

Audit Sheet

Revision	Description	Date	Issued by	Reviewed by				
-	Draft for Comment	Nov 2011	C Parkin					
02	For Planning	Feb 2012	C Parkin	C Dougan				

This report is provided for the stated purposes and for the sole use of the named Client. It will be confidential to the Client and the client's professional advisers. Hoare Lea accepts responsibility to the Client alone that the report has been prepared with the skill, care and diligence of a competent engineer, but accepts no responsibility whatsoever to any parties other than the Client. Any such parties rely upon the report at their own risk. Neither the whole nor any part of the report nor reference to it may be included in any published document, circular or statement nor published in any way without Hoare Lea's written approval of the form and content in which it may appear.

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Contents

10	Executive Summary	2
2.0	Introduction	۲
2.0	Summary of Key Points from Camden Sustainability Supplementary Planning Guidance	ט ר
4 0	Summary of Key Points from Part I 14 2010	ט ר
ч.0 Д 1	Achievement of Compliance	
4.1	Fabric Performance	
4.3	Fixed Building Services Performance	
5.0	Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010	5
5.1	Software Modelling	5
5.2	Fabric Performance	5
5.3	Fixed Building Services Performance	5
5.4	Air Source Heat Pumps (be green)	5
5.5	Headline Camden Policies	5
6.0	Part L1A 2010 Results	6
6.1	Criterion 1	6
6.2	Criterion 2	6
6.3	Criterion 3	6
Appen	ndix A – Part L1A Building Regulations Compliance Report & SAP Worksheet	7
Appen	ndix B – Code for Sustainable Homes Pre-assessment	8
4.2 4.3 5.0 5.1 5.2 5.3 5.4 5.5 6.0 6.1 6.2 6.3 Appen Appen	 Fabric Performance Fixed Building Services Performance Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010 Software Modelling Fabric Performance Fixed Building Services Performance Air Source Heat Pumps (<i>be green</i>) Headline Camden Policies Part L1A 2010 Results Criterion 1 Criterion 2 Criterion 3 Indix A – Part L1A Building Regulations Compliance Report & SAP Worksheet Indix B – Code for Sustainable Homes Pre-assessment 	

1.0 Executive Summary

To meet the requirements of the London Borough of Camden planning policies relating to energy and sustainability and to meet the requirements of the Building Regulation Approved Document Part L1A 2010 the following measures are proposed:

- Enhanced building fabric performance U-values and air tightness
- Enhanced buildings services performance high efficiency equipment and low energy lighting
- Use of air source heat pumps and underfloor heating

Use of micro-CHP has been shown not to be effective on this development.

The proposed measures result in the following outcomes:

- A minimum of 25% CO2 reduction compared to a Part L 2010 compliant dwelling
- More than 20% CO2 reduction due to the use of ASHPs when compared to the same building being heated by direct electric heating and when taking into account regulated and unregulated energy uses.
- Dwellings that can work with natural ventilation and maintain occupant comfort
- Code for Sustainable Homes (CSH) Level 3 compliance with a minimum of 50% of the energy credits achievable

In addition to the energy credits it is proposed that approximately 65% of the CSH Water credits are achievable, 50% of the Materials credits and 75% of the Waste credits. The full CSH pre-assessment is appended to this document. The pre-assessment demonstrates one possible route to achieving CSH Level 3 and a minimum of 50% of credits in the Energy, Water, Materials and Waste sections.

2.0 Introduction

This report has been prepared to provide a summary of the energy efficiency measures for the proposed 6 Nutley Terrace development. It is intended to address the London Borough of Camden's policies relating to climate change and sustainable design and construction, specifically CS 13 – Tackling Climate Change through Promoting Higher Environmental Standards and DP22 – Promoting Sustainable Design and Construction. It is also written with the requirements of the Camden Supplementary Planning Guidance document in mind.

3.0 Summary of Key Points from Camden Sustainability Supplementary Planning Guidance

The list below gives the headline requirements of the Camden sustainability planning guidance relating to energy:

- Follow the "be lean, be clean, be green" approach
- Account for regulated and unregulated energy using modelled or benchmark data for minor developments
- Demonstrate via modelling that overheating is not an issue
- Demonstrate that natural ventilation has been considered in the design
- Connect to existing district heating networks or provide CHP onsite
- Aim to achieve a 20% CO2 reduction from renewables
- Aim to achieve 50% of energy credits under the Code for Sustainable Homes

4.0 Summary of Key Points from Part L1A 2010

Part L1A 2010 gives five criteria by which a development must provide evidence of compliance (refer to table below). Note that Criteria 4 and 5 will be evidenced at the construction/completion stage. This report addresses steps taken to improve the design in order to meet Criterion 1, 2 and 3.

CRITERION 1:	"The calculated rate of CO ₂ emissions from the dwelling (the Dwelling Emission Rate, DER) must not be greater than the Target Emission Rate, TER)"
CRITERION 2:	"The performance of the building fabric and the fixed building services [heating, hot water and fixed lighting systems] should achieve reasonable overall standards of energy efficiency"
CRITERION 3:	"The dwelling has appropriate passive control measures to limit the effect of solar gains on indoor temperatures in summer, regardless of whether or not the dwelling has mechanical cooling."
CRITERION 4:	"The performance of the dwelling, as built, is consistent with the DER"
CRITERION 5:	"The necessary provisions for energy efficient operation of the dwelling should be put in place."

4.1 Achievement of Compliance

Some additional information on how to meet each criterion is provided below:

Criterion 1

To pass Criterion 1, the Dwelling Emission Rate (DER) must be less than the Target Emissions Rate (TER), i.e. DER<TER.

The development aims to demonstrate a good level of energy efficiency that will reduce carbon emissions due to heating, hot water generation, lighting, fans and pumps.

Criterion 2

To pass Criterion 2 the minimum performance standards set out in the Approved Documents and supporting documentation must be met or exceeded. These are set out in Sections 4.2 and 4.3.

Criterion 3

To pass Criterion 3, the dwelling must have less than a "High" risk of high internal temperatures. The table below shows the range of possible outcomes ranging from "Not Significant" to "High".

T _{threshold}	Likelihood of high internal temperature in hot weather
<20.5°C	Not significant
<u><</u> 20.5°C and <22°C	Slight
<u><</u> 22.0°C and <22°C	Medium
<u>≥</u> 23.5°C	High

4.2 Fabric Performance

The limiting standards from the approved documents relating to building fabric are shown in the table below:

	Approved Document L1A 2010 Table 2	Approved Document C 2004
Element	Maximum area-weighted average U-value (W/m ² .K)	Absolute Maximum U- value (W/m ² .K)
Roof	0.20	0.35
Wall	0.30	0.7
Ground Floor	0.25	0.7
Party Wall	0.2	No limit
Windows, roof windows, glazed rooflights, curtain walling and pedestrian doors	2.0	No limit

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Other limiting standards are:

- 1. Air permeability shall be <10 $m^3/hr.m^2$ @ 50Pa
- 2. Thermal bridging "the building fabric should be constructed such that there are no reasonably avoidable thermal bridges".

4.3 Fixed Building Services Performance

The limiting standards from the approved documents and supporting documents relating to building services are shown below:

Plant Item	Criteria
Air Source Heat Pumps (space heating)	COP > 2.2
Air Source Heat Pumps (DHW)	COP > 2.0
Air Source Heat Pumps	Seasonal Performance Factor > 2.7
Air Source Heat Pumps (cooling)	EER > 2.4
Ventilation unit (MVHR) Specific Fan Power	<1.5W/l/s
MVHR heat recovery efficiency	>70%

Minimum efficiency standards also apply to domestic lighting installations.

For fixed internal lighting these are:

- 1. At least 75% of frequently used light fittings shall be low energy type.
- 2. Low energy lights shall have an efficacy >45 lumens per circuit Watt

For fixed external lighting these are:

- 1. External lighting with automatic presence and daylight control shall have a lamp capacity of <100 Watts
- 2. External lighting with automatic presence and manual control shall have an efficacy >45 lumens per circuit Watt

Proposed Measures to meet Camden Sustainability Policies and Part L1A 2010 5.0

The following section summarises the proposed energy efficiency strategy.

5.1 Software Modelling

A sample SAP assessment (using NHER software Plan Assessor Version v5.2) has been carried out on the proposed development. The results are contained within the Appendices.

5.2 Fabric Performance

To reduce energy demand by passive means (be lean) the building fabric performance will significantly exceed the requirements of Part L1A 2010.

The values in the table below are those currently proposed.

Element	U-value (W/m ² .K)
Roof	0.13
External Wall	0.18
Ground Floor	0.18
Party Wall	N/A
Windows and glazed rooflights	1.5

Air permeability target construction value of shall be $< 3.5 \text{ m}^3/\text{hr.m}^2$ @ 50Pa to achieve a maximum of 5 m³/hr.m² @ 50Pa.

It is assumed that quality assured accredited construction details to limit the effects of thermal bridging will not be employed. Refer to "Limiting thermal bridging and air leakage: robust construction details for dwellings and similar buildings", TSO, 2001 for such details. The default thermal bridge y-value of 0.15 is therefore assumed.

All windows are assumed to be fully openable and provide (as a minimum) single sided ventilation to assist in reducing summertime temperatures. Glazing areas are limited to reduce overheating risk and to reduce heat loss.

A medium [thermal] weight structure is assumed.

Fixed Building Services Performance 5.3

To further reduce energy demand by active means (be lean) the building services performance will significantly exceed the requirements of Part L1A 2010.

The following plant criteria are proposed:

Plant Item	Proposed Design
Air Source Heat Pumps (space heating)	COP > 2.8
Air Source Heat Pumps (DHW)	COP > 2.2
Air Source Heat Pumps	Seasonal Performance Factor > 3.0
Air Source Heat Pumps (cooling)	EER > 2.8
Ventilation unit (MVHR) Specific Fan Power	< 0.7W/l/s
MVHR heat recovery efficiency	>85%

In addition, the MVHR unit will be SAP Appendix Q registered

Lighting is assumed to meet the minimum standards.

5.4 Air Source Heat Pumps (be green)

Air source heat pumps are proposed as an appropriate renewable technology for this development. The ASHPs will be linked to an underfloor heating system which shall run at low temperature appropriate for use with ASHPs. This is an efficient means of providing space heating and provides a comfortable living environment by the use of a radiant heating source.

A comparison with gas fired boilers using the SAP assessment software was undertaken and ASHPs were shown to be considerably more efficient - even when providing water at high temperatures for domestic hot water use.

5.5 Headline Camden Policies

The sections above outline the proposed "be lean, be clean, be green" approach.

As this is a minor development a full energy assessment listing out baseline energy demand, reductions due to each technology and a full estimation of unregulated emissions has not been undertaken.

Overheating is addressed under Part L Criterion 3 below.

The main living areas of House 6B will be provided with comfort cooling due to market expectation. However, occupants will always have the choice of using natural ventilation as an alternative. Designing an appropriate, low energy cooling system into the scheme at an early stage will avoid occupants retrofitting inefficient systems at a later date. As can be seen in the SAP worksheet results, CO2 emissions due to cooling are negligible.

