| Vara Consulting Engineers Ltd | Project                                           | 7c Gainsbo               | Job no.<br>VCE-10124a |                         |             |
|-------------------------------|---------------------------------------------------|--------------------------|-----------------------|-------------------------|-------------|
|                               | Calcs for Alternate Option - Edge Flitch Beam B1. |                          |                       | Start page no./Revision |             |
|                               | Calcs by mv                                       | Calcs date<br>13/07/2011 | Checked by            | Checked date            | Approved by |

Total load on beam W<sub>tot</sub> = **72.688** kN

Reactions at support A  $R_{A_{max}} = 36.344 \text{ kN}$   $R_{A_{min}} = 36.344 \text{ kN}$ 

Unfactored di load reaction at support A RA\_DI = 36.344 kN

Reactions at support B  $R_{B_{max}} = 36.344 \text{ kN}$   $R_{B_{min}} = 36.344 \text{ kN}$ 

Unfactored di load reaction at support B R<sub>B\_DI</sub> = 36.344 kN





**Timber section details** 

Breadth of section b = 100 mm Depth of section h = 300 mm

Number of sections N = 2
Timber strength class D40

Steel section details

Breadth of steel plate  $b_s = 20 \text{ mm}$  Depth of steel plate  $h_s = 250 \text{ mm}$ 

Number of steel plates in beam  $N_s = 3$  Steel stress  $p_y = 230$ 

N/mm<sup>2</sup>

Bolt diameter  $\phi_b = 16 \text{ mm}$  Maximum bolt spacing  $S_{max} = 400 \text{ mm}$ 

Member details

Service class of timber 1 Load duration Medium term

Length of bearing  $L_b = 100 \text{ mm}$ 

Lateral support - cl.2.10.8

Permiss.depth-to-breadth ratio 3.00 Actual depth-to-breadth

ratio 1.15

PASS - Lateral support is adequate

Check bearing stress

Permissible bearing stress  $\sigma_{c\_adm} = 4.875 \text{ N/mm}^2$  Applied bearing stress  $\sigma_{c\_a} = 1.817 \text{ N/mm}^2$ 

PASS - Applied compressive stress is less than permissible compressive stress at bearing

Bending parallel to grain

Permiss. timber bending stress  $\sigma_{m \text{ adm}} = 15.625 \text{ N/mm}^2$  Applied timber bending

stress  $\sigma_{m a} = 5.429 \text{ N/mm}^2$ 

PASS - Timber bending stress is less than permissible timber bending stress

Permiss. steel bending stress p<sub>y</sub> = 230.000 N/mm<sup>2</sup> Applied steel bending

stress  $\sigma_{m_as} = 104.476 \text{ N/mm}^2$ 

PASS - Steel bending stress is less than permissible steel bending stress

Shear parallel to grain

Permissible shear stress  $\tau_{adm} = 2.500 \text{ N/mm}^2$  Applied shear stress  $\tau_a = 0.212 \text{ N/mm}^2$ 

PASS - Applied shear stress is less than permissible shear stress

Deflection

Permissible deflection  $\delta_{adm} = 23.100 \text{ mm}$  Total deflection  $\delta_a = 22.771 \text{ mm}$ 

| Vara Consulting Engineers Ltd | Project        | 7c Gainsbo               | Job no.<br>VCE-10124a |              |                  |               |
|-------------------------------|----------------|--------------------------|-----------------------|--------------|------------------|---------------|
|                               | Calcs for Alte | ernate Option - E        | dge Flitch Be         | am B1.       | Start page no./F | Revision      |
|                               | Calcs by mv    | Calcs date<br>13/07/2011 | Checked by            | Checked date | Approved by      | Approved date |

### PASS - Total deflection is less than permissible deflection

# Flitch plate bolting requirements

Bolts required at beam end  $N_{be} = 2.000$  Bolts required to beam length  $N_{bl} = 2.485$ 

- Provide a minimum of 2 No.16 mm diameter bolts at each support

- Provide 16 mm diameter bolts at a maximum of 400 mm centres along the length of the beam

# Minimum bolt spacings

Minimum end spacing  $S_{end} = 64 \text{ mm}$  Minimum edge spacing  $S_{edge} = 64 \text{ mm}$ 

