

Urbanest UK Limited

103 Camley Street, London

Stage 2 Geotechnical and Geoenvironmental report

June, 2012

Copyright: Card Geotechnics Limited

Card Geotechnics Limited ("CGL") has prepared this report in accordance with the instructions of Urbanest UK Limited ("the Client") under the terms of its appointment for consulting engineering services by the Client dated 23 March 2012. The report is for the sole and specific use of the Client, and CGL shall not be responsible for any use of the report or its contents for any purpose other than that for which it was prepared and provided. Should the Client require to pass copies of the report to other parties for information, the whole of the report should be so copied, but no professional liability or warranty shall be extended to other parties by CGL in this connection without the explicit written agreement thereto by CGL.

Author	Charlene Knox, S MSc BSc (Hons) FGS	_	er	
Checked	lan Marychurch, MSc BSc CEng MICE			Ian Maryclush
Approved	lan Marychurch, Director MSc BSc CEng MICE CGeol FGS			Ian Maryclush
Reference	CG/5521C	Revision	0	Issue Date May 2012

Contents

EX	ECUTI	VE SUMMARY	4
1.	II	NTRODUCTION	8
2.	D	PESK STUDY AND SITE VISIT	9
	2.1	Site location and description	9
	2.2	Proposed development	g
	2.3	Site walkover	g
	2.4	Historical development	g
	2.5	Previous reports	10
	2.6	Anticipated ground conditions	10
	2.7	Radon	11
	2.8	Hydrogeology and hydrology	11
	2.9	Preliminary conceptual site model	11
3.	P	RESENT GROUND INVESTIGATION	12
	3.1	General	12
	3.2	Monitoring	13
	3.3	Laboratory testing	13
	3.	.3.1 Geotechnical	13
	3.	.3.2 Chemical	14
4.	G	GROUND AND GROUNDWATER CONDITIONS	15
	4.1	General	15
	4.2	Soils	15
	4.	.2.1 Made Ground	16
	4.	.2.2 London Clay Formation	17
	4.3	Dynamic probing	18
	4.4	Sulfate and pH	18
	4.5	Groundwater	19
	4.6	Soil gas	20
5.	С	CONTAMINATION ASSESSMENT	21
	5.1	Human health assessment	21
	5.2	Risks to controlled waters	25
	5.3	Updated qualitative risk assessment	26

103 CAMLEY STREET, LONDON STAGE 2 Geotechnical and geoenvironmental interpretative report

6.	GE	OTECHNICAL RECOMMENDATIONS	30
	6.1	General	30
	6.2	Geotechnical Design Parameters	30
	6.3	Excavations	31
	6.4	Foundations	31
	6.5	Retaining walls	32
	6.6	Lower ground level and slab	33
	6.7	Floor slabs and pavement design	33
	6.8	Drainage	34
	6.9	Buried concrete	34
7.	СО	NTAMINATION RECOMMENDATIONS	35
	7.1	General	35
	7.2	Soil contamination and remediation	35
	7.2	.1 Capping layer	35
	7.3	Material management and waste classification	36
	7.4	Removal of tanks and decommissioning	37
	7.5	Groundwater	38
	7.6	Surface water	39
	7.7	Watching brief and discovery strategy	39
	7.8	Gas protection measures	40
	7.9	Services	40
	7.10	Health and safety	40
	7.11	Regulatory requirements	41

FIGURES

- 1 Site location plan
- 2a Lower ground floor development plan
- 2b Ground floor development plan
- 3 Exploratory hole location plan
- 4 Underground storage tanks
- 5 SPT-N vs. depth
- 6 Undrained shear strength vs. depth
- 7 Plasticity chart
- **8 Dynamic probe locations**
- 9 Updated Conceptual Site Model
- **10 Preliminary Safe Working Loads**

APPENDICES

- A. Survey drawing
- B. CGL logs
- C. Geological cross sections
- D. Geotechnical results
- E. Dynamic probe results
- F. Chemical test results
- G. Monitoring records
- H. Maximum permissible concentrations

EXECUTIVE SUMMARY

Urbanest UK Limited has commissioned Card Geotechnics Limited to undertake a *Stage 2 Geotechnical and geoenvironmental investigation* at 103, Camley Street, London. These works have been undertaken in relation to proposed redevelopment of the site to include multi-storey student accommodation, with a lower ground floor level intended for student business enterprises.

The site is located within a predominantly industrial/commercial area near to Saint Pancras International Station in the London Borough of Camden. The site is bounded to the east by Camley Street and to the west by the Regents Canal. To the southeast of the site there is an electrical substation and to the north there is residential development. The site was historically part of the Midland Railway Infrastructure but is now principally occupied by two warehouses and a number of portacabins and container units. The remainder of the site is utilised as a base for taxis. Five Underground Storage Tanks (USTs) are also present on site. The site lies at a higher level that the Regents Canal, and is supported on the western boundary by a wall retaining the site level.

Geological records show that he site is underlain by the London Clay Formation, which is classified as non productive strata in accordance with the Water Framework Directive (WFD). Therefore, the site does not lie within a Source Protection Zone. The site is not in a particularly sensitive environmental setting.

A previous investigation of the site was completed in 2000 by Albury SI Limited, which indicated the presence of some 5-6m of Made Ground on the site, comprising notable concentrations of lead and Total Petroleum Hydrocarbons (TPH) contamination. An additional investigation of the site has been completed by CGL in March 2012, and consisted of 21 window samples, 4 deep cable percussive boreholes and a series of dynamic probe tests. Monitoring wells were also installed on site to allow for the completion of soil gas and groundwater monitoring.

The investigation was largely confirmatory of the original findings outlined within the Albury SI report, in that a significant thickness (maximum 6.0m) of variable Made Ground was encountered over the London Clay Formation, which was proven to a maximum drilled depth of 35.0mbgl. The clay was noted to be slightly weathered towards the surface and became still to very stiff around 13.0 to 18.0mbgl. In two of the deepest boreholes (BH3 and BH4), the clay became very sandy with depth and groundwater was encountered in

103 CAMLEY STREET, LONDON STAGE 2 Geotechnical and geoenvironmental interpretative report

sandy partings at depths in the order of 22.0m to 24.0mbgl. Perched groundwater also identified in the Made Ground at depths in the order of 3.2m to 5.7mbgl.

Chemical analysis of the soils has indicated that generally contamination is present at acceptable concentrations in relation to assessment criteria for a 'Commercial' end land use. Notwithstanding this, the majority of Made Ground will be removed to approximately towpath level to accommodate a lower ground floor level area. Traces of hydrocarbons (staining and odours) were noted within soils removed from locations drilled near to the USTs on site. Whilst the concentrations are considered acceptable, this may be indicative of leaks/spills and so the reduced level formation should be inspected once again post tank removal. The tank decommissioning/removal process should be supervised by a Geoenvironmental Engineer.

Generally the total soils and Waste Acceptance Criteria (WAC) testing has confirmed that the majority of soils may be disposed as *non hazardous* waste. Two of the WAC tests have indicated that there may also be discrete areas of material that can be disposed as *inert* waste. However, two hotspots have also been identified; asbestos was positively identified in WS1 in a cemented form, but not elsewhere in exploratory holes across the site.

Dependent upon the volume identified, it may mean that some of the soils in the total area local to WS1 could be classified as *hazardous* waste. Also in WS4, material was classified as hazardous waste on the basis of elevated lead concentrations. The test data can be used to form a waste disposal strategy that can be agreed with the receiving landfills to see that the correct classification is applied and waste volumes are minimised. The excavation/waste disposal process should be supervised by a Geoenvironmental Engineer.

Whilst the vast majority of Made Ground soils will be removed from site, some material may remain. Therefore, a capping layer comprising of 300mm fresh topsoil/subsoil is recommended to promote healthy plant growth in soft landscaped areas. Additionally, all potable water supply pipework should be Protectaline, or a similar specification.

Given the anticipated loads of the development, the recommended foundations for the proposed structure are bored piles formed into the London Clay. The retaining walls for the lower ground level should be contiguous pile walls, with an appropriate internal drainage cavity between the pile wall and internal facing, discharging to a positive sump, to accommodate residual groundwater seepages through the wall.

Suspended floors will be required to accommodate any movement due to heave. The final pile design should also allow for heave protection as the London Clay has high to very high

103 CAMLEY STREET, LONDON STAGE 2 Geotechnical and geoenvironmental interpretative report

volume change potential. Elevated sulphate has been recorded on site, which indicates that buried concrete within Made Ground and the London Clay Formation should be designed to Design Sulfate Class DS-5 and ACEC Class AC-5. However, in accordance with BRE Special Digest 1, a Design Chemical (DC) Class for cast-in-situ concrete of DC-3 is deemed to be appropriate based on the available information, assuming an intended working life of at least 100 years and section thicknesses greater than 450mm with some chemical attack being acceptable.

1. INTRODUCTION

Urbanest UK Limited has commissioned Card Geotechnics Limited (CGL) to undertake an intrusive ground investigation to assess geotechnical conditions and potential environmental risks associated with the redevelopment of the site of 103, Camley Street, London, NW1 OPF. The site's location is shown on Figure 1.

These works have been undertaken in relation to proposed redevelopment of the site to include substantial multi-storey student accommodation, with a lower ground floor level and 'incubation' space intended for student business enterprises.

CGL previously completed a *Stage 1 Geoenvironmental report*¹ for the site, which should be read in conjunction with this document.

This report presents a summary of earlier reports that have been completed for the site by CGL and Albury SI, the findings of the present intrusive investigation and includes a risk assessment with an updated conceptual site model to determine any ground-related environmental issues associated with the site. The investigation also includes geotechnical information and recommendations for foundation and floor slab design.

This report includes the following:

- Review of salient information from previous reports;
- Details of site works undertaken and the ground conditions encountered;
- Logs and factual data to generate geotechnical design parameters and assist foundation and sub-structure design;
- Chemical laboratory test data and characterisation;
- Geotechnical and geoenvironmental recommendations for the proposed development;
- Contamination risk assessment and remediation and waste disposal classification;
- Development of an updated Conceptual Site Model (CSM).

¹ CGL. (2011). Stage 1 Geoenvironmental report: 103 Camley Street, London. CG/5521. Rev 1

2. DESK STUDY AND SITE VISIT

2.1 Site location and description

The site is located off Camley Street in the London Borough of Camden to the north, northwest of Saint Pancras International Station. The Ordnance Survey Grid Reference for the site location is 529720, 183780.

The site location is presented in Figure 1.

2.2 Proposed development

The anticipated development will comprise multi-storey student accommodation of up to 12 storeys, with incubation space for student business enterprise, cycle parking and a café in a lower ground level formed by the reduction of site levels from that adjacent to Camley Street to that of the Regent's Canal towpath. Areas of green space will be incorporated adjacent to the canal towpath. Anticipated lower ground and ground floor layouts are provided as Figures 2a and 2b respectively.

2.3 Site walkover

A site walkover was completed as part of the earlier *Stage 1 Geoenvironmental report* that was completed by CGL. It was noted that two warehouses are present in the east of the site and are occupied by a dry food goods warehouse and toy business. In addition to the warehouses, several informal containers are noted on site as well as portacabins used as a café, and there are open areas that are used for taxi parking. Evidence for Underground Storage Tanks (USTs) was noted on site. London Fire Brigade Planning Authority confirmed the likely presence of five tanks that held petrol, diesel and gas oil. The tank that contained petrol was filled with water in 1989; the status of the remaining tanks is unknown.

The site is positioned adjacent to the towpath that runs parallel to the Regent's Canal, however, the site is some 5m above the level of the canal. An electrical substation is noted off site towards the southeast.

2.4 Historical development

The *Stage 1 report* indicated that the site once formed part of the Midland Railway infrastructure, with a large Goods Depot building extending over the eastern part of the

site that was later demolished. After this time, two rectangular shaped structures were developed to the eastern perimeter of the site and are still present on site today.

2.5 Previous reports

Several reports have been completed for the site, which are summarised in the *Stage 1* report; salient details from some these documents are summarised as follows:

Albury SI completed a ground investigation in 2000², which indicated the presence of some 5 to 6m of Made Ground on the site, comprising notable concentrations of heavy metals, particularly lead and Total Petroleum Hydrocarbons (TPH) and Polycyclic Aromatic Hydrocarbons (PAH). The hydrocarbons appeared to coincide with the area of the buried tanks.

CGL completed a *Stage 1 Geoenvironmental report* for the site in November 2010 (Revised August 2011), which comprised a search of the past land usage of the site and of potential contaminative land uses. It also included a preliminary assessment of the ground and groundwater conditions and the provision of a preliminary conceptual site model (CSM) for the site. The CSM indicated that there was a generally medium risk potential for contamination, but high in the area of the underground fuel storage tanks.

CGL also completed an *Outline remediation method statement*³, based on the desk study information, to set out the measures that will be required to protect the users of the development, the general public and the environment during the construction and operation stages. It also sets out the basis of the validation procedures that will be in place to confirm compliance with the remediation methodology.

2.6 Anticipated ground conditions

According to the British Geological Map Sheet 256⁴ the site is shown to be underlain by the London Clay Formation. The previous investigation completed by Albury SI indicated that there was a significant thickness of Made Ground overlying the natural strata. In the upper horizons, the Made Ground was noted to consist of brick rubble and earth predominantly. With depth, it comprised mainly a silty clay with brick fragments.

² Albury SI. (2002). 103 Camley Street: Letter report. Reference: 00/4901/NVM/CM/rpt. 12th December 2000.

³ CGL. (2010). Outline Remediation Method Statement: 103 Camley Street. CG/5521. November, 2012.

⁴ British Geological Survey (1994). North London, England and Wales Sheet 256. Drift Geology. 1:50,000.

2.7 Radon

Reference to the BRE⁵ and HPA⁶ guidance documents on radon protection measures indicates that the site is not positioned within a radon affected area, and that less than 1% of homes are below the action level. Therefore, no special precautions are considered necessary for new developments at this site.

2.8 Hydrogeology and hydrology

The Environment Agency⁷ has produced an aquifer designation system consistent with the requirements of the Water Framework Directive. The designations have been set for superficial and bedrock geology and are based on the importance of aquifers for potable water supply, and their role in supporting surface water bodies and wetland ecosystems.

The London Clay Formation is designated as 'Unproductive Stratum', which contains insignificant quantities of groundwater. The site does not lie within a Source Protection Zone and there are no potable water abstraction points near to the site.

The site is positioned some 5m above, but adjacent to, the Regent's Canal. Information obtained as part of the *Stage 1 report* indicated the canal is likely to have been constructed within the natural underlying strata, i.e. the London Clay Formation

On this basis, the risk to controlled waters is considered to be minimal.

2.9 Preliminary conceptual site model

An earlier CSM was included within CGL's *Stage 1 report*. This was based on the available information and past land uses identified in and around the site and the anticipated ground conditions.

Generally a medium risk potential for contamination was identified, but this was anticipated to be higher in the area of the USTs. This risk was assigned on the basis that a significant thickness of Made Ground was identified on site during the Albury SI investigation and that the on site USTs may have leaked.

⁵ BRE. (1999). Radon: Guidance on protective measures for new buildings. Building Research Establishment, Report BR211, 1999

⁶ HPA. (2007). Interactive atlas of radon in England and Wales. Health Protection Agency, HPA-RPD-033, 2007

www.environment-agency.gov.uk (2012)

3. PRESENT GROUND INVESTIGATION

3.1 General

An intrusive investigation was completed by CGL from the 2nd to the 19th April 2012 and comprised of four cable percussive boreholes (BH1-4) with associated in-situ testing and sampling. 21 window sample holes were completed using a tracked rig to obtain samples for contamination analyses. A series of dynamic probes were completed at two locations that extended inwards towards the site from the retaining wall. These positions were completed to determine the extent of the heel to the wall.

All of the exploratory hole locations were agreed in advance of site works with the Client and were completed in zones on the basis that the site is fully operational and becomes heavily trafficked by vehicle. The holes were positioned to allow for a suitable coverage of the site but were also targeted in relation to specific sources of contamination, such as the tanks and the substation. The indicative exploratory hole locations are shown on Figure 3.

Prior to the completion of site works, a full service search was completed on site by a specialist contractor. The survey drawing showing the services and all of the exploratory hole locations is in Appendix A. This also included a survey by means of Ground Penetrating Radar (GPR), which was used to located the buried tanks. Five tanks were located, which was consistent with information that was provided by LFB Planning Authority in the *Stage 1 report*. An output image showing the USTs is provided as Figure 4. In addition to the tanks, a tunnel was also identified which extended from the centre of the site in a south west direction. The full extent of the tunnel could not be determined and it is unclear as to its original purposes. However, there is the potential that this was part of the former Midland Railway infrastructure.

Potential hazards were discussed with the drilling crew and machine operators prior to the commencement of works and the CGL Engineer used a Cable Avoidance Tool (CAT) at each location as a precautionary measure to check for the presence of electrical services.

The boreholes were drilled by means of a Dando shell and auger rig to a maximum depth of 35.0m bgl. Standard Penetration Tests (SPTs) were carried out at regular intervals and were alternated with undisturbed sampling. The exploratory holes were positioned to enable suitable site coverage and upon completion were installed with gas and groundwater monitoring well equipment. Two of the deeper boreholes (BH3 and BH4)

were dual installed with a shallow standpipe extending through the Made Ground and a deeper standpipe that extended towards the base of the drilled hole.

Upon completion of the window samples locations, the arisings were backfilled in reverse order and reinstated at the surface with concrete. Three window samples were re-drilled in order that they could be backfilled with concrete to allow a noise/vibration impact assessment to be completed. These positions are marked as V1-V3 on the survey drawing. This assessment is being completed by others and is no longer referred to in this document.

The investigation was undertaken in general accordance with the requirements of BS 5930:1999⁸ and BS 10175:2011⁹. The exploratory holes were logged and representatively sampled by the CGL Engineer.

The full stratigraphic logs are provided in Appendix B and geological cross sections are provided in Appendix C.

3.2 Monitoring

Following the completion of the investigation, the installed monitoring wells were left to equilibrate for approximately one week. Subsequently, six gas and groundwater level monitoring rounds were completed on a weekly basis. The monitoring results are in Appendix G.

On the first monitoring round there was an issue with one of the monitoring wells (BH3), in that blockages were identified within both of the standpipes. The drilling crew attended site on the second monitoring visit to repair the wells.

3.3 Laboratory testing

3.3.1 Geotechnical

Selected geotechnical samples were classified and analysed by Geolabs Limited for the following parameters:

Particle Size Distribution (PSDs);

CG/5521C 13

.

⁸ BSI (1999). Code of Practice for Site Investigations BS 5930:1999. British Standards Institution.

⁹ BSI (2011). Investigation of Potentially Contaminated Sites – Code of Practice. BS 10175:2011. British Standards Institution, 2011.

- Moisture content and Atterberg Limits;
- Quick undrained triaxial testing;
- Water soluble sulfate and pH determination;
- Consolidation/swelling tests by odeometer.

The results are in Appendix D.

3.3.2 Chemical

Selected soil samples were dispatched to i2 Analytical Limited, a UKAS and MCERTS accredited laboratory, for the following analyses:

- Soil Organic Matter (SOM);
- pH determination;
- Metals, including arsenic, barium, beryllium, boron cadmium, chromium, copper, lead, mercury, nickel, selenium, vanadium and zinc;
- Total cyanide;
- Acid soluble sulfate;
- Total monohydric phenols;
- Speciated Polycyclic Aromatic Hydrocarbons (PAH) and;
- Speciated Total Petroleum Hydrocarbons (TPH).

Selected samples were also tested for Polychlorinated Biphenyls (PCBs) and asbestos identification on the basis of site observations.

Leachate testing was completed on eight samples for a similar suite of determinands as those outlined above; twelve samples were submitted for Waste Acceptance Criteria (WAC) testing. All of the chemical results are in Appendix F.

4. GROUND AND GROUNDWATER CONDITIONS

4.1 General

The ground conditions encountered during the intrusive investigation are summarised in Table 1 below but were largely confirmatory of the anticipated ground conditions.

Generally, the site is underlain by a significant thickness of Made Ground of variable composition over the London Clay Formation. Partings of sand were noted at depth with the London Clay in the deeper boreholes where groundwater was also encountered. These sandy horizons suggest that the lower beds of the London Clay Formation are present in this area.

4.2 Soils

Table 1: Ground conditions summary

Strata	Depth to top of stratum (m bgl)	Thickness (m)
Reinforced concrete and/or brick paviours.	0.0	0.1-0.5
[MADE GROUND/HARDSTANDING]		
Consisting of varying horizons of sandy gravel, gravelly sand and/or gravelly clay. Gravels are of flint, brick, concrete, glass, clinker, coal, metal, wood and ceramics.	0.10-0.50	* Up to 6.00
[MADE GROUND]		
(*Smaller thicknesses of Made Ground are recorded due to refusal being met on brick/concrete obstructions)		
Firm orange grey brown mottled silty sandy CLAY (weathered London Clay) becoming stiff to very stiff dark grey sandy CLAY with depth.	4.20-6.20	Proven to 35mbgl
In BH3 and BH4 siltstone was noted at depths of 22.65m and 19.80m respectively. Sand partings were also noted in these boreholes at depths of 24.1m and 21.35m respectively.		
[LONDON CLAY FORMATION]		

Further details of the ground conditions encountered are detailed in the following sections. The full stratigraphic logs are provided in Appendix B and geological cross sections are provided in Appendix C. A plot of SPT 'N' values vs. depth is provided as Figure 5 and a plot of Cu values against depth is provided as Figure 6.

4.2.1 Made Ground

The Made Ground was encountered across the site below the concrete/brick paviour hardstanding. The composition was variable, with horizons of sandy gravel and/or gravelly sand over gravelly silty clay. The Made Ground had a limited biodegradable fraction within the matrix. Very organic material was only noted in WS1, WS2A and WS16 comprising rotting timber/wood and organic peaty clay.