There are no district networks in the local area which can be feasibly connected to and the site is not appropriate for a Strategic Site to support large scale CHP units to feed a wider district network.

An assessment has been made of micro-CHP units. However, the CO2 reduction benefit of installing these units is very limited. This is due to the mismatch between the high thermal output from the micro-CHP units and the low heat load of each house which leads to the units operating inefficiently. CHP is therefore not appropriate for this development.

The use of ASHPs will contribute to a significant reduction in CO2 emissions – exceeding 20% when taking into account regulated and unregulated energy. This figure has been estimated from the SAP software by establishing the difference in CO2 emissions between a direct electric system and the ASHP system.

The proposed measures results in a DER approximately 35% lower than the TER (see Appendices).

6.0 Part L1A 2010 Results

See the Appendices for the building regulations compliance reports.

6.1 Criterion 1

The area weighted TER is 14.46 kgCO₂/m²/yr The area weighted DER is 23.13 kgCO₂/m²/yr

The building is therefore in compliance with the requirements for Part L1A criterion 1.

6.2 Criterion 2

All of the fabric and building services performance standards are shown in the previous sections to be met or exceeded.

The building is therefore in compliance with the requirements for Part L1A criterion 2.

6.3 Criterion 3

The house assessed has an overheating risk of "Not Significant". Therefore the building is compliance with the requirements for Part L1A criterion 3. This also satisfies the Camden policy on preventing overheating and demonstrates that the building can be comfortably occupied without the need for comfort cooling.

Feb2012/CP/CD/079457

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Appendix A – Part L1A Building Regulations Compliance Report & SAP Worksheet

This design draft submission provides evidence towards compliance with Part L of the Building Regulations, in accordance with Appendix A of AD L1A. It has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the 'as built' property. This report covers only items included within the SAP and is not a complete report of regulations compliance.

Assessor name	Mrs Vick	ki Limbrick			Assessor number	5907	
Client					Last modified	15/11/2011	
Address	6B Nutle	y Terrace 6B, Lo	ondon, NM3* **				
Check		Evidence			Produced	by	OK?
Criterion 1: predicted ca	rbon dioxi	de emission fro	m proposed dwellir	ng does not exceed the targ	jet		
TER (kg CO ₂ /m ² .a)		Fuel = Electrici Fuel factor = 1. TER = 23.13	ty .47		Authorised	d SAP Assessor	
DER for dwelling as desig CO ₂ /m ² .a)	gned (kg	DER = 14.46			Authorise	d SAP Assessor	
Are emissions from dwe designed less than or eq target?	lling as ual to the	DER 14.46 < TE	ER 23.13		Authorised	d SAP Assessor	Passed
Criterion 2: the performation	ance of the	e building fabrio	and the heating, h	ot water and fixed lighting	systems should be no worse	than the design	limits
Fabric U-values							
Are all U-values better th design limits in Table 2?	nan the	Element Wall Party wall Floor Roof Openings	Weighted averag 0.18 (max 0.30) 0.00 (max 0.20) 0.18 (max 0.25) 0.13 (max 0.20) 1.50 (max 2.00)	e Highest 0.18 (max 0.70) N/A 0.18 (max 0.70) 0.13 (max 0.35) 1.50 (max 3.30)	Authorised	d SAP Assessor	Passed
Thermal bridging							
How has the loss from the bridges been calculated?	nermal ?	Thermal bridgi	ng calculated using	default y-value of 0.15	Authorise	d SAP Assessor	
Heating and hot water s	systems						
Does the efficiency of th systems meet the minim set out in the Domestic H Compliance Guide?	e heating num value Heating	Main heating s Electricity, Hea Air-to-water Secondary hea	system: at pump - wet system ting system: None	m	Authorise	d SAP Assessor	
Does the insulation of th water cylinder meet the set out in the Domestic I Compliance Guide?	ie hot standards Heating	Cylinder volum Declared cylind Maximum pern Primary hot wa	ne = 260.00 litres der loss = 2.50kWh/ mitted cylinder loss ater pipes are insula	/day = 2.62kWh/day ated	Authorised	d SAP Assessor	Passed
Do controls meet the mi controls provision set ou Domestic Heating Comp Guide?	nimum ıt in the liance	Space heating Time and temp Hot water cont No boiler inter Cylinder therm Separate wate	control: perature zone contr trol: lock (main system 1 nostat r control	ol L)	Authorise	d SAP Assessor	Passed

Check	Evidence		Produced by	OK?
Fixed internal lighting				
Does fixed internal lighting comp with paragraphs 42 to 44?	ly Schedule of installed fixed internal lighting Standard lights = 4 Low energy lights = 12 Percentage of low energy lights = 75 % Minimum = 75 %		Authorised SAP Assessor	Passed
Criterion 3: the dwelling has appr	opriate passive control measures to limit solar g	gains		
Does the dwelling have a strong tendency to high summertime temperatures?	Overheating risk (June) = Not significant Overheating risk (July) = Not significant Overheating risk (August) = Not significant Region = Thames Thermal mass parameter = 250.00 Ventilation rate in hot weather = 5.00 ach Blinds/curtains = None		Authorised SAP Assessor	Passed
Criterion 4: the performance of t	he dwelling, as designed, is consistent with the D	DER		
Design air permeability (m³/(h.m²) at 50Pa)	Design air permeability = 5.00 Max air permeability = 10.00		Authorised SAP Assessor	Passed
Mechanical ventilation system Specific fan power (SFP)	Mechanical ventilation with heat recovery: SFP = 0.70 W/(litre/sec) Max SFP = 1.5 W/(litre/sec) Heat recovery efficiency = 89.00 % Min heat recovery efficiency = 70.00 %		Authorised SAP Assessor	Passed
Have the key features of the design been included (or bettered in practice?	The following walls/wall have a U-value less th d) • Basement (0.18) • Party (0.00) • External (0.18) The following floors/floor have a U-value less • Floor 1 (0.18) Space cooling is specified	nan 0.2W/m²K: than 0.2W/m²K:	Authorised SAP Assessor	

SAP 2009 Worksheet Design - Draft

This design submission has been carried out using Approved SAP software. It has been prepared from plans and specifications and may not reflect the property as constructed.

Assessor name	Mrs Vicki Limbrick	Assessor number	5907	
Client		Last modified	15/11/2011	
Address	6B Nutley Terrace 6B, London, NM3* **			

1. Overall dwel	ling dimensi	ons												
					А	Area (m²)			Avera hei	age storey ght (m)	,	v	olume (m³)	
Lowest occupied						186.50	(1a)	x		2.70] (2a) =		503.55	(3a)
+1						142.50	(1b)	x		2.70] (2b) =		384.75	(3b)
+2						126.00	(1c)	x		2.70] (2c) =		340.20	(3c)
+3						93.30	(1d)	x		2.50	(2d) =		233.25	(3d)
Total floor area		(1a)	+ (1b) + (1	c) + (1d)(1n) =	548.30	(4)							
Dwelling volume									(3a)	+ (3b) + (3	c) + (3d)(3n) =	1461.75	(5)
2. Ventilation ra	ate													
												r	n³ per hour	
Number of chimi	neys									0	x 40 =	-	0	(6a)
Number of open	flues									0	x 20 ×	-	0	(6b)
Number of interr	mittent fans									0	x 10 :	-	0	(7a)
Number of passiv	ve vents									0	x 10	-	0	(7b)
Number of fluele	ess gas fires									0	x 40 =	-	0	(7c)
												Aiı	changes pe hour	r
Infiltration due to	o chimneys,	flues, fans,	PSVs		(6a)) + (6b) + (7	7a) + (7l	o) + (7c)	=	0] ÷ (5)	-	0.00	(8)
If a pressurisation	n test has be	en carried	out or is int	ended, pro	oceed to (1)	7), otherwi	ise conti	nue fror	m (9) to (16)				_
Air permeability	value, q50, e	expressed in	n cubic met	res per ho	ur per squa	are metre o	of envel	ope area	а				5.00	(17)
If based on air pe	ermeability v	alue, then	(18) = [(17)	÷ 20] + (8)	, otherwise	e (18) = (16	5)						0.25	(18)
Air permeability	value applies	s if a pressu	risation tes	st has been	done, or a	i design or	specifie	d air pe	rmeabilit	y is being	used			_
Number of sides	on which dw	velling is sh	eltered										1	(19)
Shelter factor										1	- [0.075 x (1	L9)] =	0.92	(20)
Adjusted infiltrat	tion rate										(18) x (20) =	0.23	(21)
Infiltration rate n	nodified for	monthly wi	nd speed:											
	Jan	Feb	Mar	Apr	May	Jun	Ju	I	Aug	Sep	Oct	Nov	Dec	
Monthly average	e wind speed	from Table	27		1 -	1		- 1			-	1	1 -	-
(22)m	5.40	5.10	5.10	4.50	4.10	3.90	3.7	0	3.70	4.20	4.50	4.80	5.10	
											∑(22)1	.12 =	54.10	(22)
Wind Factor (22a	a)m = (22)m	÷4			1 4 99								1	-
(22a)m	1.35	1.27	1.27	1.12	1.02	0.98	0.9	92	0.92	1.05	1.12	1.20	1.27	
			. ·								∑(22a)1	.12 =	13.52	(22a)
Adjusted infiltrat	tion rate (allo	owing for sl	helter and v	vind speed	$) = (21) \times (21)$	22a)m		1	0.21	0.24	0.26	0.20	0.20	7
(220)111	0.31	0.29	0.29	0.20	0.24	0.23	0.2	<u>т</u>	0.21	0.24	5(225)4	12 -	2.12	
											2(220)1	.12 =	3.13	(220)

Calculate effective air change rate for the applicable case:

If mechanical ventilation: air change rate through system

If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)

If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =

a) If balanced mechanical ventilation with heat recovery (MVHR) $(22b)m + (23b)x [1 - (23c) \div 100] =$

(24a)m	0.43	0.42	0.42	0.38	0.36	0.35	0.34	0.34	0.36	0.38	0.40	0.42	(24a)
Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25)													
(25)m	0.43	0.42	0.42	0.38	0.36	0.35	0.34	0.34	0.36	0.38	0.40	0.42	(25)

3. Heat losses and heat loss parameter

The κ -value is the heat capacity per unit area, see Table 1e.

