelli  | ng or hot w  | vater is fron  | n communi    | ty heating   |             |         |        |          |
| 5. Internal gains    | (see Table    | 5 and 5a)     |               |                |               |              |                |              |              |             |         |        |          |
| 3. meeria gams       | Jan           | Feb           | Mar           | Apr            | May           | Jun          | Jul            | Aug          | Sep          | Oct         | Nov     | Dec    |          |
| Metabolic gains (T   |               |               | IVIAI         | Арі            | iviay         | Juli         | Jui            | Aug          | Зер          | Ott         | IVOV    | Dec    |          |
| (66)m                | 157.54        | 157.54        | 157.54        | 157.54         | 157.54        | 157.54       | 157.54         | 157.54       | 157.54       | 157.54      | 157.54  | 157.54 | (66)     |
| Lighting gains (cal  |               |               |               |                |               |              |                |              |              |             |         |        | ] (,     |
| (67)m                | 62.92         | 55.88         | 45.45         | 34.41          | 25.72         | 21.71        | 23.46          | 30.50        | 40.93        | 51.97       | 60.66   | 64.67  | (67)     |
| Appliances gains (   |               |               |               |                |               |              |                |              |              |             |         |        | . · /    |
| (68)m                | 356.83        | 360.54        | 351.20        | 331.34         | 306.26        | 282.70       | 266.95         | 263.25       | 272.58       | 292.45      | 317.52  | 341.09 | (68)     |
| Cooking gains (cal   |               |               | l .           |                |               |              |                |              |              | •           |         |        | <u>.</u> |
| (69)m                | 53.38         | 53.38         | 53.38         | 53.38          | 53.38         | 53.38        | 53.38          | 53.38        | 53.38        | 53.38       | 53.38   | 53.38  | (69)     |
|                      | •             | •             | •             | •              | •             | •            |                |              | •            | •           | •       |        | - '      |

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

Pumps and fans gains (Table 5a)

0.00

Losses e.g. evaporation (negative values) (Table 5)

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

(70)m

(71)m

-105.03 (71)

0.00

(70)

| Water heating gai                   | ns (Table 5          | )             |                         |              |               |              |              |              |            |              |              |             |        |
|-------------------------------------|----------------------|---------------|-------------------------|--------------|---------------|--------------|--------------|--------------|------------|--------------|--------------|-------------|--------|
| (72)m                               | 160.81               | 158.58        | 153.94                  | 147.62       | 143.53        | 137.75       | 132.85       | 139.13       | 141.37     | 147.90       | 155.28       | 158.59      | (72)   |
| Total internal gair                 | ıs (66)m + (         | (67)m + (68   | )m + (69)m              | + (70)m +    | (71)m + (72   | 2)m          |              |              |            |              |              |             |        |
| (73)m                               | 686.46               | 680.89        | 656.48                  | 619.26       | 581.40        | 548.06       | 529.16       | 538.78       | 560.77     | 598.21       | 639.35       | 670.24      | (73)   |
|                                     |                      |               |                         |              |               |              |              |              |            |              |              |             |        |
| 6. Solar gains                      |                      |               |                         |              |               |              |              |              |            |              |              |             |        |
| Solar gains are ca                  |                      | -             | -                       |              |               |              |              |              |            |              |              |             |        |
| Rows (74) to (82) Details for month |                      |               | -                       |              | _             | eaea if tner | e is more t  | nan one wii  | ndow type. |              |              |             |        |
| Details for month                   |                      | Access facto  |                         | Area m²      |               | lar flux W/  | m² a         | Specific da  | +- ==      | Specific da  | ıta.         | Gains (W)   | 1      |
|                                     | •                    | Table 6d      | ,,                      | Alealli      | 30            | iai iiux vv/ | _            | or Table 6k  |            | or Table 60  |              | Gaills (W)  |        |
| South                               |                      | 0.54          | x                       | 10.00        | x             | 47.32        | x            | 0.53         | _ x        | 1.00         | =            | 135.44      | (78)   |
| Solar gains in wat                  | ts, calculate        | ed for each   | month ∑(7               | 4)m(82)m     | 1             |              |              |              |            |              |              |             |        |
| (83)m                               | 135.44               | 220.90        | 269.73                  | 300.84       | 310.67        | 311.67       | 306.63       | 297.31       | 286.17     | 244.11       | 160.47       | 117.03      | (83)   |
| Total gains - inter                 | nal and sola         | ar (73)m + (8 | 83)m                    |              |               |              |              |              |            |              |              |             |        |
| (84)m                               | 821.90               | 901.79        | 926.21                  | 920.10       | 892.07        | 859.73       | 835.79       | 836.09       | 846.95     | 842.32       | 799.82       | 787.26      | (84)   |
| 7 Many internal                     | l town ough          | ua (haatina   | ~                       |              |               |              |              |              |            |              |              |             |        |
| 7. Mean internal                    |                      |               |                         |              |               | 20)          |              |              |            |              |              | 24.00       | 7 (05) |
| Temperature duri                    |                      | •             | _                       |              |               |              |              |              | 6          | 0.4          |              | 21.00       | (85)   |
| Utilisation factor f                | Jan<br>for gains for | Feb           | Mar                     | Apr          | May           | Jun          | Jul          | Aug          | Sep        | Oct          | Nov          | Dec         |        |
| (86)m                               | 0.90                 | 0.87          | 0.83                    | 0.79         | 0.70          | 0.55         | 0.39         | 0.39         | 0.58       | 0.75         | 0.87         | 0.91        | (86)   |
| Mean internal ten                   |                      | 1             | <u> </u>                | 1            | 0.70          | 0.55         | 0.33         | 0.55         | 0.50       | 0.73         | 0.07         | 1 0.31      | ] (00) |
| (87)m                               | 19.63                | 19.82         | 20.11                   | 20.35        | 20.67         | 20.88        | 20.97        | 20.97        | 20.85      | 20.54        | 19.98        | 19.64       | (87)   |
| Temperature duri                    |                      |               |                         |              |               |              |              |              |            |              |              |             | ] (- / |
| (88)m                               | 20.15                | 20.15         | 20.15                   | 20.15        | 20.15         | 20.15        | 20.15        | 20.15        | 20.15      | 20.15        | 20.15        | 20.15       | (88)   |
| Utilisation factor f                | or gains for         | rest of dw    | elling η2,m             | (see Table   | 9a)           |              |              |              | >          |              |              | -           |        |
| (89)m                               | 0.89                 | 0.86          | 0.81                    | 0.76         | 0.66          | 0.50         | 0.32         | 0.32         | 0.52       | 0.72         | 0.85         | 0.89        | (89)   |
| Mean internal ten                   | nperature i          | n the rest o  | f dwelling <sup>-</sup> | Γ2 (follow s | teps 3 to 7   | in Table 9c  |              |              |            |              |              |             |        |
| (90)m                               | 18.34                | 18.61         | 19.01                   | 19.35        | 19.77         | 20.03        | 20.13        | 20.13        | 20.01      | 19.60        | 18.84        | 18.36       | (90)   |
| Living area fractio                 | n                    |               |                         |              |               |              |              | fLA          | 56.00      | ÷ (4) =      | =            | 0.62        | (91)   |
| Mean internal ten                   | nperature f          | or the whol   | e dwelling              | fLA x T1 +(: | 1 - fLA) x T2 | 2            |              |              |            |              |              |             |        |
| (92)m                               | 19.14                | 19.36         | 19.70                   | 19.98        | 20.33         | 20.56        | 20.65        | 20.65        | 20.53      | 20.18        | 19.55        | 19.16       | (92)   |
| Apply adjustment                    | to the mea           | ın internal t | emperatur               | e from Tab   | le 4e, wher   | e appropria  | ite          |              |            | _            |              |             | _      |
| (93)m                               | 19.14                | 19.36         | 19.70                   | 19.98        | 20.33         | 20.56        | 20.65        | 20.65        | 20.53      | 20.18        | 19.55        | 19.16       | (93)   |
| 8. Space heating                    | roquiromo            | ınt           |                         |              |               |              |              |              |            |              |              |             |        |
| 8. Space Heating                    | Jan                  | Feb           | Mar                     | Apr          | May           | Jun          | Jul          | Aug          | Sep        | Oct          | Nov          | Dec         |        |
| Set Ti to the mear                  |                      |               |                         |              | •             |              |              | _            | -          |              |              |             | 2 9a)  |
| Utilisation factor f                |                      |               | obtained t              | it step 11 0 | r rubic 35,   | so that tim  | - (55)iii ai | ia recuicaia | te the atm | Jacion Tacco | i ioi gaiiis | using rubic | . 54   |
| (94)m                               | 0.87                 | 0.84          | 0.80                    | 0.76         | 0.66          | 0.52         | 0.36         | 0.36         | 0.55       | 0.72         | 0.84         | 0.88        | (94)   |
| Useful gains, 2mG                   | m, W = (94           | )m x (84)m    |                         |              |               | •            |              | ,            | -          | •            |              | -           | _      |
| (95)m                               | 718.78               | 761.63        | 743.70                  | 697.50       | 592.88        | 451.33       | 302.39       | 302.40       | 465.82     | 607.89       | 672.10       | 691.63      | (95)   |
| Monthly average                     | external ter         | mperature f   | from Table              | 8            |               |              |              |              |            |              |              |             |        |
| (96)m                               | 4.50                 | 5.00          | 6.80                    | 8.70         | 11.70         | 14.60        | 16.90        | 16.90        | 14.30      | 10.80        | 7.00         | 4.90        | (96)   |
| Heat loss rate for                  | mean inter           | nal tempera   | ature, Lm, \            | W            |               |              |              |              |            |              |              |             |        |
| (07)                                | 4224 50              | 1100 10       | 4075.00                 | 040.50       | 740.05        | 400.00       | 242.00       | 242.00       | E20.0E     | 702.65       | 4047.43      | T4400 24    | 1 (07) |

| Space heating requirement in kWh/m²/year | (98) ÷ (4) | 21.71 | (99) |
|------------------------------------------|------------|-------|------|
|                                          |            |       |      |
|                                          |            |       |      |

496.99

0.00

312.89

0.00

312.89

0.00

520.05

0.00

Total per year (kWh/year) =  $\Sigma$ (98)1...5, 10...12 =

782.65

130.02

719.65

94.32

1221.59 1198.19 1075.88 940.59

293.37

374.09

(98)m

Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m

247.14

175.03

1047.13 | 1189.34 | (97)

1954.29

370.29

(98)

270.03

| 9b. Energy requirements - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                 |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vctom (Table 11)                                     | 0.00 (301)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Fraction of space heating from secondary/supplementary sy<br>Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                             |                                                      | 1.00 (302)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Community scheme fractions obtained from plant design spe                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | 1.00 (302)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                                                             | ecification of operational records.                  | 1.00 (303b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                       |
| Fraction of total space heat from community boilers (302) x                                                                                                                                                                                                                                                                                                                                                                                        | (303h) =                                             | 1.00 (304b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                       |
| Factor for control and charging method (Table 4c(3)) for con                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 1.00 (305)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Factor for control and charging method (Table 4c(3)) for con                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 1.00 (305a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                       |
| Distribution loss factor (Table 12c) for community heating sy                                                                                                                                                                                                                                                                                                                                                                                      |                                                      | 0.10 (306)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                       |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                                                     | ystem                                                | 0.10 (300)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kWh/year                                                                                                                                                                              |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1954.29                                                                                                                                                                               |
| Space heat from community boilers (98) x (304b) x (305) x ( $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                          | 206) -                                               | 195.43 (307b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1934.29                                                                                                                                                                               |
| space heat from community bollers (36) x (304b) x (305) x (3                                                                                                                                                                                                                                                                                                                                                                                       | 500) –                                               | 195.45 (5070)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2511.15                                                                                                                                                                               |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (3                                                                                                                                                                                                                                                                                                                                                                                        | (06) =                                               | 251.12 (310b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                  | 1 x [(307a)(307e) + (310a)(310e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)] = 4.47 (313)                                                                                                                                                                      |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                       |
| mechanical ventilation fans - balanced, extract or positive                                                                                                                                                                                                                                                                                                                                                                                        | e input from outside                                 | 74.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (330a                                                                                                                                                                                 |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (330)                                                                                                                                                                                 |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (330)                                                                                                                                                                                 |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                          |                                                      | (330a) + (330b) + (330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (331) (331) (331)                                                                                                                                                                     |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 444.45 (332)                                                                                                                                                                          |
| Electricity for lighting (calculated in Appendix L):  10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                   | Heat or fuel                                         | Fuel price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 444.45 (332) Fuel cost £/year                                                                                                                                                         |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                         | kWh/year                                             | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fuel cost £/year                                                                                                                                                                      |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                   | kWh/year 195.43 x                                    | (Table 12)  3.78 x 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Fuel cost £/year = 7.39 (340)                                                                                                                                                         |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers                                                                                                                                                                                                                                                                                                                             | kWh/year  195.43 x  251.12 x                         | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year = 7.39 (340) = 9.49 (342)                                                                                                                                            |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans                                                                                                                                                                                                                                                                                                             | kWh/year  195.43 x  251.12 x  74.48 x                | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349)                                                                                                                              |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans  Electricity for lighting                                                                                                                                                                                                                                                                                   | kWh/year  195.43 x  251.12 x                         | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349) = 50.93 (350)                                                                                                                |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)                                                                                                                                                                                                                                           | kWh/year  195.43 x  251.12 x  74.48 x                | 3.78     x 0.01       3.78     x 0.01       11.46     x 0.01       11.46     x 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349) = 50.93 (350) 106.00 (351)                                                                                                   |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans  Electricity for lighting                                                                                                                                                                                                                                                                                   | kWh/year  195.43 x  251.12 x  74.48 x                | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (340t) = 9.49 (342t) = 8.54 (349t) = 50.93 (350t) 106.00 (351t)                                                                                              |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)                                                                                                                                                                                                                                           | kWh/year  195.43 x  251.12 x  74.48 x                | 3.78     x 0.01       3.78     x 0.01       11.46     x 0.01       11.46     x 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349) = 50.93 (350) 106.00 (351)                                                                                                   |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost                                                                                                                                                                                                                        | kWh/year  195.43 x  251.12 x  74.48 x                | (Table 12)  3.78  x 0.01 = 3.78  x 0 | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349) = 50.93 (350)                                                                                                                |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                            | kWh/year  195.43 x  251.12 x  74.48 x                | 3.78     x 0.01       3.78     x 0.01       11.46     x 0.01       11.46     x 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349) = 50.93 (350)                                                                                                                |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                             | kWh/year  195.43 x  251.12 x  74.48 x                | (Table 12)  3.78  x 0.01 = 3.78  x 0 | Fuel cost £/year  = 7.39 (340) = 9.49 (342) = 8.54 (349) = 50.93 (350) 106.00 (351) 354) 182.35 (355)  0.47 (356) 0.0] = 0.63 (357) 91.14                                             |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                               | kWh/year  195.43 x  251.12 x  74.48 x                | (Table 12)  3.78  x 0.01 = 3.78  x 0 | Fuel cost £/year  = 7.39 (340l) = 9.49 (342l) = 8.54 (349) = 50.93 (350)                                                                                                              |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                          | kWh/year  195.43 x  251.12 x  74.48 x                | (Table 12)  3.78  x 0.01 = 3.78  x 0 | Fuel cost £/year  = 7.39 (340l) = 9.49 (342l) = 8.54 (349) = 50.93 (350)                                                                                                              |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                               | kWh/year  195.43                                     | (Table 12)  3.78  x 0.01 = 3.78  x 0 | Fuel cost £/year  = 7.39 (340  = 9.49 (342  = 8.54 (349)  = 50.93 (350)                                                                                                               |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                      | kWh/year  195.43                                     | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (3401) = 9.49 (3421) = 8.54 (349) = 50.93 (350)                                                                                                              |
| 10b. Fuel costs - Community heating scheme  Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                          | kWh/year  195.43                                     | (Table 12)  3.78  x 0.01 = 3.78  x 0 | Fuel cost £/year  = 7.39 (3401) = 9.49 (3421) = 8.54 (349) = 50.93 (350)                                                                                                              |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                           | kWh/year  195.43                                     | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (3401) = 9.49 (3421) = 8.54 (349) = 50.93 (350)                                                                                                              |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%) | 195.43   x   251.12   x   74.48   x   444.45   x   x | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (340t) = 9.49 (342t) = 8.54 (349t) = 50.93 (350t) 106.00 (351t) 354) 182.35 (355t)  0.47 (356t) 0.0] = 0.63 (357t) 91.14 91 (358t) B  Emissions (kgCO2/year) |
| Space heating from community boilers Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                           | kWh/year  195.43                                     | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fuel cost £/year  = 7.39 (340t) = 9.49 (342t) = 8.54 (349) = 50.93 (350)                                                                                                              |

| Total carbon dioxide from community systems    |        |   | (363)(366) | + (368)(372) =    | 100.55 | (373) |
|------------------------------------------------|--------|---|------------|-------------------|--------|-------|
| Space and water heating                        |        |   | (373)      | + (374) + (375) = | 100.55 | (376) |
| Electricity for pumps and fans within dwelling | 74.48  | х | 0.517      | =                 | 38.50  | (378) |
| Electricity for lighting                       | 444.45 | х | 0.517      | =                 | 229.78 | (379) |
| Total carbon dioxide emissions                 |        |   |            | ∑(376)(382) =     | 368.84 | (383) |
| Dwelling carbon dioxide emissions rate         |        |   |            | (383) ÷ (4) =     | 4.10   | (384) |
| El value                                       |        |   |            |                   | 96.34  |       |
| El rating (see section 14)                     |        |   |            |                   | 96     | (385) |
| EI band                                        |        |   |            |                   | А      |       |
|                                                |        |   |            |                   |        |       |

# 13b. Primary energy - Community heating scheme

| Efficiency of boilers (%)                      |                         |   | 90.00                    | (367b*)           |               |        |
|------------------------------------------------|-------------------------|---|--------------------------|-------------------|---------------|--------|
|                                                | Energy used<br>kWh/year |   | Primary Energy<br>Factor | ву                | Primary Energ | у      |
| Primary energy - boilers (Mains gas)           | 496.16                  | x | 1.02                     | =                 | 506.08        | (368*) |
| Electrical energy for heat distribution        | 4.47                    | х | 2.92                     | =                 | 13.04         | (372*) |
| Total primary energy from community systems    |                         |   | (363*)(366*)             | + (368*)(372*) =  | 519.12        | (373*) |
| Space and water heating                        |                         |   | (373*) +                 | (374*) + (375*) = | 519.12        | (376*) |
| Electricity for pumps and fans within dwelling | 74.48                   | х | 2.92                     | =                 | 217.47        | (378*) |
| Electricity for lighting                       | 444.45                  | x | 2.92                     | =                 | 1297.80       | (379*) |
| Total primary energy kWh/year                  |                         |   |                          | ∑(376*)(382*) =   | 2034.40       | (383*) |
| Primary energy kWh/m2/year                     |                         |   |                          | (383*) ÷ (4) =    | 22.60         | (384*) |



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                   | Assessor number | 1422       |
|---------------|-----------------------------------------------------|-----------------|------------|
| Client        |                                                     | Last modified   | 14/12/2011 |
| Address       | 5 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dime     | nsions                                        |                                    |                               |                         |
|------------------------------|-----------------------------------------------|------------------------------------|-------------------------------|-------------------------|
|                              |                                               | Area (m²)                          | Average storey height (m)     | Volume (m³)             |
| Lowest occupied              |                                               | 264.00 (1a) x                      | 2.80 (2a)                     | = 739.20 (3             |
| Total floor area             | (1a) + (1b) + (1c) + (1d)                     | .(1n) = 264.00 (4)                 |                               |                         |
| Dwelling volume              |                                               |                                    | (3a) + (3b) + (3c) + (3c)     | 3d)(3n) = 739.20 (5     |
|                              |                                               |                                    |                               |                         |
| 2. Ventilation rate          |                                               |                                    |                               |                         |
|                              |                                               |                                    |                               | m³ per hour             |
| Number of chimneys           |                                               |                                    | 0                             | x 40 = 0 (6             |
| Number of open flues         |                                               |                                    | 0                             | x 20 = 0 (6             |
| Number of intermittent fa    | ns                                            |                                    | 2                             | x 10 = 20 (7            |
| Number of passive vents      |                                               |                                    | 4                             | x 10 = 40 (7            |
| Number of flueless gas fire  | <u> </u>                                      |                                    | 0                             | x 40 = 0 (7             |
|                              |                                               |                                    |                               | Air changes per<br>hour |
| Infiltration due to chimney  | ys, flues, fans, PSVs                         | (6a) + (6b) + (7a) + (7b) +        | (7c) = 60                     | ÷ (5) = 0.08 (8         |
| If a pressurisation test has | been carried out or is intended, pr           | oceed to (17), otherwise continue  | e from (9) to (16)            |                         |
| Air permeability value, q50  | 0, expressed in cubic metres per h            | our per square metre of envelope   | e area                        | 3.00                    |
| If based on air permeabilit  | $xy$ value, then (18) = [(17) $\div$ 20] + (8 | 3), otherwise (18) = (16)          |                               | 0.23                    |
| Air permeability value app   | lies if a pressurisation test has bee         | n done, or a design or specified a | ir permeability is being used |                         |
| Number of sides on which     | dwelling is sheltered                         |                                    |                               | 4 (1                    |

Number of sides on which dwelling is sheltered

1 - [0.075 x (19)] = 0.70 (20)

Adjusted infiltration rate

Shelter factor

0.16 (18) x (20) = (21)

Infiltration rate modified for monthly wind speed:

|                       |               |              | opcca.      |             |             |      |      |      |      |         |       |       |       |
|-----------------------|---------------|--------------|-------------|-------------|-------------|------|------|------|------|---------|-------|-------|-------|
|                       | Jan           | Feb          | Mar         | Apr         | May         | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average v     | wind speed    | from Table   | 7           |             |             |      |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10         | 5.10        | 4.50        | 4.10        | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                       |               |              |             |             |             |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m -   | ÷ 4          |             |             |             |      |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27         | 1.27        | 1.12        | 1.02        | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |              |             |             |             |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | owing for sh | elter and v | vind speed) | = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.22          | 0.21         | 0.21        | 0.18        | 0.17        | 0.16 | 0.15 | 0.15 | 0.17 | 0.18    | 0.19  | 0.21  |       |
|                       |               |              |             |             |             |      |      |      |      | ∑(22b)1 | .12 = | 2.19  | (22b) |

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

N/A

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

(23a)

| If balanced wi                                          | th heat reco           | overy: effici            | ency in % a          | llowing for         | in-use fact  | tor (from Ta      | ble 4h) =   |              |               |             |               | N/A          | (23c)    |
|---------------------------------------------------------|------------------------|--------------------------|----------------------|---------------------|--------------|-------------------|-------------|--------------|---------------|-------------|---------------|--------------|----------|
| d) If natural ve                                        |                        |                          | •                    | •                   |              |                   |             |              |               |             |               |              |          |
|                                                         |                        |                          |                      | 1                   |              | 2b)m2 x 0.5       |             | 1            | 1             | ı           |               | 1            | ٦        |
| (24d)m                                                  | 0.52                   | 0.52                     | 0.52                 | 0.52                | 0.51         | 0.51              | 0.51        | 0.51         | 0.51          | 0.52        | 0.52          | 0.52         | (24d)    |
| Effective air chan                                      |                        | -                        |                      |                     |              | 1                 | _           | 1 -          | 1 -           | 1           |               | 1            | ٦        |
| (25)m                                                   | 0.52                   | 0.52                     | 0.52                 | 0.52                | 0.51         | 0.51              | 0.51        | 0.51         | 0.51          | 0.52        | 0.52          | 0.52         | (25)     |
| 3. Heat losses a                                        | nd heat loss           | s paramete               | r                    |                     |              |                   |             |              |               |             |               |              |          |
| The κ-value is the                                      | heat capac             | city per unit            | area, see T          | able 1e.            |              |                   |             |              |               |             |               |              |          |
| E                                                       | lement                 |                          | Gross<br>Area, m²    | •                   | nings,<br>1² | Net area<br>A, m² |             | alue,<br>m²K | A x U,<br>W/K |             | ilue,<br>m².K | Ахк,<br>kJ/K |          |
| Window*                                                 |                        |                          |                      |                     |              | 10.00             | x 1.        | 42 =         | 14.15         | N           | /A            | N/A          | (27)     |
| Basement floor                                          |                        |                          |                      |                     |              | 56.00             | x 0.        | 13 =         | 7.28          | N           | /A            | N/A          | (28)     |
| External wall                                           |                        |                          |                      |                     |              | 27.90             | x 0.        | 20 =         | 5.58          | N           | /A            | N/A          | (29a)    |
| Total area of exte                                      | ernal elemei           | nts ∑A, m²               |                      |                     |              | 93.90             | (31)        |              |               |             |               |              |          |
| * for windows an                                        | d roof wind            | ows, effecti             | ve window            | U-value is          | calculated   | using formเ       | ıla 1/[(1/U | Value)+0.0   | 4] paragrap   | oh 3.2      |               |              | _        |
| Fabric heat loss, \                                     | $W/K = \sum (A \times$ | : U)                     |                      |                     |              |                   |             |              | (2            | 6)(30) + (  | 32) =         | 27.01        | (33)     |
| Heat capacity Cm                                        | ı = ∑(A x κ)           |                          |                      |                     |              |                   |             | (28)         | .(30) + (32)  | + (32a)(3   | 2e) =         | N/A          | (34)     |
| Thermal mass pa                                         | rameter (TN            | ИР) in kJ/m <sup>2</sup> | ²K                   |                     |              |                   |             |              | Calcula       | ted separat | ely =         | 100.00       | (35)     |
| Thermal bridges: if details of th                       |                        |                          |                      |                     | 5 x (31)     |                   |             |              |               |             |               | 14.08        | (36)     |
| Total fabric heat                                       | loss                   |                          |                      |                     |              |                   |             |              |               | (33) + (    | 36) =         | 41.10        | (37)     |
| Ventilation heat I<br>(38)m                             | oss calculat<br>127.79 | ed monthly<br>127.16     | 0.33 x (25<br>127.16 | 5)m x (5)<br>126.01 | 125.32       | 125.00            | 124.70      | 124.70       | 125.49        | 126.01      | 126.57        | 127.16       | (38)     |
| Heat transfer coe                                       | fficient, W/           | ′K (37)m+                | (38)m                |                     | <b>.</b>     |                   |             |              |               | ·           |               |              | _        |
| (39)m                                                   | 168.88                 | 168.26                   | 168.26               | 167.11              | 166.42       | 166.10            | 165.80      | 165.80       | 166.59        | 167.11      | 167.66        | 168.26       | _        |
|                                                         |                        |                          |                      |                     |              |                   |             |              | Average =     | ∑(39)112,   | /12 =         | 167.19       | (39)     |
| Heat loss parame                                        | eter (HLP), W<br>0.64  |                          |                      | 0.62                | 0.62         | 0.63              | 0.63        | 0.63         | 0.62          | 0.62        | 0.64          | 0.64         | 7        |
| (40)m                                                   | 0.64                   | 0.64                     | 0.64                 | 0.63                | 0.63         | 0.63              | 0.63        | 0.63         | 0.63          | 0.63        | 0.64          | 0.64         |          |
|                                                         |                        |                          |                      |                     |              |                   |             |              | Average =     | ∑(40)112,   | /12 =         | 0.03         | (40)     |
| 4. Water heatin                                         | g energy re            | quirement                |                      |                     |              |                   |             |              |               |             |               |              |          |
|                                                         |                        |                          |                      |                     |              |                   |             |              |               |             | k             | :Wh/year     |          |
| Assumed occupa                                          | ncy, N                 |                          |                      |                     |              |                   |             |              |               | 3.09        | (42           | 2)           |          |
| If TFA > 13.9,                                          | N = 1 + 1.76           | x [1 - exp(-             | 0.000349 x           | (TFA - 13.9         | )²)] + 0.00  | 13 x (TFA - 1     | 3.9)        |              |               |             |               |              |          |
| If TFA ≤ 13.9,                                          | N = 1                  |                          |                      |                     |              |                   |             |              |               |             |               |              |          |
| Annual average h                                        | ot water us            | age in litres            | per day Vo           | d,average =         | (25 x N) +   | 36                |             |              |               | 107.4       | 7 (43         | 3)           |          |
| Annual average h                                        | ot water us            | sage has be              | en reduced           | by 5% if the        | e dwelling   | is designed       | to achieve  | a water us   | e target of   | not more th | nan 125 lit   | res          |          |
| per person per do                                       | ay (all water          | use, hot ar              | nd cold)             |                     |              |                   |             |              |               |             |               |              |          |
|                                                         | Jan                    | Feb                      | Mar                  | Apr                 | May          | Jun               | Jul         | Aug          | Sep           | Oct         | Nov           | Dec          |          |
| Hot water usage                                         | in litres per          | day for eac              | h month Vo           | d,m = facto         | r from Tab   | le 1c x (43)      |             |              |               |             |               |              | _        |
| (44)m                                                   | 118.22                 | 113.92                   | 109.62               | 105.32              | 101.02       | 96.72             | 96.72       | 101.02       | 105.32        | 109.62      | 113.92        | 118.22       | _        |
|                                                         |                        |                          |                      |                     |              |                   |             |              |               | ∑(44)1      | .12 =         | 1289.66      | (44)     |
| Energy content o                                        |                        | 1                        |                      |                     |              |                   |             |              | 1             |             | 1-0-0         | 1-0.10       | 7        |
| (45)m                                                   | 175.73                 | 153.70                   | 158.60               | 138.27              | 132.68       | 114.49            | 106.09      | 121.74       | 123.20        | 143.57      | 156.72        | 170.19       | ]<br>7 , |
| If instantaneous of For community has Distribution loss | eating inclu           | de distribut             | -                    |                     |              |                   |             | 61)          |               | ∑(45)1      | .12 = [       | 1695.00      | (45)     |
| (46)m                                                   | 26.36                  | 23.05                    | 23.79                | 20.74               | 19.90        | 17.17             | 15.91       | 18.26        | 18.48         | 21.54       | 23.51         | 25.53        | (46)     |
|                                                         |                        | •                        |                      |                     |              |                   |             | •            | 1             | •           |               |              | _ · •    |
|                                                         |                        |                          |                      |                     |              |                   |             |              |               |             |               | ove-Flat5 v  |          |

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (61)m 0.00

Total heat required for water heating calculated for each month 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m

259.67 229.51 | 242.54 | 219.50 | 216.61 | 195.72 | 190.03 205.68 204.42 227.51 237.95 254.12 (62)m

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)

(63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

> ∑(63)1...12 = 0.00 (63)

Output from water heater for each month, kWh/month (62)m + (63)m

(64)m 259.67 229.51 242.54 219.50 216.61 195.72 190.03 205.68 204.42 227.51 237.95 254.12

> $\Sigma(64)1...12 =$ 2683.24

if (64)m < 0 then set to 0

Heat gains from water heating,  $kWh/month 0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ 

125.58 | 111.75 | 119.88 | 110.96 | 111.26 | 103.05 | 102.42 107.63 105.94 114.88 117.09 123.73 (65)m

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

| 5. Internal gair  | ıs (see Table   | 5 and 5a)    |             |              |              |           |         |         |         |         |         |         |     |
|-------------------|-----------------|--------------|-------------|--------------|--------------|-----------|---------|---------|---------|---------|---------|---------|-----|
|                   | Jan             | Feb          | Mar         | Apr          | May          | Jun       | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |     |
| Metabolic gains   | (Table 5), Wa   | atts         |             |              |              |           |         |         |         |         |         |         |     |
| (66)m             | 185.11          | 185.11       | 185.11      | 185.11       | 185.11       | 185.11    | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | (66 |
| Lighting gains (c | alculated in A  | Appendix L,  | equation L  | 9 or L9a), a | lso see Tab  | le 5      |         |         |         |         |         |         |     |
| (67)m             | 130.73          | 116.12       | 94.43       | 71.49        | 53.44        | 45.12     | 48.75   | 63.37   | 85.05   | 107.99  | 126.04  | 134.37  | (67 |
| Appliances gains  | s (calculated i | in Appendix  | L, equatio  | n L13 or L1  | 3a), also se | e Table 5 |         |         |         |         |         |         |     |
| (68)m             | 639.42          | 646.06       | 629.34      | 593.74       | 548.81       | 506.58    | 478.36  | 471.73  | 488.45  | 524.05  | 568.98  | 611.21  | (68 |
| Cooking gains (c  | alculated in A  | Appendix L,  | equation L  | 15 or L15a)  | , also see T | able 5    |         |         |         |         |         |         |     |
| (69)m             | 56.60           | 56.60        | 56.60       | 56.60        | 56.60        | 56.60     | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | (69 |
| Pumps and fans    | gains (Table    | 5a)          |             |              |              |           |         |         |         |         |         |         |     |
| (70)m             | 0.00            | 0.00         | 0.00        | 0.00         | 0.00         | 0.00      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | (70 |
| Losses e.g. evap  | oration (nega   | ative values | ) (Table 5) |              |              |           |         |         |         |         |         |         |     |
| (71)m             | -123.41         | -123.41      | -123.41     | -123.41      | -123.41      | -123.41   | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | (71 |
| Water heating g   | ains (Table 5)  | )            |             |              |              |           |         |         |         |         |         |         |     |
| (72)m             | 168.79          | 166.30       | 161.13      | 154.11       | 149.54       | 143.12    | 137.66  | 144.66  | 147.14  | 154.41  | 162.63  | 166.31  | (72 |
|                   | <del></del>     |              |             |              |              |           |         |         |         |         |         |         | -   |

0.00

(301)

9b. Energy requirements - Community heating scheme

Fraction of space heating from secondary/supplementary system (Table 11)

| Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |             | 1.00                                                                                                                                    | 302)                                                                                      |                                                                                                            |                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Community scheme fractions obtained from plant design specifica                                                                                                                                                                                                                                                                                                                                                                                                                           | tion or operational red                                                 | cords:      |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |             | 1.00                                                                                                                                    | 303b)                                                                                     |                                                                                                            |                                                                                                   |
| Fraction of total space heat from community boilers (302) x (303b                                                                                                                                                                                                                                                                                                                                                                                                                         | o) =                                                                    |             | 1.00                                                                                                                                    | 304b)                                                                                     |                                                                                                            |                                                                                                   |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                           | ity space heating                                                       |             | 1.00                                                                                                                                    | 305)                                                                                      |                                                                                                            |                                                                                                   |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                           | ity water heating                                                       |             | 1.00                                                                                                                                    | 305a)                                                                                     |                                                                                                            |                                                                                                   |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |             | 0.10                                                                                                                                    | 306)                                                                                      |                                                                                                            |                                                                                                   |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |             |                                                                                                                                         |                                                                                           | kWh/year                                                                                                   |                                                                                                   |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |             |                                                                                                                                         |                                                                                           | 5068.12                                                                                                    |                                                                                                   |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |             | 506.81                                                                                                                                  | 307b)                                                                                     |                                                                                                            |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |             |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |             |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |             |                                                                                                                                         |                                                                                           | 2683.24                                                                                                    |                                                                                                   |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |             |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |             | 268.32                                                                                                                                  | 310b)                                                                                     |                                                                                                            |                                                                                                   |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | 0.01 x [(   | 307a)(307e) + (310                                                                                                                      | Da)(310e)] =                                                                              | 7.75                                                                                                       | (313)                                                                                             |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |             |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
| mechanical ventilation fans - balanced, extract or positive inpu                                                                                                                                                                                                                                                                                                                                                                                                                          | it from outside                                                         |             |                                                                                                                                         | 0.00                                                                                      |                                                                                                            | (330a)                                                                                            |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |             |                                                                                                                                         | 0.00                                                                                      | ]                                                                                                          | (330b)                                                                                            |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |             | (220-) : (22                                                                                                                            | 0.00                                                                                      | 0.00                                                                                                       | (330g)                                                                                            |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |             | (330a) + (33                                                                                                                            | 0b) + (330g) =                                                                            | 0.00                                                                                                       | (331)                                                                                             |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |             |                                                                                                                                         |                                                                                           | 923.51                                                                                                     | (332)                                                                                             |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |             |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |             |                                                                                                                                         |                                                                                           |                                                                                                            |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heat or fuel<br>kWh/year                                                |             | Fuel price<br>(Table 12)                                                                                                                |                                                                                           | Fuel cost £/yea                                                                                            | r                                                                                                 |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         | x           | · ·                                                                                                                                     | x 0.01 =                                                                                  | Fuel cost £/year                                                                                           | r<br>] (340b)                                                                                     |
| Space heating from community boilers Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                 | kWh/year                                                                | x<br>x      | (Table 12)                                                                                                                              |                                                                                           | -                                                                                                          | 7                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>kWh/year</b> 506.81                                                  |             | (Table 12) 3.78                                                                                                                         | x 0.01 =                                                                                  | 19.16                                                                                                      | (340b)                                                                                            |
| Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 506.81<br>268.32                                                        | x           | (Table 12)  3.78  3.78                                                                                                                  | x 0.01 =<br>x 0.01 =                                                                      | 19.16<br>10.14                                                                                             | (340b)<br>(342b)                                                                                  |
| Water heating from community boilers Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                       | 506.81<br>268.32<br>0.00                                                | x<br>x      | 3.78 3.78 11.46                                                                                                                         | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                          | 19.16<br>10.14<br>0.00                                                                                     | (340b)<br>(342b)<br>(349)                                                                         |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                              | 506.81<br>268.32<br>0.00                                                | x<br>x      | 3.78 3.78 11.46                                                                                                                         | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                              | 19.16<br>10.14<br>0.00<br>105.83                                                                           | (340b)<br>(342b)<br>(349)<br>(350)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                     | 506.81<br>268.32<br>0.00                                                | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                              | 19.16<br>10.14<br>0.00<br>105.83<br>106.00                                                                 | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                         | 506.81<br>268.32<br>0.00                                                | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                              | 19.16<br>10.14<br>0.00<br>105.83<br>106.00<br>241.13                                                       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                         | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16<br>10.14<br>0.00<br>105.83<br>106.00<br>241.13                                                       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                         | 506.81<br>268.32<br>0.00                                                | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16<br>10.14<br>0.00<br>105.83<br>106.00<br>241.13                                                       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                      | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16<br>10.14<br>0.00<br>105.83<br>106.00<br>241.13                                                       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16<br>10.14<br>0.00<br>105.83<br>106.00<br>241.13<br>0.47<br>0.37<br>94.88                              | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                           | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16 10.14 0.00 105.83 106.00 241.13  0.47 0.37 94.88 95                                                  | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme                                                                                                                                                        | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16 10.14 0.00 105.83 106.00 241.13  0.47 0.37 94.88 95                                                  | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                  | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16 10.14 0.00 105.83 106.00 241.13  0.47 0.37 94.88 95                                                  | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | 506.81<br>268.32<br>0.00                                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16 10.14 0.00 105.83 106.00 241.13  0.47 0.37 94.88 95                                                  | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | \$\text{kWh/year}\$  506.81  268.32  0.00  923.51                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] ÷                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16  10.14  0.00  105.83  106.00  241.13  0.47  0.37  94.88  95  A                                       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | \$\text{kWh/year}\$  506.81  268.32  0.00  923.51  Energy used kWh/year | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                              | 19.16  10.14  0.00  105.83  106.00  241.13  0.47  0.37  94.88  95  A  Emissions (kgCO2/year)               | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358) |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution | kWh/year  506.81  268.32  0.00  923.51  Energy used kWh/year  1033.51   | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>- [(4) + 45.0] =<br>367b) | 19.16  10.14  0.00  105.83  106.00  241.13  0.47  0.37  94.88  95  A  Emissions (kgCO2/year)  204.64       | [ (340b)                                                                                          |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | kWh/year  506.81  268.32  0.00  923.51  Energy used kWh/year  1033.51   | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517  (363)(366) + ( | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>- [(4) + 45.0] =<br>367b) | 19.16  10.14  0.00  105.83  106.00  241.13  0.47  0.37  94.88  95  A  Emissions (kgCO2/year)  204.64  4.01 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358) |

| Electricity for pumps and fans within dwelling | 0.00   | x | 0.000 | =             | 0.00   | (378) |
|------------------------------------------------|--------|---|-------|---------------|--------|-------|
| Electricity for lighting                       | 923.51 | x | 0.517 | =             | 477.46 | (379) |
| Total carbon dioxide emissions                 |        |   |       | ∑(376)(382) = | 686.10 | (383) |
| Dwelling carbon dioxide emissions rate         |        |   |       | (383) ÷ (4) = | 2.60   | (384) |
| El value                                       |        |   |       |               | 97.02  | ]     |
| El rating (see section 14)                     |        |   |       |               | 97     | (385) |
| El band                                        |        |   |       |               | А      | ]     |

# 13b. Primary energy - Community heating scheme

# Primary energy from other community sources (not CHP)

| Efficiency of boilers (%)                      |                         |   | 75.00 (36                | 67b*)         |                |        |
|------------------------------------------------|-------------------------|---|--------------------------|---------------|----------------|--------|
|                                                | Energy used<br>kWh/year |   | Primary Energy<br>Factor |               | Primary Energy | ,      |
| Primary energy - boilers (Mains gas)           | 1033.51                 | x | 1.02                     | =             | 1054.18        | (368*) |
| Electrical energy for heat distribution        | 7.75                    | x | 2.92                     | =             | 22.63          | (372*) |
| Total primary energy from community systems    |                         |   | (363*)(366*) + (368*     | *)(372*) =    | 1076.82        | (373*) |
| Space and water heating                        |                         |   | (373*) + (374*           | ·) + (375*) = | 1076.82        | (376*) |
| Electricity for pumps and fans within dwelling | 0.00                    | x | 0.00                     | =             | 0.00           | (378*) |
| Electricity for lighting                       | 923.51                  | x | 2.92                     | =             | 2696.65        | (379*) |
| Total primary energy kWh/year                  |                         |   | Σ(376*                   | *)(382*) =    | 3773.47        | (383*) |
| Primary energy kWh/m2/year                     |                         |   | (3                       | 883*) ÷ (4) = | 14.29          | (384*) |



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                   | Assessor number | 1422       |
|---------------|-----------------------------------------------------|-----------------|------------|
| Client        |                                                     | Last modified   | 14/12/2011 |
| Address       | 8 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimen      | sions                                                |                            |                     |                        |                        |      |
|--------------------------------|------------------------------------------------------|----------------------------|---------------------|------------------------|------------------------|------|
|                                |                                                      | Area (m²)                  | Average s<br>height | •                      | Volume (m³)            |      |
| Lowest occupied                |                                                      | 670.00 (1a)                | 2.85                | (2a) =                 | 1909.50                | (3a) |
| Total floor area               | (1a) + (1b) + (1c) + (1d)(1n) =                      | 670.00 (4)                 |                     |                        |                        |      |
| Dwelling volume                |                                                      |                            | (3a) + (3l          | b) + (3c) + (3d)(3n) = | 1909.50                | (5)  |
|                                |                                                      |                            |                     |                        |                        |      |
| 2. Ventilation rate            |                                                      |                            |                     |                        |                        |      |
|                                |                                                      |                            |                     |                        | m³ per hour            |      |
| Number of chimneys             |                                                      |                            | 0                   | x 40 =                 | 0                      | (6a) |
| Number of open flues           |                                                      |                            | 0                   | x 20 =                 | 0                      | (6b) |
| Number of intermittent fan     | ns                                                   |                            | 2                   | x 10 =                 | 20                     | (7a) |
| Number of passive vents        |                                                      |                            | 2                   | x 10 =                 | 20                     | (7b) |
| Number of flueless gas fires   | S                                                    |                            | 0                   | x 40 =                 | 0                      | (7c) |
|                                |                                                      |                            |                     |                        | Air changes pe<br>hour | r    |
| Infiltration due to chimneys   | s, flues, fans, PSVs                                 | (6a) + (6b) + (7a) + (7b)  | + (7c) = 40         | ÷ (5) =                | 0.02                   | (8)  |
| If a pressurisation test has l | been carried out or is intended, proceed             | to (17), otherwise continu | ue from (9) to (16) |                        |                        |      |
| Air permeability value, q50    | , expressed in cubic metres per hour per             | square metre of envelop    | e area              |                        | 3.00                   | (17) |
| If based on air permeability   | $\gamma$ value, then (18) = [(17) ÷ 20] + (8), other | erwise (18) = (16)         |                     |                        | 0.17                   | (18) |
| Air permeability value appli   | ies if a pressurisation test has been done           | , or a design or specified | air permeability is | being used             |                        |      |
| Number of sides on which o     | dwelling is sheltered                                |                            |                     |                        | 4                      | (19) |
| Shelter factor                 |                                                      |                            |                     | 1 - [0.075 x (19)] =   | 0.70                   | (20) |

| Adjusted infiltration rate                         |  |
|----------------------------------------------------|--|
| Infiltration rate modified for monthly wind speeds |  |

| Infiltration rate m   | odified for   | monthly wi   | na speea:    |            |               |       |      |      |      |         |       |       |       |
|-----------------------|---------------|--------------|--------------|------------|---------------|-------|------|------|------|---------|-------|-------|-------|
|                       | Jan           | Feb          | Mar          | Apr        | May           | Jun   | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average       | wind speed    | from Table   | 2 7          |            |               |       |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10         | 5.10         | 4.50       | 4.10          | 3.90  | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                       |               |              |              |            |               |       |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m     | ÷ 4          |              |            |               |       |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27         | 1.27         | 1.12       | 1.02          | 0.98  | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |              |              |            |               |       |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | owing for sh | nelter and v | wind speed | ) = (21) × (2 | .2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.16          | 0.15         | 0.15         | 0.13       | 0.12          | 0.12  | 0.11 | 0.11 | 0.13 | 0.13    | 0.14  | 0.15  |       |
|                       |               |              |              |            |               |       |      |      |      | ∑(22b)1 | .12 = | 1.62  | (22b) |

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) N/A

0.12

(18) x (20) =

N/A (23b)

(23a)

| ith heat reco                  | very: efficie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ency in % a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | llowing for                                | in-use fact                                       | or (from Ta                                              | ble 4h) =  |                                                                           |                                                                             |                                                                             |                                                                           | N/A                                                                 | (23c)                                                              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------|----------------------------------------------------------|------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------|
| ventilation or                 | whole hou:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | se positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | input venti                                | ilation from                                      | າ loft                                                   |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| ≥ 1, then (24                  | d)m = (22b)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | m; otherw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ise (24d)m                                 | = 0.5 + [(22                                      | 2b)m2 x 0.5                                              | ]          |                                                                           |                                                                             | _                                                                           |                                                                           |                                                                     | _                                                                  |
| 0.51                           | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.51                                       | 0.51                                              | 0.51                                                     | 0.51       | 0.51                                                                      | 0.51                                                                        | 0.51                                                                        | 0.51                                                                      | 0.51                                                                | (24d)                                                              |
| nge rate - ent                 | ter (24a) or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (24b) or (2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4c) or (24d                                | ) in box (25                                      | 5)                                                       |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     | _                                                                  |
| 0.51                           | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.51                                       | 0.51                                              | 0.51                                                     | 0.51       | 0.51                                                                      | 0.51                                                                        | 0.51                                                                        | 0.51                                                                      | 0.51                                                                | (25)                                                               |
| and heat loss                  | parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| e heat capaci                  | ity per unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | area, see T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | able 1e.                                   |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| Element                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Gross<br>Area, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                          | •                                                 | Net area<br>A, m²                                        |            | •                                                                         | A x U,<br>W/K                                                               |                                                                             | •                                                                         | Αxκ,<br>kJ/K                                                        | _                                                                  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   | 10.00                                                    | x1         | 1.42 =                                                                    | 14.15                                                                       | N                                                                           | /A                                                                        | N/A                                                                 | (27)                                                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   | 56.00                                                    | x (        | 0.13 =                                                                    | 7.28                                                                        | N                                                                           | /A                                                                        | N/A                                                                 | (28a)                                                              |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   | 38.16                                                    | x (        | 0.20 =                                                                    | 7.63                                                                        | N                                                                           | /A                                                                        | N/A                                                                 | (29a)                                                              |
| ernal elemen                   | ıts ∑A, m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   | 104.16                                                   | (31)       |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| nd roof windo                  | ows, effectiv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ve window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U-value is (                               | calculated i                                      | using formu                                              | la 1/[(1/L | JValue)+0.0                                                               | 14] paragraµ                                                                | oh 3.2                                                                      |                                                                           |                                                                     |                                                                    |
| $W/K = \sum (A \times$         | U)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           | (2                                                                          | 6)(30) + (                                                                  | 32) =                                                                     | 29.06                                                               | (33)                                                               |
| n = ∑(A x κ)                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            | (28).                                                                     | .(30) + (32)                                                                | + (32a)(3                                                                   | 2e) =                                                                     | N/A                                                                 | (34)                                                               |
| arameter (TN                   | 1P) in kJ/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                                                   |                                                          |            |                                                                           | Calcula                                                                     | ted separat                                                                 | ely =                                                                     | 100.00                                                              | (35)                                                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | 5 x (31)                                          |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           | 15.62                                                               | (36)                                                               |
| loss                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             | (33) + (                                                                    | 36) =                                                                     | 44.69                                                               | (37)                                                               |
| loss calculate 323.29          | ed monthly<br>322.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.33 x (25<br>322.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5)m x (5)<br>320.78                        | 319.81                                            | 319.36                                                   | 318.93     | 318.93                                                                    | 320.04                                                                      | 320.78                                                                      | 321.56                                                                    | 322.40                                                              | (38)                                                               |
| efficient, W/I                 | K (37)m+(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (38)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                            |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| 367.98                         | 367.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 367.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 365.46                                     | 364.49                                            | 364.04                                                   | 363.61     | 363.61                                                                    | 364.73                                                                      | 365.46                                                                      | 366.25                                                                    | 367.09                                                              |                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           | Average =                                                                   | ∑(39)112,                                                                   | /12 =                                                                     | 365.58                                                              | (39)                                                               |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            | _                                                                         | _                                                                           |                                                                             |                                                                           |                                                                     | _                                                                  |
| 0.55                           | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.55                                       | 0.54                                              | 0.54                                                     | 0.54       | 0.54                                                                      | 0.54                                                                        | 0.55                                                                        | 0.55                                                                      | 0.55                                                                | _                                                                  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           | Average =                                                                   | ∑(40)112,                                                                   | /12 =                                                                     | 0.55                                                                | (40)                                                               |
| ng energy red                  | quirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           | (Wh/vear                                                            |                                                                    |
| ancy N                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             | 3 61                                                                        |                                                                           | -                                                                   |                                                                    |
| •                              | x [1 - exp(-(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000349 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (TFA - 13.9                                | )²)] + 0.001                                      | L3 x (TFA - 1                                            | 3.9)       |                                                                           |                                                                             | 3.01                                                                        | (42                                                                       | -1                                                                  |                                                                    |
| N = 1                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| hot water usa                  | age in litres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | per day Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d,average =                                | (25 x N) +                                        | 36                                                       |            |                                                                           |                                                                             | 120.0                                                                       | 1 (43                                                                     | 3)                                                                  |                                                                    |
| hot water us                   | age has bee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | en reduced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | by 5% if the                               | e dwelling i                                      | is designed                                              | to achieve | e a water u                                                               | se target of                                                                | not more th                                                                 | han 125 lit                                                               | tres                                                                |                                                                    |
| lay (all water                 | use, hot an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d cold)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |                                                   |                                                          |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| Jan                            | Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Apr                                        | May                                               | Jun                                                      | Jul        | Aug                                                                       | Sep                                                                         | Oct                                                                         | Nov                                                                       | Dec                                                                 |                                                                    |
| in litres per                  | day for eacl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h month Vo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d,m = facto                                | r from Tabl                                       | e 1c x (43)                                              |            |                                                                           |                                                                             |                                                                             |                                                                           |                                                                     |                                                                    |
| 132.01                         | 127.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 122.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 117.61                                     | 112.81                                            | 108.01                                                   | 108.01     | 112.81                                                                    | 117.61                                                                      | 122.41                                                                      | 127.21                                                                    | 132.01                                                              |                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             | ∑(44)1                                                                      | .12 =                                                                     | 1440.09                                                             | (44)                                                               |
| of hot water i                 | used - calcu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lated mont                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | thly = 4.190                               | x Vd,m x r                                        | nm x Tm/36                                               | 00 kWh     | /month (se                                                                | e Tables 1b                                                                 | , 1c 1d)                                                                    |                                                                           |                                                                     |                                                                    |
| 196.23                         | 171.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 177.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154.40                                     | 148.15                                            | 127.84                                                   | 118.47     | 135.94                                                                    | 137.57                                                                      | 160.32                                                                      | 175.00                                                                    | 190.04                                                              |                                                                    |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             | ∑(45)1                                                                      | 12 =                                                                      | 1002.70                                                             | _                                                                  |
|                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                                   |                                                          |            |                                                                           |                                                                             | _ ` '                                                                       | .12                                                                       | 1892.70                                                             | (45)                                                               |
| water heatin                   | ıg at point d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of use (no h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ot water st                                | torage), en                                       | ter 0 in boxe                                            | es (46) to | (61)                                                                      |                                                                             | _ ,                                                                         | .12                                                                       | 1892.70                                                             | <u> </u> (45)                                                      |
| water heatin<br>heating includ | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | - '                                               |                                                          |            | (61)                                                                      |                                                                             | _, ,                                                                        | .12 -                                                                     | 1892.70                                                             | <u>(45)</u>                                                        |
|                                | de distributi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            | - '                                               |                                                          |            | (61)                                                                      |                                                                             | _, ,                                                                        |                                                                           | 1892.70                                                             | <u>(45)</u>                                                        |
|                                | ≥ 1, then (24d 0.51   Inge rate - ent 0.51 | ≥ 1, then (24d)m = (22b)  0.51 0.51 0.51  nge rate - enter (24a) or  0.51  and heat loss parameter e heat capacity per unit Element  Elem | ≥ 1, then (24d)m = (22b)m; otherwind. 0.51 | ≥ 1, then (24d)m = (22b)m; otherwise (24d)m  0.51 | ≥ 1, then (24d)m = (22b)m; otherwise (24d)m = 0.5 + [(2z | 0.51       | 2 1, then (24d)m = (22b)m; otherwise (24d)m = 0.5 + [(22b)m2 x 0.5]  0.51 | ≥ 1, then (24d)m = (22b)m; otherwise (24d)m = 0.5 + [(22b)m2 x 0.5]    0.51 | ≥ 1, then (24d)m = (22b)m; otherwise (24d)m = 0.5 + {(22b)m2 x 0.5}    0.51 | ≥ 1, then (24d)m = (22b)m; otherwise (24d)m = 0.5 + [(22b)m2 x 0.5]  0.51 | ≥ 1, then (24d)m = (22b)m; otherwise (24d)m = 0.5 + ((22b)m; x 0.5) | ≥ 1, then (24d) = (22b) m; otherwise (24d) = 0.5 + ((22b) m × 0.51 |

Total heat required for water heating calculated for each month  $0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$ (62)m

280.16 247.44 261.04 235.63 232.09 209.07 202.40 219.87 218.79 244.25 256.23 273.97 (6

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)

 $\Sigma$ (63)1...12 = 0.00 (63)

Output from water heater for each month, kWh/month (62)m + (63)m

(64)m 280.16 247.44 261.04 235.63 232.09 209.07 202.40 219.87 218.79 244.25 256.23 273.97

 $\Sigma$ (64)1...12 = 2880.94 (64)

if (64)m < 0 then set to 0

Heat gains from water heating, kWh/month  $0.25 \times [0.85 \times (45)\text{m} + (61)\text{m}] + 0.8 \times [(46)\text{m} + (57)\text{m} + (59)\text{m}]$ 

(65)m | 132.39 | 117.71 | 126.03 | 116.32 | 116.41 | 107.49 | 106.54 | 112.35 | 110.72 | 120.45 | 123.17 | 130.33 | (65)

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

| 5. Internal gains (see Table 5 and 5a) |                |              |             |              |              |           |         |         |         |         |         |         |     |
|----------------------------------------|----------------|--------------|-------------|--------------|--------------|-----------|---------|---------|---------|---------|---------|---------|-----|
|                                        | Jan            | Feb          | Mar         | Apr          | May          | Jun       | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |     |
| Metabolic gains                        | (Table 5), Wa  | atts         |             |              |              |           |         |         |         |         |         |         |     |
| (66)m                                  | 216.78         | 216.78       | 216.78      | 216.78       | 216.78       | 216.78    | 216.78  | 216.78  | 216.78  | 216.78  | 216.78  | 216.78  | (66 |
| Lighting gains (c                      | alculated in A | Appendix L,  | equation L  | 9 or L9a), a | lso see Tab  | le 5      |         |         |         |         |         |         |     |
| (67)m                                  | 228.20         | 202.69       | 164.84      | 124.79       | 93.28        | 78.75     | 85.10   | 110.61  | 148.46  | 188.51  | 220.01  | 234.54  | (67 |
| Appliances gains                       | (calculated i  | n Appendix   | L, equation | n L13 or L1  | 3a), also se | e Table 5 |         |         |         |         |         |         |     |
| (68)m                                  | 1068.53        | 1079.62      | 1051.68     | 992.19       | 917.11       | 846.53    | 799.39  | 788.30  | 816.24  | 875.73  | 950.81  | 1021.39 | (68 |
| Cooking gains (c                       | alculated in A | Appendix L,  | equation L  | 15 or L15a)  | , also see T | able 5    |         |         |         |         |         |         |     |
| (69)m                                  | 60.29          | 60.29        | 60.29       | 60.29        | 60.29        | 60.29     | 60.29   | 60.29   | 60.29   | 60.29   | 60.29   | 60.29   | (69 |
| Pumps and fans                         | gains (Table   | 5a)          |             |              |              |           |         |         |         |         |         |         |     |
| (70)m                                  | 0.00           | 0.00         | 0.00        | 0.00         | 0.00         | 0.00      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | (70 |
| Losses e.g. evap                       | oration (nega  | ntive values | ) (Table 5) |              |              |           |         |         |         |         |         |         |     |
| (71)m                                  | -144.52        | -144.52      | -144.52     | -144.52      | -144.52      | -144.52   | -144.52 | -144.52 | -144.52 | -144.52 | -144.52 | -144.52 | (71 |
| Water heating g                        | ains (Table 5) | )            |             |              |              |           |         |         |         |         |         |         |     |
| (72)m                                  | 177.95         | 175.17       | 169.40      | 161.55       | 156.46       | 149.29    | 143.19  | 151.00  | 153.78  | 161.90  | 171.07  | 175.18  | (72 |
|                                        |                |              |             |              |              |           |         |         |         |         |         |         | -   |

## 9b. Energy requirements - Community heating scheme

Fraction of space heating from secondary/supplementary system (Table 11)

0.00 (301)

| Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |             | 1.00                                                                                                                                  | (302)                                                                                      |                                                                                                            |                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Community scheme fractions obtained from plant design specifica                                                                                                                                                                                                                                                                                                                                                                                                                           | ntion or operational rec                                                | ords:       |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |             | 1.00                                                                                                                                  | (303b)                                                                                     |                                                                                                            |                                                                                                            |
| Fraction of total space heat from community boilers (302) x (303b)                                                                                                                                                                                                                                                                                                                                                                                                                        | )) =                                                                    |             | 1.00                                                                                                                                  | (304b)                                                                                     |                                                                                                            |                                                                                                            |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                           | ity space heating                                                       |             | 1.00                                                                                                                                  | (305)                                                                                      |                                                                                                            |                                                                                                            |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                           | ity water heating                                                       |             | 1.00                                                                                                                                  | (305a)                                                                                     |                                                                                                            |                                                                                                            |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |             | 0.10                                                                                                                                  | (306)                                                                                      |                                                                                                            |                                                                                                            |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |             |                                                                                                                                       |                                                                                            | kWh/year                                                                                                   |                                                                                                            |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |             |                                                                                                                                       |                                                                                            | 15050.39                                                                                                   |                                                                                                            |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                         |             | 1505.04                                                                                                                               | (307b)                                                                                     |                                                                                                            |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |             |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                         |             |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |             |                                                                                                                                       |                                                                                            | 2880.94                                                                                                    |                                                                                                            |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |             |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |             | 288.09                                                                                                                                | (310b)                                                                                     |                                                                                                            |                                                                                                            |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         | 0.01 x [    | (307a)(307e) + (31                                                                                                                    | 0a)(310e)] =                                                                               | 17.93                                                                                                      | (313)                                                                                                      |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |             |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
| mechanical ventilation fans - balanced, extract or positive input                                                                                                                                                                                                                                                                                                                                                                                                                         | ut from outside                                                         |             |                                                                                                                                       | 0.00                                                                                       |                                                                                                            | (330a)                                                                                                     |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |             |                                                                                                                                       | 0.00                                                                                       |                                                                                                            | (330b)                                                                                                     |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |             | L                                                                                                                                     | 0.00                                                                                       |                                                                                                            | (330g)                                                                                                     |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                         |             | (330a) + (33                                                                                                                          | 30b) + (330g) =                                                                            | 0.00                                                                                                       | (331)                                                                                                      |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                         |             |                                                                                                                                       |                                                                                            | 1612.04                                                                                                    | (332)                                                                                                      |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |             |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |             |                                                                                                                                       |                                                                                            |                                                                                                            |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heat or fuel<br>kWh/year                                                |             | Fuel price<br>(Table 12)                                                                                                              |                                                                                            | Fuel cost £/yea                                                                                            | r                                                                                                          |
| Space heating from community hollers                                                                                                                                                                                                                                                                                                                                                                                                                                                      | kWh/year                                                                | x           | (Table 12)                                                                                                                            |                                                                                            | -                                                                                                          | 7                                                                                                          |
| Space heating from community boilers  Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/year<br>1505.04                                                     | x<br>x      | (Table 12) 3.78                                                                                                                       | x 0.01 =                                                                                   | 56.89                                                                                                      | (340b)                                                                                                     |
| Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1505.04<br>288.09                                                       | x           | (Table 12)  3.78  3.78                                                                                                                | x 0.01 =<br>x 0.01 =                                                                       | 56.89                                                                                                      | (340b)<br>(342b)                                                                                           |
| Water heating from community boilers Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                                         | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                           | 56.89<br>10.89<br>0.00                                                                                     | (340b)<br>(342b)<br>(349)                                                                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                              | 1505.04<br>288.09                                                       | x           | (Table 12)  3.78  3.78                                                                                                                | x 0.01 =<br>x 0.01 =                                                                       | 56.89<br>10.89<br>0.00<br>184.74                                                                           | (340b)<br>(342b)<br>(349)<br>(350)                                                                         |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                                                                                                       | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 56.89<br>10.89<br>0.00<br>184.74<br>106.00                                                                 | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                              | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                                         | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 56.89<br>10.89<br>0.00<br>184.74                                                                           | (340b)<br>(342b)<br>(349)<br>(350)                                                                         |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                                                                                                       | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 56.89<br>10.89<br>0.00<br>184.74<br>106.00                                                                 | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                     | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 56.89<br>10.89<br>0.00<br>184.74<br>106.00                                                                 | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                         | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89<br>10.89<br>0.00<br>184.74<br>106.00<br>358.52                                                       | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                         | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89<br>10.89<br>0.00<br>184.74<br>106.00<br>358.52                                                       | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)                                              |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89<br>10.89<br>0.00<br>184.74<br>106.00<br>358.52<br>0.47<br>0.24                                       | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)                                              |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                      | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71                                              | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                           | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97                                          | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                  | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97                                          | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                  | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97                                          | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | kWh/year<br>1505.04<br>288.09                                           | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                    | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97                                          | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | kWh/year  1505.04  288.09  0.00  1612.04  Energy used                   | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] -                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97  A                                       | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | kWh/year  1505.04  288.09  0.00  1612.04  Energy used kWh/year          | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)]  75.00  Emission Factor (kgCO2/kWh)                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>÷ [(4) + 45.0] =           | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97  A  Emissions (kgCO2/year)               | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358)                            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | kWh/year  1505.04  288.09  0.00  1612.04  Energy used kWh/year  2390.84 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] -                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>÷ [(4) + 45.0] =<br>(367b) | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97  A  Emissions (kgCO2/year)  473.39       | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358)                            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution | kWh/year  1505.04  288.09  0.00  1612.04  Energy used kWh/year  2390.84 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] -  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517  (363)(366) + | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>÷ [(4) + 45.0] =<br>(367b) | 56.89  10.89  0.00  184.74  106.00  358.52  0.47  0.24  96.71  97  A  Emissions (kgCO2/year)  473.39  9.27 | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358)<br>(368)<br>(368)<br>(372) |

| Electricity for pumps and fans within dwelling | 0.00    | x | 0.000 | =             | 0.00    | (378) |
|------------------------------------------------|---------|---|-------|---------------|---------|-------|
| Electricity for lighting                       | 1612.04 | x | 0.517 | =             | 833.43  | (379) |
| Total carbon dioxide emissions                 |         |   |       | ∑(376)(382) = | 1316.08 | (383) |
| Dwelling carbon dioxide emissions rate         |         |   |       | (383) ÷ (4) = | 1.96    | (384) |
| El value                                       |         |   |       |               | 97.53   | ]     |
| El rating (see section 14)                     |         |   |       |               | 98      | (385) |
| EI band                                        |         |   |       |               | А       | ]     |