Generally the Made Ground comprised gravels of flint, brick, concrete, ceramic, metal and clinker. A number of concrete/brick obstructions were encountered during window sampling, which meant that some of the positions were either relocated or terminated at shallow depths. The obstructions appeared to be more prevalent along the west of the site where the retaining wall is located.

This is consistent with the borehole drilling crew's observations whereby brick rubble and concrete boulders were noted in the starter pits that were hand dug for BH2 and BH4. SPT tests taken within the Made Ground returned 'N' values in the range of 10 to 24 in the granular fill, which corresponds to material that is medium dense and 9 to 11 in the clay fill, which corresponds to material that is soft to firm (where $f_1 = 5$).

Some of the SPTs did not extend through the full length of the test and so the data was extrapolated to give SPT-N values in the range of 80 to 187. These values are inconsistent with the other values recorded in the fill, therefore, it is likely that the SPT could not penetrate through the material due to the presence of brick and concrete hardcore obstructions.

Visual and olfactory evidence of contamination was noted in several of the window sample holes in the Made Ground. In WS1 a cemented fibrous fragment of material was noted at 0.8mbgl. This was segregated and submitted for asbestos identification; the results are discussed in Section 5.0. In addition, black staining and/or a hydrocarbon odour was noted in locations WS1, 6, 7, 9-13A, 18 and 19. Generally, these observations were made in the locations that were positioned closest to the USTs, which is consistent with previous findings made by Albury SI. Whilst this may be indicative of the tanks having leaked historically, there was no gross contamination ie: free product noted. Therefore, the extent of leakage is considered to be somewhat limited.

4.2.2 London Clay Formation

The London Clay Formation was encountered in some of the window samples and all of the boreholes below the Made Ground. In some cases, the clay was noted to be weathered at shallow depths, consisting of firm orange grey brown mottled silty sandy London Clay nearer to the top of the stratum. Generally, the formation was encountered as stiff to very stiff dark brown sandy clay.

SPT-N values recorded in the clay were in the range of 11 to 49. Generally, the material had correlated ($f_1 = 4.5$) Cu values between 50kPa to 220kPa (SPT-N to Cu), which generally increased with depth and indicated the material to be 'firm to very stiff'.

The results of six triaxial tests on undisturbed samples between 6.0mbgl and 19.5mbgl returned undrained shear strengths in the range of approximately 51kPa and 149kPa, which correspond with the correlated Cu values determined from the SPT results and generally increase with depth. The results of the geotechnical classification analyses have indicated index properties for the London Clay in the following ranges:

- Moisture Contents between 23% and 36%;
- Liquid Limits between 56% and 79%;
- Plastic Limits between 23% and 34%; and
- Plasticity Indices between 32% and 46%.

On this basis the London Clay may be classified as a clay of high to very high plasticity with a medium to high volume change potential 11; a plasticity chart is presented as Figure 7.

Consolidation tests were completed at depths of 6.0m and 8.0m in the London Clay to determine the likely heave effect on the clay following the removal of the Made Ground. It has been estimated that some 5.0m of Made Ground may be removed from the site, which would equivalent to removing approximately 100kPa overburden on the clay. Basic heave calculations have been completed using the unloading stages of the consolidation. It is estimated that there may be some 50 to 90mm of heave following the removal of the Made Ground in the unconstrained case, although actual figures will be influenced by the moderating effects of pile and retaining wall installation.

All of the geotechnical results are provided in Appendix D.

4.3 Dynamic probing

Dynamic probe tests (DPTs) were completed at two locations against the retaining wall. The purpose of these works was to ascertain the extent of the heel of the wall that flanks the south west of the site. A plan showing the test locations is provided as Figure 8.

The tests were completed at regular intervals at locations that extended from the wall inwards towards the site. Eight DPTs were completed at location DP1 and three DPTs were completed at location DP2. Generally the probes that were formed closest to the wall met refusal at depths between 1.2m and 1.4mbgl at both DP1 and DP2. Refusal was met from the wall to approximately 2.5-3.5m inwards of the site. Beyond this, the probes advanced straight through to depths of 8.0mbgl, where the test was terminated.

It is unlikely that the heel of the wall has been encountered because it would not be situated at depths where refusal has been recorded. When comparing the results to the logs, it is noted that there were several window samples holes that refused along this flank of the site. In addition, the drilling crew recorded rubble and concrete boulders. Therefore, it is possible that a zone of hardcore material has been placed behind the wall historically when the site levels were being increased with fill material. This material is preventing the probes from advancing through the Made Ground, therefore, it is recommended that trial pits are excavated once the site has been cleared to determine the extent of the heel of the wall.

The dynamic probe results are provided in Appendix E.

4.4 Sulfate and pH

Water soluble sulfate results have been returned in the range of 410 to 6600mg/l and pH has been recorded in the range of 7.2 to 10.3 in samples taken from the Made Ground. The sulfate content within the London Clay at depth was in the order of 1300 to 8000mg/l and pH was in the range of 7.2 to 8.1.

¹⁰ British Standards Institution. (1999). Code of practice for site investigations. BS5930:1999 Inc. Amendment 2.

¹¹ National House-Building Council. (2007). Building Near Trees- Chapter 4.2.

On the basis of testing completed in the London Clay, 40% of the samples tested have a percentage of oxidisable sulfate greater than 0.3%. Therefore, it is possible that there may be pyrite present in the London Clay. This is discussed further in Section 6.7.

The results of all chemical tests are included in Appendix F.

4.5 Groundwater

During window sampling, perched water was noted in the Made Ground in WS1 at 5.20mbgl, WS6 at 3.60mbgl and BH1 at 5.7mbgl. Water seepage was also noted in WS14 at 3.2mbgl. In the boreholes, groundwater was generally not encountered. However, in the deepest boreholes (BH3 and BH4), groundwater was encountered within the sandy partings noted at depth. Therefore, these boreholes were installed with a deep standpipe (as well as a shallower standpipe with a response zone through the Made Ground), in order that the groundwater could be monitored.

Six monitoring rounds have been completed subsequent to the intrusive investigation; the groundwater levels are summarised in Table 2 below:

Table 2: Groundwater level summary

Fla	Groundwater (mbgl)							
Exploratory hole	26.04.12	02.05.12	10.05.12	17.05.12	24.05.12	31.05.12		
BH1	5.09	4.98	5.11	5.14	5.16	5.16		
BH2	4.24	3.28*	3.28	3.38	3.53	3.52		
BH3 (Shallow)	NR	4.82	4.74	4.91	4.92	4.92		
BH3 (Deep)	NR	9.82	6.83	6.32	6.42	6.40		
BH4 (Shallow)	4.28	4.32	4.52	4.55	4.60	4.68		
BH4 (Deep)	5.90	5.43	5.62	5.59	5.67	5.70		

Notes:

NR Not recorded due to problem with monitoring well

* Standing water from the surface went into the standpipe when the bung was removed

Sandy partings were noted towards the base of BH3 and BH4, where a groundwater strikes were recorded at depths of 24.05m and 22.40mbgl respectively. During monitoring, these levels were noted to rise to depths in the range of 5.43m to 9.82mbgl, which are likely to be reflective of the long term water table in the London Clay. Water that has been encountered within the shallower installations and during drilling of the window samples is likely to be representative of perched water within the Made Ground above the more impermeable London Clay below.

4.6 Soil gas

Gas monitoring was completed from the 26th April to the 31st May 2012 by a CGL Engineer when atmospheric pressure was recorded between 990 and 1023mb. Monitoring was completed during periods at which atmospheric pressure was below 1000mb and when it was rising and falling.

Positive and negative flow rates were detected on site, with the maximum flow being recorded in BH2 at 1.8l/hr. Oxygen was recorded in the range of 19.0 to 21.0%. Methane was not detected on site. Carbon dioxide was recorded in the range of 0.0 to 0.5% by volume in air. A Photo Ionisation Detector (PID) was used to detect the presence of Volatile Organic Compounds (VOCs). The readings were negligible and were all 0.0 parts per million.

The monitoring records are provided in Appendix G.

5. CONTAMINATION ASSESSMENT

5.1 Human health assessment

Representative samples from the present investigation were selected for laboratory analysis. The test results have been compared against the published Soil Guideline Values (SGVs) for the "commercial" land-use category to assess the risk to human health from chemical contamination. Whilst the site is being redeveloped for student residence, the majority of the Made Ground will be removed to allow for a lower ground level to be constructed. At this level, it is proposed that 'incubation spaces' will be provided for student business enterprises. In addition, there will be no areas for private gardens and so the 'commercial' land use category is considered appropriate for the site in question.

Currently, SGVs have only been issued by the Environment Agency for a limited number of contaminants, namely selenium, mercury, arsenic, nickel, the BTEX compounds, phenol and cadmium. The SGVs have all been issued for a sandy loam soil with a Soil Organic Matter of 6% as standard.

Where SGVs are not available, the soil results have been compared to Generic Assessment Criteria (GACs) that have been derived in-house by CGL using the *Contaminated Land Exposure Assessment (CLEA)* model¹² and version 1.06 of the CLEA software. The GACs represent conservative screening criteria and have been calculated using the default parameters for the standard land use scenario set out in the CLEA technical report and toxicological inputs in line with the requirements of *Science Report SC050021/SR2*¹³ and, in the case of petroleum hydrocarbons, Science *Report P5-080/TR3*¹⁴. The GACs have been generated assuming a sandy loam soil type and a Soil Organic Matter of 1%, which are suitable assumptions for the site in question. More detailed information on the derivation of the CGL GACs can be provided upon request.

Assessment against the SGVs and GACs is carried out at the 95^{th} percentile on the sample mean (designated US₉₅), which is considered to represent a reasonable worst-case scenario. The US₉₅ has been rounded up to the nearest whole number. Statistical

¹² Environment Agency. (January 2009). Updated technical background to the CLEA model. Science Report SC050021/SR3.

¹³ Environment Agency. (January 2009). *Human health toxicological assessment of contaminants in soil.* Science Report SC050021/SR2.

¹⁴ Environment Agency. (February 2005). *The UK Approach for Evaluating Human Health Risks from Petroleum Hydrocarbons in Soils*. Science Report P5-080/TR3.

assessment of the results has been completed in accordance with the recommendations set out in the recently published CL:AIRE guidance¹⁵. In this regard, an assessment of the normality of the data has been undertaken. Where datasets are normally distributed the one sample t-test has been applied to calculate the US₉₅. In the case of non-parametric datasets, the Chebychev Theorem has been applied. The Grubbs Test has also been used to identify potential outliers within datasets. Copies of the relevant statistical analysis are available on request.

The results of the assessment are set out below in Tables 3a and 3b. A copy of the factual data is included as Appendix F.

Table 3a: Summary of soil contamination (risks to human health)

Contaminant	SGV or GAC @ 1% SOM	Notes on soil saturation limits (SSL) ¹	Measured range	US ₉₅	US ₉₅ > Assessment Criteria? (Y/N)
	for Commercial land-use				#- outlier detected
	(mg/kg)		(mg/kg)	(mg/kg)	
SOM (%)	*2		0.6-5.7	*	*
Arsenic	640 ³	-	3.2-29	17.13	N#
Cadmium	230 ³	-	<0.2-1.6	0.39	N
Chromium (total)	330	-	6.7-78	39.44	N
Chromium (III)	9,600	-	37-78	59.95	N
Chromium (VI)	35	-	<4	<4	N
Lead	6,800	-	21-2500	664.89	N
Mercury (inorganic)	3,600 ³	-	<0.3-2.6	1.00	N
Selenium	13,000 ³	-	<1.0	<1.0	N
Boron	*		<0.2-6.5	2.48	*
Copper	73,000	-	23-230	104.30	N
Nickel	1,800 ³	-	7-57	33.61	N
Zinc	330,000	-	35-1900	356.16	N#
Barium	*		37-1300	285.84	*
Beryllium	220	-	0.2-3.8	1.46	N#
Vanadium	5,500	-	8.5-90	62.54	N
Phenols ⁴	750 ³	(c)	<2	<2.0	N
Cyanide	*		<1-2	1.12	*
BTEX compounds					
Benzene	29 ⁵	-	<0.001-0.18	0.02	N#

¹⁵ J. Lowe et al. (May 2008). Guidance on comparing soil contamination data with a critical concentration. CL:AIRE, CIEH & SAGTA.

Contaminant	SGV or GAC @ 1% SOM for Commercial land-use	Notes on soil saturation limits (SSL) ¹	Measured range	US ₉₅	US ₉₅ > Assessment Criteria? (Y/N) #- outlier detected
	(mg/kg)		(mg/kg)	(mg/kg)	
Toluene	870 ⁵	(d)	<0.001	<0.001	N
Ethyl benzene	520 ⁵	(d)	<0.001	<0.001	N
m-xylene ⁶	630 ⁵	(d)	<0.001	<0.001	N
o-xylene ⁶	480 ⁵	(d)	<0.001	<0.001	N

Notes:

- -= green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with the CLEA Software Handbook; (c) = based on direct contact; (d) GAC limited to SSL.
- 2. * = no value currently defined
- 3. Based on published Soil Guideline Value (Environment Agency, 2009), adjusted for 1% SOM
- 4. GAC relates to Phenol (C_6H_5OH) only and is based on direct skin contact
- 5. Based on the published SGVs for BTEX at 6% SOM (Environment Agency, 2009), adjusted for 1% SOM
- 6. Concentrations for total xylenes should be compared to the value for m-xylene for fresh spills and to o-xylene for all other cases.

Table 3b: Summary of soil contamination (risks to human health) cont.

Contaminant	SGV or GAC @ 1% SOM for Commercial	Notes on soil saturation limits (SSL) ¹	Measured range	US ₉₅	US95 > Assessment Criteria? (Y/N)
	land-use				#- outlier detected
	(mg/kg)		(mg/kg)	(mg/kg)	
Total Petroleum Hydrocarbo	ons (TPH)				
TPH aliphatic EC5-6	370	(d)	<0.1	<0.1	N
TPH aliphatic EC>6-8	170	(d)	<0.1	<0.1	N
TPH aliphatic EC>8-10	93,000	(b)	<0.1	<0.1	N
TPH aliphatic EC>10-12	95,000	(b)	<1.0	<1.0	N
TPH aliphatic EC>12-16	95,000	(b)	<2-67	12.34	N
TPH aliphatic EC>16-35	1,900,000	(b)	16-360	86.06	N
TPH aromatic EC5-7	29	-	<0.1-0.2	0.11	N
TPH aromatic EC>7-8	870	(d)	<0.1	<0.1	N
TPH aromatic EC>8-10	34,000	(b)	<0.1	<0.1	N
TPH aromatic EC>10-12	38,000	(b)	<1	<1	N
TPH aromatic EC>12-16	38,000	(b)	<2-20	4.97	N
TPH aromatic EC>16-21	26,000 [60]	(a)	<10-140	32.56	N
TPH aromatic EC>21-35	28,000 [4.8]	(a)	<10-290	49.07	N
Polycyclic Aromatic Hydrocarbons (PAH)					
Acenaphthene	110,000	(b)	<0.1-2.10	0.02	N
Anthracene	530,000 [7.7]	(a)	<0.1-5.9	0.99	N
Benzo(a)anthracene	192 [1.7]	(a)	<0.2-14	2.39	N

Contaminant	SGV or GAC @ 1% SOM	Notes on soil saturation limits (SSL) ¹	Measured range	US ₉₅	US95 > Assessment Criteria? (Y/N)
	for Commercial land-use				#- outlier detected
	(mg/kg)		(mg/kg)	(mg/kg)	
Benzo(a)pyrene	22 [0.9]	(a)	<0.1-13	0.48	N#
Benzo(b)fluoranthene	220 [1.2]	(a)	<0.2-5.8	0.99	N#
Benzo(g,h,i)perylene	2,200 [0.02]	(a)	<0.05-8.0	1.35	N#
Benzo(k)fluoranthene	220 [0.7]	(a)	<0.2-5.8	1.14	N#
Chrysene	2,100 [0.4]	(a)	<0.05-14	2.47	N#
Dibenzo(a,h)anthracene	22 [0.004]	(a)	<0.2-1.2	0.32	N#
Fluoranthene	72,000 [19]	(a)	<0.2-33	5.60	N
Fluorene	64,000 [150]	(a)	<0.2-2.3	0.51	N#
Indeno(1,2,3-cd)pyrene	210 [0.06]	(a)	<0.2-6.9	1.24	N#
Naphthalene	23,000	(b)	<0.05	<0.05	N
Pyrene	54,000 [2.2]	(a)	<0.2-27	4.57	N#

Notes

The results of the statistical analysis indicate that there are no unacceptable concentrations of contamination across the site in comparison to the assessment criteria for the chosen land use scenario. Traces of TPH and benzene were noted in some locations that were advanced near to the underground fuel storage tanks. Whilst the concentrations were below the associated assessment criteria, this may be indicative of historic leaks/spills from the tanks. Therefore, the soils below the tanks should be inspected further following their removal. This is discussed further in Section 7.4.

Selected samples were submitted for PCB analysis given the presence of an electrical substation off site. The results that were returned were all below the limits of detection, therefore, the risk from this source is considered to be minimal. In addition, a sample of fibrous material was taken from one of the window sample locations and was submitted for asbestos identification. The laboratory has positively identified chrysotile fibres within the sample. Whilst other evidence of Asbestos Containing Materials (ACMs) was not noted during the investigation, it is possible that asbestos might be present in other areas across the site. This is discussed in Section 7.3

 ^{- =} green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with the CLEA Software Handbook; (c) = based on direct contact; (d) GAC limited to SSL.

5.2 Risks to controlled waters

Given the nature of the local hydrological and hydrogeological regime, the risk to controlled waters is anticipated to be minimal. The site is underlain by the London Clay Formation, which is designated as an 'Unproductive Stratum' by the EA. Therefore, no groundwater samples have been taken as part of these works. However, eight soil samples were submitted for leachate analysis in order to assess the risks from mobile contamination; the results are reported in Table 4. The results have been compared to Environmental Quality Standards (EQS) and the Drinking Water Values (DWV). When given the local ground conditions, this is considered to be a stringent assessment for the site in question.

Table 4: Summary of leachate results

Contaminant	Freshwater EQS ¹ (µg/l)	EC Drinking Water Value (μg/I)	Measured range (μg/l)	No. of samples exceeding EQS	No. of samples exceeding Drinking Water Value
Arsenic	50	10	2.2-8.7	0	0
Cadmium	5	5	<0.1	0	0
Chromium	250	50	1.5-9	0	0
Lead	250	10	1.4-21	0	2 of 8
Mercury	1	1	<0.5-0.9	0	0
Selenium	*2	10	<4.0	*	0
Boron	2000	1000	29-170	0	0
Copper	28	2000	2.6-12	0	0
Nickel	200	20	1.2-4.4	0	0
Zinc	500	(5000) ³	2.3-14	0	0
Barium	*	(1000) ³	12-81	*	0
Beryllium	(15) ⁴	*	<0.2	0	*
Vanadium	60	*	<1.7-13	0	*
Phenols	30	(0.5) ³	<10	0	LOD > DWV
Cyanide	5 ⁵	50	<10	LOD > EQS	0
Sulfate (mg/l)	400	250	7.6-190	0	0
ТРН	*	(10) ³	<10	*	0 8
PAH	*	0.1	<0.04	*	0 8
Benzo(a)pyrene	*	0.01	<0.01	*	0
Naphthalene	10	*	<0.01	0	*
Benzene	30	1	<1.0	0	0
Toluene	50	*	<1.0	0	*
Ethylbenzene	*	*	<1.0	*	*
Xylenes	30	*	<1.0	0	*
MTBE	*	*	<1.0	*	*
рН	6.0 - 9.0	6.5 - 10.0	6.5-7.9	0	0

The results of the groundwater sample analysis have indicated that, where tested, chemical determinands are generally present at acceptable concentrations below the EQS and DWV values. However, lead is present at concentrations that exceed the DWV in two of the samples tested. Lead was detected at a maximum concentration of $21\mu g/l$, which exceeds the DWV of $10\mu g/l$ but not the EQS. However, as the hydrogeological and hydrological setting of the site is not greatly sensitive, the risk from this contaminant to controlled waters is considered to be minimal.

In the case of cyanide and phenols, the laboratory limits of detection exceed the EQS and DWV respectively in the groundwater sample. However, the total soil concentrations of phenols and cyanide are below the limits of detection and so it is unlikely that there would be any significant phenol or cyanide contamination within the dissolved phase. The factual data is provided in Appendix F.

5.3 Updated qualitative risk assessment

A preliminary Conceptual Site Model was provided in the initial *Stage 1 Geoenvironmental report*, which identified the potential pollutant linkages that may have existed at the site in accordance with Contaminated Land Report (CLR) 11¹⁶. The risks identified are in accordance with the DEFRA and Contaminated Land Report (CLR) 6¹⁷, site prioritisation and categorisation rating system which is summarised in Table 5 below.

¹⁶ The Environment Agency (2004) Model Procedures for the Management of Land Contamination, CLR 11

¹⁷ M.J. Carter Associates (1995) Prioritisation and Categorisation Procedure for Sites which may be Contaminated, Department of the Environment, CLR 6

Table 5: Risk Rating Terminology

Risk Rating	Description
High Risk	Contaminants very likely to represent an unacceptable risk to identified targets
	Site probably not suitable for proposed use
	Enforcement action possible,
	Urgent action required
Medium Risk	Contaminants likely to represent an unacceptable risk to identified targets
	Site probably not suitable for proposed use
	Action required in the medium term
Low Risk	Contaminants may be present but unlikely to create unacceptable risk to identified targets
	Site probably suitable for proposed use
	Action unlikely to be needed whilst site remains in current use
Negligible Risk	If contamination sources are present they are considered to be minor in nature and extent
	Site suitable for proposed use
	No further action required

Based on the above terminology, an assessment of the risks posed by the potential pollutant linkages at the site is outlined in the Updated CSM, which has been reviewed on the basis of findings from the present ground investigation and is presented as Table 6.