	Element		Gross Area, m ²	Open m	ings, 1²	Net area A, m²		U-valu W/m ²	ie, ²K	А x U, W/K	к-va kJ/n	lue, n².K	Ахк, kJ/K	
Window*						70.10	x	1.42	=	99.20	N/	Ά	N/A	(27)
Roof window*						2.20	x	1.42	. =	3.11		Ά	N/A	 (27a)
Basement floor	r					186.50	x	0.18	5 =	33.57	N/	Ά	N/A	(28)
Basement wall						134.03	x	0.18	3 =	24.13	N/	Ά	N/A	(29)
Party Wall						25.38	x	0.00) =	0.00	N/	Ά	N/A	(32)
External wall						347.92	x	0.18	; =	62.63	N/	Ά	N/A	(29a)
Roof						196.50	x	0.13	=	25.54	N/	Ά	N/A	(30)
Total area of ex	kternal elemer	its ∑A, m²				937.25	(31)							
* for windows a	and roof winde	ows, effecti	ve window	U-value is c	alculated	using formu	ıla 1/	[(1/UVa	lue)+0.0	4] paragrap	h 3.2			
Fabric heat loss	s, W/K = ∑(A ×	U)								(20	5)(30) + (3	32) =	248.18	(33)
Heat capacity C	Cm = ∑(А х к)								(28)	.(30) + (32) -	+ (32a)(32	2e) =	N/A	(34)
Thermal mass p	parameter (TM	1P) in kJ/m²	к							Calculat	ed separate	ely =	250.00	(35)
Thermal bridge	es: ∑(L x Ψ) cal	culated usir	ng Appendi	х К									140.59	(36)
if details of	thermal bridgi	ng are not i	known thei	n (36) = 0.15	5 x (31)									
Total fabric hea	at loss										(33) + (3	86) =	388.76	(37)
Ventilation hea	t loss calculat	ed monthly	0.33 x (25	5)m x (5)										
(38)m	209.32	200.96	200.96	184.22	173.07	167.49	163	1.91	161.91	175.86	184.22	192.59	200.96	(38)
Heat transfer c	oefficient, W/	K (37)m+	(38)m											
(39)m	598.09	589.72	589.72	572.99	561.83	556.26	550	0.68	550.68	564.62	572.99	581.35	589.72	
										Average = 2	(39)112/	12 =	573.22	(39)
Heat loss paran	neter (HLP), W	//m²K (39)	m ÷ (4)											-
(40)m	1.09	1.08	1.08	1.05	1.02	1.01	1.	.00	1.00	1.03	1.05	1.06	1.08	
										Average = 2	(40)112/	12 =	1.05	(40)
4. Water heat	ing energy rea	quirement												
												k	Wh/year	
Assumed occup	oancy, N										3.45	(42)	
If TFA > 13.9	9, N = 1 + 1.76	x [1 - exp(-(0.000349 x	(TFA - 13.9)²)] + 0.00:	13 x (TFA - 1	3.9)							
If TFA ≤ 13.9	9, N = 1													
Annual average	e hot water us	age in litres	per day Vo	d,average =	(25 x N) +	36					116.25	5 (43)	
Annual average	e hot water us	age has bee	en reduced	by 5% if the	e dwelling	is designed	to ac	hieve a	water us	e target of I	not more th	an 125 lit	res	
per person per	day (all water	use, hot an	d cold)											
	Jan	Feb	Mar	Apr	May	Jun	J	ul	Aug	Sep	Oct	Nov	Dec	
Hot water usag	e in litres per	day for eac	h month Vo	d,m = factor	from Tab	le 1c x (43)								
(44)m	127.87	123.22	118.57	113.92	109.27	104.62	104	4.62	109.27	113.92	118.57	123.22	127.87	
											∑(44)1	12 =	1395.00	(44)

0.50 (23a) 0.50 (23b) 75.65 (23c)