## Primary energy from other community sources (not CHP)

| Efficiency of boilers (%)                      |                         |   | 75.00                   | (367b*)           |                |        |
|------------------------------------------------|-------------------------|---|-------------------------|-------------------|----------------|--------|
|                                                | Energy used<br>kWh/year |   | Primary Energ<br>Factor | у                 | Primary Energy | •      |
| Primary energy - boilers (Mains gas)           | 2390.84                 | х | 1.02                    | =                 | 2438.66        | (368*) |
| Electrical energy for heat distribution        | 17.93                   | x | 2.92                    | =                 | 52.36          | (372*) |
| Total primary energy from community systems    |                         |   | (363*)(366*) +          | (368*)(372*) =    | 2491.02        | (373*) |
| Space and water heating                        |                         |   | (373*) +                | (374*) + (375*) = | 2491.02        | (376*) |
| Electricity for pumps and fans within dwelling | 0.00                    | х | 0.00                    | =                 | 0.00           | (378*) |
| Electricity for lighting                       | 1612.04                 | x | 2.92                    | =                 | 4707.16        | (379*) |
| Total primary energy kWh/year                  |                         |   | Σ                       | (376*)(382*) =    | 7198.18        | (383*) |
| Primary energy kWh/m2/year                     |                         |   |                         | (383*) ÷ (4) =    | 10.74          | (384*) |



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                    | Assessor number | 1422       |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 14/12/2011 |
| Address       | 17 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimensi     | ons                                               |                       |                |                           |                  |                        |      |
|---------------------------------|---------------------------------------------------|-----------------------|----------------|---------------------------|------------------|------------------------|------|
|                                 |                                                   | Area (m²)             |                | Average storey height (m) |                  | Volume (m³)            |      |
| Lowest occupied                 |                                                   | 54.00 (1              | a) x           | 2.85                      | (2a) =           | 153.90                 | (3a  |
| Total floor area                | (1a) + (1b) + (1c) + (1d)(1n) =                   | 54.00 (4              | )              |                           |                  |                        |      |
| Dwelling volume                 |                                                   |                       |                | (3a) + (3b) + (3d         | c) + (3d)(3n) =  | 153.90                 | (5)  |
| 2. Ventilation rate             |                                                   |                       |                |                           |                  |                        |      |
|                                 |                                                   |                       |                |                           |                  | m³ per hour            |      |
| Number of chimneys              |                                                   |                       |                | 0                         | x 40 =           | 0                      | (6a  |
| Number of open flues            |                                                   |                       |                | 0                         | x 20 =           | 0                      | (6b  |
| Number of intermittent fans     |                                                   |                       |                | 2                         | x 10 =           | 20                     | (7a  |
| Number of passive vents         |                                                   |                       |                | 2                         | x 10 =           | 20                     | (7b  |
| Number of flueless gas fires    |                                                   |                       |                | 0                         | x 40 =           | 0                      | (7c) |
|                                 |                                                   |                       |                |                           |                  | Air changes pe<br>hour | r    |
| Infiltration due to chimneys,   | flues, fans, PSVs                                 | (6a) + (6b) + (7a) +  | (7b) + (7c) =  | = 40                      | ÷ (5) =          | 0.26                   | (8)  |
| If a pressurisation test has be | een carried out or is intended, proceed           | to (17), otherwise co | ntinue from    | n (9) to (16)             |                  |                        |      |
| Air permeability value, q50, e  | expressed in cubic metres per hour per            | square metre of en    | velope area    |                           |                  | 3.00                   | (17  |
| If based on air permeability v  | value, then (18) = $[(17) \div 20] + (8)$ , other | rwise (18) = (16)     |                |                           |                  | 0.41                   | (18  |
| Air permeability value applies  | s if a pressurisation test has been done          | , or a design or spec | ified air peri | meability is being        | used             |                        |      |
| Number of sides on which dv     | velling is sheltered                              |                       |                |                           |                  | 4                      | (19) |
| Shelter factor                  |                                                   |                       |                | 1 -                       | [0.075 x (19)] = | 0.70                   | (20) |

| ramber of sides on which awell | ng is strettered     |        | (13) |
|--------------------------------|----------------------|--------|------|
| Shelter factor                 | 1 - [0.075 x (19)] = | = 0.70 | (20) |
| Adjusted infiltration rate     | (18) x (20) =        | = 0.29 | (21) |

Infiltration rate modified for monthly wind speed:

| Infiltration rate mo  | odified for r | monthly wi  | na speea:   |             |               |       |      |      |      |         |       |       |       |
|-----------------------|---------------|-------------|-------------|-------------|---------------|-------|------|------|------|---------|-------|-------|-------|
|                       | Jan           | Feb         | Mar         | Apr         | May           | Jun   | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average v     | wind speed    | from Table  | 7           |             |               |       |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10        | 5.10        | 4.50        | 4.10          | 3.90  | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                       |               |             |             |             |               |       |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m ÷   | ÷ 4         |             |             |               |       |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27        | 1.27        | 1.12        | 1.02          | 0.98  | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |             |             |             |               |       |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | n rate (allo  | wing for sh | elter and v | vind speed) | ) = (21) × (2 | .2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.39          | 0.37        | 0.37        | 0.32        | 0.29          | 0.28  | 0.27 | 0.27 | 0.30 | 0.32    | 0.34  | 0.37  |       |
|                       |               |             |             |             |               |       |      |      |      | ∑(22b)1 | .12 = | 3.88  | (22b) |

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

N/A

N/A (23b)

(23a)

| If balanced v            | with heat reco               | overy: effici | ency in % a       | Illowing for | · in-use fact                         | or (from Ta       | ble 4h) =   |                |               |            |                | N/A          | (23c)      |
|--------------------------|------------------------------|---------------|-------------------|--------------|---------------------------------------|-------------------|-------------|----------------|---------------|------------|----------------|--------------|------------|
| •                        | ventilation or               |               | •                 | •            |                                       |                   |             |                |               |            |                |              |            |
|                          | 1 ≥ 1, then (24              |               |                   |              | · · · · · ·                           |                   | 1           | 0.54           | 0.55          | 0.55       | 0.56           | 0.57         | 7 (24 1)   |
| (24d)m                   | 0.58                         | 0.57          | 0.57              | 0.55         | 0.54                                  | 0.54              | 0.54        | 0.54           | 0.55          | 0.55       | 0.56           | 0.57         | (24d)      |
| Effective air cha        |                              |               |                   | , ,          | , , , , , , , , , , , , , , , , , , , | ,<br>1            |             | 0.54           | 0.55          | 0.55       | 0.56           | 0.57         | 7 (25)     |
| (25)m                    | 0.58                         | 0.57          | 0.57              | 0.55         | 0.54                                  | 0.54              | 0.54        | 0.54           | 0.55          | 0.55       | 0.56           | 0.57         | (25)       |
| 3. Heat losses           |                              | •             |                   |              |                                       |                   |             |                |               |            |                |              |            |
| The κ-value is th        | he heat capac                | ity per unit  | area, see T       | Table 1e.    |                                       |                   |             |                |               |            |                |              |            |
|                          | Element                      |               | Gross<br>Area, m² | •            | nings,<br>n²                          | Net area<br>A, m² |             | /alue,<br>/m²K | A x U,<br>W/K |            | alue,<br>'m².K | Αxκ,<br>kJ/K | _          |
| Window*                  |                              |               |                   |              |                                       | 10.00             | x 1         | 42 =           | 14.15         | 1          | N/A            | N/A          | (27)       |
| External wall            |                              |               |                   |              |                                       | 10.52             | ) x [ C     | ).20 =         | 2.10          | 1          | N/A            | N/A          | (29a)      |
| Total area of ex         | ternal elemei                | nts ∑A, m²    |                   |              |                                       | 20.52             | (31)        |                |               |            |                |              |            |
| * for windows of         | and roof wind                | ows, effecti  | ve window         | U-value is   | calculated                            | using formเ       | ıla 1/[(1/L | IValue)+0.0    | 4] paragra    | ph 3.2     |                |              |            |
| Fabric heat loss         | $V = \sum (A \times A)^{-1}$ | U)            |                   |              |                                       |                   |             |                | (2            | 26)(30) +  | (32) =         | 16.25        | (33)       |
| Heat capacity C          | $m = \sum (A \times \kappa)$ |               |                   |              |                                       |                   |             | (28)           | .(30) + (32)  | + (32a)(3  | 32e) =         | N/A          | (34)       |
| Thermal mass p           | arameter (TN                 | /IP) in kJ/m² | ²K                |              |                                       |                   |             |                | Calcula       | ted separa | tely =         | 100.00       | (35)       |
| Thermal bridge           | s: ∑(L x Ψ) cal              | culated usir  | ng Appendi        | ix K         |                                       |                   |             |                |               |            |                | 3.08         | (36)       |
| if details of t          | thermal bridg                | ing are not   | known the         | n (36) = 0.1 | !5 x (31)                             |                   |             |                |               |            |                |              |            |
| Total fabric hea         | t loss                       |               |                   |              |                                       |                   |             |                |               | (33) +     | (36) =         | 19.33        | (37)       |
| Ventilation hea          | t loss calculat              | ed monthly    | 0.33 x (2         | 5)m x (5)    |                                       |                   |             |                |               | _          | _              |              | _          |
| (38)m                    | 29.20                        | 28.79         | 28.79             | 28.04        | 27.59                                 | 27.38             | 27.18       | 27.18          | 27.70         | 28.04      | 28.40          | 28.79        | (38)       |
| Heat transfer co         |                              | K (37)m+      | (38)m             |              |                                       |                   |             |                |               |            |                |              | _          |
| (39)m                    | 48.54                        | 48.13         | 48.13             | 47.37        | 46.92                                 | 46.71             | 46.52       | 46.52          | 47.03         | 47.37      | 47.74          | 48.13        | ]<br>]     |
|                          | . (1115) 14                  | 21. (20)      | (4)               |              |                                       |                   |             |                | Average =     | ∑(39)112   | ./12 =         | 47.42        | (39)       |
| Heat loss paran<br>(40)m | 0.90                         | 0.89          | m ÷ (4)<br>0.89   | 0.88         | 0.87                                  | 0.87              | 0.86        | 0.86           | 0.87          | 0.88       | 0.88           | 0.89         | 7          |
| (40)111                  | 0.30                         | 0.89          | 0.83              | 0.88         | 0.87                                  | 0.87              | 0.80        | 0.80           | ļ             | Σ(40)112   |                | 0.88         | <br>☐ (40) |
|                          |                              |               |                   |              |                                       |                   |             |                | Average -     | 2(40)112   | ./ 12 -        | 0.00         | (40)       |
| 4. Water heat            | ing energy re                | quirement     |                   |              |                                       |                   |             |                |               |            |                |              |            |
|                          |                              |               |                   |              |                                       |                   |             |                |               |            | ı              | wh/year      |            |
| Assumed occup            | ancy, N                      |               |                   |              |                                       |                   |             |                |               | 1.83       | L (42          | 2)           |            |
| If TFA > 13.9            | ), N = 1 + 1.76              | x [1 - exp(-  | 0.000349 x        | (TFA - 13.9  | 9)²)] + 0.001                         | 13 x (TFA - 1     | L3.9)       |                |               |            |                |              |            |
| If TFA ≤ 13.9            | ), N = 1                     |               |                   |              |                                       |                   |             |                |               |            |                |              |            |
| Annual average           | hot water us                 | age in litres | per day V         | d,average =  | = (25 x N) +                          | 36                |             |                |               | 77.1       | 4 (43          | 3)           |            |
| Annual average           | hot water us                 | age has be    | en reduced        | by 5% if th  | e dwelling                            | is designed       | to achieve  | e a water us   | e target of   | not more t | han 125 lii    | tres         |            |
| per person per o         | day (all water               | use, hot ar   | nd cold)          |              |                                       |                   |             |                |               |            |                |              |            |
|                          | Jan                          | Feb           | Mar               | Apr          | May                                   | Jun               | Jul         | Aug            | Sep           | Oct        | Nov            | Dec          |            |
| Hot water usage          | e in litres per              | day for eac   | h month V         | d,m = facto  | r from Tabl                           | le 1c x (43)      |             |                | 1             |            | 1              | •            | _          |
| (44)m                    | 84.85                        | 81.77         | 78.68             | 75.60        | 72.51                                 | 69.43             | 69.43       | 72.51          | 75.60         | 78.68      | 81.77          | 84.85        |            |
|                          |                              |               |                   |              |                                       |                   |             |                |               | ∑(44)1.    | 12 =           | 925.68       | (44)       |
| Energy content           |                              |               |                   |              |                                       |                   | 1           |                | 1             | 1          | 1              | 1            | _          |
| (45)m                    | 126.14                       | 110.32        | 113.84            | 99.25        | 95.23                                 | 82.18             | 76.15       | 87.38          | 88.43         | 103.05     | 112.49         | 122.16       | _<br>¬     |
|                          |                              |               |                   |              |                                       |                   | '           | (5.1)          |               | ∑(45)1.    | 12 =           | 1216.62      | (45)       |
| If instantaneous         |                              | -             |                   |              |                                       |                   |             | (61)           |               |            |                |              |            |
| For community            | _                            |               | ıorı IOSS Wh      | etrier or no | νε ποτ watei                          | tank is pre       | sent        |                |               |            |                |              |            |
| Distribution los         | s 0.15 x (45)r<br>18.92      | n<br>16.55    | 17.08             | 14.89        | 14.28                                 | 12.33             | 11.42       | 13.11          | 13.26         | 15.46      | 16.87          | 18.32        | (AC)       |
| (46)m                    |                              | 10.55         | 17.08             | 14.89        | 14.28                                 | 12.33             | 11.42       | 13.11          | 13.20         | 15.40      | 10.87          | 18.32        | (46)       |
| Water storage I          | <b>033.</b>                  |               |                   |              |                                       |                   |             |                |               |            |                |              |            |
|                          |                              |               |                   |              |                                       |                   |             |                |               | URN        | 65Maygro       | ve-Flat17 v  | ersion 2   |

| Second continue   Second con   | ·                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oss factor is n                                                                                         | ot known                                                                                                                             |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              |                                                |                                                         |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| ## Community Neutring and no tank in dwelling, enter \$10 liters in box \$(50)\$  Otherwise if in structed to states (fills includes instantaneous combinates) enter "0" in box \$(50)\$  ## Community Neutring asses \$60.0000 section 4.3  Volume factor from Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cylinaci Volaine (iit                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                      |                                                                                            | er                                                                                                                |                                                                                            |                                                              | 110.00                                                    | (50)                                                         |                                                |                                                         |                                                      |
| Characterise of no stored hot water (this includes instantaneous combi boilers) enter ("0" in box (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      | •                                                                                          |                                                                                                                   |                                                                                            |                                                              | 10.00                                                     | ] (30)                                                       |                                                |                                                         |                                                      |
| Hot water storage loss factor from Table 2 (swh/liter/day)   Swh/liter/day)   Swh/liter sector from Table 2   Swh/liter sect   | ,                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,                                                                                                      |                                                                                                                                      | •                                                                                          | •                                                                                                                 | ' '0' in box i                                                                             | (50)                                                         |                                                           |                                                              |                                                |                                                         |                                                      |
| Volume factor from Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      |                                                                                            | ,                                                                                                                 |                                                                                            |                                                              | 0.02                                                      | (51)                                                         |                                                |                                                         |                                                      |
| Propertion   Facility   Facilit   | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | ,                                                                                                                                    |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | ] (0 = 7                                                     |                                                |                                                         |                                                      |
| Energy lost from water storage, KWh/day   (50 ) x (51) x (52) x (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              | 1 03                                                      | (52)                                                         |                                                |                                                         |                                                      |
| The content of the    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 1                                                            |                                                |                                                         |                                                      |
| Section   Column      | •                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (h /da (EO) .                                                                                           | (51) (51                                                                                                                             | a) (Ea)                                                                                    |                                                                                                                   |                                                                                            |                                                              |                                                           | 1                                                            |                                                |                                                         |                                                      |
| Value   Sociation   Sociatio   |                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m/day (50)                                                                                              | x (21) x (2                                                                                                                          | 2) X (53)                                                                                  |                                                                                                                   |                                                                                            |                                                              |                                                           | J ` '                                                        |                                                |                                                         |                                                      |
| Solimon   Soli   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | ()                                                                                                                                   |                                                                                            |                                                                                                                   |                                                                                            |                                                              | 1./2                                                      | [ (55)                                                       |                                                |                                                         |                                                      |
| Cylinder contains dedicated stolar storage, = (56)in \times   (56)in \times   (56)in \times   (55)in \times   (53)in \times    | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      | F2 26                                                                                      | F1 64                                                                                                             | F2 26                                                                                      | F2 26                                                        | F1 64                                                     | F2 26                                                        | F1.64                                          | F2 26                                                   | 7 (5.6)                                              |
| S3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                       |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              | 51.64                                          | 53.36                                                   | ] (56)                                               |
| Primary circuit loss for each month (58) = 365 × (41) Im (modified by factor from Table H3 if there is solar water heating and a cylinder thermostat) ((59)m   30.58   27.62   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              | E1 64                                          | E2 26                                                   | 7 (57)                                               |
| Primary circuit loss for each month (58) + 365 × (41)m (modified by factor from Table Hs if It here is solar water heating and a cylinder thermostat) (59)m (59)m (30.58   27.62   30.58   29.59   30.58   29.59   30.58   30.58   29.59   30.58   30.58   29.59   30.58   30.58   30.58   29.59   30.58   30.58   30.58   29.59   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30. |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | 51.04                                                                                                                                | 33.30                                                                                      | 31.04                                                                                                             | 33.30                                                                                      |                                                              |                                                           | 1                                                            | 31.04                                          | 33.30                                                   | ] (57)                                               |
| (Amodified by factor from Table HS if the HS if the HS is solar Heating and a cylinder thereuse) (S9) 30.58   27.62   30.58   27.62   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50    | ,                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            | 3                                                            | 360.00                                                    | ] (58)                                                       |                                                |                                                         |                                                      |
| Combine   Same   | •                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                      |                                                                                            | indor thorn                                                                                                       | a a stat)                                                                                  |                                                              |                                                           |                                                              |                                                |                                                         |                                                      |
| Combi loss for each month   From Table   3a,   3b or 3c (enter 10' if not a combi boller)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            | 20.59                                                        | 20.50                                                     | 20.59                                                        | 20.50                                          | 20.50                                                   | (50)                                                 |
| Column   C   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   | 30.38                                                                                      | 30.38                                                        | 23.33                                                     | 30.36                                                        | 29.39                                          | 30.38                                                   | ] (33)                                               |
| Total heat required for water heating calculated for each month 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m  [62)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09 (62)  Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)  [63]m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · i                                                                                                     |                                                                                                                                      |                                                                                            |                                                                                                                   | 0.00                                                                                       | 0.00                                                         | 0.00                                                      | 0.00                                                         | 0.00                                           | 0.00                                                    | (61)                                                 |
| Solar   Sola   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                       |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 0.00                                                         | 0.00                                           | 0.00                                                    | ] (01)                                               |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)   (63)m   (0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 186.00                                                       | 102 72                                         | 206.09                                                  | (62)                                                 |
| (63)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 1                                                            | •                                              | 200.03                                                  | ] (02)                                               |
| (63)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                                      | - \                                                                                        | antity) (em                                                                                                       | er o ii iio                                                                                | Solai Collu                                                  | ibution to                                                | water neat                                                   | iiig <i>)</i>                                  |                                                         |                                                      |
| Output from water heater for each month, kWh/month (62)m + (63)m + (64)m 210.07   186.13   197.77   180.47   179.16   163.40   160.08   171.32   169.65   186.99   193.72   206.09   196.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                       |                                                                                                                                      |                                                                                            | 0.00                                                                                                              | 0.00                                                                                       | 0.00                                                         | 0.00                                                      | 0.00                                                         | 0.00                                           | 0.00                                                    | 7                                                    |
| Output from water heater for each month, kWh/month (62)m + (63)m  (64)m  210.07   186.13   197.77   180.47   179.16   163.40   160.08   171.32   169.65   186.99   193.72   206.09    [(64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ,                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                       |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              | ,                                                         | Σ(63)1                                                       | .12 =                                          | 0.00                                                    | (63)                                                 |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output from water hea                                                                                                                                                                                                                                                                                       | ter for each mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nth. kWh/mo                                                                                             | nth (62)m                                                                                                                            | ı + (63)m                                                                                  |                                                                                                                   |                                                                                            |                                                              |                                                           | 2()                                                          |                                                |                                                         |                                                      |
| The property of the property   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,,                                                                                                      |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              |                                                |                                                         |                                                      |
| Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating    S. Internal gains   See Table 5 and 5a    Sa    | ` '                                                                                                                                                                                                                                                                                                         | 0.07   186.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 197.77                                                                                                  | 180.47                                                                                                                               | 179.16                                                                                     | 163.40                                                                                                            | 160.08                                                                                     | 171.32                                                       | 169.65                                                    | 186.99                                                       | 193.72                                         | 206.09                                                  | 7                                                    |
| Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating    S. Internal gains (see Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 0.07   186.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 197.77                                                                                                  | 180.47                                                                                                                               | 179.16                                                                                     | 163.40                                                                                                            | 160.08                                                                                     | 171.32                                                       | 169.65                                                    |                                                              |                                                | 1                                                       | (64)                                                 |
| (65)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | if (64)m < 0 then set to                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197.77                                                                                                  | 180.47                                                                                                                               | 179.16                                                                                     | 163.40                                                                                                            | 160.08                                                                                     | 171.32                                                       | 169.65                                                    |                                                              |                                                | 1                                                       | (64)                                                 |
| S. Internal gains (see Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                                      |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              |                                                | 1                                                       | (64)                                                 |
| Solution    | Heat gains from water                                                                                                                                                                                                                                                                                       | 0<br>neating, kWh/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25×[                                                                                             | [0.85 × (45                                                                                                                          | )m + (61)m                                                                                 | ] + 0.8 × [( <sup>2</sup>                                                                                         | 16)m + (57)                                                                                | m + (59)m]                                                   |                                                           | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| Metabolic gains (Table 5), Watts         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           Metabolic gains (Table 5), Watts         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heat gains from water (65)m                                                                                                                                                                                                                                                                                 | 0<br>neating, kWh/m<br>0.09 97.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onth 0.25 × [                                                                                           | [0.85 × (45<br>97.98                                                                                                                 | 98.81                                                                                      | ] + 0.8 × [(4<br>92.30                                                                                            | 16)m + (57)<br>92.47                                                                       | m + (59)m]<br>96.20                                          | 94.38                                                     | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| Metabolic gains (Table 5), Watts (66)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat gains from water (65)m                                                                                                                                                                                                                                                                                 | 0<br>neating, kWh/m<br>0.09 97.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onth 0.25 × [                                                                                           | [0.85 × (45<br>97.98                                                                                                                 | 98.81                                                                                      | ] + 0.8 × [(4<br>92.30                                                                                            | 16)m + (57)<br>92.47                                                                       | m + (59)m]<br>96.20                                          | 94.38                                                     | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| (66)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat gains from water (65)m 10 include (57)m in                                                                                                                                                                                                                                                             | 0<br>neating, kWh/m<br>0.09 97.33<br>calculation of (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onth 0.25 × [                                                                                           | [0.85 × (45<br>97.98                                                                                                                 | 98.81                                                                                      | ] + 0.8 × [(4<br>92.30                                                                                            | 16)m + (57)<br>92.47                                                                       | m + (59)m]<br>96.20                                          | 94.38                                                     | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m 35.72 31.73 25.80 19.53 14.60 12.33 13.32 17.31 23.24 29.51 34.44 36.71 (67)  Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a) (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see                                                                                                                                                                                                                                     | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [<br>105.00  <br>5)m only if cy                                                             | (0.85 × (45<br>97.98<br>Vlinder is ir                                                                                                | 98.81<br>o the dwelli                                                                      | ] + 0.8 × [(4<br>92.30<br>ng or hot w                                                                             | 16)m + (57)<br>92.47<br>rater is fron                                                      | m + (59)m]<br>96.20<br>n communi                             | 94.38<br>ty heating                                       | Σ(64)1                                                       | .12 = 2                                        | 107.76                                                  | J                                                    |
| (67)m 35.72 31.73 25.80 19.53 14.60 12.33 13.32 17.31 23.24 29.51 34.44 36.71 (67)  Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a) (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see                                                                                                                                                                                                                                     | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.<br>Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onth 0.25 × [<br>105.00  <br>5)m only if cy                                                             | (0.85 × (45<br>97.98<br>Vlinder is ir                                                                                                | 98.81<br>o the dwelli                                                                      | ] + 0.8 × [(4<br>92.30<br>ng or hot w                                                                             | 16)m + (57)<br>92.47<br>rater is fron                                                      | m + (59)m]<br>96.20<br>n communi                             | 94.38<br>ty heating                                       | Σ(64)1                                                       | .12 = 2                                        | 107.76                                                  | J                                                    |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a) (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see                                                                                                                                                                                                                                     | neating, kWh/me<br>10.09 97.33<br>10.09 97.33<br>1 | onth 0.25 × [<br>105.00 ]<br>5)m only if cy<br>Mar                                                      | [0.85 × (45<br>97.98<br>vlinder is in<br>Apr                                                                                         | 98.81<br>n the dwelli<br>May                                                               | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun                                                                      | 16)m + (57)<br>92.47<br>rater is fron<br>Jul                                               | m + (59)m]<br>96.20<br>n communi<br>Aug                      | 94.38<br>ty heating<br>Sep                                | Σ(64)1<br>101.41<br>Oct                                      | .12 = 2<br>102.38                              | 204.86<br>107.76                                        | (65)                                                 |
| (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a)  (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see J Metabolic gains (Table (66)m 10                                                                                                                                                                                                   | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.<br>Table 5 and 5a)<br>an Feb<br>5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onth 0.25 × [  105.00    5)m only if cy  Mar                                                            | (0.85 × (45<br>97.98<br>Vlinder is ir<br><b>Apr</b>                                                                                  | 98.81<br>o the dwelli<br>May                                                               | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun                                                                      | 16)m + (57)<br>92.47<br>rater is fron<br>Jul                                               | m + (59)m]<br>96.20<br>n communi<br>Aug                      | 94.38<br>ty heating<br>Sep                                | Σ(64)1<br>101.41<br>Oct                                      | .12 = 2<br>102.38                              | 204.86<br>107.76                                        | (65)                                                 |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J  Metabolic gains (Table (66)m 10  Lighting gains (calculate                                                                                                                                                                      | neating, kWh/mo<br>2.09 97.33<br>calculation of (6.25)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [  105.00    5)m only if cy  Mar  108.48    equation L9                                     | [0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a                                                                 | 98.81<br>98.81<br>o the dwellin<br>May<br>108.48<br>Iso see Tab                            | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48                                                            | 16)m + (57)<br>92.47<br>rater is fron<br>Jul<br>108.48                                     | m + (59)m]<br>96.20<br>n communi<br>Aug                      | 94.38 ty heating Sep 108.48                               | Σ(64)1 101.41  Oct 108.48                                    | .12 = 2<br>102.38<br>Nov                       | 204.86  107.76  Dec  108.48                             | (65)                                                 |
| (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a)  (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see 1)  Metabolic gains (Table (66)m 10  Lighting gains (calculate (67)m 35  Appliances gains (calculate (67)m 35                                                                                                                       | neating, kWh/mo<br>2.09 97.33<br>calculation of (6.25)<br>Fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ad in Appendix L<br>.72 31.73<br>ated in Appendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [  105.00    5)m only if cy  Mar  108.48    equation L9                                     | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1                                           | 98.81<br>98.81<br>o the dwelling<br>May<br>108.48<br>Iso see Tab                           | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33                                           | 16)m + (57)<br>92.47<br>rater is fron<br>Jul<br>108.48                                     | m + (59)m]<br>96.20<br>n communi<br>Aug                      | 94.38 ty heating Sep 108.48                               | Σ(64)1 101.41  Oct 108.48                                    | Nov  108.48                                    | 204.86  107.76  Dec  108.48                             | (65)                                                 |
| Pumps and fans gains (Table 5a) (70)m  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.0 | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see 1)  Metabolic gains (Table (66)m 10  Lighting gains (calculate (67)m 35  Appliances gains (calculate (67)m 35                                                                                                                       | neating, kWh/mo<br>2.09 97.33<br>calculation of (6.25)<br>Fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ad in Appendix L<br>.72 31.73<br>ated in Appendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [  105.00   5)m only if cy  Mar  108.48   equation L9  25.80   x L, equation                | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1                                           | 98.81<br>98.81<br>or the dwelling<br>May<br>108.48<br>Iso see Tab<br>14.60<br>3a), also se | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>de 5<br>12.33<br>e Table 5                              | 92.47<br>92.47<br>vater is from<br>Jul<br>108.48                                           | m + (59)m] 96.20 n communit  Aug  108.48                     | 94.38<br>ty heating<br>Sep<br>108.48                      | Σ(64)1  101.41  Oct  108.48  29.51                           | Nov  108.48                                    | 204.86  107.76  Dec  108.48                             | (65)<br>(66)<br>(67)                                 |
| (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23                                                                                                                          | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>72 31.73<br>ated in Appendi<br>5.23 237.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mar  108.48  equation L9  25.80  x L, equation 231.52                                                   | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1:<br>218.43                                | 98.81 98.81 May 108.48 Iso see Tab 14.60 3a), also se 201.90                               | Jun  108.48 le 5 12.33 e Table 5 186.36                                                                           | 92.47<br>92.47<br>vater is from<br>Jul<br>108.48                                           | m + (59)m] 96.20 n communit  Aug  108.48                     | 94.38<br>ty heating<br>Sep<br>108.48                      | Σ(64)1  101.41  Oct  108.48  29.51                           | Nov  108.48  34.44  209.32                     | 204.86  107.76  Dec  108.48                             | (65)<br>(66)<br>(67)                                 |
| Losses e.g. evaporation (negative values) (Table 5) (71)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate                                                                                                 | neating, kWh/mo<br>2.09 97.33<br>calculation of (6.25)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>7.72 31.73<br>ated in Appendix L<br>6.23 237.67<br>ed in Appendix L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar  108.48  equation L9  25.80  x L, equation L1  equation L1                                          | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43                                 | 98.81 98.81 n the dwelling May 108.48 lso see Tab 14.60 3a), also see 201.90 , also see T  | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33<br>e Table 5<br>186.36<br>able 5          | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32                            | m + (59)m] 96.20 n communi  Aug  108.48  17.31               | 94.38 ty heating Sep 108.48 23.24 179.69                  | Σ(64)1  101.41  Oct  108.48  29.51  192.79                   | Nov  108.48  34.44  209.32                     | Dec 108.48 36.71 224.85                                 | (65)<br>(66)<br>(67)<br>(68)                         |
| (71)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47                                                                                          | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>7.72 31.73<br>ated in Appendi<br>5.23 237.67<br>ed in Appendix L<br>66 47.66<br>Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mar  108.48  equation L9  25.80  x L, equation L1  equation L1                                          | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66          | May  108.48  Iso see Tab  14.60  3a), also see T  47.66                                    | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33<br>e Table 5<br>186.36<br>able 5<br>47.66 | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98                  | m + (59)m] 96.20 n communi  Aug  108.48  17.31  173.54       | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66       | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66            | Nov  108.48  34.44  209.32                     | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)                         |
| Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains (                                                                 | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>7.72 31.73<br>ated in Appendi<br>5.23 237.67<br>ed in Appendix L<br>66 47.66<br>Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mar  108.48  equation L9 25.80  x L, equation 231.52 , equation L1 47.66                                | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66          | May  108.48  Iso see Tab  14.60  3a), also see T  47.66                                    | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33<br>e Table 5<br>186.36<br>able 5<br>47.66 | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98                  | m + (59)m] 96.20 n communi  Aug  108.48  17.31  173.54       | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66       | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66            | Nov  108.48  34.44  209.32                     | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)<br>(69)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains (70)m 0 Losses e.g. evaporation                                   | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ad in Appendix L<br>72 31.73<br>ated in Appendi<br>5.23 237.67<br>ad in Appendix L<br>66 47.66<br>Fable 5a)<br>00 0.00<br>(negative value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar  108.48  108.48  equation L9  25.80  x L, equation 231.52 , equation L1  47.66  0.00  s) (Table 5)  | (0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66          | May  108.48  Iso see Tab  14.60  3a), also see  201.90  , also see T  47.66                | Jun  108.48 le 5 12.33 e Table 5 186.36 able 5 47.66                                                              | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98<br>47.66         | m + (59)m] 96.20 n communi  Aug  108.48  17.31  47.66  0.00  | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66  0.00 | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66  0.00      | Nov  102.38  Nov  209.32  47.66                | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| (72)m   146.62   144.84   141.13   136.08   132.81   128.20   124.28   129.30   131.09   136.31   142.20   144.84   (72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains ( (70)m 0 Losses e.g. evaporation (71)m -73                       | neating, kWh/me 2.09   97.33 calculation of (6) fable 5 and 5a) an Feb 5), Watts 3.48   108.48 ad in Appendix L 3.23   237.67 ad in Appendix L 3.66   47.66 fable 5a) 00   0.00 (negative value) 3.32   -72.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mar  108.48  108.48  equation L9  25.80  x L, equation 231.52 , equation L1  47.66  0.00  s) (Table 5)  | (0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66          | May  108.48  Iso see Tab  14.60  3a), also see  201.90  , also see T  47.66                | Jun  108.48 le 5 12.33 e Table 5 186.36 able 5 47.66                                                              | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98<br>47.66         | m + (59)m] 96.20 n communi  Aug  108.48  17.31  47.66  0.00  | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66  0.00 | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66  0.00      | Nov  102.38  Nov  209.32  47.66                | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)<br>(69)<br>(70)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains (70)m 0 Losses e.g. evaporation (71)m -77 Water heating gains (Ta | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ad in Appendix L<br>72 31.73<br>ated in Appendix L<br>66 47.66<br>fable 5a)<br>00 0.00<br>(negative value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar  108.48  108.48  108.48  108.48  25.80  x L, equation L9  231.52  47.66  0.00  s) (Table 5)  -72.32 | (0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1:<br>218.43<br>5 or L15a)<br>47.66<br>0.00 | May  108.48  Iso see Tab  14.60  3a), also see  201.90  , also see T  47.66                | Jun  108.48 le 5 12.33 e Table 5 186.36 able 5 47.66  0.00                                                        | 16)m + (57)<br>92.47<br>rater is from<br>Jul<br>108.48<br>13.32<br>175.98<br>47.66<br>0.00 | m + (59)m] 96.20 n communic  Aug  108.48  17.31  47.66  0.00 | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66  0.00 | Cot  101.41  Oct  108.48  29.51  192.79  47.66  0.00  -72.32 | Nov  102.38  Nov  108.48  34.44  209.32  47.66 | 204.86  107.76  Dec  108.48  36.71  224.85  47.66  0.00 | (65)<br>(66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

| Total internal gains $(66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m$ |                         |                          |              |             |                                       |              |             |                            |                       |                              |             |                |
|------------------------------------------------------------------------------|-------------------------|--------------------------|--------------|-------------|---------------------------------------|--------------|-------------|----------------------------|-----------------------|------------------------------|-------------|----------------|
| (73)m                                                                        | 501.39                  | 498.05                   | 482.27       | 457.86      | 433.12                                | 410.70       | 397.40      | 403.97                     | 417.83                | 442.41                       | 469.77      | 490.22 (73     |
|                                                                              |                         |                          |              |             |                                       |              |             |                            |                       |                              |             |                |
| 6. Solar gains                                                               |                         |                          |              |             |                                       |              |             |                            |                       |                              |             |                |
| Solar gains are ca                                                           |                         |                          | -            |             |                                       |              |             |                            |                       |                              |             |                |
| Rows (74) to (82)                                                            |                         |                          | -            |             | _                                     | eded if thei | e is more t | han one wi                 | ndow type.            |                              |             |                |
| Details for month                                                            |                         |                          |              |             |                                       |              | _           |                            |                       |                              |             |                |
|                                                                              | •                       | Access facto<br>Table 6d | or           | Area m²     | So                                    | lar flux W/  | m² g        | Specific da<br>or Table 6k |                       | F Specific da<br>or Table 60 |             | Gains (W)      |
| South                                                                        |                         | 0.77                     | х            | 10.00       | x                                     | 47.32        | ] x         | 0.53                       | x                     | 1.00                         | =           | 193.13 (78     |
| Solar gains in wat                                                           | ts, calculat            | ed for each              | month ∑(74   | 1)m(82)m    | า                                     |              |             |                            |                       |                              |             |                |
| (83)m                                                                        | 193.13                  | 314.98                   | 384.62       | 428.97      | 442.99                                | 444.41       | 437.23      | 423.95                     | 408.06                | 348.08                       | 228.82      | 166.87 (83     |
| Total gains - inter                                                          | nal and sol             | ar (73)m + (8            | 33)m         |             |                                       |              |             |                            |                       |                              |             |                |
| (84)m                                                                        | 694.52                  | 813.04                   | 866.88       | 886.83      | 876.12                                | 855.12       | 834.63      | 827.92                     | 825.90                | 790.49                       | 698.59      | 657.10 (84     |
|                                                                              |                         |                          | ,            |             |                                       |              | _           |                            |                       |                              |             |                |
| 7. Mean interna                                                              | •                       | -                        |              |             |                                       |              |             |                            |                       |                              |             |                |
| Temperature duri                                                             | ing heating             | periods in t             | he living ar | ea from Ta  | ble 9, Th1(                           | °C)          |             |                            |                       |                              |             | 21.00 (85      |
|                                                                              | Jan                     | Feb                      | Mar          | Apr         | May                                   | Jun          | Jul         | Aug                        | Sep                   | Oct                          | Nov         | Dec            |
| Utilisation factor                                                           |                         |                          |              |             |                                       |              |             |                            | Г                     |                              |             | T 1.           |
| (86)m                                                                        | 0.80                    | 0.73                     | 0.66         | 0.58        | 0.47                                  | 0.34         | 0.23        | 0.23                       | 0.37                  | 0.55                         | 0.74        | 0.81 (86       |
| Mean internal ter                                                            |                         | 1                        | -            |             |                                       | 1            |             |                            | T                     | _                            | 1           |                |
| (87)m                                                                        | 20.12                   | 20.37                    | 20.59        | 20.76       | 20.90                                 | 20.97        | 20.99       | 20.99                      | 20.96                 | 20.83                        | 20.45       | 20.13 (87      |
| Temperature duri                                                             |                         | <del>-</del>             |              |             |                                       |              | Γ           |                            | Г                     | T                            | ı           | T 1.           |
| (88)m                                                                        | 20.17                   | 20.18                    | 20.18        | 20.19       | 20.20                                 | 20.20        | 20.20       | 20.20                      | 20.19                 | 20.19                        | 20.18       | 20.18 (88      |
| Utilisation factor                                                           |                         | 1                        |              |             |                                       |              |             | _                          |                       |                              | 1           |                |
| (89)m                                                                        | 0.79                    | 0.71                     | 0.63         | 0.55        | 0.43                                  | 0.30         | 0.18        | 0.18                       | 0.33                  | 0.52                         | 0.71        | 0.80 (89       |
| Mean internal ter                                                            |                         |                          | _            |             | · · · · · · · · · · · · · · · · · · · |              |             |                            |                       | T                            | T           | T 1.           |
| (90)m                                                                        | 19.03                   | 19.37                    | 19.67        | 19.90       | 20.09                                 | 20.17        | 20.20       | 20.20                      | 20.16                 | 20.00                        | 19.49       | 19.04 (90      |
| Living area fractio                                                          | on                      |                          |              |             |                                       |              |             | fLA                        | 54.00                 | ÷ (4) :                      | =           | 1.00 (9:       |
| Mean internal ter                                                            |                         |                          |              |             | 1 - fLA) x T2                         |              |             | 1                          | ı                     | 1                            |             |                |
| (92)m                                                                        | 20.12                   | 20.37                    | 20.59        | 20.76       | 20.90                                 | 20.97        | 20.99       | 20.99                      | 20.96                 | 20.83                        | 20.45       | 20.13 (92      |
| Apply adjustment                                                             |                         | 1                        |              |             |                                       | e appropri   |             | T                          | T                     | 1                            | 1           |                |
| (93)m                                                                        | 20.12                   | 20.37                    | 20.59        | 20.76       | 20.90                                 | 20.97        | 20.99       | 20.99                      | 20.96                 | 20.83                        | 20.45       | 20.13 (93      |
| 8. Space heating                                                             | requireme               | ent                      |              |             |                                       |              |             |                            |                       |                              |             |                |
| or space meaning                                                             | Jan                     | Feb                      | Mar          | Apr         | May                                   | Jun          | Jul         | Aug                        | Sep                   | Oct                          | Nov         | Dec            |
| Set Ti to the mear                                                           |                         |                          |              |             |                                       |              |             | _                          | •                     |                              |             |                |
| Utilisation factor                                                           |                         |                          | obtained d   | t Step 11 0 | i rubic 35,                           | so that thin | (33) a.     | ra recareara               | te the util           | sacion race                  | n tor gains | asing rubic su |
| (94)m                                                                        | 0.79                    | 0.72                     | 0.65         | 0.57        | 0.46                                  | 0.34         | 0.23        | 0.23                       | 0.37                  | 0.54                         | 0.72        | 0.79 (94       |
| Useful gains, 2mG                                                            | im. W = (94             | 1)m x (84)m              |              |             |                                       | !            |             | !                          |                       | ·!                           | !           | ,              |
| (95)m                                                                        | 545.72                  | 583.77                   | 560.69       | 509.38      | 406.61                                | 290.57       | 189.07      | 189.03                     | 303.85                | 430.73                       | 505.00      | 521.88 (95     |
| Monthly average                                                              |                         |                          |              |             |                                       |              |             |                            |                       |                              |             | ,              |
| (96)m                                                                        | 4.50                    | 5.00                     | 6.80         | 8.70        | 11.70                                 | 14.60        | 16.90       | 16.90                      | 14.30                 | 10.80                        | 7.00        | 4.90 (96       |
| Heat loss rate for                                                           | mean inter              | nal tempera              | ature. Lm. \ | N           | !                                     | !            |             | !                          |                       | ·!                           | ļ.          | ,              |
| (97)m                                                                        | 758.27                  | 739.69                   | 663.78       | 571.29      | 431.88                                | 297.72       | 190.47      | 190.47                     | 313.43                | 475.10                       | 641.84      | 732.74 (97     |
| Space heating req                                                            |                         |                          |              |             |                                       |              | l           | 1                          |                       |                              |             |                |
| (98)m                                                                        | 158.14                  | 104.78                   | 76.70        | 44.57       | 18.80                                 | 0.00         | 0.00        | 0.00                       | 0.00                  | 33.01                        | 98.52       | 156.87         |
| . ,                                                                          |                         | 1                        | <u> </u>     |             | 1                                     | ,            | I           | year (kWh/y                |                       | 1                            |             | 691.39 (98     |
| Space heating req                                                            | wirement i              | n k\\/h/m²/.             | rear         |             |                                       |              | . otal per  | , (   (                    | , cai j = <u>Z</u> (3 |                              | ÷ (4)       | 12.80 (99      |
| Space nearing req                                                            | <sub>1</sub> un ement 1 | KVVII/III / )            | Cui          |             |                                       |              |             |                            |                       | (36)                         | · (¬) [     | 12.00 (95      |
| 9b. Energy requi                                                             | irements -              | Community                | heating sc   | heme        |                                       |              |             |                            |                       |                              |             |                |
| Fraction of space                                                            | heating fro             | m secondar               | v/supplem    | entary syst | em (Table                             | 11)          |             |                            | 0.00                  | (301)                        |             |                |

Fraction of space heating from secondary/supplementary system (Table 11)

0.00 (301)

| Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       | ,           | 1.00 (3                                                                                                                                   | 02)                                                                                        |                                                                                             |                                                                                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Community scheme fractions obtained from plant design specifical<br>Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                                | tion or operational red                               | coras:      | 1.00 (3                                                                                                                                   | 03b)                                                                                       |                                                                                             |                                                                                                            |
| Fraction of total space heat from community boilers (302) x (303b                                                                                                                                                                                                                                                                                                                                                                                                                         | \ _                                                   |             |                                                                                                                                           | 03b)<br>04b)                                                                               |                                                                                             |                                                                                                            |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |             |                                                                                                                                           | 05)                                                                                        |                                                                                             |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |             |                                                                                                                                           | 05)<br>05a)                                                                                |                                                                                             |                                                                                                            |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                           | ity water neating                                     |             |                                                                                                                                           | 05a)<br>06)                                                                                |                                                                                             |                                                                                                            |
| Distribution loss factor (Table 12c) for community heating system  Space heating:                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |             | 0.10                                                                                                                                      | 00)                                                                                        | kWh/year                                                                                    |                                                                                                            |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             |                                                                                                                                           |                                                                                            | 691.39                                                                                      | 1                                                                                                          |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |             | 69.14 (3                                                                                                                                  | 07b)                                                                                       | 091.39                                                                                      | _                                                                                                          |
| Space fleat from community bollers (36) x (3041) x (303) x (300) =                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |             | 09.14                                                                                                                                     | 075)                                                                                       |                                                                                             |                                                                                                            |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |             |                                                                                                                                           |                                                                                            |                                                                                             | 7                                                                                                          |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             |                                                                                                                                           |                                                                                            | 2204.86                                                                                     |                                                                                                            |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |             |                                                                                                                                           |                                                                                            |                                                                                             |                                                                                                            |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             |                                                                                                                                           | 10b)                                                                                       |                                                                                             | _                                                                                                          |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       | 0.01 x [    | (307a)(307e) + (310a                                                                                                                      | a)(310e)] =                                                                                | 2.90                                                                                        | (313)                                                                                                      |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |             | _                                                                                                                                         |                                                                                            |                                                                                             |                                                                                                            |
| mechanical ventilation fans - balanced, extract or positive inpu                                                                                                                                                                                                                                                                                                                                                                                                                          | t from outside                                        |             |                                                                                                                                           | 0.00                                                                                       |                                                                                             | (330a)                                                                                                     |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |             |                                                                                                                                           | 0.00                                                                                       |                                                                                             | (330b)                                                                                                     |
| pump for solar water heating  Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |             | (330a) + (330                                                                                                                             | 0.00 b) + (330a) =                                                                         | 0.00                                                                                        | (330g)<br>(331)                                                                                            |
| Total electricity for the above, kwilly year                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |             | (330a) + (330                                                                                                                             | u) + (330g) -                                                                              | 0.00                                                                                        | ] (331)                                                                                                    |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |             |                                                                                                                                           |                                                                                            | 252.33                                                                                      | (332)                                                                                                      |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |             |                                                                                                                                           |                                                                                            |                                                                                             |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |             |                                                                                                                                           |                                                                                            |                                                                                             |                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heat or fuel<br>kWh/year                              |             | Fuel price<br>(Table 12)                                                                                                                  |                                                                                            | Fuel cost £/yea                                                                             | r                                                                                                          |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       | x           |                                                                                                                                           | x 0.01 =                                                                                   | Fuel cost £/year                                                                            | r<br>] (340b)                                                                                              |
| Space heating from community boilers  Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                | kWh/year                                              | x<br>x      | (Table 12)                                                                                                                                |                                                                                            |                                                                                             | 7                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kWh/year                                              |             | (Table 12) 3.78                                                                                                                           | x 0.01 =                                                                                   | 2.61                                                                                        | (340b)                                                                                                     |
| Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 69.14<br>220.49                                       | x           | (Table 12)  3.78  3.78                                                                                                                    | x 0.01 =<br>x 0.01 =                                                                       | 2.61                                                                                        | (340b)<br>(342b)                                                                                           |
| Water heating from community boilers Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.14<br>220.49<br>0.00                               | x<br>x      | 3.78<br>3.78<br>11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                           | 2.61<br>8.33<br>0.00                                                                        | (340b)<br>(342b)<br>(349)                                                                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                              | 69.14<br>220.49<br>0.00                               | x<br>x      | 3.78<br>3.78<br>11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 2.61<br>8.33<br>0.00<br>28.92                                                               | (340b)<br>(342b)<br>(349)<br>(350)                                                                         |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                     | 69.14<br>220.49<br>0.00                               | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 2.61<br>8.33<br>0.00<br>28.92<br>106.00                                                     | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                         | 69.14<br>220.49<br>0.00                               | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 2.61<br>8.33<br>0.00<br>28.92<br>106.00<br>145.87                                           | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                         | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61<br>8.33<br>0.00<br>28.92<br>106.00<br>145.87                                           | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)                                              |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                | 69.14<br>220.49<br>0.00                               | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61<br>8.33<br>0.00<br>28.92<br>106.00<br>145.87<br>0.47<br>0.69                           | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                      | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34                                         | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                           | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90                                      | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)                                              |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                      | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34                                         | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme                                                                                                                                                        | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90                                      | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90                                      | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                  | kWh/year  69.14  220.49  0.00  252.33                 | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90 B                                    | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | 69.14<br>220.49<br>0.00                               | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90                                      | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | 69.14<br>220.49<br>0.00<br>252.33                     | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90 B                                    | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)                                     |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | 69.14 220.49 0.00 252.33  Energy used kWh/year        | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷                                                                   | x 0.01 =   (345)(354)   (44) + 45.0] =   (67b) | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90 B  Emissions (kgCO2/year)            | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358)                            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | 69.14 220.49 0.00 252.33  Energy used kWh/year 386.17 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90 B  Emissions (kgCO2/year) 76.46      | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358)<br>(358)                   |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution | 69.14 220.49 0.00 252.33  Energy used kWh/year 386.17 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517 (363)(366) + (3 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>(345)(354)                                 | 2.61 8.33 0.00 28.92 106.00 145.87  0.47 0.69 90.34 90 B  Emissions (kgCO2/year) 76.46 1.50 | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358)<br>(368)<br>(368)<br>(372) |

| Electricity for pumps and fans within dwelling | 0.00   | x | 0.000 | =             | 0.00   | (378) |
|------------------------------------------------|--------|---|-------|---------------|--------|-------|
| Electricity for lighting                       | 252.33 | Х | 0.517 | =             | 130.46 | (379) |
| Total carbon dioxide emissions                 |        |   |       | Σ(376)(382) = | 208.42 | (383) |
| Dwelling carbon dioxide emissions rate         |        |   |       | (383) ÷ (4) = | 3.86   | (384) |
| El value                                       |        |   |       |               | 97.18  | ]     |
| El rating (see section 14)                     |        |   |       |               | 97     | (385) |
| El band                                        |        |   |       |               | А      |       |

#### Primary energy from other community sources (not CHP)

| Efficiency of boilers (%)                      |                         |   | 75.00 (3                 | 67b*)         |                |        |
|------------------------------------------------|-------------------------|---|--------------------------|---------------|----------------|--------|
|                                                | Energy used<br>kWh/year |   | Primary Energy<br>Factor |               | Primary Energy |        |
| Primary energy - boilers (Mains gas)           | 386.17                  | x | 1.02                     | =             | 393.89         | (368*) |
| Electrical energy for heat distribution        | 2.90                    | x | 2.92                     | =             | 8.46           | (372*) |
| Total primary energy from community systems    |                         |   | (363*)(366*) + (368      | *)(372*) =    | 402.35         | (373*) |
| Space and water heating                        |                         |   | (373*) + (374*           | *) + (375*) = | 402.35         | (376*) |
| Electricity for pumps and fans within dwelling | 0.00                    | x | 0.00                     | =             | 0.00           | (378*) |
| Electricity for lighting                       | 252.33                  | x | 2.92                     | =             | 736.82         | (379*) |
| Total primary energy kWh/year                  |                         |   | ∑(376                    | *)(382*) =    | 1139.17        | (383*) |
| Primary energy kWh/m2/year                     |                         |   | (3                       | 383*) ÷ (4) = | 21.10          | (384*) |



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                    | Assessor number | 1422       |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 14/12/2011 |
| Address       | 28 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimer    | nsions                                             |                    |                    |                           |              |                        |      |
|------------------------------|----------------------------------------------------|--------------------|--------------------|---------------------------|--------------|------------------------|------|
|                              |                                                    | Area (m²)          |                    | Average storey height (m) |              | Volume (m³)            |      |
| Lowest occupied              |                                                    | 54.00              | (1a) x             | 2.85                      | (2a) =       | 153.90                 | (3a) |
| Total floor area             | (1a) + (1b) + (1c) + (1d)(1n) =                    | 54.00              | (4)                |                           |              |                        |      |
| Dwelling volume              |                                                    |                    |                    | (3a) + (3b) + (3c)        | + (3d)(3n) = | 153.90                 | (5)  |
|                              |                                                    |                    |                    |                           |              |                        |      |
| 2. Ventilation rate          |                                                    |                    |                    |                           |              |                        |      |
|                              |                                                    |                    |                    |                           |              | m³ per hour            |      |
| Number of chimneys           |                                                    |                    |                    | 0                         | x 40 =       | 0                      | (6a) |
| Number of open flues         |                                                    |                    |                    | 0                         | x 20 =       | 0                      | (6b) |
| Number of intermittent far   | ns                                                 |                    |                    | 2                         | x 10 =       | 20                     | (7a) |
| Number of passive vents      |                                                    |                    |                    | 2                         | x 10 =       | 20                     | (7b) |
| Number of flueless gas fire  | es                                                 |                    |                    | 0                         | x 40 =       | 0                      | (7c) |
|                              |                                                    |                    |                    |                           |              | Air changes pe<br>hour | r    |
| Infiltration due to chimney  | ys, flues, fans, PSVs                              | (6a) + (6b) + (7a  | a) + (7b) + (7c) = | 40                        | ÷ (5) =      | 0.26                   | (8)  |
| If a pressurisation test has | been carried out or is intended, proceed to        | to (17), otherwis  | e continue from    | (9) to (16)               |              |                        |      |
| Air permeability value, q50  | ), expressed in cubic metres per hour per          | square metre of    | envelope area      |                           |              | 3.00                   | (17) |
| If based on air permeabilit  | y value, then (18) = $[(17) \div 20] + (8)$ , othe | rwise (18) = (16)  |                    |                           |              | 0.41                   | (18) |
| Air permeability value app   | lies if a pressurisation test has been done,       | , or a design or s | pecified air pern  | neability is being us     | sed          |                        |      |
| Number of sides on which     | dwelling is sheltered                              |                    |                    |                           |              | 4                      | (19) |
| al li f i                    |                                                    |                    |                    |                           | (            |                        | 7    |

| Adjusted infiltration rate |  |  |  |  |  |
|----------------------------|--|--|--|--|--|
|----------------------------|--|--|--|--|--|

| 1 - [0.075 x (19)] = | 0.70 | (20) |
|----------------------|------|------|
|                      |      | ı    |

Shelter factor

| (18) x (20) = | 0.29 | (21) |
|---------------|------|------|

Infiltration rate modified for monthly wind speed:

|                                |               | ,           |             |             |             |      |      |      |      |         |       |       |       |
|--------------------------------|---------------|-------------|-------------|-------------|-------------|------|------|------|------|---------|-------|-------|-------|
|                                | Jan           | Feb         | Mar         | Apr         | May         | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average                | wind speed    | from Table  | 7           |             |             |      |      |      |      |         |       |       |       |
| (22)m                          | 5.40          | 5.10        | 5.10        | 4.50        | 4.10        | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                                |               |             |             |             |             |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)m = (22)m ÷ 4 |               |             |             |             |             |      |      |      |      |         |       |       |       |
| (22a)m                         | 1.35          | 1.27        | 1.27        | 1.12        | 1.02        | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                                |               |             |             |             |             |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration          | on rate (allo | wing for sh | elter and v | vind speed) | = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                         | 0.39          | 0.37        | 0.37        | 0.32        | 0.29        | 0.28 | 0.27 | 0.27 | 0.30 | 0.32    | 0.34  | 0.37  |       |
|                                |               |             |             |             |             |      |      |      |      | ∑(22b)1 | .12 = | 3.88  | (22b) |

If mechanical ventilation: air change rate through system

Calculate effective air change rate for the applicable case:

3.88

N/A

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

(23a)

| If balanced      | with heat rec                 | overy: effici            | ency in % a       | allowing for | in-use fact   | tor (from Ta      | able 4h) = |                  |               |            |          | N/A          | (23c)    |
|------------------|-------------------------------|--------------------------|-------------------|--------------|---------------|-------------------|------------|------------------|---------------|------------|----------|--------------|----------|
| d) If natura     | al ventilation o              | r whole hou              | ise positive      | input vent   | ilation fron  | n loft            |            |                  |               |            |          |              |          |
| if (22b)ı        | m ≥ 1, then (24               |                          | 1                 | 1            | = 0.5 + [(2   | 2b)m2 x 0.5       | 1          |                  |               |            |          |              | _        |
| (24d)m           | 0.58                          | 0.57                     | 0.57              | 0.55         | 0.54          | 0.54              | 0.54       | 0.54             | 0.55          | 0.55       | 0.56     | 0.57         | (24d     |
| Effective air ch |                               | nter (24a) or            | (24b) or (2       | 24c) or (24d | d) in box (25 | 5)                |            |                  |               |            | 1        |              | _        |
| (25)m            | 0.58                          | 0.57                     | 0.57              | 0.55         | 0.54          | 0.54              | 0.54       | 0.54             | 0.55          | 0.55       | 0.56     | 0.57         | (25)     |
|                  | s and heat los                | ·                        |                   | - 11 4       |               |                   |            |                  |               |            |          |              |          |
| The κ-value is   | •                             | city per unit            | •                 |              |               |                   |            |                  |               |            | _        | _            |          |
|                  | Element                       |                          | Gross<br>Area, m² | •            | nings,<br>m²  | Net area<br>A, m² |            | -value,<br>//m²K | A x U,<br>W/K |            | /m².K    | Ахк,<br>kJ/K | _        |
| Window*          |                               |                          |                   |              |               | 10.00             | _ x        | 1.42 =           | 14.15         |            | N/A      | N/A          | (27)     |
| External wall    |                               |                          |                   |              |               | 9.95              | _ x        | 0.20 =           | 1.99          | ] [        | N/A      | N/A          | (29a)    |
| Total area of e  |                               |                          |                   |              |               | 19.95             | (31)       |                  |               |            |          |              |          |
| * for windows    | and roof wind                 | lows, effecti            | ive window        | U-value is   | calculated    | using form        | ula 1/[(1/ | UValue)+0.0      | 04] paragra   | ph 3.2     |          |              | _        |
| Fabric heat los  | ss, W/K = ∑(A >               | < U)                     |                   |              |               |                   |            |                  | (2            | 26)(30) +  | (32) =   | 16.14        | (33)     |
| Heat capacity    | $Cm = \sum (A \times \kappa)$ |                          |                   |              |               |                   |            | (28).            | (30) + (32)   | + (32a)(3  | 32e) =   | N/A          | (34)     |
| Thermal mass     | parameter (TI                 | MP) in kJ/m <sup>2</sup> | ²K                |              |               |                   |            |                  | Calcula       | ted separa | itely =  | 100.00       | (35)     |
| Thermal bridge   | es: ∑(L x Ψ) ca               | lculated usi             | ng Appendi        | ix K         |               |                   |            |                  |               |            |          | 2.99         | (36)     |
| if details of    | f thermal bridg               | ging are not             | known the         | n (36) = 0.1 | 15 x (31)     |                   |            |                  |               |            |          |              |          |
| Total fabric he  | eat loss                      |                          |                   |              |               |                   |            |                  |               | (33) +     | (36) =   | 19.13        | (37)     |
| Ventilation he   | at loss calcula               | ted monthly              | 0.33 x (2         | 5)m x (5)    |               |                   |            |                  |               |            |          |              | _        |
| (38)m            | 29.20                         | 28.79                    | 28.79             | 28.04        | 27.59         | 27.38             | 27.18      | 27.18            | 27.70         | 28.04      | 28.40    | 28.79        | (38)     |
| Heat transfer    |                               | 1                        | (38)m             | _            |               |                   |            |                  |               |            |          |              | _        |
| (39)m            | 48.34                         | 47.93                    | 47.93             | 47.17        | 46.72         | 46.51             | 46.32      | 46.32            | 46.83         | 47.17      | 47.54    | 47.93        | _        |
|                  |                               |                          |                   |              |               |                   |            |                  | Average =     | ∑(39)112   | 2/12 =   | 47.22        | (39)     |
| Heat loss para   |                               | <u> </u>                 | 1                 | 0.07         |               | 1 000             |            | 1 000            |               |            | 1 000    | 1 000        | 7        |
| (40)m            | 0.90                          | 0.89                     | 0.89              | 0.87         | 0.87          | 0.86              | 0.86       | 0.86             | 0.87          | 0.87       | 0.88     | 0.89         |          |
|                  |                               |                          |                   |              |               |                   |            |                  | Average =     | ≥(40)112   | 2/12 =   | 0.87         | (40)     |
| 4. Water hea     | ting energy re                | quirement                |                   |              |               |                   |            |                  |               |            |          |              |          |
|                  |                               |                          |                   |              |               |                   |            |                  |               |            | 1        | kWh/year     |          |
| Assumed occu     | ipancy, N                     |                          |                   |              |               |                   |            |                  |               | 1.8        | 1 (4:    | 2)           |          |
|                  | .9, N = 1 + 1.76              | 6 x [1 - exp(-           | 0.000349 x        | (TFA - 13.9  | 9)²)] + 0.001 | 13 x (TFA - :     | 13.9)      |                  |               |            |          | •            |          |
| If TFA ≤ 13.     | .9, N = 1                     |                          |                   |              |               | ·                 | •          |                  |               |            |          |              |          |
| Annual averag    | •                             | sage in litres           | s per day V       | d.average =  | = (25 x N) +  | 36                |            |                  |               | 77.1       | .4 (4:   | 3)           |          |
| Annual averag    |                               |                          |                   | _            |               |                   | to achiev  | re a water u     | se target of  |            |          | •            |          |
| per person per   |                               |                          |                   | ,            |               | J                 |            |                  | ,             |            |          |              |          |
|                  | Jan                           | Feb                      | Mar               | Apr          | May           | Jun               | Jul        | Aug              | Sep           | Oct        | Nov      | Dec          |          |
| Hot water usa    | ge in litres per              | day for eac              | h month V         | d,m = facto  | or from Tab   | le 1c x (43)      |            |                  |               |            |          |              |          |
| (44)m            | 84.85                         | 81.77                    | 78.68             | 75.60        | 72.51         | 69.43             | 69.43      | 72.51            | 75.60         | 78.68      | 81.77    | 84.85        |          |
|                  |                               |                          |                   |              |               |                   |            |                  |               | ∑(44)1.    | 12 =     | 925.68       | (44)     |
| Energy conten    | it of hot water               | ้ used - calcเ           | ulated mon        | thly = 4.19  | 0 x Vd,m x i  | nm x Tm/36        | 500 kWł    | n/month (se      | e Tables 1b   | , 1c 1d)   |          |              |          |
| (45)m            | 126.14                        | 110.32                   | 113.84            | 99.25        | 95.23         | 82.18             | 76.15      | 87.38            | 88.43         | 103.05     | 112.49   | 122.16       |          |
|                  |                               |                          |                   |              |               |                   |            |                  |               | ∑(45)1.    | 12 =     | 1216.62      | (45)     |
| If instantaneo   | us water heati                | ing at point             | of use (no l      | hot water s  | torage), en   | ter 0 in box      | es (46) to | (61)             |               |            |          |              |          |
| For community    | y heating inclu               | ıde distribut            | ion loss wh       | nether or no | ot hot wate   | r tank is pre     | esent      |                  |               |            |          |              |          |
| Distribution lo  | ss 0.15 x (45)                | 1                        |                   | 1            | 1             | 1                 |            |                  |               | 1          | _        |              | _        |
| (46)m            | 18.92                         | 16.55                    | 17.08             | 14.89        | 14.28         | 12.33             | 11.42      | 13.11            | 13.26         | 15.46      | 16.87    | 18.32        | (46)     |
| Water storage    | e loss:                       |                          |                   |              |               |                   |            |                  |               |            |          |              |          |
|                  |                               |                          |                   |              |               |                   |            |                  |               |            |          |              |          |
|                  |                               |                          |                   |              |               |                   |            |                  |               | URN:       | 65Maygro | ove-Flat28 v | ersion 2 |

| Cylinder volume (litres) including any solar storage within same cylinder 110.00 (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Cylinder Volume (intres) metalang any solar storage within same cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| If community heating and no tank in dwelling, enter 110 litres in box (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in box (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |  |  |
| Hot water storage loss factor from Table 2 (kWh/litre/day)  0.02  (51)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| If community heating see SAP 2009 section 4.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |  |  |  |
| Volume factor from Table 2a 1.03 (52)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| Temperature factor from Table 2b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Energy lost from water storage, kWh/day (50) x (51) x (52) x (53) 1.72 (54)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Enter (49) or (54) in (55) 1.72 (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| Water storage loss calculated for each month = (55) x (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| (56)m 53.36 48.19 53.36 51.64 53.36 51.64 53.36 51.64 53.36 (56)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| If cylinder contains dedicated solar storage, = (56)m x [(50) - (H11)] ÷ (50), else = (56)m where (H11) is from Appendix H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| (57)m 53.36 48.19 53.36 51.64 53.36 51.64 53.36 53.36 51.64 53.36 (57)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Primary circuit loss (annual) from Table 3 360.00 (58)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| Primary circuit loss for each month (58) ÷ 365 × (41)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| (59)m 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 (59)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |
| Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| Total heat required for water heating calculated for each month $0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| (62)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09 (62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |  |  |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |  |  |
| (63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| $\Sigma(63)112 = 0.00$ (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| Output from water heater for each month, kWh/month (62)m + (63)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| Output from water heater for each month, kWh/month (62)m + (63)m         (64)m       210.07       186.13       197.77       180.47       179.16       163.40       160.08       171.32       169.65       186.99       193.72       206.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| (64)m $210.07$ $186.13$ $197.77$ $180.47$ $179.16$ $163.40$ $160.08$ $171.32$ $169.65$ $186.99$ $193.72$ $206.09$ $\Sigma(64)112 = 2204.86$ (64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |
| (64)m $210.07$ 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09 $\sum (64)112 = 2204.86$ (64) if $(64)m < 0$ then set to $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09 $\sum (64)112 = 2204.86$ (64) if $(64)m < 0$ then set to $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09 $\sum (64)112 = 2204.86 $ (64) if $(64)m < 0$ then set to $0$ Heat gains from water heating, kWh/month $0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09  Σ(64)112 = 2204.86 (64)  if (64)m < 0 then set to 0  Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m]  (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65)  include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09  Σ(64)112 = 2204.86 (64)  if (64)m < 0 then set to 0  Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m]  (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65)  include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a)  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09  ∑(64)112 = 2204.86 (64)  if (64)m < 0 then set to 0  Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m]  (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65)  include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a)  Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09  ∑(64)112 = 2204.86 (64)  if (64)m < 0 then set to 0  Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m]  (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65)  include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating  5. Internal gains (see Table 5 and 5a)  Metabolic gains (Table 5), Watts  (66)m 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.4 |  |  |  |  |  |  |  |  |  |
| (64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |  |  |
| (64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| (64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| (64)m   210.07   186.13   197.77   180.47   179.16   163.40   160.08   171.32   169.65   186.99   193.72   206.09   164)m <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |  |  |
| (64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| [64]m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| (64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |
| [64]m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |
| Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |  |  |  |

| Total internal gains (66)m + (67)m + (68)m + (69)m + (70)m + (71)m + (72)m |              |                          |               |              |               |              |             |                            |              |                             |              |             |      |
|----------------------------------------------------------------------------|--------------|--------------------------|---------------|--------------|---------------|--------------|-------------|----------------------------|--------------|-----------------------------|--------------|-------------|------|
| (73)m                                                                      | 501.39       | 498.05                   | 482.27        | 457.86       | 433.12        | 410.70       | 397.40      | 403.97                     | 417.83       | 442.41                      | 469.77       | 490.22      | (73) |
|                                                                            |              |                          |               |              |               |              |             |                            |              |                             |              |             |      |
| 6. Solar gains                                                             |              |                          |               |              |               |              |             |                            |              |                             |              |             |      |
| Solar gains are ca                                                         |              |                          | -             |              |               |              |             |                            |              |                             |              |             |      |
| Rows (74) to (82)                                                          |              |                          | -             |              | _             | eded if thei | e is more t | than one wi                | ndow type    |                             |              |             |      |
| Details for month                                                          | of January   | and annual               | totals are    | shown belo   | ow:           |              |             |                            |              |                             |              |             |      |
|                                                                            | ,            | Access facto<br>Table 6d | or            | Area m²      | So            | lar flux W/  | m² g        | Specific da<br>or Table 6b |              | F Specific da<br>or Table 6 |              | Gains (W)   |      |
| South                                                                      |              | 0.77                     | x             | 10.00        | x             | 47.32        | x           | 0.53                       | x            | 1.00                        | =            | 193.13      | (78) |
| Solar gains in wat                                                         | ts, calculat | ed for each              | month ∑(74    | 1)m(82)m     | -<br>1        |              |             |                            |              |                             | -            |             |      |
| (83)m                                                                      | 193.13       | 314.98                   | 384.62        | 428.97       | 442.99        | 444.41       | 437.23      | 423.95                     | 408.06       | 348.08                      | 228.82       | 166.87      | (83) |
| Total gains - inter                                                        | nal and sol  | ar (73)m + (8            | 83)m          |              |               | •            |             |                            |              | •                           |              | •           | '    |
| (84)m                                                                      | 694.52       | 813.04                   | 866.88        | 886.83       | 876.12        | 855.12       | 834.63      | 827.92                     | 825.90       | 790.49                      | 698.59       | 657.10      | (84) |
|                                                                            |              | 1                        |               |              | '             | •            |             |                            |              |                             | 1            | 1           |      |
| 7. Mean interna                                                            | l temperat   | ure (heating             | g season)     |              |               |              |             |                            |              |                             |              |             |      |
| Temperature duri                                                           | ing heating  | periods in t             | he living ar  | ea from Ta   | ble 9, Th1(˚  | °C)          |             |                            |              |                             |              | 21.00       | (85) |
|                                                                            | Jan          | Feb                      | Mar           | Apr          | May           | Jun          | Jul         | Aug                        | Sep          | Oct                         | Nov          | Dec         |      |
| Utilisation factor                                                         | for gains fo | r living area            | , η1,m (see   | Table 9a)    |               |              |             |                            |              |                             |              |             |      |
| (86)m                                                                      | 0.80         | 0.73                     | 0.66          | 0.58         | 0.47          | 0.34         | 0.23        | 0.23                       | 0.37         | 0.55                        | 0.74         | 0.81        | (86) |
| Mean internal ter                                                          | np of living | area T1 (ste             | eps 3 to 7 ir | n Table 9c)  |               |              |             |                            |              |                             |              |             |      |
| (87)m                                                                      | 20.13        | 20.38                    | 20.60         | 20.76        | 20.91         | 20.97        | 20.99       | 20.99                      | 20.97        | 20.83                       | 20.45        | 20.13       | (87) |
| Temperature duri                                                           | ing heating  | periods in t             | he living ar  | ea from Ta   | ble 9, Th2(   | °C)          |             |                            |              |                             |              |             |      |
| (88)m                                                                      | 20.17        | 20.18                    | 20.18         | 20.19        | 20.20         | 20.20        | 20.20       | 20.20                      | 20.20        | 20.19                       | 20.19        | 20.18       | (88) |
| Utilisation factor                                                         | for gains fo | r rest of dw             | elling η2,m   | (see Table   | 9a)           |              |             |                            |              |                             |              |             |      |
| (89)m                                                                      | 0.79         | 0.71                     | 0.63          | 0.55         | 0.43          | 0.30         | 0.18        | 0.18                       | 0.33         | 0.52                        | 0.71         | 0.79        | (89) |
| Mean internal ter                                                          | nperature i  | in the rest o            | f dwelling 1  | T2 (follow s | teps 3 to 7   | in Table 9c  | )           |                            |              |                             |              |             |      |
| (90)m                                                                      | 19.05        | 19.39                    | 19.68         | 19.91        | 20.10         | 20.18        | 20.20       | 20.20                      | 20.16        | 20.00                       | 19.50        | 19.06       | (90) |
| Living area fractio                                                        | n            |                          |               |              |               |              |             | fLA                        | 54.00        | ÷ (4)                       | =            | 1.00        | (91) |
| Mean internal ter                                                          | nperature    | for the whol             | e dwelling    | fLA x T1 +(  | 1 - fLA) x T2 | 2            |             |                            |              |                             |              |             |      |
| (92)m                                                                      | 20.13        | 20.38                    | 20.60         | 20.76        | 20.91         | 20.97        | 20.99       | 20.99                      | 20.97        | 20.83                       | 20.45        | 20.13       | (92) |
| Apply adjustment                                                           | to the mea   | an internal t            | emperatur     | e from Tab   | le 4e, wher   | e appropri   | ate         |                            |              |                             |              |             |      |
| (93)m                                                                      | 20.13        | 20.38                    | 20.60         | 20.76        | 20.91         | 20.97        | 20.99       | 20.99                      | 20.97        | 20.83                       | 20.45        | 20.13       | (93) |
|                                                                            |              |                          |               |              |               |              |             |                            |              |                             |              |             |      |
| 8. Space heating                                                           | requireme    | ent                      |               |              |               |              |             |                            |              |                             |              |             |      |
|                                                                            | Jan          | Feb                      | Mar           | Apr          | May           | Jun          | Jul         | Aug                        | Sep          | Oct                         | Nov          | Dec         |      |
| Set Ti to the mear                                                         |              |                          | obtained a    | t step 11 o  | f Table 9b,   | so that tim  | = (93)m a   | nd recalcula               | te the utili | sation facto                | or for gains | using Table | 9a)  |
| Utilisation factor                                                         |              | 1                        |               |              |               |              | 1           | 1                          | 1            | 1                           | 1            | 1           | 1    |
| (94)m                                                                      | 0.79         | 0.72                     | 0.65          | 0.57         | 0.46          | 0.34         | 0.23        | 0.23                       | 0.37         | 0.54                        | 0.72         | 0.79        | (94) |
| Useful gains, 2mG                                                          |              |                          |               |              |               | 1 -          | Г           | 1                          | Ι.           | 1                           | 1            | 1           | 1 .  |
| (95)m                                                                      | 545.21       | 582.97                   | 559.67        | 508.20       | 405.38        | 289.51       | 188.30      | 188.26                     | 302.78       | 429.65                      | 504.32       | 521.42      | (95) |
| Monthly average                                                            |              |                          |               |              | 1             | 1            | Г           | 1                          | Г            | 1                           | 1            | 1           | 1.   |
| (96)m                                                                      | 4.50         | 5.00                     | 6.80          | 8.70         | 11.70         | 14.60        | 16.90       | 16.90                      | 14.30        | 10.80                       | 7.00         | 4.90        | (96) |
| Heat loss rate for                                                         |              |                          |               |              | 1             | 1            |             |                            |              | 1                           | 1            | 1           | 1    |
| (97)m                                                                      | 755.57       | 736.98                   | 661.30        | 569.07       | 430.13        | 296.48       | 189.66      | 189.66                     | 312.14       | 473.23                      | 639.47       | 730.11      | (97) |
| Space heating req                                                          |              | 1                        | nth, kWh/m    | 1            | )24 x [(97)m  | n - (95)m] x |             | 1                          | ı            | 1                           |              | 1           | 1    |
| (98)m                                                                      | 156.51       | 103.49                   | 75.61         | 43.83        | 18.42         | 0.00         | 0.00        | 0.00                       | 0.00         | 32.43                       | 97.31        | 155.26      |      |
|                                                                            |              |                          |               |              |               |              | Total per   | year (kWh/y                | /ear) = ∑(9  | 8)15, 10                    | .12 =        | 682.85      | (98) |
| Space heating req                                                          | juirement i  | n kWh/m²/y               | ear           |              |               |              |             |                            |              | (98)                        | ÷ (4)        | 12.65       | (99) |
| al E                                                                       |              | C                        |               |              |               |              |             |                            |              |                             |              |             |      |
| 9b. Energy requi                                                           |              |                          | _             |              |               |              |             |                            |              | 7                           |              |             |      |
| Fraction of space                                                          | heating fro  | m cacandar               | v/cunnlam     | antary cyct  | om (Tahla     | 11\          |             |                            | 0.00         | (301)                       |              |             |      |

Fraction of space heating from secondary/supplementary system (Table 11)

0.00 (301)

| Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 302)                                                                                                             |                                                                                                   |                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Community scheme fractions obtained from plant design specifica                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ition or operational red                              | cords:      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                   |                                                                                                                         |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 303b)                                                                                                            |                                                                                                   |                                                                                                                         |
| Fraction of total space heat from community boilers (302) x (303b                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | o) =                                                  |             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 304b)                                                                                                            |                                                                                                   |                                                                                                                         |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity space heating                                     |             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 305)                                                                                                             |                                                                                                   |                                                                                                                         |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ity water heating                                     |             | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 305a)                                                                                                            |                                                                                                   |                                                                                                                         |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |             | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 306)                                                                                                             |                                                                                                   |                                                                                                                         |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | kWh/year                                                                                          |                                                                                                                         |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | 682.85                                                                                            | ]                                                                                                                       |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |             | 68.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 307b)                                                                                                            |                                                                                                   |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                   |                                                                                                                         |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                   |                                                                                                                         |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | 2204.86                                                                                           | ]                                                                                                                       |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                   |                                                                                                                         |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |             | 220.49 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 310b)                                                                                                            |                                                                                                   |                                                                                                                         |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       | 0.01 x [    | (307a)(307e) + (310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oa)(310e)] =                                                                                                     | 2.89                                                                                              | (313)                                                                                                                   |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                   |                                                                                                                         |
| mechanical ventilation fans - balanced, extract or positive inpu                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | it from outside                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                             |                                                                                                   | (330a)                                                                                                                  |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00                                                                                                             | 1                                                                                                 | (330b)                                                                                                                  |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |             | (220-) . (220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                             | 0.00                                                                                              | (330g)                                                                                                                  |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |             | (330a) + (330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ob) + (330g) =                                                                                                   | 0.00                                                                                              | (331)                                                                                                                   |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  | 252.33                                                                                            | (332)                                                                                                                   |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |                                                                                                   |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heat or fuel                                          |             | Fuel price                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | Fuel cost £/year                                                                                  |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/year                                              |             | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | ruci cost 1, yeur                                                                                 |                                                                                                                         |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | x           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x 0.01 =                                                                                                         | 2.58                                                                                              | (340b)                                                                                                                  |
| Space heating from community boilers Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                             | kWh/year                                              | x<br>x      | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | -                                                                                                 | 1                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/year                                              |             | (Table 12)  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x 0.01 =                                                                                                         | 2.58                                                                                              | (340b)                                                                                                                  |
| Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 68.28<br>220.49                                       | x           | (Table 12)  3.78  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 0.01 =<br>x 0.01 =                                                                                             | 2.58                                                                                              | (340b)<br>(342b)                                                                                                        |
| Water heating from community boilers Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                                 | 2.58<br>8.33<br>0.00                                                                              | (340b)<br>(342b)<br>(349)                                                                                               |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                     | 2.58<br>8.33<br>0.00<br>28.92                                                                     | (340b)<br>(342b)<br>(349)<br>(350)                                                                                      |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                 | 68.28<br>220.49                                       | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                     | 2.58<br>8.33<br>0.00<br>28.92<br>106.00                                                           | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)                                                                   |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                                                                     | 68.28<br>220.49                                       | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                                     | 2.58<br>8.33<br>0.00<br>28.92<br>106.00<br>145.83                                                 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                                     | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58<br>8.33<br>0.00<br>28.92<br>106.00<br>145.83                                                 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                                                            | 68.28<br>220.49                                       | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58<br>8.33<br>0.00<br>28.92<br>106.00<br>145.83<br>0.47<br>0.69                                 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                                                                  | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58<br>8.33<br>0.00<br>28.92<br>106.00<br>145.83<br>0.47<br>0.69<br>90.34                        | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                                                                       | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90                                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                                                                  | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58<br>8.33<br>0.00<br>28.92<br>106.00<br>145.83<br>0.47<br>0.69<br>90.34                        | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                                                                       | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90                                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                                                                   | 68.28<br>220.49                                       | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90                                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                              | 68.28<br>220.49<br>0.00<br>252.33                     | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B                                          | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                                                                   | 68.28<br>220.49<br>0.00<br>252.33                     | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B                                          | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                                                                         | 68.28 220.49 0.00 252.33  Energy used kWh/year        | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B  Emissions (kgCO2/year)                  | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                                                                         | 68.28 220.49 0.00 252.33  Energy used kWh/year 385.03 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                                                     | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B  Emissions (kgCO2/year) 76.24            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution                                             | 68.28 220.49 0.00 252.33  Energy used kWh/year        | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  ((355) x (356)] ÷  (math display="block" of the color of the colo | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>- (345)(354)<br>- [(4) + 45.0] =<br>- (345)(354)                 | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B  Emissions (kgCO2/year) 76.24 1.49       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)<br>] (368)<br>] (368) |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution Total carbon dioxide from community systems | 68.28 220.49 0.00 252.33  Energy used kWh/year 385.03 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517  (363)(366) + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>- (345)(354)<br>[(4) + 45.0] =<br>367b)<br>=<br>=<br>368)(372) = | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B  Emissions (kgCO2/year) 76.24 1.49 77.73 | [ (340b) [ (342b) ] (349) [ (350) [ (351) ] (355) [ (356) ] (357) [ (358) ] (368) [ (372) ] (373)                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution                                             | 68.28 220.49 0.00 252.33  Energy used kWh/year 385.03 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) +  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517  (363)(366) + (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>- (345)(354)<br>- [(4) + 45.0] =<br>- (345)(354)                 | 2.58 8.33 0.00 28.92 106.00 145.83  0.47 0.69 90.34 90 B  Emissions (kgCO2/year) 76.24 1.49       | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)<br>] (368)<br>] (368) |

| Electricity for pumps and fans within dwelling | 0.00   | x | 0.000 | =             | 0.00   | (378) |
|------------------------------------------------|--------|---|-------|---------------|--------|-------|
| Electricity for lighting                       | 252.33 | Х | 0.517 | =             | 130.46 | (379) |
| Total carbon dioxide emissions                 |        |   |       | ∑(376)(382) = | 208.19 | (383) |
| Dwelling carbon dioxide emissions rate         |        |   |       | (383) ÷ (4) = | 3.86   | (384) |
| El value                                       |        |   |       |               | 97.18  | ]     |
| El rating (see section 14)                     |        |   |       |               | 97     | (385) |
| EI band                                        |        |   |       |               | А      | ]     |

## Primary energy from other community sources (not CHP)

| Efficiency of boilers (%)                      |                         |   | 75.00                    | (367b*)        |                |        |
|------------------------------------------------|-------------------------|---|--------------------------|----------------|----------------|--------|
|                                                | Energy used<br>kWh/year |   | Primary Energy<br>Factor |                | Primary Energy | •      |
| Primary energy - boilers (Mains gas)           | 385.03                  | x | 1.02                     | =              | 392.73         | (368*) |
| Electrical energy for heat distribution        | 2.89                    | x | 2.92                     | =              | 8.43           | (372*) |
| Total primary energy from community systems    |                         |   | (363*)(366*) + (36       | 58*)(372*) =   | 401.16         | (373*) |
| Space and water heating                        |                         |   | (373*) + (37             | 4*) + (375*) = | 401.16         | (376*) |
| Electricity for pumps and fans within dwelling | 0.00                    | х | 0.00                     | =              | 0.00           | (378*) |
| Electricity for lighting                       | 252.33                  | x | 2.92                     | =              | 736.82         | (379*) |
| Total primary energy kWh/year                  |                         |   | ∑(37                     | 76*)(382*) =   | 1137.98        | (383*) |
| Primary energy kWh/m2/year                     |                         |   |                          | (383*) ÷ (4) = | 21.07          | (384*) |



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                    | Assessor number | 1422       |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 14/12/2011 |
| Address       | 47 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimensions        |                                           |                  |                     |                           |                    |                        |      |
|---------------------------------------|-------------------------------------------|------------------|---------------------|---------------------------|--------------------|------------------------|------|
|                                       |                                           | Area (m²)        |                     | Average storey height (m) | <b>,</b>           | Volume (m³)            |      |
| Lowest occupied                       |                                           | 88.00            | (1a) x              | 2.85                      | (2a) =             | 250.80                 | (3a) |
| Total floor area                      | (1a) + (1b) + (1c) + (1d)(1n) =           | 88.00            | (4)                 |                           |                    |                        |      |
| Dwelling volume                       |                                           |                  |                     | (3a) + (3b) + (3          | 3c) + (3d)(3n) =   | 250.80                 | (5)  |
|                                       |                                           |                  |                     |                           |                    |                        |      |
| 2. Ventilation rate                   |                                           |                  |                     |                           |                    |                        |      |
|                                       |                                           |                  |                     |                           |                    | m³ per hour            |      |
| Number of chimneys                    |                                           |                  |                     | 0                         | x 40 =             | 0                      | (6a) |
| Number of open flues                  |                                           |                  |                     | 0                         | x 20 =             | 0                      | (6b) |
| Number of intermittent fans           |                                           |                  |                     | 3                         | x 10 =             | 30                     | (7a) |
| Number of passive vents               |                                           |                  |                     | 4                         | x 10 =             | 40                     | (7b) |
| Number of flueless gas fires          |                                           |                  |                     | 0                         | x 40 =             | 0                      | (7c) |
|                                       |                                           |                  |                     |                           |                    | Air changes pe<br>hour | r    |
| Infiltration due to chimneys, flues,  | fans, PSVs                                | (6a) + (6b) + (  | 7a) + (7b) + (7c) = | 70                        | ÷ (5) =            | 0.28                   | (8)  |
| If a pressurisation test has been ca  | rried out or is intended, proceed t       | to (17), otherw  | ise continue from   | (9) to (16)               |                    |                        |      |
| Air permeability value, q50, expres   | ssed in cubic metres per hour per         | square metre     | of envelope area    |                           |                    | 3.00                   | (17) |
| If based on air permeability value,   | then (18) = $[(17) \div 20] + (8)$ , othe | rwise (18) = (16 | 5)                  |                           |                    | 0.43                   | (18) |
| Air permeability value applies if a p | oressurisation test has been done,        | , or a design or | specified air perr  | neability is being        | used               |                        |      |
| Number of sides on which dwelling     | g is sheltered                            |                  |                     |                           |                    | 4                      | (19) |
| Shelter factor                        |                                           |                  |                     | 1                         | - [0.075 x (19)] = | 0.70                   | (20) |

Adjusted infiltration rate

| 1 - [0.075 x (19)] = | 0.70 | (20) |
|----------------------|------|------|
| (18) x (20) =        | 0.30 | (21) |

| $1 - [0.075 \times (19)] = [$ | 0.70 | (20) |
|-------------------------------|------|------|
| (18) x (20) =                 | 0.30 | (21) |

Infiltration rate modified for monthly wind speed:

|                   | Jan         | Feb        | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct     | Nov  | Dec   |       |
|-------------------|-------------|------------|------|------|------|------|------|------|------|---------|------|-------|-------|
| Monthly average v | vind speed  | from Table | · 7  |      |      |      |      |      |      |         |      |       |       |
| (22)m             | 5.40        | 5.10       | 5.10 | 4.50 | 4.10 | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80 | 5.10  |       |
|                   |             |            |      |      |      |      |      |      |      | ∑(22)1  | 12 = | 54.10 | (22)  |
| Wind Factor (22a) | m = (22)m - | ÷ 4        |      |      |      |      |      |      |      |         |      |       |       |
| (22a)m            | 1.35        | 1.27       | 1.27 | 1.12 | 1.02 | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20 | 1.27  |       |
|                   |             |            |      |      |      |      |      |      |      | ∑(22a)1 | 12 = | 13.52 | (22a) |

Adjusted infiltration rate (allowing for shelter and wind speed) =  $(21) \times (22a)m$ 

| .,     |      | 0 -  |      |      | , , , | - /  |      |      |      |         |      |      |          |
|--------|------|------|------|------|-------|------|------|------|------|---------|------|------|----------|
| (22b)m | 0.41 | 0.38 | 0.38 | 0.34 | 0.31  | 0.29 | 0.28 | 0.28 | 0.32 | 0.34    | 0.36 | 0.38 |          |
|        |      | •    |      |      |       |      |      |      |      | ∇/22b\1 | 12 - | 4.06 | -<br>1 , |

(22b) 4.06

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) N/A (23a) N/A (23b)

| If balanced w      | vith heat reco        | overy: effici | ency in % al      | lowing for  | in-use fact   | or (from Ta       | nble 4h) =  |                |               |            |                | N/A           | (23c)     |
|--------------------|-----------------------|---------------|-------------------|-------------|---------------|-------------------|-------------|----------------|---------------|------------|----------------|---------------|-----------|
| d) If natural v    | entilation or         | r whole hou   | ise positive      | input vent  | ilation fron  | n loft            |             |                |               |            |                |               |           |
| if (22b)m          | ≥ 1, then (24         | d)m = (22b    | )m; otherwi       | se (24d)m   | = 0.5 + [(22  | 2b)m2 x 0.5       | 5]          |                |               |            |                |               |           |
| (24d)m             | 0.58                  | 0.57          | 0.57              | 0.56        | 0.55          | 0.54              | 0.54        | 0.54           | 0.55          | 0.56       | 0.56           | 0.57          | (24d      |
| Effective air chai | nge rate - en         | ter (24a) or  | (24b) or (2       | 4c) or (24d | l) in box (25 | 5)                |             |                |               |            |                |               |           |
| (25)m              | 0.58                  | 0.57          | 0.57              | 0.56        | 0.55          | 0.54              | 0.54        | 0.54           | 0.55          | 0.56       | 0.56           | 0.57          | (25)      |
| 3. Heat losses a   | and heat loss         | s paramete    | r                 |             |               |                   |             |                |               |            |                |               |           |
| The κ-value is th  | e heat capac          | ity per unit  | area, see T       | able 1e.    |               |                   |             |                |               |            |                |               |           |
| I                  | Element               |               | Gross<br>Area, m² | -           | nings,<br>n²  | Net area<br>A, m² |             | value,<br>/m²K | A x U,<br>W/K |            | alue,<br>'m².K | Αxκ,<br>kJ/K  |           |
| Window*            |                       |               |                   |             |               | 18.00             | x 1         | .42 =          | 25.47         | 1          | N/A            | N/A           | (27)      |
| External wall      |                       |               |                   |             |               | 73.05             | x 0         | .20 =          | 14.61         | 1          | N/A            | N/A           | (29a)     |
| Total area of ext  | ernal elemei          | nts ∑A, m²    |                   |             |               | 91.05             | (31)        |                |               |            |                |               |           |
| * for windows ar   | nd roof wind          | ows, effecti  | ive window        | U-value is  | calculated    | using form        | ula 1/[(1/U | Value)+0.0     | 4] paragra    | ph 3.2     |                |               |           |
| Fabric heat loss,  | W/K = ∑(A ×           | U)            |                   |             |               |                   |             |                | (2            | 26)(30) +  | (32) =         | 40.08         | (33)      |
| Heat capacity Cn   | n = ∑(A x κ)          |               |                   |             |               |                   |             | (28)           | (30) + (32)   | + (32a)(3  | 32e) =         | N/A           | (34)      |
| Thermal mass pa    | arameter (TN          | /IP) in kJ/m  | ²K                |             |               |                   |             |                | Calcula       | ted separa | tely =         | 100.00        | (35)      |
| Thermal bridges    | : ∑(L x Ψ) cal        | culated usi   | ng Appendix       | κK          |               |                   |             |                |               |            |                | 13.66         | (36)      |
| if details of th   | hermal bridg          | ing are not   | known then        | (36) = 0.1  | .5 x (31)     |                   |             |                |               |            |                |               |           |
| Total fabric heat  | loss                  |               |                   |             |               |                   |             |                |               | (33) +     | (36) =         | 53.74         | (37)      |
| Ventilation heat   | loss calculat         | ed monthly    | 0.33 x (25        | )m x (5)    |               |                   | _           |                |               | _          | _              |               | _         |
| (38)m              | 48.19                 | 47.45         | 47.45             | 46.11       | 45.30         | 44.93             | 44.58       | 44.58          | 45.50         | 46.11      | 46.76          | 47.45         | (38)      |
| Heat transfer co   |                       |               |                   |             |               |                   |             |                |               |            |                |               | _         |
| (39)m              | 101.93                | 101.19        | 101.19            | 99.85       | 99.04         | 98.67             | 98.32       | 98.32          | 99.24         | 99.85      | 100.50         |               | _         |
|                    |                       |               |                   |             |               |                   |             |                | Average =     | ∑(39)112   | /12 =          | 99.94         | (39)      |
| Heat loss param    |                       |               |                   | 1.12        | 1.42          | 1.12              | 1 112       | 1.12           | 1 4 4 2       | 1.12       | 1 444          | 1 4 4 5       | 7         |
| (40)m              | 1.16                  | 1.15          | 1.15              | 1.13        | 1.13          | 1.12              | 1.12        | 1.12           | 1.13          | 1.13       | 1.14           | 1.15          | _<br>□    |
|                    |                       |               |                   |             |               |                   |             |                | Average =     | ∑(40)112   | ./12 =         | 1.14          | (40)      |
| 4. Water heating   | ng energy re          | quirement     |                   |             |               |                   |             |                |               |            |                |               |           |
|                    |                       |               |                   |             |               |                   |             |                |               |            | ı              | kWh/year      |           |
| Assumed occupa     | ancy, N               |               |                   |             |               |                   |             |                |               | 2.60       | ) (4:          | 2)            |           |
| If TFA > 13.9,     | N = 1 + 1.76          | x [1 - exp(-  | 0.000349 x        | (TFA - 13.9 | 9)²)] + 0.001 | 13 x (TFA - :     | 13.9)       |                |               |            |                |               |           |
| If TFA ≤ 13.9,     | N = 1                 |               |                   |             |               |                   |             |                |               |            |                |               |           |
| Annual average     | hot water us          | age in litres | s per day Vd      | ,average =  | = (25 x N) +  | 36                |             |                |               | 95.8       | 9 (4:          | 3)            |           |
| Annual average     | hot water us          | age has be    | en reduced        | by 5% if th | e dwelling    | is designed       | to achieve  | a water us     | e target of   | not more t | <br>han 125 li | tres          |           |
| per person per d   | ay (all water         | use, hot ar   | nd cold)          |             |               |                   |             |                |               |            |                |               |           |
|                    | Jan                   | Feb           | Mar               | Apr         | May           | Jun               | Jul         | Aug            | Sep           | Oct        | Nov            | Dec           |           |
| Hot water usage    | in litres per         | day for eac   | h month Vo        | l,m = facto | r from Tab    | le 1c x (43)      |             |                |               |            | _              |               | _         |
| (44)m              | 105.48                | 101.64        | 97.80             | 93.97       | 90.13         | 86.30             | 86.30       | 90.13          | 93.97         | 97.80      | 101.64         | 105.48        |           |
|                    |                       |               |                   |             |               |                   |             |                |               | ∑(44)1.    | 12 =           | 1150.64       | (44)      |
| Energy content of  |                       |               |                   | <del></del> |               |                   |             |                |               |            | 1              |               | _         |
| (45)m              | 156.79                | 137.13        | 141.51            | 123.37      | 118.38        | 102.15            | 94.66       | 108.62         | 109.92        | 128.10     | 139.83         |               | _         |
|                    |                       |               |                   |             |               |                   |             |                |               | ∑(45)1.    | 12 =           | 1512.28       | (45)      |
| If instantaneous   |                       | -             |                   |             |               |                   |             | (61)           |               |            |                |               |           |
| For community h    | _                     |               | ion ioss wne      | etner or no | t not watei   | r tank is pre     | esent       |                |               |            |                |               |           |
| Distribution loss  | 0.15 x (45)r<br>23.52 | n<br>20.57    | 21.23             | 18.51       | 17.76         | 15.32             | 14.20       | 16.29          | 16.49         | 19.21      | 20.97          | 22.78         | (46)      |
| (46)m              |                       |               | 21.23             | 10.31       | 17.70         | 15.52             | 14.20       | 10.29          | 10.49         | 13.21      | 20.97          | 22./8         | (40)      |
| Water storage lo   | ,,,,                  |               |                   |             |               |                   |             |                |               |            |                |               |           |
|                    |                       |               |                   |             |               |                   |             |                |               | LIDN.      | 651/101/25     | we-Ela+47 · · | arcian 3  |
|                    |                       |               |                   |             |               |                   |             |                |               | UKIN:      | opiviaygro     | ove-Flat47 v  | ersiuli Z |

| b) If manufacturer's decla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | red cylinder lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ss factor is i                                                                                                                         | not known:                                                                                                              | :                                                                                                                     |                                                           |                                                                                    |                                                           |                                                      |                                                             |                                                    |                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Cylinder volume (litre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                         |                                                                                                                       | er                                                        |                                                                                    |                                                           | 110.00                                               | (50)                                                        |                                                    |                                                                                                   |
| If community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | _                                                                                                                       |                                                                                                                       |                                                           |                                                                                    |                                                           |                                                      | ] (30)                                                      |                                                    |                                                                                                   |
| Otherwise if no stored                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,                                                                                                                                     |                                                                                                                         | •                                                                                                                     | •                                                         | r '0' in box                                                                       | (50)                                                      |                                                      |                                                             |                                                    |                                                                                                   |
| Hot water storage los                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       | ,                                                         | ·                                                                                  | ,                                                         | 0.02                                                 | (51)                                                        |                                                    |                                                                                                   |
| If community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | , 0, 44,,                                                                                                               |                                                                                                                       |                                                           |                                                                                    |                                                           | 0.02                                                 | ] (0-)                                                      |                                                    |                                                                                                   |
| Volume factor from Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           |                                                                                    |                                                           | 1.03                                                 | (52)                                                        |                                                    |                                                                                                   |
| Temperature factor fr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           |                                                                                    |                                                           | 1.00                                                 | (52)                                                        |                                                    |                                                                                                   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h /da (FO)                                                                                                                             | (51) (5                                                                                                                 | 2) (52)                                                                                                               |                                                           |                                                                                    |                                                           |                                                      | 1                                                           |                                                    |                                                                                                   |
| Energy lost from wate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | r storage, kw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n/day (50)                                                                                                                             | x (51) x (5.                                                                                                            | 2) X (53)                                                                                                             |                                                           |                                                                                    |                                                           | 1.72                                                 | (54)                                                        |                                                    |                                                                                                   |
| Enter (49) or (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           |                                                                                    |                                                           | 1.72                                                 | <b>(55)</b>                                                 |                                                    |                                                                                                   |
| Water storage loss calcul                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         | F2 2C                                                                                                                 | F1.C4                                                     | F2 2C                                                                              | F2.26                                                     | F1.C4                                                | F2 2C                                                       | F1.C4                                              | F2.2C (FC)                                                                                        |
| (56)m 53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.36                                                                                                                                  | 51.64                                                                                                                   | 53.36                                                                                                                 | 51.64                                                     | 53.36                                                                              | 53.36                                                     | 51.64                                                | 53.36                                                       | 51.64                                              | 53.36 (56)                                                                                        |
| If cylinder contains dedicated (57)m 53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | sge, = (56)m<br>53.36                                                                                                                  | 1 x [(50) - (F<br>51.64                                                                                                 | 53.36                                                                                                                 | 51.64                                                     | 53.36                                                                              | 53.36                                                     | n Appendix<br>51.64                                  | 53.36                                                       | 51.64                                              | 53.36 (57)                                                                                        |
| ` ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        | 51.04                                                                                                                   | 55.30                                                                                                                 | 51.04                                                     | 53.30                                                                              | ·                                                         |                                                      | 1                                                           | 51.04                                              | 53.36 (57)                                                                                        |
| Primary circuit loss (annu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           |                                                                                    |                                                           | 360.00                                               | (58)                                                        |                                                    |                                                                                                   |
| Primary circuit loss for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       | سده ملی سالت میا                                          |                                                                                    |                                                           |                                                      |                                                             |                                                    |                                                                                                   |
| (modified by factor from (59)m 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.58                                                                                                                                  | 29.59                                                                                                                   | 30.58                                                                                                                 | 29.59                                                     | 30.58                                                                              | 30.58                                                     | 29.59                                                | 30.58                                                       | 29.59                                              | 30.58 (59)                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         | !                                                                                                                     |                                                           | 30.36                                                                              | 30.36                                                     | 29.59                                                | 30.36                                                       | 29.59                                              | 30.36 (39)                                                                                        |
| Combi loss for each mont (61)m 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                   | 0.00                                                                                                                    | 0.00                                                                                                                  | 0.00                                                      | 0.00                                                                               | 0.00                                                      | 0.00                                                 | 0.00                                                        | 0.00                                               | 0.00 (61)                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           |                                                                                    |                                                           |                                                      | 0.00                                                        | 0.00                                               | 0.00 (01)                                                                                         |
| Total heat required for w (62)m 240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225.44                                                                                                                                 | 204.59                                                                                                                  | 202.31                                                                                                                | 183.37                                                    | 178.59                                                                             | 192.55                                                    | 191.14                                               | 212.03                                                      | 221.05                                             | 235.78 (62)                                                                                       |
| . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           | 1                                                                                  |                                                           |                                                      |                                                             |                                                    | 233.76 (02)                                                                                       |
| Solar DHW input calculate (add additional lines if FG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       | iantity) (en                                              | ter o ii no                                                                        | Solar Contr                                               | ibution to v                                         | water neati                                                 | rig)                                               |                                                                                                   |
| (63)m 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                   | 0.00                                                                                                                    | 0.00                                                                                                                  | 0.00                                                      | 0.00                                                                               | 0.00                                                      | 0.00                                                 | 0.00                                                        | 0.00                                               | 0.00                                                                                              |
| (00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                   | 0.00                                                                                                                    | 0.00                                                                                                                  | 0.00                                                      | 0.00                                                                               | 0.00                                                      | 0.00                                                 | 0.00                                                        | 0.00                                               | 0.00                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       |                                                           |                                                                                    |                                                           |                                                      | 2(63)1                                                      | 12 =                                               | 0.00 (63)                                                                                         |
| Output from water heate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | r for each mon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | th kWh/ma                                                                                                                              | onth (62)m                                                                                                              | 1 + (63)m                                                                                                             |                                                           |                                                                                    |                                                           |                                                      | ∑(63)1                                                      | .12 =                                              | 0.00 (63)                                                                                         |
| Output from water heate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       | 183.37                                                    | 178.59                                                                             | 192.55                                                    | 191.14                                               |                                                             |                                                    |                                                                                                   |
| Output from water heate (64)m 240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | th, kWh/mo                                                                                                                             | onth (62)m<br>204.59                                                                                                    | n + (63)m<br>202.31                                                                                                   | 183.37                                                    | 178.59                                                                             | 192.55                                                    | 191.14                                               | 212.03                                                      | 221.05                                             | 235.78                                                                                            |
| (64)m 240.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                        |                                                                                                                         |                                                                                                                       | 183.37                                                    | 178.59                                                                             | 192.55                                                    | 191.14                                               |                                                             | 221.05                                             |                                                                                                   |
| (64)m 240.<br>if (64)m < 0 then set to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 212.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 225.44                                                                                                                                 | 204.59                                                                                                                  | 202.31                                                                                                                |                                                           |                                                                                    |                                                           |                                                      | 212.03                                                      | 221.05                                             | 235.78                                                                                            |
| if (64)m < 0 then set to 0  Heat gains from water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22 212.94<br>ating, kWh/mo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 225.44<br>onth 0.25 ×                                                                                                                  | 204.59<br>[0.85 × (45                                                                                                   | 202.31<br>5)m + (61)m                                                                                                 | n] + 0.8 × [(4                                            | 46)m + (57)                                                                        | m + (59)m]                                                |                                                      | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2                                  | 235.78 500.52 (64)                                                                                |
| <ul> <li>(64)m 240.</li> <li>if (64)m &lt; 0 then set to 0</li> <li>Heat gains from water he</li> <li>(65)m 119.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 212.94<br>ating, kWh/mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 225.44<br>onth 0.25 ×<br>114.20                                                                                                        | 204.59<br>[0.85 × (45<br>106.00                                                                                         | 202.31<br>5)m + (61)m<br>106.51                                                                                       | n] + 0.8 × [(4<br>98.94                                   | 46)m + (57)<br>98.62                                                               | m + (59)m]<br>103.26                                      | 101.53                                               | 212.03                                                      | 221.05                                             | 235.78                                                                                            |
| if (64)m < 0 then set to 0  Heat gains from water he                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22 212.94<br>ating, kWh/mc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 225.44<br>onth 0.25 ×<br>114.20                                                                                                        | 204.59<br>[0.85 × (45<br>106.00                                                                                         | 202.31<br>5)m + (61)m<br>106.51                                                                                       | n] + 0.8 × [(4<br>98.94                                   | 46)m + (57)<br>98.62                                                               | m + (59)m]<br>103.26                                      | 101.53                                               | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2                                  | 235.78 500.52 (64)                                                                                |
| <ul> <li>(64)m 240.</li> <li>if (64)m &lt; 0 then set to 0</li> <li>Heat gains from water he</li> <li>(65)m 119.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22 212.94  Pating, kWh/mo 28 106.24    Collection of (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225.44<br>onth 0.25 ×<br>114.20                                                                                                        | 204.59<br>[0.85 × (45<br>106.00                                                                                         | 202.31<br>5)m + (61)m<br>106.51                                                                                       | n] + 0.8 × [(4<br>98.94                                   | 46)m + (57)<br>98.62                                                               | m + (59)m]<br>103.26                                      | 101.53                                               | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2                                  | 235.78 500.52 (64)                                                                                |
| (64)m 240.  if (64)m < 0 then set to 0  Heat gains from water he (65)m 119.  include (57)m in co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22 212.94  ating, kWh/mo 28 106.24  Iculation of (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 225.44<br>onth 0.25 ×<br>114.20                                                                                                        | 204.59<br>[0.85 × (45<br>106.00                                                                                         | 202.31<br>5)m + (61)m<br>106.51                                                                                       | n] + 0.8 × [(4<br>98.94                                   | 46)m + (57)<br>98.62                                                               | m + (59)m]<br>103.26                                      | 101.53                                               | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2                                  | 235.78 500.52 (64)                                                                                |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22 212.94  aating, kWh/mc 28 106.24  Iculation of (65)  Feb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 225.44<br>onth 0.25 ×<br>114.20<br>5)m only if c                                                                                       | 204.59<br>[0.85 × (45<br>106.00<br>ylinder is in                                                                        | 202.31<br>(i)m + (61)m<br>106.51<br>In the dwelli                                                                     | n] + 0.8 × [(4<br>98.94<br>ng or hot w                    | 46)m + (57)<br>98.62<br>vater is fron                                              | m + (59)m]<br>103.26<br>n communi                         | 101.53<br>ty heating                                 | 212.03<br>Σ(64)1<br>109.74                                  | 221.05<br>.12 = 2                                  | 235.78<br>500.52 (64)<br>117.63 (65)                                                              |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ating, kWh/mc 18 106.24 Iculation of (65) ble 5 and 5a) Feb Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 225.44<br>onth 0.25 ×<br>114.20<br>5)m only if c                                                                                       | 204.59<br>[0.85 × (45<br>106.00<br>ylinder is in                                                                        | 202.31<br>(i)m + (61)m<br>106.51<br>In the dwelli                                                                     | n] + 0.8 × [(4<br>98.94<br>ng or hot w                    | 46)m + (57)<br>98.62<br>vater is fron                                              | m + (59)m]<br>103.26<br>n communi                         | 101.53<br>ty heating                                 | 212.03<br>Σ(64)1<br>109.74                                  | 221.05<br>.12 = 2                                  | 235.78<br>500.52 (64)<br>117.63 (65)                                                              |
| if (64)m 240.  if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22 212.94  aating, kWh/mc 28 106.24  Iculation of (65)  Feb  Watts 34 155.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 225.44  onth 0.25 ×  114.20  5)m only if c  Mar                                                                                        | 204.59  [0.85 × (45  106.00  ylinder is in  Apr                                                                         | 202.31  i)m + (61)m 106.51  in the dwelli  May                                                                        | 1] + 0.8 × [(4<br>98.94<br>ng or hot w<br>Jun             | 46)m + (57)<br>98.62<br>vater is fror<br>Jul                                       | m + (59)m]<br>103.26<br>n communi<br>Aug                  | 101.53<br>ty heating<br>Sep                          | 212.03<br>Σ(64)1<br>109.74                                  | 221.05<br>.12 = 2                                  | 235.78<br>500.52 (64)<br>117.63 (65)<br>Dec                                                       |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ating, kWh/mo 18 106.24  Iculation of (65)  Feb  Watts 155.84  in Appendix L,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 225.44  onth 0.25 ×  114.20  5)m only if c  Mar                                                                                        | 204.59  [0.85 × (45  106.00  ylinder is in  Apr                                                                         | 202.31  i)m + (61)m 106.51  in the dwelli  May                                                                        | 1] + 0.8 × [(4<br>98.94<br>ng or hot w<br>Jun             | 46)m + (57)<br>98.62<br>vater is fror<br>Jul                                       | m + (59)m]<br>103.26<br>n communi<br>Aug                  | 101.53<br>ty heating<br>Sep                          | 212.03<br>Σ(64)1<br>109.74                                  | 221.05<br>.12 = 2                                  | 235.78<br>500.52 (64)<br>117.63 (65)<br>Dec                                                       |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155  Lighting gains (calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ating, kWh/mc 8 106.24 Iculation of (69 ble 5 and 5a) Feb Watts 4 155.84 in Appendix L, 1 46.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225.44  onth 0.25 ×  114.20  5)m only if c  Mar  155.84  equation L9  38.07                                                            | 204.59  [0.85 × (45) 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82                                             | 202.31  5)m + (61)m 106.51  1 the dwelli  May  155.84  Iso see Tab 21.55                                              | Jun<br>155.84<br>18.19                                    | 46)m + (57)<br>98.62<br>vater is fron<br>Jul<br>155.84                             | m + (59)m] 103.26 n communi Aug 155.84                    | 101.53 ty heating Sep 155.84                         | 212.03<br>∑(64)1<br>109.74<br>Oct                           | 221.05 .12 = 2  111.47  Nov                        | 235.78<br>500.52 (64)<br>117.63 (65)<br>Dec<br>155.84 (66)                                        |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155  Lighting gains (calculated (67)m 52.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ating, kWh/mc 18 106.24  Iculation of (65)  Feb  Watts 155.84  in Appendix L, 1 46.82  ed in Appendix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 225.44  onth 0.25 ×  114.20  5)m only if c  Mar  155.84  equation L9  38.07                                                            | 204.59  [0.85 × (45) 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82                                             | 202.31  5)m + (61)m 106.51  1 the dwelli  May  155.84  Iso see Tab 21.55                                              | Jun<br>155.84<br>18.19                                    | 46)m + (57)<br>98.62<br>vater is fron<br>Jul<br>155.84                             | m + (59)m] 103.26 n communi Aug 155.84                    | 101.53 ty heating Sep 155.84                         | 212.03<br>∑(64)1<br>109.74<br>Oct                           | 221.05 .12 = 2  111.47  Nov                        | 235.78<br>500.52 (64)<br>117.63 (65)<br>Dec<br>155.84 (66)                                        |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155  Lighting gains (calculated (67)m 52.7  Appliances gains (calculated (57)m 52.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ating, kWh/mo 18 106.24  Iculation of (65)  Feb  Watts 155.84  in Appendix L, 1 46.82  ed in Appendix 27 354.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 225.44  onth 0.25 × 114.20  5)m only if c  Mar  155.84  equation L9 38.07  c L, equation 345.73                                        | 204.59  [0.85 × (45 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17                          | 202.31  5)m + (61)m  106.51  1 the dwelli  May  155.84  Iso see Tab  21.55  3a), also se  301.49                      | Jun  155.84  le 5  18.19  e Table 5  278.29               | 46)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84                             | m + (59)m] 103.26 n communi Aug 155.84                    | 101.53 ty heating Sep 155.84 34.29                   | 212.03<br>∑(64)1<br>109.74<br>Oct<br>155.84                 | 221.05 .12 = 2  111.47  Nov  155.84                | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)                                     |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119.3  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155.3  Lighting gains (calculated (67)m 52.7  Appliances gains (calculated (68)m 351.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rating, kWh/mc 28   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   106.24   1 | 225.44  onth 0.25 × 114.20  5)m only if c  Mar  155.84  equation L9 38.07  c L, equation 345.73                                        | 204.59  [0.85 × (45 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17                          | 202.31  5)m + (61)m  106.51  1 the dwelli  May  155.84  Iso see Tab  21.55  3a), also se  301.49                      | Jun  155.84  le 5  18.19  e Table 5  278.29               | 46)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84                             | m + (59)m] 103.26 n communi Aug 155.84                    | 101.53 ty heating Sep 155.84 34.29                   | 212.03<br>∑(64)1<br>109.74<br>Oct<br>155.84                 | 221.05 .12 = 2  111.47  Nov  155.84                | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)                                     |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155  Lighting gains (calculated (67)m 52.7  Appliances gains (calculated (68)m 351  Cooking gains (calculated cooking gains calculated cooking gains | ating, kWh/mo 18 106.24  Iculation of (65  ble 5 and 5a)  Feb  Watts 155.84  in Appendix L, 1 46.82  ed in Appendix L, 27 354.91  in Appendix L, 8 53.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 225.44  onth 0.25 ×  114.20  5)m only if c  Mar  155.84  equation L9 38.07  x L, equation 345.73  equation L:                          | 204.59  [0.85 × (45) 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17  15 or L15a)            | 202.31  5)m + (61)m  106.51  1 the dwelli  May  155.84  Iso see Tab  21.55  3a), also se  301.49  , also see T        | Jun  155.84  le 5  18.19  e Table 5  278.29  Table 5      | 46)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65                    | m + (59)m] 103.26 n communi Aug 155.84 25.55              | 101.53 ty heating Sep 155.84 34.29 268.33            | 212.03<br>∑(64)1<br>109.74<br>Oct<br>155.84<br>43.54        | 221.05 .12 = 2  111.47  Nov  155.84  50.82         | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)  335.77 (68)                        |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119.3  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155.3  Lighting gains (calculated (67)m 52.7  Appliances gains (calculated (68)m 351.3  Cooking gains (calculated (69)m 53.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | reb Watts 4 155.84 in Appendix L, 1 46.82 ed in Appendix L, 2 354.91 in Appendix L, 8 53.18 ble 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 225.44  onth 0.25 ×  114.20  5)m only if c  Mar  155.84  equation L9 38.07  x L, equation 345.73  equation L:                          | 204.59  [0.85 × (45) 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17  15 or L15a)            | 202.31  5)m + (61)m  106.51  1 the dwelli  May  155.84  Iso see Tab  21.55  3a), also se  301.49  , also see T        | Jun  155.84  le 5  18.19  e Table 5  278.29  Table 5      | 46)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65                    | m + (59)m] 103.26 n communi Aug 155.84 25.55              | 101.53 ty heating Sep 155.84 34.29 268.33            | 212.03<br>∑(64)1<br>109.74<br>Oct<br>155.84<br>43.54        | 221.05 .12 = 2  111.47  Nov  155.84  50.82         | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)  335.77 (68)                        |
| if (64)m < 0 then set to 0  Heat gains from water he (65)m 119  include (57)m in co  5. Internal gains (see Ta  Jan  Metabolic gains (Table 5) (66)m 155  Lighting gains (calculated (67)m 52.7  Appliances gains (calculated (68)m 351  Cooking gains (calculated (69)m 53.1  Pumps and fans gains (Ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | retaing, kWh/more 18 106.24   Idulation of (65   ble 5 and 5a)   Feb   Watts   34 155.84   in Appendix L,   1 46.82   ed in Appendix L,   27 354.91   in Appendix L,   8 53.18   ble 5a)   0 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 225.44  onth 0.25 × 114.20  5)m only if c  Mar  155.84  equation L9 38.07  x L, equation 345.73  equation L: 53.18                     | 204.59  [0.85 × (45) 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17  15 or L15a) 53.18      | 202.31  5)m + (61)m  106.51  1 the dwelli  May  155.84  Iso see Tab  21.55  3a), also se  301.49  , also see T  53.18 | Jun  155.84  le 5  18.19 e Table 5  278.29 fable 5  53.18 | 46)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65<br>262.79          | m + (59)m] 103.26 n communi Aug 155.84 25.55 259.15       | 101.53 ty heating  Sep  155.84  34.29  268.33        | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89        | 221.05 .12 = 2  111.47  Nov  155.84  50.82  312.57 | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)  335.77 (68)  53.18 (69)            |
| if (64)m < 0 then set to 0  Heat gains from water here (65)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ating, kWh/mo 18 106.24  Iculation of (65  ble 5 and 5a)  Feb  Watts 34 155.84  in Appendix L, 1 46.82  ed in Appendix L, 27 354.91  in Appendix L, 8 53.18  ble 5a) 0 0.00  regative values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 225.44  onth 0.25 × 114.20  5)m only if c  Mar  155.84  equation L9 38.07  x L, equation 345.73  equation L: 53.18                     | 204.59  [0.85 × (45) 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17  15 or L15a) 53.18      | 202.31  5)m + (61)m  106.51  1 the dwelli  May  155.84  Iso see Tab  21.55  3a), also se  301.49  , also see T  53.18 | Jun  155.84  le 5  18.19 e Table 5  278.29 fable 5  53.18 | 46)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65<br>262.79          | m + (59)m] 103.26 n communi Aug 155.84 25.55 259.15       | 101.53 ty heating  Sep  155.84  34.29  268.33        | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89        | 221.05 .12 = 2  111.47  Nov  155.84  50.82  312.57 | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)  335.77 (68)  53.18 (69)            |
| if (64)m < 0 then set to 0  Heat gains from water here (65)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ating, kWh/mo 18 106.24 Iculation of (65 ble 5 and 5a) Feb Watts 4 155.84 in Appendix L, 1 46.82 ed in Appendix L, 27 354.91 in Appendix L, 8 53.18 ble 5a) 0 0.00 negative values 39 -103.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 225.44  onth 0.25 × 114.20  5)m only if c  Mar  155.84  equation L9 38.07  x L, equation 345.73  equation L2 53.18  0.00  o) (Table 5) | 204.59  [0.85 × (45 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17  15 or L15a) 53.18  0.00 | 202.31  5)m + (61)m 106.51  1 the dwelli  May  155.84  Iso see Tab 21.55  3a), also see 301.49  I, also see T 53.18   | Jun  155.84 le 5 18.19 e Table 5 278.29 Table 5 53.18     | 46)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65<br>262.79<br>53.18 | m + (59)m] 103.26 n communi Aug 155.84 25.55 259.15 53.18 | 101.53 ty heating  Sep  155.84  34.29  268.33  53.18 | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89  53.18 | 221.05<br>  .12 =                                  | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)  335.77 (68)  53.18 (69)  0.00 (70) |
| if (64)m < 0 then set to 0  Heat gains from water here (65)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ating, kWh/mo 18 106.24  Iculation of (65  Feb  Watts 34 155.84  in Appendix L, 1 46.82 ed in Appendix L, 27 354.91 in Appendix L, 8 53.18 ble 5a) 0 0.00 regative values 39 -103.89 e 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 225.44  onth 0.25 × 114.20  5)m only if c  Mar  155.84  equation L9 38.07  x L, equation 345.73  equation L2 53.18  0.00  o) (Table 5) | 204.59  [0.85 × (45 106.00  ylinder is in  Apr  155.84  9 or L9a), a 28.82  n L13 or L1 326.17  15 or L15a) 53.18  0.00 | 202.31  5)m + (61)m 106.51  1 the dwelli  May  155.84  Iso see Tab 21.55  3a), also see 301.49  I, also see T 53.18   | Jun  155.84 le 5 18.19 e Table 5 278.29 Table 5 53.18     | 46)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65<br>262.79<br>53.18 | m + (59)m] 103.26 n communi Aug 155.84 25.55 259.15 53.18 | 101.53 ty heating  Sep  155.84  34.29  268.33  53.18 | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89  53.18 | 221.05<br>  .12 =                                  | 235.78 500.52 (64)  117.63 (65)  Dec  155.84 (66)  54.17 (67)  335.77 (68)  53.18 (69)  0.00 (70) |