Table 6: Qualitative Risk Assessment

Source/Medium	Receptor	Potential Exposure Route	Risk Rating
Explosive / asphyxiating gases from within Made Ground (if present)	Internal building spaces & future occupiers	Migration of gases through the surface and via permeable soils	Low to negligible risk as no methane, and minimal concentrations of carbon dioxide have been identified.
Asbestos within Made Ground (if present)	Construction workers	Direct ingestion of soil & dust, inhalation of particulates & vapours and dermal contact	Medium risk as evidence of asbestos has been identified in one location, however, this is in a cemented form, limited in extent and risks can be mitigated.
Organic/inorganic contaminants (e.g. PAHs, TPH, metals etc.) within Made Ground (if present) and potential fuel spillage	Construction workers	Direct ingestion of soil & dust, inhalation of particulates & vapours and dermal contact	Low risk as minimal concentrations of contaminants have been identified, however, there is potential that hydrocarbon contamination may be present below the buried tanks.
	Future site occupiers Controlled waters	Direct ingestion of soil & dust, inhalation of particulates & vapours, indirect ingestion by means of dermal contact Migration via leaching/transport in groundwater	Low to negligible risk given that the majority of Made Ground will be removed and/or encapsulated beneath structures thus minimising leaching.
	Vegetation and plants	Root uptake	Low risk as planting is likely to be minimal as it will be landscaped, therefore, vegetables are unlikely to be grown on site.
	Buildings & structures	Direct contact and migration & accumulation within building spaces	Low risk given that no VOCs have been recorded on site, and the sources of contamination will be removed. Elevated sulphate has been identified on site.
PCBs from the former railway industry and the electrical substation.	Construction workers	Direct ingestion of soil & dust, inhalation of particulates & vapours and dermal contact	Low to negligible risk given that the
	Future site occupiers	Direct ingestion of soil & dust, inhalation of particulates & vapours and dermal contact	potential sources are predominantly located off site. PCBs are not present at concentrations above the limits of detection.

Despite there being a significant thickness of Made Ground across the site, the gas regime has been identified as being very low risk. Minimal concentrations of carbon dioxide (0.5%) and methane (0.0%) have been recorded, which may be because a minimal biodegradable fraction was encountered within the soil matrix. Asbestos was identified in one location, which could mean that further fragments of cement bound fragments or loose fibres are present within the soil, although given the history of the site, the occurrences would be isolated and restricted to the upper layers if present. Therefore, site workers should employ the use of Personal Protective Equipment (PPE) to mitigate the risk from contact with fibres, particularly inhalation, as a sensible precaution. The presence of asbestos may also have implications for waste disposal, which is discussed in Section 7.3.

Limited soils contamination has been encountered on site; traces of hydrocarbons were noted in window sample locations that were drilled close to the underground fuel storage tanks. Whilst these contaminants have been identified at acceptable concentrations, there is the potential that more significant contamination may be present closer to/below the tanks. The tanks should be decommissioned and removed as part of the future development so that the soils in this area can be inspected and removed if they have been grossly impacted. This is discussed further in Section 7.4. The risk from hydrocarbon vapours is considered to be low given that negligible VOC concentrations has been detected during monitoring and because the tanks will be removed from site.

Elevated sulfate has been identified in both the Made Ground and natural soils. This may have implications for buried concrete structures, however, this risk can be mitigated by using an appropriate design class of concrete, which is discussed in Section 6.7.

The risk to plants is considered to be minimal as the development proposals include landscaped/border vegetation as opposed to private gardens where homegrown vegetables might be grown.

A diagrammatic CSM is provided as Figure 9.

6. GEOTECHNICAL RECOMMENDATIONS

6.1 General

The anticipated development will comprise multi-storey student accommodation of up to 12 storeys, with 'incubation space' for student business enterprise, cycle parking and a café in the ground floor level. Areas of green space will be incorporated adjacent to the canal towpath.

The following recommendations are based on the ground and groundwater conditions encountered during the present ground investigation and the results of subsequent testing for geotechnical parameters.

6.2 Geotechnical Design Parameters

Geotechnical design parameters for the proposed development are summarised in Table 7 below. These are based on the results of SPT testing, geotechnical laboratory testing, and published data for the well-studied London geology.

Table 7: Geotechnical design parameters

Stratum	Design Level (mOD)	Bulk Unit Weight γ _b (kN/m³)	Undrained Cohesion c _u (kPa) [c']	Friction Angle ¢' (°)	Young's Modulus E _u (MPa) [E']
Made Ground (Granular)	28	19	-	28 ^b	[14]
Weathered London Clay	22.5	20	50 + 10z ^c [5]	24 ^a	30 + 6z ^d [22.5 + 4.5z] ^e
London Clay	15	20	130 + 3.2z ^c [5]	24 ^a	78 + 1.9z ^d [58.5 + 1.5z] ^e

a. BS 8002:1994 Code of practice for Earth retaining structures, British Standards institution.

The parameters in Table 14 are unfactored 'moderately conservative' design values.

b. Peck, R.B., Hanson, W.E., and Thornburn, T.H., Foundation Engineering, 2nd Edn, John Wiley, New York, 1967, p.310.

c. z = depth below surface of the London Clay

d. Based on 600Cu

e. Based on 0.75Eu

6.3 Excavations

Based on the ground conditions encountered excavations required during the development should not pose significant difficulties for conventional excavators and earthmoving equipment. However, it should be noted that concrete obstructions may be present near to the retaining wall.

As the dynamic probing, completed as part of the present investigation, did not delineate the extent of the heel of the retaining wall on site it is recommended that a machine excavator is used during the demolition or groundworks phase of the development to determine the extent of this feature. Given the variable nature of the Made Ground, it is necessary that any trial pits excavated against the wall are suitably shored and supported.

Excavation of the lower ground level will take place to approximately 5.0 to 6.0mbgl through the Made Ground. Perched groundwater has been identified in the Made Ground at levels in the order of 3.28m to 5.14mbgl. Therefore, groundwater control may be required during the basement excavation (see Section 6.5).

Excavations in excess of 1.2mbgl should be suitably shored or otherwise supported or battered and should be inspected regularly by a competent person. No operatives should enter unshored or otherwise unprotected excavations.

6.4 Foundations

Based on the anticipated development loads and the recorded ground conditions, pile foundations are considered appropriate for the site. At this stage specific column loads have not been provided.

Given the ground conditions and urban nature of the site it is likely that continuous flight auger (CFA) will be appropriate to limit disturbance to neighbours. The use of CFA piling methods will also overcome the potential for pile bore collapse due to water ingress in the sandier zones of the London Clay. Preliminary pile working loads are presented in Figure 10 based on CFA piles with an adhesion value of 0.5 within the London Clay and a factor of safety of 2.6 as recommended in current LDSA guidance¹⁸. This assumes that no pile testing is undertaken. It should be noted that this factor of safety can be reduced to 2.2 on completion of a representative number (1% of total number of piles) of working load tests and to 2.0 on completion of working load tests and preliminary pile tests.

¹⁸ LDSA. (2009). Foundations, No.1 Guidance Notes for the Design of Straight Shafted Bored Piles in London Clay.

Indicative pile safe working loads are summarised in Table 8 below based on 25m effective length piles with a toe level at circa -3mOD and a cut-off level of circa 22mOD (i.e. 2m below lower ground floor level).

Table 8. Summary of preliminary pile safe working loads (FoS = 2.6).

Pile Diameter (mm)	Safe Working Load (MN)		
600	1.48		
750	1.90		
900	2.35		

Depending on column loads either single piles or pile groups may be utilised. Final pile design should be undertaken by the piling contractor.

6.5 Retaining walls

Retaining walls for the lower ground floor will be required in those areas away from the towpath. It is anticipated that the basement will be constructed using contiguous or secant bored pile walls, dependent on groundwater conditions and basement drainage requirements. Based on the groundwater conditions encountered on-site (see Section 4.5), groundwater is largely limited to small volumes of perched water in the Made Ground. As such a contiguous pile wall with an appropriate internal drainage cavity between the pile wall and internal facing is recommended to accommodate residual groundwater seepages through the wall in the permanent condition.

It is recommended the basement retaining walls toe a minimum of 1m into the London Clay to provide an effective groundwater seal during construction. It is likely a greater depth will be required to ensure stability if the retaining wall is to be designed as a cantilever. Given that only a limited number of adjacent structures are generally in close proximity, and given the history of ground level raising in the area are likely to be supported by piled foundations, the risk of damage to neighbouring structures is considered to be low and a cantilevered solution is feasible. The retaining wall will be supported in the permanent condition by the lower ground floor and ground floor slabs.

The basement box should be dewatered, if required, to below formation level so that the lower ground floor slab can be cast. Groundwater control could take the form of a sump drainage system with active collection pumps. It is envisaged an effective seal into the London Clay will limit potential recharge following dewatering so that pumping will only be

required to remove residual seepage. Once dewatered, minimal groundwater seepage through, or beneath the pile walls is anticipated and it is likely this could be controlled by localised sump pumping. A design groundwater level of 23.5mOD should be adopted for temporary works.

Geotechnical parameters for retaining wall design are provided in Table 7. For short term temporary works undrained parameters for the London Clay should be adopted, however should the pile wall remain in the cantilevered condition for periods of greater than 3 months, drained parameters should be used.

6.6 Lower ground level and slab

The London Clay will be subjected to some stress relief as some 5.0m of Made Ground is removed. Due to the cohesive nature of the London Clay (silty clays), they are likely to be affected by seasonal shrink-swell and subject to some volume change during unloading and loading. Basic heave calculations have been completed and it is estimated that there may be some 50 to 90mm of heave following the removal of the Made Ground. Therefore, the design should also allow for heave protection as the London Clay has high to very high volume change potential.

As such it is considered a suspended lower ground floor slab is adopted for the development, incorporating an appropriate compressible material or void former beneath the slab to accommodate heave movements.

Similarly a void, void former or compressible material should be provided against the inside faces of external pile caps. Piles should be reinforced to a depth sufficient to counteract heave forces causing uplift over the upper portion of the pile shaft.

6.7 Pavement design

A CBR value of 2% is recommended for roads and pavements founded where Made Ground is to be retained. The material should be proof rolled, and if pockets of weak material are encountered these should be removed and replaced with well compacted granular fill.

6.8 Drainage

Infiltration testing was outside of the scope of works for the present investigation.

However, on the basis of the ground conditions encountered, soakaways would not be recommended as a suitable drainage option for the site due to the anticipated infiltration rates.

Other suitable Sustainable Drainage System (SuDS) options may be available for the site, which should be discussed with a specialist drainage consultant. Any such system would need to have a high degree of storage to attenuate against low infiltration rates.

6.9 Buried concrete

Based on BRE Special Digest 1¹⁹, buried concrete within Made Ground and the London Clay Formation should be designed to Design Sulfate Class DS-5 and ACEC Class AC-5 assuming mobile groundwater.

This is a high design grade of concrete even within the London Clay Formation, which comprises sulfate-bearing selenite. Also on the basis of the testing completed, there is potential that there may be pyrite present in the London Clay. This can be problematic in situations where the ground is disturbed to the extent that the pyrite is exposed to oxidising conditions giving rise to sulfate ions, which may affect the concrete.

However, on the basis that piled foundations have been recommended for the site, in the London Clay, it is likely that ground disturbance in the formation will be minimal. This risk will also be mitigated by the use of the higher design chemical class for concrete.

In accordance with BRE Special Digest 1, a Design Chemical (DC) Class for cast-in-situ concrete of DC-3 is deemed to be appropriate based on the available information, assuming an intended working life of at least 100 years and section thicknesses greater than 450mm with some chemical attack being acceptable.

At shallower depths where Made Ground will remain, it may be possible to replace the Made Ground with non-sulfate bearing material such as Type 1 fill in order that the design grade for buried concrete can be reduced at such depths. However, it may not be practical to make this differentiation during development construction, in which case the higher classification would need to apply to buried concrete.

¹⁹ BRE Construction Division. *Concrete in aggressive ground*. Special Digest 1:2005. 3rd Edition.

7. CONTAMINATION RECOMMENDATIONS

7.1 General

The following recommendations have been made on the basis that the future development will involve the removal of the majority of Made Ground and will consist of a commercial space at the lower ground level. With reference to potential contamination issues, the 'Commercial' end land use is considered to be most appropriate for the site.

The following recommendations are based on the ground and groundwater conditions encountered during the present ground investigation and the results of subsequent testing for contamination parameters.

7.2 Soil contamination and remediation

Gross contamination was not identified across the site in terms of a 'Commercial' end use scenario. Where tested, all of the determinands were present at acceptable concentrations in relation to available SGVs and CGL GACs. Nevertheless, site workers should follow health and safety procedures, outlined in Section 7.10, as standard when working in close contact with exposed soils.

Beneath the building footprint the floorslab will act as a physical barrier to isolate any residual soil contamination and prevent vertical infiltration of surface water. No remediation measures are expected in this part of the development.

Where areas of Made Ground are left in-situ and/or soils will be exposed, a capping layer is recommended as discussed in Section 7.2.1

7.2.1 Capping layer

The capping layer should consist of a thickness of 300mm of topsoil and subsoil. It is anticipated that this thickness of cover will be appropriate to act as a barrier to above ground receptors and promote healthy plant growth in the areas of soft landscaping.

The imported soil should be clean, 'non waste' soil imported from a known and reputable source. A greenfield source should be utilised where possible. Chemical test results and details of source will be provided by the Contractor prior to the material being brought to site. The material will not exceed the Maximum Permissible Concentrations set out in

Appendix H. In addition, the topsoil will meet the requirements of BS 3882:2007 Classification – General Purpose Grade or better, and should be free from propagules of aggressive weeds.

Once on site, the imported material will be subject to validation testing. At least one chemical test will be undertaken for every 50m^3 of imported material. Imported earthworks material, including general fill, should be subjected to a similar testing regime if any is required.

7.3 Material management and waste classification

It is anticipated that the majority of soils requiring disposal will be generated during the removal of the Made Ground from site. A Geoenvironmental Engineer should be present at this time in order that material of a similar composition can be stockpiled and sampled to allow for waste characterisation.

In general, the total soil analysis and subsequent WAC testing has indicated that the Made Ground can be disposed at a *non hazardous* landfill facility. WAC test results for material in WS 6 at 0.6m and WS7 at 3.0m may be disposed at an *inert* facility if required. There may be other discrete areas of material that could be classified as *inert*, which is likely to apply to areas of brick and concrete rubble that have been identified. Such material should be stockpiled so that samples for further WAC analysis can be completed. A sampling frequency of 1 per 250m³ for small waste streams and 1 per 500m³ for larger volumes could be applied.

Screening of the arisings may permit recycling/reuse of the material for other sites under the WRAP protocol²⁰ or the CL:AIRE protocol²¹ and would lead to a reduction in disposal requirements. Therefore, it is recommended that the excavation of the Made Ground is completed in zones in order that any potentially grossly contaminated material (identified by discolouration, odour etc.) can be segregated from potentially re-useable material, such as concrete and other hardcore materials. It is recommended that the tank removal is completed first in order that cross contamination can be minimised.

In WS4 at 0.5mbgl, the material has been classified as hazardous on the basis of the lead concentration. It will be necessary to segregate this material to allow for separate disposal at a *hazardous* landfill. Again, further areas of hazardous material may be present on site

CG/5521C 36

2

²⁰ WRAP. (n.d.) The Quality Protocol.

²¹ CL:AIRE.(2011). The Definition of Waste: Development Industry Code of Practice. Version 2.

particularly where the underground fuel tanks are located. Therefore, these areas particularly should be inspected by a Geoenvironmental Engineer in order that any grossly contaminated material can be segregated and sampled to determine a suitable end point for disposal.

Within the Made Ground at WS1 at 0.8mbgl, a small fragment of ACM was encountered in the form of cement type material comprising chrysotile fibres. Given the form and type of asbestos encountered and the isolated occurrence, this is considered to be a low risk to human health. With regard to waste disposal requirements, waste with >0.1% asbestos is considered *hazardous*, however, given the limited quantity encountered this is not considered to be a concern. Appropriate precautions will be however be required during construction works should further ACMs be found. This could include wetting the sides/bases of excavations, covering excavated spoil to reduce risk of fibre release (considered to be low as in the form of cemented material) and appropriate personal and respirator protective equipment (PPE/RPE).

Natural arisings which are not contaminated can be disposed at an *inert* landfill based on being classified a natural soil and a listed inert waste with no requirement for WAC testing.

All material intended for off site disposal should be transported and disposed in accordance with the Environmental Protection (Duty of Care) Regulations, 1991 and the Landfill (England and Wales) Regulations, 2002 (as amended). Waste legislation stipulates that *hazardous* and *not hazardous* waste should be pre-treated prior to disposal. Pre-treatment can be undertaken either at the site of origin or may be carried out at a licensed off-site facility and can include selective segregation of soils conducted on site.

7.4 Removal of tanks and decommissioning

The present investigation involved a GPR survey of the site, which confirmed the location and number of tanks in the vicinity of the retaining wall on the western boundary. In total, five buried tanks were identified, which is consistent with information presented in the Stage 1 Geoenvironmental report.

It is recommended that the tanks are decommissioned in accordance with PPG2²² and the Health and Safety Executive guide CS 15: *Cleaning and gas freeing of tanks containing flammable residues*. Suitable fire fighting equipment and emergency spill response materials should be retained on site during this phase.

All decommissioning and removal works should be supervised by a competent foreman at all times and all leaks and spills monitored and controlled to prevent spread of contamination. Any liquid in the tanks should be pumped out, including liquid requiring a hand pump to remove. The contents of the tanks should be transferred to a tanker for off site disposal or recycling at a licensed facility. Any solids or sludge should also be removed. All tanks should be removed from the ground by lifting with suitable plant.

After the removal of the tanks and associated pipework etc., it would be prudent to inspect the area below the tanks to determine whether the underlying soils have been impacted. Hydrocarbon impacted arisings will have to be stockpiled to enable testing for waste classification as per the recommendations in Section 7.3.

In addition, the tanks, contents and fittings should be transferred to a registered waste carrier for off site disposal at a licensed landfill or recycled as scrap metal. Transport of the tanks should be in accordance with all applicable regulations, including the Environmental Protection (Duty of Care) Regulations. Waste disposal documentation should be retained for validation purposes.

7.5 Groundwater

Leachate testing has indicated that lead is potentially mobile at concentrations that exceed the Drinking Water Value. However, because the site is not positioned within a groundwater protection zone and is underlain by the London Clay Formation this assessment criterion is considered stringent for the site. Given the ground conditions on site, it is not anticipated that there is a viable pathway for mobile contamination to migrate to potable water sources and so the risk to groundwater is considered to be low to negligible.

Perched groundwater has been identified within the Made Ground and so there is the potential that this water will be encountered during the main ground excavation and may require dewatering. As there is potential for this water to have been impacted by contamination, it should be extracted, stored, transported or treated and disposed of in accordance with current legislation to a foul sewer under a short term trade effluent consent agreed with the water authorities.

²² EA. (2010). PPG2 Above ground oil storage tanks. Environment Agency.

7.6 Surface water

The site is located adjacent to the Regent's Canal, therefore, measures will be required to see that spills/run-off from the site cannot enter the water body. This will largely be achieved by removing the USTs from site and by controlling the migration of perched groundwater by dewatering.

In this regard, it is recommended that inspection of the canal side is completed daily to check for evidence of contamination migration as part of a watching brief, which is discussed in Section 7.7.

7.7 Watching brief and discovery strategy

It is recommended that a Geoenvironmental Engineer is present on site through the majority of the ground works phase. However, during times when this is not possible, then a watching brief should be maintained by the Main Contractor. Should any gross contamination, such as oily material or material of an unusual colour or odour, be encountered during excavation, the following strategy is recommended:

- 1. Work to cease in that area.
- 2. Notify Geoenvironmental Engineer, to attend site and sample material in case it is spread around. Notify Contaminated Land Officers of the London Borough of Camden.
- 3. Geoenvironmental Engineer to supervise the excavation of contaminated material, which should be placed in a bunded area and covered to prevent rainwater infiltration.
- 4. Soil samples should be obtained by the Geoenvironmental Engineer from both the excavated material, and the soils in the sides and base of the excavation to demonstrate that the full area of contamination has been excavated. If appropriate, in-situ testing should be undertaken on the sides and base of the excavation to assess the presence of residual contamination in the soils.
- 5. On receipt of chemical test results, the soils may be appropriately classified for treatment or disposal, and dealt with accordingly.
- 6. Detailed records of the stockpile sizes, source and location should be kept and regularly updated to allow materials to be easily tracked from excavation until leaving the site.

7.8 Gas protection measures

Gas screening values have been calculated in accordance with CIRIA 665²³. Using the maximum flow rate and based on the maximum concentration for CO₂, the Gas Screening Value (GSV) is calculated as 0.009I/hr. Therefore, the site conforms to Characteristic Situation 1 and hence no specific gas protection measures are required.

7.9 Services

Based on the lack of site specific data relating to the proposed locations of pipe runs, and in accordance with current UKWIR¹² guidance, the use of barrier pipes for water supply may be required. Water supply pipes should be non-plastic, ductile iron or proprietary hydrocarbon resistant pipes such as Protectaline, to prevent possible permeation of residual hydrocarbons into drinking water supplies. The local water supply company should be contacted for the exact specification that is required in light of the remaining concentrations of contaminants in the remaining Made Ground.