	not water	used - calcu	lated mont	thly = 4.190	x Vd,m x n	m x Tm/36	00 kWh/r	nonth (see	Tables 1b,	1c 1d)		
(45)m	190.09	166.25	171.56	149.57	143.51	123.84	114.76	131.69	133.26	155.30	169.52	184.09
										∑(45)1	12 = 1	.833.43 (45)
If instantaneous w	vater heatir	ng at point d	of use (no h	ot water st	orage), ent	er 0 in box	es (46) to (6	51)				
For community he	ating inclu	de distributi	on loss wh	ether or not	hot water	tank is pre	sent					
Distribution loss ().15 x (45)n	n										
(46)m	28.51	24.94	25.73	22.44	21.53	18.58	17.21	19.75	19.99	23.30	25.43	27.61 (46)
Water storage los	s:											
a) If manufacturer	's declared	loss factor	is known (k	(Wh/day):					2.50	(47)		
Temperature f	actor from	Table 2b							0.54	(48)		
' Energy lost fro	m water sto	orage, kWl	n/dav (47)	x (48)					1.35	(49)		
Enter (49) or (54)	in (55)		,, (,						1 35	(55)		
Water storage los	s calculator	l for oach m	onth - (55	v(41)m					1.55] (33)		
(56)m		37.80	/1 85	/0.50	/1.85	40.50	/1 85	/1 85	40.50	/1.85	10.50	/1.85 (56)
If cylinder contain	c dodicator	l color stora	= - (EC)m	40.50	41.05)m whore (41.05	Appondix	, L	40.50	41.05 (50)
(57)m			41 95	1 X [(30) - (F	(50) ÷ (50)	40 50	11 viiere (11 95 11 95	40 50	A1 95	40.50	A1 95 (57)
	41.05	57.00	41.05	40.50	41.05	40.50	41.85	41.65	40.50	41.65	40.50	41.85 (57)
Primary circuit los	s (annual) f	rom table :	s 						60.00] (58)		
Primary circuit los	s for each r	nonth (58) ·	÷ 365 × (41)m								
(modified by facto	or from Tab	le H5 if ther	e is solar w	ater heatir	g and a cyl	ander therr	nostat)	20 50	20.50	20.50	20.50	20.50 (50)
(59)m	30.58	27.62	30.58	29.59	30.58	29.59	30.58	30.58	29.59	30.58	29.59	30.58 (59)
Combi loss for eac	ch month fr	om Table 3	a, 3b or 3c	(enter '0' if	not a comb	boller)	0.00	0.00	0.00	0.00	0.00	
(61)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 (61)
Total heat require	d for water	heating ca	culated for	each mont	:h 0.85 × (4	5)m + (46)	m + (57)m +	- (59)m + (6	51)m	227.72	220.64	
(62)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52 (62)
Solar DHW input o	calculated u	ising Appen	dix H (nega	tive quanti	ty) ('0' ente	red if no s	olar contrib	ution to wa	ater heatin	g)	0.00	
(63)m	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
										∑(63)1	12 =	0.00 (63)
Output from wate	r heater fo	r each mon	th, kWh/m	onth (62)m	+ (63)m							
(64)m	r heater fo 262.51	r each mon ⁻ 231.67	th, kWh/m 243.98	onth (62)m 219.66	+ (63)m 215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52
(64)m	r heater fo	r each mon 231.67	th, kWh/mo 243.98	onth (62)m 219.66	+ (63)m 215.94	193.93	187.18	204.11	203.35	227.73 Σ(64)1	239.61 12 = 2	256.52 686.18 (64)
(64)m <i>if (64)m < 0 then s</i>	er heater fo 262.51 et to 0	r each mon 231.67	th, kWh/mo 243.98	onth (62)m 219.66	+ (63)m 215.94	193.93	187.18	204.11	203.35	227.73 ∑(64)1	239.61 12 = 2	256.52 686.18 (64)
(64)m <i>if (64)m < 0 then s</i> Heat gains from w	er heater fo 262.51 et to 0 vater heatin	r each mon 231.67 ng, kWh/mo	th, kWh/mo 243.98 nth 0.25 ×	onth (62)m 219.66 [0.85 × (45	+ (63)m 215.94)m + (61)m	<u>193.93</u>] + 0.8 × [(4	187.18 16)m + (57)	204.11 m + (59)m]	203.35	227.73 ∑(64)1	239.61 12 = 2	256.52 686.18 (64)
(64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m	er heater fo 262.51 et to 0 vater heatin 121.14	r each mon 231.67 ng, kWh/mo 107.61	th, kWh/mo 243.98 nth 0.25 × 114.98	0nth (62)m 219.66 [0.85 × (45 105.80	+ (63)m 215.94)m + (61)m 105.66	193.93] + 0.8 × [(/ 97.25	187.18 16)m + (57) 96.10	204.11 m + (59)m] 101.73	203.35	227.73 Σ(64)1 109.58	239.61 12 = 2 112.44	256.52 686.18 (64) 119.15 (65)
(64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i>	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul	r each mon 231.67 ng, kWh/mo 107.61 ation of (65	th, kWh/mo 243.98 nth 0.25 × 114.98)m only if c	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in	+ (63)m 215.94)m + (61)m 105.66 the dwellin	193.93] + 0.8 × [(4 97.25 ng or hot w	187.18 16)m + (57) 96.10 vater is fron	204.11 m + (59)m] 101.73 n communi	203.35 100.38 ty heating	227.73 Σ(64)1 109.58	239.61 12 = 2 112.44	256.52 686.18 (64) 119.15 (65)
(64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i>	r heater fo 262.51 et to 0 rater heatin 121.14 Im in calcul	r each mon 231.67 ng, kWh/mo 107.61 ation of (65	th, kWh/mo 243.98 nth 0.25 × 114.98)m only if c	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in	+ (63)m 215.94)m + (61)m 105.66 <i>the dwellin</i>	193.93] + 0.8 × [(4 97.25 ng or hot w	187.18 16)m + (57) 96.10 vater is fron	204.11 m + (59)m] 101.73 n communi	203.35 100.38 ty heating	227.73 Σ(64)1 109.58	239.61 12 = 2 112.44	256.52 686.18 (64) 119.15 (65)
(64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i> 5. Internal gains	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table	r each mon 231.67 g, kWh/mo 107.61 ation of (65 5 and 5a)	th, kWh/ma 243.98 nth 0.25 × 114.98)m only if c	219.66 [0.85 × (45 105.80 ylinder is in	+ (63)m 215.94)m + (61)m 105.66 the dwellin	193.93] + 0.8 × [(4 97.25 ng or hot w	187.18 16)m + (57) 96.10 vater is from	204.11 m + (59)m] 101.73 n communit	203.35 100.38 ty heating	227.73 Σ(64)1 109.58	239.61 12 = 2 112.44	256.52 686.18 (64) 119.15 (65)
<pre>(64)m if (64)m < 0 then s Heat gains from w (65)m include (57) 5. Internal gains</pre>	er heater fo 262.51 et to 0 vater heatin 121.14 om in calcul (see Table Jan Tablo 5) W(r each mon 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb	th, kWh/mo 243.98 nth 0.25 × 114.98)m only if c Mar	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr	+ (63)m 215.94)m + (61)m 105.66 <i>the dwellin</i> May	193.93] + 0.8 × [(4 97.25 ng or hot w	187.18 16)m + (57) 96.10 vater is from Jul	204.11 m + (59)m] 101.73 n communit	203.35 100.38 ty heating Sep	227.73 Σ(64)1 109.58 Oct	239.61 12 = 2 112.44 Nov	256.52 686.18 (64) 119.15 (65) Dec
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (T (66)m 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207 28	r each mon 231.67 231.67 ag, kWh/mo 107.61 107.61 5 and 5a) Feb atts 207 28	th, kWh/ma 243.98 nth 0.25 × 114.98)m only if c Mar 207.28	219.66 219.66 [0.85 × (45 105.80 ylinder is in Apr	+ (63)m 215.94)m + (61)m 105.66 the dwellin May	193.93] + 0.8 × [(4 97.25 ng or hot w Jun	187.18 16)m + (57) 96.10 vater is from Jul	204.11 m + (59)m] 101.73 n communit Aug	203.35 100.38 ty heating Sep	227.73 Σ(64)1 109.58 Oct	239.61 12 = 2 112.44 Nov	256.52 686.18 (64) 119.15 (65) Dec
<pre>(64)m if (64)m < 0 then s Heat gains from w (65)m include (57) 5. Internal gains Metabolic gains (T (66)m Lighting gains (column)</pre>	r heater fo 262.51 et to 0 rater heatin 121.14 (see Table Jan Table 5), Wa 207.28 culated in 6	r each mon 231.67 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28	th, kWh/mo 243.98 nth 0.25 × 114.98)m only if c Mar 207.28	219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28	193.93] + 0.8 × [(4 97.25 ng or hot w Jun 207.28	187.18 16)m + (57) 96.10 vater is from Jul 207.28	204.11 m + (59)m] 101.73 n communi Aug 207.28	203.35 100.38 ty heating Sep 207.28	227.73 Σ(64)1 109.58 Oct 207.28	239.61 12 = 2 112.44 Nov 207.28	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66)
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (T (66)m Lighting gains (calcological) 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A	r each mon 231.67 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30	th, kWh/mo 243.98 nth 0.25 × 114.98)m only if c Mar 207.28 equation L 138 50	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), ai	+ (63)m 215.94)m + (61)m 105.66 <i>the dwellin</i> May 207.28 so see Tabl	193.93] + 0.8 × [(/ 97.25 ng or hot w Jun 207.28 e 5 66 17	187.18 16)m + (57) 96.10 vater is from Jul 207.28	204.11 m + (59)m] 101.73 n communit Aug 207.28	203.35 100.38 ty heating Sep 207.28	227.73 Σ(64)1 109.58 Oct 207.28	239.61 12 = 2 112.44 Nov 207.28 184.86	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66)
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (T (66)m Lighting gains (calcored) (67)m 	r heater fo 262.51 et to 0 rater heatin 121.14 (see Table Jan Table 5), Wa 207.28 culated in A 191.74 rabuvated in	r each mon 231.67 231.67 ng, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30	th, kWh/mo 243.98 243.98 nth 0.25 × 114.98)m only if c Mar 207.28 equation L 138.50	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), a 104.85	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38	193.93 193.93 + 0.8 × [(4 97.25 ag or hot w Jun 207.28 e 5 66.17 a Table 5	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50	204.11 m + (59)m] 101.73 n communi Aug 207.28 92.94	203.35 100.38 ty heating Sep 207.28 124.74	227.73 Σ(64)1 109.58 Oct 207.28 158.39	239.61 12 = 2 112.44 Nov 207.28 184.86	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67)
 (64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i> 5. Internal gains Metabolic gains (T (66)m Lighting gains (cale (67)m Appliances gains (r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated i	r each mon 231.67 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30 in Appendix	th, kWh/ma 243.98 nth 0.25 × 114.98)m only if c Mar 207.28 equation L 138.50 L, equatio	219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), a 104.85 n L13 or L13	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see	193.93 193.93 1+0.8 × [(4 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12	187.18 46)m + (57) 96.10 vater is from Jul 207.28 71.50	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94	203.35 100.38 ty heating 207.28 207.28 124.74	227.73 Σ(64)1 109.58 Oct 207.28 158.39	239.61 12 = 2 112.44 Nov 207.28 184.86	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67)
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (7 (66)m Lighting gains (calar) (67)m Appliances gains (calar) (68)m 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated in 951.88	r each moni 231.67 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30 in Appendix 961.76	th, kWh/ma 243.98 10 25 × 114.98 10 only if c Mar 207.28 equation L 138.50 L, equatio 936.87	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98	193.93 193.93 1+0.8 × [(4 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12 e 5	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24	203.35 100.38 ty heating 207.28 207.28 124.74 727.13	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68)
 (64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i> 5. Internal gains Metabolic gains (7 (66)m Lighting gains (call (67)m Appliances gains (call (68)m Cooking gains (call (60)m 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated in 951.88 culated in A	r each mon 231.67 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30 in Appendix L, 961.76 Appendix L,	th, kWh/ma 243.98 nth 0.25 × 114.98)m only if c Mar 207.28 equation L 138.50 L, equatio 936.87 equation L	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15a)	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 , also see Tabl 78.38	193.93 193.93 1 + 0.8 × [(4 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12 able 5 50.18	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24	203.35 100.38 ty heating 207.28 207.28 124.74 727.13	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68)
 (64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i> 5. Internal gains Metabolic gains (7 (66)m Lighting gains (call (67)m Appliances gains (call (69)m Durance and four 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated in A 951.88 culated in A 59.18 ana (Table	r each mon' 231.67 231.67 ag, kWh/mo 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30 in Appendix L, 961.76 Appendix L, 59.18	th, kWh/ma 243.98 114.9	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15a) 59.18	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 also see T 59.18	193.93 193.93 1+0.8 × [(<i>i</i> 97.25 <i>ig or hot w</i> Jun 207.28 e 5 66.17 e Table 5 754.12 able 5 59.18	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12 59.18	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24 59.18	203.35 100.38 ty heating 207.28 207.28 124.74 727.13 59.18	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12 59.18	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01 59.18	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68) 59.18 (69)
 (64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i> 5. Internal gains Metabolic gains (T (66)m Lighting gains (cale (67)m Appliances gains (cale (67)m Cooking gains (cale (69)m Pumps and fans ga (70)m 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated in 951.88 culated in A 59.18 ains (Table	r each mon 231.67 231.67 231.67 107.61 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30 in Appendix L, 961.76 Appendix L, 59.18 5a)	th, kWh/ma 243.98 nth 0.25 × 114.98)m only if c Mar 207.28 equation L 138.50 L, equation 236.87 equation L 59.18	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15a) 59.18	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 , also see T 59.18	193.93 193.93 193.93 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12 able 5 59.18	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12 59.18	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24 59.18	203.35 100.38 ty heating 207.28 207.28 124.74 727.13 59.18	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12 59.18	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01 59.18	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68) 59.18 (69)
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (T (66)m Lighting gains (calider) (67)m Appliances gains (calider) (68)m Cooking gains (calider) (69)m Pumps and fans gains (70)m 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated in 951.88 culated in A 59.18 ains (Table 10.00	r each mon' 231.67 231.67 ation of (65 5 and 5a) Feb atts 207.28 Appendix L, 170.30 in Appendix L, 961.76 Appendix L, 59.18 5a) 10.00	th, kWh/ma 243.98 nth 0.25 × 114.98)m only if c Mar 207.28 equation L 138.50 L, equatio 936.87 equation L 59.18 10.00	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15a) 59.18 10.00	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 also see Tabl 78.38 3a), also see 10.00	193.93 193.93 1+ 0.8 × [(<i>i</i> 97.25 <i>ig or hot w</i> <i>Jun</i> 207.28 e 5 66.17 e Table 5 754.12 able 5 59.18 10.00	187.18 187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12 59.18 10.00	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24 59.18 10.00	203.35 100.38 ty heating 207.28 207.28 124.74 727.13 59.18 59.18	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12 59.18 10.00	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01 59.18 10.00	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68) 59.18 (69) 10.00 (70)
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (T (66)m Lighting gains (call (67)m Appliances gains (call (69)m Pumps and fans ga (70)m Losses e.g. evapor (71)m 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 191.74 calculated in A 59.18 ains (Table 10.00 ration (nega	r each moni 231.67 231.67 231.67 107.61 ation of (65 5 and 5a) Feb atts 207.28 207.29 207.28 207.29 207.29 207.29 207.29 207.29 207.207.207.207.207.207.207.207.207.207.	th, kWh/ma 243.98 114.98 114.98 1m only if c Mar 207.28 equation L 138.50 L, equation 138.50 L, equation 138.50 L, equation L 59.18 10.00) (Table 5)	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15a) 59.18 10.00	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 , also see T 59.18 10.00	193.93 193.93 193.93 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12 able 5 59.18 10.00	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12 59.18 10.00	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24 59.18 10.00	203.35 100.38 ty heating Sep 207.28 124.74 727.13 59.18 10.00	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12 59.18 10.00	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01 59.18 10.00	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68) 59.18 (69) 10.00 (70)
 (64)m <i>if</i> (64)m < 0 then s Heat gains from w (65)m <i>include</i> (57) 5. Internal gains Metabolic gains (T (66)m Lighting gains (cale (67)m Appliances gains (cale (67)m Cooking gains (cale (69)m Pumps and fans ga (70)m Losses e.g. evapor (71)m W(the back 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan Table 5), Wa 207.28 culated in A 207.28 culated in A 191.74 calculated in A 59.18 ains (Table 10.00 ration (negative -138.19 ra (Table Table Table) (Table	r each mon' 231.67 231.67 231.67 ation of (65 5 and 5a) Feb atts 207.28 207.28 207.28 207.28 4 5 and 5a) Feb atts 207.28 4 5 and 5a) 5 a	th, kWh/ma 243.98 243.98 114.98 114.98 <i>m</i> only if c Mar 207.28 equation L 138.50 L, equatio 936.87 equation L 59.18 10.00) (Table 5) -138.19	onth (62)m 219.66 [0.85 × (45 105.80 ylinder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L12 883.88 15 or L15a) 59.18 10.00 -138.19	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 also see Tabl 78.38 10.00 -138.19	193.93 193.93 193.93 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12 able 5 59.18 10.00 -138.19	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12 59.18 10.00 -138.19	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24 59.18 10.00 -138.19	203.35 100.38 ty heating 207.28 207.28 124.74 727.13 59.18 59.18 10.00	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12 59.18 10.00 -138.19	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01 59.18 10.00 -138.19	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68) 59.18 (69) 10.00 (70) -138.19 (71)
 (64)m <i>if (64)m < 0 then s</i> Heat gains from w (65)m <i>include (57)</i> 5. Internal gains Metabolic gains (7 (66)m Lighting gains (call (67)m Appliances gains (call (69)m Pumps and fans ga (70)m Losses e.g. evapor (71)m Water heating gain 	r heater fo 262.51 et to 0 rater heatin 121.14 m in calcul (see Table Jan able 5), Wa 207.28 culated in A 191.74 calculated in A 59.18 ains (Table 10.00 ration (nega -138.19 ns (Table 5)	r each moni 231.67 231.67 ation of (65 5 and 5a) Feb atts 207.28 207.29 207.29 207.29 207.29 207.29 207.29 207.29 207.207.20 200	th, kWh/ma 243.98 114.9	onth (62)m 219.66 [0.85 × (45 105.80 y/inder is in Apr 207.28 9 or L9a), al 104.85 n L13 or L13 883.88 15 or L15a) 59.18 10.00 -138.19	+ (63)m 215.94)m + (61)m 105.66 the dwellin May 207.28 so see Tabl 78.38 3a), also see 816.98 , also see T 59.18 10.00 -138.19	193.93 193.93 193.93 97.25 ag or hot w Jun 207.28 e 5 66.17 e Table 5 754.12 able 5 59.18 10.00 -138.19	187.18 16)m + (57) 96.10 vater is from Jul 207.28 71.50 712.12 59.18 10.00 -138.19	204.11 m + (59)m] 101.73 n communit Aug 207.28 92.94 702.24 59.18 10.00 -138.19	203.35 100.38 ty heating Sep 207.28 124.74 727.13 59.18 10.00 -138.19	227.73 Σ(64)1 109.58 Oct 207.28 158.39 780.12 59.18 10.00 -138.19	239.61 12 = 2 112.44 Nov 207.28 184.86 847.01 59.18 10.00 -138.19	256.52 686.18 (64) 119.15 (65) Dec 207.28 (66) 197.07 (67) 909.88 (68) 59.18 (69) 10.00 (70) -138.19 (71)

6. Solar gains

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Rows (74) to (82) are used 12 times, one for each month, repeating as needed if there is more than one window type.