#### 6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

|                            |              | Access facto<br>Table 6d | or           | Area m²      | So            | lar flux W/ | _           | Specific data<br>or Table 6b | a I       | FF Specific da<br>or Table 60 |             | Gains (W)   | 1            |
|----------------------------|--------------|--------------------------|--------------|--------------|---------------|-------------|-------------|------------------------------|-----------|-------------------------------|-------------|-------------|--------------|
| North                      |              | 0.77                     | ] x          | 12.00        | x             | 10.73       | _ x         | 0.53                         | x         | 1.00                          | =           | 52.53       | (7           |
| East                       |              | 0.77                     | ] x          | 6.00         | x             | 19.87       | x           | 0.53                         | x         | 1.00                          | =           | 48.66       | (            |
| Solar gains in wat         | ts, calculat | ed for each              | month ∑(7    | 4)m(82)m     | 1             |             |             |                              |           |                               |             |             |              |
| (83)m                      | 101.19       | 194.02                   | 313.87       | 491.41       | 640.68        | 695.97      | 663.28      | 541.54                       | 381.43    | 236.38                        | 125.23      | 83.94       | (            |
| Total gains - inter        | nal and sol  | ar (73)m + (             | 83)m         |              |               |             |             |                              |           |                               |             |             |              |
| (84)m                      | 770.62       | 858.98                   | 956.29       | 1098.75      | 1212.00       | 1235.00     | 1183.40     | 1070.16                      | 930.19    | 820.43                        | 748.57      | 737.12      | (            |
| 7. Mean interna            | l temperat   | ure (heating             | g season)    |              |               |             |             |                              |           |                               |             |             |              |
| Temperature dur            |              |                          |              | rea from Ta  | ble 9, Th1('  | °C)         |             |                              |           |                               |             | 21.00       | (8           |
|                            | Jan          | Feb                      | Mar          | Apr          | May           | Jun         | Jul         | Aug                          | Sep       | Oct                           | Nov         | Dec         | _            |
| Utilisation factor         | for gains fo | or living area           | , η1,m (see  | e Table 9a)  |               |             |             |                              |           |                               |             |             |              |
| (86)m                      | 0.92         | 0.90                     | 0.85         | 0.76         | 0.62          | 0.47        | 0.33        | 0.36                         | 0.60      | 0.80                          | 0.90        | 0.93        | (            |
| Mean internal ter          | mp of living | g area T1 (ste           | eps 3 to 7 i | n Table 9c)  |               |             |             |                              |           |                               |             |             |              |
| (87)m                      | 19.04        | 19.28                    | 19.73        | 20.21        | 20.65         | 20.88       | 20.97       | 20.96                        | 20.77     | 20.26                         | 19.51       | 19.08       | ] (          |
| Temperature dur            | ing heating  | periods in t             | he living ar | ea from Ta   | ble 9, Th2('  | °C)         |             |                              |           |                               |             |             |              |
| (88)m                      | 19.96        | 19.96                    | 19.96        | 19.97        | 19.98         | 19.99       | 19.99       | 19.99                        | 19.98     | 19.97                         | 19.97       | 19.96       | ] (          |
| Utilisation factor         | for gains fo | or rest of dw            | elling η2,m  | ı (see Table | 9a)           |             |             |                              |           |                               |             |             |              |
| (89)m                      | 0.91         | 0.89                     | 0.83         | 0.73         | 0.57          | 0.40        | 0.25        | 0.28                         | 0.53      | 0.76                          | 0.89        | 0.92        | ] (          |
| Mean internal ter          | mperature    | in the rest o            | f dwelling   | T2 (follow s | teps 3 to 7   | in Table 9c | )           |                              |           |                               |             |             |              |
| (90)m                      | 17.37        | 17.73                    | 18.36        | 19.02        | 19.61         | 19.88       | 19.97       | 19.97                        | 19.77     | 19.11                         | 18.06       | 17.44       | (            |
| Living area fraction       | on           |                          |              |              |               |             |             | fLA 8                        | 8.00      | ÷ (4) =                       | =           | 1.00        | (            |
| Mean internal ter          | mperature    | for the whol             | le dwelling  | fLA x T1 +(  | 1 - fLA) x T2 | 2           |             |                              |           |                               |             |             |              |
| (92)m                      | 19.04        | 19.28                    | 19.73        | 20.21        | 20.65         | 20.88       | 20.97       | 20.96                        | 20.77     | 20.26                         | 19.51       | 19.08       | (            |
| Apply adjustment           | t to the me  | an internal t            | emperatur    | e from Tab   | le 4e, wher   | e appropri  | ate         |                              |           |                               |             |             |              |
| (93)m                      | 19.04        | 19.28                    | 19.73        | 20.21        | 20.65         | 20.88       | 20.97       | 20.96                        | 20.77     | 20.26                         | 19.51       | 19.08       | (            |
|                            |              |                          |              |              |               |             |             |                              |           |                               |             |             |              |
| 8. Space heating           | g requirem   |                          |              |              |               |             |             |                              |           |                               |             |             |              |
|                            | Jan          | Feb                      | Mar          | Apr          | May           | Jun         | Jul         | Aug                          | Sep       | Oct                           | Nov         | Dec         |              |
| Set Ti to the mea          |              |                          | obtained a   | at step 11 o | f Table 9b,   | so that tim | = (93)m ar  | nd recalculate               | e the uti | llisation facto               | r for gains | using Table | 9 ڊ          |
| Utilisation factor         |              |                          | 0.02         | 0.74         | 0.61          | 0.46        | 0.22        | 0.26                         | 0.50      | 0.77                          | 0.00        | 0.01        | ] ( <u>!</u> |
| (94)m                      | 0.90         | 0.88                     | 0.82         | 0.74         | 0.61          | 0.46        | 0.33        | 0.36                         | 0.58      | 0.77                          | 0.88        | 0.91        | ] (          |
| Useful gains, ۩m0<br>(95)m | 695.88       | 753.22                   | 788.79       | 813.77       | 733.63        | 565.93      | 384.86      | 380.48                       | 541.46    | 634.57                        | 656.71      | 667.87      | ٦ (          |
|                            |              |                          |              |              | /33.03        | 303.33      | 364.60      | 360.46                       | 341.40    | 034.37                        | 030.71      | 007.87      | ۱ ا          |
| Monthly average            |              |                          |              |              | 11.70         | 14.60       | 16.00       | 16.00                        | 14 20     | 10.00                         | 7.00        | 4.00        | ٦,           |
| (96)m                      | 4.50         | 5.00                     | 6.80         | 8.70         | 11.70         | 14.60       | 16.90       | 16.90                        | 14.30     | 10.80                         | 7.00        | 4.90        | (            |
| Heat loss rate for         |              |                          |              |              | 996 99        | 610.05      | 200.07      | 200.20                       | 642.42    | 044.36                        | 1257.00     | 1424.04     | ٦,           |
| (97)m                      | 1481.71      |                          |              | 1148.84      | 886.80        | 619.95      | 399.97      | 399.20                       | 642.42    | 944.26                        | 1257.00     | 1434.81     | _] (         |
| Space heating red          | `            |                          |              |              |               |             |             | 0.00                         | 0.00      | 220.44                        | 422.24      | F70.00      | ٦            |
| (98)m                      | 584.65       | 465.06                   | 386.80       | 241.25       | 113.96        | 0.00        | 0.00        | 0.00                         | 0.00      | 230.41                        | 432.21      | 570.60      | ]<br>7 .     |
|                            |              |                          |              |              |               |             | Total per y | /ear (kWh/ye                 | ear) = ∑( | 98)15, 10                     |             | 3024.95     | ] (          |
| pace heating red           | quirement i  | in kWh/m²/y              | /ear         |              |               |             |             |                              |           | (98)                          | ÷ (4)       | 34.37       | (            |

| Fraction of space heating from secondary/supplementary system                                                                                                                                                                                                                                                                                                                                                 | (Table 11)                                                           |             | 0.00                                                                                                            | (301)                                                                          |                                                                                                     |                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                                                     |                                                                      |             | 1.00                                                                                                            | (302)                                                                          |                                                                                                     |                                                                                                   |
| Community scheme fractions obtained from plant design specific                                                                                                                                                                                                                                                                                                                                                | ation or operational re                                              | ecords:     |                                                                                                                 | (0.001.)                                                                       |                                                                                                     |                                                                                                   |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                        |                                                                      |             |                                                                                                                 | (303b)                                                                         |                                                                                                     |                                                                                                   |
| Fraction of total space heat from community boilers (302) x (303                                                                                                                                                                                                                                                                                                                                              |                                                                      |             |                                                                                                                 | (304b)                                                                         |                                                                                                     |                                                                                                   |
| Factor for control and charging method (Table 4c(3)) for commun<br>Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                            |                                                                      |             |                                                                                                                 | (305)<br>(305a)                                                                |                                                                                                     |                                                                                                   |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                                                             |                                                                      |             |                                                                                                                 | (306)                                                                          |                                                                                                     |                                                                                                   |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                    |             | 0.10                                                                                                            | (300)                                                                          | kWh/year                                                                                            |                                                                                                   |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |             |                                                                                                                 |                                                                                | 3024.95                                                                                             | 1                                                                                                 |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                                                             | =                                                                    |             | 302.49                                                                                                          | (307b)                                                                         | 302 1133                                                                                            | _                                                                                                 |
| , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                       |                                                                      |             |                                                                                                                 | ` '                                                                            |                                                                                                     |                                                                                                   |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                |                                                                      |             |                                                                                                                 |                                                                                |                                                                                                     |                                                                                                   |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                              |                                                                      |             |                                                                                                                 |                                                                                | 2500.52                                                                                             |                                                                                                   |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                 |                                                                      |             |                                                                                                                 |                                                                                |                                                                                                     |                                                                                                   |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                              |                                                                      |             | 250.05                                                                                                          | (310b)                                                                         |                                                                                                     |                                                                                                   |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                        |                                                                      | 0.01 x [    | (307a)(307e) + (31                                                                                              | 0a)(310e)] =                                                                   | 5.53                                                                                                | (313)                                                                                             |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                    |                                                                      |             |                                                                                                                 |                                                                                |                                                                                                     |                                                                                                   |
| mechanical ventilation fans - balanced, extract or positive inp                                                                                                                                                                                                                                                                                                                                               | ut from outside                                                      |             |                                                                                                                 | 0.00                                                                           |                                                                                                     | (330a)                                                                                            |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |             | Ļ                                                                                                               | 0.00                                                                           | ]                                                                                                   | (330b)                                                                                            |
| pump for solar water heating  Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                       |                                                                      |             | (2202) + (22                                                                                                    | 0.00<br>(0b) + (330g) =                                                        | 0.00                                                                                                | (330g)<br>(331)                                                                                   |
| Total electricity for the above, kwilly year                                                                                                                                                                                                                                                                                                                                                                  |                                                                      |             | (330a) 1 (33                                                                                                    | ob) 1 (330g) -                                                                 | 0.00                                                                                                | ] (331)                                                                                           |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                          |                                                                      |             |                                                                                                                 |                                                                                | 372.34                                                                                              | (332)                                                                                             |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                    |                                                                      |             |                                                                                                                 |                                                                                |                                                                                                     |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                      |             |                                                                                                                 |                                                                                |                                                                                                     |                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                               | Heat or fuel<br>kWh/year                                             |             | Fuel price<br>(Table 12)                                                                                        |                                                                                | Fuel cost £/yea                                                                                     | r                                                                                                 |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                          |                                                                      | x           |                                                                                                                 | x 0.01 =                                                                       | Fuel cost £/yea                                                                                     | 7 (2.40)                                                                                          |
| Space heating from community boilers Water heating from community boilers                                                                                                                                                                                                                                                                                                                                     | kWh/year                                                             | x<br>x      | (Table 12)                                                                                                      | x 0.01 =<br>x 0.01 =                                                           | 11.12                                                                                               | ] (340b)                                                                                          |
| Water heating from community boilers Pumps and fans                                                                                                                                                                                                                                                                                                                                                           | <b>kWh/year</b> 302.49                                               |             | (Table 12)  3.78  3.78  11.46                                                                                   | x 0.01 =<br>x 0.01 =                                                           | 11.43                                                                                               | ] (340b)                                                                                          |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                  | 302.49<br>250.05                                                     | x           | (Table 12)  3.78  3.78                                                                                          | x 0.01 =                                                                       | 11.43<br>9.45<br>0.00<br>42.67                                                                      | (340b)<br>(342b)<br>(349)<br>(350)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                           | 302.49<br>250.05<br>0.00                                             | x<br>x      | 3.78 3.78 11.46 11.46                                                                                           | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00                                                            | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                  | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 11.43<br>9.45<br>0.00<br>42.67                                                                      | (340b)<br>(342b)<br>(349)<br>(350)                                                                |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                           | 302.49<br>250.05<br>0.00                                             | x<br>x      | 3.78 3.78 11.46 11.46                                                                                           | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00                                                            | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                         | 302.49<br>250.05<br>0.00                                             | x<br>x      | 3.78 3.78 11.46 11.46                                                                                           | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00                                                            | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)                                                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                             | 302.49<br>250.05<br>0.00                                             | x<br>x      | 3.78 3.78 11.46 11.46                                                                                           | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00<br>169.56                                                  | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                             | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00<br>169.56                                                  | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                                              |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                    | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00<br>169.56<br>0.47<br>0.60                                  | (340b)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                                              |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                          | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43<br>9.45<br>0.00<br>42.67<br>106.00<br>169.56<br>0.47<br>0.60<br>91.64                         | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                               | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43 9.45 0.00 42.67 106.00 169.56  0.47 0.60 91.64 92                                             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                      | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43 9.45 0.00 42.67 106.00 169.56  0.47 0.60 91.64 92                                             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                      | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                               | 11.43 9.45 0.00 42.67 106.00 169.56  0.47 0.60 91.64 92                                             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                           | 302.49<br>250.05<br>0.00                                             | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                              | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>÷ [(4) + 45.0] =           | 11.43 9.45 0.00 42.67 106.00 169.56  0.47 0.60 91.64 92                                             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                           | 8Wh/year  302.49  250.05  0.00  372.34  Energy used                  | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] ÷                                           | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>÷ [(4) + 45.0] =           | 11.43  9.45  0.00  42.67  106.00  169.56   0.47  0.60  91.64  92  A                                 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)            |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%) | 8Wh/year  302.49  250.05  0.00  372.34  Energy used kWh/year         | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] = 75.00  Emission Factor (kgCO2/kWh)        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>÷ [(4) + 45.0] =           | 11.43  9.45  0.00  42.67  106.00  169.56   0.47  0.60  91.64  92  A  Emissions (kgCO2/year)         | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358) |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%) | kWh/year  302.49  250.05  0.00  372.34  Energy used kWh/year  736.73 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)  [(355) x (356)] = 75.00  Emission Factor (kgCO2/kWh)  0.198 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>= [(4) + 45.0] =<br>(367b) | 11.43  9.45  0.00  42.67  106.00  169.56   0.47  0.60  91.64  92  A  Emissions (kgCO2/year)  145.87 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358) |

| Space and water heating                        | (373)  | + (374) + (375) = | 148.73 | (376)         |        |       |
|------------------------------------------------|--------|-------------------|--------|---------------|--------|-------|
| Electricity for pumps and fans within dwelling | 0.00   | x                 | 0.000  | =             | 0.00   | (378) |
| Electricity for lighting                       | 372.34 | x                 | 0.517  | =             | 192.50 | (379) |
| Total carbon dioxide emissions                 |        |                   |        | ∑(376)(382) = | 341.23 | (383) |
| Dwelling carbon dioxide emissions rate         |        |                   |        | (383) ÷ (4) = | 3.88   | (384) |
| El value                                       |        |                   |        |               | 96.56  |       |
| El rating (see section 14)                     |        |                   |        |               | 97     | (385) |
| EI band                                        |        |                   |        |               | А      |       |

| Primary energy from other community sources (not CH |
|-----------------------------------------------------|
|-----------------------------------------------------|

| Efficiency of boilers (%)                      |                         |   | 75.00                   | (367b*)           |                |        |
|------------------------------------------------|-------------------------|---|-------------------------|-------------------|----------------|--------|
|                                                | Energy used<br>kWh/year |   | Primary Energ<br>Factor | у                 | Primary Energy | ,      |
| Primary energy - boilers (Mains gas)           | 736.73                  | x | 1.02                    | =                 | 751.46         | (368*) |
| Electrical energy for heat distribution        | 5.53                    | x | 2.92                    | =                 | 16.13          | (372*) |
| Total primary energy from community systems    |                         |   | (363*)(366*) +          | (368*)(372*) =    | 767.60         | (373*) |
| Space and water heating                        |                         |   | (373*) +                | (374*) + (375*) = | 767.60         | (376*) |
| Electricity for pumps and fans within dwelling | 0.00                    | x | 0.00                    | =                 | 0.00           | (378*) |
| Electricity for lighting                       | 372.34                  | x | 2.92                    | =                 | 1087.23        | (379*) |
| Total primary energy kWh/year                  |                         |   | Σ                       | (376*)(382*) =    | 1854.83        | (383*) |
| Primary energy kWh/m2/year                     |                         |   |                         | (383*) ÷ (4) =    | 21.08          | (384*) |



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                    | Assessor number | 1422       |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 14/12/2011 |
| Address       | 51 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimens      | ions                                             |                      |                 |                           |                  |                        |      |
|---------------------------------|--------------------------------------------------|----------------------|-----------------|---------------------------|------------------|------------------------|------|
|                                 |                                                  | Area (m²)            |                 | Average storey height (m) |                  | Volume (m³)            |      |
| Lowest occupied                 |                                                  | 84.00                | (1a) x          | 11.40                     | (2a) =           | 957.60                 | (3a  |
| Total floor area                | (1a) + (1b) + (1c) + (1d)(1n) =                  | 84.00                | (4)             |                           |                  |                        |      |
| Dwelling volume                 |                                                  |                      |                 | (3a) + (3b) + (3d         | c) + (3d)(3n) =  | 957.60                 | (5)  |
| 2. Ventilation rate             |                                                  |                      |                 |                           |                  |                        |      |
|                                 |                                                  |                      |                 |                           |                  | m³ per hour            |      |
| Number of chimneys              |                                                  |                      |                 | 0                         | x 40 =           | 0                      | (6a) |
| Number of open flues            |                                                  |                      |                 | 0                         | x 20 =           | 0                      | (6b  |
| Number of intermittent fans     | 5                                                |                      |                 | 3                         | x 10 =           | 30                     | (7a) |
| Number of passive vents         |                                                  |                      |                 | 4                         | x 10 =           | 40                     | (7b  |
| Number of flueless gas fires    |                                                  |                      |                 | 0                         | x 40 =           | 0                      | (7c) |
|                                 |                                                  |                      |                 |                           |                  | Air changes pe<br>hour | r    |
| Infiltration due to chimneys,   | flues, fans, PSVs                                | (6a) + (6b) + (7a)   | + (7b) + (7c) = | = 70                      | ÷ (5) =          | 0.07                   | (8)  |
| If a pressurisation test has be | een carried out or is intended, proceed          | to (17), otherwise   | continue from   | n (9) to (16)             |                  |                        |      |
| Air permeability value, q50,    | expressed in cubic metres per hour per           | square metre of e    | nvelope area    |                           |                  | 3.00                   | (17) |
| If based on air permeability    | value, then (18) = $[(17) \div 20] + (8)$ , othe | rwise (18) = (16)    |                 |                           |                  | 0.22                   | (18) |
| Air permeability value applie   | es if a pressurisation test has been done        | , or a design or spe | cified air peri | meability is being (      | used             |                        |      |
| Number of sides on which de     | welling is sheltered                             |                      |                 |                           |                  | 2                      | (19) |
| Shelter factor                  |                                                  |                      |                 | 1 -                       | [0.075 x (19)] = | 0.85                   | (20) |

|                            | L                      |      | , , , |
|----------------------------|------------------------|------|-------|
| Shelter factor             | 1 - [0.075 x (19)] = [ | 0.85 | (20)  |
| Adjusted infiltration rate | (18) x (20) = [        | 0.19 | (21)  |

Infiltration rate modified for monthly wind speed:

| inflitration rate mo  | pairiea for  | montnly wi   | na speea:    |            |               |      |      |      |      |         |       |       |       |
|-----------------------|--------------|--------------|--------------|------------|---------------|------|------|------|------|---------|-------|-------|-------|
|                       | Jan          | Feb          | Mar          | Apr        | May           | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average v     | vind speed   | from Table   | . 7          |            |               |      |      |      |      |         |       |       |       |
| (22)m                 | 5.40         | 5.10         | 5.10         | 4.50       | 4.10          | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  | ]     |
|                       |              |              |              |            |               |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m -  | ÷ 4          |              |            |               |      |      |      |      |         |       |       |       |
| (22a)m                | 1.35         | 1.27         | 1.27         | 1.12       | 1.02          | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  | ]     |
|                       |              |              |              |            |               |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | n rate (allo | owing for sh | nelter and v | vind speed | ) = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.26         | 0.24         | 0.24         | 0.21       | 0.19          | 0.18 | 0.18 | 0.18 | 0.20 | 0.21    | 0.23  | 0.24  | ]     |
|                       |              |              |              |            |               |      |      |      |      | ∑(22b)1 | .12 = | 2.56  | (22b) |

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

N/A (23b)

(23a)

N/A

| If balanced wi                                                           | th heat reco               | overy: effici             | ency in % a       | llowing for            | in-use fact        | tor (from Ta        | able 4h)          | =                 |                 |               |                |                     | N,        | /A (         |
|--------------------------------------------------------------------------|----------------------------|---------------------------|-------------------|------------------------|--------------------|---------------------|-------------------|-------------------|-----------------|---------------|----------------|---------------------|-----------|--------------|
| d) If natural ve                                                         |                            |                           | •                 |                        |                    |                     |                   |                   |                 |               |                |                     |           |              |
|                                                                          | 1, then (24<br>0.53        |                           | 1                 | 1                      |                    | 1                   |                   |                   | гэ              | 0.52          | 1 0 5          | 2 0                 | F2        | 0.53         |
| (24d)m                                                                   |                            | 0.53                      | 0.53              | 0.52                   | 0.52               | 0.52                | 0.52              | 2   0             | .52             | 0.52          | 0.5            | 2   0               | .53       | 0.53         |
| ffective air chan                                                        | 0.53                       | 1                         | 0.53              | 0.52                   |                    | 0.52                | 0.52              | ) 0               | .52             | 0.52          | 0.5            | 2 0                 | .53       | 0.53         |
| (25)m                                                                    | 0.53                       | 0.53                      | 0.53              | 0.52                   | 0.52               | 0.52                | 0.52              | 2   0             | .52             | 0.52          | 0.5            | 2   0               | .55       | 0.53 (       |
| 3. Heat losses ar                                                        |                            |                           |                   |                        |                    |                     |                   |                   |                 |               |                |                     |           |              |
| he κ-value is the                                                        | •                          | ity per unit              | area, see T       | able 1e.               |                    |                     |                   |                   |                 |               |                |                     |           |              |
| El                                                                       | lement                     |                           | Gross<br>Area, m² | -                      | nings,<br>n²       | Net area<br>A, m²   |                   | U-value,<br>W/m²K |                 | A x U,<br>W/K |                | к-value,<br>kJ/m².К |           | Ахк,<br>kJ/K |
| Vindow*                                                                  |                            |                           |                   |                        |                    | 17.63               | ] x [             | 1.42              | ] = [           | 24.94         |                | N/A                 |           | N/A          |
| xternal wall                                                             |                            |                           |                   |                        |                    | 45.93               | ] x [             | 0.20              | ] = [           | 9.19          |                | N/A                 |           | N/A          |
| oof                                                                      |                            |                           |                   |                        |                    | 84.00               | ] x [             | 0.13              | ] = [           | 10.92         |                | N/A                 |           | N/A          |
| otal area of exte                                                        | rnal elemer                | nts ∑A, m²                |                   |                        |                    | 147.55              | (31)              |                   |                 |               |                |                     |           |              |
| for windows and                                                          | d roof wind                | ows, effecti              | ive window        | U-value is             | calculated         | using form          | ula 1/[(1         | I/UValue          | 2)+0.04         | ] paragrap    | oh 3.2         |                     |           |              |
| abric heat loss, V                                                       | N/K = ∑(A ×                | U)                        |                   |                        |                    |                     |                   |                   |                 | (2            | 6)(30          | ) + (32) =          | 45        | .05          |
| eat capacity Cm                                                          | $= \sum (A \times \kappa)$ |                           |                   |                        |                    |                     |                   |                   | (28)(           | 30) + (32)    | + (32a)        | (32e) =             | N,        | /A (         |
| nermal mass par                                                          | rameter (TM                | /IP) in kJ/m <sup>2</sup> | ²K                |                        |                    |                     |                   |                   |                 | Calcula       | ted sep        | arately =           | 100       | 0.00         |
| nermal bridges:                                                          | Σ(L x Ψ) cal               | culated usii              | ng Appendi        | хK                     |                    |                     |                   |                   |                 |               |                |                     | 22        | .13          |
| if details of the                                                        | ermal bridgi               | ing are not               | known the         | n (36) = 0.1           | 5 x (31)           |                     |                   |                   |                 |               |                |                     |           |              |
| otal fabric heat I                                                       | oss                        |                           |                   |                        |                    |                     |                   |                   |                 |               | (33            | ) + (36) =          | 67        | .18          |
| entilation heat l                                                        | oss calculat               | ed monthly                | 0.33 x (25        | 5)m x (5)              |                    |                     |                   |                   |                 |               |                |                     |           |              |
| (38)m                                                                    | 168.36                     | 167.24                    | 167.24            | 165.20                 | 163.97             | 163.41              | 162.8             | 37 16             | 2.87            | 164.27        | 165.           | 20 16               | 6.19      | 167.24       |
| eat transfer coe                                                         | fficient, W/               | K (37)m+                  | (38)m             |                        |                    |                     |                   |                   |                 |               |                |                     |           |              |
| (39)m                                                                    | 235.54                     | 234.42                    | 234.42            | 232.37                 | 231.15             | 230.58              | 230.0             | 04 23             | 0.04            | 231.45        | 232.           | 37 23               | 3.36      | 234.42       |
| eat loss parame                                                          | tor(∐ID) M                 | 1/m²k (20)                | lm ÷ (4)          |                        |                    |                     |                   |                   | A               | Average = )   | ∑(39)1.        | 12/12 =             | 232       | 2.52         |
| •                                                                        | 2.80                       | 2.79                      | 2.79              | 2.77                   | 2.75               | 2.75                | 2.74              | 1 2               | .74             | 2.76          | 2.7            | 7 2                 | .78       | 2.79         |
| . ,                                                                      |                            |                           |                   |                        |                    |                     |                   |                   |                 | Average = )   | 1              |                     |           | 77 (         |
|                                                                          |                            |                           |                   |                        |                    |                     |                   |                   |                 |               | 2( - /         | ,                   |           | ,            |
| I. Water heating                                                         | g energy red               | quirement                 |                   |                        |                    |                     |                   |                   |                 |               |                |                     |           |              |
|                                                                          |                            |                           |                   |                        |                    |                     |                   |                   |                 |               |                |                     | kWh,      | /year        |
| ssumed occupar                                                           | ncy, N                     |                           |                   |                        |                    |                     |                   |                   |                 |               |                | 2.53                | (42)      |              |
| If TFA > 13.9, I                                                         | N = 1 + 1.76               | x [1 - exp(-              | 0.000349 x        | (TFA - 13.9            | $(0)^2$ )] + 0.002 | 13 x (TFA -         | 13.9)             |                   |                 |               |                |                     |           |              |
| If TFA ≤ 13.9, I                                                         | N = 1                      |                           |                   |                        |                    |                     |                   |                   |                 |               |                |                     |           |              |
| nnual average h                                                          | ot water us                | age in litres             | s per day Vo      | d,average =            | (25 x N) +         | 36                  |                   |                   |                 |               | 9              | 4.39                | (43)      |              |
| nnual average h                                                          |                            | -                         |                   | by 5% if th            | e dwelling         | is designed         | to achi           | eve a wa          | ter use         | target of     | not mo         | re than 1           | 25 litres |              |
| er person per da                                                         | ıy (all water              | use, hot ar               | nd cold)          |                        |                    |                     |                   |                   |                 |               |                |                     |           |              |
|                                                                          | Jan                        | Feb                       | Mar               | Apr                    | May                | Jun                 | Jul               | Α                 | lug             | Sep           | Oc             | t N                 | lov       | Dec          |
| ot water usage i                                                         |                            |                           |                   |                        |                    |                     | 1 04 0            | - 00              | 2 72            | 02.50         | 000            | 10                  | 0.06      | 102.02       |
| (44)m                                                                    | 103.83                     | 100.06                    | 96.28             | 92.50                  | 88.73              | 84.95               | 84.9              | 5   88            | 3.73            | 92.50         | 96.2           | •                   |           | 103.83       |
|                                                                          | <b>.</b>                   |                           |                   |                        |                    | <b>-</b> /2         |                   |                   |                 | <del>-</del>  |                | 1)112 =             | 113       | 2.70         |
| nergy content of                                                         | 154.35                     | used - calcu<br>134.99    | 139.30            | thly = 4.190<br>121.45 | 116.53             | nm x Tm/3<br>100.56 | 93.1              |                   | th (see<br>6.93 | 108.20        | 1c 1d)<br>126. | 10 12               | 7.65      | 149.48       |
|                                                                          | 134.33                     | 134.33                    | 133.30            | 121.43                 | 110.33             | 100.56              | <sub>]</sub> 33.1 | 0   10            | 0.33            | 100.20        | -              |                     |           |              |
| (45)M                                                                    |                            |                           |                   |                        |                    |                     |                   |                   |                 |               | 2(4)           | 5)112 =             | 148       | 8.70         |
|                                                                          | ata- b                     | . a. a.t t t              | of use /== 1      |                        | tora1 -            | tor 0 :- 1-         | (00 / 10)         | to 1011           |                 |               |                |                     |           |              |
| instantaneous v                                                          |                            | -                         |                   |                        |                    |                     |                   | to (61)           |                 |               |                |                     |           |              |
| instantaneous v                                                          | eating includ              | de distribut              |                   |                        |                    |                     |                   | to (61)           |                 |               |                |                     |           |              |
| (45)m<br>instantaneous vor community here<br>istribution loss (<br>(46)m | eating includ              | de distribut              |                   |                        |                    |                     |                   |                   | 5.04            | 16.23         | 18.9           | 31 20               | 0.65      | 22.42        |

(61)

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (61)m 0.00

Total heat required for water heating calculated for each month 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m 238.28 210.80 | 223.23 | 202.67 | 200.46 | 181.78 | 177.11 190.86 189.43 210.03 218.87 233.41 (62)m

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)

(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)

(63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∑(63)1...12 = 0.00 (63)

Output from water heater for each month, kWh/month (62)m + (63)m

(64)m 238.28 210.80 223.23 202.67 200.46 181.78 177.11 190.86 189.43 210.03 218.87 233.41

> $\Sigma(64)1...12 =$ 2476.94

if (64)m < 0 then set to 0

Heat gains from water heating, kWh/month  $0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ 

118.47 | 105.53 | 113.46 | 105.36 | 105.89 98.42 98.13 102.70 100.96 109.07 110.75 116.85 (65)m(65)

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

| 5. Internal gains  | (see Table    | 5 and 5a)    |             |              |              |           |         |         |         |         |         |         |      |
|--------------------|---------------|--------------|-------------|--------------|--------------|-----------|---------|---------|---------|---------|---------|---------|------|
|                    | Jan           | Feb          | Mar         | Apr          | May          | Jun       | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |      |
| Metabolic gains (  | Table 5), Wa  | atts         |             |              |              |           |         |         |         |         |         |         |      |
| (66)m              | 152.06        | 152.06       | 152.06      | 152.06       | 152.06       | 152.06    | 152.06  | 152.06  | 152.06  | 152.06  | 152.06  | 152.06  | (66) |
| Lighting gains (ca | lculated in A | Appendix L,  | equation L  | 9 or L9a), a | lso see Tab  | le 5      |         |         |         |         |         |         |      |
| (67)m              | 50.73         | 45.05        | 36.64       | 27.74        | 20.74        | 17.51     | 18.92   | 24.59   | 33.00   | 41.90   | 48.91   | 52.14   | (67) |
| Appliances gains   | (calculated i | n Appendix   | L, equatio  | n L13 or L1  | 3a), also se | e Table 5 |         |         |         |         |         |         |      |
| (68)m              | 339.70        | 343.22       | 334.34      | 315.43       | 291.56       | 269.12    | 254.13  | 250.61  | 259.49  | 278.40  | 302.27  | 324.71  | (68) |
| Cooking gains (ca  | lculated in A | Appendix L,  | equation L  | 15 or L15a)  | , also see T | able 5    |         |         |         |         |         |         |      |
| (69)m              | 52.74         | 52.74        | 52.74       | 52.74        | 52.74        | 52.74     | 52.74   | 52.74   | 52.74   | 52.74   | 52.74   | 52.74   | (69) |
| Pumps and fans g   | ains (Table   | 5a)          |             |              |              |           |         |         |         |         |         |         |      |
| (70)m              | 0.00          | 0.00         | 0.00        | 0.00         | 0.00         | 0.00      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | (70) |
| Losses e.g. evapo  | ration (nega  | ntive values | ) (Table 5) |              |              |           |         |         |         |         |         |         |      |
| (71)m              | -101.38       | -101.38      | -101.38     | -101.38      | -101.38      | -101.38   | -101.38 | -101.38 | -101.38 | -101.38 | -101.38 | -101.38 | (71) |
| Water heating ga   | ins (Table 5) | )            |             |              |              |           |         |         |         |         |         |         |      |
| (72)m              | 159.23        | 157.04       | 152.50      | 146.33       | 142.33       | 136.69    | 131.89  | 138.04  | 140.22  | 146.61  | 153.82  | 157.05  | (72) |
|                    |               |              |             |              |              |           |         |         |         |         |         |         |      |

(301)

Fraction of space heating from secondary/supplementary system (Table 11)

| Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       |             | 1.00                                                                                                                                      | (302)                                                                            |                                                                                               |                                                                                                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Community scheme fractions obtained from plant design specifica                                                                                                                                                                                                                                                                                                                                                                                                                           | tion or operational red                                               | cords:      |                                                                                                                                           |                                                                                  |                                                                                               |                                                                                                                         |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       |             | 1.00                                                                                                                                      | (303b)                                                                           |                                                                                               |                                                                                                                         |
| Fraction of total space heat from community boilers (302) x (303b                                                                                                                                                                                                                                                                                                                                                                                                                         | ) =                                                                   |             | 1.00                                                                                                                                      | (304b)                                                                           |                                                                                               |                                                                                                                         |
| Factor for control and charging method (Table 4c(3)) for communi                                                                                                                                                                                                                                                                                                                                                                                                                          | ity space heating                                                     |             | 1.00                                                                                                                                      | (305)                                                                            |                                                                                               |                                                                                                                         |
| Factor for control and charging method (Table 4c(3)) for communi                                                                                                                                                                                                                                                                                                                                                                                                                          | ity water heating                                                     |             | 1.00                                                                                                                                      | (305a)                                                                           |                                                                                               |                                                                                                                         |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |             | 0.10                                                                                                                                      | (306)                                                                            |                                                                                               |                                                                                                                         |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |             |                                                                                                                                           |                                                                                  | kWh/year                                                                                      |                                                                                                                         |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |             |                                                                                                                                           |                                                                                  | 8657.83                                                                                       | ]                                                                                                                       |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       |             | 865.78                                                                                                                                    | (307b)                                                                           |                                                                                               |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |             |                                                                                                                                           |                                                                                  |                                                                                               |                                                                                                                         |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                       |             |                                                                                                                                           |                                                                                  |                                                                                               | -                                                                                                                       |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |             |                                                                                                                                           |                                                                                  | 2476.94                                                                                       |                                                                                                                         |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                       |             |                                                                                                                                           |                                                                                  |                                                                                               |                                                                                                                         |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                       |             |                                                                                                                                           | (310b)                                                                           |                                                                                               | ,                                                                                                                       |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                       | 0.01 x [(   | 307a)(307e) + (310                                                                                                                        | 0a)(310e)] =                                                                     | 11.13                                                                                         | (313)                                                                                                                   |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |             | _                                                                                                                                         |                                                                                  | 1                                                                                             |                                                                                                                         |
| mechanical ventilation fans - balanced, extract or positive inpu                                                                                                                                                                                                                                                                                                                                                                                                                          | t from outside                                                        |             |                                                                                                                                           | 0.00                                                                             |                                                                                               | (330a)                                                                                                                  |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |             |                                                                                                                                           | 0.00                                                                             |                                                                                               | (330b)                                                                                                                  |
| pump for solar water heating  Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                       |             | (3302) + (33)                                                                                                                             | 0.00<br>0b) + (330g) =                                                           | 0.00                                                                                          | (330g)<br>(331)                                                                                                         |
| Total electricity for the above, kwilly year                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       |             | (3304) 1 (33                                                                                                                              | ob) (330g) –                                                                     | 0.00                                                                                          | ] (331)                                                                                                                 |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       |             |                                                                                                                                           |                                                                                  | 358.34                                                                                        | (332)                                                                                                                   |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                       |             |                                                                                                                                           |                                                                                  |                                                                                               |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                       |             |                                                                                                                                           |                                                                                  |                                                                                               |                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Heat or fuel<br>kWh/year                                              |             | Fuel price<br>(Table 12)                                                                                                                  |                                                                                  | Fuel cost £/year                                                                              | •                                                                                                                       |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                       | x           | •                                                                                                                                         | x 0.01 =                                                                         | Fuel cost £/year                                                                              | (340b)                                                                                                                  |
| Space heating from community boilers Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                 | kWh/year                                                              | x<br>x      | (Table 12)                                                                                                                                |                                                                                  | -                                                                                             | 1                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kWh/year<br>865.78                                                    |             | (Table 12)                                                                                                                                | x 0.01 =                                                                         | 32.73                                                                                         | (340b)                                                                                                                  |
| Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 865.78<br>247.69                                                      | x           | (Table 12)  3.78  3.78                                                                                                                    | x 0.01 =<br>x 0.01 =                                                             | 32.73<br>9.36                                                                                 | (340b)<br>(342b)                                                                                                        |
| Water heating from community boilers Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                       | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                                             | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                 | 32.73<br>9.36<br>0.00                                                                         | (340b)<br>(342b)<br>(349)                                                                                               |
| Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                              | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46                                                                                                             | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                     | 32.73<br>9.36<br>0.00<br>41.07                                                                | (340b)<br>(342b)<br>(349)<br>(350)                                                                                      |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                     | 865.78<br>247.69                                                      | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00                                                      | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)                                                                   |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                         | 865.78<br>247.69                                                      | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15                                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                         | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15                                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                | 865.78<br>247.69                                                      | x<br>x      | 3.78 3.78 11.46 11.46                                                                                                                     | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                      | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69<br>90.39                   | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)                                                        |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                  | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69<br>90.39<br>90             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme                                                                                                                                                        | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e)                                                                                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69<br>90.39<br>90             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69<br>90.39<br>90             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme                                                                                                                                                        | kWh/year  865.78  247.69  0.00  358.34                                | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73  9.36  0.00  41.07  106.00  189.15  0.47  0.69  90.39  90  B                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | 865.78<br>247.69                                                      | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73<br>9.36<br>0.00<br>41.07<br>106.00<br>189.15<br>0.47<br>0.69<br>90.39<br>90             | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP)                                                                                                       | kWh/year  865.78  247.69  0.00  358.34  Energy used                   | x<br>x      | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73  9.36  0.00  41.07  106.00  189.15  0.47  0.69  90.39  90  B                            | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)                                  |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | 865.78 247.69 0.00 358.34  Energy used kWh/year                       | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)                     | 32.73  9.36  0.00  41.07  106.00  189.15  0.47  0.69  90.39  90  B  Emissions (kgCO2/year)    | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)                                                                             | kWh/year  865.78  247.69  0.00  358.34  Energy used kWh/year  1484.64 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198                        | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>- [(4) + 45.0] = | 32.73 9.36 0.00 41.07 106.00 189.15  0.47 0.69 90.39 90 B  Emissions (kgCO2/year) 293.96      | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)                       |
| Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from other community sources (not CHP) Efficiency of boilers (%)  Emissions from boilers (Mains gas) Electrical energy for heat distribution | kWh/year  865.78  247.69  0.00  358.34  Energy used kWh/year  1484.64 | x<br>x<br>x | (Table 12)  3.78  3.78  11.46  11.46  (340a)(342e) -  [(355) x (356)] ÷  75.00  Emission Factor (kgCO2/kWh)  0.198  0.517  (363)(366) + ( | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)<br>- [(4) + 45.0] = | 32.73 9.36 0.00 41.07 106.00 189.15  0.47 0.69 90.39 90 B  Emissions (kgCO2/year) 293.96 5.76 | ] (340b)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355)<br>] (356)<br>] (357)<br>] (358)<br>] (368)<br>] (368) |

| Electricity for pumps and fans within dwelling | 0.00   | x | 0.000 | =             | 0.00   | (378) |
|------------------------------------------------|--------|---|-------|---------------|--------|-------|
| Electricity for lighting                       | 358.34 | х | 0.517 | =             | 185.26 | (379) |
| Total carbon dioxide emissions                 |        |   |       | ∑(376)(382) = | 484.97 | (383) |
| Dwelling carbon dioxide emissions rate         |        |   |       | (383) ÷ (4) = | 5.77   | (384) |
| El value                                       |        |   |       |               | 94.96  | ]     |
| El rating (see section 14)                     |        |   |       |               | 95     | (385) |
| El band                                        |        |   |       |               | А      |       |

## Primary energy from other community sources (not CHP)

| Efficiency of boilers (%)                      |                         | 75.00                    | (367b*)         |               |        |
|------------------------------------------------|-------------------------|--------------------------|-----------------|---------------|--------|
|                                                | Energy used<br>kWh/year | Primary Energy<br>Factor |                 | Primary Energ | у      |
| Primary energy - boilers (Mains gas)           | 1484.64 x               | 1.02                     | =               | 1514.33       | (368*) |
| Electrical energy for heat distribution        | 11.13 x                 | 2.92                     | =               | 32.51         | (372*) |
| Total primary energy from community systems    |                         | (363*)(366*) + (3        | 68*)(372*) =    | 1546.84       | (373*) |
| Space and water heating                        |                         | (373*) + (37             | 74*) + (375*) = | 1546.84       | (376*) |
| Electricity for pumps and fans within dwelling | 0.00 x                  | 0.00                     | =               | 0.00          | (378*) |
| Electricity for lighting                       | 358.34 x                | 2.92                     | =               | 1046.34       | (379*) |
| Total primary energy kWh/year                  |                         | Σ(3                      | 76*)(382*) =    | 2593.18       | (383*) |
| Primary energy kWh/m2/year                     |                         |                          | (383*) ÷ (4) =  | 30.87         | (384*) |



# **APPENDIX 1.2 SAP CALCULATIONS ACTUAL CASE**



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name | Miss Olivia Finch                                   | Assessor number | 1422       |
|---------------|-----------------------------------------------------|-----------------|------------|
| Client        |                                                     | Last modified   | 16/11/2011 |
| Address       | 1 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimensions | ;                               |            |   |                           |              |             |      |
|--------------------------------|---------------------------------|------------|---|---------------------------|--------------|-------------|------|
|                                |                                 | Area (m²)  |   | Average storey height (m) |              | Volume (m³) |      |
| Lowest occupied                |                                 | 56.00 (1a) | x | 2.85                      | (2a) =       | 159.60      | (3a) |
| +1                             |                                 | 34.00 (1b) | x | 2.85                      | (2b) =       | 96.90       | (3b) |
| Total floor area               | (1a) + (1b) + (1c) + (1d)(1n) = | 90.00 (4)  |   |                           |              |             |      |
| Dwelling volume                |                                 |            |   | (3a) + (3b) + (3c)        | + (3d)(3n) = | 256.50      | (5)  |
|                                |                                 |            |   |                           |              |             |      |
| 2. Ventilation rate            |                                 |            |   |                           |              |             |      |
|                                |                                 |            |   |                           |              | m³ per hour |      |
| Number of chimneys             |                                 |            |   | 0                         | x 40 =       | 0           | (6a) |
| Number of open flues           |                                 |            |   | 0                         | x 20 =       | 0           | (6b) |
| Number of intermittent fans    |                                 |            |   | 0                         | x 10 =       | 0           | (7a) |
| Number of passive vents        |                                 |            |   | 0                         | x 10 =       | 0           | (7b) |

Infiltration due to chimneys, flues, fans, PSVs

$$(6a) + (6b) + (7a) + (7b) + (7c) = 0$$
  $\div (5) =$ 

If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then  $(18) = [(17) \div 20] + (8)$ , otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

0.70 1 - [0.075 x (19)] = (20)

0 Air changes per hour

0.00

3.00

0.15

4

(8)

(17)

(18)

(19)

x 40 =

Adjusted infiltration rate

Shelter factor

Number of flueless gas fires

(18) x (20) = 0.10 (21)

Infiltration rate modified for monthly wind speed:

|                   | Jan         | Feb        | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct    | Nov  | Dec   |      |
|-------------------|-------------|------------|------|------|------|------|------|------|------|--------|------|-------|------|
| Monthly average v | wind speed  | from Table | 7    |      |      |      |      |      |      |        |      |       |      |
| (22)m             | 5.40        | 5.10       | 5.10 | 4.50 | 4.10 | 3.90 | 3.70 | 3.70 | 4.20 | 4.50   | 4.80 | 5.10  |      |
|                   |             |            |      |      |      |      |      |      |      | ∑(22)1 | 12 = | 54.10 | (22) |
| Wind Factor (22a) | m = (22)m = | <u>-</u> 1 |      |      |      |      |      |      |      |        |      |       |      |

| (22a)m | 1.35 | 1.27 | 1.27 | 1.12 | 1.02 | 0.98 | 0.92 | 0.92 | 1.05 | 1.12 | 1.20 | 1.27 |  |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|--|
|        |      |      |      |      |      |      |      |      |      |      |      |      |  |

∑(22a)1...12 = 13.52

Adjusted infiltration rate (allowing for shelter and wind speed) =  $(21) \times (22a)m$ 

| (22b)m | 0.14 | 0.13 | 0.13 | 0.12 | 0.11 | 0.10 | 0.10 | 0.10 | 0.11 | 0.12 | 0.13 | 0.13 |
|--------|------|------|------|------|------|------|------|------|------|------|------|------|
|        |      |      |      |      |      |      |      |      |      |      |      |      |

Σ(22b)1...12 = 1.42 (22b)

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

| If exhaust air         | heat pump ι   | using Apper   | ndix N, (23b   | ) = (23a) ×  | Fmv (equa                | ation (N5)),  | otherwise        | (23b) = (23a | a)          |             |         | 0.5      | (23b)       |
|------------------------|---------------|---------------|----------------|--------------|--------------------------|---------------|------------------|--------------|-------------|-------------|---------|----------|-------------|
| If balanced w          | ith heat reco | very: effici  | ency in % al   | lowing for   | in-use fact              | tor (from Ta  | ble 4h) =        |              |             |             |         | N/A      | (23c)       |
| c) If whole ho         | use extract v | ventilation ( | or positive i  | nput ventil  | ation from               | n outside     |                  |              |             |             |         |          |             |
| •                      | < 0.5 x (23b) |               | •              | •            |                          |               | 3b)              |              |             |             |         |          |             |
| (24c)m                 | 0.50          | 0.50          | 0.50           | 0.50         | 0.50                     | 0.50          | 0.50             | 0.50         | 0.50        | 0.50        | 0.50    | 0.50     | (24c)       |
| Effective air char     | nge rate - en | ter (24a) or  | (24b) or (2    | 4c) or (24d  | ) in box (2!             | 5)            | •                | •            |             | •           |         |          |             |
| (25)m                  | 0.50          | 0.50          | 0.50           | 0.50         | 0.50                     | 0.50          | 0.50             | 0.50         | 0.50        | 0.50        | 0.50    | 0.50     | (25)        |
| 3. Heat losses a       | nd heat loss  | paramete      | r              |              |                          |               |                  |              |             |             |         |          |             |
| The κ-value is the     |               |               |                | able 1e.     |                          |               |                  |              |             |             |         |          |             |
|                        | lement        | ,,,           | Gross          | Oper         | nings,                   | Net area      | U-v              | alue,        | A x U,      | K-Va        | ılue,   | Ахк,     |             |
|                        |               |               | Area, m²       | -            | 1 <sup>2</sup>           | A, m²         | W                | /m²K         | W/K         | kJ/ı        | m².K    | kJ/K     |             |
| Window*                |               |               |                |              |                          | 10.00         | x 1              | .42 =        | 14.15       | N           | /A      | N/A      | (27)        |
| Basement floor         |               |               |                |              |                          | 56.00         | x 0              | .13 =        | 7.28        | N           | /A      | N/A      | (28)        |
| External wall          |               |               |                |              |                          | 27.90         | x 0              | .20 =        | 5.58        | N           | /A      | N/A      | (29a)       |
| Total area of ext      | ernal elemer  | nts ∑A, m²    |                |              |                          | 93.90         | (31)             |              |             |             |         |          |             |
| * for windows ar       | nd roof wind  | ows, effecti  | ve window      | U-value is d | calculated               | using form    | _<br>ula 1/[(1/U | Value)+0.0   | 4] paragrap | oh 3.2      |         |          |             |
| Fabric heat loss,      | W/K = Σ(A ×   | U)            |                |              |                          |               |                  |              | (2          | 6)(30) + (  | 32) =   | 27.01    | (33)        |
| Heat capacity Cm       |               | •             |                |              |                          |               |                  | (28)         |             | + (32a)(3   |         | N/A      | (34)        |
| Thermal mass pa        |               | 1P) in kI/m²  | ²K             |              |                          |               |                  | ( - 7        |             | ted separat |         | 100.00   | (35)        |
| Thermal bridges:       |               |               |                | , K          |                          |               |                  |              | Carcara     | teu separat |         | 14.08    | ] (36)      |
| if details of th       |               |               |                |              | 5 x (31)                 |               |                  |              |             |             |         | 14.00    | (30)        |
| Total fabric heat      | _             | ing are not   | Kilowii tileli | (30) 0.1.    | 3 X (31)                 |               |                  |              |             | (33) + (    | 36) -   | 41.10    | (37)        |
|                        |               | ad manthly    | . 0 22 4/25    | `\m v (F\    |                          |               |                  |              |             | (33) + (    | 30) – [ | 41.10    | (37)        |
| Ventilation heat (38)m | 42.32         | 42.32         | 42.32          | 42.32        | 42.32                    | 42.32         | 42.32            | 42.32        | 42.32       | 42.32       | 42.32   | 42.32    | (38)        |
| Heat transfer coe      |               | 1             |                | 72.32        | 42.32                    | 42.32         | 72.52            | 42.52        | 72.32       | 72.32       | 72.32   | 42.32    | (30)        |
| (39)m                  | 83.42         | 83.42         | 83.42          | 83.42        | 83.42                    | 83.42         | 83.42            | 83.42        | 83.42       | 83.42       | 83.42   | 83.42    | ٦           |
| (33)                   | 03.12         | 03.12         | 05:12          | 03.12        | 03.12                    | 1 03.12       | 1 03.12          |              | 1           | ∑(39)112,   |         | 83.42    | _<br>  (39) |
| Heat loss parame       | ater (HID) M  | 1/m²K (30)    | m ÷ (4)        |              |                          |               |                  |              | Weruge -    | Z(33)112)   |         | 05.42    | (55)        |
| (40)m                  | 0.93          | 0.93          | 0.93           | 0.93         | 0.93                     | 0.93          | 0.93             | 0.93         | 0.93        | 0.93        | 0.93    | 0.93     | 7           |
| (10)                   | 0.50          | 0.55          | 0.55           | 0.55         | 0.50                     | 0.55          | 0.55             |              |             | Σ(40)112,   |         | 0.93     | (40)        |
|                        |               |               |                |              |                          |               |                  |              | Weruge -    | Z(+0)112)   |         | 0.55     | ] (40)      |
| 4. Water heatin        | ig energy re  | quirement     |                |              |                          |               |                  |              |             |             |         |          |             |
|                        |               |               |                |              |                          |               |                  |              |             |             | ı       | (Wh/year |             |
| Assumed occupa         | ncy, N        |               |                |              |                          |               |                  |              |             | 2.63        | (42     | 2)       |             |
| If TFA > 13.9,         | N = 1 + 1.76  | x [1 - exp(-  | 0.000349 x     | (TFA - 13.9  | ) <sup>2</sup> )] + 0.00 | 13 x (TFA - 1 | 13.9)            |              |             |             |         |          |             |
| If TFA ≤ 13.9,         | N = 1         |               |                |              |                          |               |                  |              |             |             |         |          |             |
| Annual average h       | not water us  | age in litres | per day Vd     | l,average =  | (25 x N) +               | 36            |                  |              |             | 96.56       | 5 (43   | 3)       |             |
| Annual average l       |               | _             |                | _            |                          |               | to achieve       | a water us   | e target of |             |         | tres     |             |
| per person per de      |               | _             |                | , ,          | J                        | 3             |                  |              | ,           |             |         |          |             |
|                        | Jan           | Feb           | Mar            | Apr          | May                      | Jun           | Jul              | Aug          | Sep         | Oct         | Nov     | Dec      |             |
| Hot water usage        | in litres per | day for eac   | h month Vo     |              | •                        | le 1c x (43)  |                  | J            | ·           |             |         |          |             |
| (44)m                  | 106.22        | 102.35        | 98.49          | 94.63        | 90.77                    | 86.90         | 86.90            | 90.77        | 94.63       | 98.49       | 102.35  | 106.22   |             |
|                        |               | •             |                |              |                          |               | •                |              | •           | Σ(44)1      | .12 =   | 1158.73  | (44)        |
| Energy content of      | of hot water  | used - calcเ  | ılated mont    | :hly = 4.190 | x Vd,m x                 | nm x Tm/36    | 500 kWh          | /month (see  | Tables 1b,  |             |         |          | _           |
| (45)m                  | 157.89        | 138.09        | 142.50         | 124.24       | 119.21                   | 102.87        | 95.32            | 109.38       | 110.69      | 129.00      | 140.81  | 152.91   | 7           |
|                        |               | •             | •              | -            | •                        | •             | •                | •            | •           | Σ(45)1      | .12 =   | 1522.91  | (45)        |
| If instantaneous       | water heatir  | ng at point i | of use (no h   | ot water st  | oraae). en               | nter 0 in box | es (46) to 1     | (61)         |             | _, -,       |         | <u> </u> | _ ` -/      |
| For community h        |               | -             |                |              |                          |               |                  | •            |             |             |         |          |             |
| Distribution loss      | _             |               |                |              |                          | ,             |                  |              |             |             |         |          |             |
| 004.1011 1033          | 3.23 A (+3)II | ·-            |                |              |                          |               |                  |              |             |             |         |          |             |

| (46)m               | 23.68          | 20.71         | 21.38         | 18.64          | 17.88         | 15.43        | 14.30          | 16.41        | 16.60        | 19.35       | 21.12   | 22.94  | (46) |
|---------------------|----------------|---------------|---------------|----------------|---------------|--------------|----------------|--------------|--------------|-------------|---------|--------|------|
| Water storage loss  | s:             |               |               |                |               |              |                |              |              |             |         |        |      |
| b) If manufacturer  | r's declared   | cylinder lo   | ss factor is  | not known      | :             |              |                |              |              |             |         |        |      |
| Cylinder volum      | ne (litres) in | cluding any   | solar stora   | nge within s   | same cylind   | er           |                |              | 110.00       | (50)        |         |        |      |
| If community h      | eating and     | no tank in    | dwelling, e   | nter 110 lit   | res in box (. | 50)          |                |              |              |             |         |        |      |
| Otherwise if no     | stored hot     | t water (this | s includes ir | nstantaneo     | us combi b    | oilers) ente | r '0' in box ( | 50)          |              |             |         |        |      |
| Hot water stor      | age loss fac   | ctor from Ta  | able 2 (kWh   | n/litre/day)   |               |              |                |              | 0.02         | (51)        |         |        |      |
| If community h      | neating see    | SAP 2009 s    | ection 4.3    |                |               |              |                |              |              |             |         |        |      |
| Volume factor       | from Table     | 2a            |               |                |               |              |                |              | 1.03         | (52)        |         |        |      |
| Temperature fa      | actor from     | Table 2b      |               |                |               |              |                |              | 1.00         | (53)        |         |        |      |
| Energy lost fro     | m water sto    | orage, kW     | h/day (50)    | ) x (51) x (5  | 2) x (53)     |              |                |              | 1.72         | (54)        |         |        |      |
| Enter (49) or (54)  | in (55)        |               |               |                |               |              |                |              | 1.72         | (55)        |         |        |      |
| Water storage los   | s calculated   | d for each m  | nonth = (55   | ) x (41)m      |               |              |                |              |              |             |         |        |      |
| (56)m               | 53.36          | 48.19         | 53.36         | 51.64          | 53.36         | 51.64        | 53.36          | 53.36        | 51.64        | 53.36       | 51.64   | 53.36  | (56) |
| If cylinder contain | s dedicated    | d solar stora | nge, = (56)n  | า x [(50) - (I | H11)] ÷ (50)  | , else = (56 | )m where (     | H11) is fror | n Appendix   | ¢Η          |         |        | -    |
| (57)m               | 53.36          | 48.19         | 53.36         | 51.64          | 53.36         | 51.64        | 53.36          | 53.36        | 51.64        | 53.36       | 51.64   | 53.36  | (57) |
| Primary circuit los | s (annual) f   | rom Table     | 3             |                |               |              |                | 3            | 360.00       | (58)        |         |        |      |
| Primary circuit los | s for each r   | month (58)    | ÷ 365 × (41   | )m             |               |              |                |              |              |             |         |        |      |
| (modified by facto  | or from Tab    | le H5 if the  | re is solar w | vater heatii   | ng and a cy   | linder ther  | mostat)        |              |              |             |         |        |      |
| (59)m               | 30.58          | 27.62         | 30.58         | 29.59          | 30.58         | 29.59        | 30.58          | 30.58        | 29.59        | 30.58       | 29.59   | 30.58  | (59) |
| Combi loss for eac  | ch month fr    | om Table 3    | a, 3b or 3c   | (enter '0' if  | not a com     | bi boiler)   |                |              |              |             |         |        |      |
| (61)m               | 0.00           | 0.00          | 0.00          | 0.00           | 0.00          | 0.00         | 0.00           | 0.00         | 0.00         | 0.00        | 0.00    | 0.00   | (61) |
| Total heat require  | d for water    | heating ca    | lculated for  | r each mon     | th 0.85 × (4  | 15)m + (46)  | m + (57)m +    | - (59)m + (6 | 51)m         |             |         |        | _    |
| (62)m               | 241.83         | 213.90        | 226.43        | 205.46         | 203.14        | 184.09       | 179.25         | 193.32       | 191.91       | 212.93      | 222.04  | 236.84 | (62) |
| Solar DHW input of  |                |               |               |                | -             | iantity) (en | ter '0' if no  | solar contr  | ibution to v | water heati | ng)     |        |      |
| (add additional lin |                | 1             |               | 1              | · · · · · ·   |              |                |              |              | 1           | 1       |        | 7    |
| (63)m               | 0.00           | 0.00          | 0.00          | 0.00           | 0.00          | 0.00         | 0.00           | 0.00         | 0.00         | 0.00        | 0.00    | 0.00   | ]    |
|                     |                |               |               |                |               |              |                |              |              | ∑(63)1      | .12 =   | 0.00   | (63) |
| Output from wate    |                |               |               |                |               |              |                |              |              |             |         |        | 1    |
| (64)m               | 241.83         | 213.90        | 226.43        | 205.46         | 203.14        | 184.09       | 179.25         | 193.32       | 191.91       |             | 222.04  | 236.84 | ]    |
|                     |                |               |               |                |               |              |                |              |              | ∑(64)1      | .12 = 2 | 511.15 | (64) |
| if (64)m < 0 then s |                |               |               |                |               |              |                |              |              |             |         |        |      |
| Heat gains from w   |                | i a           |               |                |               |              |                |              |              |             |         |        | 1 ,> |
| (65)m               | 119.65         | 106.56        | 114.53        | 106.29         | 106.78        | 99.18        | 98.84          | 103.52       | 101.78       | 110.04      | 111.80  | 117.99 | (65) |
| include (57)        | )m in calcul   | ation of (65  | 5)m only if c | cylinder is ii | n the dwelli  | ng or hot w  | ater is fron   | n communi    | ty heating   |             |         |        |      |
| 5. Internal gains   | (see Table     | 5 and 5a)     |               |                |               |              |                |              |              |             |         |        |      |
| J                   | Jan            | Feb           | Mar           | Apr            | May           | Jun          | Jul            | Aug          | Sep          | Oct         | Nov     | Dec    |      |
| Metabolic gains (T  |                |               |               |                | ,             | 2 2          |                |              |              |             |         |        |      |
| (66)m               | 157.54         | 157.54        | 157.54        | 157.54         | 157.54        | 157.54       | 157.54         | 157.54       | 157.54       | 157.54      | 157.54  | 157.54 | (66) |
| Lighting gains (cal | culated in A   | Appendix L,   | equation L    | 9 or L9a), a   | lso see Tab   | le 5         |                |              |              |             |         |        | •    |
| (67)m               | 62.92          | 55.88         | 45.45         | 34.41          | 25.72         | 21.71        | 23.46          | 30.50        | 40.93        | 51.97       | 60.66   | 64.67  | (67) |
| Appliances gains (  | calculated i   | in Appendix   | L, equatio    | n L13 or L1    | 3a), also se  | e Table 5    |                |              |              |             |         |        |      |
| (68)m               | 356.83         | 360.54        | 351.20        | 331.34         | 306.26        | 282.70       | 266.95         | 263.25       | 272.58       | 292.45      | 317.52  | 341.09 | (68) |
| Cooking gains (cal  | culated in A   | Appendix L,   | equation L    | 15 or L15a     | ), also see T | able 5       |                |              |              |             |         |        |      |
| (69)m               | 53.38          | 53.38         | 53.38         | 53.38          | 53.38         | 53.38        | 53.38          | 53.38        | 53.38        | 53.38       | 53.38   | 53.38  | (69) |
|                     |                |               |               |                |               |              |                |              |              |             |         |        |      |

-105.03 (71)

(70)

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

Pumps and fans gains (Table 5a)

0.00

Losses e.g. evaporation (negative values) (Table 5)