Minimum bolt spacing  $S_{bolt} = 64 \text{ mm}$ 

Minimum washer diameter  $\phi_w = 48 \text{ mm}$  Minimum washer thickness  $t_w = 4.0 \text{ mm}$ 

| Vara Consulting Engineers Ltd | Project  | 7c Gainsbor        | Job Ref.<br>VCE-10124a |        |                |      |
|-------------------------------|----------|--------------------|------------------------|--------|----------------|------|
|                               | Section  | Padstone & Wall    | Bearing to Be          | eam B1 | Sheet no./rev. | 16   |
|                               | Calc. by | Date<br>13/07/2011 | Chk'd by               | Date   | App'd by       | Date |

### MASONRY BEARING DESIGN TO BS5628-1:2005

TEDDS calculation version 1.0.03

Masonry details

Masonry type Clay or calcium silicate bricks

Compressive strength p<sub>unit</sub> = 20.0 N/mm<sup>2</sup> Mortar designation iii

Masonry units Category I Construction control Normal

Partial safety factor  $\gamma_m = 3.1$  Characteristic strength  $f_k = 5.0 \text{ N/mm}^2$ Leaf thickness t = 150 mm Effective wall thickness  $t_{ef} = 290 \text{ mm}$ Wall height h = 2400 mm Effective height of wall  $h_{ef} = 2400 \text{ mm}$ 



### Bearing details

Beam spanning out of plane of wall

Width of bearing B = 203 mm Length of bearing  $I_b = 150 \text{ mm}$ 

Edge distance  $x_{edge} = 0 \text{ mm}$ 

Loading details

Dead load  $G_k = 30 \text{ kN}$  Imposed load  $Q_k = 25 \text{ kN}$ 

Design load F = 81.5 kN

Masonry bearing type

Bearing type Type 1 Bearing safety factor  $\gamma_{\text{bear}} = 1.25$ 

Check design bearing without a spreader

Design bearing stress  $f_{ca} = 2.677 \text{ N/mm}^2$  Allowable bearing stress  $f_{cp} = 2.016 \text{ N/mm}^2$ 

FAIL - Design bearing stress exceeds allowable bearing stress, use a spreader

Spreader details

Length of spreader  $I_s = 300 \text{ mm}$  Depth of spreader  $h_s = 225 \text{ mm}$ 

Edge distance  $s_{edge} = 0 \text{ mm}$ 

| Vara Consulting Engineers Ltd | Project 7c Gainsborough Gardens            |                 |          |               |          | E-10124a |
|-------------------------------|--------------------------------------------|-----------------|----------|---------------|----------|----------|
|                               | Section Padstone & Wall Bearing to Beam B1 |                 |          | Sheet no./rev | 17       |          |
|                               | Calc. by                                   | Date 13/07/2011 | Chk'd by | Date          | App'd by | Date     |

| Spreader b | earing | type |
|------------|--------|------|
|------------|--------|------|

Bearing type Type 3 Bearing safety factor  $\gamma_{\text{bear}} = 2.00$ 

Check design bearing with a spreader

Loading acts eccentrically - stress distribution similar to semi-infinite beam on elastic foundation

Design bearing stress  $f_{ca} = 2.056 \text{ N/mm}^2$  Allowable bearing stress  $f_{cp} = 3.226 \text{ N/mm}^2$ 

PASS - Allowable bearing stress exceeds design bearing stress

Check design bearing at 0.4  $\times$  h below the bearing level

Design bearing stress  $f_{ca} = 0.467 \text{ N/mm}^2$  Allowable bearing stress  $f_{cp} = 1.597 \text{ N/mm}^2$ 

PASS - Allowable bearing stress at 0.4 imes h below bearing level exceeds design bearing stress

| Vara Consulting Engineers Ltd | Project     | 7c Gainsbor                       | Job no.<br>VCE-10124a |              |                         |               |
|-------------------------------|-------------|-----------------------------------|-----------------------|--------------|-------------------------|---------------|
|                               | Calcs for   | salcs for<br>Studwork Wall Const. |                       |              | Start page no./Revision |               |
|                               | Calcs by mv | Calcs date<br>13/07/2011          | Checked by            | Checked date | Approved by             | Approved date |

### TIMBER STUD DESIGN (BS5268-2:2002)

TEDDS calculation version 1.0.03



### Stud details

 $\begin{array}{ll} \text{Stud breadth} & \text{b} = 50 \text{ mm} \\ \text{Stud depth} & \text{h} = 100 \text{ mm} \\ \text{Number of studs} & \text{N}_{\text{s}} = 1 \\ \end{array}$ 