Details for month of January and annual totals are shown below:

	А	ccess facto Table 6d	r	Area m²	So	lar flux W/	m² g	Specific dat or Table 6b	a F	F Specific da or Table 6c	ita	Gains (W)	
North		0.54	x	5.75	x	10.73	x 0.9 x	0.65	x	0.70	=	13.64	(74)
North		0.77	x	16.95	x	10.73	x 0.9 x	0.65	x	0.70	=	57.33	(74)
East		0.77	x	3.60	x	19.87	x 0.9 x	0.65	x	0.70	=	22.56	(76)
South		0.54	x	10.00	x	47.32	x 0.9 x	0.65	x	0.70	=	104.65	(78)
South		1.00	х	26.80	х	47.32	x 0.9 x	0.65	x	0.70	=	519.35	(78)
West		0.54	х	2.50	х	19.87	x 0.9 x	0.65	x	0.70	=	10.99	(80)
West		0.77	x	4.50	x	19.87	x 0.9 x	0.65	x	0.70	=	28.20	(80)
Rooflights		1.00	x	2.20	x	26.00	x 0.9 x	0.65	х	0.70	=	23.42	(82)
Solar gains in watts	, calculate	d for each	month Σ(74	4)m(82)m								,	
(83)m	780.13	1320.75	1739.05	2166.66	2445.68	2533.90	2460.90	2229.43	1923.48	1495.82	933.27	668.20	(83)
Total gains - interna	al and sola	r (73)m + (8	33)m										
(84)m	2224.86	2751.22	3107.24	3440.61	3621.34	3627.53	3511.96	3299.62	3053.04	2719.89	2259.58	2073.58	(84)
7. Mean internal t	emperatu	re (heating	; season)										
Temperature during	g heating p	periods in t	he living ar	ea from Tal	ble 9, Th1(°	C)						21.00	(85)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation factor fo	r gains for	living area	, η1,m (see	Table 9a)									
(86)m	1.00	1.00	1.00	0.99	0.96	0.84	0.62	0.66	0.92	0.99	1.00	1.00	(86)
Mean internal temp	o of living a	area T1 (ste	eps 3 to 7 ir	n Table 9c)									
(87)m	19.96	20.08	20.26	20.47	20.72	20.88	20.94	20.94	20.82	20.54	20.18	19.98	(87)
Temperature during	g heating p	periods in t	he living ar	ea from Tal	ble 9, Th2(°	C)				-			
(88)m	20.01	20.02	20.02	20.05	20.06	20.07	20.08	20.08	20.06	20.05	20.04	20.02	(88)
Utilisation factor fo	r gains for	rest of dw	elling η2,m	(see Table	9a)			,i		-1		·	
(89)m	1.00	1.00	1.00	0.98	0.93	0.76	0.49	0.52	0.87	0.99	1.00	1.00	(89)
Mean internal temp	perature ir	n the rest o	f dwelling T	2 (follow st	teps 3 to 7	in Table 9c)	,					
(90)m	18.59	18.78	19.05	19.38	19.74	19.95	20.01	20.01	19.87	19.47	18.94	18.64	(90)
Living area fraction								fLA 8	37.50	÷ (4) =	-	0.16	(91)
Mean internal temp	perature fo	or the whol	e dwelling	fLA x T1 +(1	L - fLA) x T2								
(92)m	18.81	18.99	19.24	19.55	19.89	20.10	20.16	20.15	20.03	19.64	19.14	18.86	(92)
Apply adjustment to	o the mea	n internal t	emperatur	e from Tabl	e 4e, wher	e appropria	ate	, , , , , , , , , , , , , , , , , , ,		1		,	
(93)m	18.81	18.99	19.24	19.55	19.89	20.10	20.16	20.15	20.03	19.64	19.14	18.86	(93)
8. Space heating r	equireme	nt											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Set Ti to the mean i	internal te	mperature	obtained a	t step 11 of	f Table 9b,	so that tim	= (93)m ar	nd recalculat	e the util	isation facto	r for gains	using Table	9a)
Utilisation factor fo	r gains, ⊡n	n											()
(94)m	1 00 1	1.00	0.99	0.98	0.93	0.77	0.50	0.53	0.87	0.98	1.00	1.00	(94)
	1.00												
Useful gains, ImGr	n, W = (94))m x (84)m	2002 22		2264	2702.00	4770 07		2652.65	2070.10	2256 15	2072	(05)
Useful gains, 2mGn (95)m	n, W = (94) 2223.45	m x (84)m 2745.80	3088.39	3377.41	3361.54	2782.89	1772.67	1765.17	2653.65	2676.12	2256.17	2072.54	(95)
Useful gains, 2mGn (95)m	n, W = (94) 2223.45 kternal ten)m x (84)m 2745.80 nperature f	3088.39 from Table	3377.41 8	3361.54	2782.89	1772.67	1765.17	2653.65	2676.12	2256.17	2072.54	(95)
Useful gains, @mGn (95)m [Monthly average ex (96)m [n, W = (94) 2223.45 kternal ten 4.50)m x (84)m 2745.80 nperature f 5.00	3088.39 from Table 6.80	3377.41 8 8.70	3361.54 11.70	2782.89 14.60	1772.67 16.90	1765.17	2653.65 14.30	2676.12	2256.17	2072.54 4.90	(95) (96)

Space heating red	quirement f	or each mo	nth, kWh/n	nonth = 0.0	24 x [(97)r	n - (95)m] ›	x (41)m			1			7
(98)m	4713.57	3698.48	3161.93	2045.31	924.47	0.00	0.00	0.00	0.00	1778.70	3457.43	3 4581.24]
							Total per y	year (kWh/	year) = ∑(98)15, 10	.12 =	24361.15] (98)] (98)
Space heating re	quirement i	n kWh/m²/չ	/ear							(98)	÷ (4)	44.43] (99)
8c. Space coolin	ıg requirem	ent											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Calculated for Ju	ne, July and	August. See	e Table 10b										
Heat loss rate Lm	(calculated	l using 24°C	internal te	mperature	and exterr	nal tempera	ature from T	Table 10)					_
(100)m	0.00	0.00	0.00	0.00	0.00	4783.80	3414.20	3414.20	0.00	0.00	0.00	0.00	(100)
Utilisation factor	for loss, Im	ו 				1		_			1	-	-
(101)m	0.00	0.00	0.00	0.00	0.00	0.77	0.90	0.87	0.00	0.00	0.00	0.00	(101)
Useful loss, ImLr	n (Watts) =	(100)m x (1	01)m				1			1			٦
(102)m	0.00	0.00	0.00	0.00	0.00	3676.09	3059.03	2981.74	0.00	0.00	0.00	0.00] (102)
Gains (internal ga	ains as for h	eating exce	pt that colu	Imn (A) of T	Table 5 is a	lways used	l; solar gains	s calculated	for				
applicable weath	er region ba	ased on Tab	le 10, not 1	able 6a)	0.00	4042 50	2964 42	2628.02	0.00	0.00	0.00	0.00	7 (102)
	0.00	0.00				4043.59	3804.43	(102).93	0.00	0.00	0.00	0.00] (103)
space cooling rec	uirement fo	or the mont $< 3 \times (98)$ m	n, whole a	weiling, cor	ntinuous (k	(vvn) = 0.02	24 X [(103)m	rom Table	x (41)m 10				
(104)m						264 60	599.22	481 51		0.00	0.00	0.00	1
(101)	0.00	0.00	0.00	0.00	0.00	201100	333.22	101.01	Tot	ral = 5(104)6	8 =	13/15 33	」](104)
Cooled fraction									fc = cc	noled area \div	(4) =	0.18] (105)
Intermittency fac	tor (Table 1	0h)							10 - 00		(+) -	0.10] (105)
(106)m			0.00	0.00	0.00	0.25	0.25	0.25	0.00	0.00	0.00	0.00	1
(100)	0.00	0.00	0.00	0.00	0.00	0.25	0.23	0.23	Tot	$tal = \Sigma(106)6$	8 =	0.75	」] (106)
Space cooling rec	uirement f	or month =	(104)m v (1	05) v (106)	m				101	2(100)0		0.75] (100)
(107)m	0.00	0.00	0.00	0.00	0.00	12.06	27.32	21.95	0.00	0.00	0.00	0.00	1
. ,		ł	1					1	Tot	tal = Σ(107)6	8 =	61.34] (107)
Space cooling red	uirement ir	n kWh/m²/y	ear							(107)÷	(4) =	0.11	(108)
		,								. ,			
9a. Energy Requ	irements -	Individual h	eating syst	tems includ	ding micro	-CHP							
Space heating:													
Fraction of space	heating fro	m secondar	y/supplem	entary syst	em (Table	11)			0.00	(201)			
Fraction of space	heating fro	om main sys	tem(s) 1 -	(201)					1.00	(202)			
Fraction of main	heating fror	m main syst	em 2						0.00	(203)			
Fraction of total	space heat f	from main s	ystem 1 (2	02) x [1 - (2	.03)]				1.00	(204)			
Fraction of total	space heat f	from main s	ystem 2 (2	02) x (203)					0.00	(205)			
Efficiency of main	n space hea	ting system	1 (%)						250.00	(206)			
(from database o	or Table 4a/4	4b, adjusted	l where app	propriate by	the amou	unt shown i	in the 'space	e efficiency	adjustme	nt' column oj	f Table 4c)	
Cooling System E	nergy Efficio	ency Ratio (see Table 1	0c)					3.78	(209)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating ree	quirement,	kWh/month	i (as calcula	ted above)		-1			1				_
(98)m	4713.57	3698.48	3161.93	2045.31	924.47	0.00	0.00	0.00	0.00	1778.70	3457.4	3 4581.24	
Space heating fue	el (main hea	ating system	1), kWh/m	nonth = (98)m x (204)	x 100 ÷ (20	06)	T	1		1		-
(211)m	1885.43	1479.39	1264.77	818.13	369.79	0.00	0.00	0.00	0.00	711.48	1382.9	7 1832.50	
							Total per ye	ear (kWh/ye	ear) = ∑(2:	11)15, 10	.12 =	9744.46	(211)
Water heating:													
Output from wat	er heater, k	Wh/month	(calculated	d above)	1		-1	1	1				7
(64)m	262.51	231.67	243.98	219.66	215.94	193.93	187.18	204.11	203.35	227.73	239.61	256.52	
										∑(64)1	.12 =	2686.18	(64)
Efficiency of wate	er heater pe	er month											