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

0.00

-105.03

(70)m

(71)m

| Matau baatina asi        | /Table 5            | 1                        |              |              |               |              |             |                            |             |                            |        |           |         |
|--------------------------|---------------------|--------------------------|--------------|--------------|---------------|--------------|-------------|----------------------------|-------------|----------------------------|--------|-----------|---------|
| Water heating gain (72)m | 160.81              | 158.58                   | 153.94       | 147.62       | 143.53        | 137.75       | 132.85      | 139.13                     | 141.37      | 147.90                     | 155.28 | 158.59    | (72)    |
| Total internal gain      |                     |                          |              |              |               |              | 132.03      | 133.13                     | 111.07      | 117.50                     | 133.20 | 130.33    | _ (, _, |
| (73)m                    | 686.46              | 680.89                   | 656.48       | 619.26       | 581.40        | 548.06       | 529.16      | 538.78                     | 560.77      | 598.21                     | 639.35 | 670.24    | (73)    |
| 6. Solar gains           |                     |                          |              |              |               |              |             |                            |             |                            |        |           |         |
| Solar gains are cal      | culated usi         | ing solar flu            | x from Tab   | le 6a and a  | ssociated e   | quations to  | convert to  | the applica                | able orient | ation.                     |        |           |         |
| Rows (74) to (82)        | are used 12         | times, one               | for each m   | onth, repe   | ating as ne   | eded if ther | e is more t | han one wii                | ndow type.  |                            |        |           |         |
| Details for month        | of January          | and annual               | totals are   | shown belo   | ow:           |              |             |                            |             |                            |        |           |         |
|                          | P                   | Access facto<br>Table 6d | or           | Area m²      | So            | lar flux W/  | _           | Specific da<br>or Table 6b |             | Specific da<br>or Table 60 |        | Gains (W) | ١       |
| South                    |                     | 0.54                     | x            | 10.00        | ] x           | 47.32        | x           | 0.53                       | _ x         | 1.00                       | =      | 135.44    | (78)    |
| Solar gains in watt      | s, calculate        | ed for each              | month ∑(7₄   | 1)m(82)m     | 1             |              |             |                            |             |                            |        |           |         |
| (83)m                    | 135.44              | 220.90                   | 269.73       | 300.84       | 310.67        | 311.67       | 306.63      | 297.31                     | 286.17      | 244.11                     | 160.47 | 117.03    | (83)    |
| Total gains - interr     | nal and sola        | ar (73)m + (             | 83)m         |              |               |              |             |                            |             |                            |        |           |         |
| (84)m                    | 821.90              | 901.79                   | 926.21       | 920.10       | 892.07        | 859.73       | 835.79      | 836.09                     | 846.95      | 842.32                     | 799.82 | 787.26    | (84)    |
| 7. Mean internal         | tomporati           | ıro (boatin)             | r coacon)    |              |               |              |             |                            |             |                            |        |           |         |
|                          |                     |                          |              | fueus Te     | bla 0 Tb1/    | °C)          |             |                            |             |                            |        | 21.00     | (05)    |
| Temperature duri         |                     | •                        | _            |              |               |              |             |                            | C           | 0-4                        | New    | 21.00     | (85)    |
| Utilisation factor f     | Jan<br>or gains for | Feb                      | Mar          | Apr          | May           | Jun          | Jul         | Aug                        | Sep         | Oct                        | Nov    | Dec       |         |
| (86)m                    | 0.90                | 0.87                     | 0.83         | 0.79         | 0.70          | 0.55         | 0.39        | 0.39                       | 0.58        | 0.75                       | 0.87   | 0.91      | (86)    |
| Mean internal tem        |                     |                          |              | <u> </u>     |               | 1 2.22       | 0.00        |                            |             | 1 2                        |        |           | _ (==/  |
| (87)m                    | 19.63               | 19.82                    | 20.11        | 20.35        | 20.67         | 20.88        | 20.97       | 20.97                      | 20.85       | 20.54                      | 19.98  | 19.64     | (87)    |
| Temperature duri         | ng heating          | periods in t             | he living ar | ea from Ta   | ble 9, Th2('  | °C)          |             | '                          |             | !                          |        | •         |         |
| (88)m                    | 20.15               | 20.15                    | 20.15        | 20.15        | 20.15         | 20.15        | 20.15       | 20.15                      | 20.15       | 20.15                      | 20.15  | 20.15     | (88)    |
| Utilisation factor f     | or gains for        | r rest of dw             | elling η2,m  | (see Table   | 9a)           |              |             |                            |             |                            |        |           |         |
| (89)m                    | 0.89                | 0.86                     | 0.81         | 0.76         | 0.66          | 0.50         | 0.32        | 0.32                       | 0.52        | 0.72                       | 0.85   | 0.89      | (89)    |
| Mean internal ten        | nperature i         | n the rest o             | f dwelling 1 | 72 (follow s | teps 3 to 7   | in Table 9c  | )           |                            |             |                            |        |           |         |
| (90)m                    | 18.34               | 18.61                    | 19.01        | 19.35        | 19.77         | 20.03        | 20.13       | 20.13                      | 20.01       | 19.60                      | 18.84  | 18.36     | (90)    |
| Living area fraction     | n                   |                          |              |              |               |              |             | fLA                        | 56.00       | ÷ (4) =                    | =      | 0.62      | (91)    |
| Mean internal tem        | perature f          | or the whol              | le dwelling  | fLA x T1 +(  | 1 - fLA) x T2 | 2            |             |                            |             |                            |        |           | _       |
| (92)m                    | 19.14               | 19.36                    | 19.70        | 19.98        | 20.33         | 20.56        | 20.65       | 20.65                      | 20.53       | 20.18                      | 19.55  | 19.16     | (92)    |
| Apply adjustment         | to the mea          |                          |              |              | le 4e, wher   | e appropria  | ate         |                            |             | 1                          |        |           | 7       |
| (93)m                    | 19.14               | 19.36                    | 19.70        | 19.98        | 20.33         | 20.56        | 20.65       | 20.65                      | 20.53       | 20.18                      | 19.55  | 19.16     | (93)    |
| 8. Space heating         | requireme           | ent                      |              |              |               |              |             |                            |             |                            |        |           |         |
| or opass nearing         | Jan                 | Feb                      | Mar          | Apr          | May           | Jun          | Jul         | Aug                        | Sep         | Oct                        | Nov    | Dec       |         |
| Set Ti to the mean       |                     |                          |              |              | •             |              |             | _                          | -           |                            |        |           | e 9a)   |
| Utilisation factor f     |                     |                          |              | ., 0         | ,             |              | , = ,       |                            |             |                            | J=70   | J . 2.3.  | - /     |
| (94)m                    | 0.87                | 0.84                     | 0.80         | 0.76         | 0.66          | 0.52         | 0.36        | 0.36                       | 0.55        | 0.72                       | 0.84   | 0.88      | (94)    |
| Useful gains, ⊡mG        | m, W = (94          | )m x (84)m               |              |              |               |              |             |                            |             |                            |        |           |         |
| (95)m                    | 718.78              | 761.63                   | 743.70       | 697.50       | 592.88        | 451.33       | 302.39      | 302.40                     | 465.82      | 607.89                     | 672.10 | 691.63    | (95)    |
| Monthly average          | external ter        | mperature 1              | from Table   | 8            |               |              |             |                            |             |                            |        |           |         |
| (96)m                    | 4.50                | 5.00                     | 6.80         | 8.70         | 11.70         | 14.60        | 16.90       | 16.90                      | 14.30       | 10.80                      | 7.00   | 4.90      | (96)    |
| Heat loss rate for       | mean inter          | nal tempera              | ature, Lm, \ | N            |               | _            |             |                            |             |                            |        | _         | _       |

(98) ÷ (4)

1047.13 | 1189.34 | (97)

1954.29

21.71

URN: 65Maygrove-Flat1 version 1 NHER Plan Assessor version 5.3

370.29

(98)

(99)

496.99

0.00

312.89

0.00

312.89

0.00

520.05

0.00

Total per year (kWh/year) =  $\Sigma$ (98)1...5, 10...12 =

782.65

130.02

719.65

94.32

1221.59 | 1198.19 | 1075.88 | 940.59

293.37

374.09

Space heating requirement in  $kWh/m^2/year$ 

(98)m

Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m

247.14

175.03

| 9b. Energy requirements - Community heating scheme                   |                          |            |                          |                  |                 |        |
|----------------------------------------------------------------------|--------------------------|------------|--------------------------|------------------|-----------------|--------|
| Fraction of space heating from secondary/supplementary system (T     | able 11)                 |            | 0.00                     | (301)            |                 |        |
| Fraction of space heating from community system 1 - (301)            |                          |            | 1.00                     | (302)            |                 |        |
| Community scheme fractions obtained from plant design specification  | on or operational re     | cords:     |                          |                  |                 |        |
| Fraction of community DHW from CHP                                   |                          |            | 0.60                     | (303a)           |                 |        |
| Fraction of community DHW from boilers                               |                          |            | 0.40                     | (303b)           |                 |        |
| Fraction of total space heat from community CHP (302) x (303a) =     |                          |            | 0.60                     | (304a)           |                 |        |
| Fraction of total space heat from community boilers (302) x (303b) = | =                        |            | 0.40                     | (304b)           |                 |        |
| Factor for control and charging method (Table 4c(3)) for community   | y space heating          |            | 1.00                     | (305)            |                 |        |
| Factor for control and charging method (Table 4c(3)) for community   | y water heating          |            | 1.00                     | (305a)           |                 |        |
| Distribution loss factor (Table 12c) for community heating system    |                          |            | 0.10                     | (306)            |                 |        |
| Space heating:                                                       |                          |            |                          |                  | kWh/year        | _      |
| Annual space heating requirement                                     |                          |            |                          |                  | 1954.29         |        |
| Space heat from community CHP (98) x (304a) x (305) x (306) =        |                          |            | 117.26                   | (307a)           |                 |        |
| Space heat from community boilers (98) x (304b) x (305) x (306) =    |                          |            | 78.17                    | (307b)           |                 |        |
|                                                                      |                          |            |                          |                  |                 |        |
| Water heating:                                                       |                          |            |                          |                  |                 | _      |
| Annual water heating requirement                                     |                          |            |                          |                  | 2511.15         |        |
| If DHW from community scheme:                                        |                          |            |                          |                  |                 |        |
| Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) =         |                          |            | 150.67                   | (310a)           |                 |        |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =     |                          |            | 100.45                   | (310b)           |                 |        |
| Electricity used for heat distribution                               |                          | 0.01 x [(3 | 307a)(307e) + (3         | 10a)(310e)] =    | 4.47            | (313)  |
| Electricity for pumps and fans within dwelling (Table 4f):           |                          |            |                          |                  |                 |        |
| mechanical ventilation fans - balanced, extract or positive input    | from outside             |            |                          | 74.48            | ]               | (330a) |
| warm air heating system fans                                         |                          |            |                          | 0.00             |                 | (330b) |
| pump for solar water heating                                         |                          |            | (220-) - (2              | 0.00             | 74.40           | (330g) |
| Total electricity for the above, kWh/year                            |                          |            | (330a) + (3              | 30b) + (330g) =  | 74.48           | (331)  |
| Electricity for lighting (calculated in Appendix L):                 |                          |            |                          |                  | 444.45          | (332)  |
| 10b. Fuel costs - Community heating scheme                           |                          |            |                          |                  |                 |        |
|                                                                      | Heat or fuel<br>kWh/year |            | Fuel price<br>(Table 12) |                  | Fuel cost £/yea | r      |
| Space heating from community CHP                                     | 117.26                   | x          | 2.65                     | x 0.01 =         | 3.11            | (340a) |
| Space heating from community boilers                                 | 78.17                    | x          | 3.78                     | x 0.01 =         | 2.95            | (340b) |
| Water heating from community CHP                                     | 150.67                   | x          | 2.65                     | x 0.01 =         | 3.99            | (342a) |
| Water heating from community boilers                                 | 100.45                   | x          | 3.78                     | x 0.01 =         | 3.80            | (342b) |
| Pumps and fans                                                       | 74.48                    | x          | 11.46                    | x 0.01 =         | 8.54            | (349)  |
| Electricity for lighting                                             | 444.45                   | x          | 11.46                    | x 0.01 =         | 50.93           | (350)  |
| Additional standing charges (Table 12)                               |                          |            |                          |                  | 106.00          | (351)  |
| Total energy cost                                                    |                          |            | (340a)(342e)             | ) + (345)(354)   | 179.32          | (355)  |
| 11b. SAP rating - Community heating scheme                           |                          |            |                          |                  |                 |        |
| Energy cost deflator (Table 12)                                      |                          |            |                          |                  | 0.47            | (356)  |
| Energy cost factor (ECF)                                             |                          |            | [(355) x (356)]          | ÷ [(4) + 45.0] = | 0.62            | (357)  |
| SAP value                                                            |                          |            |                          |                  | 91.29           |        |
| SAP rating                                                           |                          |            |                          |                  | 91              | (358)  |
| SAP band                                                             |                          |            |                          |                  | В               |        |
| 12b. Carbon dioxide emissions - Community heating scheme             |                          |            |                          |                  |                 |        |

| Emissions from community CHP (Mains gas)              |                         |        |                             |                 |                           |                    |
|-------------------------------------------------------|-------------------------|--------|-----------------------------|-----------------|---------------------------|--------------------|
| Efficiency of CHP (%)                                 |                         |        |                             | 78.00           |                           | (359)              |
| Heat to power ratio                                   |                         |        |                             | 3.00            |                           | (360)              |
|                                                       | Energy<br>kWh/year      |        | Emissions<br>Factor         |                 | Emissions<br>(kgCO2/year) |                    |
| Space heating from CHP (Mains gas)                    | 200.44                  | х      | 0.198                       | =               | 39.69                     | (363)              |
| less credit emissions for electricity                 | -39.09                  | x      | 0.529                       | =               | -20.68                    | (364)              |
| Water heating from CHP (Mains gas)                    | 257.55                  | x      | 0.198                       | =               | 51.00                     | (365)              |
| less credit emissions for electricity                 | -50.22                  | x      | 0.529                       | =               | -26.57                    | (366)              |
| Emissions from other community sources (not CHP)      |                         |        |                             |                 |                           |                    |
| Efficiency of boilers (%)                             |                         |        | 90.00                       | (367b)          |                           |                    |
|                                                       | Energy used<br>kWh/year |        | Emission Factor (kgCO2/kWh) |                 | Emissions<br>(kgCO2/year) |                    |
| Emissions from boilers (Mains gas)                    | 198.46                  | x      | 0.198                       | =               | 39.30                     | (368)              |
| Electrical energy for heat distribution               | 4.47                    | x      | 0.517                       | =               | 2.31                      | (372)              |
| Total carbon dioxide from community systems           |                         |        | (363)(366) +                | (368)(372) =    | 85.04                     | (373)              |
| Space and water heating                               |                         |        | (373) +                     | (374) + (375) = | 85.04                     | (376)              |
| Electricity for pumps and fans within dwelling        | 74.48                   | x      | 0.517                       | =               | 38.50                     | (378)              |
| Electricity for lighting                              | 444.45                  | x      | 0.517                       | =               | 229.78                    | (379)              |
| Total carbon dioxide emissions                        |                         |        | Σ                           | (376)(382) =    | 353.33                    | (383)              |
| Dwelling carbon dioxide emissions rate                |                         |        |                             | (383) ÷ (4) =   | 3.93                      | (384)              |
| El value                                              |                         |        |                             |                 | 96.49                     |                    |
| El rating (see section 14)                            |                         |        |                             |                 | 96                        | (385)              |
| EI band                                               |                         |        |                             |                 | А                         |                    |
| 13b. Primary energy - Community heating scheme        |                         |        |                             |                 |                           |                    |
| Primary energy from community CHP (Mains gas)         |                         |        |                             |                 |                           |                    |
| Efficiency of CHP (%)                                 |                         |        | Γ                           | 78.00           |                           | (359*              |
| Heat to power ratio                                   |                         |        |                             | 3.00            |                           | (360*              |
|                                                       | Energy<br>kWh/year      |        | Primary Energy<br>Factor    |                 | Primary Energy            |                    |
| Space heating from CHP (Mains gas)                    | 200.44                  | v      | 1.02                        | =               | 204.45                    | (363*              |
| less credit emissions for electricity                 | -39.09                  | x<br>x | 2.92                        | =               | -114.13                   | ] (364*<br>] (364* |
| Water heating from CHP (Mains gas)                    | 257.55                  | x      | 1.02                        | =               | 262.71                    | ] (365*            |
| less credit emissions for electricity                 | -50.22                  |        | 2.92                        | =               | -146.65                   | ] (366*<br>] (366* |
| Primary energy from other community sources (not CHP) | -30.22                  | Х      | 2.52                        | _               | -140.03                   | ] (300             |
| Efficiency of boilers (%)                             |                         |        | 90.00                       | (367b*)         |                           |                    |
| Efficiency of Bollets (70)                            | Energy used<br>kWh/year |        | Primary Energy Factor       | (3070 )         | Primary Energy            | ,                  |
| Primary energy - boilers (Mains gas)                  | 198.46                  | x      | 1.02                        | =               | 202.43                    | (368*              |
| Electrical energy for heat distribution               | 4.47                    | x      | 2.92                        | =               | 13.04                     | ] (372*            |
| Total primary energy from community systems           |                         |        | (363*)(366*) + (3           |                 | 421.84                    | ] (373*            |
| Space and water heating                               |                         |        |                             | 74*) + (375*) = | 421.84                    | ] (376*<br>] (376* |
| Electricity for pumps and fans within dwelling        | 74.48                   | х      | 2.92                        | =               | 217.47                    | ] (378*<br>] (378* |
| Electricity for lighting                              | 444.45                  | X      | 2.92                        | =               | 1297.80                   | ] (379*            |
|                                                       | 1                       |        |                             |                 |                           |                    |
| Total primary energy kWh/year                         |                         |        | 213                         | 76*)(382*) =    | 1937.12                   | ] (383*            |

(384\*)

(383\*) ÷ (4) = [

Primary energy kWh/m2/year



This design submission has been carried out by an Authorised SAP Assessor. It has been prepared from plans and specifications and may not reflect the property as constructed.

| Assessor name |                                                     | Assessor number |            |
|---------------|-----------------------------------------------------|-----------------|------------|
| Client        |                                                     | Last modified   | 15/11/2011 |
| Address       | 5 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

|                                    |                              | Area (m²)                          | Average storey height (m) |              | Volume (m³)            |     |
|------------------------------------|------------------------------|------------------------------------|---------------------------|--------------|------------------------|-----|
| Lowest occupied                    |                              | 264.00 (1a) x                      | 2.80                      | 2a) =        | 739.20                 | (3a |
| Total floor area                   | (1a) + (1b) + (1c) + (1d)(1n | a) = 264.00 (4)                    |                           |              |                        |     |
| Dwelling volume                    |                              |                                    | (3a) + (3b) + (3c)        | + (3d)(3n) = | 739.20                 | (5) |
|                                    |                              |                                    |                           |              |                        |     |
| 2. Ventilation rate                |                              |                                    |                           |              |                        |     |
|                                    |                              |                                    |                           |              | m³ per hour            |     |
| Number of chimneys                 |                              |                                    | 0                         | x 40 =       | 0                      | (6  |
| Number of open flues               |                              |                                    | 0                         | x 20 =       | 0                      | (61 |
| Number of intermittent fans        |                              |                                    | 2                         | x 10 =       | 20                     | (78 |
| Number of passive vents            |                              |                                    | 4                         | x 10 =       | 40                     | (71 |
| Number of flueless gas fires       |                              |                                    | 0                         | x 40 =       | 0                      | (70 |
|                                    |                              |                                    |                           |              | Air changes pe<br>hour | er  |
| Infiltration due to chimneys, flue | f                            | (6a) + (6b) + (7a) + (7b) + (7c) = | 60                        | ÷ (5) =      | 0.08                   | (8) |

If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then (18) =  $[(17) \div 20] + (8)$ , otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

1 - [0.075 x (19)] = 0.70 (20)

∑(22b)1...12 =

Adjusted infiltration rate

Shelter factor

0.16  $(18) \times (20) =$ (21)

3.00

0.23

4

(17)

(18)

(19)

Infiltration rate modified for monthly wind speed:

|                       | Jan           | Feb         | Mar          | Apr         | May         | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
|-----------------------|---------------|-------------|--------------|-------------|-------------|------|------|------|------|---------|-------|-------|-------|
| Monthly average v     | wind speed    | from Table  | · 7          |             |             |      |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10        | 5.10         | 4.50        | 4.10        | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                       |               |             |              |             |             |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m -   | ÷ 4         |              |             |             |      |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27        | 1.27         | 1.12        | 1.02        | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |             |              |             |             |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | wing for sh | nelter and v | vind speed) | = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.22          | 0.21        | 0.21         | 0.18        | 0.17        | 0.16 | 0.15 | 0.15 | 0.17 | 0.18    | 0.19  | 0.21  | ]     |

(22b)m

Calculate effective air change rate for the applicable case:

2.19

N/A

If mechanical ventilation: air change rate through system

N/A (23b)

(22b)

(23a)

| If balanced wi                                          | th heat reco           | overy: effici            | ency in % a          | llowing for         | in-use fact  | tor (from Ta      | ble 4h) =   |              |               |             |                  | N/A          | (23c)    |
|---------------------------------------------------------|------------------------|--------------------------|----------------------|---------------------|--------------|-------------------|-------------|--------------|---------------|-------------|------------------|--------------|----------|
| d) If natural ve                                        |                        |                          | •                    | •                   |              |                   |             |              |               |             |                  |              |          |
|                                                         |                        |                          |                      | 1                   |              | 2b)m2 x 0.5       |             | 1            | 1             | ı           |                  | 1            | ٦        |
| (24d)m                                                  | 0.52                   | 0.52                     | 0.52                 | 0.52                | 0.51         | 0.51              | 0.51        | 0.51         | 0.51          | 0.52        | 0.52             | 0.52         | (24d)    |
| Effective air chan                                      |                        | -                        |                      |                     |              | 1                 |             | 1 -          | 1 -           | 1           |                  | 1            | ٦        |
| (25)m                                                   | 0.52                   | 0.52                     | 0.52                 | 0.52                | 0.51         | 0.51              | 0.51        | 0.51         | 0.51          | 0.52        | 0.52             | 0.52         | (25)     |
| 3. Heat losses a                                        | nd heat loss           | s paramete               | r                    |                     |              |                   |             |              |               |             |                  |              |          |
| The κ-value is the                                      | heat capac             | city per unit            | area, see T          | able 1e.            |              |                   |             |              |               |             |                  |              |          |
| E                                                       | lement                 |                          | Gross<br>Area, m²    | •                   | nings,<br>1² | Net area<br>A, m² |             | alue,<br>m²K | A x U,<br>W/K |             | ilue,<br>m².K    | Αxκ,<br>kJ/K |          |
| Window*                                                 |                        |                          |                      |                     |              | 10.00             | x 1.        | 42 =         | 14.15         | N           | /A               | N/A          | (27)     |
| Basement floor                                          |                        |                          |                      |                     |              | 56.00             | x 0.        | 13 =         | 7.28          | N           | /A               | N/A          | (28)     |
| External wall                                           |                        |                          |                      |                     |              | 27.90             | x 0.        | 20 =         | 5.58          | N           | /A               | N/A          | (29a)    |
| Total area of exte                                      | ernal elemei           | nts ∑A, m²               |                      |                     |              | 93.90             | (31)        |              |               |             |                  |              |          |
| * for windows an                                        | d roof wind            | ows, effecti             | ve window            | U-value is          | calculated   | using formเ       | ıla 1/[(1/U | Value)+0.0   | 4] paragrap   | oh 3.2      |                  |              | _        |
| Fabric heat loss, \                                     |                        |                          |                      | (2                  | 6)(30) + (   | 32) =             | 27.01       | (33)         |               |             |                  |              |          |
| Heat capacity $Cm = \sum (A \times \kappa)$             |                        |                          |                      |                     |              |                   |             | (28)         | .(30) + (32)  | + (32a)(3   | (32a)(32e) = N/A |              |          |
| Thermal mass pa                                         | rameter (TN            | ИР) in kJ/m <sup>2</sup> | ²K                   |                     |              |                   |             |              | Calcula       | ted separat | ely =            | 100.00       | (35)     |
| Thermal bridges: if details of th                       |                        |                          |                      |                     | 5 x (31)     |                   |             |              |               |             |                  | 14.08        | (36)     |
| Total fabric heat                                       | loss                   |                          |                      |                     |              |                   |             |              |               | (33) + (    | 36) =            | 41.10        | (37)     |
| Ventilation heat I<br>(38)m                             | oss calculat<br>127.79 | ed monthly<br>127.16     | 0.33 x (25<br>127.16 | 5)m x (5)<br>126.01 | 125.32       | 125.00            | 124.70      | 124.70       | 125.49        | 126.01      | 126.57           | 127.16       | (38)     |
| Heat transfer coe                                       | fficient, W/           | ′K (37)m+                | (38)m                |                     | <b>.</b>     |                   |             |              |               | ·           |                  |              | _        |
| (39)m                                                   | 168.88                 | 168.26                   | 168.26               | 167.11              | 166.42       | 166.10            | 165.80      | 165.80       | 166.59        | 167.11      | 167.66           | 168.26       | _        |
|                                                         |                        |                          |                      |                     |              |                   |             |              | Average =     | ∑(39)112,   | /12 =            | 167.19       | (39)     |
| Heat loss parame                                        | eter (HLP), W<br>0.64  |                          |                      | 0.62                | 0.62         | 0.63              | 0.63        | 0.63         | 0.62          | 0.62        | 0.64             | 0.64         | 7        |
| (40)m                                                   | 0.64                   | 0.64                     | 0.64                 | 0.63                | 0.63         | 0.63              | 0.63        | 0.63         | 0.63          | 0.63        | 0.64             | 0.64         |          |
|                                                         |                        |                          |                      |                     |              |                   |             |              | Average =     | ∑(40)112,   | /12 =            | 0.03         | (40)     |
| 4. Water heatin                                         | g energy re            | quirement                |                      |                     |              |                   |             |              |               |             |                  |              |          |
|                                                         |                        |                          |                      |                     |              |                   |             |              |               |             | k                | :Wh/year     |          |
| Assumed occupa                                          | ncy, N                 |                          |                      |                     |              |                   |             |              |               | 3.09        | (42              | 2)           |          |
| If TFA > 13.9,                                          | N = 1 + 1.76           | x [1 - exp(-             | 0.000349 x           | (TFA - 13.9         | )²)] + 0.00  | 13 x (TFA - 1     | 3.9)        |              |               |             |                  |              |          |
| If TFA ≤ 13.9,                                          | N = 1                  |                          |                      |                     |              |                   |             |              |               |             |                  |              |          |
| Annual average h                                        | ot water us            | age in litres            | per day Vo           | d,average =         | (25 x N) +   | 36                |             |              |               | 107.4       | 7 (43            | 3)           |          |
| Annual average h                                        | ot water us            | sage has be              | en reduced           | by 5% if the        | e dwelling   | is designed       | to achieve  | a water us   | e target of   | not more th | nan 125 lit      | res          |          |
| per person per do                                       | ay (all water          | use, hot ar              | nd cold)             |                     |              |                   |             |              |               |             |                  |              |          |
|                                                         | Jan                    | Feb                      | Mar                  | Apr                 | May          | Jun               | Jul         | Aug          | Sep           | Oct         | Nov              | Dec          |          |
| Hot water usage                                         | in litres per          | day for eac              | h month Vo           | d,m = facto         | r from Tab   | le 1c x (43)      |             |              |               |             |                  |              | _        |
| (44)m                                                   | 118.22                 | 113.92                   | 109.62               | 105.32              | 101.02       | 96.72             | 96.72       | 101.02       | 105.32        | 109.62      | 113.92           | 118.22       | _        |
|                                                         |                        |                          |                      |                     |              |                   |             |              |               | ∑(44)1      | .12 =            | 1289.66      | (44)     |
| Energy content o                                        |                        | 1                        |                      |                     |              |                   |             |              | 1             |             | 1-0-0            | 1-0.10       | 7        |
| (45)m                                                   | 175.73                 | 153.70                   | 158.60               | 138.27              | 132.68       | 114.49            | 106.09      | 121.74       | 123.20        | 143.57      | 156.72           | 170.19       | ]<br>7 , |
| If instantaneous of For community has Distribution loss | eating inclu           | de distribut             | -                    |                     |              |                   |             | 61)          |               | ∑(45)1      | .12 = [          | 1695.00      | (45)     |
| (46)m                                                   | 26.36                  | 23.05                    | 23.79                | 20.74               | 19.90        | 17.17             | 15.91       | 18.26        | 18.48         | 21.54       | 23.51            | 25.53        | (46)     |
|                                                         |                        | •                        |                      |                     |              |                   |             | •            | 1             | •           |                  |              | _ · •    |
|                                                         |                        |                          |                      |                     |              |                   |             |              |               |             |                  | ove-Flat5 v  |          |

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (61)m 0.00

Total heat required for water heating calculated for each month 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m

259.67 229.51 | 242.54 | 219.50 | 216.61 | 195.72 | 190.03 205.68 204.42 227.51 237.95 254.12 (62)m

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)

(63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∑(63)1...12 = 0.00 (63)

Output from water heater for each month, kWh/month (62)m + (63)m

(64)m 259.67 229.51 242.54 219.50 216.61 195.72 190.03 205.68 204.42 227.51 237.95 254.12

> $\Sigma(64)1...12 =$ 2683.24

if (64)m < 0 then set to 0

Heat gains from water heating, kWh/month  $0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ 

125.58 | 111.75 | 119.88 | 110.96 | 111.26 | 103.05 | 102.42 107.63 105.94 114.88 117.09 123.73 (65)m

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

| 5. Internal gains (see Table 5 and 5a)                                              |         |         |         |         |         |         |         |         |         |         |         |         |      |
|-------------------------------------------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|------|
|                                                                                     | Jan     | Feb     | Mar     | Apr     | May     | Jun     | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |      |
| Metabolic gains (Table 5), Watts                                                    |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (66)m                                                                               | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | 185.11  | (66) |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5     |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (67)m                                                                               | 130.73  | 116.12  | 94.43   | 71.49   | 53.44   | 45.12   | 48.75   | 63.37   | 85.05   | 107.99  | 126.04  | 134.37  | (67) |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (68)m                                                                               | 639.42  | 646.06  | 629.34  | 593.74  | 548.81  | 506.58  | 478.36  | 471.73  | 488.45  | 524.05  | 568.98  | 611.21  | (68) |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5    |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (69)m                                                                               | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | 56.60   | (69) |
| Pumps and fans gains (Table 5a)                                                     |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (70)m                                                                               | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | (70) |
| Losses e.g. evaporation (negative values) (Table 5)                                 |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (71)m                                                                               | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | -123.41 | (71) |
| Water heating gains (Table 5)                                                       |         |         |         |         |         |         |         |         |         |         |         |         |      |
| (72)m                                                                               | 168.79  | 166.30  | 161.13  | 154.11  | 149.54  | 143.12  | 137.66  | 144.66  | 147.14  | 154.41  | 162.63  | 166.31  | (72) |
|                                                                                     |         |         |         |         |         |         |         |         |         |         |         |         | -    |

(301)

9b. Energy requirements - Community heating scheme

Fraction of space heating from secondary/supplementary system (Table 11)

| Fraction of space heating from community system 1 - (301)  Community scheme fractions obtained from plant design specification or operation fraction of community DHW from CHP  Fraction of community DHW from boilers  Fraction of total space heat from community CHP (302) x (303a) =  Fraction of total space heat from community boilers (302) x (303b) =  Factor for control and charging method (Table 4c(3)) for community space heating Factor for control and charging method (Table 4c(3)) for community water heating Distribution loss factor (Table 12c) for community heating system  Space heating:  Annual space heating requirement  Space heat from community CHP (98) x (304a) x (305) x (306) =  Space heat from community boilers (98) x (304b) x (305) x (306) = | 1.00 (302)  al records:  0.60 (303a) 0.40 (303b) 0.60 (304a) 0.40 (304b) 1.00 (305) 1.00 (305a) 0.10 (306)  kWh/year 5068.12                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Water heating:  Annual water heating requirement  If DHW from community scheme:  Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) =  Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =  Electricity used for heat distribution  Electricity for pumps and fans within dwelling (Table 4f):  mechanical ventilation fans - balanced, extract or positive input from outside warm air heating system fans pump for solar water heating  Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                               |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 923.51 (332)                                                                                                                                                                                                                                                                                                                                                                                         |
| 10b. Fuel costs - Community heating scheme  Heat or fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fuel price Fuel cost £/year                                                                                                                                                                                                                                                                                                                                                                          |
| Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (Table 12)       x     2.65     x 0.01 =     8.06     (340a)       x     3.78     x 0.01 =     7.66     (340b)       x     2.65     x 0.01 =     4.27     (342a)       x     3.78     x 0.01 =     4.06     (342b)       x     11.46     x 0.01 =     0.00     (349)       x     11.46     x 0.01 =     105.83     (350)       106.00     (351)       (340a)(342e) + (345)(354)     235.88     (355) |
| 11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)  SAP value  SAP rating  SAP band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $[(355) \times (356)] \div [(4) + 45.0] = \begin{bmatrix} 0.47 & (356) \\ 0.36 & (357) \\ 95.00 & \\ 95 & (358) \\ A & \\ \end{bmatrix}$                                                                                                                                                                                                                                                             |
| 12b. Carbon dioxide emissions - Community heating scheme  Emissions from community CHP (Mains gas)  Efficiency of CHP (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 75.00 (359)                                                                                                                                                                                                                                                                                                                                                                                          |

| Llast to power ratio                                                                                                                                                                                                                                                         |                                                 |             |                                                                                       | 3.00                                                                              | 1                                                                          | (260)                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|
| Heat to power ratio                                                                                                                                                                                                                                                          | France:                                         |             | - Francisco                                                                           | 3.00                                                                              | [ Funicaiona                                                               | (360)                                                    |
|                                                                                                                                                                                                                                                                              | Energy<br>kWh/year                              |             | Emissions<br>Factor                                                                   |                                                                                   | Emissions<br>(kgCO2/year)                                                  |                                                          |
| Space heating from CHP (Mains gas)                                                                                                                                                                                                                                           | 540.60                                          | x           | 0.198                                                                                 | =                                                                                 | 107.04                                                                     | (363)                                                    |
| less credit emissions for electricity                                                                                                                                                                                                                                        | -101.36                                         | x           | 0.529                                                                                 | =                                                                                 | -53.62                                                                     | (364)                                                    |
| Water heating from CHP (Mains gas)                                                                                                                                                                                                                                           | 286.21                                          | x           | 0.198                                                                                 | =                                                                                 | 56.67                                                                      | (365)                                                    |
| less credit emissions for electricity                                                                                                                                                                                                                                        | -53.66                                          | x           | 0.529                                                                                 | =                                                                                 | -28.39                                                                     | (366)                                                    |
| Emissions from other community sources (not CHP)                                                                                                                                                                                                                             |                                                 |             |                                                                                       |                                                                                   |                                                                            |                                                          |
| Efficiency of boilers (%)                                                                                                                                                                                                                                                    |                                                 |             | 75.00                                                                                 | (367b)                                                                            |                                                                            |                                                          |
|                                                                                                                                                                                                                                                                              | Energy used<br>kWh/year                         |             | Emission Factor (kgCO2/kWh)                                                           |                                                                                   | Emissions<br>(kgCO2/year)                                                  |                                                          |
| Emissions from boilers (Mains gas)                                                                                                                                                                                                                                           | 413.41                                          | x           | 0.198                                                                                 | =                                                                                 | 81.85                                                                      | (368)                                                    |
| Electrical energy for heat distribution                                                                                                                                                                                                                                      | 7.75                                            | x           | 0.517                                                                                 | =                                                                                 | 4.01                                                                       | (372)                                                    |
| Total carbon dioxide from community systems                                                                                                                                                                                                                                  |                                                 |             | (363)(366)                                                                            | + (368)(372) =                                                                    | 167.56                                                                     | (373)                                                    |
| Space and water heating                                                                                                                                                                                                                                                      |                                                 |             | (373) +                                                                               | - (374) + (375) =                                                                 | 167.56                                                                     | (376)                                                    |
| Electricity for pumps and fans within dwelling                                                                                                                                                                                                                               | 0.00                                            | x           | 0.000                                                                                 | =                                                                                 | 0.00                                                                       | (378)                                                    |
| Electricity for lighting                                                                                                                                                                                                                                                     | 923.51                                          | ×           | 0.517                                                                                 | =                                                                                 | 477.46                                                                     | (379)                                                    |
| Total carbon dioxide emissions                                                                                                                                                                                                                                               |                                                 |             |                                                                                       | Σ(376)(382) =                                                                     | 645.02                                                                     | (383)                                                    |
| Dwelling carbon dioxide emissions rate                                                                                                                                                                                                                                       |                                                 |             |                                                                                       | (383) ÷ (4) =                                                                     | 2.44                                                                       | (384)                                                    |
| El value                                                                                                                                                                                                                                                                     |                                                 |             |                                                                                       |                                                                                   | 97.20                                                                      |                                                          |
| EI rating (see section 14)                                                                                                                                                                                                                                                   |                                                 |             |                                                                                       |                                                                                   | 97                                                                         | (385)                                                    |
| EI band                                                                                                                                                                                                                                                                      |                                                 |             |                                                                                       |                                                                                   | А                                                                          |                                                          |
| 42k B                                                                                                                                                                                                                                                                        |                                                 |             |                                                                                       |                                                                                   |                                                                            |                                                          |
| 13b. Primary energy - Community heating scheme                                                                                                                                                                                                                               |                                                 |             |                                                                                       |                                                                                   |                                                                            |                                                          |
| Primary energy from community CHP (Mains gas)                                                                                                                                                                                                                                |                                                 |             |                                                                                       |                                                                                   | 1                                                                          | (0=0#)                                                   |
| Efficiency of CHP (%)                                                                                                                                                                                                                                                        |                                                 |             |                                                                                       | 75.00                                                                             | ]                                                                          | (359*)                                                   |
| Heat to power ratio                                                                                                                                                                                                                                                          | _                                               |             |                                                                                       | 3.00                                                                              |                                                                            | (360*)                                                   |
|                                                                                                                                                                                                                                                                              | Energy<br>kWh/year                              |             | Primary Energy<br>Factor                                                              | 1                                                                                 | Primary Energy                                                             | 1                                                        |
| Space heating from CHP (Mains gas)                                                                                                                                                                                                                                           | 540.60                                          | x           | 1.02                                                                                  | =                                                                                 | 551.41                                                                     | (363*)                                                   |
| less credit emissions for electricity                                                                                                                                                                                                                                        | -101.36                                         |             |                                                                                       |                                                                                   |                                                                            |                                                          |
|                                                                                                                                                                                                                                                                              |                                                 | X           | 2.92                                                                                  | =                                                                                 | -295.98                                                                    | (364*)                                                   |
| Water heating from CHP (Mains gas)                                                                                                                                                                                                                                           | 286.21                                          | x<br>x      | 1.02                                                                                  | ] =<br>] =                                                                        | -295.98<br>291.94                                                          | (364*)                                                   |
| Water heating from CHP (Mains gas) less credit emissions for electricity                                                                                                                                                                                                     |                                                 |             |                                                                                       | ]                                                                                 |                                                                            | 1                                                        |
|                                                                                                                                                                                                                                                                              | 286.21                                          | x           | 1.02                                                                                  | =                                                                                 | 291.94                                                                     | (365*)                                                   |
| less credit emissions for electricity                                                                                                                                                                                                                                        | 286.21                                          | x           | 1.02<br>2.92<br>75.00                                                                 | =                                                                                 | 291.94                                                                     | (365*)                                                   |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)                                                                                                                                                                                 | 286.21                                          | x           | 1.02<br>2.92                                                                          | =<br>] =<br>] =                                                                   | 291.94                                                                     | (365*)                                                   |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)                                                                                                                                                                                 | 286.21<br>-53.66                                | x           | 1.02<br>2.92<br>75.00<br>Primary Energy                                               | =<br>] =<br>] =                                                                   | 291.94<br>-156.70                                                          | (365*)                                                   |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)                                                                                                                                                      | 286.21 -53.66  Energy used kWh/year             | x<br>x      | 1.02 2.92 75.00 Primary Energy Factor                                                 | ] =<br>] =<br>] (367b*)                                                           | 291.94<br>-156.70<br>Primary Energy                                        | (365*)                                                   |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)                                                                                                                | 286.21 -53.66  Energy used kWh/year 413.41      | x<br>x      | 1.02 2.92 75.00 Primary Energy Factor 1.02                                            | ] =<br>] =<br>] (367b*)<br>] =<br>] =                                             | 291.94<br>-156.70<br>Primary Energy<br>421.67                              | (365*)<br>(366*)<br>(368*)                               |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution                                                                       | 286.21 -53.66  Energy used kWh/year 413.41      | x<br>x      | 1.02<br>2.92<br>75.00<br>Primary Energy<br>Factor<br>1.02<br>2.92<br>(363*)(366*) + ( | ] =<br>] =<br>] (367b*)<br>] =<br>] =                                             | 291.94<br>-156.70<br>Primary Energy<br>421.67<br>22.63                     | (365*)<br>(366*)<br>(368*)<br>(372*)                     |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution  Total primary energy from community systems                          | 286.21 -53.66  Energy used kWh/year 413.41      | x<br>x      | 1.02<br>2.92<br>75.00<br>Primary Energy<br>Factor<br>1.02<br>2.92<br>(363*)(366*) + ( | [] =<br>] (367b*)<br>] =<br>] =<br>368*)(372*) =                                  | 291.94<br>-156.70<br>Primary Energy<br>421.67<br>22.63<br>834.98           | (365*)<br>(366*)<br>(368*)<br>(372*)<br>(373*)           |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution  Total primary energy from community systems  Space and water heating | 286.21 -53.66  Energy used kWh/year 413.41 7.75 | x<br>x<br>x | 1.02 2.92  75.00  Primary Energy Factor  1.02 2.92 (363*)(366*) + ( (373*) + (3       | [] =<br>] (367b*)<br>] (367b*)<br>] =<br>] =<br>368*)(372*) =<br>374*) + (375*) = | 291.94<br>-156.70<br>Primary Energy<br>421.67<br>22.63<br>834.98<br>834.98 | (365*)<br>(366*)<br>(368*)<br>(372*)<br>(373*)<br>(376*) |

13.38

(383\*)

(384\*)

∑(376\*)...(382\*) = [

 $(383*) \div (4) = [$ 

Total primary energy kWh/year



| Assessor name |                                                     | Assessor number |            |
|---------------|-----------------------------------------------------|-----------------|------------|
| Client        |                                                     | Last modified   | 14/11/2011 |
| Address       | 8 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| Addicas                  | 8 05 Maygrove Road, West Ha                   | inpoteda, London, NVVO ZEIT           |                            |                       |                |
|--------------------------|-----------------------------------------------|---------------------------------------|----------------------------|-----------------------|----------------|
|                          |                                               |                                       |                            |                       |                |
| 1. Overall dwelling dim  | ensions                                       |                                       |                            |                       |                |
|                          |                                               | Area (m²)                             | Average storey height (m)  | Volume (m             | <sup>3</sup> ) |
| owest occupied           |                                               | 670.00 (1a) x                         | 2.85 (2a                   | ) = 1909.50           | (3a            |
| otal floor area          | (1a) + (1b) + (1c) + (1d)                     | (1n) = 670.00 (4)                     |                            |                       |                |
| Welling volume           |                                               |                                       | (3a) + (3b) + (3c) + (     | 3d)(3n) = 1909.50     | (5)            |
|                          |                                               |                                       |                            |                       |                |
| 2. Ventilation rate      |                                               |                                       |                            |                       |                |
|                          |                                               |                                       |                            | m³ per hou            | ır             |
| umber of chimneys        |                                               |                                       | 0                          | x 40 = 0              | (6a            |
| umber of open flues      |                                               |                                       | 0                          | x 20 = 0              | (6b            |
| umber of intermittent f  | fans                                          |                                       | 2                          | x 10 = 20             | (7a)           |
| umber of passive vents   |                                               |                                       | 2                          | x 10 = 20             | (7b)           |
| umber of flueless gas fi | res                                           |                                       | 0                          | x 40 = 0              | (7c)           |
|                          |                                               |                                       |                            | Air changes p<br>hour | per            |
| filtration due to chimne | eys, flues, fans, PSVs                        | (6a) + (6b) + (7a) + (7b) + (         | (7c) = 40                  | ÷ (5) = 0.02          | (8)            |
| a pressurisation test ho | as been carried out or is intended, p         | roceed to (17), otherwise continue    | from (9) to (16)           |                       |                |
| ir permeability value, q | 50, expressed in cubic metres per h           | our per square metre of envelope      | area                       | 3.00                  | (17)           |
| based on air permeabil   | ity value, then (18) = $[(17) \div 20] + (3)$ | 8), otherwise (18) = (16)             |                            | 0.17                  | (18)           |
| ir permeability value ap | pplies if a pressurisation test has bee       | en done, or a design or specified air | permeability is being used |                       |                |
| umber of sides on whic   | h dwelling is sheltered                       |                                       |                            | 4                     | (19)           |
|                          |                                               |                                       | ,                          | (10)3                 |                |

| Shelter factor |  | 1 - |
|----------------|--|-----|
|                |  |     |

- [0.075 x (19)] = 0.70 0.12 Adjusted infiltration rate (18) x (20) =

Infiltration rate modified for monthly wind speed:

|                       | Jan           | Feb         | Mar         | Apr        | May         | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
|-----------------------|---------------|-------------|-------------|------------|-------------|------|------|------|------|---------|-------|-------|-------|
| Monthly average       | wind speed    | from Table  | 7           |            |             |      |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10        | 5.10        | 4.50       | 4.10        | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  | ]     |
|                       |               |             |             |            |             |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m -   | ÷ 4         |             |            |             |      |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27        | 1.27        | 1.12       | 1.02        | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |             |             |            |             |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | wing for sh | elter and v | vind speed | = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.16          | 0.15        | 0.15        | 0.13       | 0.12        | 0.12 | 0.11 | 0.11 | 0.13 | 0.13    | 0.14  | 0.15  | ]     |
|                       |               |             |             |            |             |      |      |      |      | ∑(22b)1 | .12 = | 1.62  | (22b) |

If mechanical ventilation: air change rate through system

1.62 ∑(22b)1...12 = Calculate effective air change rate for the applicable case:

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

(23a)

N/A

| If balanced wi                     | th heat reco               | overy: effici        | ency in % a          | llowing for         | in-use fact              | tor (from Ta      | ble 4h) =   |               |               |             |                 | N/A          | (23c)       |
|------------------------------------|----------------------------|----------------------|----------------------|---------------------|--------------------------|-------------------|-------------|---------------|---------------|-------------|-----------------|--------------|-------------|
| d) If natural ve                   |                            |                      |                      | •                   |                          |                   |             |               |               |             |                 |              |             |
|                                    |                            |                      |                      |                     |                          | 2b)m2 x 0.5       |             | 1             | 1             | 1           |                 | T            | ٦,          |
| (24d)m                             | 0.51                       | 0.51                 | 0.51                 | 0.51                | 0.51                     | 0.51              | 0.51        | 0.51          | 0.51          | 0.51        | 0.51            | 0.51         | (24d        |
| Effective air chan                 |                            | 1                    |                      | 1                   | 1                        | 1                 |             | 1 0 = 1       | 1 0-1         | 1           |                 | 1            | 7 (0-)      |
| (25)m                              | 0.51                       | 0.51                 | 0.51                 | 0.51                | 0.51                     | 0.51              | 0.51        | 0.51          | 0.51          | 0.51        | 0.51            | 0.51         | (25)        |
| 3. Heat losses a                   |                            |                      |                      |                     |                          |                   |             |               |               |             |                 |              |             |
| The κ-value is the                 | •                          | ity per unit         | area, see T          | able 1e.            |                          |                   |             |               |               |             |                 |              |             |
| E                                  | lement                     |                      | Gross<br>Area, m²    | •                   | nings,<br>n²             | Net area<br>A, m² | w/          | alue,<br>′m²K | A x U,<br>W/K |             | nlue,<br>m².K   | Axk,<br>kJ/K |             |
| Window*                            |                            |                      |                      |                     |                          | 10.00             | x 1         | .42 =         | 14.15         | N           | /A              | N/A          | (27)        |
| Ground floor                       |                            |                      |                      |                     |                          | 56.00             | x 0         | .13 =         | 7.28          | N           | /A              | N/A          | (28a        |
| External wall                      |                            |                      |                      |                     |                          | 38.16             | x 0         | .20 =         | 7.63          | N           | /A              | N/A          | (29a        |
| Total area of exte                 | rnal elemer                | nts ∑A, m²           |                      |                     |                          | 104.16            | (31)        |               |               |             |                 |              |             |
| * for windows an                   | d roof wind                | ows, effecti         | ve window            | U-value is          | calculated               | using formเ       | ıla 1/[(1/U | Value)+0.0    | 4] paragrap   | oh 3.2      |                 |              | _           |
| Fabric heat loss, \                | N/K = ∑(A ×                | U)                   |                      |                     |                          |                   |             |               | (2            | 6)(30) + (  | 32) =           | 29.06        | (33)        |
| Heat capacity Cm                   | $= \sum (A \times \kappa)$ |                      |                      |                     |                          |                   |             | (28)          | .(30) + (32)  | + (32a)(3   | 2e) =           | N/A          | (34)        |
| Thermal mass par                   | rameter (TN                | ЛР) in kJ/m²         | ²K                   |                     |                          |                   |             |               | Calcula       | ted separat | ely =           | 100.00       | (35)        |
| Thermal bridges: if details of the |                            |                      |                      |                     | 5 x (31)                 |                   |             |               |               |             |                 | 15.62        | (36)        |
| Total fabric heat                  | oss                        |                      |                      |                     |                          |                   |             |               |               | (33) + (    | 36) =           | 44.69        | (37)        |
| Ventilation heat I<br>(38)m        | oss calculat<br>323.29     | ed monthly<br>322.40 | 0.33 x (25<br>322.40 | 5)m x (5)<br>320.78 | 319.81                   | 319.36            | 318.93      | 318.93        | 320.04        | 320.78      | 321.56          | 322.40       | (38)        |
| Heat transfer coe                  | fficient, W/               | K (37)m+             | (38)m                | _                   |                          |                   |             |               |               | _           | _               |              | _           |
| (39)m                              | 367.98                     | 367.09               | 367.09               | 365.46              | 364.49                   | 364.04            | 363.61      | 363.61        | 364.73        | 365.46      | 366.25          | 367.09       |             |
|                                    |                            |                      |                      |                     |                          |                   |             |               | Average =     | ∑(39)112,   | /12 =           | 365.58       | (39)        |
| Heat loss parame                   |                            |                      |                      | 0.55                | 0.54                     | 0.54              | 0.54        | 0.54          | 0.54          | 1 0.55      | 0.55            | 1 0.55       | 7           |
| (40)m                              | 0.55                       | 0.55                 | 0.55                 | 0.55                | 0.54                     | 0.54              | 0.54        | 0.54          | 0.54          | 0.55        | 0.55            | 0.55         | _<br>□ (40) |
|                                    |                            |                      |                      |                     |                          |                   |             |               | Average =     | ∑(40)112,   | /12 =           | 0.55         | (40)        |
| 4. Water heating                   | g energy re                | quirement            |                      |                     |                          |                   |             |               |               |             |                 |              |             |
|                                    |                            |                      |                      |                     |                          |                   |             |               |               |             | k               | Wh/year      |             |
| Assumed occupar                    | ncy, N                     |                      |                      |                     |                          |                   |             |               |               | 3.61        | (42             | )            |             |
| If TFA > 13.9, I                   | N = 1 + 1.76               | x [1 - exp(-         | 0.000349 x           | (TFA - 13.9         | ) <sup>2</sup> )] + 0.00 | 13 x (TFA - 1     | 3.9)        |               |               |             |                 |              |             |
| If TFA ≤ 13.9, I                   | N = 1                      |                      |                      |                     |                          |                   |             |               |               |             |                 |              |             |
| Annual average h                   | ot water us                | age in litres        | per day Vo           | d,average =         | (25 x N) +               | 36                |             |               |               | 120.0       | 1 (43           | )            |             |
| Annual average h                   | ot water us                | age has be           | en reduced           | by 5% if the        | e dwelling               | is designed       | to achieve  | a water us    | e target of   | not more ti | <br>han 125 lit | res          |             |
| per person per da                  | ıy (all water              | use, hot ar          | nd cold)             |                     |                          |                   |             |               |               |             |                 |              |             |
|                                    | Jan                        | Feb                  | Mar                  | Apr                 | May                      | Jun               | Jul         | Aug           | Sep           | Oct         | Nov             | Dec          |             |
| Hot water usage                    | in litres per              | day for eac          | h month Vo           | d,m = facto         | r from Tab               | le 1c x (43)      |             |               |               |             |                 |              | _           |
| (44)m                              | 132.01                     | 127.21               | 122.41               | 117.61              | 112.81                   | 108.01            | 108.01      | 112.81        | 117.61        | 122.41      | 127.21          | 132.01       |             |
|                                    |                            |                      |                      |                     |                          |                   |             |               |               | ∑(44)1      | .12 =           | 1440.09      | (44)        |
| Energy content o                   |                            |                      |                      | thly = 4.190        |                          |                   |             | month (see    | e Tables 1b,  | , 1c 1d)    |                 |              | _           |
| (45)m                              | 196.23                     | 171.63               | 177.10               | 154.40              | 148.15                   | 127.84            | 118.47      | 135.94        | 137.57        | 160.32      | 175.00          | 190.04       |             |
| If instantaneous v                 |                            | -                    |                      |                     |                          |                   |             | (61)          |               | ∑(45)1      | .12 =           | 1892.70      | (45)        |
| Distribution loss                  |                            | 1                    | 1                    | 1                   | 1                        | 1                 |             | 1             | 1             | 1 -         | T               | 1            | ¬ .         |
| (46)m                              | 29.43                      | 25.74                | 26.57                | 23.16               | 22.22                    | 19.18             | 17.77       | 20.39         | 20.63         | 24.05       | 26.25           | 28.51        | (46)        |
|                                    |                            |                      |                      |                     |                          |                   |             |               |               |             |                 | ove-Flat8 v  |             |

Total heat required for water heating calculated for each month  $0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$ (62)m

280.16 247.44 261.04 235.63 232.09 209.07 202.40 219.87 218.79 244.25 256.23 273.97 (6

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)

add additional lines if FGHKS and/or WWHKS applies, see Appendix G)

(63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ∑(63)1...12 = 0.00 (63)

Output from water heater for each month, kWh/month (62)m + (63)m

(64)m 280.16 247.44 261.04 235.63 232.09 209.07 202.40 219.87 218.79 244.25 256.23 273.97

 $\Sigma$ (64)1...12 = 2880.94 (64)

if (64)m < 0 then set to 0

Heat gains from water heating, kWh/month  $0.25 \times [0.85 \times (45)\text{m} + (61)\text{m}] + 0.8 \times [(46)\text{m} + (57)\text{m} + (59)\text{m}]$ 

(65)m | 132.39 | 117.71 | 126.03 | 116.32 | 116.41 | 107.49 | 106.54 | 112.35 | 110.72 | 120.45 | 123.17 | 130.33 | (65)

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

| 5. Internal gair  | s (see Table   | 5 and 5a)    |             |              |              |           |         |         |         |         |         |         |      |
|-------------------|----------------|--------------|-------------|--------------|--------------|-----------|---------|---------|---------|---------|---------|---------|------|
|                   | Jan            | Feb          | Mar         | Apr          | May          | Jun       | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |      |
| Metabolic gains   | (Table 5), Wa  | atts         |             |              |              |           |         |         |         |         |         |         |      |
| (66)m             | 216.78         | 216.78       | 216.78      | 216.78       | 216.78       | 216.78    | 216.78  | 216.78  | 216.78  | 216.78  | 216.78  | 216.78  | (66) |
| Lighting gains (c | alculated in A | Appendix L,  | equation L  | 9 or L9a), a | lso see Tab  | le 5      |         |         |         |         |         |         |      |
| (67)m             | 228.20         | 202.69       | 164.84      | 124.79       | 93.28        | 78.75     | 85.10   | 110.61  | 148.46  | 188.51  | 220.01  | 234.54  | (67) |
| Appliances gains  | (calculated i  | n Appendix   | L, equatio  | n L13 or L1  | 3a), also se | e Table 5 |         |         |         |         |         |         |      |
| (68)m             | 1068.53        | 1079.62      | 1051.68     | 992.19       | 917.11       | 846.53    | 799.39  | 788.30  | 816.24  | 875.73  | 950.81  | 1021.39 | (68) |
| Cooking gains (c  | alculated in A | Appendix L,  | equation L  | 15 or L15a)  | , also see T | able 5    |         |         |         |         |         |         |      |
| (69)m             | 60.29          | 60.29        | 60.29       | 60.29        | 60.29        | 60.29     | 60.29   | 60.29   | 60.29   | 60.29   | 60.29   | 60.29   | (69) |
| Pumps and fans    | gains (Table   | 5a)          |             |              |              |           |         |         |         |         |         |         |      |
| (70)m             | 0.00           | 0.00         | 0.00        | 0.00         | 0.00         | 0.00      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | (70) |
| Losses e.g. evap  | oration (nega  | ntive values | ) (Table 5) |              |              |           |         |         |         |         |         |         |      |
| (71)m             | -144.52        | -144.52      | -144.52     | -144.52      | -144.52      | -144.52   | -144.52 | -144.52 | -144.52 | -144.52 | -144.52 | -144.52 | (71) |
| Water heating g   | ains (Table 5) | )            |             |              |              |           |         |         |         |         |         |         |      |
| (72)m             | 177.95         | 175.17       | 169.40      | 161.55       | 156.46       | 149.29    | 143.19  | 151.00  | 153.78  | 161.90  | 171.07  | 175.18  | (72) |

#### 9b. Energy requirements - Community heating scheme

Fraction of space heating from secondary/supplementary system (Table 11)

0.00 (301)

| Fraction of space heating from community system 1 - (301)  Community scheme fractions obtained from plant design specifical fraction of community DHW from CHP  Fraction of community DHW from boilers  Fraction of total space heat from community CHP (302) x (303a) = Fraction of total space heat from community boilers (302) x (303b)  Factor for control and charging method (Table 4c(3)) for community fractor for control and charging method (Table 4c(3)) for community bistribution loss factor (Table 12c) for community heating system  Space heating:  Annual space heating requirement  Space heat from community CHP (98) x (304a) x (305) x (306) = Space heat from community boilers (98) x (304b) x (305) x (306) = Water heating:  Annual water heating requirement  If DHW from community scheme:  Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) = | e<br>o) =<br>ity space heating<br>ity water heating | cords:      | 0.60 0.40 0.60 0.40 1.00 1.00 0.10           | 302)<br>303a)<br>303b)<br>304a)<br>304b)<br>305)<br>305a)<br>306)<br>307a)<br>307b) | kWh/year<br>15050.39                                                       |                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|----------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |             |                                              |                                                                                     |                                                                            |                                                                                           |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =  Electricity used for boat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     | 0.01 v [/3  | 115.24<br>307a)(307e) + (31                  | (310b)                                                                              | 17.93                                                                      | (313)                                                                                     |
| Electricity used for heat distribution  Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                     | ()] X 10.0  | 507a)(507e) + (51                            | Ja)(510e)] –                                                                        | 17.95                                                                      | (313)                                                                                     |
| mechanical ventilation fans - balanced, extract or positive input<br>warm air heating system fans<br>pump for solar water heating<br>Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ut from outside                                     |             | (330a) + (33                                 | 0.00<br>0.00<br>0.00<br>0b) + (330g) =                                              |                                                                            | (330a)<br>(330b)<br>(330g)<br>(331)                                                       |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |             |                                              |                                                                                     | 1612.04                                                                    | (332)                                                                                     |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                     |             |                                              |                                                                                     |                                                                            |                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heat or fuel<br>kWh/year                            |             | Fuel price<br>(Table 12)                     |                                                                                     | Fuel cost £/year                                                           |                                                                                           |
| Space heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 903.02                                              |             |                                              |                                                                                     |                                                                            |                                                                                           |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 903.02                                              | X           | 2.65                                         | x 0.01 =                                                                            | 23.93                                                                      | (340a)                                                                                    |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 602.02                                              | x<br>x      | 2.65<br>3.78                                 | x 0.01 =<br>x 0.01 =                                                                |                                                                            | (340a)<br>(340b)                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |             |                                              |                                                                                     | 22.76                                                                      |                                                                                           |
| Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 602.02                                              | x           | 3.78                                         | x 0.01 =                                                                            | 22.76                                                                      | (340b)                                                                                    |
| Space heating from community boilers  Water heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 602.02                                              | x<br>x      | 3.78                                         | x 0.01 =<br>x 0.01 =                                                                | 22.76<br>4.58<br>4.36                                                      | (340b)<br>(342a)                                                                          |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78<br>2.65<br>3.78                         | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                    | 22.76<br>4.58<br>4.36<br>0.00                                              | (340b)<br>(342a)<br>(342b)                                                                |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78<br>2.65<br>3.78<br>11.46                | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                        | 22.76 4.58 4.36 0.00 184.74                                                | (340b)<br>(342a)<br>(342b)<br>(349)                                                       |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78<br>2.65<br>3.78<br>11.46                | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                            | 22.76 4.58 4.36 0.00 184.74 106.00                                         | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)                                              |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78 2.65 3.78 11.46 11.46                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                            | 22.76 4.58 4.36 0.00 184.74 106.00                                         | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)                                     |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78 2.65 3.78 11.46 11.46                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                            | 22.76 4.58 4.36 0.00 184.74 106.00 346.36                                  | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                            |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76 4.58 4.36 0.00 184.74 106.00 346.36                                  | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                            |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78 2.65 3.78 11.46 11.46                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76 4.58 4.36 0.00 184.74 106.00 346.36                                  | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                            |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76  4.58  4.36  0.00  184.74  106.00  346.36   0.47  0.23  96.82        | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                            |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)  SAP value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76  4.58  4.36  0.00  184.74  106.00  346.36   0.47  0.23  96.82        | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)          |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)  SAP value  SAP rating  SAP band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76  4.58  4.36  0.00  184.74  106.00  346.36   0.47  0.23  96.82  97    | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)          |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)  SAP value  SAP rating  SAP band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78 2.65 3.78 11.46 11.46 (340a)(342e)      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76  4.58  4.36  0.00  184.74  106.00  346.36   0.47  0.23  96.82  97    | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)          |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)  SAP value  SAP rating  SAP band  12b. Carbon dioxide emissions - Community heating scheme  Emissions from community CHP (Mains gas)                                                                                                                                                                                                                                                                                                                                                                                                                          | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78 2.65 3.78 11.46 11.46 (340a)(342e)      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76  4.58  4.36  0.00  184.74  106.00  346.36   0.47  0.23  96.82  97  A | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)<br>(358) |
| Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting  Additional standing charges (Table 12)  Total energy cost  11b. SAP rating - Community heating scheme  Energy cost deflator (Table 12)  Energy cost factor (ECF)  SAP value  SAP rating  SAP band                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 602.02<br>172.86<br>115.24                          | x<br>x<br>x | 3.78 2.65 3.78 11.46 11.46 (340a)(342e)      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354)            | 22.76  4.58  4.36  0.00  184.74  106.00  346.36   0.47  0.23  96.82  97  A | (340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357)          |

| Heat to power ratio                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                          |             |                                                                                                            | 3.00                            | 1                                                                                         | (260)                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Heat to power ratio                                                                                                                                                                                                                                                                                                                                                                                                                                              | F                                                                        |             | Fusianiana                                                                                                 | 3.00                            | Fusiasiana                                                                                | (360)                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy<br>kWh/year                                                       |             | Emissions<br>Factor                                                                                        |                                 | Emissions<br>(kgCO2/year)                                                                 |                                                                |
| Space heating from CHP (Mains gas)                                                                                                                                                                                                                                                                                                                                                                                                                               | 1605.38                                                                  | x           | 0.198                                                                                                      | =                               | 317.86                                                                                    | (363)                                                          |
| less credit emissions for electricity                                                                                                                                                                                                                                                                                                                                                                                                                            | -301.01                                                                  | x           | 0.529                                                                                                      | =                               | -159.23                                                                                   | (364)                                                          |
| Water heating from CHP (Mains gas)                                                                                                                                                                                                                                                                                                                                                                                                                               | 307.30                                                                   | x           | 0.198                                                                                                      | =                               | 60.85                                                                                     | (365)                                                          |
| less credit emissions for electricity                                                                                                                                                                                                                                                                                                                                                                                                                            | -57.62                                                                   | x           | 0.529                                                                                                      | =                               | -30.48                                                                                    | (366)                                                          |
| Emissions from other community sources (not CHP)                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                          |             |                                                                                                            |                                 |                                                                                           |                                                                |
| Efficiency of boilers (%)                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                          |             | 75.00                                                                                                      | (367b)                          |                                                                                           |                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Energy used<br>kWh/year                                                  |             | Emission Factor<br>(kgCO2/kWh)                                                                             |                                 | Emissions<br>(kgCO2/year)                                                                 |                                                                |
| Emissions from boilers (Mains gas)                                                                                                                                                                                                                                                                                                                                                                                                                               | 956.34                                                                   | х           | 0.198                                                                                                      | ] =                             | 189.35                                                                                    | (368)                                                          |
| Electrical energy for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                          | 17.93                                                                    | ×           | 0.517                                                                                                      | ] =                             | 9.27                                                                                      | (372)                                                          |
| Total carbon dioxide from community systems                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.33                                                                    | ,           |                                                                                                            | + (368)(372) =                  | 387.62                                                                                    | (372)                                                          |
| Space and water heating                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |             |                                                                                                            | + (374) + (375) =               |                                                                                           | (376)                                                          |
| Electricity for pumps and fans within dwelling                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                     | x           | 0.000                                                                                                      | =                               | 0.00                                                                                      | (378)                                                          |
| Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1612.04                                                                  | ×           | 0.517                                                                                                      | ] =                             | 833.43                                                                                    | (379)                                                          |
| Total carbon dioxide emissions                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1012.01                                                                  | ^           |                                                                                                            | ∑(376)(382) =                   | 1221.05                                                                                   | (383)                                                          |
| Dwelling carbon dioxide emissions rate                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                          |             |                                                                                                            | $(383) \div (4) =$              | 1.82                                                                                      | (384)                                                          |
| El value                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                          |             |                                                                                                            | (303) . (1)                     | 97.71                                                                                     | ] (301 <i>)</i>                                                |
| El rating (see section 14)                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                          |             |                                                                                                            |                                 | 98                                                                                        | (385)                                                          |
| =:                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                          |             |                                                                                                            |                                 |                                                                                           | (/                                                             |
| EI band                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |             |                                                                                                            |                                 | А                                                                                         |                                                                |
| El band                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                          |             |                                                                                                            |                                 | А                                                                                         |                                                                |
| 13b. Primary energy - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |             |                                                                                                            |                                 | А                                                                                         |                                                                |
| 13b. Primary energy - Community heating scheme Primary energy from community CHP (Mains gas)                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |             |                                                                                                            |                                 | A                                                                                         |                                                                |
| 13b. Primary energy - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                          |             |                                                                                                            | 75.00                           | A                                                                                         | (359*)                                                         |
| 13b. Primary energy - Community heating scheme Primary energy from community CHP (Mains gas)                                                                                                                                                                                                                                                                                                                                                                     |                                                                          |             |                                                                                                            | 3.00                            |                                                                                           | (360*)                                                         |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)                                                                                                                                                                                                                                                                                                                                             | Energy<br>kWh/year                                                       |             | Primary Energy<br>Factor                                                                                   | 3.00                            | A  Primary Energy                                                                         | (360*)                                                         |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)                                                                                                                                                                                                                                                                                                                                             |                                                                          | x           |                                                                                                            | 3.00                            |                                                                                           | (360*)                                                         |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio                                                                                                                                                                                                                                                                                                                        | kWh/year                                                                 | x<br>x      | Factor                                                                                                     | 3.00                            | Primary Energy                                                                            | (360*)                                                         |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)                                                                                                                                                                                                                                                                                    | kWh/year<br>1605.38                                                      |             | Factor                                                                                                     | 3.00                            | Primary Energy                                                                            | (360*)                                                         |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity                                                                                                                                                                                                                                             | kWh/year<br>1605.38<br>-301.01                                           | x           | 1.02<br>2.92                                                                                               | 3.00                            | Primary Energy 1637.48 -878.94                                                            | (360*) (363*) (364*)                                           |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity  Water heating from CHP (Mains gas)                                                                                                                                                                                                         | kWh/year  1605.38  -301.01  307.30                                       | x<br>x      | 1.02<br>2.92<br>1.02                                                                                       | 3.00                            | Primary Energy  1637.48  -878.94  313.45                                                  | (360*)<br>(363*)<br>(363*)<br>(364*)<br>(365*)                 |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity  Water heating from CHP (Mains gas)  less credit emissions for electricity                                                                                                                                                                  | kWh/year  1605.38  -301.01  307.30                                       | x<br>x      | 1.02<br>2.92<br>1.02                                                                                       | 3.00                            | Primary Energy  1637.48  -878.94  313.45                                                  | (360*)<br>(363*)<br>(363*)<br>(364*)<br>(365*)                 |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity  Water heating from CHP (Mains gas)  less credit emissions for electricity  Primary energy from other community sources (not CHP)                                                                                                           | kWh/year  1605.38  -301.01  307.30                                       | x<br>x      | 1.02<br>2.92<br>1.02<br>2.92                                                                               | 3.00  =                         | Primary Energy  1637.48  -878.94  313.45                                                  | (360*)<br>(363*)<br>(364*)<br>(365*)<br>(366*)                 |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity  Water heating from CHP (Mains gas)  less credit emissions for electricity  Primary energy from other community sources (not CHP)                                                                                                           | kWh/year  1605.38  -301.01  307.30  -57.62  Energy used                  | x<br>x      | 1.02 2.92 1.02 2.92 75.00 Primary Energy                                                                   | 3.00  =                         | Primary Energy  1637.48  -878.94  313.45  -168.25                                         | (360*)<br>(363*)<br>(364*)<br>(365*)<br>(366*)                 |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity  Water heating from CHP (Mains gas)  less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)                                                                                | kWh/year  1605.38  -301.01  307.30  -57.62  Energy used kWh/year         | x<br>x<br>x | 1.02 2.92 1.02 2.92 75.00 Primary Energy Factor                                                            | 3.00    =   =   =   =   (367b*) | Primary Energy  1637.48  -878.94  313.45  -168.25  Primary Energy                         | (360*)<br>(363*)<br>(364*)<br>(365*)<br>(366*)                 |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas) less credit emissions for electricity  Water heating from CHP (Mains gas) less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)                                                                                  | kWh/year  1605.38  -301.01  307.30  -57.62  Energy used kWh/year  956.34 | x<br>x<br>x | 1.02 2.92 1.02 2.92 75.00 Primary Energy Factor 1.02                                                       | 3.00                            | Primary Energy  1637.48  -878.94  313.45  -168.25  Primary Energy  975.46                 | (360*) (363*) (364*) (365*) (366*)                             |
| 13b. Primary energy - Community heating scheme  Primary energy from community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas)  less credit emissions for electricity  Water heating from CHP (Mains gas)  less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution | kWh/year  1605.38  -301.01  307.30  -57.62  Energy used kWh/year  956.34 | x<br>x<br>x | 1.02     2.92     1.02     2.92       75.00       Primary Energy Factor   1.02     2.92   (363*)(366*) + ( | 3.00                            | Primary Energy  1637.48  -878.94  313.45  -168.25  Primary Energy  975.46  52.36  1931.56 | (360*) (363*) (364*) (365*) (366*) (368*) (372*)               |
| Primary energy rom community CHP (Mains gas)  Efficiency of CHP (%)  Heat to power ratio  Space heating from CHP (Mains gas) less credit emissions for electricity  Water heating from CHP (Mains gas) less credit emissions for electricity  Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution  Total primary energy from community systems       | kWh/year  1605.38  -301.01  307.30  -57.62  Energy used kWh/year  956.34 | x<br>x<br>x | 1.02     2.92     1.02     2.92       75.00       Primary Energy Factor   1.02     2.92   (363*)(366*) + ( | 3.00                            | Primary Energy  1637.48  -878.94  313.45  -168.25  Primary Energy  975.46  52.36  1931.56 | (360*)  (363*)  (364*)  (365*)  (366*)  (368*)  (372*)  (373*) |