### Strength class C16 timber (Table 8 BS5268:Pt 2:2002)

#### Section properties

Cross sectional area  $A = N_s \times b \times h = 5000 \text{ mm}^2$  Section modulus  $Z = N_s \times b \times h^2 / 6 = 83333 \text{ mm}^3$  Moment of inertia in the major axis  $I_x = N_s \times b \times h^3 / 12 = 4166667 \text{ mm}^4$  Moment of inertia in the minor axis  $I_y = N_s \times h \times b^3 / 12 = 1041667 \text{ mm}^4$  Radius of gyration in the major axis  $r_x = \sqrt{(I_x / A)} = 28.9 \text{ mm}$  Radius of gyration in the minor axis  $r_y = \sqrt{(I_y / A)} = 14.4 \text{ mm}$ 

# Panel details - Studs restrained by sheathing in the plane of the panel

Panel height L = 1500 mm

Stud length  $L_s = L - (2 \times b) = 1400 \text{ mm}$ 

Standard stud spacing  $s_s = 400 \text{ mm}$ Panel opening O = 0 mm

Loaded panel length  $s = max(s_s, (O + s_s) / 2) = 400 \text{ mm}$ 

Effective length in the major axis  $L_{ex} = 1.00 \times L_{s} = 1400 \text{ mm}$ 

Slenderness ratio  $\lambda = L_{ex} / r_x = 48.50$ 

Vertical loading detailsDead loadsImposed loadsRoof UDL $U_{r_-d} = 2.24 \text{ kN/m}$  $U_{r_-i} = 1.60 \text{ kN/m}$ 

| Vara Consulting Engineers Ltd | Project        | 7c Gainsbor                    | ough Gardens | <b>3</b>     | Job no.<br>VCE-10124a   |               |
|-------------------------------|----------------|--------------------------------|--------------|--------------|-------------------------|---------------|
|                               | Calcs for      | Calcs for Studwork Wall Const. |              |              | Start page no./Revision |               |
|                               | Calcs by<br>mv | Calcs date<br>13/07/2011       | Checked by   | Checked date | Approved by             | Approved date |

**Modification factors** 

Section depth factor  $K_7 = (300 \text{ mm / h})^{0.11} = 1.13$ 

Load sharing factor  $K_8 = 1.10$ 

Consider axial compression without bending under medium term loads

Load duration factor  $K_3 = 1.25$ 

Vertical loading  $F = (U_{r,d} + U_{r,i}) \times s = 1.54 \text{ kN}$ 

Check compressive stress on stud

Compression member factor  $K_{12} = 0.72$ 

Compression parallel to grain  $\sigma_c = 6.800 \text{ N/mm}^2$ 

Permissible compressive stress  $\sigma_{c\_adm} = \sigma_c \times K_3 \times K_8 \times K_{12} = \textbf{6.730 N/mm}^2$ 

Applied compressive stress  $\sigma_{c\_max} = F / (N_s \times b \times h) = 0.307 \text{ N/mm}^2$ 

PASS - Applied compressive stress under medium term loads is within permissible limits

Check compressive stress on rail

Bearing stress modification factor  $K_4 = 1.20$ 

Compression perpendicular to grain (no wane)  $\sigma_{cp1} = 2.200 \text{ N/mm}^2$ 

Permissible compressive stress  $\sigma_{cp1\_adm} = \sigma_{cp1} \times K_3 \times K_4 = \textbf{3.300 N/mm}^2$  Applied compressive stress  $\sigma_{cp1\_max} = F / (N_s \times b \times h) = \textbf{0.307 N/mm}^2$ 

PASS - Applied compressive stress under medium term loads is within permissible limits

| Vara Consulting Engineers Ltd  86 Cecil Park Pinner  Middlesex, HA5 5HH. | Project  | 7c Gainsbor        | ough Garder  | าร   | Job Ref.<br>VCE-10124a |      |
|--------------------------------------------------------------------------|----------|--------------------|--------------|------|------------------------|------|
|                                                                          | Section  | Floor Joist to     | Loft Convers | ion  | Sheet no./rev.         | 20   |
|                                                                          | Calc. by | Date<br>13/07/2011 | Chk'd by     | Date | App'd by               | Date |