7.10 Health and safety

All site works will be undertaken in accordance with the guidelines prepared by the Health and Safety Executive (HSE, 1991)²⁴. In this context, the risks will be low, and nominal safety precautions should be acceptable (the adoption of good hygiene practices and the use of overalls, gloves and dust masks if necessary).

During the redevelopment, precautions should be taken to minimise exposure of workers and the general public to potentially harmful substances. Attention should also be paid to restricting possible off-site nuisance such as dust and odour emissions. Such precautions should include, but not be limited to:

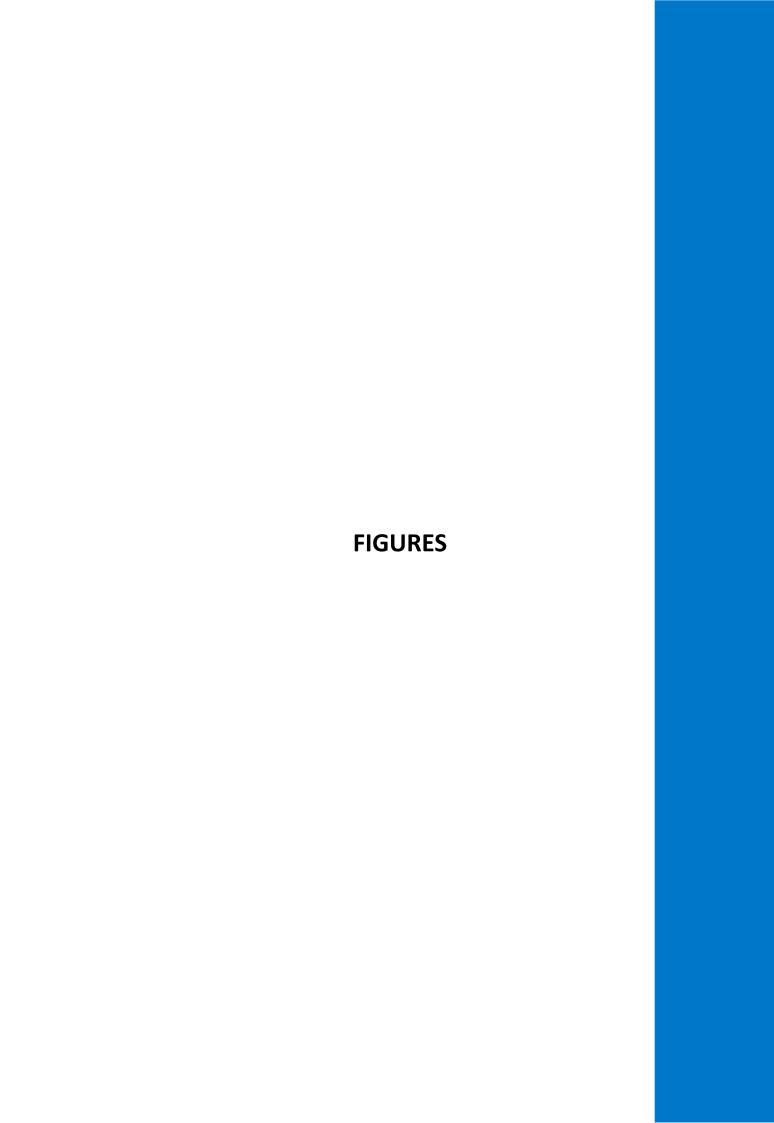
- 1. Personal hygiene, washing and changing procedures.
- 2. Personal protective equipment, including disposable overalls, gloves etc.
- 3. Measures to avoid surface water ponding and positive collection and disposal of all on-site run-off.

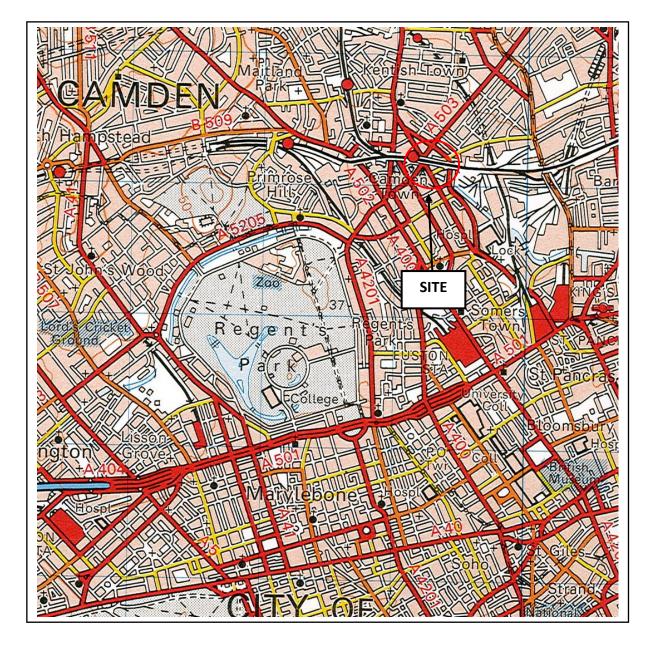
CG/5521C 40

.-

²³ CIRIA (2007). Assessing risks posed by hazardous ground gases to buildings, CIRIA Report C665, London

²⁴ HSE (1991). Protection of Workers and the General Public During the Development of Contaminated Land. Guidance Note HS(G)66, Health and Safety Executive, HMSO, 1991.

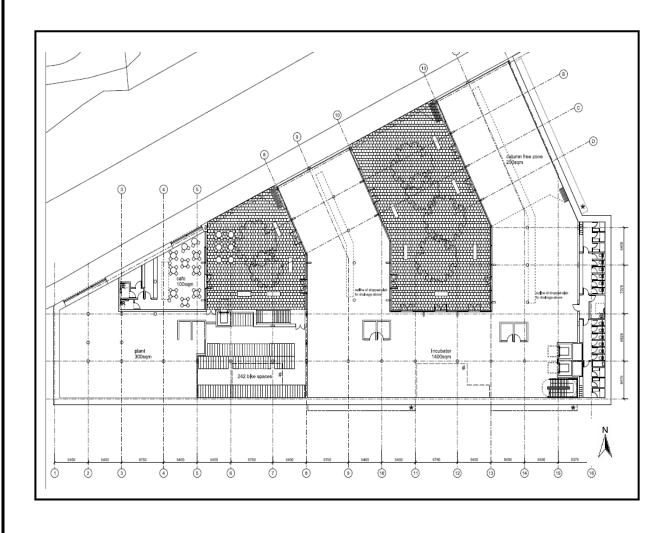

4. Regular cleaning of all site roads, access roads and the public highway including dust suppressions methods (e.g. water spraying), if necessary.


Excavations should be planned and inspected regularly by a competent person. No operatives will be permitted to enter unshored or otherwise protected excavations identified as unstable by a competent person, however shallow they are.

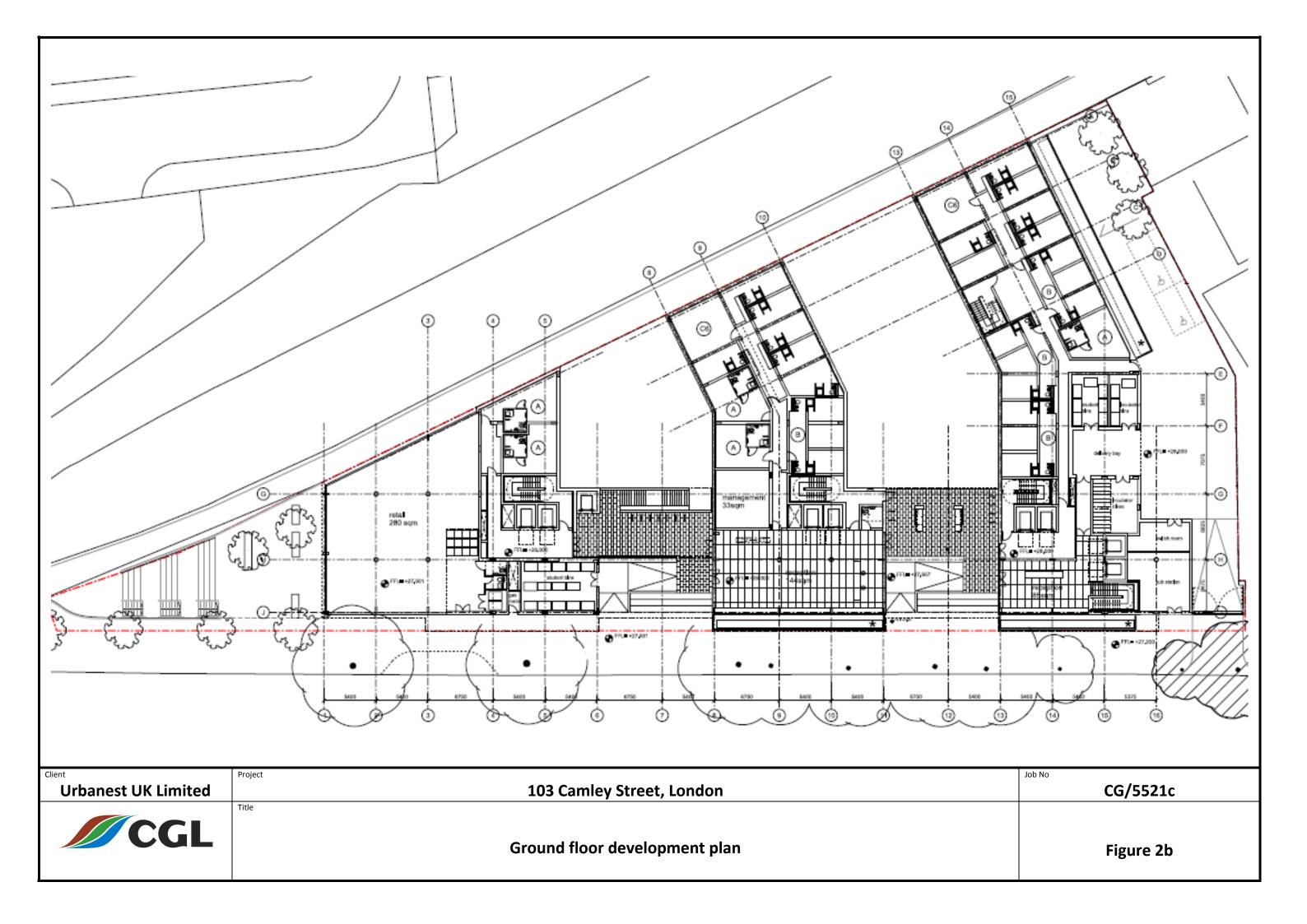
7.11 Regulatory requirements

This report should be submitted to the London Borough of Camden Council for their comments and approval. The contamination recommendations should be finalised in a revised *Remediation Method Statement*, which will be followed by verification works and reporting to include, but not be limited to the following:

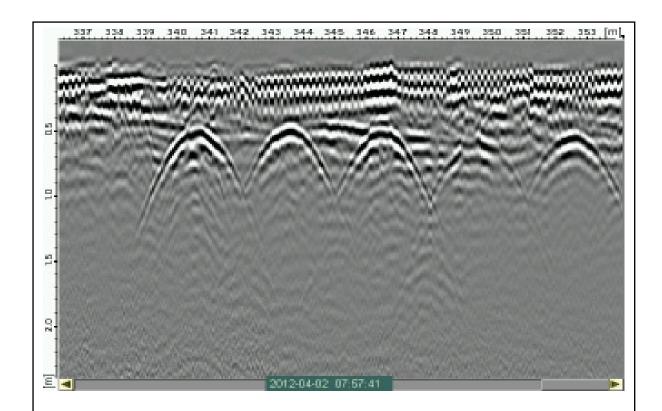
- Site visit records and photographic records of the relevant site works.
- Location and details of all tanks and contaminated material encountered and remediation measures taken, including chemical test results for residual soils.
- Duty of care records for disposal of waste material including the landfill site(s)
 where the material has been disposed and a copy of the Contractor's current
 waste carrier's licence (to be provided by Contractor).
- Details of source and chemical test results for imported materials.
- Confirmation of capping layer thicknesses.
- Compliance testing of capping layer materials.
- Confirmation of water supply pipe materials.



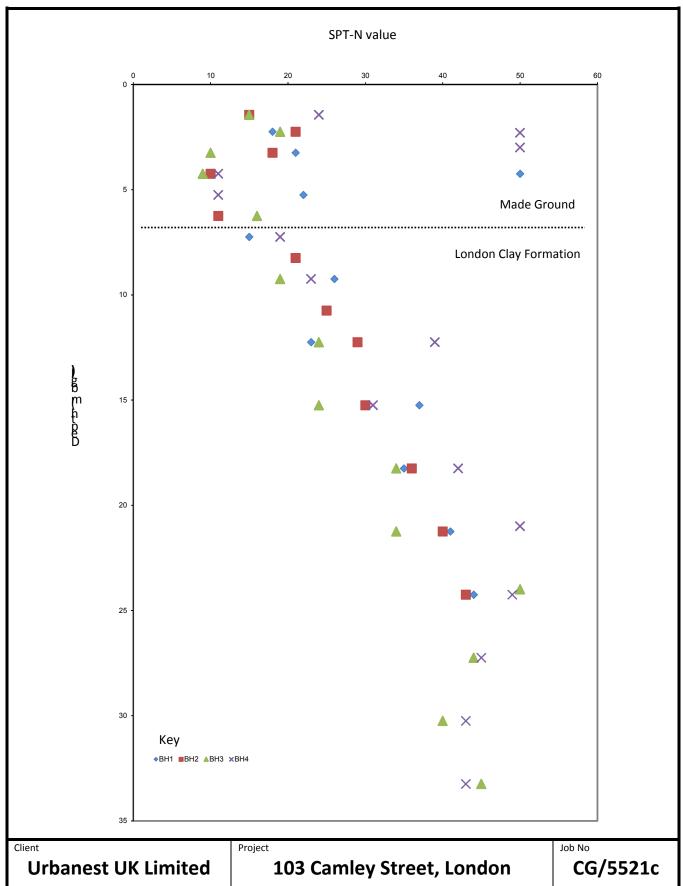
Reproduced from the Ordnance Survey 1:50,000 map with permission of the Controller of Her Majesty's Stationary Office, Crown Copyright.

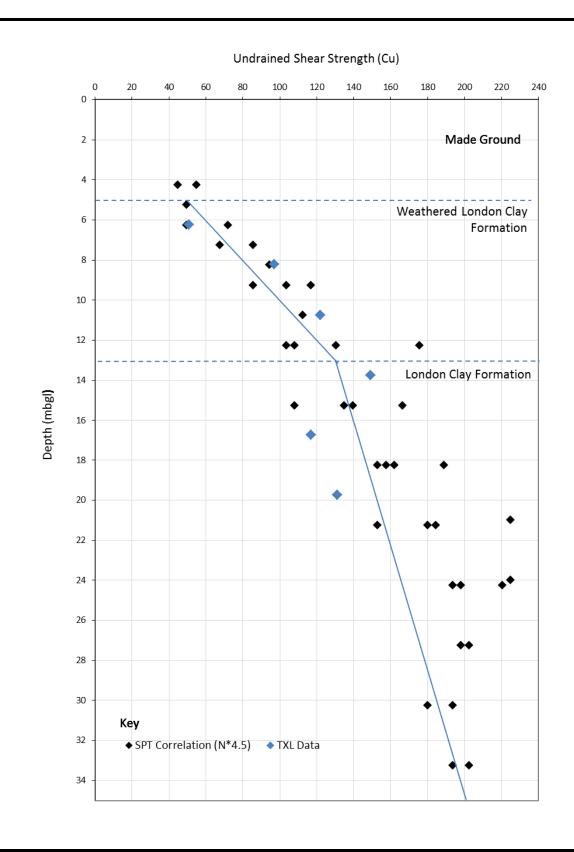

Licence No. 100012585



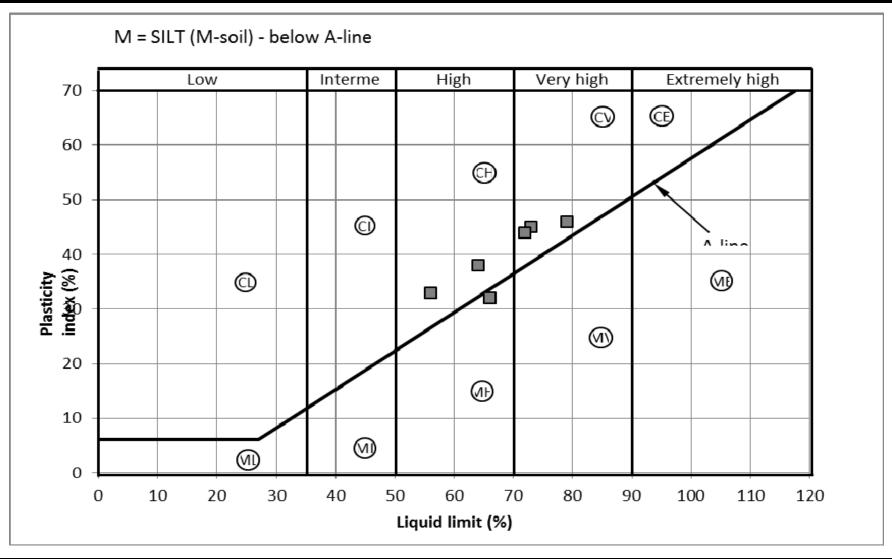

Urbanest UK Limited	103 Camley Street, London	Job No CG/5521c
CGL	Site location plan	Figure 1

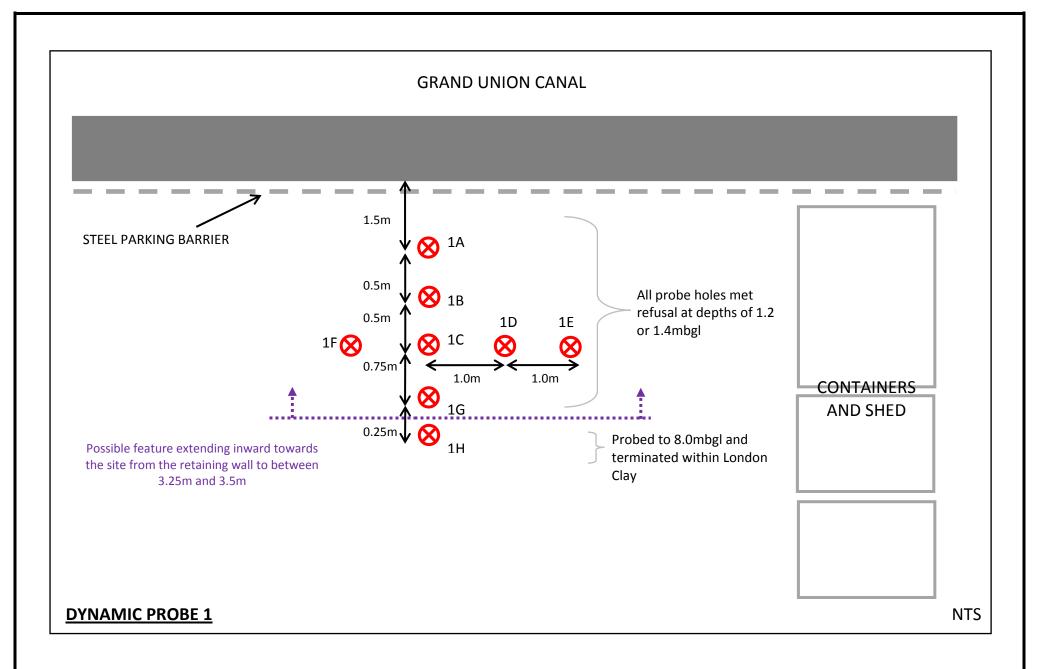
Client	Project	Job No
Urbanest UK Limited	103 Camley Street, London	CG/5521c
	Title	
CGL	Lower ground floor development plan	Figure 2a

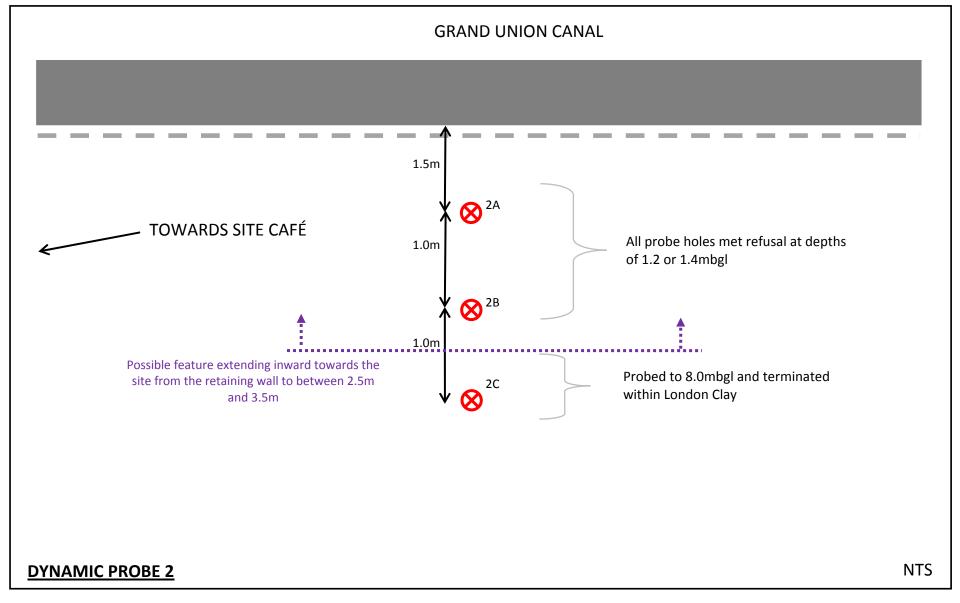



Results from Ground Penetrating Radar scan confirming the presence of five Underground Storage Tanks (USTs) in the locations shown on the final survey drawing (Reference: SL-CGL-0511/001A).