9.91

(383\*)

(384\*)

∑(376\*)...(382\*) = [

 $(383*) \div (4) = [$ 

Total primary energy kWh/year



| Assessor name |                                                      | Assessor number |            |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 14/11/2011 |
| Address       | 17 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

|                                                | Area (m²)                 | Average store<br>height (m) | <b>,</b>         | Volume (m³)    | 1    |
|------------------------------------------------|---------------------------|-----------------------------|------------------|----------------|------|
| owest occupied                                 | 54.00 (1a)                | x 2.85                      | (2a) =           | 153.90         | (3a) |
| otal floor area (1a) + (1b) + (1c)             | + (1d)(1n) = 54.00 (4)    |                             |                  |                |      |
| welling volume                                 |                           | (3a) + (3b) + (3            | 3c) + (3d)(3n) = | = 153.90       | (5)  |
|                                                |                           |                             |                  |                |      |
| 2. Ventilation rate                            |                           |                             |                  |                |      |
|                                                |                           |                             |                  | m³ per hour    |      |
| lumber of chimneys                             |                           | 0                           | x 40 =           | 0              | (6a) |
| lumber of open flues                           |                           | 0                           | x 20 =           | 0              | (6b) |
| lumber of intermittent fans                    |                           | 2                           | x 10 =           | 20             | (7a) |
| lumber of passive vents                        |                           | 2                           | x 10 =           | 20             | (7b) |
| lumber of flueless gas fires                   |                           | 0                           | x 40 =           | 0              | (7c) |
|                                                |                           |                             |                  | Air changes po | er   |
| nfiltration due to chimneys, flues, fans, PSVs | (6a) + (6b) + (7a) + (7b) | + (7c) = 40                 | ÷ (5) =          | 0.26           | (8)  |

If based on air permeability value, then (18) =  $[(17) \div 20] + (8)$ , otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

| Shelter factor                                     | 1 - [0.075 x (19)] = | 0.70 | (20) |
|----------------------------------------------------|----------------------|------|------|
| Adjusted infiltration rate                         | (18) x (20) = [      | 0.29 | (21) |
| Infiltration rate modified for monthly wind speed: |                      |      |      |

|                   | Jan         | Feb        | Mar  | Apr  | May  | Jun  | Jul  | Aug  | Sep  | Oct    | Nov  | Dec   |      |
|-------------------|-------------|------------|------|------|------|------|------|------|------|--------|------|-------|------|
| Monthly average v | wind speed  | from Table | 7    |      |      |      |      |      |      |        |      |       |      |
| (22)m             | 5.40        | 5.10       | 5.10 | 4.50 | 4.10 | 3.90 | 3.70 | 3.70 | 4.20 | 4.50   | 4.80 | 5.10  |      |
|                   |             |            |      |      |      |      |      |      |      | ∑(22)1 | 12 = | 54.10 | (22) |
| Wind Factor (22a) | m = (22)m - | ÷ 4        |      |      |      |      |      |      |      |        |      |       |      |
| (22a)m            | 1.35        | 1.27       | 1.27 | 1.12 | 1.02 | 0.98 | 0.92 | 0.92 | 1.05 | 1.12   | 1.20 | 1.27  | 7    |

∑(22a)1...12 = 13.52

Adjusted infiltration rate (allowing for shelter and wind speed) =  $(21) \times (22a)m$ 

0.39 0.37 0.32 0.29 0.28 (22b)m 0.37 0.27 0.27 0.30 0.32 0.34 0.37

 $\sum (22b)1...12 =$ 3.88 (22b)

0.41

4

(18)

(19)

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

N/A (23a)

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

| ימונודו               | ol ventilation o<br>m ≥ 1, then (24 |                |                   |                |              |                               | 51          |                  |               |            |                 |              |        |
|-----------------------|-------------------------------------|----------------|-------------------|----------------|--------------|-------------------------------|-------------|------------------|---------------|------------|-----------------|--------------|--------|
| (24d)m                | 0.58                                | 0.57           | 0.57              | 0.55           | 0.54         | 0.54                          | 0.54        | 0.54             | 0.55          | 0.55       | 0.56            | 0.57         | (24    |
|                       | nange rate - en                     | 1              |                   |                | 1            | _                             |             |                  |               | 0.00       | 1 0.00          | 1 0.07       |        |
| (25)m                 | 0.58                                | 0.57           | 0.57              | 0.55           | 0.54         | 0.54                          | 0.54        | 0.54             | 0.55          | 0.55       | 0.56            | 0.57         | (25    |
| (==)                  | 0.00                                | 1 2.2.         | 1 2.2.            | 1 3.22         |              | 1 2.2                         | 1           |                  | 1 3.33        | 1 0.00     | 1 0.00          | 1 0.01       |        |
| 3. Heat losse         | s and heat los                      | s paramete     | r                 |                |              |                               |             |                  |               |            |                 |              |        |
| he κ-value is         | the heat capa                       | city per unit  | area, see         | Table 1e.      |              |                               |             |                  |               |            |                 |              |        |
|                       | Element                             |                | Gross<br>Area, m² | •              | nings,<br>n² | Net area<br>A, m <sup>2</sup> |             | -value,<br>V/m²K | A x U,<br>W/K |            | ralue,<br>/m².K | Αxκ,<br>kJ/K |        |
| Vindow*               |                                     |                |                   |                |              | 10.00                         | x           | 1.42 =           | 14.15         | 1          | N/A             | N/A          | (2     |
| xternal wall          |                                     |                |                   |                |              | 10.52                         | _ x         | 0.20 =           | 2.10          | 1          | N/A             | N/A          | (29    |
| otal area of e        | external eleme                      | nts ∑A, m²     |                   |                |              | 20.52                         | (31)        |                  |               |            |                 |              |        |
| for windows           | and roof wind                       | lows, effecti  | ive window        | U-value is     | calculated   | using form                    | nula 1/[(1, | /UValue)+0.      | 04] paragrap  | oh 3.2     |                 |              | _      |
| abric heat lo         | ss, W/K = $\sum (A \times A)$       | < U)           |                   |                |              |                               |             |                  | (2            | 6)(30) +   | (32) =          | 16.25        | (3:    |
| leat capacity         | $Cm = \sum (A \times \kappa)$       |                |                   |                |              |                               |             | (28)             | (30) + (32)   | + (32a)(3  | 32e) =          | N/A          | (3     |
| hermal mass           | parameter (TI                       | MP) in kJ/m    | ²K                |                |              |                               |             |                  | Calcula       | ted separa | itely =         | 100.00       | (3     |
| _                     | es: ∑(L x Ψ) ca                     |                |                   |                |              |                               |             |                  |               |            |                 | 3.08         | (3     |
|                       | f thermal bridg                     | ing are not    | known the         | en (36) = 0.1  | 5 x (31)     |                               |             |                  |               |            |                 |              | _      |
| otal fabric he        |                                     |                |                   |                |              |                               |             |                  |               | (33) +     | (36) =          | 19.33        | (3     |
|                       | at loss calculat                    |                | · ·               | · · ·          |              | 1 27 22                       | J 0= 10     | 1 07 10          | 1             |            | 1 00 10         | 1 00 -0      | ٦,,    |
| (38)m                 | 29.20                               | 28.79          | 28.79             | 28.04          | 27.59        | 27.38                         | 27.18       | 27.18            | 27.70         | 28.04      | 28.40           | 28.79        | (3     |
| eat transfer<br>(39)m | coefficient, W,                     | 48.13          | 48.13             | 47.37          | 46.92        | 46.71                         | 46.52       | 46.52            | 47.03         | 47.37      | 47.74           | 48.13        | 7      |
| (33)111               | 40.54                               | 40.13          | 40.13             | 47.57          | 1 40.52      | 40.71                         | 40.32       | 40.32            | Average =     | 1          |                 | 47.42        | <br>(3 |
| eat loss para         | meter (HLP), V                      | V/m²K (39      | )m ÷ (4)          |                |              |                               |             |                  | / Werage      | 2(33)112   |                 | 17.12        | (5     |
| (40)m                 | 0.90                                | 0.89           | 0.89              | 0.88           | 0.87         | 0.87                          | 0.86        | 0.86             | 0.87          | 0.88       | 0.88            | 0.89         |        |
|                       |                                     |                |                   |                |              |                               |             |                  | Average =     | ∑(40)112   | 2/12 =          | 0.88         | (4     |
|                       |                                     |                |                   |                |              |                               |             |                  |               |            |                 |              |        |
| 4. Water hea          | ting energy re                      | quirement      |                   |                |              |                               | V           |                  |               |            |                 |              |        |
|                       |                                     |                |                   |                |              |                               |             |                  |               | _          |                 | :Wh/year     |        |
| ssumed occu           |                                     |                |                   |                |              |                               |             |                  |               | 1.83       | 1 (42           | 2)           |        |
|                       | .9, N = 1 + 1.76                    | 5 x [1 - exp(- | 0.000349          | x (TFA - 13.9  | 9)2)] + 0.00 | 13 x (TFA -                   | 13.9)       |                  |               |            |                 |              |        |
| If TFA ≤ 13           |                                     |                |                   |                | (25 11)      | 26                            |             |                  |               | 77.4       |                 |              |        |
|                       | ge hot water us<br>ge hot water us  | _              |                   | _              |              |                               | d to achie  | uo a watar i     | usa taraat of | 77.1       | ,               | •            |        |
|                       | r day (all water                    |                |                   | i by 5% ij tii | e aweiling   | is designed                   | i to ucine  | ve a water a     | ise turget oj | not more t | (11411 125 III  | 163          |        |
| c. pc.ss pc.          | Jan                                 | Feb            | Mar               | Apr            | May          | Jun                           | Jul         | Aug              | Sep           | Oct        | Nov             | Dec          |        |
| ot water usa          | ge in litres per                    |                |                   | •              |              |                               |             | ,8               | 304           | 001        |                 | 200          |        |
| (44)m                 | 84.85                               | 81.77          | 78.68             | 75.60          | 72.51        | 69.43                         | 69.43       | 72.51            | 75.60         | 78.68      | 81.77           | 84.85        |        |
|                       |                                     | •              |                   |                |              | •                             |             | ·                | •             | ∑(44)1.    | 12 =            | 925.68       | (4     |
| nergy conter          | it of hot water                     | used - calcı   | ulated mor        | nthly = 4.190  | 0 x Vd,m x   | nm x Tm/3                     | 600 kW      | h/month (se      | ee Tables 1b, | 1c 1d)     |                 |              | _      |
| (45)m                 | 126.14                              | 110.32         | 113.84            | 99.25          | 95.23        | 82.18                         | 76.15       | 87.38            | 88.43         | 103.05     | 112.49          | 122.16       |        |
|                       |                                     |                |                   |                |              |                               |             |                  |               | ∑(45)1.    | 12 =            | 1216.62      | (4     |
| instantaneo           | us water heati                      | ng at point    | of use (no        | hot water s    | torage), er  | nter 0 in bo                  | xes (46) to | (61)             |               |            |                 |              |        |
|                       | y heating inclu                     | ıde distribut  | tion loss wh      | hether or no   | t hot wate   | er tank is pi                 | resent      |                  |               |            |                 |              |        |
|                       |                                     |                |                   |                |              |                               |             |                  |               |            |                 |              |        |
| or communit           | ss 0.15 x (45)                      | m              |                   | 1              | 1            |                               |             |                  |               | 1          |                 | _            | _      |
| or communit           | 18.92                               | m<br>16.55     | 17.08             | 14.89          | 14.28        | 12.33                         | 11.42       | 13.11            | 13.26         | 15.46      | 16.87           | 18.32        | (4     |

| b) If manufacturer's declared cylinder loss factor is not known:  Cylinder volume (litres) including any solar storage within same cylinder  If community heating and no tank in dwelling, enter 110 litres in box (50)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in box (50)  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see SAP 2009 section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Energy lost from the (55)  Water storage loss calculated for each month = (55) x (41)m  (56)m  S3.36  48.19  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| If community heating and no tank in dwelling, enter 110 litres in box (50)  Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in box (50)  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see SAP 2009 section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Inter (49) or (54) in (55)  Water storage loss calculated for each month = (55) x (41)m  (56)m  53.36  48.19  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64   |
| Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in box (50)  Hot water storage loss factor from Table 2 (kWh/litre/day)  If community heating see SAP 2009 section 4.3  Volume factor from Table 2a  Temperature factor from Table 2b  Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Enter (49) or (54) in (55)  Water storage loss calculated for each month = (55) x (41)m  (56)m  S3.36  48.19  S3.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53. |
| Hot water storage loss factor from Table 2 (kWh/litre/day)   0.02 (51)     If community heating see SAP 2009 section 4.3     Volume factor from Table 2a   1.03 (52)     Temperature factor from Table 2b   1.00 (53)     Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)   1.72 (54)     Enter (49) or (54) in (55)   1.72 (55)     Water storage loss calculated for each month = (55) x (41)m     (56)m   53.36   48.19   53.36   51.64   53.36   51.64   53.36   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64     (57)m   53.36   48.19   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64     (57)m   53.36   48.19   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64     (57)m   53.36   48.19   53.36   51.64   53.36   51.64   53.36   51.64   53.36   51.64   53.36     (57)   Primary circuit loss for each month (58) ÷ 365 x (41)m     (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)     (59)m   30.58   27.62   30.58   29.59   30.58   29.59   30.58   30.58   29.59   30.58   29.59   30.58     (61)m   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0   |
| Standard    |
| Volume factor from Table 2a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Temperature factor from Table 2b  Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Enter (49) or (54) in (55)  Water storage loss calculated for each month = (55) x (41)m  (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Energy lost from water storage, kWh/day (50) x (51) x (52) x (53)  Enter (49) or (54) in (55)  Water storage loss calculated for each month = (55) x (41)m  (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Enter (49) or (54) in (55)  Water storage loss calculated for each month = (55) x (41)m  (56)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Water storage loss calculated for each month = (55) x (41)m (56)m  53.36  48.19  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36  51.64  53.36 |
| (56)m 53.36 48.19 53.36 51.64 53.36 51.64 53.36 51.64 53.36 51.64 53.36 51.64 53.36 51.64 53.36 (56)  If cylinder contains dedicated solar storage, = (56)m x [(50) - (H11)] ÷ (50), else = (56)m where (H11) is from Appendix H  (57)m 53.36 48.19 53.36 51.64 53.36 51.64 53.36 51.64 53.36 51.64 53.36 51.64 53.36 (57)  Primary circuit loss (annual) from Table 3 360.00 (58)  Primary circuit loss for each month (58) ÷ 365 × (41)m  (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)  (59)m 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 (59)  Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler)  (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| If cylinder contains dedicated solar storage, = (56)m x [(50) - (H11)] ÷ (50), else = (56)m where (H11) is from Appendix H  (57)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (57)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Primary circuit loss (annual) from Table 3 360.00 (58)  Primary circuit loss for each month (58) ÷ 365 × (41)m  (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)  (59)m 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 (59)  Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler)  (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Primary circuit loss for each month (58) ÷ 365 × (41)m  (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)  (59)m 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 (59)  Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler)  (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (modified by factor from Table H5 if there is solar water heating and a cylinder thermostat) (59)m 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 (59)  Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler) (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (59)m 30.58 27.62 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 29.59 30.58 (59)  Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler)  (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Combi loss for each month from Table 3a, 3b or 3c (enter '0' if not a combi boiler)  (61)m  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00 |
| (61)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total heat required for water heating calculated for each month $0.85 \times (45)m + (46)m + (57)m + (59)m + (61)m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (62)m   210.07   186.13   197.77   180.47   179.16   163.40   160.08   171.32   169.65   186.99   193.72   206.09   (62)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| (63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Sigma(63)112 = 0.00$ (63)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Output from water heater for each month, kWh/month (62)m + (63)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\Sigma(64)112 = 2204.86$ (64)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| if (64)m < 0 then set to 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Heat gains from water heating, kWh/month $0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5. Internal gains (see Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Metabolic gains (Table 5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (66)m 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 108.48 (66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (67)m 35.72 31.73 25.80 19.53 14.60 12.33 13.32 17.31 23.24 29.51 34.44 36.71 (67)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Pumps and fans gains (Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Losses e.g. evaporation (negative values) (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (71)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (72)m     146.62     144.84     141.13     136.08     132.81     128.20     124.28     129.30     131.09     136.31     142.20     144.84     (72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

| (73)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ns (66)m +<br>501.39 | 498.05                   | 482.27                     | 457.86       | 433.12        | 410.70       | 397.40    | 403.97                      | 417.83      | 442.41                      | 469.77       | 490.22 (7                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------------|----------------------------|--------------|---------------|--------------|-----------|-----------------------------|-------------|-----------------------------|--------------|-----------------------------------------|
| ` ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 1                        |                            |              |               |              | ·         |                             |             | 1                           | 1            | ,                                       |
| 6. Solar gains                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      |                          |                            |              |               |              |           |                             |             |                             |              |                                         |
| olar gains are co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | _                        | -                          |              |               |              |           |                             |             |                             |              |                                         |
| ows (74) to (82)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                          |                            |              | _             | eded if ther | e is more | than one wir                | ndow type   |                             |              |                                         |
| etails for month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | of January           | and annual               | totals are                 |              |               |              |           |                             |             |                             |              |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A                    | Access facto<br>Table 6d | or                         | Area m²      | So            | lar flux W/  | m² g      | Specific dat<br>or Table 6b |             | F Specific da<br>or Table 6 |              | Gains (W)                               |
| outh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | 0.77                     | x                          | 10.00        | x             | 47.32        | ] x       | 0.53                        | х           | 1.00                        | =            | 193.13 (78                              |
| olar gains in wat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ts, calculate        | ed for each              | month ∑(7₄                 | 1)m(82)m     | 1             |              |           |                             |             |                             |              |                                         |
| (83)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 193.13               | 314.98                   | 384.62                     | 428.97       | 442.99        | 444.41       | 437.23    | 423.95                      | 408.06      | 348.08                      | 228.82       | 166.87 (8                               |
| otal gains - inter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nal and sola         | ar (73)m + (             | 83)m                       |              |               |              |           |                             |             |                             |              |                                         |
| (84)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 694.52               | 813.04                   | 866.88                     | 886.83       | 876.12        | 855.12       | 834.63    | 827.92                      | 825.90      | 790.49                      | 698.59       | 657.10 (84                              |
| 7. Mean interna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l temperati          | ire (beating             | season) —                  |              |               |              |           | <u> </u>                    |             |                             |              |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                            | oa frans Ts  | blo C That's  | °C)          |           |                             |             |                             |              | 21.00 /0                                |
| emperature dur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ing neating  Jan     | periods in t             | ne living ar<br><b>Mar</b> |              |               |              | Jul       | A~                          | Co-         | Oct                         | No:          | 21.00 (8!                               |
| Itilisation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                          |                            | Apr          | May           | Jun          | Jui       | Aug                         | Sep         | Oct                         | Nov          | Dec                                     |
| (86)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.80                 | 0.73                     | 0.66                       | 0.58         | 0.47          | 0.34         | 0.23      | 0.23                        | 0.37        | 0.55                        | 0.74         | 0.81 (80                                |
| lean internal te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | II.                      | 1                          | <u>I</u>     | J. 17         | 3.57         | 0.23      | 0.25                        | 3.37        | 0.55                        | 1 0.74       | 101                                     |
| (87)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.12                | 20.37                    | 20.59                      | 20.76        | 20.90         | 20.97        | 20.99     | 20.99                       | 20.96       | 20.83                       | 20.45        | 20.13 (8                                |
| emperature dur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | ļ.                       |                            | <u> </u>     |               | 1            |           | 20.55                       | 20.50       | 1 20.00                     | 1 200        | 1 20:20 (0                              |
| (88)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.17                | 20.18                    | 20.18                      | 20.19        | 20.20         | 20.20        | 20.20     | 20.20                       | 20.19       | 20.19                       | 20.18        | 20.18 (88                               |
| tilisation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 1                        |                            |              |               |              |           |                             |             | •                           | •            | , , , ,                                 |
| (89)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.79                 | 0.71                     | 0.63                       | 0.55         | 0.43          | 0.30         | 0.18      | 0.18                        | 0.33        | 0.52                        | 0.71         | 0.80 (89                                |
| lean internal te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mperature i          | n the rest o             | f dwelling 1               | √2 (follow s | teps 3 to 7   | in Table 9c  | )         |                             | ,           | •                           | •            |                                         |
| (90)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 19.03                | 19.37                    | 19.67                      | 19.90        | 20.09         | 20.17        | 20.20     | 20.20                       | 20.16       | 20.00                       | 19.49        | 19.04 (90                               |
| iving area fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | on                   |                          |                            |              |               |              |           | fLA                         | 54.00       | ÷ (4)                       | =            | 1.00 (9:                                |
| lean internal te                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mperature f          | or the whol              | le dwelling                | fLA x T1 +(: | 1 - fLA) x T2 |              |           |                             |             | _                           |              |                                         |
| (92)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.12                | 20.37                    | 20.59                      | 20.76        | 20.90         | 20.97        | 20.99     | 20.99                       | 20.96       | 20.83                       | 20.45        | 20.13 (9:                               |
| pply adjustmen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t to the mea         | n internal t             | emperatur                  | e from Tab   | le 4e, wher   | e appropri   | ate       |                             |             |                             |              |                                         |
| (93)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20.12                | 20.37                    | 20.59                      | 20.76        | 20.90         | 20.97        | 20.99     | 20.99                       | 20.96       | 20.83                       | 20.45        | 20.13 (9:                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                            |              |               |              |           |                             |             |                             |              |                                         |
| 8. Space heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                    |                          |                            |              |               |              |           |                             | _           | _                           |              |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Jan                  | Feb                      | Mar                        | Apr          | May           | Jun          | Jul       | Aug                         | Sep         | Oct                         | Nov          | Dec                                     |
| et Ti to the mea<br>Itilisation factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |                          | obtained a                 | t step 11 o  | r rabie 9b,   | so that tim  | = (93)m a | nd recalcula                | te the util | isation facto               | or for gains | s using Table 9a,                       |
| (94)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.79                 | 0.72                     | 0.65                       | 0.57         | 0.46          | 0.34         | 0.23      | 0.23                        | 0.37        | 0.54                        | 0.72         | 0.79 (94                                |
| seful gains, 2m(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                          |                            | 0.57         | 0.10          | 0.51         | 0.23      | 0.23                        | 0.37        | 0.51                        | 0.72         | 0.73                                    |
| (95)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 545.72               | 583.77                   | 560.69                     | 509.38       | 406.61        | 290.57       | 189.07    | 189.03                      | 303.85      | 430.73                      | 505.00       | 521.88 (9                               |
| onthly average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                      | 1                        |                            |              | , , , , ,     | 1 22.27      |           | 1 22.00                     |             | 1                           | 1            |                                         |
| (96)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.50                 | 5.00                     | 6.80                       | 8.70         | 11.70         | 14.60        | 16.90     | 16.90                       | 14.30       | 10.80                       | 7.00         | 4.90 (90                                |
| eat loss rate for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | 1                        |                            |              |               | <u> </u>     |           |                             |             |                             | <del>'</del> |                                         |
| (97)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 758.27               | 739.69                   | 663.78                     | 571.29       | 431.88        | 297.72       | 190.47    | 190.47                      | 313.43      | 475.10                      | 641.84       | 732.74 (9                               |
| on the control of the |                      | 1                        |                            |              |               |              | (41)m     |                             |             | •                           | •            | • • • • • • • • • • • • • • • • • • • • |
| (98)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 158.14               | 104.78                   | 76.70                      | 44.57        | 18.80         | 0.00         | 0.00      | 0.00                        | 0.00        | 33.01                       | 98.52        | 156.87                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                            |              |               |              | Total per | year (kWh/y                 | /ear) = ∑(9 | 8)15, 10                    | .12 =        | 691.39 (98                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                          |                            |              |               |              | •         | . ,,                        |             |                             |              |                                         |
| pace heating red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quirement in         | n kWh/m²/\               | /ear                       |              |               |              |           |                             |             | (96)                        | <b>-</b> (4) | 12.00   19                              |
| pace heating red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | quirement ir         | ո kWh/m²/չ               | /ear                       |              |               |              |           |                             |             | (98)                        | ÷ (4)        | 12.80 (99                               |

| Fraction of space heating from community system 1 - (301)  Community scheme fractions obtained from plant design specificate  Fraction of community DHW from CHP  Fraction of total space heat from community CHP (302) x (303a) =  Fraction of total space heat from community boilers (302) x (303b)  Factor for control and charging method (Table 4c(3)) for community  Factor for control and charging method (Table 4c(3)) for community  Distribution loss factor (Table 12c) for community heating system  Space heating:  Annual space heating requirement  Space heat from community CHP (98) x (304a) x (305) x (306) =  Space heat from community boilers (98) x (304b) x (305) x (306) = | =<br>ty space heating             | ords:            | 0.60 ( 0.40 ( 0.60 ( 0.40 ( 1.00 ( 1.00 ( 0.10 ( 41.48 ( 0.60 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0 | 302)<br>303a)<br>303b)<br>304a)<br>304b)<br>305)<br>305a)<br>306)                    | <b>kWh/year</b><br>691.39                                        |                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                  |                                                                                          |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 2204.86                                                          | ]                                                                                        |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                  |                                                                                          |
| Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                  | 132.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 310a)                                                                                |                                                                  |                                                                                          |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                  | 88.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 310b)                                                                                |                                                                  |                                                                                          |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   | 0.01 x [(3       | 307a)(307e) + (310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oa)(310e)] =                                                                         | 2.90                                                             | (313)                                                                                    |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                  |                                                                                          |
| mechanical ventilation fans - balanced, extract or positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | from outside                      |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                 |                                                                  | (330a)                                                                                   |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                 | ]                                                                | (330b)                                                                                   |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                  | (220-) . (220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                 | 0.00                                                             | (330g)                                                                                   |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   |                  | (330a) + (330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0b) + (330g) =                                                                       | 0.00                                                             | (331)                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                  |                                                                                          |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 252.33                                                           | (332)                                                                                    |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 252.33                                                           | (332)                                                                                    |
| Electricity for lighting (calculated in Appendix L):  10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                                  |                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heat or fuel<br>kWh/year          |                  | Fuel price<br>(Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      | 252.33 Fuel cost £/year                                          |                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                   | x                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 0.01 =                                                                             |                                                                  |                                                                                          |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kWh/year                          | x<br>x           | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      | Fuel cost £/year                                                 |                                                                                          |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | kWh/year                          |                  | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x 0.01 =                                                                             | Fuel cost £/year                                                 | (340a)                                                                                   |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.48<br>27.66                    | x                | (Table 12)  2.65  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x 0.01 =<br>x 0.01 =                                                                 | 1.10<br>1.05                                                     | ] (340a)<br>] (340b)                                                                     |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 41.48<br>27.66<br>132.29          | x<br>x           | (Table 12)  2.65  3.78  2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                     | 1.10<br>1.05<br>3.51                                             | (340a)<br>(340b)<br>(342a)                                                               |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x      | (Table 12)  2.65  3.78  2.65  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                         | 1.10<br>1.05<br>3.51<br>3.33                                     | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)                                             |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                             | 1.10<br>1.05<br>3.51<br>3.33<br>0.00                             | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)                                            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 1.10 1.05 3.51 3.33 0.00 28.92                                   | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)<br>] (349)<br>] (350)                       |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 1.10 1.05 3.51 3.33 0.00 28.92 106.00                            | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 1.10 1.05 3.51 3.33 0.00 28.92 106.00                            | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                              | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90                     | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                                                                                              | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90                     | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                                                                                                                     | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90  0.47 0.68          | ] (340a)<br>] (340b)<br>] (342a)<br>] (342b)<br>] (349)<br>] (350)<br>] (351)<br>] (355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                                                                                                                           | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90  0.47 0.68 90.47    | [ (340a)                                                                                 |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                                                                                       | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90  0.47 0.68 90.47 90 | [ (340a)                                                                                 |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                                                                                       | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90  0.47 0.68 90.47 90 | [ (340a)                                                                                 |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from community CHP (Mains gas)                                                                                                                                                                                                                    | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90  0.47 0.68 90.47 90 | [ (340a) (340b) (342a) (342b) (349) (355) [ (355) (357) (358) [ (358) (358) (358)        |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                                                                                       | 41.48<br>27.66<br>132.29<br>88.19 | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.10 1.05 3.51 3.33 0.00 28.92 106.00 143.90  0.47 0.68 90.47 90 | [ (340a)                                                                                 |

|                                                                      |                         |        |                                |                                   | 1                         |                  |
|----------------------------------------------------------------------|-------------------------|--------|--------------------------------|-----------------------------------|---------------------------|------------------|
| Heat to power ratio                                                  |                         |        |                                | 3.00                              |                           | (360)            |
|                                                                      | Energy<br>kWh/year      |        | Emissions<br>Factor            |                                   | Emissions (kgCO2/year)    |                  |
| Space heating from CHP (Mains gas)                                   | 73.75                   | x      | 0.198                          | =                                 | 14.60                     | (363)            |
| less credit emissions for electricity                                | -13.83                  | x      | 0.529                          | =                                 | -7.31                     | (364)            |
| Water heating from CHP (Mains gas)                                   | 235.18                  | ×      | 0.198                          | =                                 | 46.57                     | (365)            |
| less credit emissions for electricity                                | -44.10                  | ×      | 0.529                          | =                                 | -23.33                    | (366)            |
| Emissions from other community sources (not CHP)                     |                         |        |                                |                                   |                           |                  |
| Efficiency of boilers (%)                                            |                         |        | 75.00                          | (367b)                            |                           |                  |
|                                                                      | Energy used<br>kWh/year |        | Emission Factor<br>(kgCO2/kWh) | r                                 | Emissions<br>(kgCO2/year) |                  |
| Emissions from boilers (Mains gas)                                   | 154.47                  | Х      | 0.198                          | =                                 | 30.58                     | (368)            |
| Electrical energy for heat distribution                              | 2.90                    | x      | 0.517                          | =                                 | 1.50                      | (372)            |
| Total carbon dioxide from community systems                          |                         |        | (363)(366)                     | + (368)(372) =                    | 62.61                     | (373)            |
| Space and water heating                                              |                         |        | (373)                          | + (374) + (375) =                 | 62.61                     | (376)            |
| Electricity for pumps and fans within dwelling                       | 0.00                    | ×      | 0.000                          | =                                 | 0.00                      | (378)            |
| Electricity for lighting                                             | 252.33                  | x      | 0.517                          | =                                 | 130.46                    | (379)            |
| Total carbon dioxide emissions                                       |                         |        |                                | ∑(376)(382) =                     | 193.07                    | (383)            |
| Dwelling carbon dioxide emissions rate                               |                         |        |                                | (383) ÷ (4) =                     | 3.58                      | (384)            |
| El value                                                             |                         |        |                                |                                   | 97.39                     |                  |
| EI rating (see section 14)                                           |                         |        |                                |                                   | 97                        | (385)            |
| EI band                                                              |                         |        |                                |                                   | А                         |                  |
| 13b. Primary energy - Community heating scheme                       |                         |        |                                |                                   |                           |                  |
| Primary energy from community CHP (Mains gas)                        |                         |        |                                |                                   |                           |                  |
| Efficiency of CHP (%)                                                |                         |        |                                | 75.00                             |                           | (359*)           |
| Heat to power ratio                                                  |                         |        |                                | 3.00                              |                           | (360*)           |
|                                                                      | Energy<br>kWh/year      |        | Primary Energy<br>Factor       |                                   | Primary Energy            |                  |
| Space heating from CHP (Mains gas)                                   | 73.75                   | ×      | 1.02                           | ] =                               | 75.22                     | (363*)           |
| less credit emissions for electricity                                | -13.83                  | x      | 2.92                           | =                                 | -40.38                    | (364*)           |
| Water heating from CHP (Mains gas)                                   | 235.18                  | x      | 1.02                           | =                                 | 239.89                    | (365*)           |
| less credit emissions for electricity                                | -44.10                  | х      | 2.92                           | =                                 | -128.76                   | (366*)           |
| Primary energy from other community sources (not CHP)                |                         |        |                                |                                   |                           |                  |
| Efficiency of boilers (%)                                            |                         |        | 75.00                          | (367b*)                           |                           |                  |
|                                                                      | Energy used kWh/year    |        | Primary Energy<br>Factor       | ,                                 | Primary Energy            |                  |
| Primary energy - boilers (Mains gas)                                 | 154.47                  | х      | 1.02                           | =                                 | 157.56                    | (368*)           |
| Electrical energy for heat distribution                              | 2.90                    | х      | 2.92                           | =                                 | 8.46                      | (372*)           |
|                                                                      |                         |        |                                |                                   |                           | _                |
| Total primary energy from community systems                          |                         |        | (363*)(366*) + (               | 368*)(372*) =                     | 311.98                    | (373*)           |
| Total primary energy from community systems  Space and water heating |                         |        |                                | 368*)(372*) =<br>374*) + (375*) = | 311.98<br>311.98          | (373*)<br>(376*) |
|                                                                      | 0.00                    | x      |                                |                                   |                           |                  |
| Space and water heating                                              | 0.00                    | x<br>x | (373*) + (                     | 374*) + (375*) =                  | 311.98                    | (376*)           |

19.42

(383\*)

(384\*)

∑(376\*)...(382\*) = [

 $(383*) \div (4) = [$ 

Total primary energy kWh/year



| Assessor name |                                                      | Assessor number |            |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 15/11/2011 |
| Address       | 28 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimension | ons                             |            |                              |                 |
|-------------------------------|---------------------------------|------------|------------------------------|-----------------|
|                               |                                 | Area (m²)  | Average storey height (m)    | Volume (m³)     |
| Lowest occupied               |                                 | 54.00 (1a) | x 2.85 (2a) =                | 153.90 (3a)     |
| Total floor area              | (1a) + (1b) + (1c) + (1d)(1n) = | 54.00 (4)  |                              |                 |
| Dwelling volume               |                                 |            | (3a) + (3b) + (3c) + (3d)(3a | n) = 153.90 (5) |
|                               |                                 |            |                              |                 |
| 2. Ventilation rate           |                                 |            |                              |                 |
|                               |                                 |            |                              | m³ per hour     |
| Number of chimneys            |                                 |            | 0 x 40 =                     | 0 (6a)          |

|                              |   |        | Air changes per hour | •    |
|------------------------------|---|--------|----------------------|------|
| Number of flueless gas fires | 0 | x 40 = | 0                    | (7c) |
| Number of passive vents      | 2 | x 10 = | 20                   | (7b) |
| Number of intermittent fans  | 2 | x 10 = | 20                   | (7a) |
| Number of open flues         | 0 | x 20 = | 0                    | (6b) |

| Infiltration due to chimneys, flues, fans, PSVs                  | (6a) + (6b) + (7a) + (7b) + (7c) =          | 40      | ÷ (5) = | 0.26 |
|------------------------------------------------------------------|---------------------------------------------|---------|---------|------|
| If a pressurisation test has been carried out or is intended, pa | roceed to (17), otherwise continue from (9) | to (16) |         |      |

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then (18) =  $[(17) \div 20] + (8)$ , otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

1 - [0.075 x (19)] = Shelter factor

Adjusted infiltration rate  $(18) \times (20) =$ 

Infiltration rate modified for monthly wind speed:

|                       |               | ,           |             |             |             |      |      |      |      |         |       |       |       |
|-----------------------|---------------|-------------|-------------|-------------|-------------|------|------|------|------|---------|-------|-------|-------|
|                       | Jan           | Feb         | Mar         | Apr         | May         | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average       | wind speed    | from Table  | 7           |             |             |      |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10        | 5.10        | 4.50        | 4.10        | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                       |               |             |             |             |             |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m -   | ÷ 4         |             |             |             |      |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27        | 1.27        | 1.12        | 1.02        | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |             |             |             |             |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | wing for sh | elter and v | vind speed) | = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.39          | 0.37        | 0.37        | 0.32        | 0.29        | 0.28 | 0.27 | 0.27 | 0.30 | 0.32    | 0.34  | 0.37  |       |
|                       |               |             |             |             |             |      |      |      |      | ∑(22b)1 | .12 = | 3.88  | (22b) |

If mechanical ventilation: air change rate through system

Calculate effective air change rate for the applicable case:

N/A

3.00

0.41

4

0.70

0.29

(17)

(18)

(19)

(20)

(21)

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

(23a)

|                               |                                     | r whole hou    |                   |               |              |                   | 51          |                  |               |            |                |              |        |
|-------------------------------|-------------------------------------|----------------|-------------------|---------------|--------------|-------------------|-------------|------------------|---------------|------------|----------------|--------------|--------|
| (24d)m                        | m ≥ 1, then (2 <sup>4</sup><br>0.58 | 0.57           | 0.57              | 0.55          | 0.54         | 0.54              | 0.54        | 0.54             | 0.55          | 0.55       | 0.56           | 0.57         | (24    |
| •                             | hange rate - en                     | _              |                   |               | 1            | -                 | 0.54        | 0.54             | 0.55          | 0.55       | 0.50           | 0.57         | (24    |
| (25)m                         | 0.58                                | 0.57           | 0.57              | 0.55          | 0.54         | 0.54              | 0.54        | 0.54             | 0.55          | 0.55       | 0.56           | 0.57         | (25    |
| (23)111                       | 0.50                                | 0.57           | 0.57              | 0.55          | 0.54         | 0.54              | 0.54        | 0.54             | 0.55          | 0.55       | 0.50           | 0.57         | (20    |
| 3. Heat losse                 | s and heat los                      | s paramete     | r                 |               |              |                   |             |                  |               |            |                |              |        |
| The κ-value is                | the heat capa                       | city per unit  | area, see         | Table 1e.     |              |                   |             |                  |               |            |                |              |        |
|                               | Element                             |                | Gross<br>Area, m² | •             | nings,<br>n² | Net area<br>A, m² |             | -value,<br>V/m²K | A x U,<br>W/K |            | alue,<br>/m².K | Αxκ,<br>kJ/K |        |
| Window*                       |                                     |                |                   |               |              | 10.00             | _ x         | 1.42 =           | 14.15         | 1          | N/A            | N/A          | (27    |
| xternal wall                  |                                     |                |                   |               |              | 9.95              | _ x         | 0.20 =           | 1.99          | ]          | N/A            | N/A          | (29    |
| otal area of e                | external eleme                      | nts ∑A, m²     |                   |               |              | 19.95             | (31)        |                  |               |            |                |              |        |
| for windows                   | and roof wind                       | lows, effecti  | ive window        | v U-value is  | calculated   | using form        | ula 1/[(1/  | ′UValue)+0.      | 04] paragraj  | oh 3.2     |                |              |        |
| abric heat lo                 | ss, W/K = ∑(A ×                     | < U)           |                   |               |              |                   |             |                  | (2            | 6)(30) +   | (32) =         | 16.14        | (33    |
| leat capacity                 | Cm = ∑(A x κ)                       |                |                   |               |              |                   |             | (28)             | (30) + (32)   | + (32a)(3  | 32e) =         | N/A          | (34    |
| hermal mass                   | parameter (TI                       | MP) in kJ/m    | ²K                |               |              |                   |             |                  | Calcula       | ted separa | itely =        | 100.00       | (3!    |
| hermal bridg                  | es: ∑(L x Ψ) ca                     | Iculated usi   | ng Append         | lix K         |              |                   |             |                  |               |            |                | 2.99         | (3     |
| if details o                  | f thermal bridg                     | ing are not    | known the         | en (36) = 0.1 | 5 x (31)     |                   |             |                  |               |            |                |              |        |
| otal fabric he                | eat loss                            |                |                   |               |              |                   |             |                  |               | (33) +     | (36) =         | 19.13        | (3     |
| entilation he                 | at loss calculat                    | ted monthly    | / 0.33 x (2       | 25)m x (5)    |              |                   |             |                  |               |            |                |              |        |
| (38)m                         | 29.20                               | 28.79          | 28.79             | 28.04         | 27.59        | 27.38             | 27.18       | 27.18            | 27.70         | 28.04      | 28.40          | 28.79        | (3     |
| eat transfer                  | coefficient, W                      | /K (37)m+      | (38)m             | _             |              |                   |             |                  |               |            |                | _            | _      |
| (39)m                         | 48.34                               | 47.93          | 47.93             | 47.17         | 46.72        | 46.51             | 46.32       | 46.32            | 46.83         | 47.17      | 47.54          | 47.93        | ╛      |
|                               |                                     |                |                   |               |              |                   |             |                  | Average =     | ∑(39)112   | 2/12 =         | 47.22        | (3     |
| •                             | meter (HLP), V                      | 1              | 1                 |               |              |                   |             | 1                | T             | 1          | T              | T            | _      |
| (40)m                         | 0.90                                | 0.89           | 0.89              | 0.87          | 0.87         | 0.86              | 0.86        | 0.86             | 0.87          | 0.87       | 0.88           | 0.89         | _ <br> |
|                               |                                     |                |                   |               |              |                   |             |                  | Average =     | ∑(40)112   | 2/12 = [       | 0.87         | (40    |
| 4. Water hea                  | ating energy re                     | quirement      |                   |               |              |                   |             |                  |               |            |                |              |        |
|                               |                                     |                |                   |               |              |                   |             |                  |               |            | k              | Wh/year      |        |
| ssumed occu                   | ipancy, N                           |                |                   |               |              |                   |             |                  |               | 1.83       | 1 (42          | .)           |        |
|                               | .9, N = 1 + 1.76                    | 5 x [1 - exp(- | 0.000349          | x (TFA - 13.9 | 9)²)] + 0.00 | 13 x (TFA -       | 13.9)       |                  |               |            | ,              | •            |        |
| If TFA ≤ 13                   |                                     |                |                   |               |              | ·                 | •           |                  |               |            |                |              |        |
| nnual averag                  | ge hot water us                     | sage in litre  | s per day V       | /d,average =  | : (25 x N) + | 36                |             |                  |               | 77.1       | .4 (43         | )            |        |
| nnual averag                  | ge hot water us                     | sage has be    | en reduced        | d by 5% if th | e dwelling   | is designed       | l to achiev | ve a water u     | ıse target of | not more   | than 125 lit   | res          |        |
| er person pe                  | r day (all wate                     | r use, hot aı  | nd cold)          |               |              |                   |             |                  |               |            |                |              |        |
|                               | Jan                                 | Feb            | Mar               | Apr           | May          | Jun               | Jul         | Aug              | Sep           | Oct        | Nov            | Dec          |        |
| lot water usa                 | ge in litres per                    | day for eac    | ch month V        | /d,m = facto  | r from Tab   | le 1c x (43)      |             |                  |               |            |                |              |        |
| (44)m                         | 84.85                               | 81.77          | 78.68             | 75.60         | 72.51        | 69.43             | 69.43       | 72.51            | 75.60         | 78.68      | 81.77          | 84.85        |        |
|                               |                                     |                |                   |               |              |                   |             |                  |               | ∑(44)1.    | 12 =           | 925.68       | (4     |
| nergy conter                  | nt of hot water                     | used - calcı   | ulated mor        | nthly = 4.190 | 0 x Vd,m x   | nm x Tm/3         | 600 kW      | h/month (se      | ee Tables 1b  | , 1c 1d)   |                | _            | _      |
| (45)m                         | 126.14                              | 110.32         | 113.84            | 99.25         | 95.23        | 82.18             | 76.15       | 87.38            | 88.43         | 103.05     | 112.49         | 122.16       | ╛      |
|                               |                                     |                |                   |               |              |                   |             |                  |               | ∑(45)1.    | 12 =           | 1216.62      | (4     |
|                               | us water heati                      |                | -                 |               |              |                   |             | (61)             |               |            |                |              |        |
|                               | u hoating inclu                     | ıde distribut  | tion loss wh      | hether or no  | t hot wate   | er tank is pi     | esent       |                  |               |            |                |              |        |
|                               | y neuting inclu                     |                |                   |               |              |                   |             |                  |               |            |                |              |        |
| or communit<br>istribution lo | oss 0.15 x (45)                     | 1              |                   |               | 1            |                   | 1           |                  |               | 1          | _              | 1            | _      |
| or communit                   | oss 0.15 x (45)<br>18.92            | m<br>16.55     | 17.08             | 14.89         | 14.28        | 12.33             | 11.42       | 13.11            | 13.26         | 15.46      | 16.87          | 18.32        | (4     |

| Second continue   Second con   | ·                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oss factor is n                                                                                         | ot known                                                                                                                     |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              |                                                |                                                         |                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|
| ## Community Neutring and no tank in dwelling, enter \$10 liters in box \$(50)\$  Otherwise if in structed to states (fills includes instantaneous combinates) enter "0" in box \$(50)\$  ## Community Neutring asses \$60.0000 section 4.3  Volume factor from Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cylinaci Volaine (iit                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                              |                                                                                            | er                                                                                                                |                                                                                            |                                                              | 110.00                                                    | (50)                                                         |                                                |                                                         |                                                      |
| Characterise of no stored hot water (this includes instantaneous combi boilers) enter ("0" in box (50)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              | •                                                                                          |                                                                                                                   |                                                                                            |                                                              | 10.00                                                     | ] (50)                                                       |                                                |                                                         |                                                      |
| Hot water storage loss factor from Table 2 (swh/liter/day)   Swh/liter/day)   Swh/liter sector from Table 2   Swh/liter sect   | ,                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3,                                                                                                      |                                                                                                                              | •                                                                                          | •                                                                                                                 | ' '0' in box i                                                                             | (50)                                                         |                                                           |                                                              |                                                |                                                         |                                                      |
| Volume factor from Table 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              |                                                                                            | ,                                                                                                                 |                                                                                            |                                                              | 0.02                                                      | (51)                                                         |                                                |                                                         |                                                      |
| Propertion   Facility   Facilit   | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | ,                                                                                                                            |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | ] (0 = 7                                                     |                                                |                                                         |                                                      |
| Energy lost from water storage, KWh/day   (50 ) x (51) x (52) x (53)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              | 1 03                                                      | (52)                                                         |                                                |                                                         |                                                      |
| The content of the    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 1                                                            |                                                |                                                         |                                                      |
| Section   Column      | •                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (h /da (FO) .                                                                                           | (51) (51                                                                                                                     | a) (Ea)                                                                                    |                                                                                                                   |                                                                                            |                                                              |                                                           | 1                                                            |                                                |                                                         |                                                      |
| Value   Sociation   Sociatio   |                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m/day (50)                                                                                              | x (21) x (2                                                                                                                  | 2) X (53)                                                                                  |                                                                                                                   |                                                                                            |                                                              |                                                           | J ` '                                                        |                                                |                                                         |                                                      |
| Solimon   Soli   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | ()                                                                                                                           |                                                                                            |                                                                                                                   |                                                                                            |                                                              | 1./2                                                      | [ (55)                                                       |                                                |                                                         |                                                      |
| Cylinder contains dedicated stolar storage, = (56)in \times   (56)in \times   (56)in \times   (55)in \times   (53)in \times    | _                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              | F2 26                                                                                      | F1 64                                                                                                             | F2 26                                                                                      | F2 26                                                        | F1.64                                                     | F2 26                                                        | F1.64                                          | F2 26                                                   | 7 (5.6)                                              |
| S3.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                       |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              | 51.64                                          | 53.36                                                   | ] (56)                                               |
| Primary circuit loss for each month (58) = 365 × (41) Im (modified by factor from Table H3 if there is solar water heating and a cylinder thermostat) ((59)m   30.58   27.62   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   | -                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              | E1 64                                          | E2 26                                                   | 7 (57)                                               |
| Primary circuit loss for each month (58) + 365 × (41)m (modified by factor from Table Hs if It here is solar water heating and a cylinder thermostat) (59)m (59)m (30.58   27.62   30.58   29.59   30.58   29.59   30.58   30.58   29.59   30.58   30.58   29.59   30.58   30.58   30.58   29.59   30.58   30.58   30.58   29.59   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30.58   30. |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         | 51.04                                                                                                                        | 33.30                                                                                      | 31.04                                                                                                             | 33.30                                                                                      |                                                              |                                                           | 1                                                            | 31.04                                          | 33.30                                                   | ] (57)                                               |
| (Amodified by factor from Table HS if the HS if the HS is solar Heating and a cylinder thereuse) (S9) 30.58   27.62   30.58   27.62   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.58   29.59   30.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50   20.50    | ,                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            | 3                                                            | 360.00                                                    | ] (58)                                                       |                                                |                                                         |                                                      |
| Combine   Same   | •                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                              |                                                                                            | indor thorn                                                                                                       | a a stat)                                                                                  |                                                              |                                                           |                                                              |                                                |                                                         |                                                      |
| Combi loss for each month   From Table   3a,   3b or 3c (enter 10' if not a combi boller)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            | 20.59                                                        | 20.50                                                     | 20.59                                                        | 20.50                                          | 20.50                                                   | (50)                                                 |
| Column   C   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   | 30.38                                                                                      | 30.38                                                        | 23.33                                                     | 30.36                                                        | 29.39                                          | 30.38                                                   | ] (33)                                               |
| Total heat required for water heating calculated for each month 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m  [62)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09 (62)  Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)  [63]m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · i                                                                                                     |                                                                                                                              |                                                                                            |                                                                                                                   | 0.00                                                                                       | 0.00                                                         | 0.00                                                      | 0.00                                                         | 0.00                                           | 0.00                                                    | (61)                                                 |
| Solar   Sola   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                       |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 0.00                                                         | 0.00                                           | 0.00                                                    | ] (01)                                               |
| Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating) (add additional lines if FGHRS and/or WWHRS applies, see Appendix G)   (63)m   (0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00   0.00    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 186.00                                                       | 102 72                                         | 206.09                                                  | (62)                                                 |
| (63)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           | 1                                                            | •                                              | 200.03                                                  | ] (02)                                               |
| (63)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                         |                                                                                                                              | - \                                                                                        | antity) (em                                                                                                       | er o ii iio                                                                                | Solai Collu                                                  | ibution to                                                | water neat                                                   | iiig <i>)</i>                                  |                                                         |                                                      |
| Output from water heater for each month, kWh/month (62)m + (63)m + (64)m 210.07   186.13   197.77   180.47   179.16   163.40   160.08   171.32   169.65   186.99   193.72   206.09   196.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1                                                                                                       |                                                                                                                              |                                                                                            | 0.00                                                                                                              | 0.00                                                                                       | 0.00                                                         | 0.00                                                      | 0.00                                                         | 0.00                                           | 0.00                                                    | 7                                                    |
| Output from water heater for each month, kWh/month (62)m + (63)m  (64)m  210.07   186.13   197.77   180.47   179.16   163.40   160.08   171.32   169.65   186.99   193.72   206.09    [(64)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ,                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                       |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              | ,                                                         | Σ(63)1                                                       | .12 =                                          | 0.00                                                    | (63)                                                 |
| (64)m 210.07 186.13 197.77 180.47 179.16 163.40 160.08 171.32 169.65 186.99 193.72 206.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Output from water hea                                                                                                                                                                                                                                                                                       | ter for each mor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nth. kWh/mo                                                                                             | nth (62)m                                                                                                                    | ı + (63)m                                                                                  |                                                                                                                   |                                                                                            |                                                              |                                                           | 2()                                                          |                                                |                                                         |                                                      |
| The property of the property   |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,,                                                                                                      |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              |                                                |                                                         |                                                      |
| Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating    S. Internal gains   See Table 5 and 5a    Sa    | ` '                                                                                                                                                                                                                                                                                                         | 0.07   186.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 197.77                                                                                                  | 180.47                                                                                                                       | 179.16                                                                                     | 163.40                                                                                                            | 160.08                                                                                     | 171.32                                                       | 169.65                                                    | 186.99                                                       | 193.72                                         | 206.09                                                  | 7                                                    |
| Heat gains from water heating, kWh/month 0.25 × [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m 109.09 97.33 105.00 97.98 98.81 92.30 92.47 96.20 94.38 101.41 102.38 107.76 (65) include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating    S. Internal gains (see Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                             | 0.07   186.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 197.77                                                                                                  | 180.47                                                                                                                       | 179.16                                                                                     | 163.40                                                                                                            | 160.08                                                                                     | 171.32                                                       | 169.65                                                    |                                                              |                                                | 1                                                       | (64)                                                 |
| (65)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | if (64)m < 0 then set to                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 197.77                                                                                                  | 180.47                                                                                                                       | 179.16                                                                                     | 163.40                                                                                                            | 160.08                                                                                     | 171.32                                                       | 169.65                                                    |                                                              |                                                | 1                                                       | (64)                                                 |
| S. Internal gains (see Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                         |                                                                                                                              |                                                                                            |                                                                                                                   |                                                                                            |                                                              |                                                           |                                                              |                                                | 1                                                       | (64)                                                 |
| Solution    | Heat gains from water                                                                                                                                                                                                                                                                                       | 0<br>neating, kWh/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25×[                                                                                             | [0.85 × (45                                                                                                                  | )m + (61)m                                                                                 | ] + 0.8 × [( <sup>2</sup>                                                                                         | 16)m + (57)                                                                                | m + (59)m]                                                   |                                                           | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| Metabolic gains (Table 5), Watts         Mar         Apr         May         Jun         Jul         Aug         Sep         Oct         Nov         Dec           Metabolic gains (Table 5), Watts         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48         108.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heat gains from water (65)m                                                                                                                                                                                                                                                                                 | 0<br>neating, kWh/m<br>0.09 97.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onth 0.25 × [                                                                                           | [0.85 × (45<br>97.98                                                                                                         | 98.81                                                                                      | ] + 0.8 × [(4<br>92.30                                                                                            | 16)m + (57)<br>92.47                                                                       | m + (59)m]<br>96.20                                          | 94.38                                                     | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| Metabolic gains (Table 5), Watts (66)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Heat gains from water (65)m                                                                                                                                                                                                                                                                                 | 0<br>neating, kWh/m<br>0.09 97.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onth 0.25 × [                                                                                           | [0.85 × (45<br>97.98                                                                                                         | 98.81                                                                                      | ] + 0.8 × [(4<br>92.30                                                                                            | 16)m + (57)<br>92.47                                                                       | m + (59)m]<br>96.20                                          | 94.38                                                     | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| (66)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat gains from water (65)m 10 include (57)m in                                                                                                                                                                                                                                                             | 0<br>neating, kWh/m<br>0.09 97.33<br>calculation of (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onth 0.25 × [                                                                                           | [0.85 × (45<br>97.98                                                                                                         | 98.81                                                                                      | ] + 0.8 × [(4<br>92.30                                                                                            | 16)m + (57)<br>92.47                                                                       | m + (59)m]<br>96.20                                          | 94.38                                                     | ∑(64)1                                                       | 12 = 2                                         | 204.86                                                  | J                                                    |
| Lighting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m 35.72 31.73 25.80 19.53 14.60 12.33 13.32 17.31 23.24 29.51 34.44 36.71 (67)  Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a) (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see                                                                                                                                                                                                                                     | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [<br>105.00  <br>5)m only if cy                                                             | (0.85 × (45<br>97.98<br>Vlinder is ir                                                                                        | 98.81<br>o the dwelli                                                                      | ] + 0.8 × [(4<br>92.30<br>ng or hot w                                                                             | 16)m + (57)<br>92.47<br>rater is fron                                                      | m + (59)m]<br>96.20<br>n communi                             | 94.38<br>ty heating                                       | Σ(64)1                                                       | .12 = 2                                        | 107.76                                                  | J                                                    |
| (67)m 35.72 31.73 25.80 19.53 14.60 12.33 13.32 17.31 23.24 29.51 34.44 36.71 (67)  Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a) (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see                                                                                                                                                                                                                                     | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.<br>Table 5 and 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onth 0.25 × [<br>105.00  <br>5)m only if cy                                                             | (0.85 × (45<br>97.98<br>Vlinder is ir                                                                                        | 98.81<br>o the dwelli                                                                      | ] + 0.8 × [(4<br>92.30<br>ng or hot w                                                                             | 16)m + (57)<br>92.47<br>rater is fron                                                      | m + (59)m]<br>96.20<br>n communi                             | 94.38<br>ty heating                                       | Σ(64)1                                                       | .12 = 2                                        | 107.76                                                  | J                                                    |
| Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m  235.23  237.67  231.52  218.43  201.90  186.36  175.98  173.54  179.69  192.79  209.32  224.85  (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  47.66  4 | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see                                                                                                                                                                                                                                     | neating, kWh/me<br>10.09 97.33<br>10.09 97.33<br>1 | onth 0.25 × [<br>105.00 ]<br>5)m only if cy<br>Mar                                                      | [0.85 × (45<br>97.98<br>vlinder is in<br>Apr                                                                                 | 98.81<br>n the dwelli<br>May                                                               | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun                                                                      | 16)m + (57)<br>92.47<br>rater is fron<br>Jul                                               | m + (59)m]<br>96.20<br>n communi<br>Aug                      | 94.38<br>ty heating<br>Sep                                | Σ(64)1<br>101.41<br>Oct                                      | .12 = 2<br>102.38                              | 204.86<br>107.76                                        | (65)                                                 |
| (68)m 235.23 237.67 231.52 218.43 201.90 186.36 175.98 173.54 179.69 192.79 209.32 224.85 (68)  Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a)  (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see J Metabolic gains (Table (66)m 10                                                                                                                                                                                                   | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.<br>Table 5 and 5a)<br>an Feb<br>5), Watts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | onth 0.25 × [  105.00    5)m only if cy  Mar                                                            | (0.85 × (45<br>97.98<br>Vlinder is ir<br><b>Apr</b>                                                                          | 98.81<br>o the dwelli<br>May                                                               | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun                                                                      | 16)m + (57)<br>92.47<br>rater is fron<br>Jul                                               | m + (59)m]<br>96.20<br>n communi<br>Aug                      | 94.38<br>ty heating<br>Sep                                | Σ(64)1<br>101.41<br>Oct                                      | .12 = 2<br>102.38                              | 204.86<br>107.76                                        | (65)                                                 |
| Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5  (69)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J  Metabolic gains (Table (66)m 10  Lighting gains (calculate                                                                                                                                                                      | neating, kWh/mo<br>2.09 97.33<br>calculation of (6.25)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [  105.00    5)m only if cy  Mar  108.48    equation L9                                     | [0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a                                                         | 98.81<br>98.81<br>o the dwellin<br>May<br>108.48<br>Iso see Tab                            | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48                                                            | 16)m + (57)<br>92.47<br>rater is fron<br>Jul<br>108.48                                     | m + (59)m] 96.20 n communit Aug                              | 94.38 ty heating Sep 108.48                               | Σ(64)1 101.41  Oct 108.48                                    | .12 = 2<br>102.38<br>Nov                       | 204.86  107.76  Dec  108.48                             | (65)                                                 |
| (69)m 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 47.66 (69)  Pumps and fans gains (Table 5a)  (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see 1)  Metabolic gains (Table (66)m 10  Lighting gains (calculate (67)m 35  Appliances gains (calculate (67)m 35                                                                                                                       | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.25)<br>Fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>.72 31.73<br>ated in Appendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [  105.00    5)m only if cy  Mar  108.48    equation L9                                     | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1                                   | 98.81<br>98.81<br>o the dwelling<br>May<br>108.48<br>Iso see Tab                           | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33                                           | 16)m + (57)<br>92.47<br>rater is fron<br>Jul<br>108.48                                     | m + (59)m] 96.20 n communit Aug                              | 94.38 ty heating Sep 108.48                               | Σ(64)1 101.41  Oct 108.48                                    | Nov  108.48                                    | 204.86  107.76  Dec  108.48                             | (65)                                                 |
| Pumps and fans gains (Table 5a) (70)m  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.00  0.0 | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see 1)  Metabolic gains (Table (66)m 10  Lighting gains (calculate (67)m 35  Appliances gains (calculate (67)m 35                                                                                                                       | neating, kWh/mo<br>0.09 97.33<br>calculation of (6.25)<br>Fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>.72 31.73<br>ated in Appendi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | onth 0.25 × [  105.00   5)m only if cy  Mar  108.48   equation L9  25.80   x L, equation                | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1                                   | 98.81<br>98.81<br>or the dwelling<br>May<br>108.48<br>Iso see Tab<br>14.60<br>3a), also se | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>de 5<br>12.33<br>e Table 5                              | 92.47<br>92.47<br>vater is from<br>Jul<br>108.48                                           | m + (59)m] 96.20 n communit  Aug  108.48                     | 94.38<br>ty heating<br>Sep<br>108.48                      | Σ(64)1  101.41  Oct  108.48  29.51                           | Nov  108.48                                    | 204.86  107.76  Dec  108.48                             | (65)<br>(66)<br>(67)                                 |
| (70)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23                                                                                                                          | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>72 31.73<br>ated in Appendi<br>5.23 237.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mar  108.48  equation L9  25.80  x L, equation 231.52                                                   | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1:<br>218.43                        | 98.81 98.81 May 108.48 lso see Tab 14.60 3a), also se 201.90                               | Jun  108.48 le 5 12.33 e Table 5 186.36                                                                           | 92.47<br>92.47<br>vater is from<br>Jul<br>108.48                                           | m + (59)m] 96.20 n communit  Aug  108.48                     | 94.38<br>ty heating<br>Sep<br>108.48                      | Σ(64)1  101.41  Oct  108.48  29.51                           | Nov  108.48  34.44  209.32                     | 204.86  107.76  Dec  108.48                             | (65)<br>(66)<br>(67)                                 |
| Losses e.g. evaporation (negative values) (Table 5) (71)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate                                                                                                 | neating, kWh/mo<br>2.09 97.33<br>calculation of (6.25)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>7.72 31.73<br>ated in Appendix L<br>2.23 237.67<br>ed in Appendix L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar  108.48  equation L9  25.80  x L, equation L1  equation L1                                          | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43                         | 98.81 98.81 n the dwelling May 108.48 lso see Tab 14.60 3a), also see 201.90 , also see T  | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33<br>e Table 5<br>186.36<br>able 5          | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32                            | m + (59)m] 96.20 n communit  Aug  108.48  17.31              | 94.38 ty heating Sep 108.48 23.24 179.69                  | Σ(64)1  101.41  Oct  108.48  29.51  192.79                   | Nov  108.48  34.44  209.32                     | Dec 108.48 36.71 224.85                                 | (65)<br>(66)<br>(67)<br>(68)                         |
| (71)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47                                                                                          | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>2.72 31.73<br>ated in Appendix L<br>3.23 237.67<br>ed in Appendix L<br>3.66 47.66<br>Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mar  108.48  equation L9  25.80  x L, equation L1  equation L1                                          | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66  | May  108.48  Iso see Tab  14.60  3a), also see T  47.66                                    | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33<br>e Table 5<br>186.36<br>able 5<br>47.66 | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98                  | m + (59)m] 96.20 n communi  Aug  108.48  17.31  173.54       | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66       | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66            | Nov  108.48  34.44  209.32                     | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)                         |
| Water heating gains (Table 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains (                                                                 | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Table 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ed in Appendix L<br>2.72 31.73<br>ated in Appendix L<br>3.23 237.67<br>ed in Appendix L<br>3.66 47.66<br>Table 5a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mar  108.48  equation L9 25.80  x L, equation 231.52 , equation L1 47.66                                | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66  | May  108.48  Iso see Tab  14.60  3a), also see T  47.66                                    | ] + 0.8 × [(4<br>92.30<br>ng or hot w<br>Jun<br>108.48<br>le 5<br>12.33<br>e Table 5<br>186.36<br>able 5<br>47.66 | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98                  | m + (59)m] 96.20 n communi  Aug  108.48  17.31  173.54       | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66       | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66            | Nov  108.48  34.44  209.32                     | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)<br>(69)                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains (70)m 0 Losses e.g. evaporation                                   | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>Fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ad in Appendix L<br>72 31.73<br>ated in Appendi<br>5.23 237.67<br>ad in Appendix L<br>66 47.66<br>Fable 5a)<br>00 0.00<br>(negative value)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar  108.48  108.48  equation L9  25.80  x L, equation 231.52 , equation L1  47.66  0.00  s) (Table 5)  | (0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66  | May  108.48  Iso see Tab  14.60  3a), also see  201.90  , also see T  47.66                | Jun  108.48 le 5 12.33 e Table 5 186.36 able 5 47.66                                                              | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98<br>47.66         | m + (59)m] 96.20 n communi  Aug  108.48  17.31  47.66  0.00  | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66  0.00 | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66  0.00      | Nov  102.38  Nov  209.32  47.66                | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)<br>(69)<br>(70)         |
| (72)m   146.62   144.84   141.13   136.08   132.81   128.20   124.28   129.30   131.09   136.31   142.20   144.84   (72)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains ( (70)m 0 Losses e.g. evaporation (71)m -73                       | neating, kWh/me 2.09   97.33 calculation of (6) fable 5 and 5a) an Feb 5), Watts 3.48   108.48 ad in Appendix L 3.23   237.67 ad in Appendix L 3.66   47.66 fable 5a) 00   0.00 (negative value) 3.32   -72.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mar  108.48  108.48  equation L9  25.80  x L, equation 231.52 , equation L1  47.66  0.00  s) (Table 5)  | (0.85 × (45<br>97.98<br>vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1<br>218.43<br>5 or L15a)<br>47.66  | May  108.48  Iso see Tab  14.60  3a), also see  201.90  , also see T  47.66                | Jun  108.48 le 5 12.33 e Table 5 186.36 able 5 47.66                                                              | 16)m + (57)<br>92.47<br>Pater is from<br>Jul<br>108.48<br>13.32<br>175.98<br>47.66         | m + (59)m] 96.20 n communi  Aug  108.48  17.31  47.66  0.00  | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66  0.00 | Σ(64)1  101.41  Oct  108.48  29.51  192.79  47.66  0.00      | Nov  102.38  Nov  209.32  47.66                | 204.86  107.76  Dec  108.48  36.71  224.85  47.66       | (65)<br>(66)<br>(67)<br>(68)<br>(69)<br>(70)         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Heat gains from water (65)m 10 include (57)m in  5. Internal gains (see  J Metabolic gains (Table (66)m 10 Lighting gains (calculate (67)m 35 Appliances gains (calculate (68)m 23 Cooking gains (calculate (69)m 47 Pumps and fans gains (70)m 0 Losses e.g. evaporation (71)m -77 Water heating gains (Ta | neating, kWh/mo<br>2.09 97.33<br>calculation of (6)<br>fable 5 and 5a)<br>an Feb<br>5), Watts<br>3.48 108.48<br>ad in Appendix L<br>72 31.73<br>ated in Appendix L<br>66 47.66<br>fable 5a)<br>00 0.00<br>(negative value:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mar  108.48  108.48  108.48  108.48  25.80  x L, equation L9  231.52  47.66  0.00  s) (Table 5)  -72.32 | (0.85 × (45<br>97.98<br>Vlinder is in<br>Apr<br>108.48<br>or L9a), a<br>19.53<br>L13 or L1:<br>218.43<br>5 or L15a)<br>47.66 | May  108.48  Iso see Tab  14.60  3a), also see  201.90  , also see T  47.66                | Jun  108.48 le 5 12.33 e Table 5 47.66  0.00                                                                      | 16)m + (57)<br>92.47<br>rater is from<br>Jul<br>108.48<br>13.32<br>175.98<br>47.66<br>0.00 | m + (59)m] 96.20 n communic  Aug  108.48  17.31  47.66  0.00 | 94.38 ty heating  Sep  108.48  23.24  179.69  47.66  0.00 | Cot  101.41  Oct  108.48  29.51  192.79  47.66  0.00  -72.32 | Nov  102.38  Nov  108.48  34.44  209.32  47.66 | 204.86  107.76  Dec  108.48  36.71  224.85  47.66  0.00 | (65)<br>(66)<br>(67)<br>(68)<br>(69)<br>(70)<br>(71) |