# TIMBER BEAM ANALYSIS & DESIGN TO BS5268-2:2002

TEDDS calculation version 1.5.04







# Applied loading

Beam loads

DI full UDL 0.800 kN/m

Load combinations

Load combination 1

Support A

 $\text{Dead} \times 1.00$ 

Imposed × 1.00

DI × 1.00

Span 1

 $\text{Dead} \times 1.00$ 

 $\text{Imposed} \times 1.00$ 

DI × 1.00

Support B

 $\text{Dead} \times 1.00$ 

 $\text{Imposed} \times 1.00$ 

DI × 1.00

Analysis results

Design moment

M = 0.961 kNm

Design shear

F = 1.240 kN

| Vara Consulting Engineers Ltd  86 Cecil Park Pinner  Middlesex, HA5 5HH. | Project                                | 7c Gainsbor        | ough Garder | ıs   | Job Ref.<br>VCE-10124a |      |
|--------------------------------------------------------------------------|----------------------------------------|--------------------|-------------|------|------------------------|------|
|                                                                          | Section Floor Joist to Loft Conversion |                    |             |      | Sheet no./rev.         |      |
|                                                                          | Calc. by                               | Date<br>13/07/2011 | Chk'd by    | Date | App'd by               | Date |

| Total load on beam          | $W_{tot} = 2.480 \text{ kN}$     |                                  |
|-----------------------------|----------------------------------|----------------------------------|
| Reactions at support A      | $R_{A_{max}} = 1.240 \text{ kN}$ | $R_{A_{min}} = 1.240 \text{ kN}$ |
| Unfactored di load reaction | at support A                     | RA DI = 1.240 kN                 |

Reactions at support B  $R_{B_{max}} = 1.240 \text{ kN}$   $R_{B_{min}} = 1.240 \text{ kN}$ 

Unfactored di load reaction at support B R<sub>B\_DI</sub> = 1.240 kN





#### Timber section details

Breadth of section b = 75 mm Depth of section h = 175 mmNumber of sections N = 1 Breadth of beam  $b_b = 75 \text{ mm}$ 

Timber strength class C16

#### Member details

Service class of timber 1 Load duration Medium term

Length of bearing  $L_b = 50 \text{ mm}$ 

The beam is part of a load-sharing system consisting of four or more members

### Lateral support - cl.2.10.8

Permiss.depth-to-breadth ratio 3.00 Actual depth-to-breadth

ratio 2.33

PASS - Lateral support is adequate

### Check bearing stress

Permissible bearing stress  $\sigma_{c\_adm} = 3.025 \text{ N/mm}^2$  Applied bearing stress  $\sigma_{c\_a} = 0.331 \text{ N/mm}^2$ 

PASS - Applied compressive stress is less than permissible compressive stress at bearing

### Bending parallel to grain

Permissible bending stress  $\sigma_{m\_adm} = 7.733 \text{ N/mm}^2$  Applied bending stress  $\sigma_{m\_a} = 2.510 \text{ N/mm}^2$ 

PASS - Applied bending stress is less than permissible bending stress

### Shear parallel to grain

Permissible shear stress  $\tau_{adm} = 0.921 \text{ N/mm}^2$  Applied shear stress  $\tau_a = 0.142 \text{ N/mm}^2$ 

PASS - Applied shear stress is less than permissible shear stress

#### Deflection

Permissible deflection  $\delta_{adm} = 9.300 \text{ mm}$  Total deflection  $\delta_a = 5.194 \text{ mm}$ 

PASS - Total deflection is less than permissible deflection

| Vara Consulting Engineers Ltd  86 Cecil Park Pinner  Middlesex, HA5 5HH. | Project                           | 7c Gainsbord    | ough Garden | S.   | Job Ref.<br>VCE-10124a |      |
|--------------------------------------------------------------------------|-----------------------------------|-----------------|-------------|------|------------------------|------|
|                                                                          | Section Extg Pitched Roof Rafters |                 |             |      |                        | 22   |
|                                                                          | Calc. by<br>mv                    | Date 13/07/2011 | Chk'd by    | Date | App'd by               | Date |