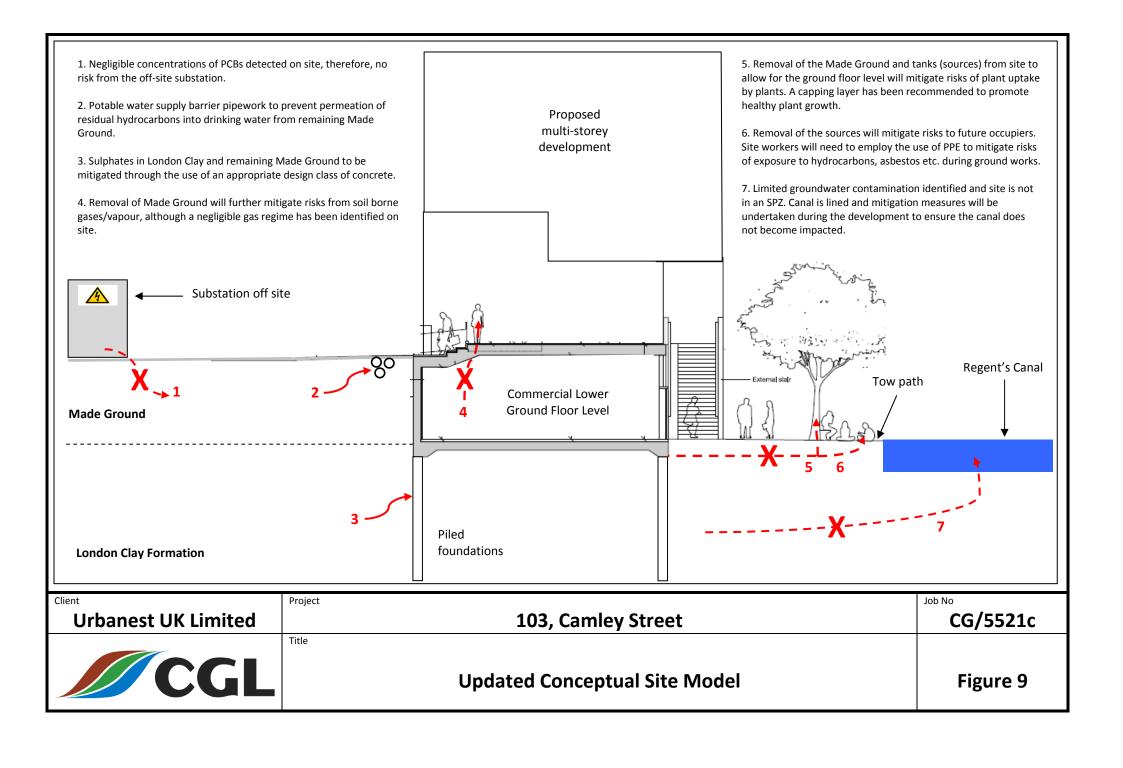
The survey is confirmatory of the information provided by LFB in the earlier *Desktop Study Report* (CG/5521), which indicated five tanks to be present on site that held petrol, diesel and gas oil.

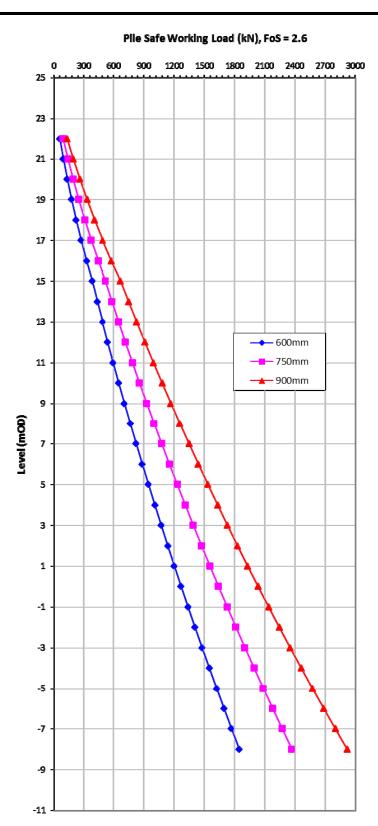

Urbanest UK Limited	103 Camley Street, London	CG/5521c
CGL	Underground Storage Tanks	Figure 4


Urbanest UK Limited	103 Camley Street, London	CG/5521c
CGL	SPT-N vs. depth	Figure 5

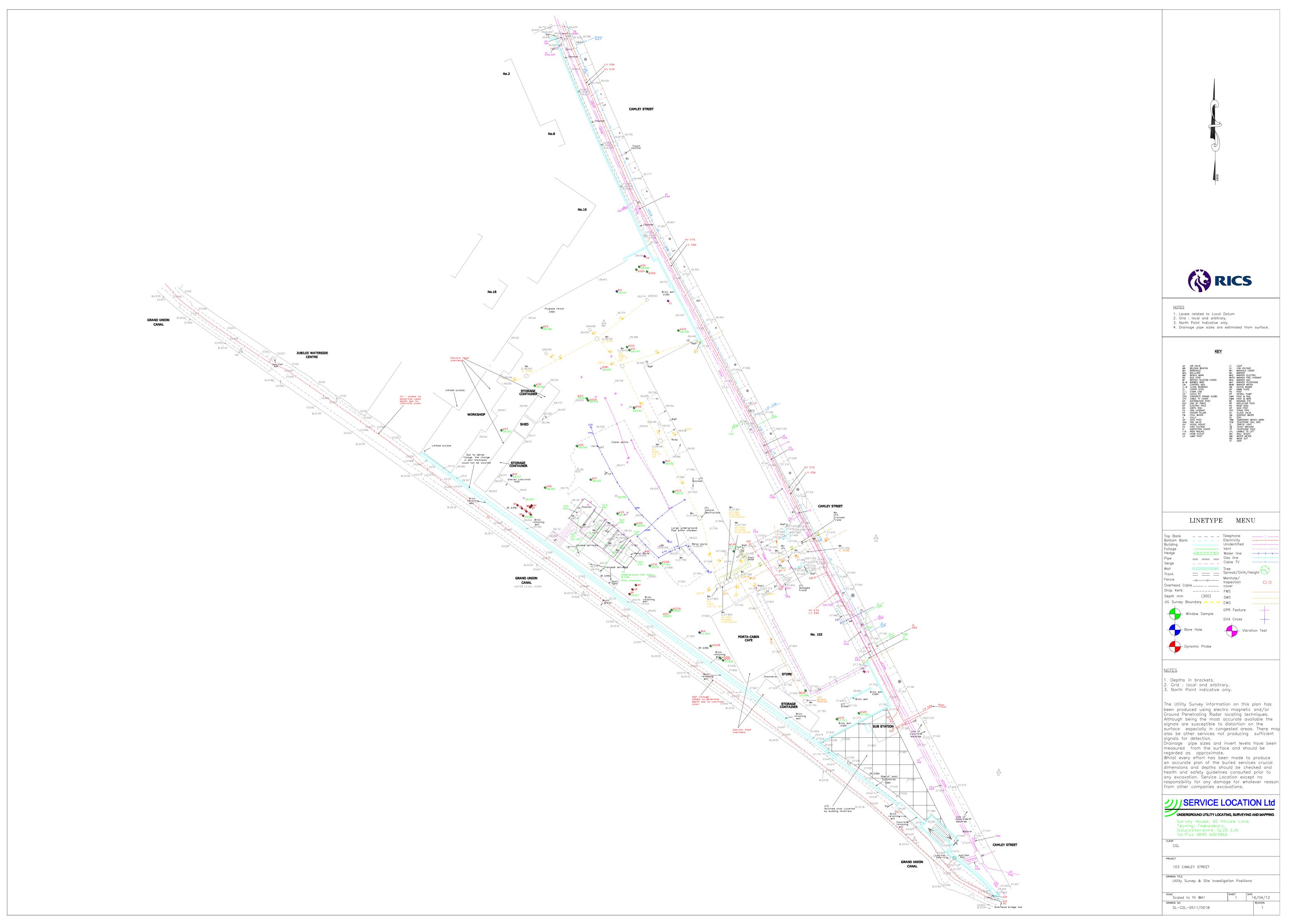


Urbanest UK Limited	103 Camley Street, London	CG/5521c
CGL	Undrained Shear Strength vs. Depth	Figure 6




Client	Project	Job No
Urbanest UK Limited	103 Camley Street, London	CG/5521c
CGL	Title	
CUL	Plasticity chart	Figure 7

Urbanest UK Limited	103, Camley Street, London	Job No CG/5521c
CGL	Dynamic probe locations	Figure 8



Urbanest UK Limited	103 Camley Street, London	CG/5521c
CGL	Preliminary Pile Safe Working Loads	Figure 10

APPENDIX A

Survey drawing

APPENDIX B

CGL Logs

Project				BOREHOLE No
103 Camley S	itreet, London			ВН1
Job No	Date 19-04-12	Ground Level (m)	Co-Ordinates (m)	ршт
CG/5521C	20-04-12	28.40	E 529,707.9 N 183,819.6	5
Client		•	·	Sheet
Urbanest UK	Limited			1 of 4

SAMPLI	- C O T								
	ES & 11	ESTS	<u></u>				STRATA		ent
Depth	Type No	Test Result	Water	Reduced Level	ILegena	Depth (Thick- ness)		DESCRIPTION	netrument
				28.20		0.20	Reinforced CONCRETE. [MADE GROUND]		
0.60-0.70	В			27.90		0.50	Medium dense red hardco [MADE GROUND]	re. dy clay with much brick and	occasional
1.20-1.65 1.20-1.65 1.20	B D	N15				-			
2.00-2.45 2.00	D	N18				(3.85)			
3.00-3.45 3.00	D	N21				- - - - - - - -			
4.00-4.45 4.00	D	N50/ 115 mm		24.05		4.35	Medium dense brown and [MADE GROUND]	black very sandy clay and b	rick/concrete fill.
5.00-5.45 5.00-5.45 5.00	B D	N22	1	22.70		(1.35)	Logs fine to searce wet fl	int gravels	rick/concrete fill.
6.00-6.45	U100	93 blows		22.45		5.95	[MADE GROUND] Firm to stiff becoming stiff	brown mottled grev turning	
6.45-6.55	D					-	mottled light brown ČLAY. [LONDON CLAY FORMATIO	DN]	
7.00-7.45 7.00-7.45 7.00	B D	N15				- - - - - - - -			
Boring Pro	ogress	and Wa	ater	Observ	vation ^o	<u> </u>	General Remarks		<u> </u>
	mment	Depth		Casin epth D		Water Depth	Serieral Hellians		
Method/ Plant Used		Cable pe					Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM

Project					BOREHOLE No
103 Camley S	treet, London				BH1
Job No	Date 19-04-12	Ground Level (m)	Co-Ordinates (m)		рпт
CG/5521C	20-04-12	28.40	E 529,707.9	N 183,819.6	
Client					Sheet
Urbanest UK	Limited				2 of 4

Urba	nest L	JK Limit	ed					2 of 4	
SAMPLE	S & TI	ESTS					STRATA	±	ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	- Total	Instrument
8.00-8.45	U100	101 blows	•			-	Firm to stiff becoming stiff brown mottled grey turning	dark brown	Ž
						-	mottled light brown ČLAY. [LONDON CLAY FORMATION] (continued)		Ż
8.45-8.50	D				 	-			\$
					<u> </u>				Q X
9.00-9.45	D					- -			X
9.00		N26				_		F	Ž
						- (7.30)			Ž
						-			Ŝ
-						-		(O	Ž
					<u> </u>				Ž
10.50-10.95	U100	122 blows	5			-			\$
									Ź
10.95-11.00	D					- -			X
					<u> </u>	<u>-</u> -			Ž Z
						<u>-</u>			Š
						-			Ź
12.00-12.45	D	Naa				-			Ş
12.00		N23				-			\$
						-			2
						-			X
-				15.15		- - 13.25			Ž
						-	Stiff to very stiff grey sandy CLAY. [LONDON CLAY FORMATION]		Ş
13.50-13.95	U100	139 blows	5			-	[EDITORIA CERT FORWIATION]		Š
-12.05.44.00	5					-			Š
13.95-14.00	D					-			
						-			Ž
						<u>-</u>			Ž
_									Š
15.00-15.45 15.00-15.45	B D					-			Ŝ
15.00		N37				-			Š
						-			Š
					<u> </u>	_			Ŷ
Boring Pro			ater	Obser	vations) \\/=±==	General Remarks		_
Date Cor	nment	Depth	D	Casin epth D	ja. mm	Water Depth			
Method/			1			<u> </u>	Field Crew Logged By	Checked By	=
Plant Used		Cable pe	ercu	ssion			Bainbridge Bainbridge	IMM	

Project					BOREHOLE No
103 Camley S	BH1				
Job No		рпт			
CG/5521C	19-04-12 20-04-12	28.40 E 529,707.9 N 183,819.6			
Client	Sheet				
Urbanest UK	3 of 4				

Urbanest UK Limit	ed						3 of 4	
SAMPLES & TESTS	_				STRATA			ent
Depth Type Test No Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument /Rackfill
16.50-16.95 U100 144 blows				-	Stiff to very stiff grey sand [LONDON CLAY FORMATION	ly CLAY. ON] (continued)		
				- - - - - - -				
18.00-18.45 D N35				(11.75)				
19.50-19.95 U100 143 blows	\$							
19.95-20.00 D				- - - - - - - - -				
21.00-21.45 D N41								
22.50-22.95 U100 191 blows	5			- - - - - - - - - - -				
-		01			C D -			
Boring Progress and Wa	acer	Casing	vacions	Water	General Remarks			
Boring Progress and Wa Date Comment Depth Method/ Plant Used Cable pe	D	Casing epth D	īa. mm	Water Depth				
Method/ Plant Used Cable pe	ercu	ssion			Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM	

Project					BOREHOLE No
103 Camley S		BH1			
Job No	рит				
CG/5521C	Date 19-04-12 20-04-12	28.40	E 529,707.9	N 183,819.6	
Client	Sheet				
Urbanest UK	4 of 4				

	Urba	nest L	JK Limit	ed							
	SAMPLE	S & TI	ESTS	_				STRATA			ent
	Depth	Type No	Test Result	Wate	Reduce Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrum /Backfil
TD AGS 3_1.GDT 23/5/12	Depth - 24.00-24.45 - 24.00	Type No D	Test Result	ater	3.4 Obse	0	Depth (Thick-ness)	Stiff to very stiff grey sand [LONDON CLAY FORMATION			Second
LOG CG5521C.GPJ GINT ST.	Boring Pro Date Co										
CGL BH I	Method/ Plant Used	Nethod/ lant Used Cable percussion						Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM	

Project					BOREHOLE No
103 Camley St	BH2				
Job No	рпΖ				
CG/5521C	18-04-12 19-04-12	28.23	E 529,688.5	N 183,785.7	
Client	Sheet				
Urbanest UK I	1 of 4				

UIDA	illest C	JK LIMIT	eu				1 of 4	
SAMPLE	S & T	ESTS	-				STRATA	 ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	Instrument
-				28.03	+	0.20	Reinforced CONCRETE. [MADE GROUND]	
						-	Medium dense brick rubble with occasional concrete boulders.	
0.60-0.70	В					-	[MADE GROUND]	
- :						-		
1.20-1.65 1.20	D	N15						
. 1.20		INTO				-		
• •						-		
2.00-2.45	В					-		
2.00-2.45 2.00	D	N21				-		
		1122				(4.60)		
						-		
3.00-3.45	D					-		
3.00		N18				-		
· ·								
•						-		
4.00-4.45	В					_		
4.00-4.45 4.00	D	N10				- -		
		NIO				-		
•				23.43		4.80	Firm grey mottled black sandy clay with occasional fine to coarse flint	_
5.00-5.45	U100	62 blows				-	gravel.	
• •							[MADE GROUND]	
5.45-5.50	D					(1.40)		
•						-		
6.00-6.45	D			22.03		- 6.20		
6.00		N11				-	Stiff to very stiff brown slightly mottled grey sandy CLAY. [LONDON CLAY FORMATION]	
•						-	[LONDON CLAT FORWATION]	
•								
7.00-7.45	U100	91 blows				-		
• •						-		
7.45-7.50	D					-		
•								
Boring Pro	gress	and Wa	ater	Observ	vation	<u> </u>	General Remarks	<u> </u>
	mment			Casin epth D		Water Depth	1. Hole dry	
		•		CPIII D	<u> 111111 </u>	БСРП		
Method/			1				Field Crew Logged By Checked By	
Plant Used		Cable pe	ercu	ssion			Bainbridge Bainbridge IMM	

Project					BOREHOLE No
103 Camley S		BH2			
Job No	ВΠΖ				
CG/5521C	18-04-12 19-04-12	28.23	E 529,688.5	N 183,785.7	
Client	Sheet				
Urbanest UK	2 of 4				

Urba	nest l	JK Limit	ed						2 of 4	
SAMPLE	S & TI	ESTS	_				STRATA		·	ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument
- 8.00-8.45 - 8.00	D	N21				-	Stiff to very stiff brown slig [LONDON CLAY FORMATION	ghtly mottled grey sandy CL	AY.	
- 9.00-9.45 - 9.45-9.50	U100 D	108 blows				(7.00)	[EONDON CEAT FORWARD	onj (continuca)		
- 10.50-10.95 - 10.50-10.95 - 10.50	B D	N25								
12.00-12.45 12.00	D	N29				- - - - - - - - - - - - - - - - - - -				
13.50-13.95		171 blows	5	15.03		13.20	Stiff to very stiff grey sand [LONDON CLAY FORMATION	ly CLAY. DN]		
15.00-15.45 15.00	D	N30								
Boring Pro	gress	and Wa	ater	Obser	vations	5	General Remarks			
	nment			Casin epth D		Water Depth	1. Hole dry			
Method/ Plant Used		Cable pe	ercu	ssion			Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM	

Project					BOREHOLE No
103 Camley S		BH2			
Job No	ВПΖ				
CG/5521C	18-04-12 19-04-12	28.23	E 529,688.5	N 183,785.7	
Client		•	•		Sheet
Urbanest UK	3 of 4				

Urbanest UK Limit	ted				3 of 4			
SAMPLES & TESTS	_				STRATA			ent
Depth Type Test No Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument
16.50-16.95 U100 193 blow				-	Stiff to very stiff grey sand [LONDON CLAY FORMATION	ly CLAY. ON] (continued)		
18.00-18.45 B 18.00-18.45 D 18.00 N36								
19.50-19.95 U100 174 blow	' \$			(11.80)				
19.95-20.00 D				-				
21.00-21.45 D N40				- - - - - - - - - - - - - - - - - - -				
22.50-22.95 U100 190 blow	' \$			- - - - -				
-22.95-23.00 D								
Boring Progress and W	ater	Observ	vations	5	General Remarks			
Date Comment Depth	Do	Casin epth D	ia. mm	Water Depth	1. Hole dry			
Method/ Plant Used Cable p	ercu	ssion			Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM	

Project					BOREHOLE No
103 Camley St		BH2			
Job No	Date 18-04-12	ВΠΖ			
CG/5521C	19-04-12	28.23	E 529,688.5	N 183,785.7	
Client	Sheet				
Urbanest UK L	4 of 4				

Urbanest UK Limited	1		4 of 4			
SAMPLES & TESTS		STRATA	ent			
Depth Type Test No Result	Reduced Level Legend (Thick- ness)	DESCRIPTION	Instrument /Backfill			
Depth Type Result 22 24.00-24.45 D N43 N43 Boring Progress and Wat Date Comment Depth Date Comment Depth Cable per	3.23 — 25.00	Stiff to very stiff grey sandy CLAY. [LONDON CLAY FORMATION] (continued)	Instrument Pack Albackf			
0685210.GPJ G						
Method/		Field Crew Logged By Bainbridge Bainbridge	hecked By			

Project					BOREHOLE No
103 Camley S	treet, London				рцэ
Job No	Date 16-04-12	Ground Level (m)	Co-Ordinates (m)		ВН3
CG/5521C	17-04-12	28.21	E 529,716.5	N 183,788.2	
Client		•	•		Sheet
Urbanest UK I	Limited				1 of 5

SAMPL	ES & TI	ESTS	Jé				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	
				27.96		0.25	Reinforced CONCRETE. [MADE GROUND]		
				27.66		0.55	Medium dense to dense ha	ardcore/rubble.	
0.50-0.60	В			27.00		-	[MADE GROUND]	v and hrick rubble	/
						-	Firm brown very sandy cla [MADE GROUND]	y and brick rabbic.	
-						-			
1.20-1.65 1.20	D	N15				-			
						-			
						- -			
2.00-2.45 2.00	D	N19							
2.00		INIS				- (3.50)			
						-			
						-			
3.00-3.45 3.00-3.45	B D								
3.00		N10				- -			
						-			
				24.16		4.05	3.80 Black concrete fill from	m 3.80m.	
4.00-4.45 4.00-4.45	B D			2 1.10		-	Brown sandy clay with occ Occasional black sand lens	asional to some fine to coa	rse gravels.
4.00		N9				(0.65)	[MADE GROUND]	es.	
				23.51		4.70			
_					<u> </u>	-	Firm to stiff brown slightly [LONDON CLAY FORMATION	omottled grey CLAY. ON]	
5.00-5.45	U100	75 blows				- -			
5.45-5.50	D								
3.43-3.30						-			
						_			
6.00-6.45 6.00-6.45	B D				 	-			
6.00		N16				-			
						-			
						_			
						<u>-</u>			
7.50.7.05	116.00	02.1.1			<u> </u>	-			
7.50-7.95	0100	82 blows							
					<u> </u>				
Boring Pro							General Remarks		
Date Co	mment	Depth	D	Casin epth C	ia. mm	Water Depth	1. Water standing at 24.05	im overnight.	
Method/									