| (73)m                      | ns (66)m +<br>501.39 | 498.05                                | 482.27       | 457.86       | 433.12        | 410.70       | 397.40     | 403.97                      | 417.83      | 442.41                     | 469.77   | 490.22 (7 |
|----------------------------|----------------------|---------------------------------------|--------------|--------------|---------------|--------------|------------|-----------------------------|-------------|----------------------------|----------|-----------|
|                            |                      | '                                     |              |              | 1             | 1            | 1          | '                           |             | 1                          | '        |           |
| 6. Solar gains             |                      |                                       |              |              |               |              |            |                             |             |                            |          |           |
| olar gains are co          |                      | _                                     | -            |              |               |              |            |                             |             |                            |          |           |
| ows (74) to (82)           |                      |                                       |              |              | _             | eded if ther | re is more | than one wir                | ndow type   |                            |          |           |
| etails for month           | ,                    |                                       |              |              |               |              |            |                             |             |                            |          |           |
|                            | ,                    | Access facto<br>Table 6d              | or           | Area m²      | So            | lar flux W/  | m² g       | Specific dat<br>or Table 6b |             | F Specific d<br>or Table 6 |          | Gains (W) |
| outh                       |                      | 0.77                                  | x            | 10.00        | x             | 47.32        | x          | 0.53                        | x           | 1.00                       | =        | 193.13 (7 |
| olar gains in wat          | ts, calculate        | ed for each                           | month ∑(74   | 1)m(82)m     | 1             |              | -          |                             |             |                            | _        |           |
| (83)m                      | 193.13               | 314.98                                | 384.62       | 428.97       | 442.99        | 444.41       | 437.23     | 423.95                      | 408.06      | 348.08                     | 228.82   | 166.87 (8 |
| otal gains - inter         | nal and sola         | ar (73)m + (                          | 83)m         |              |               |              |            |                             |             |                            |          |           |
| (84)m                      | 694.52               | 813.04                                | 866.88       | 886.83       | 876.12        | 855.12       | 834.63     | 827.92                      | 825.90      | 790.49                     | 698.59   | 657.10 (8 |
|                            |                      | one the extra                         |              |              |               |              |            |                             |             |                            |          |           |
| 7. Mean interna            |                      |                                       |              |              | :             | 26)          |            |                             |             |                            |          | 21.00     |
| emperature dur             |                      | •                                     | _            |              |               | -            |            |                             | _           |                            |          | 21.00 (8. |
| Itilication forta          | Jan<br>for gains for | Feb                                   | Mar          | Apr          | May           | Jun          | Jul        | Aug                         | Sep         | Oct                        | Nov      | Dec       |
| tilisation factor<br>(86)m | 0.80                 | 0.73                                  | 0.66         | 0.58         | 0.47          | 0.34         | 0.23       | 0.23                        | 0.37        | 0.55                       | 0.74     | 0.81 (8   |
| lean internal te           |                      | II.                                   |              | <u>I</u>     | 0.47          | 0.54         | 0.23       | 0.23                        | 0.57        | 0.55                       | 0.74     | 0.01      |
| (87)m                      | 20.13                | 20.38                                 | 20.60        | 20.76        | 20.91         | 20.97        | 20.99      | 20.99                       | 20.97       | 20.83                      | 20.45    | 20.13 (8  |
| emperature dur             |                      | ļ.                                    |              | <u> </u>     |               |              |            |                             |             |                            |          | (         |
| (88)m                      | 20.17                | 20.18                                 | 20.18        | 20.19        | 20.20         | 20.20        | 20.20      | 20.20                       | 20.20       | 20.19                      | 20.19    | 20.18 (8  |
| tilisation factor          | for gains fo         | r rest of dw                          | elling ŋ2,m  | (see Table   | 9a)           |              |            |                             |             | •                          | •        |           |
| (89)m                      | 0.79                 | 0.71                                  | 0.63         | 0.55         | 0.43          | 0.30         | 0.18       | 0.18                        | 0.33        | 0.52                       | 0.71     | 0.79 (8   |
| Mean internal te           | mperature i          | n the rest o                          | f dwelling T | Γ2 (follow s | teps 3 to 7   | in Table 9c  | )          |                             | ,           |                            |          | ·         |
| (90)m                      | 19.05                | 19.39                                 | 19.68        | 19.91        | 20.10         | 20.18        | 20.20      | 20.20                       | 20.16       | 20.00                      | 19.50    | 19.06 (9  |
| iving area fraction        | on                   |                                       |              |              |               |              |            | fLA                         | 54.00       | ÷ (4)                      | =        | 1.00 (9   |
| 1ean internal te           | mperature f          | or the whol                           | le dwelling  | fLA x T1 +(: | 1 - fLA) x T2 | 2            |            |                             |             |                            |          |           |
| (92)m                      | 20.13                | 20.38                                 | 20.60        | 20.76        | 20.91         | 20.97        | 20.99      | 20.99                       | 20.97       | 20.83                      | 20.45    | 20.13 (9  |
| pply adjustmen             | to the mea           | n internal t                          | emperatur    | e from Tab   | le 4e, wher   | e appropri   | ate        |                             |             |                            |          |           |
| (93)m                      | 20.13                | 20.38                                 | 20.60        | 20.76        | 20.91         | 20.97        | 20.99      | 20.99                       | 20.97       | 20.83                      | 20.45    | 20.13 (9  |
| 8. Space heating           | requireme            | ent                                   |              |              |               |              |            |                             |             |                            |          |           |
| propuee neuting            | Jan                  | Feb                                   | Mar          | Apr          | May           | Jun          | Jul        | Aug                         | Sep         | Oct                        | Nov      | Dec       |
| et Ti to the mea           |                      |                                       |              |              |               |              |            | -                           | -           |                            |          |           |
| tilisation factor          | for gains, 🛚         | m                                     |              |              |               |              |            |                             |             |                            | _        |           |
| (94)m                      | 0.79                 | 0.72                                  | 0.65         | 0.57         | 0.46          | 0.34         | 0.23       | 0.23                        | 0.37        | 0.54                       | 0.72     | 0.79 (9   |
| seful gains, 🛚 m(          | 6m, W = (94          | )m x (84)m                            |              |              |               |              |            |                             |             |                            |          |           |
| (95)m                      | 545.21               | 582.97                                | 559.67       | 508.20       | 405.38        | 289.51       | 188.30     | 188.26                      | 302.78      | 429.65                     | 504.32   | 521.42 (9 |
| 1onthly average            |                      | · · · · · · · · · · · · · · · · · · · |              |              |               | i            | 1          |                             |             | 1                          |          |           |
| (96)m                      | 4.50                 | 5.00                                  | 6.80         | 8.70         | 11.70         | 14.60        | 16.90      | 16.90                       | 14.30       | 10.80                      | 7.00     | 4.90 (9   |
| eat loss rate for          |                      |                                       |              |              | 1             | 1            | 1          | 1                           |             | 1                          |          | 1         |
| (97)m                      | 755.57               | 736.98                                | 661.30       | 569.07       | 430.13        | 296.48       | 189.66     | 189.66                      | 312.14      | 473.23                     | 639.47   | 730.11 (9 |
| pace heating red           |                      |                                       | 1            | 1            |               | 1            | 1          | 1 0 00                      | 0.00        | 22.42                      | 07.01    | 155.26    |
| (98)m                      | 156.51               | 103.49                                | 75.61        | 43.83        | 18.42         | 0.00         | 0.00       | 0.00                        | 0.00        | 32.43                      | 97.31    | 155.26    |
|                            |                      |                                       |              |              |               |              | Total per  | year (kWh/y                 | /ear) = ∑(9 |                            |          | 682.85 (9 |
|                            |                      |                                       |              |              |               |              |            |                             |             | (00)                       | . / // \ | 43 CE 1/0 |
| pace heating red           | quirement ii         | ո kWh/m²/չ                            | /ear         |              |               |              |            |                             |             | (98)                       | ÷ (4)    | 12.65 (9  |

| Fraction of space heating from community system 1 - (301)  Community scheme fractions obtained from plant design specifical fraction of community DHW from CHP  Fraction of community DHW from boilers  Fraction of total space heat from community CHP (302) x (303a) =  Fraction of total space heat from community boilers (302) x (303b) Factor for control and charging method (Table 4c(3)) for community Factor for control and charging method (Table 4c(3)) for community Distribution loss factor (Table 12c) for community heating system  Space heating:  Annual space heating requirement  Space heat from community CHP (98) x (304a) x (305) x (306) =  Space heat from community boilers (98) x (304b) x (305) x (306) = | ) =<br>ty space heating                       | ords:            | 0.60 ( 0.40 ( 0.60 ( 0.40 ( 1.00 ( 1.00 ( 0.10 ( 40.97 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0.40 ( 0 | 302)<br>303a)<br>303b)<br>304a)<br>304b)<br>305)<br>305a)<br>306)                    | <b>kWh/year</b><br>682.85                                     |                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                               |                                                                                            |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 2204.86                                                       |                                                                                            |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                               |                                                                                            |
| Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                  | 132.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 310a)                                                                                |                                                               |                                                                                            |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                  | 88.19 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 310b)                                                                                |                                                               |                                                                                            |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                               | 0.01 x [(3       | 307a)(307e) + (310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Da)(310e)] =                                                                         | 2.89                                                          | (313)                                                                                      |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                               |                                                                                            |
| mechanical ventilation fans - balanced, extract or positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | t from outside                                |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                 |                                                               | (330a)                                                                                     |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                 | ]                                                             | (330b)                                                                                     |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                               |                  | (2200) + (220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.00                                                                                 | 0.00                                                          | (330g)                                                                                     |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                               |                  | (330a) + (330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0b) + (330g) =                                                                       | 0.00                                                          | (331)                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                               |                                                                                            |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 252.33                                                        | (332)                                                                                      |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      | 252.33                                                        | (332)                                                                                      |
| Electricity for lighting (calculated in Appendix L):  10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                      |                                                               |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Heat or fuel<br>kWh/year                      |                  | Fuel price<br>(Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                      | 252.33  Fuel cost £/year                                      |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               | x                | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | x 0.01 =                                                                             |                                                               |                                                                                            |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year                                      | x<br>x           | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                      | Fuel cost £/year                                              |                                                                                            |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>kWh/year</b> 40.97                         |                  | (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | x 0.01 =                                                                             | Fuel cost £/year                                              | (340a)                                                                                     |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | kWh/year<br>40.97<br>27.31                    | x                | (Table 12)  2.65  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | x 0.01 =<br>x 0.01 =                                                                 | 1.09<br>1.03                                                  | (340a)<br>(340b)                                                                           |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kWh/year<br>40.97<br>27.31<br>132.29          | x<br>x           | (Table 12)  2.65  3.78  2.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                     | 1.09<br>1.03<br>3.51                                          | (340a)<br>(340b)<br>(342a)                                                                 |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year<br>40.97<br>27.31<br>132.29<br>88.19 | x<br>x<br>x      | (Table 12)  2.65  3.78  2.65  3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                         | 1.09<br>1.03<br>3.51<br>3.33                                  | (340a)<br>(340b)<br>(342a)<br>(342b)                                                       |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.97<br>27.31<br>132.29<br>88.19<br>0.00     | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                             | 1.09<br>1.03<br>3.51<br>3.33<br>0.00                          | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)                                              |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans  Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.97<br>27.31<br>132.29<br>88.19<br>0.00     | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 1.09 1.03 3.51 3.33 0.00 28.92                                | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)                                     |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.97<br>27.31<br>132.29<br>88.19<br>0.00     | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 1.09 1.03 3.51 3.33 0.00 28.92 106.00                         | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)                            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 40.97<br>27.31<br>132.29<br>88.19<br>0.00     | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 1.09 1.03 3.51 3.33 0.00 28.92 106.00                         | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)                            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.97<br>27.31<br>132.29<br>88.19<br>0.00     | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88                  | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88                  | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                                                                                                                                                        | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88                  | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                                                                                                                                                              | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88  0.47 0.68 90.47 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                                                                                                                          | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88  0.47 0.68 90.47 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                                                                                                                          | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88  0.47 0.68 90.47 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band  12b. Carbon dioxide emissions - Community heating scheme Emissions from community CHP (Mains gas)                                                                                                                                                                                                                                                       | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88  0.47 0.68 90.47 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                                                                                                                          | 40.97<br>27.31<br>132.29<br>88.19             | x<br>x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 1.09 1.03 3.51 3.33 0.00 28.92 106.00 143.88  0.47 0.68 90.47 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |

|                                                                                                                          |                         |        |                                                         |                         | 1                         | (2.50)                     |
|--------------------------------------------------------------------------------------------------------------------------|-------------------------|--------|---------------------------------------------------------|-------------------------|---------------------------|----------------------------|
| Heat to power ratio                                                                                                      | _                       |        |                                                         | 3.00                    |                           | (360)                      |
|                                                                                                                          | Energy<br>kWh/year      |        | Emissions<br>Factor                                     |                         | Emissions (kgCO2/year)    |                            |
| Space heating from CHP (Mains gas)                                                                                       | 72.84                   | x      | 0.198                                                   | =                       | 14.42                     | (363)                      |
| less credit emissions for electricity                                                                                    | -13.66                  | x      | 0.529                                                   | =                       | -7.22                     | (364)                      |
| Water heating from CHP (Mains gas)                                                                                       | 235.18                  | x      | 0.198                                                   | =                       | 46.57                     | (365)                      |
| less credit emissions for electricity                                                                                    | -44.10                  | x      | 0.529                                                   | =                       | -23.33                    | (366)                      |
| Emissions from other community sources (not CHP)                                                                         |                         |        |                                                         |                         |                           |                            |
| Efficiency of boilers (%)                                                                                                |                         |        | 75.00                                                   | (367b)                  |                           |                            |
|                                                                                                                          | Energy used<br>kWh/year |        | Emission Factor (kgCO2/kWh)                             |                         | Emissions<br>(kgCO2/year) |                            |
| Emissions from boilers (Mains gas)                                                                                       | 154.01                  | х      | 0.198                                                   | =                       | 30.49                     | (368)                      |
| Electrical energy for heat distribution                                                                                  | 2.89                    | х      | 0.517                                                   | =                       | 1.49                      | (372)                      |
| Total carbon dioxide from community systems                                                                              |                         |        | (363)(366)                                              | + (368)(372) =          | 62.42                     | (373)                      |
| Space and water heating                                                                                                  |                         |        | (373) +                                                 | (374) + (375) =         | 62.42                     | (376)                      |
| Electricity for pumps and fans within dwelling                                                                           | 0.00                    | x      | 0.000                                                   | =                       | 0.00                      | (378)                      |
| Electricity for lighting                                                                                                 | 252.33                  | x      | 0.517                                                   | =                       | 130.46                    | (379)                      |
| Total carbon dioxide emissions                                                                                           |                         |        |                                                         | ∑(376)(382) =           | 192.88                    | (383)                      |
| Dwelling carbon dioxide emissions rate                                                                                   |                         |        |                                                         | (383) ÷ (4) =           | 3.57                      | (384)                      |
| El value                                                                                                                 |                         |        |                                                         |                         | 97.39                     |                            |
| EI rating (see section 14)                                                                                               |                         |        |                                                         |                         | 97                        | (385)                      |
| EI band                                                                                                                  |                         |        |                                                         |                         | А                         |                            |
| 13b. Primary energy - Community heating scheme                                                                           |                         |        |                                                         |                         |                           |                            |
| Primary energy from community CHP (Mains gas)                                                                            |                         |        |                                                         |                         |                           |                            |
| Efficiency of CHP (%)                                                                                                    |                         |        |                                                         | 75.00                   | ]                         | (359*)                     |
| Heat to power ratio                                                                                                      |                         |        |                                                         | 3.00                    | ]                         | (360*)                     |
|                                                                                                                          | Energy                  |        | Primary Energy                                          |                         | Primary Energy            | (,                         |
|                                                                                                                          | kWh/year                |        | Factor                                                  |                         |                           |                            |
| Space heating from CHP (Mains gas)                                                                                       | 72.84                   | x      | 1.02                                                    | =                       | 74.29                     | (363*)                     |
| less credit emissions for electricity                                                                                    | -13.66                  | x      | 2.92                                                    | =                       | -39.88                    | (364*)                     |
| Water heating from CHP (Mains gas)                                                                                       | 235.18                  | x      | 1.02                                                    | =                       | 239.89                    | (365*)                     |
| less credit emissions for electricity                                                                                    | -44.10                  | X      | 2.92                                                    | =                       | -128.76                   | (366*)                     |
| Primary energy from other community sources (not CHP)                                                                    |                         |        |                                                         |                         |                           |                            |
|                                                                                                                          |                         |        |                                                         |                         |                           |                            |
| Efficiency of boilers (%)                                                                                                |                         |        | 75.00                                                   | (367b*)                 |                           |                            |
| Efficiency of boilers (%)                                                                                                | Energy used<br>kWh/year |        | 75.00<br>Primary Energy<br>Factor                       | (367b*)                 | Primary Energy            |                            |
| Efficiency of boilers (%)  Primary energy - boilers (Mains gas)                                                          |                         | x      | Primary Energy                                          | (367b*)<br>=            | Primary Energy            | (368*)                     |
|                                                                                                                          | kWh/year                | x<br>x | Primary Energy<br>Factor                                |                         |                           | 1                          |
| Primary energy - boilers (Mains gas)                                                                                     | kWh/year<br>154.01      |        | Primary Energy<br>Factor                                | = =                     | 157.09                    | (368*)                     |
| Primary energy - boilers (Mains gas) Electrical energy for heat distribution                                             | kWh/year<br>154.01      |        | Primary Energy<br>Factor  1.02  2.92  (363*)(366*) + (3 | = =                     | 157.09<br>8.43            | (368*)                     |
| Primary energy - boilers (Mains gas) Electrical energy for heat distribution Total primary energy from community systems | kWh/year<br>154.01      |        | Primary Energy<br>Factor  1.02  2.92  (363*)(366*) + (3 | =<br>=<br>368*)(372*) = | 157.09<br>8.43<br>311.06  | (368*)<br>(372*)<br>(373*) |

19.41

(383\*)

(384\*)

∑(376\*)...(382\*) = [

 $(383*) \div (4) = [$ 

Total primary energy kWh/year



| Assessor name |                                                      | Assessor number |            |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 15/11/2011 |
| Address       | 47 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

|                     |                                 | Area (m²)    | Average storey<br>height (m) | Volume (m³)      |
|---------------------|---------------------------------|--------------|------------------------------|------------------|
| owest occupied      |                                 | 88.00 (1a) x | 2.85 (2a) =                  | 250.80 (3a       |
| Total floor area    | (1a) + (1b) + (1c) + (1d)(1n) = | 88.00 (4)    |                              |                  |
| Owelling volume     |                                 |              | (3a) + (3b) + (3c) + (3d)(3  | 3n) = 250.80 (5) |
|                     |                                 |              |                              |                  |
| 2. Ventilation rate |                                 |              |                              |                  |

|                              |   |        | m³ per hour             |
|------------------------------|---|--------|-------------------------|
| Number of chimneys           | 0 | x 40 = | 0 (6a)                  |
| Number of open flues         | 0 | x 20 = | 0 (6b)                  |
| Number of intermittent fans  | 3 | x 10 = | 30 (7a)                 |
| Number of passive vents      | 4 | x 10 = | 40 (7b)                 |
| Number of flueless gas fires | 0 | x 40 = | 0 (7c)                  |
|                              |   |        | Air changes per<br>hour |

| Infiltration due to chimneys, flues, fans, PSVs                       | (6a) + (6b) + (7a) + (7b) + (7c) = | 70         | ÷ (5) = | 0.28 | (8) |
|-----------------------------------------------------------------------|------------------------------------|------------|---------|------|-----|
| If a pressurisation test has been carried out or is intended, proceed | to (17), otherwise continue from ( | 9) to (16) |         |      |     |

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then (18) =  $[(17) \div 20] + (8)$ , otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

(19)4 1 - [0.075 x (19)] = 0.70 Shelter factor (20)

0.30 Adjusted infiltration rate  $(18) \times (20) =$ (21)Infiltration rate modified for monthly wind speed:

| mmeration rate in     | ounicu ioi i  | montain, w  | na speca.   |             |               |       |      |      |      |         |       |       |       |
|-----------------------|---------------|-------------|-------------|-------------|---------------|-------|------|------|------|---------|-------|-------|-------|
|                       | Jan           | Feb         | Mar         | Apr         | May           | Jun   | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
| Monthly average       | wind speed    | from Table  | 7           |             |               |       |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10        | 5.10        | 4.50        | 4.10          | 3.90  | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  | ]     |
|                       |               |             |             |             |               |       |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m ÷   | ÷ 4         |             |             |               |       |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27        | 1.27        | 1.12        | 1.02          | 0.98  | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  | ]     |
|                       |               |             |             |             |               |       |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | wing for sh | elter and v | vind speed) | ) = (21) × (2 | .2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.41          | 0.38        | 0.38        | 0.34        | 0.31          | 0.29  | 0.28 | 0.28 | 0.32 | 0.34    | 0.36  | 0.38  | ]     |
|                       |               |             |             |             |               |       |      |      |      | ∑(22b)1 | .12 = | 4.06  | (22b) |

If mechanical ventilation: air change rate through system

Calculate effective air change rate for the applicable case:

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

(23a)

N/A

3.00

0.43

(17)

(18)

| If balanced w                       | ith heat reco                  | overy: effici | ency in % a          | llowing for  | in-use fact   | or (from Ta       | able 4h) =  |              |             |            |            | N/A          | (23c)    |
|-------------------------------------|--------------------------------|---------------|----------------------|--------------|---------------|-------------------|-------------|--------------|-------------|------------|------------|--------------|----------|
| d) If natural v                     | entilation or<br>≥ 1, then (24 |               | •                    | •            |               |                   | ;1          |              |             |            |            |              |          |
| (24d)m                              | 0.58                           | 0.57          | 0.57                 | 0.56         | 0.55          | 0.54              | 0.54        | 0.54         | 0.55        | 0.56       | 0.56       | 0.57         | (24d)    |
| Effective air chan                  |                                | 1             |                      |              | -             |                   |             |              | 3.00        |            |            |              | (= :=/   |
| (25)m                               | 0.58                           | 0.57          | 0.57                 | 0.56         | 0.55          | 0.54              | 0.54        | 0.54         | 0.55        | 0.56       | 0.56       | 0.57         | (25)     |
|                                     |                                | 1             |                      | 1 0.00       | 1 0.00        | 1 0.0 .           | 0.5         | 1 0.0 .      | 1 0.55      | 1 0.50     | 1 0.50     | 1 0.07       |          |
| 3. Heat losses a The κ-value is the |                                | Ť             |                      | ahle 1e.     |               |                   |             |              |             |            |            |              |          |
|                                     | Element                        | ncy per unit  | Gross                |              | nings,        | Net area          | I I-v       | alue,        | A x U,      | <b>K</b> - | value,     | Ахк,         |          |
| _                                   | lement                         |               | Area, m <sup>2</sup> | -            | n²            | A, m <sup>2</sup> |             | /m²K         | W/K         |            | /m².K      | kJ/K         |          |
| Window*                             |                                |               |                      |              |               | 18.00             | x 1         | 42 =         | 25.47       |            | N/A        | N/A          | (27)     |
| External wall                       |                                |               |                      |              |               | 73.05             | ) x [ C     | 0.20 =       | 14.61       |            | N/A        | N/A          | (29a)    |
| Total area of exte                  | ernal elemer                   | nts ∑A, m²    |                      |              |               | 91.05             | (31)        |              |             |            |            |              |          |
| * for windows an                    | nd roof wind                   | ows, effecti  | ive window           | U-value is   | calculated    | using form        | ula 1/[(1/L | Value)+0.04  | 4] paragra  | ph 3.2     |            |              |          |
| Fabric heat loss,                   | W/K = ∑(A ×                    | U)            |                      |              |               |                   |             |              | (2          | 26)(30) +  | (32) =     | 40.08        | (33)     |
| Heat capacity Cm                    | n = ∑(A x κ)                   |               |                      |              |               |                   |             | (28)         | (30) + (32) | + (32a)    | (32e) =    | N/A          | (34)     |
| Thermal mass pa                     | rameter (TN                    | /IP) in kJ/m  | ²K                   |              |               |                   |             |              | Calcula     | ited separ | ately =    | 100.00       | (35)     |
| Thermal bridges:                    | : ∑(L x Ѱ) cal                 | culated usi   | ng Appendi           | x K          |               |                   |             |              |             |            |            | 13.66        | (36)     |
| if details of th                    | nermal bridg                   | ing are not   | known the            | n (36) = 0.1 | 5 x (31)      |                   |             |              |             |            |            |              |          |
| Total fabric heat                   | loss                           |               |                      |              |               |                   |             |              |             | (33) +     | (36) =     | 53.74        | (37)     |
| Ventilation heat                    | loss calculat                  | ed monthly    | 0.33 x (25           | 5)m x (5)    |               |                   |             |              |             |            |            |              | _        |
| (38)m                               | 48.19                          | 47.45         | 47.45                | 46.11        | 45.30         | 44.93             | 44.58       | 44.58        | 45.50       | 46.11      | 46.76      | 47.45        | (38)     |
| Heat transfer coe                   | efficient, W/                  | K (37)m+      | (38)m                |              |               |                   |             |              |             |            |            |              | _        |
| (39)m                               | 101.93                         | 101.19        | 101.19               | 99.85        | 99.04         | 98.67             | 98.32       | 98.32        | 99.24       | 99.85      | 100.5      | 0 101.19     |          |
|                                     |                                |               |                      |              |               |                   |             |              | Average =   | ∑(39)11    | 2/12 =     | 99.94        | (39)     |
| Heat loss parame                    |                                |               |                      |              |               |                   |             | T            | T           | T          | 1          | T            | 7        |
| (40)m                               | 1.16                           | 1.15          | 1.15                 | 1.13         | 1.13          | 1.12              | 1.12        | 1.12         | 1.13        | 1.13       | 1.14       |              | ]<br>]   |
|                                     |                                |               |                      |              |               |                   |             |              | Average =   | ∑(40)11    | 2/12 =     | 1.14         | (40)     |
| 4. Water heatin                     | ng energy re                   | quirement     |                      |              |               |                   |             |              |             |            |            |              |          |
|                                     |                                |               |                      |              |               |                   |             |              |             |            |            | kWh/year     |          |
| Assumed occupa                      | incy, N                        |               |                      |              |               |                   |             |              |             | 2.6        | 50 (4      | 12)          |          |
| If TFA > 13.9,                      | N = 1 + 1.76                   | x [1 - exp(-  | 0.000349 x           | (TFA - 13.9  | 9)²)] + 0.001 | 13 x (TFA - :     | 13.9)       |              |             |            |            |              |          |
| If TFA ≤ 13.9,                      | N = 1                          |               |                      |              |               |                   |             |              |             |            |            |              |          |
| Annual average h                    | not water us                   | age in litres | s per day Vo         | d,average =  | (25 x N) +    | 36                |             |              |             | 95.        | 89 (4      | 13)          |          |
| Annual average l                    | hot water us                   | age has be    | en reduced           | by 5% if th  | e dwelling    | is designed       | to achieve  | e a water us | e target of | not more   | than 125   | litres       |          |
| per person per do                   | ay (all water                  | use, hot ar   | nd cold)             |              |               |                   |             |              |             |            |            |              |          |
|                                     | Jan                            | Feb           | Mar                  | Apr          | May           | Jun               | Jul         | Aug          | Sep         | Oct        | Nov        | Dec          |          |
| Hot water usage                     | in litres per                  | day for eac   | h month V            | d,m = facto  | r from Tab    | le 1c x (43)      |             |              |             |            |            |              | _        |
| (44)m                               | 105.48                         | 101.64        | 97.80                | 93.97        | 90.13         | 86.30             | 86.30       | 90.13        | 93.97       | 97.80      | 101.6      | 4 105.48     |          |
|                                     |                                |               |                      |              |               |                   |             |              |             | ∑(44)1     | L12 =      | 1150.64      | (44)     |
| Energy content o                    | of hot water                   | used - calcu  | ulated mon           | thly = 4.19  | 0 x Vd,m x ı  | nm x Tm/36        | 600 kWh,    | /month (see  | Tables 1b   | , 1c 1d)   |            |              | _        |
| (45)m                               | 156.79                         | 137.13        | 141.51               | 123.37       | 118.38        | 102.15            | 94.66       | 108.62       | 109.92      | 128.10     | 139.8      | 3 151.84     |          |
|                                     |                                |               |                      |              |               |                   |             |              |             | ∑(45)1     | 12 =       | 1512.28      | (45)     |
| If instantaneous                    |                                | -             |                      |              |               |                   |             | (61)         |             |            |            |              |          |
| For community h                     | _                              |               | ion loss wh          | ether or no  | ot hot water  | r tank is pre     | esent       |              |             |            |            |              |          |
| Distribution loss                   |                                |               | T 2 .                | T            |               | T .               |             | T            | 1           |            |            |              | ٦, .     |
| (46)m                               | 23.52                          | 20.57         | 21.23                | 18.51        | 17.76         | 15.32             | 14.20       | 16.29        | 16.49       | 19.21      | 20.97      | 22.78        | (46)     |
| Water storage lo                    | SS:                            |               |                      |              |               |                   |             |              |             |            |            |              |          |
| -                                   |                                |               |                      |              |               |                   |             |              |             |            |            |              |          |
|                                     |                                |               |                      |              |               |                   |             |              |             | URN        | I: 65Maygr | ove-Flat47 v | ersion 1 |

| b) If manufacturer's declared                                                                                                                                                                                                                                                                                                                                                                                                                                         | cylinder loss factor is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | not known:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      |                                                             |                   |                                                          |                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------|----------------------------------------------------------|----------------------------------------------------------|
| Cylinder volume (litres) inc                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cvlinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     |                                                            | 10.00                                                | (50)                                                        |                   |                                                          |                                                          |
| If community heating and                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      | ] ()                                                        |                   |                                                          |                                                          |
| Otherwise if no stored hot                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>5</b> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | r '0' in box                                                                        | (50)                                                       |                                                      |                                                             |                   |                                                          |                                                          |
| Hot water storage loss fact                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                            | 0.02                                                 | (51)                                                        |                   |                                                          |                                                          |
| If community heating see S                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,, ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      | , ,                                                         |                   |                                                          |                                                          |
| Volume factor from Table                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            | 1.03                                                 | (52)                                                        |                   |                                                          |                                                          |
| Temperature factor from 1                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            | 1.00                                                 | (53)                                                        |                   |                                                          |                                                          |
| ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ) v /E1) v /E2) v /E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |                                                            | 1.72                                                 | (54)                                                        |                   |                                                          |                                                          |
| Energy lost from water sto                                                                                                                                                                                                                                                                                                                                                                                                                                            | rage, kwii/day (50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) x (51) x (52) x (5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     |                                                            |                                                      | , <i>,</i>                                                  |                   |                                                          |                                                          |
| Enter (49) or (54) in (55)                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            | 1.72                                                 | (55)                                                        |                   |                                                          |                                                          |
| Water storage loss calculated (56)m 53.36                                                                                                                                                                                                                                                                                                                                                                                                                             | for each month = $(55)$ 48.19 53.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5) x (41)m<br>51.64 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .36 51.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 53.36                                                                               | 53.36                                                      | 51.64                                                | 53.36                                                       | 51.64             | 53.36                                                    | ] (E6)                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·                                                                                   |                                                            |                                                      | -                                                           | 31.04             | 33.30                                                    | J (56)                                                   |
| If cylinder contains dedicated (57)m 53.36                                                                                                                                                                                                                                                                                                                                                                                                                            | 48.19 53.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 51.64 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 53.36                                                                               | 53.36                                                      | 51.64                                                | 53.36                                                       | 51.64             | 53.36                                                    | (57)                                                     |
| ` ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31.04 33.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | .30 31.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.30                                                                               |                                                            |                                                      | 1                                                           | 31.04             | 33.30                                                    | ] (37)                                                   |
| Primary circuit loss (annual) fr                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     | 3                                                          | 860.00                                               | (58)                                                        |                   |                                                          |                                                          |
| Primary circuit loss for each m                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | la culindar thar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mostat)                                                                             |                                                            |                                                      |                                                             |                   |                                                          |                                                          |
| (modified by factor from Table (59)m 30.58                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.62 30.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .58 29.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.58                                                                               | 30.58                                                      | 29.59                                                | 30.58                                                       | 29.59             | 30.58                                                    | (59)                                                     |
| Combi loss for each month fro                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30.38                                                                               | 30.38                                                      | 29.55                                                | 30.38                                                       | 29.39             | 30.38                                                    | ] (33)                                                   |
| (61)m 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                | 0.00                                                       | 0.00                                                 | 0.00                                                        | 0.00              | 0.00                                                     | (61)                                                     |
| Total heat required for water                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      | 0.00                                                        | 0.00              | 0.00                                                     | ] (01)                                                   |
| (62)m 240.72                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 212.94 225.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 204.59 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.59                                                                              | 192.55                                                     | 191.14                                               | 212.03                                                      | 221.05            | 235.78                                                   | (62)                                                     |
| Solar DHW input calculated us                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      |                                                             | 1                 | 233.70                                                   | ] (02)                                                   |
| (add additional lines if FGHRS                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ter o ir no                                                                         | Solai Collu                                                | bution to v                                          | water neati                                                 | iig)              |                                                          |                                                          |
| (63)m 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                | 0.00                                                       | 0.00                                                 | 0.00                                                        | 0.00              | 0.00                                                     | 1                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      |                                                             |                   | I .                                                      | _                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                     |                                                            |                                                      | Σ(63)1                                                      | .12 =             | 0.00                                                     | (63)                                                     |
| Output from water heater for                                                                                                                                                                                                                                                                                                                                                                                                                                          | each month, kWh/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onth (62)m + (63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B)m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                     |                                                            |                                                      | ∑(63)1                                                      | .12 =             | 0.00                                                     | (63)                                                     |
| Output from water heater for (64)m 240.72                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.59                                                                              | 192.55                                                     | 191.14                                               |                                                             | .12 =             | 235.78                                                   | (63)                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.59                                                                              | 192.55                                                     | 191.14                                               | 212.03                                                      | 221.05            | 235.78                                                   |                                                          |
| (64)m 240.72                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 178.59                                                                              | 192.55                                                     | 191.14                                               |                                                             | 221.05            | Γ                                                        | ] (63)<br>] (64)                                         |
| (64)m 240.72  if (64)m < 0 then set to 0                                                                                                                                                                                                                                                                                                                                                                                                                              | 212.94 225.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 204.59 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.31 183.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     |                                                            | 191.14                                               | 212.03                                                      | 221.05            | 235.78                                                   |                                                          |
| if (64)m 240.72  if (64)m < 0 then set to 0  Heat gains from water heating                                                                                                                                                                                                                                                                                                                                                                                            | 212.94 225.44<br>g, kWh/month 0.25 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 204.59 202<br>< [0.85 × (45)m +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .31 183.37<br>(61)m] + 0.8 × [(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46)m + (57)                                                                         | m + (59)m]                                                 |                                                      | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2 | 235.78<br>500.52                                         | ] (64)                                                   |
| if (64)m < 0 then set to 0         Heat gains from water heating (65)m       119.28                                                                                                                                                                                                                                                                                                                                                                                   | 212.94 225.44<br>g, kWh/month 0.25 ><br>106.24 114.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 204.59 202<br>< [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.31 183.37<br>(61)m] + 0.8 × [(65.51 98.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46)m + (57)<br>98.62                                                                | m + (59)m]<br>103.26                                       | 101.53                                               | 212.03                                                      | 221.05            | 235.78                                                   |                                                          |
| if (64)m 240.72  if (64)m < 0 then set to 0  Heat gains from water heating                                                                                                                                                                                                                                                                                                                                                                                            | 212.94 225.44<br>g, kWh/month 0.25 ><br>106.24 114.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 204.59 202<br>< [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.31 183.37<br>(61)m] + 0.8 × [(65.51 98.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46)m + (57)<br>98.62                                                                | m + (59)m]<br>103.26                                       | 101.53                                               | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2 | 235.78<br>500.52                                         | ] (64)                                                   |
| if (64)m < 0 then set to 0         Heat gains from water heating (65)m       119.28                                                                                                                                                                                                                                                                                                                                                                                   | 212.94 225.44<br>g, kWh/month 0.25 ><br>106.24 114.20<br>ation of (65)m only if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 204.59 202<br>< [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.31 183.37<br>(61)m] + 0.8 × [(65.51 98.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46)m + (57)<br>98.62                                                                | m + (59)m]<br>103.26                                       | 101.53                                               | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2 | 235.78<br>500.52                                         | ] (64)                                                   |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calculations                                                                                                                                                                                                                                                                                                                                                                 | 212.94 225.44<br>g, kWh/month 0.25 ><br>106.24 114.20<br>ation of (65)m only if                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 204.59 202<br>(0.85 × (45)m +<br>106.00 106<br>cylinder is in the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.31 183.37<br>(61)m] + 0.8 × [(65.51 98.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46)m + (57)<br>98.62                                                                | m + (59)m]<br>103.26                                       | 101.53                                               | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2 | 235.78<br>500.52                                         | ] (64)                                                   |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28 include (57)m in calcula 5. Internal gains (see Table 5                                                                                                                                                                                                                                                                                                                                        | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  attion of (65)m only if 5 and 5a)  Feb Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204.59 202<br>(0.85 × (45)m +<br>106.00 106<br>cylinder is in the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.31 183.37<br>(61)m] + 0.8 × [(65.51 98.94<br>dwelling or hot w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46)m + (57)<br>98.62<br>vater is fron                                               | m + (59)m]<br>103.26<br>n communi                          | 101.53<br>ty heating                                 | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2 | 235.78<br>500.52<br>117.63                               | ] (64)                                                   |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calculations. See Table 5. Internal gains (see Table 5. Jan                                                                                                                                                                                                                                                                                                                  | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  attion of (65)m only if 5 and 5a)  Feb Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204.59 202<br>(0.85 × (45)m +<br>106.00 106<br>cylinder is in the o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (61)m] + 0.8 × [(65.51   98.94 dwelling or hot was gay Jun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 46)m + (57)<br>98.62<br>vater is fron                                               | m + (59)m]<br>103.26<br>n communi                          | 101.53<br>ty heating                                 | 212.03<br>Σ(64)1                                            | 221.05<br>.12 = 2 | 235.78<br>500.52<br>117.63                               | ] (64)                                                   |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula 5. Internal gains (see Table 5 Jan Metabolic gains (Table 5), Wa                                                                                                                                                                                                                                                                                                     | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 204.59 202<br>(0.85 × (45)m +<br>106.00 106<br>cylinder is in the company of the compan  | 2.31   183.37<br>(61)m] + 0.8 × [(-6.51   98.94<br>dwelling or hot was ay Jun   3.84   155.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46)m + (57)<br>98.62<br>vater is fror<br>Jul                                        | m + (59)m]<br>103.26<br>n communi<br>Aug                   | 101.53<br>ty heating<br>Sep                          | 212.03<br>Σ(64)1<br>109.74                                  | 221.05<br>.12 = 2 | 235.78<br>500.52<br>117.63                               | ] (64)<br>] (65)                                         |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula 155. Internal gains (see Table 5 Jan Metabolic gains (Table 5), Wa (66)m 155.84                                                                                                                                                                                                                                                                                      | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 204.59 202<br>(0.85 × (45)m +<br>106.00 106<br>cylinder is in the company of the compan  | (61)m] + 0.8 × [(65.51   98.94   98.94   98.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94 | 46)m + (57)<br>98.62<br>vater is fror<br>Jul                                        | m + (59)m]<br>103.26<br>n communi<br>Aug                   | 101.53<br>ty heating<br>Sep                          | 212.03<br>Σ(64)1<br>109.74                                  | 221.05<br>.12 = 2 | 235.78<br>500.52<br>117.63                               | ] (64)<br>] (65)                                         |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula include (57)m in calcula for the set to 0  5. Internal gains (see Table 5)  Jan  Metabolic gains (Table 5), Wa (66)m 155.84  Lighting gains (calculated in A                                                                                                                                                                                                         | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if the second se | 204.59 202  (0.85 × (45)m +  106.00 106  cylinder is in the company of the compan        | (61)m] + 0.8 × [(65.51   98.94   98.94   98.94   98.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94 | 46)m + (57)<br>98.62<br>vater is fron<br>Jul<br>155.84                              | m + (59)m] 103.26 m communit Aug 155.84                    | 101.53 ty heating Sep 155.84                         | 212.03<br>∑(64)1<br>109.74<br>Oct                           | 221.05<br>  .12 = | 235.78<br>500.52<br>117.63<br>Dec                        | ] (64)<br>] (65)                                         |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula include (57)m in calcula for the set to 0  5. Internal gains (see Table 5 Jan Metabolic gains (Table 5), Wa (66)m 155.84  Lighting gains (calculated in A (67)m 52.71                                                                                                                                                                                                | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if the second se | 204.59 202  (0.85 × (45)m +  106.00 106  cylinder is in the company of the compan        | (61)m] + 0.8 × [(65.51   98.94    dwelling or hot was ay Jun    6.84   155.84    e Table 5    15.55   18.19    Iso see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 46)m + (57)<br>98.62<br>vater is fron<br>Jul<br>155.84                              | m + (59)m] 103.26 m communit Aug 155.84                    | 101.53 ty heating Sep 155.84                         | 212.03<br>∑(64)1<br>109.74<br>Oct                           | 221.05<br>  .12 = | 235.78<br>500.52<br>117.63<br>Dec                        | ] (64)<br>] (65)                                         |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m                                                                                                                                                                                                                                                                                                                                                                                                       | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  Appendix L, equation L 354.91 345.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 204.59 202  ( [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (61)m] + 0.8 × [(65.51   98.94   dwelling or hot was ay Jun  6.84   155.84   e Table 5 .55   18.19   dso see Table 5 .49   278.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84                              | m + (59)m] 103.26 m communit  Aug 155.84                   | 101.53 ty heating  Sep  155.84  34.29                | 212.03<br>∑(64)1<br>109.74<br>Oct<br>155.84<br>43.54        | 221.05<br>  .12 = | 235.78 500.52 117.63 Dec 155.84 54.17                    | ] (64)<br>] (65)<br>] (66)<br>] (67)                     |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula (55)m in calcula (57)m in calcula (55)m in calcula (55)m in calcula (55)m in calcula (66)m 155.84  Lighting gains (calculated in A (67)m 52.71  Appliances gains (calculated in (68)m 351.27                                                                                                                                                                         | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  Appendix L, equation L 354.91 345.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 204.59 202  ( [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (61)m] + 0.8 × [(65.51   98.94    dwelling or hot was ay Jun  6.84   155.84    e Table 5  .55   18.19    lso see Table 5  .49   278.29    see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84                              | m + (59)m] 103.26 m communit  Aug 155.84                   | 101.53 ty heating  Sep  155.84  34.29                | 212.03<br>∑(64)1<br>109.74<br>Oct<br>155.84<br>43.54        | 221.05<br>  .12 = | 235.78 500.52 117.63 Dec 155.84 54.17                    | ] (64)<br>] (65)<br>] (66)<br>] (67)                     |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula (55)m in calcula (57)m in calcula (56)m 155.84  Lighting gains (calculated in A (67)m 52.71  Appliances gains (calculated in A (68)m 351.27  Cooking gains (calculated in A                                                                                                                                                                                          | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  Appendix L, equation I 354.91 345.73  ppendix L, equation I 53.18 53.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 204.59   202<br>  (0.85 × (45)m +<br>  106.00   106<br>  cylinder is in the control of t | (61)m] + 0.8 × [(65.51   98.94    dwelling or hot was ay Jun  6.84   155.84    e Table 5  .55   18.19    lso see Table 5  .49   278.29    see Table 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84<br>19.65                     | m + (59)m] 103.26 n communi  Aug 155.84 25.55              | 101.53 ty heating  Sep  155.84  34.29  268.33        | 212.03<br>∑(64)1  109.74  Oct  155.84  43.54                | 221.05<br>  .12 = | 235.78 500.52 117.63 Dec 155.84 54.17                    | ] (64)<br>] (65)<br>] (66)<br>] (67)                     |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula (55)m in calcula (57)m in calcula (55)m in calcula (55)m in calcula (55)m in calcula (55)m in calcula (66)m 155.84  Lighting gains (calculated in A (67)m 52.71  Appliances gains (calculated in (68)m 351.27  Cooking gains (calculated in A (69)m 53.18                                                                                                            | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  Appendix L, equation I 354.91 345.73  ppendix L, equation I 53.18 53.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 204.59   202<br>  (0.85 × (45)m +<br>  106.00   106<br>  cylinder is in the control of t | (61)m] + 0.8 × [(65.51   98.94   98.94   98.94   98.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94 | 46)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84<br>19.65                     | m + (59)m] 103.26 n communi  Aug 155.84 25.55              | 101.53 ty heating  Sep  155.84  34.29  268.33        | 212.03<br>∑(64)1  109.74  Oct  155.84  43.54                | 221.05<br>  .12 = | 235.78 500.52 117.63 Dec 155.84 54.17                    | ] (64)<br>] (65)<br>] (66)<br>] (67)                     |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m                                                                                                                                                                                                                                                                                                                                                                                                       | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  n Appendix L, equation I 354.91 345.73  ppendix L, equation I 53.18 53.18  6a)  0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204.59 202  (a [0.85 × (45)m + 106.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (61)m] + 0.8 × [(65.51   98.94   98.94   98.94   98.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94   99.94 | 16)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84<br>19.65<br>262.79           | m + (59)m] 103.26 n communi  Aug 155.84 25.55 259.15       | 101.53 ty heating  Sep  155.84  34.29  268.33        | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89        | 221.05<br>  .12 = | 235.78 500.52  117.63  Dec  155.84  54.17  335.77        | ] (64)<br>] (65)<br>] (66)<br>] (67)<br>] (68)           |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula (55)m in calcula (57)m in calcula (55)m in calcula (55)m in calcula (55)m in calcula (55)m in calcula (66)m 155.84  Lighting gains (Calculated in A (67)m 52.71  Appliances gains (calculated in A (68)m 351.27  Cooking gains (calculated in A (69)m 53.18  Pumps and fans gains (Table 5 (70)m 0.00                                                                | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  n Appendix L, equation I 354.91 345.73  ppendix L, equation I 53.18 53.18  6a)  0.00 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204.59 202  (a [0.85 × (45)m + 106.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 183.37   183.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 16)m + (57)<br>98.62<br>vater is from<br>Jul<br>155.84<br>19.65<br>262.79           | m + (59)m] 103.26 n communi  Aug 155.84 25.55 259.15       | 101.53 ty heating  Sep  155.84  34.29  268.33        | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89        | 221.05<br>  .12 = | 235.78 500.52  117.63  Dec  155.84  54.17  335.77        | ] (64)<br>] (65)<br>] (66)<br>] (67)<br>] (68)           |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calculated (57)m in calculated (57)m in calculated (66)m 155.84  Lighting gains (Calculated in A (67)m 52.71  Appliances gains (calculated in A (68)m 351.27  Cooking gains (calculated in A (69)m 53.18  Pumps and fans gains (Table 5 (70)m 0.00  Losses e.g. evaporation (negar                                                                                           | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  Appendix L, equation I 354.91 345.73  ppendix L, equation I 53.18 53.18  a) 0.00 0.00  tive values) (Table 5) -103.89 -103.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 204.59 202  ( [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 183.37   183.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65<br>262.79<br>53.18 | m + (59)m] 103.26 n communi  Aug 155.84 25.55 259.15 53.18 | 101.53 ty heating  Sep  155.84  34.29  268.33  53.18 | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89  53.18 | 221.05<br>  .12 = | 235.78 500.52  117.63  Dec  155.84  54.17  335.77  53.18 | ] (64)<br>] (65)<br>] (66)<br>] (67)<br>] (68)<br>] (69) |
| if (64)m < 0 then set to 0  Heat gains from water heating (65)m 119.28  include (57)m in calcula (55)m in calcula (57)m in calcula (55)m in calcula (66)m 155.84  Lighting gains (Table 5), Wa (66)m 52.71  Appliances gains (calculated in A (67)m 52.71  Cooking gains (calculated in A (69)m 53.18  Pumps and fans gains (Table 5 (70)m 0.00  Losses e.g. evaporation (negative) (71)m -103.89 | 212.94 225.44  g, kWh/month 0.25 > 106.24 114.20  ation of (65)m only if  and 5a)  Feb Mar  tts  155.84 155.84  ppendix L, equation L 46.82 38.07  Appendix L, equation I 354.91 345.73  ppendix L, equation I 53.18 53.18  a) 0.00 0.00  tive values) (Table 5) -103.89 -103.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 204.59 202  ( [0.85 × (45)m + 106.00 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 183.37   183.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 146)m + (57)<br>98.62<br>yater is from<br>Jul<br>155.84<br>19.65<br>262.79<br>53.18 | m + (59)m] 103.26 n communi  Aug 155.84 25.55 259.15 53.18 | 101.53 ty heating  Sep  155.84  34.29  268.33  53.18 | 212.03<br>Σ(64)1  109.74  Oct  155.84  43.54  287.89  53.18 | 221.05<br>  .12 = | 235.78 500.52  117.63  Dec  155.84  54.17  335.77  53.18 | ] (64)<br>] (65)<br>] (66)<br>] (67)<br>] (68)<br>] (69) |