# TIMBER RAFTER DESIGN (BS5268-2:2002)

TEDDS calculation version 1.0.03



| Ra | fter | de | tai | Is |
|----|------|----|-----|----|
|    |      |    |     |    |

| Breadth of timber sections    | b = <b>50</b> mm                 | Depth of timber sections | h = <b>125</b> mm          |
|-------------------------------|----------------------------------|--------------------------|----------------------------|
| Rafter spacing                | s = 175 mm                       | Rafter span              | Continuous                 |
| Clear length of span on slope | L <sub>cl</sub> = <b>4243</b> mm | Rafter slope             | $\alpha$ = <b>45.0</b> deg |
| Timber strength class         | C16                              |                          |                            |

#### Section properties

| Cross sectional area of rafter | $A = 6250 \text{ mm}^2$ | Section modulus       | $Z = 130208 \text{ mm}^3$   |
|--------------------------------|-------------------------|-----------------------|-----------------------------|
| Radius of gyration             | r = 36 mm               | Second moment of area | I = 8138021 mm <sup>4</sup> |

# Loading details

| Rafter self weight        | $F_j = 0.02 \text{ kN/m}$   | Dead load on slope | $F_d = 1.00 \text{ kN/m}^2$ |
|---------------------------|-----------------------------|--------------------|-----------------------------|
| Imposed snow load on plan | $F_u = 0.75 \text{ kN/m}^2$ | Imposed point load | $F_p = 0.90 \text{ kN}$     |

# **Modification factors**

| Section depth factor | $K_7 = 1.10$ | Load sharing factor | $K_8 = 1.10$ |
|----------------------|--------------|---------------------|--------------|
|                      |              |                     |              |

# Consider long term load condition

| Load duration factor    | $K_3 = 1.00$         | Total UDL perp. to rafter | F = 0.137  kN/m       |
|-------------------------|----------------------|---------------------------|-----------------------|
| Notional bearing length | $L_b = 2 \text{ mm}$ | Effective span            | Leff = <b>4245</b> mm |

### Check bending stress at purlin

| Permissible bending stress | $\sigma_{\rm m}  _{\rm adm} = 6.419  {\rm N/mm^2}$ | Applied bending stress | $\sigma_{\rm m \ max} = 2.373 \ {\rm N/mm^2}$ |
|----------------------------|----------------------------------------------------|------------------------|-----------------------------------------------|
|----------------------------|----------------------------------------------------|------------------------|-----------------------------------------------|

# PASS - Applied bending stress within permissible limits

# Check compressive stress parallel to grain at purlin

| Permissible comp. stress | $\sigma_{c_adm} = 2.261 \text{ N/mm}^2$ | Applied compressive stress     | $\sigma_{c_{max}} = 0.128 \text{ N/mm}^2$ |
|--------------------------|-----------------------------------------|--------------------------------|-------------------------------------------|
|                          |                                         | PASS - Applied compressive str | ess within normissible limits             |

| Vara Consulting Engineers Ltd  86 Cecil Park Pinner Middlesex, HA5 5HH. | Project  | 7c Gainsbor     | ough Garden   | S.   | Job Ref.<br>VC | E-10124a |
|-------------------------------------------------------------------------|----------|-----------------|---------------|------|----------------|----------|
|                                                                         | Section  | Extg Pitched    | l Roof Rafter | rs . | Sheet no./rev  | 23       |
|                                                                         | Calc. by | Date 13/07/2011 | Chk'd by      | Date | App'd by       | Date     |

Check combined bending and compressive stress parallel to grain at purlin

Combined loading check 0.432 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check bending stress in lower portion of rafter

Permissible bending stress  $\sigma_{m\_adm} = 6.419 \text{ N/mm}^2$  Applied bending stress  $\sigma_{m\_max} = 1.335 \text{ N/mm}^2$ 

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain in lower portion of rafter

Permissible comp. stress  $\sigma_{c\_adm} = 2.261 \text{ N/mm}^2$  Applied compressive stress  $\sigma_{c\_max} = 0.186 \text{ N/mm}^2$ 

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain in lower portion of rafter

Combined loading check 0.295 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Permissible shear stress  $\tau_{adm} = 0.737 \text{ N/mm}^2$  Applied shear stress  $\tau_{max} = 0.087 \text{ N/mm}^2$ 

PASS - Applied shear stress within permissible limits

Check deflection

Permissible deflection  $\delta_{adm} = 12.735 \text{ mm}$  Total deflection  $\delta_{max} = 3.470 \text{ mm}$ 

PASS - Total deflection within permissible limits

Consider medium term load condition

Load duration factor  $K_3 = 1.25$  Total UDL perp. to rafter F = 0.203 kN/m Notional bearing length  $L_b = 4$  mm Effective span  $L_{eff} = 4246$  mm