Project					BOREHOLE No
103 Camley S	treet, London				рцэ
Job No	Date 16-04-12	Ground Level (m)	Co-Ordinates (m)		ВН3
CG/5521C	17-04-12	28.21	E 529,716.5	N 183,788.2	
Client		•	•		Sheet
Urbanest UK I	Limited				2 of 5

SAMPLE		JK Limit					STRATA		2 of 5
			Water	Poduce	1	Depth	JINAIA		
Depth	Type No	Test Result	W	Level	Legend	(Thick- ness)		DESCRIPTION	
7.95-8.00	D					-	Firm to stiff brown slightly [LONDON CLAY FORMATION	mottled grey CLAY. DN] <i>(continued)</i>	
9.00-9.45 9.00	D	N19				- (8.60)			
10.50-10.95	U100	121 blows	6						
10.95-11.00	D						11.30 Turning stiff dark br	own mottled light brown fr	om 11.30m.
12.00-12.45 12.00-12.45 12.00	B D	N24				- - - - - - - - - - -			
				14.91		13.30	Stiff to very stiff grey sand [LONDON CLAY FORMATION	y CLAY.	
13.50-13.95		135 blows	6			- - - -	LONDON CLATTONWATE	514]	
13.95-14.00	D					- - - - - - -			
15.00-15.45 15.00	D	N24							
Boring Pro	gress	and Wa	ater	Obser	vations		General Remarks		
	nment		D	Casir epth [ng Dia. mm	Water Depth	1. Water standing at 24.05	im overnight.	
Method/ Plant Used		Cable pe				<u> </u>	Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM

Project					BOREHOLE No
103 Camley S	treet, London				рцэ
Job No	Date 16-04-12	Ground Level (m)	Co-Ordinates (m)		ВН3
CG/5521C	17-04-12	28.21	E 529,716.5	N 183,788.2	
Client		•	•		Sheet
Urbanest UK I	Limited				3 of 5

Client								Sheet
Urbanes	t UK Lin	ited						3 of 5
SAMPLES &	TESTS					STRATA		lent
Depth Typ	e Test Resu	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	Instrument
16.50-16.95 U10	0 1 38 blo	ws				Stiff to very stiff grey sand [LONDON CLAY FORMATION	y CLAY. DN] <i>(continued)</i>	
18.00-18.45 B 18.00-18.45 D 18.00	N34							
19.50-19.95 U10	0200+ bl	ows						
21.00-21.45 D 21.00	N34							
22.50-22.95 B 22.50-22.95 U10	0200+ bl	ows				22.65 - 22.75 Siltstone bar	nd.	
Boring Progres	ss and \	Vate	r Obser	vations	<u>-</u> s	General Remarks		
Date Comme		h c	Casin Depth D	og Dia. mm	Water Depth	1. Water standing at 24.05	im overnight.	
Method/ Plant Used	Cable	percu	ıssion			Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM

Project					BOREHOLE No		
103 Camley S	treet, London				ВН3		
Job No	Date 16-04-12	Ground Level (m)	Co-Ordinates (m)		рпэ		
CG/5521C	17-04-12	28.21	E 529,716.5	N 183,788.2			
Client		•			Sheet		
Urbanest UK	Limited	Urbanest UK Limited					

Urbanest UK L	Limited				4 of 5
SAMPLES & TEST	rs 🖁		STRATA		nent
Depth Type Re	Vest esult	Reduced Level Legend (Thick- ness)		DESCRIPTION	Instrun
24.00-24.15 D N 80	150/) mm	(21.70)	Stiff to very stiff grey sand [LONDON CLAY FORMATION	y CLAY. DN] <i>(continued)</i>	Instrument
25.50-25.95 U100 183	blows				
25.95-26.00 D					
27.00-27.45 D N	N44				
28.50-28.95 U100 172 28.95-29.00 D	. blows				
30.00-30.45 B 30.00-30.45 D 30.00 N	N40				
31.50-31.95 U100 192	blows		31.10 Sand partings from	31.1 m.	
Boring Progress and			General Remarks		
		Casing Water epth Dia. mm Depth	1. Water standing at 24.05	im overnight.	
Method/ Plant Used Cab	ble percu	ssion	Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM

Project					BOREHOLE No
103 Camley S	treet, London				рцэ
Job No	Date 16-04-12	Ground Level (m)	Co-Ordinates (m)		ВН3
CG/5521C	17-04-12	28.21	E 529,716.5	N 183,788.2	
Client		•	•		Sheet
Urbanest UK I	Limited				5 of 5

Client									Sheet	
Urba	nest L	JK Limit	ed						5 of 5	
SAMPLE	S & TI	ESTS	پ				STRATA	_	_	4
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		+ 20
31.95-32.00 33.00-33.45 33.00	D D	N45					Stiff to very stiff grey sand [LONDON CLAY FORMATION	ly CLAY. ON] (continued)		
34.50-34.60	В					-				
-				-6.79		35.00				
						-				
						-				
						-				
						-				
Boring Pro			ater	Obser	vations	S Water	General Remarks			
Date Con	nment	Depth	D	Casin epth E	is. mm	Water Depth	1. Water standing at 24.05	5m overnight.		
Method/ Plant Used		Cable p	ercu	ssion			Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM	

Project					BOREHOLE No
103 Camley S	treet, London				BH4
Job No	Date 17-04-12	Ground Level (m)	Co-Ordinates (m)		рп4
CG/5521C	18-04-12	27.94	E 529,723.2	N 183,756.8	
Client	•	•			Sheet
Urbanest UK	Limited				1 of 5

Urba	anest (JK Limit	ed					1 of 5
SAMPLE	S & T	ESTS	ڀ				STRATA	ent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	Instrument
_				27.69		0.25	Reinforced CONCRETE. [MADE GROUND]	
							Concrete and brick rubble fill with much brown sandy cl	ay.
						-	[MADE GROUND]	
_						<u> </u>		
4 20 4 65						-		
1.20-1.65 1.20-1.65	B D					-		
1.20		N24				-		
-						(3.45)		
								ŀ
2.30-2.45 2.30	D	N50/				-		<u> </u>
		85 mm						
3.00-3.40	В					<u> </u>		
3.00-3.40	D	NEC/				}		
3.00		N56/ 210 mm		24.24		3.70		:
				24.24		3.70	Firm grey mottled black slightly organic clay with occasi	onal brick
4.00-4.45	В					(0.90)	fragments. [MADE GROUND]	
4.00-4.45 4.00	D	N11				(0.90)		onal brick
				23.34		4.60		
						<u></u>	Firm to stiff brown slightly mottled grey CLAY. [LONDON CLAY FORMATION]	
5.00-5.45	D					-		
5.00		N11				-		
						<u> </u>		
						<u> </u>		
6.00-6.45	U100	89 blows				-		
6.45-6.50	D					<u> </u>		
0.45-0.50	0					-		
						<u> </u>		
7.00-7.45 7.00	D	N19				<u>†</u>		
						<u> </u>		
					==	-		
		• • • •		<u> </u>	<u> </u>			
Boring Pro			ater 	Obser	vation:	S Water	General Remarks	
Date Co	mment	Depth	D	Casin epth D)ĭa. mm	Water Depth	1. Water standing at 22.40m overnight.	
Method/			'			1	Field Crew Logged By	Checked By
Plant Used		Cable pe	ercu	ssion			Bainbridge Bainbridge	IMM

Project	BOREHOLE No					
103 Camley S	ВН4					
Job No	Date 17-04-12	Ground Level (m)	Co-Ordinates (m)		рп4	
CG/5521C	18-04-12	27.94	E 529,723.2	N 183,756.8		
Client			•		Sheet	
Urbanest UK	2 of 5					

SAMPLES & TESTS				STRATA					
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	
8.00-8.45	U100	101 blows	5			-	Firm to stiff brown slightly [LONDON CLAY FORMATION	mottled grey CLAY. ON] (continued)	
8.45-8.50	D					(8.45)			
9.00-9.45 9.00-9.45 9.00	B D	N23				- ' '			
10.50-10.95	U100	120 blows	5			-			
10.95-11.00	D					- - - - - -			
12.00-12.45 12.00	D	N39				- - - - - - -			
13.50-13.95	U100	132 blows	5	14.89		13.05	Stiff to very stiff grey sand [LONDON CLAY FORMATION	ly CLAY. DN]	
13.95-14.00	D					- - - - - - - -			
15.00-15.45 15.00-15.45 15.00	B D	N31				-			
Boring Pro	gress	and Wa	ater	Obser	vations	<u> </u>	General Remarks		
	nment			Casin epth C		Water Depth	1. Water standing at 22.40	Om overnight.	
Method/							Field Crew	Logged By	Checked By

Project					BOREHOLE No
103 Camley S	treet, London				BH4
Job No	Date 17-04-12	Ground Level (m)	Co-Ordinates (m)		рп4
CG/5521C	18-04-12	27.94	E 529,723.2	N 183,756.8	
Client		•			Sheet
Urbanest UK I	Limited				3 of 5

SAMPLE	S & T	STS	ڀ				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	
16.50-16.95	U100	144 blows	į			-	Stiff to very stiff grey sand [LONDON CLAY FORMATION	y CLAY. DN] <i>(continued)</i>	
16.95-17.00	D					- - - - - - -			
18.00-18.45 18.00	D	N42							
19.50-19.95	U100	200 blows	;						
⁻ 19.95-20.00	D					- - - - - - - -	19.80 - 19.85 Siltstone bar	ia.	
21.00-21.45 21.00	D	N50/ 115 mm				- - - - - - - - - - - - - - - - - - -	21.35 - 21.45 Very sandy.		
22.50-22.95	U100	172 blows	;			-			
-22.95-23.00	D					-			
Boring Pro	gress	and Wa	iter	Obser	vations	5	General Remarks		
	nment		De	Casin	og Dia. mm	Water Depth	1. Water standing at 22.40)m overnight.	
			1				J [

Project					BOREHOLE No
103 Camley S	itreet, London				BH4
Job No	Date 17-04-12	Ground Level (m)	Co-Ordinates (m)		рп4
CG/5521C	18-04-12	27.94	E 529,723.2	N 183,756.8	
Client			•		Sheet
Urbanest UK	Limited				4 of 5

Urba	nest l	JK Limit	ed						4 of 5	
SAMPLE	S & T	ESTS	- L				STRATA			hent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument
24.00-24.45 24.00	D	N49				(21.95)	Stiff to very stiff grey sand [LONDON CLAY FORMATION CLAY FORMATIO	ly CLAY. DN] <i>(continued)</i>		
						- - - -				
-						- - - -				
25.50-25.95	U100	184 blow:	\$			- - -				
⁻ 25.95-26.00	D					- - - -				
						- - -				
_						- - -				
27.00-27.45 27.00	D	N45				- - -				
						- - -				
-						- - -				
						- - -				
28.50-28.95	U100	191 blow:	\$			- - -				
28.95-29.00	D					- - -				
						- - -				
30.00-30.45	D					- -				
30.00		N43				- - -	30.35 Sand partings from	30.35m.		
						- - -				
-						- - -				
31.50-31.95	U100	190 blow:	\$			- - -				
_						- - -				
Boring Pro	gress	and Wa	ater	Obser	vations	5	General Remarks			
Date Cor	mment	Depth	D	Casin epth D	g lia. mm	Water Depth	1. Water standing at 22.40	Om overnight.		
Method/							Field Crew	Logged By	Checked By	

Project					BOREHOLE No
103 Camley S	treet, London				BH4
Job No	Date 17-04-12	Ground Level (m)	Co-Ordinates (m)		рп4
CG/5521C	18-04-12	27.94	E 529,723.2	N 183,756.8	
Client		•	•		Sheet
Urbanest UK	Limited				5 of 5

Urba	nest l	JK Limit	ed						5 of 5	
SAMPLE	S & T	ESTS	Jé				STRATA			nent
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument
31.95-32.00 33.00-33.45 33.00	D	N43					Stiff to very stiff grey sand [LONDON CLAY FORMATION	ly CLAY. DN] (continued)		
34.50-34.95 -34.95-35.00		194 blows	5	-7.06		35.00				
	ogracia	and W/	210	Ohear	vation		General Remarks			
Boring Pro	nment	Depth	D	Casin epth C	vations of Dia. mm	Water Depth	1. Water standing at 22.40	Om overnight.		
Method/ Plant Used		Cable pe	ercu	ssion		•	Field Crew Bainbridge	Logged By Bainbridge	Checked By IMM	

Project					BOREHOLE No
103 Camley St	treet, London				WS1
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)		MAST
CG/5521C	02-04-12	28.44	E 529,710.2	N 183,808.8	
Client					Sheet
Urbanest UK I	_imited				1 of 1

Urbanest UK L	Limited				1 of 1
SAMPLES & TEST	S [STRATA	nent .
	water Water	Reduced Level Lege	Depth nd (Thick- ness)	DESCRIPTION	Instrument
-		28.24	0.20	Steel reinforced concrete over LDPE membrane. [MADE GROUND]	
- 0.50 D ES		28.04	0.40		ed fine to medium
- 1.00 D ES			(1.60)	Occasional coarse gravel of flint, brick, coal, and slate. wood/timber. Possible ACM at 0.8m. [MADE GROUND] 0.80 - 2.00 Becoming less gravelly from 0.8m and incre from 1.0m with rare rotting timber.	Rare rotting
- 2.00 D		26.44	2.00	Soft very silty clay. Rare subangular to subrounded fine	gravel of flint and
2.00 ES		25.94	(0.50)	brick. [MADE GROUND]	
- 2.50 D ES		25.24	(0.70)	Medium dense to dense dark black gravelly medium to Gravel is subangular to subrounded fine to medium of Becoming brown and clayey from 2.9m. Slight hydroca [MADE GROUND] 2.90 - 3.20 Becoming brown and clayey. Slight hydroca	flint and brick. rbon odour noted.
- 3.50 D - 3.50 ES		23:24	5.20	Soft brown silty sandy clay with occasional gravel. Grave subrounded fine to medium of flint, brick and coal. [MADE GROUND]	rel is subangular to
			(1.80)	4.00 - 4.90 Becoming very soft.	
-	11	23.44	XX+	4.90 - 5.00 Becoming very gravelly. Very soft very silty clay. Occasional subangular to subro	nundad fina ta
-	\\	23.04	(0.40) 5.40	medium gravel of flint.	dilided lille to
5.50 D 5.50 ES		× - × - × - × - × - × - × - × - × - × -	× 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7 × 7	[MADE GROUND] Firm mottled brown and blue grey silty CLAY. [LONDON CLAY FORMATION]	
-		<u>×</u> -	<u>_</u>		
- - - -		21.94	6.50		\$24
Boring Progress and	d Water	Observation	ns	General Remarks	
		Casing epth Dia. m			
Succ Somment De	Peri Dé	eptn Dia. m	m Deptn		
Method/ Plant Used Tracked	window s	sample rig		Field Crew Logged By CK	Checked By IMM

Project				BOREHOLE No
103 Camley S	treet, London			WS2
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)	VV3Z
CG/5521C	02-04-12	28.42	E 529,712.0 N 183,824.2	
Client				Sheet
Urbanest UK I	Limited			1 of 1

SAMPL	<u> </u>	515	ter		I	Donth	STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)		DESCRIPTION	
Depth			Wa	28.22 28.02 27.92 27.22	Legena	(Thick-	[MADE GROUND] Medium dense to dense d medium to coarse sand. G of flint and concrete. [MADE GROUND] Medium dense to dense d to coarse gravel of brick ar [MADE GROUND] Medium dense to dense d medium sand. Gravel is su [IMADE GROUND]	DESCRIPTION slab over LDPE membrane. ark reddish brown slightly cravel is subangular to round ark grey sandy subangular to nd concrete. Sand is mediur ark brownish grey slightly crack bangular to subrounded fin oal fragments. Frequent shallow sanmple hole moved to	layey gravelly ded fine to medium o subrounded fine to coarse.
oring Pr Date Co	ogress	and Wa		Casin epth D		S Water Depth	General Remarks Additional window sample backfilled with concrete to	e bored nearby for vibration o 1.4mbgl.	assessment: Location

Project					BOREHOLE No					
103 Camley St	treet, London				WS2A					
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)		VVSZA					
CG/5521C	02-04-12	28.42	E 529,711.5	N 183,823.6						
Client					Sheet					
Urbanest UK I	Urbanest UK Limited									

	UI	Danest C	JK LIIIIIU	eu						1 01 1	
	SAMI	LES & T	ESTS	-E				STRATA			nent II
	Depth	Type No	Test Result	Water	Reduce Level	d Legend	Depth (Thick- ness)		DESCRIPTION		Instrument /Backfill
	-				28.22	2	0.20	Steel reinforced concrete	slab over LDPE membrane.		
	- - - -				27.92	2	0.50		ark reddish brown slightly cl ravel is subangular to round	ayey gravelly ed fine to medium	
	- - - - - - -				27.22	2	1.20	Medium dense to dense d medium sand. Gravel is su flint, brick, concrete and c fragments of wood/timbe [MADE GROUND]	ark brownish grey slightly clibangular to subrounded fine oal fragments. Frequent shar and road stone. Very orgar	e to medium of rds of glass and nic.	
	- - - - - - -						-				
	- - - - - -						-				
	-						-				
	-						- - - - - -				
	- - - - -						- - - - -				
	- - - - - -						-				
CGL BH LOG CG5521C.GPJ GINT STD AGS 3_1.GDT 23/5/12	- - -						- - -				
_1.GD]	Boring I	rogress	and Wa	ater	Obsei	rvation	<u> </u>	General Remarks			
AGS 3	Date	Comment	Depth			ng Dia. mm		- Constantion			
T STD.							1				
J GIN.											
1C.GP.											
CG552											
H LOG	NA-411/							Field Craw	Lagrand Div	Charles d D	
CGL B	Method/ Plant Use	d Track	ed wind	ow	sample	rig		Field Crew Bainbridge	Logged By CK	Checked By IMM	

Project					BOREHOLE No
103 Camley S	Street, London				MC2D
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)		WS2B
CG/5521C	02-04-12	28.42	E 529,713.5 N	183,823.3	
Client	•				Sheet
Urbanest UK	Limited				1 of 1

SAMPL	ES & TI	ESTS	-sr				STRATA	
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	
				28.12		0.30	Steel reinforced concrete slab over LDPE membrane. [MADE GROUND]	
0.50 0.50	D ES			27.42 27.22		(0.70)	Medium dense to dense dark reddish brown slightly clay medium to coarse sand. Gravel is subangular to rounder of flint and concrete. [MADE GROUND] 0.50 - 1.00 Brick, coal, glass, wood/timber and road stor Slightly organic. Becoming more clayey from 0.9m.	d fine to medium
1.50 1.50	D ES			27.22		1.20	Medium dense to dense dark brownish grey slightly clay medium sand. Gravel is subangular to subrounded fine flint, brick, concrete and coal fragments. Frequent sharc fragments of wood/timber and road stone. Slightly orga [MADE GROUND] Soft brown very sandy gravelly clay. Gravel is subangula	to medium of ls of glass and nic.
				26.42 26.22		2.00	fine to medium of flint, brick, concrete and coal. \[MADE GROUND]	
2.50 2.50	D ES					-	Medium dense to dense brown very sandy subangular to medium gravel of flint, brick, concrete and coal fragm fragments of wood. [MADE GROUND] Medium dense to dense dark brown very gravelly fine to Gravel is subangular to subrounded fine to medium of fl	nents. Occasional o medium sand.
3.50	D					(1.80)	concrete and coal fragments. [MADE GROUND] 2.70 - 3.00 Becoming grey/black. 3.00 - 4.00 Becoming clayey and abundant red brick rub 3.9m.	
3.50	ES			24.42		4.00		
				24.12		4.30	Medium dense to dense dark greyish brown sandy suba subrounded fine to medium gravel of flint, brick, concre fragments. Sand is medium to coarse.	
				23.32	KXXXXX		\[MADE GROUND] Medium dense to dense dark brown very gravelly slightly medium sand. Gravel is subangular to subrounded fine to the flint, brick, concrete and coal fragments. [MADE GROUND]	y clayey fine to o medium of
						- - - - -	Refusal on concrete.	
						- - - -		
						- - -		
Boring Pr	ogress	and Wa	ater	Observ	vation	- 	General Remarks	
	mment	Depth		Casing epth D		Water Depth		

Project				BOREHOLE No
103 Camley S	itreet, London			WS3
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)	VV 35
CG/5521C	02-04-12	28.39	E 529,694.1 N 183,812.9	
Client			·	Sheet
Urbanest UK	Limited			1 of 1