(217)m	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	250.00	
Fuel for water he	ating, kWh/	'month = (6	64)m x 100 -	÷ (217)m									
(219)m	105.01	92.67	97.59	87.86	86.38	77.57	74.87	81.64	81.34	91.09	95.84	102.61]
							Tota	l per year (k	‹Wh/year)	= ∑(219)11	2 =	1074.47	(219)
Space cooling													
Space cooling fue	l, kWh/mor	nth (107)m	n ÷ (209)										
(221)m	0.00	0.00	0.00	0.00	0.00	3.19	7.23	5.81	0.00	0.00	0.00	0.00]
							Tot	al per year	(kWh/year) = ∑(221)6	8 =	16.23	(221)
Annual Totals Su	mmary:									kWh/yea	nr k	Wh/year	
Space heating fue	el used, mai	in system 2	1									9744.46	(211)
Water heating fu	el used											1074.47	(219)
Space cooling fue	l used											16.23	(221)
Electricity for pur	mps, fans ai	nd electric	keep-hot (1	Table 4f):									
mechanical ve	entilation fai	ns - balanc	ed, extract o	or positive i	input from	outside				1747.67			(230a)
warm air heat	ing system f	fans								0.00			(230b)
central heating	g pump									130.00			(230c)
oil boiler pum	р									0.00			(230d)
boiler flue fan	lactric kaon	hot facility	, for gas cor	nhi hailar						0.00			(230e)
numn for sola	r water hea	ting	y for gas cor	noi boller						0.00			(2301) (230g)
Total electricity for	or the above	2								Σ(230a)(23	0g)	1877.67	(231)
,											0,		
Electricity for ligh	nting (calcul	ated in Ap	pendix L):									1354.48	(232)
					_				<u> </u>				
10a. Fuel costs -	Individual	heating sys	stems inclu	ding micro-	·CHP								
					-						-		
					Fuel	kWh/year		Fu (Ti	iel price able 12)		Fuel	cost £/yea	r
Snace heating - m	ain system	1			Fuel	kWh/year	×	Fu (Ta	able 12)] x 0 01 =	Fuel	cost £/yea	r
Space heating - m	nain system st (other fue	1 el)			Fuel	kWh/year	x	Fu (Ta	uel price able 12) 11.46) x 0.01 =	Fuel	cost £/yea	r] (240)] (247)
Space heating - m Water heating co	nain system st (other fue	1 el)			Fuel	kWh/year 744.46 074.47	x x	Fu (Ta	uel price able 12) 11.46 11.46) x 0.01 = x 0.01 =	Fuel	cost £/yea	r] (240)] (247)] (248)
Space heating - m Water heating co Space cooling	nain system st (other fue	1 el)			Fuel	kWh/year 744.46 074.47 16.23 877.67	x x x	Fu (T:	able 12) 11.46 11.46 11.46 11.46] x 0.01 =] x 0.01 =] x 0.01 =	Fuel	cost £/yea 1116.72 123.13 1.86 215.18	r] (240)] (247)] (248)] (248)
Space heating - m Water heating co Space cooling Pumps, fans and o	nain system st (other fue electric keep	1 el) p-hot			Fuel	kWh/year 744.46 074.47 16.23 877.67 254.48	x x x x x	Fu (T:	lel price able 12) 11.46 11.46 11.46 11.46 11.46) x 0.01 = x 0.01 = x 0.01 = x 0.01 =	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22	r] (240)] (247)] (248)] (249)] (250)
Space heating - m Water heating co Space cooling Pumps, fans and e Energy for lighting Additional standi	nain system st (other fue electric keep g	1 el) p-hot			Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x x x	Fu (T:	rel price able 12) 11.46 11.46 11.46 11.46 11.46] x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22	r] (240)] (247)] (248)] (249)] (250)] (251)
Space heating - m Water heating co Space cooling Pumps, fans and o Energy for lighting Additional standing	nain system st (other fue electric keep g ng charges (1 el) p-hot (Table 12)			Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x x	Fu (T:	uel price able 12) 11.46 11.46 11.46 11.46 11.46 11.46 11.46) x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 =	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00	r] (240)] (247)] (248)] (248)] (249)] (250)] (251)] (255)
Space heating - m Water heating co Space cooling Pumps, fans and o Energy for lighting Additional standin Total energy cost	nain system st (other fue electric keep g ng charges (1 el) p-hot (Table 12)			Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x x	Fu (Ta	rel price able 12) 11.46 11.46 11.46 11.46 11.46 240)(242) x 0.01 = x 0.01 =	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)
Space heating - m Water heating co Space cooling Pumps, fans and o Energy for lighting Additional standin Total energy cost 11a. SAP rating	nain system st (other fue electric keep g ng charges (- Individual	1 el) p-hot (Table 12) heating sy	ystems inclu	nding micro	Fuel 9 1 1 1 1	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x x	Fu (17)	el price able 12) 11.46 11.46 11.46 11.46 11.46 240)(242] x 0.01 =] x 0.01 =] x 0.01 =] x 0.01 =] x 0.01 = 2) + (245)(25)	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1.	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x	Fu (T:	rel price able 12) 11.46 11.46 11.46 11.46 11.46 240)(242) x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = + (245)(25)	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)
Space heating - m Water heating co Space cooling Pumps, fans and e Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1. r (ECF)	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel 9 1 1 1 1	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x	Fu (17)	rel price able 12) 11.46 11.46 11.46 11.46 11.46 (240)(242) (240)(242)	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ x & 0.01 \\ \end{vmatrix} $ $ x & 0.01 \\ x & 0.01 \\ x & 0.01 \\ \end{vmatrix} $ $ x & 0.01 \\ + & (245)(22) $ $ x & (245)(22) \\ + & (245)(22$	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28	r (240) (247) (248) (249) (250) (250) (251) (255) (255) (256) (257)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1. r (ECF)	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	Iding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x	Fu (Ta 	rel price able 12) 11.46 11.46 11.46 11.46 11.46 240)(242 55) x (256)	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ z \\ $	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)] (256)] (257)
Space heating - m Water heating co Space cooling Pumps, fans and o Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1. r (ECF)	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel 9 1 1 1 1	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x x	Fu (17)	el price able 12) 11.46 11.46 11.46 11.46 11.46 (240)(242) 55) x (256)	$\begin{bmatrix} x & 0.01 = \\ \end{bmatrix} + (245)(25)$	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)] (256)] (257)]] (258)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating SAP band	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1. r (ECF)	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48		Fu (Ta 	el price able 12) 11.46 11.46 11.46 11.46 (240)(242) 55) x (256)	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ x & 0.01 \\ \end{vmatrix} $ $ x & 0.01 \\ x & 0.01 \\ x & 0.01 \\ \end{vmatrix} $ $ + (245)(21) $ $ + (245)(21) $ $ + (245)(21) $ $ + (245)(21) $	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)] (256)] (257)] (258)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating SAP band	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1 r (ECF)	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	X X X X	Fu (17)	el price able 12) 11.46 11.46 11.46 11.46 11.46 (240)(242) 55) x (256)	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ \end{vmatrix} $ $ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ \end{vmatrix} $ $ \begin{vmatrix} x & 0.01 \\ x \\ 0.01 \\ \end{vmatrix} $ $ + (245)(22) $ $ \end{vmatrix} $	Fuel []	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B	<pre>(240) (247) (248) (249) (250) (251) (255) (255) (255) (257) (257) (258)</pre>
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standid Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1: r (ECF)	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48	x x x x	Fu (17)	el price able 12) 11.46 11.46 11.46 11.46 (240)(242) 55) x (256)	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ z \\ x & 0.01 \\ x \\ 0.01 \\ z \\ x & 0.01 \\ z \\ 0.01 \\ z \\ (245)(225)) \\ (245)(225)) \\ (245) \\ ($	Fuel	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82 B	 (240) (247) (248) (249) (250) (251) (255) (255) (257) (258)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1 r (ECF) xide emissio	1 el) p-hot (Table 12) heating sy 2)	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48		Fu (Ta 	rel price able 12) 11.46 11.46 11.46 11.46 240)(242 55) x (256) nissions Factor	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ z \\ 0.01 \\ x \\ 0.01 \\ z \\ 0.01 \\ z \\ 0.01 \\ z \\ (245)(22) \\ (245)(22) \\ (245)(23) \\ (245).$	Fuel	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82.18 82 B missions CO2/year)	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)] (256)] (257)] (258)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio Space heating - m	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1. r (ECF) xide emission	1 el) p-hot (Table 12) heating sy 2) ons - Indivi	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48 354.48		Fu (Ti 	rel price able 12) 11.46 11.46 11.46 11.46 240)(242 55) x (256) nissions Factor 0.517	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ z \\ $	Fuel	cost £/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82.18 82 B missions CO2/year) 5037.89	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)] (256)] (257)] (258)] (258)] (261)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1 r (ECF) xide emission nain system	1 el) p-hot (Table 12) heating sy 2) ons - Indivi	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48 354.48		Fu (17)	rel price able 12) 11.46 11.46 11.46 11.46 240)(242 55) x (256) sissions Factor 0.517 0.517	$\begin{bmatrix} x & 0.01 = \\ \end{bmatrix}$ $(4) + (245)(23)$ $(4) + (45.0)$ $(4) + (45.0)$ $(4) + (45.0)$ $(5) + (245)$ $(5) + (245)$	Fuel	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82.18 82.18 82 B missions co2/year) 5037.89 555.50	 (240) (247) (248) (249) (250) (251) (255) (255) (257) (258) (258) (258) (261) (264)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1: r (ECF) xide emission nain system heating	1 el) p-hot (Table 12) heating sy 2) ons - Indivi	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48 354.48		Fu (Ta 	rel price able 12) 11.46 11.46 11.46 11.46 240)(242 55) x (256) nissions Factor 0.517 1).+ (262) +	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ z \\ 0.01 \\ x \\ 0.01 \\ z \\ 0.01 \\ z \\ 0.01 \\ z \\ 0.01 \\ z \\ z \\ 0.01 \\ z \\ z \\ 0.01 \\ z \\ $	Fuel	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82.18 82.18 82 B missions CO2/year) 5037.89 555.50	r] (240)] (247)] (248)] (249)] (250)] (251)] (255)] (255)] (257)] (258)] (258)] (261)] (261)] (264)] (265)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost deflat Energy cost facto SAP value SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water is Space cooling	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1 r (ECF) xide emission heating	1 el) p-hot (Table 12) heating sy 2) ons - Indivi	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48 354.48		Fu (Ta) (1) (1) (2) (2)	rel price able 12) 11.46 10.517 1) + (262) + 0.517	$ \begin{vmatrix} x & 0.01 \\ x & 0.01 \\ z \\ 0.01 \\ x \\ 0.01 \\ z \\ 0.01 \\ z \\ 0.01 \\ z \\ z \\ 0.01 \\ z \\ z \\ 0.01 \\ z \\ $	Fuel	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82.18 82.18 82 B missions co2/year) 5037.89 555.50 5593.39 8.39	 (240) (247) (248) (249) (250) (251) (255) (255) (257) (258) (258) (261) (265) (265) (266)
Space heating - m Water heating co Space cooling Pumps, fans and d Energy for lighting Additional standin Total energy cost 11a. SAP rating Energy cost deflat Energy cost deflat Energy cost facto SAP value SAP rating SAP band 12a. Carbon dio Space heating - m Water heating Space and water is Space cooling Pumps, fans and o	nain system st (other fue electric keep g ng charges (- Individual tor (Table 1. r (ECF) xide emission hain system heating electric keep	1 el) p-hot (Table 12) heating sy 2) ons - Indivi 1	ystems inclu	nding micro	Fuel	kWh/year 744.46 074.47 16.23 877.67 354.48 354.48 074.47 744.46 074.47 16.23 877.67		Fu (Ta) (1) (1) (2) (2)	rel price able 12) 11.46 11.46 11.46 11.46 11.46 11.46 11.46 155) x (256) 55) x (256) nissions Factor 0.517 1) + (262) + 0.517 0.517] x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = x 0.01 = (245)(2) ; ((4) + 45.0] = = = (263) + (264) =] =	Fuel	cost f/yea 1116.72 123.13 1.86 215.18 155.22 0.00 1612.11 0.47 1.28 82.18 82.18 82.18 82.18 82.18 55.50 5037.89 555.50 5593.39 8.39 970.75	 (240) (247) (248) (249) (250) (251) (255) (255) (257) (258) (258) (261) (261) (265) (266) (267)