## 6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

|                      | ı            | Access facto<br>Table 6d | or                      | Area m²      | So            | lar flux W/  | _          | Specific data<br>or Table 6b | n F      | F Specific da<br>or Table 6c |             | Gains (W)   | 1    |
|----------------------|--------------|--------------------------|-------------------------|--------------|---------------|--------------|------------|------------------------------|----------|------------------------------|-------------|-------------|------|
| Iorth                |              | 0.77                     | x                       | 12.00        | x             | 10.73        | x          | 0.53                         | х        | 1.00                         | =           | 52.53       | (    |
| ast                  |              | 0.77                     | x                       | 6.00         | x             | 19.87        | x          | 0.53                         | x        | 1.00                         | =           | 48.66       | (    |
| olar gains in watt   | s, calculate | ed for each              | month ∑(7               | 4)m(82)m     | -<br>1        |              |            |                              |          |                              |             |             |      |
| (83)m                | 101.19       | 194.02                   | 313.87                  | 491.41       | 640.68        | 695.97       | 663.28     | 541.54                       | 381.43   | 236.38                       | 125.23      | 83.94       | (    |
| otal gains - interr  | nal and sola | ar (73)m + (8            | 83)m                    |              |               |              |            |                              |          |                              |             |             |      |
| (84)m                | 770.62       | 858.98                   | 956.29                  | 1098.75      | 1212.00       | 1235.00      | 1183.40    | 1070.16                      | 930.19   | 820.43                       | 748.57      | 737.12      | (    |
|                      |              |                          |                         |              |               |              |            |                              |          |                              |             |             |      |
| 7. Mean internal     | temperati    | ure (heating             | g season)               |              |               |              |            |                              |          |                              |             |             |      |
| emperature duri      | ng heating   | periods in t             | he living ar            | ea from Ta   | ble 9, Th1('  | °C)          |            |                              |          |                              |             | 21.00       | (8   |
|                      | Jan          | Feb                      | Mar                     | Apr          | May           | Jun          | Jul        | Aug                          | Sep      | Oct                          | Nov         | Dec         |      |
| Itilisation factor f | or gains fo  | r living area            | , η1,m (see             | Table 9a)    |               |              |            |                              |          |                              |             |             | _    |
| (86)m                | 0.92         | 0.90                     | 0.85                    | 0.76         | 0.62          | 0.47         | 0.33       | 0.36                         | 0.60     | 0.80                         | 0.90        | 0.93        | (8   |
| Mean internal tem    | p of living  | area T1 (ste             | eps 3 to 7 ii           | n Table 9c)  |               |              |            |                              |          |                              |             |             | _    |
| (87)m                | 19.04        | 19.28                    | 19.73                   | 20.21        | 20.65         | 20.88        | 20.97      | 20.96                        | 20.77    | 20.26                        | 19.51       | 19.08       | (    |
| emperature durii     | ng heating   | periods in t             | he living ar            | ea from Ta   | ble 9, Th2(°  | °C)          |            |                              |          |                              |             |             | _    |
| (88)m                | 19.96        | 19.96                    | 19.96                   | 19.97        | 19.98         | 19.99        | 19.99      | 19.99                        | 19.98    | 19.97                        | 19.97       | 19.96       | (    |
| tilisation factor f  | or gains fo  | r rest of dw             | elling η2,m             | (see Table   | 9a)           |              |            |                              |          |                              |             |             |      |
| (89)m                | 0.91         | 0.89                     | 0.83                    | 0.73         | 0.57          | 0.40         | 0.25       | 0.28                         | 0.53     | 0.76                         | 0.89        | 0.92        | (    |
| dean internal tem    | nperature i  | n the rest o             | f dwelling <sup>-</sup> | Γ2 (follow s | teps 3 to 7   | in Table 9c  | )          |                              |          |                              |             |             |      |
| (90)m                | 17.37        | 17.73                    | 18.36                   | 19.02        | 19.61         | 19.88        | 19.97      | 19.97                        | 19.77    | 19.11                        | 18.06       | 17.44       | (9   |
| iving area fraction  | n            |                          |                         |              |               |              |            | fLA 8                        | 8.00     | ÷ (4) =                      | =           | 1.00        | (9   |
| /lean internal tem   | nperature f  | or the whol              | e dwelling              | fLA x T1 +(: | 1 - fLA) x T2 | 2            |            |                              |          |                              |             |             |      |
| (92)m                | 19.04        | 19.28                    | 19.73                   | 20.21        | 20.65         | 20.88        | 20.97      | 20.96                        | 20.77    | 20.26                        | 19.51       | 19.08       | (9   |
| pply adjustment      | to the mea   | an internal t            | emperatur               | e from Tab   | le 4e, wher   | e appropri   | ate        |                              |          |                              |             |             |      |
| (93)m                | 19.04        | 19.28                    | 19.73                   | 20.21        | 20.65         | 20.88        | 20.97      | 20.96                        | 20.77    | 20.26                        | 19.51       | 19.08       | (9   |
|                      |              |                          |                         |              |               |              |            |                              |          |                              |             |             |      |
| 8. Space heating     | requireme    | nt                       |                         |              |               |              |            |                              |          |                              |             |             |      |
|                      | Jan          | Feb                      | Mar                     | Apr          | May           | Jun          | Jul        | Aug                          | Sep      | Oct                          | Nov         | Dec         |      |
| et Ti to the mean    |              | ·                        | obtained a              | it step 11 o | f Table 9b,   | so that tim  | = (93)m an | id recalculate               | the util | lisation facto               | r for gains | using Table | e 9a |
| Itilisation factor f |              |                          |                         |              |               |              |            |                              |          |                              |             | T           | ٦,   |
| (94)m                | 0.90         | 0.88                     | 0.82                    | 0.74         | 0.61          | 0.46         | 0.33       | 0.36                         | 0.58     | 0.77                         | 0.88        | 0.91        | (    |
| Iseful gains, 🛚 mG   | <u> </u>     |                          |                         |              |               | 1            | 1          |                              |          |                              | <b>.</b>    |             | 7    |
| (95)m                | 695.88       | 753.22                   | 788.79                  | 813.77       | 733.63        | 565.93       | 384.86     | 380.48                       | 541.46   | 634.57                       | 656.71      | 667.87      | (    |
| Ionthly average      | external te  | mperature f              | from Table              | 8            |               |              |            |                              |          |                              |             |             | _    |
| (96)m                | 4.50         | 5.00                     | 6.80                    | 8.70         | 11.70         | 14.60        | 16.90      | 16.90                        | 14.30    | 10.80                        | 7.00        | 4.90        | (    |
| eat loss rate for    | mean inter   | nal tempera              | ature, Lm, \            | W            |               |              |            |                              |          |                              |             |             | _    |
| (97)m                | 1481.71      | 1445.27                  | 1308.69                 | 1148.84      | 886.80        | 619.95       | 399.97     | 399.20                       | 642.42   | 944.26                       | 1257.00     | 1434.81     | (    |
| pace heating req     | uirement f   | or each mor              | nth, kWh/n              | nonth = 0.0  | 24 x [(97)m   | n - (95)m] x | (41)m      |                              |          |                              |             |             |      |
|                      |              |                          |                         |              | 442.06        | 0.00         | 0.00       | 0.00                         | 0.00     | 220.44                       | 400.04      | F70.60      | ٦    |
| (98)m                | 584.65       | 465.06                   | 386.80                  | 241.25       | 113.96        | 0.00         | 0.00       | 0.00                         | 0.00     | 230.41                       | 432.21      | 570.60      | ⅃    |

| Eraction of chaco hosting from cocondary/cumplomontary cyctom                                                                                                                                                                                                                                                                                                                   | (Table 11)                               |             | 0.00                                                           | (301)                                                                                  |                                                                  |                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------|
| Fraction of space heating from secondary/supplementary system Fraction of space heating from community system 1 - (301)                                                                                                                                                                                                                                                         | (Table 11)                               |             | 1.00                                                           | (301)                                                                                  |                                                                  |                                                                          |
| Community scheme fractions obtained from plant design specifica                                                                                                                                                                                                                                                                                                                 | tion or operational re                   | ecords:     | 1.00                                                           | (302)                                                                                  |                                                                  |                                                                          |
| Fraction of community DHW from CHP                                                                                                                                                                                                                                                                                                                                              | tion or operational re                   |             | 0.60                                                           | (303a)                                                                                 |                                                                  |                                                                          |
| Fraction of community DHW from boilers                                                                                                                                                                                                                                                                                                                                          |                                          |             | 0.40                                                           | (303b)                                                                                 |                                                                  |                                                                          |
| Fraction of total space heat from community CHP (302) x (303a) =                                                                                                                                                                                                                                                                                                                | =                                        |             | 0.60                                                           | (304a)                                                                                 |                                                                  |                                                                          |
| Fraction of total space heat from community boilers (302) x (303b                                                                                                                                                                                                                                                                                                               |                                          |             | 0.40                                                           | (304b)                                                                                 |                                                                  |                                                                          |
| Factor for control and charging method (Table 4c(3)) for commun                                                                                                                                                                                                                                                                                                                 |                                          |             | 1.00                                                           | (305)                                                                                  |                                                                  |                                                                          |
| Factor for control and charging method (Table 4c(3)) for communi                                                                                                                                                                                                                                                                                                                |                                          |             | 1.00                                                           | (305a)                                                                                 |                                                                  |                                                                          |
| Distribution loss factor (Table 12c) for community heating system                                                                                                                                                                                                                                                                                                               |                                          |             | 0.10                                                           | (306)                                                                                  |                                                                  |                                                                          |
| Space heating:                                                                                                                                                                                                                                                                                                                                                                  |                                          |             |                                                                | , ,                                                                                    | kWh/year                                                         |                                                                          |
| Annual space heating requirement                                                                                                                                                                                                                                                                                                                                                |                                          |             |                                                                |                                                                                        | 3024.95                                                          | 7                                                                        |
| Space heat from community CHP (98) x (304a) x (305) x (306) =                                                                                                                                                                                                                                                                                                                   |                                          |             | 181.50                                                         | (307a)                                                                                 |                                                                  |                                                                          |
| Space heat from community boilers (98) x (304b) x (305) x (306) =                                                                                                                                                                                                                                                                                                               |                                          |             | 121.00                                                         | (307b)                                                                                 |                                                                  |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                          |             |                                                                |                                                                                        |                                                                  |                                                                          |
| Water heating:                                                                                                                                                                                                                                                                                                                                                                  |                                          |             |                                                                |                                                                                        |                                                                  |                                                                          |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                |                                          |             |                                                                |                                                                                        | 2500.52                                                          |                                                                          |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                   |                                          |             |                                                                |                                                                                        |                                                                  |                                                                          |
| Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                    |                                          |             | 150.03                                                         | (310a)                                                                                 |                                                                  |                                                                          |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                |                                          |             | 100.02                                                         | (310b)                                                                                 |                                                                  |                                                                          |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                          |                                          | 0.01 x [(   | 307a)(307e) + (3                                               | 10a)(310e)] =                                                                          | 5.53                                                             | (313)                                                                    |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                      |                                          |             |                                                                |                                                                                        |                                                                  |                                                                          |
| mechanical ventilation fans - balanced, extract or positive input                                                                                                                                                                                                                                                                                                               | it from outside                          |             |                                                                | 0.00                                                                                   |                                                                  | (330a)                                                                   |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                    |                                          |             |                                                                | 0.00                                                                                   |                                                                  | (330b)                                                                   |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                    |                                          |             | (220 ) (2                                                      | 0.00                                                                                   | 0.00                                                             | (330g)                                                                   |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                       |                                          |             | (330a) + (3                                                    | (330b) + (330g) =                                                                      | 0.00                                                             | (331)                                                                    |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                            |                                          |             |                                                                |                                                                                        | 372.34                                                           | (222)                                                                    |
| Lieuticity for lighting (calculated in Appendix L).                                                                                                                                                                                                                                                                                                                             |                                          |             |                                                                |                                                                                        | 372.34                                                           | (332)                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                          |             |                                                                |                                                                                        | 372.34                                                           | (332)                                                                    |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                      | Heat or fuel                             |             | Fuel price                                                     |                                                                                        | Fuel cost £/yea                                                  |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                 | Heat or fuel<br>kWh/year                 |             | Fuel price<br>(Table 12)                                       |                                                                                        |                                                                  |                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                 |                                          | x           | •                                                              | x 0.01 =                                                                               |                                                                  |                                                                          |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                      | kWh/year                                 | x<br>x      | (Table 12)                                                     |                                                                                        | Fuel cost £/yea                                                  | ır<br>(340a)                                                             |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP                                                                                                                                                                                                                                                                                                    | kWh/year<br>181.50                       |             | (Table 12)<br>2.65                                             | x 0.01 =                                                                               | Fuel cost £/yea                                                  | (340a)                                                                   |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers                                                                                                                                                                                                                                                              | kWh/year<br>181.50<br>121.00             | x           | (Table 12)  2.65  3.78                                         | x 0.01 =<br>x 0.01 =                                                                   | 4.81<br>4.57                                                     | (340a)                                                                   |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP                                                                                                                                                                                                                            | kWh/year  181.50  121.00  150.03         | x<br>x      | (Table 12)  2.65  3.78  2.65                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                       | 4.81<br>4.57<br>3.98                                             | (340a)<br>(340b)<br>(342a)                                               |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers                                                                                                                                                                                      | kWh/year  181.50  121.00  150.03  100.02 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78                             | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                           | 4.81<br>4.57<br>3.98<br>3.78                                     | (340a)<br>(340b)<br>(342a)<br>(342b)                                     |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans                                                                                                                                                                          | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                               | 4.81<br>4.57<br>3.98<br>3.78<br>0.00                             | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)                            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                             | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                               | 4.81<br>4.57<br>3.98<br>3.78<br>0.00<br>42.67                    | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12)                                                                                                                                                      | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                   | 4.81<br>4.57<br>3.98<br>3.78<br>0.00<br>42.67<br>106.00          | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)          |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                    | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                   | 4.81<br>4.57<br>3.98<br>3.78<br>0.00<br>42.67<br>106.00          | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)          |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                        | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                   | 4.81 4.57 3.98 3.78 0.00 42.67 106.00 165.81                     | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                        | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>) + (345)(354) | 4.81 4.57 3.98 3.78 0.00 42.67 106.00 165.81                     | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                               | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>) + (345)(354) | 4.81 4.57 3.98 3.78 0.00 42.67 106.00 165.81  0.47 0.59          | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                     | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>) + (345)(354) | 4.81 4.57 3.98 3.78 0.00 42.67 106.00 165.81  0.47 0.59 91.83    | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(355)<br>(355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>) + (345)(354) | 4.81 4.57 3.98 3.78 0.00 42.67 106.00 165.81  0.47 0.59 91.83 92 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(355)<br>(355) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating          | 181.50<br>121.00<br>150.03<br>100.02     | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>) + (345)(354) | 4.81 4.57 3.98 3.78 0.00 42.67 106.00 165.81  0.47 0.59 91.83 92 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(355)<br>(355) |

| Efficiency of CHP (%)                                                                                         |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.00                                           |                                     | (359)                                        |
|---------------------------------------------------------------------------------------------------------------|----------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|----------------------------------------------|
| Heat to power ratio                                                                                           |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00                                            |                                     | (360)                                        |
|                                                                                                               | Energy<br>kWh/year         |        | Emissions<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | Emissions (kgCO2/year)              |                                              |
| Space heating from CHP (Mains gas)                                                                            | 322.66                     | x      | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | 63.89                               | (363)                                        |
| less credit emissions for electricity                                                                         | -60.50                     | x      | 0.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | -32.00                              | (364)                                        |
| Water heating from CHP (Mains gas)                                                                            | 266.72                     | x      | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | 52.81                               | (365)                                        |
| less credit emissions for electricity                                                                         | -50.01                     | x      | 0.529                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | -26.46                              | (366)                                        |
| Emissions from other community sources (not CHP)                                                              |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                     |                                              |
| Efficiency of boilers (%)                                                                                     |                            |        | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (367b)                                          |                                     |                                              |
|                                                                                                               | Energy used<br>kWh/year    |        | Emission Factor (kgCO2/kWh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                 | Emissions (kgCO2/year)              |                                              |
| Emissions from boilers (Mains gas)                                                                            | 294.69                     | x      | 0.198                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | 58.35                               | (368)                                        |
| Electrical energy for heat distribution                                                                       | 5.53                       | x      | 0.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | 2.86                                | (372)                                        |
| Total carbon dioxide from community systems                                                                   |                            |        | (363)(366) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + (368)(372) =                                  | 119.44                              | (373)                                        |
| Space and water heating                                                                                       |                            |        | (373) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (374) + (375) =                                 | 119.44                              | (376)                                        |
| Electricity for pumps and fans within dwelling                                                                | 0.00                       | x      | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | 0.00                                | (378)                                        |
| Electricity for lighting                                                                                      | 372.34                     | x      | 0.517                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =                                               | 192.50                              | (379)                                        |
| Total carbon dioxide emissions                                                                                |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ∑(376)(382) =                                   | 311.94                              | (383)                                        |
| Dwelling carbon dioxide emissions rate                                                                        |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (383) ÷ (4) =                                   | 3.54                                | (384)                                        |
| El value                                                                                                      |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 96.86                               |                                              |
| El rating (see section 14)                                                                                    |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | 97                                  | (385)                                        |
| El band                                                                                                       |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | А                                   | ]                                            |
| 13b. Primary energy - Community heating scheme                                                                |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                     |                                              |
| Primary energy from community CHP (Mains gas)                                                                 |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                     |                                              |
| Efficiency of CHP (%)                                                                                         |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75.00                                           |                                     | (359*)                                       |
| Heat to power ratio                                                                                           |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.00                                            | ]                                   | (360*)                                       |
| near to power ratio                                                                                           | Energy                     |        | Primary Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | Primary Energy                      |                                              |
|                                                                                                               | kWh/year                   |        | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 | 7                                   |                                              |
| Space heating from CHP (Mains gas)                                                                            | 322.66                     | x      | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                               | 329.11                              | (363*)                                       |
| less credit emissions for electricity                                                                         | -60.50                     | x      | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                               | -176.66                             | (364*)                                       |
| Water heating from CHP (Mains gas)                                                                            | 266.72                     | x      | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                               | 272.06                              | (365*)                                       |
| less credit emissions for electricity                                                                         | -50.01                     | x      | 2.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =                                               | -146.03                             | (366*)                                       |
| Primary energy from other community sources (not CHP)                                                         |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |                                     |                                              |
| Efficiency of boilers (%)                                                                                     |                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                                               |                                     |                                              |
|                                                                                                               |                            |        | 75.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (367b*)                                         |                                     |                                              |
|                                                                                                               | Energy used<br>kWh/year    |        | 75.00 Primary Energy Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (367b*)                                         | Primary Energy                      |                                              |
| Primary energy - boilers (Mains gas)                                                                          |                            | x      | Primary Energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (367b*)<br>] =                                  | Primary Energy                      | (368*)                                       |
| Primary energy - boilers (Mains gas) Electrical energy for heat distribution                                  | kWh/year                   | x<br>x | Primary Energy<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                               |                                     | 1                                            |
|                                                                                                               | kWh/year<br>294.69         |        | Primary Energy<br>Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ] =                                             | 300.59                              | (368*)                                       |
| Electrical energy for heat distribution                                                                       | kWh/year<br>294.69         |        | Primary Energy<br>Factor  1.02  2.92  (363*)(366*) + (366*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ] =                                             | 300.59                              | (368*)                                       |
| Electrical energy for heat distribution  Total primary energy from community systems                          | kWh/year<br>294.69         |        | Primary Energy<br>Factor  1.02  2.92  (363*)(366*) + (366*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =<br>  =<br>  =<br> 368*)(372*) =               | 300.59<br>16.13<br>595.20           | ] (368*)<br>] (372*)<br>] (373*)             |
| Electrical energy for heat distribution  Total primary energy from community systems  Space and water heating | kWh/year<br>294.69<br>5.53 | x      | Primary Energy<br>Factor  1.02  2.92  (363*)(366*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3(373*) + (3 | ] =<br>] =<br>368*)(372*) =<br>374*) + (375*) = | 300.59<br>16.13<br>595.20<br>595.20 | ] (368*)<br>] (372*)<br>] (373*)<br>] (376*) |

19.12

(383\*)

(384\*)

∑(376\*)...(382\*) =

(383\*) ÷ (4) =

Total primary energy kWh/year



| Assessor name |                                                      | Assessor number |            |
|---------------|------------------------------------------------------|-----------------|------------|
| Client        |                                                      | Last modified   | 15/11/2011 |
| Address       | 51 65 Maygrove Road, West Hampstead, London, NW6 2EH |                 |            |

| 1. Overall dwelling dimensions     |                                 |                                    |                           |                 |                        |      |
|------------------------------------|---------------------------------|------------------------------------|---------------------------|-----------------|------------------------|------|
|                                    |                                 | Area (m²)                          | Average storey height (m) |                 | Volume (m³)            |      |
| Lowest occupied                    |                                 | 84.00 (1a) x                       | 11.40                     | (2a) =          | 957.60                 | (3a) |
| Total floor area                   | (1a) + (1b) + (1c) + (1d)(1n) = | 84.00 (4)                          |                           |                 |                        |      |
| Dwelling volume                    |                                 |                                    | (3a) + (3b) + (3d         | c) + (3d)(3n) = | 957.60                 | (5)  |
|                                    |                                 |                                    |                           |                 |                        |      |
| 2. Ventilation rate                |                                 |                                    |                           |                 |                        |      |
|                                    |                                 |                                    |                           |                 | m³ per hour            |      |
| Number of chimneys                 |                                 |                                    | 0                         | x 40 =          | 0                      | (6a) |
| Number of open flues               |                                 |                                    | 0                         | x 20 =          | 0                      | (6b) |
| Number of intermittent fans        |                                 |                                    | 3                         | x 10 =          | 30                     | (7a) |
| Number of passive vents            |                                 |                                    | 4                         | x 10 =          | 40                     | (7b) |
| Number of flueless gas fires       |                                 |                                    | 0                         | x 40 =          | 0                      | (7c) |
|                                    |                                 |                                    |                           |                 | Air changes pe<br>hour | er   |
| Infiltration due to chimneys, flue | es, fans, PSVs                  | (6a) + (6b) + (7a) + (7b) + (7c) = | 70                        | ÷ (5) =         | 0.07                   | (8)  |

If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)

Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area

If based on air permeability value, then (18) =  $[(17) \div 20] + (8)$ , otherwise (18) = (16)

Air permeability value applies if a pressurisation test has been done, or a design or specified air permeability is being used

Number of sides on which dwelling is sheltered

Shel

Adju

Infiltration rate modified for monthly wind speed:

| elter factor                                                       | 1 - [0.075 x (19)] = | 0.85 | (20) |
|--------------------------------------------------------------------|----------------------|------|------|
| justed infiltration rate                                           | (18) x (20) =        | 0.19 | (21) |
| Therefore was a selected for a second by the selected and a second |                      |      |      |

|                       | Jan           | Feb         | Mar          | Apr         | May         | Jun  | Jul  | Aug  | Sep  | Oct     | Nov   | Dec   |       |
|-----------------------|---------------|-------------|--------------|-------------|-------------|------|------|------|------|---------|-------|-------|-------|
| Monthly average       | wind speed    | from Table  | 2 7          |             |             |      |      |      |      |         |       |       |       |
| (22)m                 | 5.40          | 5.10        | 5.10         | 4.50        | 4.10        | 3.90 | 3.70 | 3.70 | 4.20 | 4.50    | 4.80  | 5.10  |       |
|                       |               |             |              |             |             |      |      |      |      | ∑(22)1  | .12 = | 54.10 | (22)  |
| Wind Factor (22a)     | m = (22)m -   | ÷ 4         |              |             |             |      |      |      |      |         |       |       |       |
| (22a)m                | 1.35          | 1.27        | 1.27         | 1.12        | 1.02        | 0.98 | 0.92 | 0.92 | 1.05 | 1.12    | 1.20  | 1.27  |       |
|                       |               |             |              |             |             |      |      |      |      | ∑(22a)1 | .12 = | 13.52 | (22a) |
| Adjusted infiltration | on rate (allo | wing for sh | nelter and v | vind speed) | = (21) × (2 | 2a)m |      |      |      |         |       |       |       |
| (22b)m                | 0.26          | 0.24        | 0.24         | 0.21        | 0.19        | 0.18 | 0.18 | 0.18 | 0.20 | 0.21    | 0.23  | 0.24  | ]     |

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

N/A

2.56

(22b)

(23a)

3.00

0.22

2

(17)

(18)

(19)

N/A (23b)

∑(22b)1...12 =

| If balanced wi                       |                              |               |                      |               |                           |                   | ble 4h) =  |          |                     |            |          |                   |           | N/A     | (2:           |
|--------------------------------------|------------------------------|---------------|----------------------|---------------|---------------------------|-------------------|------------|----------|---------------------|------------|----------|-------------------|-----------|---------|---------------|
| d) If natural v                      | entilation or<br>1, then (24 |               |                      |               |                           |                   | 1          |          |                     |            |          |                   |           |         |               |
| (24d)m                               | 0.53                         | 0.53          | 0.53                 | 0.52          | 0.52                      | 0.52              | 0.52       | 0.       | 52                  | 0.52       | 0.52     | 2                 | 0.53      | 0.53    | \<br>\(\)(2   |
| fective air chan                     |                              | 1             | 1                    | 1             | l                         |                   |            |          |                     |            |          |                   |           |         |               |
| (25)m                                | 0.53                         | 0.53          | 0.53                 | 0.52          | 0.52                      | 0.52              | 0.52       | 0.       | 52                  | 0.52       | 0.52     | 2                 | 0.53      | 0.53    | (2            |
| . Hook lasses a                      |                              |               |                      |               |                           |                   |            | •        |                     |            |          |                   |           | •       |               |
| . Heat losses a<br>ne κ-value is the |                              |               |                      | ahle 1e       |                           |                   |            |          |                     |            |          |                   |           |         |               |
|                                      | lement                       | nty per anne  | Gross                |               | nings,                    | Net area          | U.         | -value,  |                     | A x U,     |          | κ-valι            | IE.       | Ахк,    |               |
| _                                    | icinciit                     |               | Area, m <sup>2</sup> | -             | 1 <sup>2</sup>            | A, m <sup>2</sup> |            | V/m²K    |                     | W/K        |          | kJ/m <sup>2</sup> | -         | kJ/K    |               |
| /indow*                              |                              |               |                      |               |                           | 17.63             | x          | 1.42     | ] = [               | 24.94      |          | N/A               | 4         | N/A     | (2            |
| cternal wall                         |                              |               |                      |               |                           | 45.93             | x          | 0.20     | ] = [               | 9.19       |          | N/A               | Ą         | N/A     | (2            |
| oof                                  |                              |               |                      |               |                           | 84.00             | x          | 0.13     | ] = [               | 10.92      |          | N/A               | Ą         | N/A     | (3            |
| otal area of exte                    | ernal elemer                 | nts ∑A, m²    |                      |               |                           | 147.55            | (31)       |          |                     |            |          |                   |           |         |               |
| for windows an                       | d roof wind                  | ows, effecti  | ve window            | U-value is o  | calculated (              | using formเ       | ıla 1/[(1/ | 'UValue, | )+0.04              | paragrap   | oh 3.2   |                   |           |         |               |
| bric heat loss,                      | $W/K = \sum (A \times$       | U)            |                      |               |                           |                   |            |          |                     | (2         | 6)(30)   | + (32             | 2) =      | 45.05   | (3            |
| eat capacity Cm                      | i = Σ(A x κ)                 |               |                      |               |                           |                   |            | (        | (28)(3              | 30) + (32) | + (32a). | (32e              | e) =      | N/A     | (3            |
| nermal mass pa                       | rameter (TM                  | 1P) in kJ/m²  | ²K                   |               |                           |                   |            |          |                     | Calcula    | ted sepa | aratel            | y =       | 100.00  | ] (3          |
| ermal bridges:                       | ∑(L x Ψ) cal                 | culated usir  | ng Appendi           | x K           |                           |                   |            |          |                     |            |          |                   |           | 22.13   | (3            |
| if details of th                     | ermal bridgi                 | ing are not   | known thei           | n (36) = 0.1. | 5 x (31)                  |                   |            |          |                     |            |          |                   |           |         |               |
| otal fabric heat                     | loss                         |               |                      |               |                           |                   |            |          |                     |            | (33)     | + (36             | 5) =      | 67.18   | (3            |
| entilation heat l                    | oss calculate                | ed monthly    | 0.33 x (25           | 5)m x (5)     |                           |                   |            |          |                     |            |          |                   |           |         | _             |
| (38)m                                | 168.36                       | 167.24        | 167.24               | 165.20        | 163.97                    | 163.41            | 162.87     | 7 162    | 2.87                | 164.27     | 165.2    | 20                | 166.19    | 167.24  | (3            |
| eat transfer coe                     |                              |               | 1                    | I             | ·                         |                   |            |          |                     |            | T        |                   |           | T       | _             |
| (39)m                                | 235.54                       | 234.42        | 234.42               | 232.37        | 231.15                    | 230.58            | 230.04     | 1 230    | 0.04                | 231.45     | 232.3    |                   | 233.36    | 234.42  | ╣.            |
|                                      | . (111.5)                    | ./ 24 (20)    | (4)                  |               |                           |                   |            |          | А                   | verage =   | ∑(39)1   | .12/1             | 2 =       | 232.52  | (3            |
| eat loss parame<br>(40)m             | 2.80                         |               |                      | 2.77          | 2.75                      | 2.75              | 2.74       | 2        | 74                  | 2.76       | 2.77     | 7                 | 2.78      | 2.79    | ٦             |
| (40)111                              | 2.00                         | 2.75          | 2.75                 | 2.77          | 2.73                      | 2.75              | 2.74       |          |                     | verage =   |          |                   |           | 2.77    | (4            |
|                                      |                              |               |                      |               |                           |                   |            |          |                     | veruge -   | 2(40)1   |                   |           |         |               |
| . Water heatin                       | g energy red                 | quirement     |                      |               |                           |                   |            |          |                     |            |          |                   |           |         |               |
|                                      |                              |               |                      |               |                           |                   |            |          |                     |            |          |                   | k         | Wh/year |               |
| ssumed occupa                        | ncy, N                       |               |                      |               |                           |                   |            |          |                     |            | 2        | 2.53              | (42       | .)      |               |
| If TFA > 13.9,                       | N = 1 + 1.76                 | x [1 - exp(-  | 0.000349 x           | (TFA - 13.9   | ) <sup>2</sup> )] + 0.001 | l3 x (TFA - 1     | .3.9)      |          |                     |            |          |                   |           |         |               |
| If TFA ≤ 13.9,                       | N = 1                        |               |                      |               |                           |                   |            |          |                     |            |          |                   |           |         |               |
| nnual average h                      | ot water us                  | age in litres | per day Vo           | d,average =   | (25 x N) +                | 36                |            |          |                     |            | 9,       | 4.39              | (43       | )       |               |
| nnual average h                      |                              | -             |                      | by 5% if the  | e dwelling i              | is designed       | to achiev  | ve a wat | ter use             | target of  | not moi  | re tha            | n 125 lit | res     |               |
| er person per do                     |                              |               |                      |               |                           |                   |            | ā        |                     |            | ٠.       |                   |           | _       |               |
|                                      | Jan                          | Feb           | Mar                  | Apr           | May                       | Jun               | Jul        | А        | ug                  | Sep        | Oct      |                   | Nov       | Dec     |               |
| ot water usage<br>(44)m              | 103.83                       | 100.06        | 96.28                | 92.50         | 88.73                     | 84.95             | 84.95      | 88       | .73                 | 92.50      | 96.2     | 8                 | 100.06    | 103.83  | $\neg$        |
| (44)111                              | 103.03                       | 100.00        | 30.20                | 32.30         | 00.73                     | 04.55             | 04.55      |          | ./3                 | 32.30      | 1        | 1)11              |           | 1132.70 | <br> <br>  (4 |
| nergy content o                      | f hot water                  | nseq - calci  | ulated mon           | thly = 4 190  | ) v Vd m v r              | nm v Tm/36        | ነበባ የነላነ   | h/montl  | h (saa <sup>-</sup> | Tahles 1h  |          | ,,                |           | 1132.70 | (-            |
| iergy content o<br>(45)m             | 154.35                       | 134.99        | 139.30               | 121.45        | 116.53                    | 100.56            | 93.18      |          | 5.93                | 108.20     | 126.3    | 10                | 137.65    | 149.48  | $\neg$        |
| ( · • /···                           |                              | 1 2355        |                      |               |                           |                   | 1 33.10    | 1 100    |                     |            |          | 6)11              |           | 1488.70 | <br>(4        |
| instantaneous                        | water heatir                 | na at noint i | of use (no F         | not water st  | torage) ent               | ter 0 in hov      | es (46) to | (61)     |                     |            | ∠(+3     | ,, 1              |           | 1400.70 | (5            |
| or community h                       |                              | -             |                      |               |                           |                   |            | (-1)     |                     |            |          |                   |           |         |               |
| ,                                    | _                            |               |                      |               |                           | ,                 |            |          |                     |            |          |                   |           |         |               |
| stribution loss                      |                              |               |                      |               |                           |                   |            |          |                     |            |          |                   |           |         |               |
| istribution loss<br>(46)m            | 23.15                        | 20.25         | 20.90                | 18.22         | 17.48                     | 15.08             | 13.98      | 16       | .04                 | 16.23      | 18.9     | 1                 | 20.65     | 22.42   | (4            |

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (61)m 0.00

(61)

Total heat required for water heating calculated for each month 0.85 × (45)m + (46)m + (57)m + (59)m + (61)m 238.28 210.80 | 223.23 | 202.67 | 200.46 | 181.78 | 177.11 190.86 189.43 210.03 218.87 233.41 (62)m

Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)

(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)

(63)m 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

∑(63)1...12 = 0.00 (63)

Output from water heater for each month, kWh/month (62)m + (63)m

(64)m 238.28 210.80 223.23 202.67 200.46 181.78 177.11 190.86 189.43 210.03 218.87 233.41

> $\Sigma(64)1...12 =$ 2476.94

if (64)m < 0 then set to 0

Heat gains from water heating,  $kWh/month 0.25 \times [0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$ 

118.47 | 105.53 | 113.46 | 105.36 | 105.89 98.42 98.13 102.70 100.96 109.07 110.75 116.85 (65)m(65)

include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community heating

| 5. Internal gains  | (see Table    | 5 and 5a)    |             |              |              |           |         |         |         |         |         |         |      |
|--------------------|---------------|--------------|-------------|--------------|--------------|-----------|---------|---------|---------|---------|---------|---------|------|
|                    | Jan           | Feb          | Mar         | Apr          | May          | Jun       | Jul     | Aug     | Sep     | Oct     | Nov     | Dec     |      |
| Metabolic gains (  | Table 5), Wa  | atts         |             |              |              |           |         |         |         |         |         |         |      |
| (66)m              | 152.06        | 152.06       | 152.06      | 152.06       | 152.06       | 152.06    | 152.06  | 152.06  | 152.06  | 152.06  | 152.06  | 152.06  | (66) |
| Lighting gains (ca | lculated in A | Appendix L,  | equation L  | 9 or L9a), a | lso see Tab  | le 5      |         |         |         |         |         |         |      |
| (67)m              | 50.73         | 45.05        | 36.64       | 27.74        | 20.74        | 17.51     | 18.92   | 24.59   | 33.00   | 41.90   | 48.91   | 52.14   | (67) |
| Appliances gains   | (calculated i | n Appendix   | L, equatio  | n L13 or L1  | 3a), also se | e Table 5 |         |         |         |         |         |         |      |
| (68)m              | 339.70        | 343.22       | 334.34      | 315.43       | 291.56       | 269.12    | 254.13  | 250.61  | 259.49  | 278.40  | 302.27  | 324.71  | (68) |
| Cooking gains (ca  | lculated in A | Appendix L,  | equation L  | 15 or L15a)  | , also see T | able 5    |         |         |         |         |         |         |      |
| (69)m              | 52.74         | 52.74        | 52.74       | 52.74        | 52.74        | 52.74     | 52.74   | 52.74   | 52.74   | 52.74   | 52.74   | 52.74   | (69) |
| Pumps and fans g   | ains (Table   | 5a)          |             |              |              |           |         |         |         |         |         |         |      |
| (70)m              | 0.00          | 0.00         | 0.00        | 0.00         | 0.00         | 0.00      | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | (70) |
| Losses e.g. evapo  | ration (nega  | ntive values | ) (Table 5) |              |              |           |         |         |         |         |         |         |      |
| (71)m              | -101.38       | -101.38      | -101.38     | -101.38      | -101.38      | -101.38   | -101.38 | -101.38 | -101.38 | -101.38 | -101.38 | -101.38 | (71) |
| Water heating ga   | ins (Table 5) | )            |             |              |              |           |         |         |         |         |         |         |      |
| (72)m              | 159.23        | 157.04       | 152.50      | 146.33       | 142.33       | 136.69    | 131.89  | 138.04  | 140.22  | 146.61  | 153.82  | 157.05  | (72) |
|                    |               |              |             |              |              |           |         |         |         |         |         |         |      |

(301)

Fraction of space heating from secondary/supplementary system (Table 11)

| Fraction of space heating from community system 1 - (301)  Community scheme fractions obtained from plant design specificate  Fraction of community DHW from CHP  Fraction of total space heat from community CHP (302) x (303a) =  Fraction of total space heat from community boilers (302) x (303b)  Factor for control and charging method (Table 4c(3)) for community  Distribution loss factor (Table 12c) for community heating system  Space heating:  Annual space heating requirement  Space heat from community CHP (98) x (304a) x (305) x (306) =  Space heat from community boilers (98) x (304b) x (305) x (306) = | =<br>ty space heating                                                  | ords:       | 0.60<br>0.40<br>0.60<br>0.40<br>1.00<br>1.00<br>0.10           | 302)<br>303a)<br>303b)<br>304a)<br>304b)<br>305)<br>305a)<br>306)                    | <b>kWh/year</b><br>8657.83                                      |                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Water heating:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                        |             |                                                                |                                                                                      |                                                                 |                                                                                            |
| Annual water heating requirement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |             |                                                                |                                                                                      | 2476.94                                                         |                                                                                            |
| If DHW from community scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                        |             |                                                                |                                                                                      |                                                                 |                                                                                            |
| Community DHW: CHP fuel use (64) x (303a) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |             | 148.62                                                         | 310a)                                                                                |                                                                 |                                                                                            |
| Community DHW: boilers fuel use (64) x (303b) x (305a) x (306) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |             | 99.08                                                          | 310b)                                                                                |                                                                 |                                                                                            |
| Electricity used for heat distribution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                        | 0.01 x [(3  | 307a)(307e) + (310                                             | Da)(310e)] =                                                                         | 11.13                                                           | (313)                                                                                      |
| Electricity for pumps and fans within dwelling (Table 4f):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                        |             |                                                                |                                                                                      | _                                                               |                                                                                            |
| mechanical ventilation fans - balanced, extract or positive input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | from outside                                                           |             |                                                                | 0.00                                                                                 |                                                                 | (330a)                                                                                     |
| warm air heating system fans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |             |                                                                | 0.00                                                                                 | ]                                                               | (330b)                                                                                     |
| pump for solar water heating                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                        |             | (2200) + (220                                                  | 0.00                                                                                 | 0.00                                                            | (330g)                                                                                     |
| Total electricity for the above, kWh/year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                        |             | (330a) + (33                                                   | 0b) + (330g) =                                                                       | 0.00                                                            | (331)                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |             |                                                                |                                                                                      |                                                                 |                                                                                            |
| Electricity for lighting (calculated in Appendix L):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                        |             |                                                                |                                                                                      | 358.34                                                          | (332)                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        |             |                                                                |                                                                                      | 358.34                                                          | (332)                                                                                      |
| Electricity for lighting (calculated in Appendix L):  10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                        |             |                                                                |                                                                                      |                                                                 |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Heat or fuel<br>kWh/year                                               |             | Fuel price<br>(Table 12)                                       |                                                                                      | 358.34 Fuel cost £/year                                         |                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                        | x           | •                                                              | x 0.01 =                                                                             |                                                                 |                                                                                            |
| 10b. Fuel costs - Community heating scheme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year                                                               | x<br>x      | (Table 12)                                                     |                                                                                      | Fuel cost £/year                                                |                                                                                            |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>kWh/year</b> 519.47                                                 |             | (Table 12)                                                     | x 0.01 =                                                                             | Fuel cost £/year                                                | (340a)                                                                                     |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 519.47<br>346.31                                                       | x           | (Table 12)  2.65  3.78                                         | x 0.01 =<br>x 0.01 =                                                                 | 13.77<br>13.09                                                  | (340a)<br>(340b)                                                                           |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | kWh/year 519.47 346.31 148.62                                          | x<br>x      | (Table 12)  2.65  3.78  2.65                                   | x 0.01 =<br>x 0.01 =<br>x 0.01 =                                                     | 13.77<br>13.09<br>3.94                                          | (340a)<br>(340b)<br>(342a)                                                                 |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers                                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year       519.47       346.31       148.62       99.08            | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78                             | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                                         | 13.77<br>13.09<br>3.94<br>3.75                                  | (340a)<br>(340b)<br>(342a)<br>(342b)                                                       |
| 10b. Fuel costs - Community heating scheme  Space heating from community CHP  Space heating from community boilers  Water heating from community CHP  Water heating from community boilers  Pumps and fans                                                                                                                                                                                                                                                                                                                                                                                                                        | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                             | 13.77<br>13.09<br>3.94<br>3.75<br>0.00                          | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)                                              |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting                                                                                                                                                                                                                                                                                                                                                                                                                                               | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46                      | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 13.77<br>13.09<br>3.94<br>3.75<br>0.00<br>41.07                 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)                                     |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost                                                                                                                                                                                                                                                                                                                                                                                      | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 13.77 13.09 3.94 3.75 0.00 41.07 106.00                         | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)                            |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme                                                                                                                                                                                                                                                                                                                                          | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =                 | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61                  | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12)                                                                                                                                                                                                                                                                                                          | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61                  | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF)                                                                                                                                                                                                                                                                                 | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46               | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66       | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                                                       | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66 90.77 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                                                            | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66 90.77 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)                   |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value                                                                                                                                                                                                                                                                       | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66 90.77 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating                                                                                                                                                                                                                                                            | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66 90.77 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                   | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66 90.77 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |
| Space heating from community CHP Space heating from community boilers Water heating from community CHP Water heating from community boilers Pumps and fans Electricity for lighting Additional standing charges (Table 12) Total energy cost  11b. SAP rating - Community heating scheme Energy cost deflator (Table 12) Energy cost factor (ECF) SAP value SAP rating SAP band                                                                                                                                                                                                                                                   | kWh/year       519.47       346.31       148.62       99.08       0.00 | x<br>x<br>x | (Table 12)  2.65  3.78  2.65  3.78  11.46  11.46  (340a)(342e) | x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>x 0.01 =<br>+ (345)(354) | 13.77 13.09 3.94 3.75 0.00 41.07 106.00 181.61  0.47 0.66 90.77 | (340a)<br>(340b)<br>(342a)<br>(342b)<br>(349)<br>(350)<br>(351)<br>(355)<br>(356)<br>(357) |

|                                                                                                                                                                                                              |                                      |        |                                                             | 2.00                                         | 1                                               | (2.50)                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------|-------------------------------------------------------------|----------------------------------------------|-------------------------------------------------|--------------------------------------|
| Heat to power ratio                                                                                                                                                                                          | _                                    |        |                                                             | 3.00                                         |                                                 | (360)                                |
|                                                                                                                                                                                                              | Energy<br>kWh/year                   |        | Emissions<br>Factor                                         |                                              | Emissions<br>(kgCO2/year)                       |                                      |
| Space heating from CHP (Mains gas)                                                                                                                                                                           | 923.50                               | х      | 0.198                                                       | =                                            | 182.85                                          | (363)                                |
| less credit emissions for electricity                                                                                                                                                                        | -173.16                              | х      | 0.529                                                       | =                                            | -91.60                                          | (364)                                |
| Water heating from CHP (Mains gas)                                                                                                                                                                           | 264.21                               | х      | 0.198                                                       | =                                            | 52.31                                           | (365)                                |
| less credit emissions for electricity                                                                                                                                                                        | -49.54                               | х      | 0.529                                                       | =                                            | -26.21                                          | (366)                                |
| Emissions from other community sources (not CHP)                                                                                                                                                             |                                      |        |                                                             |                                              |                                                 |                                      |
| Efficiency of boilers (%)                                                                                                                                                                                    |                                      |        | 75.00                                                       | (367b)                                       |                                                 |                                      |
|                                                                                                                                                                                                              | Energy used<br>kWh/year              |        | Emission Factor (kgCO2/kWh)                                 |                                              | Emissions<br>(kgCO2/year)                       |                                      |
| Emissions from boilers (Mains gas)                                                                                                                                                                           | 593.85                               | х      | 0.198                                                       | =                                            | 117.58                                          | (368)                                |
| Electrical energy for heat distribution                                                                                                                                                                      | 11.13                                | х      | 0.517                                                       | =                                            | 5.76                                            | (372)                                |
| Total carbon dioxide from community systems                                                                                                                                                                  |                                      |        | (363)(366)                                                  | + (368)(372) =                               | 240.70                                          | (373)                                |
| Space and water heating                                                                                                                                                                                      |                                      |        | (373) +                                                     | (374) + (375) =                              | 240.70                                          | (376)                                |
| Electricity for pumps and fans within dwelling                                                                                                                                                               | 0.00                                 | x      | 0.000                                                       | =                                            | 0.00                                            | (378)                                |
| Electricity for lighting                                                                                                                                                                                     | 358.34                               | х      | 0.517                                                       | =                                            | 185.26                                          | (379)                                |
| Total carbon dioxide emissions                                                                                                                                                                               |                                      |        |                                                             | ∑(376)(382) =                                | 425.96                                          | (383)                                |
| Dwelling carbon dioxide emissions rate                                                                                                                                                                       |                                      |        |                                                             | (383) ÷ (4) =                                | 5.07                                            | (384)                                |
| El value                                                                                                                                                                                                     |                                      |        |                                                             |                                              | 95.58                                           |                                      |
| EI rating (see section 14)                                                                                                                                                                                   |                                      |        |                                                             |                                              | 96                                              | (385)                                |
| EI band                                                                                                                                                                                                      |                                      |        |                                                             |                                              | А                                               |                                      |
| 13b. Primary energy - Community heating scheme                                                                                                                                                               |                                      |        |                                                             |                                              |                                                 |                                      |
| Primary energy from community CHP (Mains gas)                                                                                                                                                                |                                      |        |                                                             |                                              |                                                 |                                      |
| Efficiency of CHP (%)                                                                                                                                                                                        |                                      |        |                                                             | 75.00                                        | ]                                               | (359*)                               |
| Heat to power ratio                                                                                                                                                                                          |                                      |        |                                                             | 3.00                                         | ]                                               | (360*)                               |
| ricut to power ratio                                                                                                                                                                                         | Energy                               |        | Primary Energy                                              | 3.00                                         | Primary Energy                                  | (300 )                               |
|                                                                                                                                                                                                              | kWh/year                             |        | Factor                                                      |                                              |                                                 |                                      |
| Space heating from CHP (Mains gas)                                                                                                                                                                           | 923.50                               | x      | 1.02                                                        | =                                            | 941.97                                          | (363*)                               |
| less credit emissions for electricity                                                                                                                                                                        | -173.16                              | x      | 2.92                                                        | =                                            | -505.62                                         | (364*)                               |
| Water heating from CHP (Mains gas)                                                                                                                                                                           | 264.21                               |        |                                                             |                                              |                                                 |                                      |
|                                                                                                                                                                                                              | 201.21                               | Х      | 1.02                                                        | =                                            | 269.49                                          | (365*)                               |
| less credit emissions for electricity                                                                                                                                                                        | -49.54                               | x<br>x | 2.92                                                        | =                                            | 269.49<br>-144.65                               | (365*)<br>(366*)                     |
| less credit emissions for electricity  Primary energy from other community sources (not CHP)                                                                                                                 |                                      |        |                                                             | !<br>                                        |                                                 |                                      |
|                                                                                                                                                                                                              |                                      |        |                                                             | !<br>                                        |                                                 |                                      |
| Primary energy from other community sources (not CHP)                                                                                                                                                        |                                      |        | 2.92                                                        | =                                            |                                                 |                                      |
| Primary energy from other community sources (not CHP)                                                                                                                                                        | -49.54  Energy used                  |        | 2.92 75.00 Primary Energy                                   | =                                            | -144.65                                         |                                      |
| Primary energy from other community sources (not CHP) Efficiency of boilers (%)                                                                                                                              | -49.54  Energy used kWh/year         | х      | 2.92  75.00  Primary Energy Factor                          | =<br>(367b*)                                 | -144.65 Primary Energy                          | (366*)                               |
| Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)                                                                                       | -49.54  Energy used kWh/year  593.85 | x      | 75.00 Primary Energy Factor 1.02                            | =<br>(367b*)<br>=<br>=<br>=                  | -144.65  Primary Energy  605.73                 | (366*)                               |
| Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution                                              | -49.54  Energy used kWh/year  593.85 | x      | 75.00  Primary Energy Factor  1.02  2.92  (363*)(366*) + (3 | =<br>(367b*)<br>=<br>=<br>=                  | -144.65  Primary Energy  605.73  32.51          | (366*)<br>(368*)<br>(372*)           |
| Primary energy from other community sources (not CHP)  Efficiency of boilers (%)  Primary energy - boilers (Mains gas)  Electrical energy for heat distribution  Total primary energy from community systems | -49.54  Energy used kWh/year  593.85 | x      | 75.00  Primary Energy Factor  1.02  2.92  (363*)(366*) + (3 | =<br>(367b*)<br>=<br>=<br>=<br>368*)(372*) = | -144.65  Primary Energy  605.73  32.51  1199.44 | (366*)<br>(368*)<br>(372*)<br>(373*) |

26.74

(383\*)

(384\*)

∑(376\*)...(382\*) = [

 $(383*) \div (4) = [$ 

Total primary energy kWh/year



#### **APPENDIX 2.0 - FINANCING OPTIONS**

### **ENERGY SERVICES COMPANIES (ESCOS)**

The incorporation of low-carbon and renewable technologies can provide a number of benefits to developers and end users and the technology options now available on the market present a commercially viable means of supplying a development's energy requirements

Low-carbon and renewable technologies still require a capital investment, in addition to long-term maintenance and the allocation of bills to end users. A proportion of the capital investment in renewable technologies may be sourced from a renewable grant funding scheme, however applications to these funding programmes are not guaranteed. These funding and maintenance issues present new risks for developers and building owners that can be managed by an Energy Supply Company (ESCo) that are specifically designed for the cost-effective supply and end-use of energy for their customers and should be distinguished from conventional energy supply companies that supply electricity or gas or heat.

The ESCo model can provide an additional source of private financial investment for low-carbon and renewable technologies and may finance the complete cost of the technologies, although it would be prudent for the developer to allocate a budget to account for any shortfall between the ESCo financial investment and the actual cost of the technology. In addition to financial leverage, an ESCo will take responsibility for competitive purchasing of various fuels; and energy consumption monitoring and management, including the sale of energy to end users that recoup the capital investment for the benefit of the developer/community.

Management models for ESCos can be based on community ownership through the establishment of a new not-for-profit company or third party private companies or joint venture partnerships involving a number of stakeholders.

Energy services are sub-contracted to a specialist ESCo for a fixed period for a set fee. The ESCo specifies, pays for, installs and runs power, heating, and cooling equipment over that time period. Once terms have been agreed, the ESCo:

- Organises and oversees all necessary works to the building(s) and the energy supply. Since the equipment remains the property of the ESCo there is no capital outlay for the customer;
- The capital, running and maintenance costs are subsumed into the customer's bills over the period of the contract;



- The customer pays a guaranteed amount for the energy services, leaving the ESCo to focus on delivering those services as efficiently as possible to maximise profits and/or environmental benefits. They can be a powerful mechanism for meeting the requirements of planning and other policy and legislative requirements profitably; and
- Assumes the risk that the project will save the amount of energy guaranteed.

ESCos are authorised to generate, distribute and supply electricity under the Electricity (Class Exemptions from the Requirement for a Licence) Order 2001. This is usually done through the establishment of a private wire network. They are increasingly being used by local authorities and are increasingly used by regeneration companies, developers and other organisations, to deliver sustainable energy and sustainable development objectives.

To ensure an ESCo is the appropriate solution for a given scheme, a feasibility study should be undertaken prior to implementation. Once decided upon, ESCos can be a useful mechanism for delivering one-off, as well as long-term projects, at small and community scales. They enable profits to be recycled to install more energy generation capacity or energy efficiency measures. They are particularly suited to delivering power and heat networks. While it is more expensive to produce and supply centrally generated energy due to the higher cost of the plant, it can usually be supplied cheaper to customers, since it is supplied direct avoiding distribution and other costs.

#### **FEED IN TARIFFS**

The Feed in Tariffs (FiT) is a policy mechanism designed to encourage the adoption of renewable energy sources and to help accelerate the move towards grid parity introduced on 1<sup>st</sup> of April 2010. Small-scale low-carbon electricity technologies that are eligible for FiTs include:

- Wind:
- Solar photovoltaics (PV);
- Hydro;
- Anaerobic digestion; and
- Domestic scale micro CHP (with a capacity or less).

The scheme will see the payment of cash rewards (feed in tariffs), by electricity suppliers, from April 2010, to owners of these small-scale electricity generating renewable technologies. In order to qualify, the technologies must use the Microgeneration Certification Scheme in order to confirm their eligibility (for more information please refers to <a href="http://www.microgenerationcertification.org/">http://www.microgenerationcertification.org/</a>).



For developers who are required to install renewable technologies, such as PV or small-scale wind, as part of their planning application, there is now the opportunity to see a boosted revenue stream from the technologies in operation and a reduction in simple payback period. Tariffs will be fixed for a 20 or 25-year period, depending upon the technology: PV being given an extra 5 years compared to the other sources. It is anticipated that the tariff will result in a financial return of between 5-8% on the initial investment of the installation.

Costs for the FiT programme will be met by UK electricity suppliers who will pass the costs on to their customers. The scheme will undergo a review in 2013 to assess its cost and effectiveness in increasing small-scale renewable electricity generation. The rates payable to small-scale generators is shown below:

Complete listing of all Generation Tariff levels up to March 2012

| Energy Source           | Scale             | Tariff (p/kWh)[A]   | Duration (years) |
|-------------------------|-------------------|---------------------|------------------|
| Anaerobic digestion     | ≤500kVV           | 12.1 <sub>[D]</sub> | 20               |
| Anaerobic digestion     | >500kVV           | 9.4                 | 20               |
| Hydro                   | ≤15 kW            | 20.9                | 20               |
| Hydro                   | >15 - 100kVV      | 18.7                | 20               |
| Hydro                   | >100kW - 2MW      | 11.5                | 20               |
| Hydro                   | >2MW - 5MW        | 4.7                 | 20               |
| Micro-CHP [B]           | <2 kW             | 10.5                | 10               |
| Solar PV                | ≤4 kW new [C]     | 37.8                | 25               |
| Solar PV                | ≤4 kW retrofit[c] | 43.3                | 25               |
| Solar PV                | >4-10kW           | 37.8                | 25               |
| Solar PV                | >10 - 100kW [E]   | 32.9 [E]            | 25               |
| Solar PV                | >100kW - 5MW      | 30.7 [E]            | 25               |
| Solar PV                | Standalone [C]    | 30.7 [E]            | 25               |
| Wind                    | ≤1.5kW            | 36.2                | 20               |
| Wind                    | >1.5 - 15kW       | 28.0                | 20               |
| Wind                    | >15 - 100kW       | 25.3                | 20               |
| Wind                    | >100 - 500kW      | 19.7                | 20               |
| Wind                    | >500kW - 1.5MW    | 9.9                 | 20               |
| Wind                    | >1.5MW - 5MW      | 4.7                 | 20               |
| Existing generators tra | ansferred from RO | 9.4                 | to 2027          |

- -



## RENEWABLE HEAT INCENTIVE

The Renewable Heat Incentive (RHI) is very similar to the Feed-in Tariffs, although this incentive relates to heat technologies (as opposed to technologies producing electricity). The RHI, which will be implemented in two separate phases, will operate based on the following three steps from July 2011:

- Installation of renewable heat systems such as solar thermal panels, heat pumps, or a biomass boiler;
- Estimate is made on how much heat the renewable energy system will produced;
- Receipt of a fixed amount based on this estimate.

Initially, the following heat and CHP technologies will be supported by the RHI:

- Biomass boilers;
- Biogas combustion (up to 200kWth)
- Deep geothermal;
- Ground source heat pumps;
- Energy from biomass proportion of municipal solid waste;
- Solar thermal (up to 200kWth);
- Water Source Heat Pumps;
- Renewable district heating where one of the eligible heat technologies above are utilised; and
- Feeding biomethane from anaerobic digestion back into the natural gas grid.
- For the second phase in 2012, other technologies that will also be considered for inclusion are air source heat pumps, hot air heating (e.g. kilns), bioliquids and landfill gas.
- Similar to the Feed-in-Tariffs above, the main benefit is the generation tariff, paid for every kilowatt-hour of energy produced. The level of payment depends on the technology and system size; as part of the scheme, the government have published tariffs for the initial scheme for non-residential installations. For residential installations, the tariffs have yet to be published, apart from indicative levels for the Premium payment; however, based on the original consultation, the second table indicates proposed tariff levels published on the RHI website.



| Tariff name         | Eligible technology                                           | Eligible sizes                              | Tariff rate<br>(p/kWh) |
|---------------------|---------------------------------------------------------------|---------------------------------------------|------------------------|
| Small biomass       |                                                               | Less then 200 kWth                          | Tier 1: 7.6            |
|                     |                                                               |                                             | Tier 2: 1.9            |
| Madissa bisasa      | Solid biomass;<br>Municipal Solid Waste (incl.                | 200 kWth and above;<br>less than 1000 kWth  | Tier 1: 4.7            |
| Medium biomass      | CHP)                                                          |                                             | Tier 2: 1.9            |
| Large biomass       |                                                               | 1000 kWth and above                         | 2.6                    |
| Small ground source | Ground-source heat pumps;                                     | Less than 100 kWth                          | 4.3                    |
| Large ground source | Water-source heat pumps;<br>Deep geothermal                   | 100 kWth and above                          | 3.0                    |
| Solar thermal       | Solar thermal                                                 | Less than 200 kWth                          | 8.5                    |
| Biomethane          | Biomethane injection & biogas combustion, except landfill gas | Biomethane all scales;<br>biogas < 200 kWth | 6.5                    |

| Technology                 | Scale           | Tariffs (pence/kWh) | Tariff lifetime (years) |
|----------------------------|-----------------|---------------------|-------------------------|
|                            | Small installa  | tions               |                         |
| Solid biomass              | Up to 45kW      | 9                   | 15                      |
| Biodiesel (restricted use) | Up to 45kW      | 6.5                 | 15                      |
| Biogas on-site combustion  | Up to 45kW      | 5.5                 | 10                      |
| Ground source heat pumps   | Up to 45kW      | 7                   | 23                      |
| Air source heat pumps      | Up to 45kW      | 7.5                 | 18                      |
| Solar thermal              | Up to 20kW      | 18                  | 20                      |
|                            | Medium install  | ations              | ,                       |
| Solid biomass              | 45kW-500kW      | 6.5                 | 15                      |
| Biogas on-site combustion  | 45kW-200kW      | 5.5                 | 10                      |
| Ground source heat pumps   | 45kW-350kW      | 5.5                 | 20                      |
| Air source heat pumps      | 45kW-350kW      | 2                   | 20                      |
| Solar thermal              | 20kW-100kW      | 17                  | 20                      |
|                            | Large installa  | tions               | *                       |
| Solid biomass              | 500kW and above | 1.6-2.5             | 15                      |
| Ground source heat pumps   | 350kW and above | 1.5                 | 20                      |
| Biomethane injection       | All scales      | 4                   | 15                      |

# **RENEWABLES OBLIGATION CERTIFICATES (ROCS)**

The Renewables Obligation (RO) is designed to incentivise the generation of electricity from eligible renewable sources in the United Kingdom. The RO places an obligation on licensed electricity suppliers in the United Kingdom to source an increasing proportion of electricity from renewable sources. Suppliers meet their obligations by presenting Renewables Obligation Certificates (ROCs).



ROCs are green certificates issued for eligible renewable electricity generated within the UK and supplied to customers in the UK by a licensed supplier. ROCs are issued by Ofgem to accredited renewable generators. One ROC is issued for each megawatt-hour (MWh) of eligible renewable output. ROCs are traded separately to the actual electricity itself and work as a bonus premium on top of the price paid for the unit.

The following sources of electricity are able to attract ROCs:

- Biogas from anaerobic digestion;
- Biomass;
- · Hydro electric;
- Tidal power;
- Wind power;
- Photovoltaic cells;
- Landfill gas;
- Sewage gas; and
- Wave power.

In 2009, a new order for the Renewables Obligation came into effect, whereby those licensed to supply electricity, are now required to submit a certain number of ROCs each year. In addition, the Renewables Obligation Is no longer 'technology neutral' as it intends to give increased incentives to developing technologies through a system of 'banding'. This will result in certain technologies benefiting from the introduction of banding as technologies in some bands receive more certificates per unit of generation(i.e. tidal, solar photovoltaics, geothermal, advanced gasification/pyrolosis), while those in others receive less (i.e. sewage gas, landfill gas).



#### **10.0 REFERENCES**

- <sup>1</sup> Dti, (2003). Energy White Paper Our Energy Future Creating a Low Carbon Economy. TSO.
- <sup>2</sup> Dti, (2007). Meeting the Challenge A White Paper on Energy. TSO.
- <sup>3</sup> Great Britain. *Climate Change Act 2008: Elizabeth II.* (2008) London, The Stationery Office
  - http://www.legislation.gov.uk/ukpga/2008/27/pdfs/ukpga 20080027 en.pdf
- <sup>4</sup> DCLG, (2007); Planning Policy Statement: Planning and Climate Change Supplement to Planning Policy Statement 1. DCLG. <a href="http://www.communities.gov.uk/documents/planningandbuilding/pdf/ppsclimatechange">http://www.communities.gov.uk/documents/planningandbuilding/pdf/ppsclimatechange</a>
- DCLG, (2004); Planning Policy Statement 22: Renewable Energy. TSO.
  <a href="http://www.communities.gov.uk/pub/910/PlanningPolicyStatement22Renewa">http://www.communities.gov.uk/pub/910/PlanningPolicyStatement22Renewa</a>
  <a href="bleEnergyPDF866Kb">bleEnergyPDF866Kb</a>
  id1143910.pdf
- Greater London Authority, (2011); The London Plan. GLA <a href="http://www.london.gov.uk/sites/default/files/The%20London%20Plan%2020">http://www.london.gov.uk/sites/default/files/The%20London%20Plan%2020</a>
  11.pdf
- <sup>7</sup> London Borough of Camden, (2010); Camden Core Strategy. London Borough of Camden <a href="http://www.camden.gov.uk/ccm/navigation/environment/planning-and-built-environment/planning-policy/local-development-framework--ldf-/core-strategy/">http://www.camden.gov.uk/ccm/navigation/environment/planning-policy/local-development-framework--ldf-/core-strategy/</a>
- <sup>8</sup> London Borough of Camden, (2010); Camden Development Policies 2010-2025,

  Local Development Framework. London Borough of Camden

  <a href="http://www.camden.gov.uk/ccm/content/environment/planning-and-built-environment/two/planning-policy/local-development-framework/development-policies.en">http://www.camden.gov.uk/ccm/content/environment/planning-and-built-environment/two/planning-policy/local-development-framework/development-policies.en</a>
- London Borough of Camden, (2011); Camden Planning Guidance 3

  Sustainability, Supplementary Planning Document. London Borough of

  Camden <a href="http://www.camden.gov.uk/ccm/content/environment/planning-and-built-environment/two/planning-policy/supplementary-planning-documents/camden-planning-guidance.en">http://www.camden.gov.uk/ccm/content/environment/planning-and-built-environment/two/planning-policy/supplementary-planning-documents/camden-planning-guidance.en</a>
- Greater London Authority, (2006); Sustainable Design and Construction The London Plan Supplementary Planning Guidance. GLA http://www.london.gov.uk/mayor/strategies/sds/docs/spg-sustainabledesign.pdf
- <sup>11</sup> Energy Savings Trust, (2008); *Energy Efficiency and Code for Sustainable Homes Level 4*. EST.
- London Renewables, (2004); Integrating Renewable Energy into New Developments: Toolkit for Planners, Developers and Consultants. GLA.



http://www.london.gov.uk/mayor/environment/energy/docs/renewables tool kit.pdf

- <sup>13</sup> Greater London Authority, (2010); *GLA Energy Team Guidance on Planning Energy Assessments*. GLA.
- London Development Agency, (2010); Decentralised Energy and Energy

  Masterplanning (DEMaP) project. LDA.

  http://www.londonheatmap.org.uk/Content/home.aspx
- AEA Technology Plc, (2007); Review of the Potential Impact on Air Quality from Increased Wood Fuelled Biomass Use in London. <a href="http://www.londoncouncils.gov.uk/Transport/briefings/ReviewofthePotentialI">http://www.londoncouncils.gov.uk/Transport/briefings/ReviewofthePotentialI</a> <a href="mailto:mpactonAirQualityfromIncreasedWoodFuelledBiomassUseinLondon.htm">mpactonAirQualityfromIncreasedWoodFuelledBiomassUseinLondon.htm</a>
- Carbon Trust Wind Estimator Calculator: <a href="http://www.carbontrust.co.uk/emerging-technologies/current-focus-areas/offshore-">http://www.carbontrust.co.uk/emerging-technologies/current-focus-areas/offshore-</a>
  - wind/ layouts/ctassets/aspx/windpowerestimator/WindPowerEstimator.aspx [accessed November 2011]