Urb	anest L	JK Limit	ed						1 of 1	
SAMPL	ES & TI	ESTS	e				STRATA			nent II
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument /Backfill
-				28.14		- 0.25	1 1			
- 0.50 - 0.50	D ES			27.69		(0.45) 0.70	sand. Gravel is subangular concrete. [MADE GROUND] 0.50 - 0.70 Brick, coal, cha	•	of flint and	
- 1.00 - 1.00	D ES					-	Soft to firm dark greyish be medium. Gravel is angular ceramic. [MADE GROUND]	rown gravelly sandy clay. Sai to subrounded fine of flint,	nd is fine to coal, brick and	
- 1.50 - 1.50 - 1.50	D ES					(2.30)				
- - - - - - -							2.00 - 3.00 Becoming very	sanay.		
3.00	ES			25.39 25.19	XXXXX	3.00	Medium dense to dense sa	andy clayey subangular to su	brounded fine to	
				23.13		3.20	\[MADE GROUND]	nt and ceramic. Sand is fine to rown silty clay with rare sub		
- 3.50 - 3.50	ES ES						subrounded fine gravel of [MADE GROUND] 3.50 - 4.00 Becoming soft,	flint and brick.	5	
- - - - - - - - - - - - - - - - - - -	D					(1.60)	4.00 - 4.80 Clinker and cer	amic noted in matrix.		
4.50	ES			23.59		4.80	Firm to stiff dark greyish g	reen silty CLAY.		
- - - - -				22.89	* -× - × -: × -: × -:	(0.70) 5.50	[WEATHERED LONDÓN CL 4.90 - 5.50 Becoming light	AY FORMATION] brownish grey silty CLAY.		
5.50 -	ES			22.69	× × × × × × × × × × × × × × × × × × ×	5.50	Stiff dark bluish grey silty ([LONDON CLAY FORMATION	CLAY. DN]		
_ - - -					~	(1.00)				
Boring Pr Date Co				21.89) <u>xx_</u>	6.50				1998
Boring Pr	ograss	and Ma	tor	Obser	vation	<u>t </u>	General Remarks			
Date Co	mment	Depth			vation: Dia. mm	Water Depth	General Kennarks			
Method/							Field Crew	Logged By	Checked By	
Plant Used	Track	ed wind	ow s	sample	rig		Bainbridge	CK	IMM	

Project					BOREHOLE No		
103 Camley S	treet, London				WS4		
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)		VV34		
CG/5521C	02-04-12	28.31	E 529,686.7	N 183,794.1			
Client			•		Sheet		
Urbanest UK I	Urbanest UK Limited						

Urb	anest l	JK Limit	ed						1 of 1
SAMPL	ES & T	ESTS	<u></u>				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	
				28.06		- - 0.25	[MADE GROUND]	slab over LDPE membrane.	
0.50 0.50	D ES					- - - - -	Medium dense to dense d sand. Gravel is subangular [MADE GROUND] 0.40 - 2.90 Becoming clave	lark brownish grey gravelly fi to subrounded fine to medi eye. Flint, brick, concrete, ro of wood present. Frequent b	adstone. clinker.
1.00 1.00	D ES					- - - - - (2.65)	2.0111.		
2.00	D ES					-			
				25.41		- 2.90			
						-	Refusal on obstruction.		
Boring Pr	ogress	and Wa				5	General Remarks		
	omment			Casin epth D		Water Depth			
Method/ Plant Used	Track	od wind	lovi	cample	ria		Field Crew	Logged By CK	Checked By IMM
iaiit USEU	ıracı	ked wind	IOW	sample	rig		Bainbridge	LK LK	IIVIIVI

Project				BOREHOLE No
103 Camley S	treet, London			WS5
Job No	Date 02-04-12	Ground Level (m)	Co-Ordinates (m)	VV35
CG/5521C	02-04-12	28.35	E 529,692.8 N 1	83,802.3
Client	•	•		Sheet
Urbanest UK	Limited			1 of 1

Urbanest	UK Limit	:ed					1 of 1
SAMPLES & 7	ESTS	_				STRATA	ent
Depth Type	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	Instrument
			28.10		0.25	Steel reinforced concrete slab over LDPE membrane. [MADE GROUND]	
0.50 D 0.50 ES			27.45		(0.65)	Medium dense to dense dark brownish grey gravelly fine sand. Gravel is subangular to subrounded fine to mediur [MADE GROUND] 0.50 - 0.90 Becoming reddish brown. Gravels are occasion flint, brick, coal and clinker. Brick becoming more frequent	onally coarse of ent from 0.6m.
1.50 D 1.50 ES						Soft to firm dark greyish brown slightly silty sandy grave fine to medium. Gravel is subangular to subrounded fine flint, brick, coal and clinker. [MADE GROUND]	lly clay. Sand is to medium of
2.50 D 2.50 ES					(2.90)	2.50 - 3.80 Becoming fimer.	
3.50 D 3.50 ES			24.55		3.80	Soft dark blackish grey silty clay. Occasional subangular fine to medium gravel of flint, brick and clinker.	to subrounded
4.50 D 4.50 ES			23.55		4.80	[MADE GROUND]	
			21.85	X X X X X X X X X X X X X X X X X X X	(1.70)	Firm brownish grey silty CLAY. [LONDON CLAY FORMATION]	
Boring Progress	s and W	ater	Ohsen	vation	-	General Remarks	
Date Commen			Casin epth D			General Nemarks	
	- 2501	D	eptn D	<u>иа. mm</u>	Depth		
Method/ Plant Used Trac	ked wind	low:	sample	rig	ı	Field Crew Logged By CK	Checked By

Project				BOREHOLE No
103 Camley S	Street, London			MCC
Job No	Date 03-04-12	Ground Level (m)	Co-Ordinates (m)	WS6
CG/5521C	03-04-12	28.24	E 529,700.6 N 183,791.1	L
Client	•		·	Sheet
Urbanest UK	Limited			1 of 1

Urb	anest l	JK Limit	ed						1 of 1
SAMPL	ES & T	ESTS	- i				STRATA		ent
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)		DESCRIPTION	Instrument
-				28.09		- 0.15	Brick paviours. [MADE GROUND]		
- -				27.84	XXXXX	0.40	Concrete.		
- - 0.60	D			27.64		0.60	\[MADE GROUND] Medium dense orangish re	ed gravelly medium to coarse I fine to medium of flint and	e sand. Gravel is
0.60	ES					(0.50)	subangular to subrounded [MADE GROUND]	fine to medium of flint and	brick.
-				27.14		1.10	Soft gravelly sandy clay. So subrounded fine to mediu	and is fine to medium. Grave	l is subangular to
- 1.20 - 1.20	D ES					-	\[MADE GROUND]		
-						(0.90)	to subrounded fine to med	lark blackish grey ashy clayey dium gravel of flint, brick and	/ sandy subangular S d coal. Slight
. 1.80	D					-	hydrocarbon odour. [MADE GROUND]		
- 1.80 - 1.80	ES			26.24		2.00	1.50 - 1.60 Becoming very	clayey. Iish orange with abundant fr	agments of brick;
- -						-	\no hydrocarbon odour.	y sandy clay. Sand is fine to i	
- - - 2.50	D					-	subangular to subrounded	fine to medium of flint, bric	k and coal.
- 2.50	ES						Hydrocarbon odour. [MADE GROUND]		
- 						- (2.20)	2.60 - 2.80 Becoming firm 2.80 - 3.10 Becoming very	er. gravelly; abundant red brick	र rubble. No odour.
- - -						- (2.20) -	3.10 - 4.20 Gravel less abu	ındant. Clay is soft to firm.	
- -			1 ¹			-			
- -			**			-			
- - 						- -			
<u>-</u>				24.04		4.20		'll CLAY	
-					<u> </u>	-	Firm dark brownish grey s [LONDON CLAY FORMATION OF THE PROPERTY OF THE PROPER	IITY CLAY. ON]	
- - -					× ×	(0.80)			
- -				23.24	× ×	5.00			
- - -						-			
- -						-			
-						-			
- -						-			
- -						-			
-						-			
· ·						-			
- -						- -			
- 		1 \ \ /		01			C D -		
Boring Pr	ogress	Depth		Casin epth D		Water Depth	General Remarks		
Date CC	, innent	Бериі	D	epth D	īa. mm	Depth			
Method/ Plant Used	T	od ···!·-	امدد		wi o		Field Crew	Logged By	Checked By
rialit USEO	ırack	ed wind	IOW	sample	rıg		Bainbridge	СК	IMM

Project					BOREHOLE No
103 Camley S	treet, London				WS7
Job No	Date 03-04-12	Ground Level (m)	Co-Ordinates (m)		VV3/
CG/5521C	03-04-12	28.25	E 529,703.1	N 183,785.0	
Client			•		Sheet
Urbanest UK I	Limited				1 of 1

SAMPL	ES & TI	ESTS	er				STRATA		
Depth	Type No	Test Result	Water		Legena	ness)		DESCRIPTION	
				28.15		0.10	Brick paviours. [MADE GROUND]		
				27.85		0.40	Concrete.		
0.50 0.50	D ES					-	[MADE GROUND] Medium dense to dense d Gravel is subangular to sul [MADE GROUND]	lark brownish grey gravelly fi brounded fine to medium of	ne to coarse sand. concrete.
1.00 1.00	D ES					- (1.60)	0.50 - 1.80 Gravels are occ Frequent oyster shells.	casionally coarse flint, brick, o	coal and clinker.
2.00				26.25		2.00	1.80 - 2.00 Becoming oran hydrocarbon odour.	ngish red with abundant red b	orick rubble and a
2.00	D ES					-	Soft dark greyish brown fr	iable gravelly sandy clay. San brounded fine to medium of e cohesive.	d is fine to coarse. flint, brick, coal
3.00 3.00	D ES					- - (2.00) - -	2.80 - 3.90 Becoming very of copper from 3.9m.	soft and silty with coarse gra	avel size fragments
				24.25		4.00			
Boring Pr	Ogress	and W	ater	Ohsen	vation		General Remarks		
						Water	General Kemarks		
Date Co	omment	Depth	D	Casin epth D	<u>โล. mm</u>	Water Depth			
Method/							Field Crew	Logged By	Checked By

Project				BOREHOLE No
103 Camley S	Street, London			WS8
Job No	Date 03-04-12	Ground Level (m)	Co-Ordinates (m)	VV 36
CG/5521C	03-04-12	28.22	E 529,694.7 N 183	783.5
Client				Sheet
Urbanest UK	Limited			1 of 1

Urbar	nest U	IK Limit	ed						1 of 1	
SAMPLES	S & TE	STS					STRATA			ent
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)		DESCRIPTION		Instrument /Backfill
- 0.50 - 0.50 - 0.50 - 1.00 - 1.00 - 2.00 - 2.00 - 3.00 - 3.00 - 4.00 - 4.00	D ES D ES D ES	Result		24.22 23.42 23.22		ness) - 0.15 - (3.85) - (0.80) - (0.80) - 4.80	occasionally coarse subang concrete, roadstone and w recovery of core. [MADE GROUND] 2.00 - 4.00 Becoming clayer ceramic.	g dark greyish orange sandy gular to subrounded gravel o wood/timber. Sand is medium ey, also with frequent fragment and lignite.	f flint, brick, n to coarse. Limited ents of clinker and	
Method/	ment	Depth	D	Casin epth D	g ia. mm	Water Depth	General Remarks Field Crew	Logged By	Checked By	
Plant Used	Track	ed wind	ow:	sample	rig		Bainbridge	CK	IMM	

Project					BOREHOLE No
103 Camley S	treet, London				WS9
Job No	Date 03-04-12	Ground Level (m)	Co-Ordinates (m)		VV39
CG/5521C	03-04-12	28.18	E 529,708.0	N 183,778.7	
Client	•	•			Sheet
Urbanest UK	Limited				1 of 1

Urb	anest l	JK Limit	ed					1 of 1
SAMPL							STRATA	
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)	DESCRIPTION	nstr i ment
				28.08	\bowtie	0.10	Brick paviours. [MADE GROUND]	
				27.83 27.68		0.35	Concrete. [MADE GROUND]	
0.50 0.50	D ES					- - -	Medium dense to dense dark reddish brown sandy sub subrounded fine to medium gravel of flint and brick. Sa coarse.	angular to nd is medium to
1.00 1.00	D ES					_ _ _ (1.50)	\[MADE GROUND] Soft dark reddish brown slightly friable sandy gravelly of medium. Gravel is subangular to subrounded fine to medium.	lay. Sand is fine to edium of flint,
1.50 1.50	D ES			26.18		2.00	brick, coal and ceramic. [MADE GROUND] 1.00 - 1.20 Becoming firm dark greyish brown and silty. staining and hydrocarbon odour noted. 1.20 - 2.00 No odour noted. Refusal on obstruction.	Occasional black
						- - -		
						- - - -		
						- - -		
						- - - -		
						- - -		
						- - - -		
						- - -		
						- - -		
						- - -		
Poring Dr	ograss	and Mr	2+0-	Obsor	vations	-	General Remarks	
Boring Pr	ogress			Casin epth D	g_	Water Depth	General Kemarks	
		- 1	U	ериі Д	ııd. IIIIII	Depth		
Nath1/							Field Conv.	Charles d D.
Method/ Plant Used	Track	ked wind	low	sample	rig		Field Crew Logged By Bainbridge CK	Checked By IMM

Project					BOREHOLE No
103 Camley S	treet, London				WS10
Job No	Date 03-04-12	Ground Level (m)	Co-Ordinates (m)		M210
CG/5521C	03-04-12	28.05	E 529,714.0 N	N 183,769.1	
Client	•		•		Sheet
Urbanest UK	Limited				1 of 1

Urba	nest L	JK Limit	ed					1 of 1
SAMPLE	ES & TI	ESTS				STRATA		nent
Depth	Type No	Test Result	Water	Reduced Level Legend	Depth (Thick- ness)		DESCRIPTION	Instrument /Backfill
-				27.95 27.80	- 0.10 - 0.25			
				27.55	0.50	Concrete. [MADE GROUND]		
- 0.50 - 0.50 -	D ES				-	Medium dense to dense de sand. Gravel is subangular concrete.	ark brownish grey gravelly m to subrounded fine to medi	nedium to coarse um of flint and
- 1.20 - 1.20 - 1.20	D ES				-	coarse. Gravel is subangula and coal. [MADE GROUND]	friable sandy gravelly clay. Sa ar to subrounded fine to me er and more cohesive. Black	dium flint, brick
- 2.20 	ES				(4.45)	2.30 - 3.80 Clay becoming matrix. Occasional black st	very silty and oyster shells n aining and hydrocarbon odd	oted within the our noted.
3.50	D ES					3.80 - 4.95 Hydrocarbon o	dour very strong.	
- 4.50 - - - - - - - -	D			23.10	4.95 5.00		rm silty CLAY. Occasional bla DN]	nck staining.
					-			
Boring Pro	gress	and Wa		Observations		General Remarks		
	mment	Depth		Casing epth Dia. mm	Water Depth		oved due to concrete obstru	iction at 0.44mbgl.
Method/ Plant Used	Track	ed wind	ow	sample rig		Field Crew Bainbridge	Logged By CK	Checked By IMM

Project					BOREHOLE No
103 Camley St	treet, London				WS11A
Job No	Date 03-04-12	Ground Level (m)	Co-Ordinates (m)		MASTIA
CG/5521C	03-04-12	28.45	E 529,702.6	N 183,799.6	
Client			•		Sheet
Urbanest UK I	imited				1 of 1

28.35	SAMPL	ES & TE	STS	er				STRATA		
MADE GROUND Standard Management Mana	Depth	Type No		Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	
Medium dense to dense dark greyish brown gravelly medium to coarse (area is subangular to subrounded fine to medium of flint and concrete.					28.35		0.10			,
Description of the progress and Water Observations 1.50							- (0.70)	Medium dense to dense da	ark greyish brown gravell	y medium to coarse
27,65 0.80							- (0.70)		to subrounded fine to m	edium of flint and
MADE GROUND comprising soft dark orangish brown sandy gravelly clay. MADE GROUND comprising soft dark orangish brown sandy gravelly clay. MADE GROUND comprising soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark orangish brown sandy gravelly clay. MADE GROUND corrupting soft dark gravish brown gravel ymedium to coarse the substance of the substance of the substance of the substance of the substance or substance of the substance of t	0.50	ES			27.65		0.80	[MADE GROUND]	wwith occasional coal fr	agments
Sand is medium to coarse. Gravel is subangular to subrounded fine to medium of finit, brick and coal. Occasional black staining. Frequent (ignit: (ign	1.00						-	MADE GROUND comprisin	g soft dark orangish brov	vn sandy gravelly clay.
1.50							-	Sand is medium to coarse. medium of flint, brick and	Gravel is subangular to s	ubrounded fine to
1.50 ES Carring Progress and Water Observations Date Comment Depth								lignite.	coun. Occusional black ste	millig. Frequent
2.50 ES 2.90 Medium dense to dense dark blackish brown gravelly medium to coarse and Grovel is subangular to subrounded fine of flint, coal and brick. Slight hydrocarbon odour noted. 3.50 D 3.50 ES 3.50 D 4.50 Soft dark greyish black slity clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black slity clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. [MADE GROUND] 4.50 D 4.50 Soft dark greyish brown silty clay. With occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. [MADE GROUND] 4.50 LONDON CLAY FORMATION] Sorring Progress and Water Observations Date Comment Depth Depth Depth Depth Depth Dia. mm Water Depth Window sample WS11 moved due to concrete obstruction at 0.5 mbgl.							-	1.50 - 2.40 Becoming silty	and slightly organic. Occa	sional black staining
2.50	1.50						(2.10)	and slight organic odour no	oted.	
2.50							-			
2.50							- -			
2.50 ES 2.90 Medium dense to dense dark blackish brown gravelly medium to coarse sand. Gravel is subangular to subrounded fine of flint, coal and brick. IMADE GROUNDI 3.04 A 240 Inclusions of soft dark greyish brown silty clay. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. [MADE GROUND] 4.50 ES 23.50 4.95 Firm dark greyish brown silty CLAY. [LONDON CLAY FORMATION] Boring Progress and Water Observations Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Depth Dia. mm Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth Depth Depth Depth Depth Dia. mm Depth D	2 50	L .					-		to stiff and less organic. I	No staining or odours
Medium dense to dense dark blackish brown gravelly medium to coarse sand. Gravel is subangular to subrounded fine of flint, coal and brick. IMADE GROUNDI 3.04 A, 240 Inclusions of soft dark greyish brown silty clay. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. [MADE GROUND] 3.40 Medium dense to dense dark black is brown output on the subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. [MADE GROUND] 4.50 4.50 [MADE GROUND] Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. [MADE GROUND] Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon odour noted. Soft dark greyish black silty clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and provided fine to m	2.50 2.50						-	noted.		
3.50 D ES 3.60 D ES					25.55		2.90	Medium dense to dense da	ark blackish brown grave	lly medium to coarse
25.05 3.40 Northern progress and Water Observations Boring Progress and Water Observations Date Comment Depth Depth Depth Dia. mm Vater Depth Depth Dia. mm Vater Dia. mm Va							(0.50)	sand. Gravel is subangular	to subrounded fine of fli	nt, coal and brick.
Soft dark greyish black sitly clay with occasional lignite and rounded to subrounded fine to medium gravel of flint and brick. Slight hydrocarbon dodur noted. [MADE GROUND] 4.50 4.50 ES 3.50 4.95 23.45 5.00 Firm dark greyish brown sitly CLAY. [LONDON CLAY FORMATION] General Remarks Date Comment Depth Depth Depth Dia. mm Depth Depth Dia. mm Depth De					25.05		3.40	3.00 - 3.40 Inclusions of so	oft dark greyish brown silt	y clay. Slight
4.50	3.50	D					-			nite and rounded to
4.50	3.50	ES					-	subrounded fine to mediui	m gravel of flint and brick	k. Slight hydrocarbon
4.50							-			
A.50 ES 23.50 23.45 5.00 Firm dark greyish brown silty CLAY. [LONDON CLAY FORMATION] Boring Progress and Water Observations Date Comment Depth Depth Dia. mm Water Depth Depth Dia. mm Water Depth Window sample WS11 moved due to concrete obstruction at 0.5mbgl.							(1.55)			
A.50 ES 23.50 23.45 5.00 Firm dark greyish brown silty CLAY. [LONDON CLAY FORMATION] Boring Progress and Water Observations Date Comment Depth Depth Dia. mm Water Depth Depth Dia. mm Water Depth Window sample WS11 moved due to concrete obstruction at 0.5mbgl.							-			
30ring Progress and Water Observations Date Comment Depth Depth Dia. mm Water Depth Depth Dia. mm Water Depth Dia. mm Depth Depth Dia. mm Depth Depth Dia. mm Depth Depth Dia. mm Depth Dia. mm Depth Dia. mm Depth Depth Dia. mm Depth Dia. mm Depth Dia. mm Depth	4.50 4.50									
Boring Progress and Water Observations Date Comment Depth Depth Dia. mm Depth Dia. mm Dia. mm Depth Depth Dia. mm Dia. mm Depth Depth Dia. mm Dia. mm Depth Dia. mm Dia. mm Depth Dia. mm Dia. mm Depth Depth Dia. mm Dia. mm Depth Dia. mm Dia. mm Depth Depth Dia. mm Dia. mm Depth Dia. mm Dia. mm Depth Depth Depth Dia. mm Dia. mm Depth Depth Dia. mm Depth Dep	4.50				23.50		- 4.95			
Boring Progress and Water Observations Date Comment Depth Dia. mm Dia. mm Depth Depth Dia. mm Depth Depth Dia. mm Depth Depth Dia. mm Depth Dep					23.45		5.00	Firm dark greyish brown si	ilty CLAY.	,
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth D							-	(LONDON CLAT FORWIATIO	214]	/
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth D										
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth D							-			
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth D							- 			
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Depth Depth Dia. mm Depth Depth Depth Dia. mm Depth D							-			
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth D							-			
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth D							-			
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth Depth Dia. mm Depth Dia. mm Depth Depth Dia. mm Depth Depth Dia. mm Depth Depth Dia. mm Depth Depth Depth Depth Dia. mm Depth Depth Dia. mm Depth Dep							-			
Date Comment Depth Depth Dia. mm Depth Dia. mm Depth D	Boring Pr	ogress	and Wa	ater	Observ	vations	;	General Remarks		
									ved due to concrete obst	ruction at 0.5mbgl.
			r	٦	ериі Д	ıd. IIIII	υεμιτι			0
Method/ Field Crew Logged By Checked By	/lethod/							Field Crew	Logged Rv	Checked By

Project				BOREHOLE No
103 Camley	Street, London			WS12
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)	VV312
CG/5521C	04-04-12			
Client	•	•		Sheet
Urbanest UK	Limited			1 of 1