Lighting	1354.48	x	0.517] =	700.27	(268)
Total carbon dioxide emissions				∑(261)(271) =	7272.80	(272)
Dwelling carbon dioxide emissions rate				(272) ÷ (4) =	13.26	(273)
El value					83.57	
El rating (see section 14)					84	(274)
El band					В	
13a. Primary energy - Individual heating systems including micro-	-CHP					
	Energy kWh/year		Primary Energy Factor		Primary Energy	
Space heating - main system 1	9744.46	x	2.92] =	28453.83	(261*)
Water heating	1074.47	x	2.92] =	3137.46	(264*)

16.23

1877.67

1354.48

х

x

(261*) + (262*) + (263*) + (264*) =

=

=

(272*) ÷ (4) =

∑(261*)...(271*) =

2.92

2.92

2.92

31591.29

47.38

5482.79

3955.08

41076.54

74.92

(265*)

(266*)

(267*)

(268*)

(272*)

(273*)

Space cooling Pumps, fans and electric keep-hot

Space and water heating

Lighting

Total primary energy kWh/year

Primary energy kWh/m2/year

Energy Efficiency Statement & Code for Sustainable Homes Pre-assessment

Appendix B – Code for Sustainable Homes Pre-assessment

breglobal

Results	
Development Name:	Nutley Terrace
Dwelling Description:	Single Dwelling - Detached House
Name of Company:	Hoare Lea Consulting Engineers
Code Assessor's Name	
Company Address:	
	Hoare Lea Consulting Engineers
Notes/Comments:	
Notes/Comments.	

PREDICTED RATING - CODE LEVEL: 3

Mandatory Req	uirements:	All Levels
% Points: Breakdown:	60.15% Energy	- Code Level: 3 - Code Level: 4
	Water	- Code Level: 4

Graph 1: Predicted contribution of individual sections to the total score and percentage of total achievable score

Graph 2: Predicted percentage of credits achievable: Total and by Category

NOTE: The rating obtained by using this Pre Assessment Estimator is for guidance only. Predicted ratings may differ from those obtained through a formal assessment, which must be carried out by a licensed Code assessor.

© BRE Global Ltd, 2010. The BRE Global name and logo are registered trademarks owned by BRE Global Ltd and may not be used without BRE Global's written permission. Permission is given for this estimator to be copied without infringement of copyright for use only on projects where a Code for Sustainable Homes assessment is carried out

CATEGOR	Y 1 ENERGY	Overall Level: 3	Overall Score	60,15		Evidence Required
% of Secti	on Credits Predicted:	52.25	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribut	ion to Overall % Score:	19.02 points	16.2 of 31 Credits	Level 4		required.)
Ene 1 Dwelling Emission Rate	Credits are awarded to Dwelling Emission Rate calculated using SAP 2 apply. The Code energy predicted score.	ased on the percentage improvement of t (DER) over the Target Emission Rate (TER) 009. Minimum standards for each Code lev rgy calculator can be used to calculate re predicted number of credits?	the as vel a 4.1 of 10 Credits	Level 4		
Ene 2 Fabric Energy Efficiency	Credits are awarded (kWh/m ² /yr) of the dw 5 and 6. The Code e predicted score. Enter the predicted score Apartments OR End terrace OR Staggered M What is the	based on the Fabric Energy Efficient elling. Minimum standards apply at Code leven nergy calculator can be used to calculate re	acy els e a 3.1 of 9 Credits	-		
Ene 3 Energy Display Devices	Credits are awarded Device is installed mor consumption. Select whether the EDD None Specif Primary Hea OR Electricity of OR Electricity a	where a correctly specified Energy Displaitoring electricity and/or primary heating furmonitors electricity and/or fuel	lay Jel 2 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Ene 4 Drying Space	One credit is awarded for the provision of either internal or external secure drying space with posts and footings or fixings capable of holding 4m+ of drying line for 1-2 bed dwellings and 6m+ for dwellings with 3 bedrooms or greater. Will drying space meeting the criteria be provided? Yes OR No	1 of 1 Credits	-		
Ene 5 Energy Labelled White Goods	Credits are awarded where each dwelling is provided with either information about the EU Energy Labelling Scheme, White Goods with ratings ranging from A+ to B or a combination of the previous according to the technical guide. Select the appropriate option below EU Energy labelling information only A+ rated appliances A+, A and B rated appliances Combination of compliant rated white goods with EU Energy Labelling Scheme	2 of 2 Credits	-		
Ene 6 External Lighting	Credits are awarded based on the provision of space lighting* with dedicated energy efficient fittings and security lighting fittings with appropriate control gear Space Lighting None provided OR Non Code compliant lighting OR Code compliant lighting Security Lighting None provided OR Non Code compliant lighting OR Code compliant lighting Security Lighting OR Code compliant lighting None provided OR Non Code compliant lighting OR Code compliant lighting and controls * Statutory safety lighting is not covered by this requirement	2 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Ene 7	Credits are awarded where there is a 10% or 15% reduction in $\rm CO_2$				
Low or Zero	emissions resulting from the use of low or zero carbon technologies.				
Carbon					
reclinologies	Select % contribution made by low or zero carbon technologies				
	OR 10% of demand or greater O	0 of 2 Credits	-		
	OR 15% of demand or greater				
Ene 8 Cycle Storage	Credits are awarded where adequate, safe, secure and weather proof cycle storage is provided according to the Code requirements. Fill in the development details below Number of bedrooms: Number of cycles stored per dwelling* * if you have storage for 1 cycle per two dwellings insert 0.5 in number of cycles stored per dwelling	1 of 2 Credits	-		
Ene 9 Home Office	A credit is awarded for the provision of a home office. The location, space and services provided must meet the Code requirements.				
1	— Will there be provision for a Home Office?				
	Yes	1 of 1 Credits	-		
		ercuto			

CATEGOR	CATEGORY 2 WATER Overall Level: 3		Overall Score	60.15		Evidence Required			
% of Secti	% of Section Credits Predicted: 66.66			Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if		
Contribut	Contribution to Overall Score: 6.00 points			4 of 6 Credits	Level 4		required.)		
Wat 1 Indoor Wate Use	Credits water (Tool. <i>M</i> OR OR OR OR OR OR	are awarded consumption, linimum stand ect the predicted v greater th ≤ less than ≤ less than ≤ less than ≤ less than	based on the prec calculated using th lards for each code l water use / Mandatory Re nan 120 litres/ person in 120 litres/ person in 105 litres/ person in 90 litres/ person/ in 80 litres/ person/	dicted average ne Code Water level apply. equirement on/ day n/ day n/ day / day / day / day	household Calculator	d r 3 of 5 Credits	Level 3 AND Level 4		
Wat 2 External Water Use	A credicollection	it is awarded ing rainwater r space is prov ect the scenario th No interna Outdoor s Outdoor s	where a complian for external irriga vided the credit can nat applies — al or communal out space with collection space without collec	it system is sp ition purposes. be achieved by door space n system ction system	ecified for Where no v default.	r D 1 of 1 Credits	-		

CATEGORY	Y 3 MATERIALS	Overall Level: 3	Overall Score	60.15		Evidence Required
% of Section	on Credits Predicted:	50.00	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	ion to Overall Score:	3.60 points	12 of 24 Credits	All Levels		required.)
Mat 1 Environm- ental Impact of Materials	Mandatory Requirem elements must achie <u>Tradable Credits:</u> Po Green Guide Rating Calculator can be use Mandatory Requirem Will the r	ent: At least three of the five key building eve a Green Guide 2008 Rating of A+ to D. bints are awarded on a scale based on the of the specifications. The Code Materials ed to predict a potential score. ent nandatory requirement be met?	8 of 15 Cradits			
	Enter the predicted s What is the	core	o of 15 credits	All Levels		
Mat 2 Responsible Sourcing of Materials - Basic Building Elements	Credits are awarded elements are respon can be used to predi- Enter the predicted S What is th	where materials used in the basic building sibly sourced. The Code Materials Calculator a potential score. frore	3 of 6 Credits	-		
Mat 3 Responsible Sourcing of Materials - Finishing Elements	Credits are awarde elements are respon can be used to predic Enter the predicted S What is th	ed where materials used in the finishing sibly sourced. The Code Materials Calculator ct a potential score. He predicted number of credits?	1 of 3 Credits			