Check bending stress at purlin

Permissible bending stress  $\sigma_{\text{m_adm}} = 8.024 \text{ N/mm}^2$  Applied bending stress  $\sigma_{\text{m_max}} = 3.510 \text{ N/mm}^2$ 

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain at purlin

Permissible comp. stress  $\sigma_{c,adm} = 2.412 \text{ N/mm}^2$  Applied compressive stress  $\sigma_{c,max} = 0.189 \text{ N/mm}^2$ 

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain at purlin

Combined loading check 0.524 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check bending stress in lower portion of rafter

Permissible bending stress  $\sigma_{m\_adm} = 8.024 \text{ N/mm}^2$  Applied bending stress  $\sigma_{m\_max} = 1.975 \text{ N/mm}^2$ 

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain in lower portion of rafter

Permissible comp. stress  $\sigma_{c, adm} = 2.412 \text{ N/mm}^2$  Applied compressive stress  $\sigma_{c, max} = 0.276 \text{ N/mm}^2$ 

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain in lower portion of rafter

Combined loading check 0.367 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Permissible shear stress  $\tau_{adm} = 0.921 \text{ N/mm}^2$  Applied shear stress  $\tau_{max} = 0.129 \text{ N/mm}^2$ 

PASS - Applied shear stress within permissible limits

| Vara Consulting Engineers Ltd  86 Cecil Park Pinner  Middlesex, HA5 5HH. | Project                           | 7c Gainsbor     | ough Garden   | s.             | Job Ref. | E-10124a |
|--------------------------------------------------------------------------|-----------------------------------|-----------------|---------------|----------------|----------|----------|
|                                                                          | Section Extg Pitched Roof Rafters |                 | Sheet no./rev | Sheet no./rev. |          |          |
|                                                                          | Calc. by                          | Date 13/07/2011 | Chk'd by      | Date           | App'd by | Date     |

Check deflection

Permissible deflection  $\delta_{adm} = 12.739 \text{ mm}$  Total deflection  $\delta_{max} = 5.136 \text{ mm}$ 

PASS - Total deflection within permissible limits

Consider short term load condition

Load duration factor  $K_3 = 1.50$  Total UDL perp. to rafter F = 0.137 kN/m Notional bearing length  $L_b = 5$  mm Effective span  $L_{eff} = 4248$  mm

Check bending stress at purlin

Permissible bending stress  $\sigma_{m\_adm} = 9.629 \text{ N/mm}^2$  Applied bending stress  $\sigma_{m\_max} = 4.322 \text{ N/mm}^2$ 

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain at purlin

Permissible comp. stress  $\sigma_{c\_adm} = 2.514 \text{ N/mm}^2$  Applied compressive stress  $\sigma_{c\_max} = 0.230 \text{ N/mm}^2$ 

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain at purlin

Combined loading check 0.549 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check bending stress in lower portion of rafter

Permissible bending stress  $\sigma_{m_adm} = 9.629 \text{ N/mm}^2$  Applied bending stress  $\sigma_{m_max} = 5.405 \text{ N/mm}^2$ 

PASS - Applied bending stress within permissible limits

Check compressive stress parallel to grain in lower portion of rafter

Permissible comp. stress  $\sigma_{c \text{ adm}} = 2.514 \text{ N/mm}^2$  Applied compressive stress  $\sigma_{c \text{ max}} = 0.277 \text{ N/mm}^2$ 

PASS - Applied compressive stress within permissible limits

Check combined bending and compressive stress parallel to grain in lower portion of rafter

Combined loading check 0.684 < 1

PASS - Combined compressive and bending stresses are within permissible limits

Check shear stress

Permissible shear stress  $\tau_{\text{adm}} = 1.106 \text{ N/mm}^2$  Applied shear stress  $\tau_{\text{max}} = 0.240 \text{ N/mm}^2$ 

PASS - Applied shear stress within permissible limits

Check deflection

Permissible deflection  $\delta_{adm} = 12.743 \text{ mm}$  Total deflection  $\delta_{max} = 13.930 \text{ mm}$ 

FAIL - Total deflection exceeds permissible limits







Va/1014a/spe S JET CH STANGE NC.

9. An TRUMBA TI - 192,84,16 B

PETER TO ATTALITY SHEETS.

0m 1m 2m