CATEGORY	4 SURFACE WATER RUN-OFF	- Overall Leve	el: 3	Overall Score	60.15		Evidence Required
% of Sectio	n Credits Predicted: 50.00)%		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributio	on to Overall Score: 1.10	points		2 of 4 Credits	All Levels		required.)
Sur 1 Management of Surface Water Run-off from developments	<u>Mandatory Requirement:</u> Pea no greater for the develo development site and that rainwater discharge caused reduced as far as possible criteria. Desiging the draina local drainage system failur used to improve water quali protecting the quality of the	ak rate of run-off into wat ped site than it was for the additional predicted by the new developmen in accordance with the age system to be able to e. <u>Tradable Credits:</u> Whe ity of the rainwater disch preceiving waters.	ercourses is or the pre- l volume of t is entirely assessment o cope with re SUDS are arged or for				
	Mandatory Requirement	ry requirement be met?	V				
	- Select the appropriate option - No SUDS No runoff into wa 5 mm of rainfall Runoff from hard appropriate level	atercourses for the first surfaces will receive an of treatment		0 of 2 Credits	All Levels		
Sur 2 Flood Risk	Credits are awarded where low flood risk or where in appropriate measures are property and its contents in the technical guide. Select the annual probability of Zone 1 - Low OR Zone 2 - Medium OR Zone 3 - High Select the apropriate option(s) Low risk of floodi All measures demonstrated in Ground floor leve mm above design	developments are located areas of medium or hig taken to prevent dam accordance with the Cod f flooding (from PPS25*)	I in areas of h flood risk age to the e criteria in O C Tre D D D	2 of 2 Credits	-		
	* Planning Policy Statement 25 - Pla ** FRA - Flood Risk Assessment	nning and Flood Risk					

CATEGORY	5 WASTE			Overall Level: 3	3	Overall Score	60.15		Evidence Required
% of Section	n Credits Pr	edicted:	75.00%			Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributio	on to Overal	Score:	4.80 points			6 of 8 Credits	All Levels		required.)
Was 1	Mandatory	Requirem	ent: The space	provided for waste	e storage				
Storage of non	should be s	ized to ho	ld the larger of e	ither all external c	ontainers				
waste and	provided b	y the Loca	al Authority or t	he min capacity c	alculated				
recyclable	from BS 5	906. <u>Tra</u>	<u>dable</u> <u>Credits</u> a	re awarded for a	adequate				
household	internal an	d/ or exte	rnal recycling fac	ilities.					
waste	- Mandato	rv Requireme	ent						
		.,							
		Will the mini	imum space be provid	ed and					
		be accessible	e to disabled people?		\checkmark				
	- Internal	Pervelable b	ousebold waste storag	A					
	Internal	Recyclable In	ouschold waste storag						
		Where there	is no external recycla	able waste					
		storage and	no Local Authority co	lection					
		scheme							
						0 of 2 Credits			
		Internal stor	age (capacity 60 litre	5)					
	Local Au	thority collect	tion Scheme						
		Post Collecti	on sorting	-)		1 of 1 Cradita			
			age (capacity 50 title	5)		4 of 4 Credits	All Levels		
		Internal stor	are (2 separate bins	conscitu 20 litros)					
		internat stor	age (5 separate bills,	capacity 50 titles)					
	- External	Storage, no I	Local Authority collect	ion scheme					
		3 senarate ir	nternal storage hins						
		(canacity 30	litres)						
		AND	(ides)						
		Houses							
		External Stor	rage(capacity 180 litr	es)		0 of 4 Credits			
		Flats	5 (
		Private recvo	cling operator						
		3 or greater	types of waste collec	ted					
		5							

Issue		Credits	Level	Assumptions Made	Evidence Required
Was 2 Construction Site Waste Management	A credit is awarded where a compliant SWMP is provided with targets and procedures to minimise construction waste. Credits are available where the SWMP include procedures and commitments for diverting either 50% or 85% of waste generated from landfill. SWMP details Does the SWMP include: + No SWMP + SWMP with targets and procedures to minimise waste? + SWMP with procedures to divert 50% of waste + SWMP with procedures to divert 85% of waste	1 of 3 Credits			
Was 3 Composting	A credit is awarded where individual home composting facilities are provided, or where a community/ communal composting service, either run by the Local Authority or overseen by a management plan is in operation. Select the facilities available No composting facilities Individual composting facilities OR Communal/ community composting*? Local Authority OR Private with management plan * including if an automated waste collection system is in place	1 of 1 Credit	-		

CATEGORY 6 POLLUTION	Overall Level: 3	Overall Score	60.15		Evidence Required
% of Section Credits Predicted: 25.00%		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to Overall Score: 0.70 points		1 of 4 Credits	All Levels		required.)
Pol 1 Global Warming Potential (GWP) of Insulants GWP of Insulants A credit is awarded where <u>all</u> substances (in manufacture AND in less than 5. Select the most appropriate option — All insulants have a GW OR Some insulants have a GW	1 of 1 Credits	-			
Pol 2 Credits are awarded on the basis of the operation of the space and wat dwelling. Emissions Select the most appropriate option — Greater than 100 mg/kWh OR Less than 100 mg/kWh OR Less than 70 mg/kWh OR Class 4 boiler OR Class 5 boiler OR All space and her requirements are met not produce NOx emission	NOx emissions arising from er heating system within the /h	0 of 3 Credits	-		

CATEGORY 7 HEALTH & WELLBEING Overall Level: 3	Overall Score	60.15		Evidence Required
% of Section Credits Predicted: 75.00%	Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contribution to Overall Score: 10.50 points	9 of 12 Credits	No level		required.)
Hea 1 Daylighting Credits are awarded for ensuring key rooms in the dwelling have high daylight factors (DF) and a view of the sky. Select the compliant areas	0 of 3 Credits	-		
Hea 2 Sound Insulation Credits are awarded where performance standards exceed those required in Building Regulations Part E. This can be demonstrated by carrying out pre-completion testing or through the use of Robust Details Limited. Select a type of property Image: Credits are awarded where performance standard properties: - Separating walls and floors only exist between non habitable spaces Select a performance standard Image: Credits are awarded performance standard not sought Select a performance standard not sought Image: Credits are awarded performance standard not sought Select a performance standard not sought Image: Credits are awarded performance standard not sought OR Airborne: 3db higher; Impact: 3dB lower Image: Credits are awarded performance standard	4 of 4 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Hea 3 Private Space	A credit is awarded for the provision of an outdoor space that is at least partially private. The space must allow easy access to all occupants. Will a private/semi-private space be provided? Yes, private/semi-private space will be provided OR No private/semi-private space	1 of 1 Credits			
Hea 4 Lifetime Homes	Mandatory Requirement: Lifetime Homes is mandatory when a dwelling is to achieve Code Level 6. Tradable credits: Credits are awarded where the developer has implemented all of the principles of the Lifetime Homes scheme. Mandatory Requirement	4 of 4 Credits	No level		

CATEGORY 8 MANAGEMENT Overall Level: 3		Overall Score	60.15		Evidence Required	
% of Section	on Credits Predicted: 77.00%		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	on to Overall Score: 7.77 points		7 of 9 Credits	All Levels		required.)
Man 1 Home User Guide	Credits are awarded where a simp dwelling covering information rele home occupier, in accordance with 1 Tick the topics covered by the Home Us Operational Issues? Site and Surroundings? Is available in alternative	le guide is provided to each evant to the 'non-technical' the Code requirements. er Guide er Guide formats?	3 of 3 Credits	-		
Man 2 Credits are awarded where there is a commitment to comply with best practice site management principles using either the Constructors Scheme Considerate Constructors Scheme or an alternative locally/ nationally recognised scheme.		a commitment to comply principles using either the an alternative locally/				
	Select the appropriate scheme and score No scheme used <u>Considerate Constructors</u> OR Best Practice: Score betv OR Best Practice+: Score bete <u>Alternative Scheme*</u> OR Mandatory + 50% optional OR Mandatory + 80% optional * In the first instance, contact a Code Sc considering to use an alternative scheme	e O veen 24 and 31.5 O ween 32 and 40 O trequirements O trequirements O ervice Provider if you are e.	1 of 2 Credits	-		
Man 3 Construction Site Impacts	Credits are awarded where there is a to operate site management proceduate operate site management proceduate operate site management proceduate operate site management proceduate operate operate operate operation op	a commitment and strategy ures on site as following: <u>set targets, where</u> e activities	1 of 2 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Man 4 Security	Credits are awarded for complying with Section 2 - Physical Security from Secured by Design - New Homes. An Architectural Liaison Officer (ALO), or alternative, needs to be appointed early in the design process and their recommendations incorporated.				
	Secured by Design Compliance Credit not sought OR Secured by Design Section 2 Compliance	2 of 2 Credits	-		

CATEGORY 9 ECOLOGY Overall Level: 3		Overall Score 60.15			Evidence Required
% of Section Credits Predicted: 55.00%		Credits	Level	Assumptions Made	(The below cells can be formatted by assessors if
Contributi	on to Overall Score: 6.66 points	5 of 9 Credits	All Levels		required.)
Eco 1 Ecological Value of Site	One credit is awarded for developing land of inherently low value. Select the appropriate option Credit not sought OR Land has ecological value OR Land has low/ insignificant ecological value*	0 of 1 Credits	-		
	* Low ecological value is determined either a) by using Checklist Eco 1 across the whole development site; or b) where an suitably qualified ecologist is appointed and can confirm or c) produces an independent ecological report of the site, that the construction zone is of low/ insignificant value; AND the rest of the development site will remain undisturbed by the works.				
Eco 2 Ecological Enhancement	A credit is awarded where there is a commitment to enhance the ecological value of the development site. Tick the appropriate boxes Will a Suitably Qualified Ecologist be appointed to recommend appropriate ecological features? AND Will all key recommendations be adopted? AND 30% of other recommendations be adopted?	1 of 1 Credits	-		
Eco 3 Protection of Ecological Features	A credit is awarded where there is a commitment to maintain and adequately protect features of ecological value. Type and protection of existing features Site with features of ecological value? OR Site of low ecological value (as Eco 1)? AND All* existing features potentially affected by site works are maintained and adequately protected? If a suitably qualified ecologist has confirmed that a feature can be removed due to insignificant ecological value or poor health conditions, as long all the rest have been protected, then this box can be ticked.	1 of 1 Credits	-		

Issue		Credits	Level	Assumptions Made	Evidence Required
Eco 4 Change of Ecological Value of Site	Credits are awarded where the change in ecological value has been calculated in accordance with the Code requirements and is calculated to be: Change in Ecological Value Major negative change: fewer than -9 Minor negative change: between -9 and -3 OR Neutral: between -3 and +3 Minor enhancement: between +3 and +9 Major enhancement: greater than 9	2 of 4 Credits	-		
Eco 5 Building Footprint	Credits are awarded where the ratio of combined floor area of all dwellings on the site to their footprint is: Ratio of Net Internal Floor Area: Net Internal Ground Floor Area Credit Not Sought O OR Houses: 2.5:1 OR Flats: 3:1 O OR Houses: 3:1 OR Flats: 4:1 O OR Houses & Flats Weighted (2.5:1 & 3:1) O OR Houses & Flats Weighted (3:1 & 4:1) O	1 of 2 Credits			