SAMPL	ES & TE	STS	Je.				STRATA	
Depth	Type No	Test Result	Water	Reduce Level	d Legend	Depth (Thick- ness)	DESCRIPTION	
						- 0.15 - 0.35	Brick paviours. \[MADE GROUND] \text{Concrete.}	
0.50 0.50	D ES					(0.35) 0.70	\[MADE GROUND] Medium dense to dense dark orangish red gravelly sand. Gravel is subangular to subrounded fine to m brick.	medium to coarse edium of flint and
1.00 1.00	D ES						[MADE GROUND] [0.60 - 0.70 Becoming clayey. Soft dark greenish grey silty sandy clay with occasio subrounded fine to medium gravel of flint, coal, bri Occasional black staining. Slight hydrocarbon odour [MADE GROUND] [0.90 - 1.10 Staining becoming rare, no odour.	ck and clinker.
2.00 2.00	D ES					(4.25)	2.00 - 2.60 Becoming firmer.	
3.00 3.00	D ES					(T.23)		
4.00 4.00	D ES					4.95		
						5.00	Soft to firm dark greyish brown very silty CLAY. [LONDON CLAY FORMATION]	
Boring Pr	ogress	and Wa				- - - - - - - - - - -	General Remarks	
	omment	Depth			ng Dia. mm			
Method/			<u></u>				Field Crew Logged By	Checked By

Project					BOREHOLE No
103 Camley S	itreet, London				WS13
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)		AA2T2
CG/5521C	04-04-12	28.14	E 529,718.3	N 183,782.7	
Client			•		Sheet
Urbanest UK	Limited				1 of 1

_									
Urb	anest l	JK Limit	ed						1 of 1
SAMPL	.ES & T	ESTS	J.				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick- ness)		DESCRIPTION	8
				27.89		- - 0.25			
				27.64		0.50	Medium dense to dense de subrounded fine to medium	ark brownish grey sandy suba m gravel of flint and concrete	angular to
0.50 0.50	D ES					(0.70)	\ medium. \[MADE GROUND] \0.35 - 0.50 Becoming sligh:	tly clayey with fragments of p	plastic and brick.
1.00 1.00	D ES			26.94		1.20	medium to coarse of flint.	ish brown slightly gravelly fin f clay. Gravel is subrounded t	e to medium sand o rounded
1.50 1.50	D ES					- (0.80)	\[MADE GROUND] Soft to firm dark orangish subrounded fine to medium [MADE GROUND]	brown sandy clay with suban m gravel of flint, brick and cli	gular to nker.
2.00	D			26.14		2.00		ck staining and slight hydroca	rbon odour noted
2.00	ES					-	Refusal on obstruction.		
						- -			
						- -			
						- -			
						- -			
						- -			
						- - -			
						-			
						- -			
						- -			
						-			
						- -			
						- - -			
						- -			
						- -			
						-			
						- -			
						-			
Boring Pr							General Remarks		
Date Co	omment	Depth	D	Casin epth D	ia. mm	Water Depth			
Method/							Field Crew	Loggod By	Chackad By
Plant Used	T	ed wind	بدما				Bainbridge	Logged By CK	Checked By IMM

Project					BOREHOLE No
103 Camley St	reet, London				WS14
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)		VV 314
CG/5521C	04-04-12	27.73	E 529,729.4	N 183,771.8	l
Client					Sheet
Urbanest UK L	imited				1 of 1

SAMPL		2010	ter			Donth	STRATA	
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	
				27.43 27.33		0.30	Steel reinforced concrete. [MADE GROUND] Medium dense to dense dark brownish grey sandy so subrounded fine to medium gravel of flint, coal and by medium.	bangular to prick. Sand is fine to
0.80	ES					(1.00)	[MADE GROUND] Soft dark greyish brown sandy gravelly clay. Sand is f Gravel is subangular to subrounded fine to medium o	ne to medium.
1.20	D			26.33		1.40	coal. [MADE GROUND] 1.20 - 1.40 Abundant brick.	
				25.73		- - (0.60) - - 2.00		concrete and brick.
2.50 2.50	D ES		•				Firm dark brownish orange sandy gravelly clay. Sand Gravel is fine to medium subangular to subrounded o coal. [MADE GROUND]	is medium to coarse. If flint, brick and
3.50 3.50	D ES		‡ ‡			(3.00)	3.50 - 4.00 Becoming firm to stiff.	
4.50 4.50	D ES			22.73		5.00	4.00 - 5.00 Becoming less stiff and silty. No coal note	d.
						- - - - -		
						- - - - -		
				Observe		-	Con and Barranka	
Boring Property Date Co	ogress	Depth		Casin epth D		Water Depth	General Remarks	
Method/ Plant Used		ed wind					Field Crew Logged By Bainbridge CK	Checked By

Project				BOREHOLE No
103 Camley S	treet, London			WS15
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)	M212
CG/5521C	04-04-12	28.44	E 529,719.3 N 183,	312.4
Client		•		Sheet
Urbanest UK	Limited			1 of 1

Ciletit								Silect
Urb	anest L	JK Limit	ed					1 of 1
SAMPL	ES & TI	ESTS	_				STRATA	
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	
				28.19		0.25	Steel reinforced concrete over LDPE membrane. [MADE GROUND]	
0.40 0.40	D ES					(0.75)	Medium dense to dense dark orangish red gravelly fine Gravel is subangular to subrounded fine to medium of fl [MADE GROUND] 0.40 - 1.00 Becoming clayey, with fragments of plastic a	KC
1.00	D ES			27.44		(0.90)	Soft dark greyish brown very gravelly sandy clay. Sand is coarse. Gravel is subangular to subrounded fine to coars coal, chalk and metal. [MADE GROUND]	medium to :e of flint, brick,
2.00 2.00	D ES			26.54		(0.70)	Medium dense to dense dark greyish brown slightly clay Gravel is subangular to subrounded fine to coarse of flii ceramic. Sand is fine to medium. [MADE GROUND]	ey sandy gravel. it, brick, coal and
-								
Boring Pr	ogress	and Wa	ater	Obser	vation	S	General Remarks	
	omment	Depth		Casin epth E			Additional window sample bored nearby for vibration as backfilled with concrete to 2.6mbgl.	sessment: Location '\

CGL Bh Los C65521C.GPJ GINT STD AGS 3.1.GDT 23/5/12 Checked By IMM

Field Crew Bainbridge Logged By Tracked window sample rig

Project					BOREHOLE No
103 Camley S	treet, London				WS16
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)		AASTO
CG/5521C	04-04-12	28.29	E 529,711.1	N 183,798.2	
Client					Sheet
Urbanest UK	Limited				1 of 1

SAMPL	ES & TE	STS	Ē				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	ILegena	Depth (Thick- ness)	DESCRIP	PTION	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
				27.99		0.30	Steel reinforced concrete over LDPE r [MADE GROUND]	nembrane.	
0.50 0.50	D ES			2,133		(0.90)	Medium dense to dense dark orangis Gravel is subangular to subrounded fi concrete. Occasional coarse gravel to [MADE GROUND]	ine to medium of	flint. brick and
1.50	D			27.09		1.20	Soft to firm dark greyish brown slight subangular to subrounded fine to me is fine to medium. [MADE GROUND]	ly sandy silty clay dium gravel of flii	with occasional nt and brick. Sand
1.50	ES			26.49		1.80	Medium dense dark orangish red san subrounded medium to coarse of flin [MADE GROUND]	dy gravel. Gravel t and brick.	is angular to
2.50 2.50	D ES					- - - -			
						- - (2.40) - -	2.95 - 3.00 Inclusion of soft dark black	k organic peaty sil	ty organic clay.
3.50 3.50	D ES					- - - -			
				24.09		4.20	4.00 - 4.10 Inclusions of soft dark bro Refusal on obstruction.	wnish grey clay.	5
						- - - -			
						-			
						- - - -			
						- - - -			
						-			
Boring Property Date Co	ogress mment	and Wa		Obser Casin epth D		Water	General Remarks		
	CIIL	Бери	D	epth D	via. mm	Depth			
			1	1			İ		

Project					BOREHOLE No
103 Camley S	treet, London				WS17
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)		M211
CG/5521C	04-04-12	28.02	E 529,717.7	N 183,760.6	
Client					Sheet
Urbanest UK	Limited				1 of 1

Urba	anest l	JK Limit	ed					1 of	1
SAMPLE	ES & TI	ESTS					STRATA		int
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION		Instrument /Backfill
-				27.87		- 0.15			
-						(0.35) 0.50	[MADE GROUND] Medium dense to dense dark brownish grey sandy g	ravel. Gravel is	
-				27.52		0.50	Medium dense to dense dark brownish grey sandy g subangular to subrounded fine to medium of flint ar fine to medium.	d concrete. Sand is	
_						(0.50)	\[MADE GROUND]		
-				27.02		1.00	Soft dark brownish grey sandy gravelly clay. Sand is Gravel is subangular to rounded fine to medium of f	medium to coarse.	
-				26.82		1.20	\ ceramic. \[MADE GROUND]	, oo. aa	
-						-	Medium dense to dense dark greyish brown sandy g subangular to rounded fine to medium of flint, brick	ravel. Gravel is	_//
							\subangular to rounded fine to medium of flint, brick \[MADE GROUND]	and ceramic.	
-						-	Refusal on coarse brick rubble.		
- -						-			
-						-			
-						-			
-						- -			
						-			
_						_			
-						-			
-						- -			
						-			
						_			
-						-			
- -						-			
-						-			
						-			
-						-			
- -						- -			
-						-			
-						-			
-						-			
-						-			
-		1 1 1 1 1							
Boring Pro						Water	General Remarks		
Date Co	mment	Depth	D	Casin epth D	la. mm	Water Depth			
Method/						1	Field Crew Logged By	Checked By	
Plant Used	Track	ed wind	ow	sample i	rig		Field Crew Logged By Bainbridge CK	Спескей ву	

Project					BOREHOLE No
103 Camley St	treet, London				WS17A
Job No	Date 04-04-12	Ground Level (m)	Co-Ordinates (m)		VV31/A
CG/5521C	04-04-12	28.00	E 529,718.0	N 183,761.0	
Client					Sheet
Urbanest UK I	imited				1 of 1

SAMPL	ES & T	ESTS	- G			STRATA	
Depth	Type No	Test Result	Water Fevel	Legend	Depth (Thick- ness)	DESCRIPTION	
			27.85		0.15 (0.35) 0.50	Steel reinforced concrete over LDPE membrane. [MADE GROUND] Medium dense dark brownish grey sandy gravel. subrounded fine to medium of flint and concrete [MADE GROUND]	,
0.80 0.80	D ES				(1.30)	Soft dark brownish grey sandy gravelly clay. Sand Gravel is subangular to rounded fine to medium ceramic. [MADE GROUND] 1.00 - 1.20 Becoming very gravelly.	d is medium to coarse. of flint, brick and
1.50 1.50	D ES		26.20		1.80	Medium dense dark orangish brown sandy grave subrounded fine to coarse of flint, brick and con-	el. gravel is subangular to
2.50 2.50	D ES		25.80		(0.40) 2.20	subrounded fine to coarse of flint, brick and concoarse. [MADE GROUND] 2.00 - 2.20 Becoming very clayey. Soft to firm dark greyish brown friable sandy gramedium to coarse. Gravel is subangular to subro occasionally coarse, of flint, brick and coal. [MADE GROUND] 2.90 - 4.95 Becoming more cohesive from and sl	velly clay. Sand is unded fine to medium,
3.50 3.50	D ES				(2.75)		
4.50 4.50	D ES		23.05		4.95	Firm dark greyish brown silty CLAY.	
						[LONDON CLAY FORMATION]	
			ater Obser			General Remarks	
Date Co	omment	Depth	Casin Depth C	g iia. mm	Water Depth		
Method/	Track					Field Crew Logged By	Checked By

Project					BOREHOLE No
103 Camley St	treet, London				WS18
Job No	Date 05-04-12	Ground Level (m)	Co-Ordinates (m)		AA219
CG/5521C	05-04-12	27.70	E 529,742.7	N 183,746.1	
Client		•			Sheet
Urbanest UK L	imited				1 of 1

		JK Limit	ed				CTDATA	1 of 1
SAMPL Depth	Type No	Test Result	Water	Reduced Level	Legena	Depth (Thick-	STRATA DESCRIPTION	note:iment
0.50	D ES			27.55		ness) - 0.15 - (0.65) - 0.80	Steel reinforced concrete over LDPE membrane. [MADE GROUND] Dark brownish grey gravelly fine to medium sand. Graof subangular fine to medium of flint and brick. [MADE GROUND] 0.50 - 0.80 Becoming yellow and slightly clayey with comparison of the firm brown sandy gravelly clay. Sand is medium is subangular to subrounded fine to medium, occasion	oal.
1.50 1.50	D ES					(2.20)	brick, coal and clinker. [MADE GROUND]	
2.50 2.50	D ES			24.70		3.00		
3.50	D ES			24.70		(1.95)	Soft to firm blackish brown sandy gravelly clay. Sand is Gravel is subangular to subrounded fine to medium, of flint, brick, coal and clinker. [MADE GROUND]	s medium to coarse. occasionally coarse,
4.80 -4.80	D ES			22.75 22.70		- 4.95 - 5.00/ 	4.80 - 4.95 Becoming black with slight hydrocarbon of Firm dark greyish brown silty CLAY. [LONDON CLAY FORMATION]	dour.
Boring Pr						Water	General Remarks	
Date Co	omment	Depth	D	Casin epth D	Ka. mm	Water Depth		
Method/ Plant Used	Track	ced wind	low	sample	rig	<u> </u>	Field Crew Logged By Bainbridge CK	Checked By

Project					BOREHOLE No
103 Camley St	treet, London				WS19
Job No		M213			
CG/5521C	Date 05-04-12 05-04-12	27.77	E 529,748.4	N 183,740.9	
Client					Sheet
Urbanest UK I	imited				1 of 1

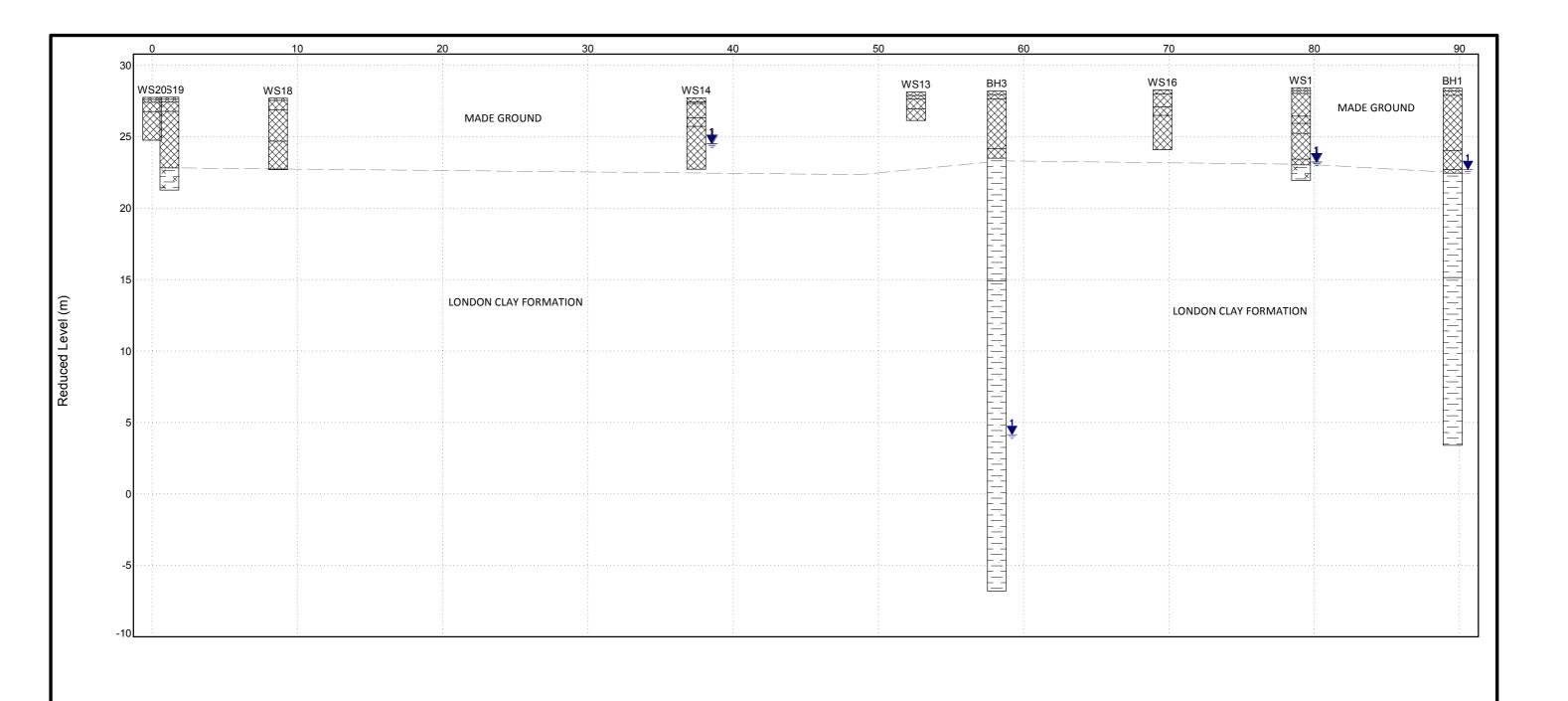
Urba	anest L	JK Limit	ed					1 of 1
SAMPLE	ES & TI	ESTS	L				STRATA	<u>+</u>
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)	DESCRIPTION	
-				27.62		- 0.15	Steel reinforced concrete over LDPE membrane.	
· ·				27.42		0.35	\[MADE GROUND] Medium dense dark brownish grey gravelly fine to m \[\] is subrounded of subangular fine to medium of flint a	edium sand. Gravel
							is subrounded of subangular fine to medium of flint a [MADE GROUND]	and brick.
						(0.65)	Medium dense dark grevish brown clayey sandy grav	el. Gravel is
1.00	D			26.77		1.00	subangular to subrounded fine to medium of flint, br medium to coarse.	ick and coal. Sand is
1.00	ES					-	\[MADE GROUND] Firm to stiff dark greyish brown slightly gravelly clay.	Gravel is subangular
•						_	to subrounded fine to medium, occasionally coarse, of	of flint and brick.
						-	[MADE GROUND]	
						-		
2.00	D					-	2.00 - 3.00 Becoming stiff dark and yellowish brown	with occasional
2.00	ES					-	calcrete inclusions noted.	
· ·								
						-		
- 2 00						_ _ (3.95)	200 2050	
3.00 3.00	D ES					-	3.00 - 3.95 Becoming slightly friable.	(C
-						-		
· ·								
• •						-		
4.00	D					-	3.95 - 4.00 Black staining and hydrocarbon odour.	
4.00	ES					- -		
-						-		
- - -								
- 	_			22.82	\swarrow	- 4.95 -	Firm dark greyish brown silty CLAY.	
- 5.00 - 5.00	D ES				× × ×	- -	[LONDON CLAY FORMATION]	
- -					× ×	-		
- - -					× ×	(1.55)		
- -					<u> </u>	- (1.33)		
- -						-		
-					× × ×	-		
- - -				21.27		6.50		<u> </u>
						-		
· 		,			<u> </u>			
Boring Pro							General Remarks	
Date Co	mment	Depth	D	Casin epth D	iia. mm	Water Depth		
Method/							Field Crew Logged By	Checked By
Plant Used	Track	ed wind	low	sample	rig		Bainbridge CK	IMM

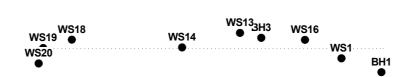
Project					BOREHOLE No		
103 Camley S	treet, London				WS20		
Job No	Date 05-04-12	Ground Level (m)	Co-Ordinates (m)		W320		
CG/5521C 05-04-12		27.76	E 529,752.5	N 183,742.0			
Client	•		•		Sheet		
Urbanest UK	Limited				1 of 1		

SAMPL	ES & TI	-STS	er				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	netrument
				27.61 27.41		0.15	Steel reinforced concrete of [MADE GROUND]		
0.50 0.50	D ES					(0.65)	\ is subrounded of subangul \[MADE GROUND]	nish grey gravelly fine to med ar fine to medium of flint and	d brick.
				26.76		1.00	Medium dense dark greyis subangular to subrounde f medium to coarse. [MADE GROUND]	th brown clayey sandy gravel. Fine to medium of flint, brick a	Gravel is and coal. Sand is
1.50 1.50	D ES					- - - -	Firm to stiff dark greyish b to subrounded fine to med [MADE GROUND]	rown slightly gravelly clay. Gr dium, occasionally coarse, of	avel is subangular flint and brick.
1.50						- - (2.00)	2.00 - 3.00 Becoming very	sandy. Calcrete inclusions an	d lignite noted.
2.50 2.50	D ES					- - -			
2.30	ES			24.76		3.00	Window so male to main to	ed due to an expanding crack	
Boring Pr	Ogracia	and W		Observ	vation		General Remarks		
	mment	Depth		Casin epth D		Water Depth		e bored nearby for vibration a o 5.0mbgl.	ssessment: Location 'V
Method/							Field Crew	Logged By	Checked By

Project				BOREHOLE No		
103 Camley S	WS21					
Job No	Date 05-04-12	Ground Level (m)	Level (m) Co-Ordinates (m)			
CG/5521C	05-04-12	27.90	E 529,727.5 N 183,753	1.7		
Client	•			Sheet		
Urbanest UK	Limited			1 of 1		

Client									
Urba	anest L	JK Limit	ed						1 of 1
SAMPLI	ES & TI	STS	ī				STRATA		
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION	
0.80 0.80	No D ES	Result	<u> </u>	27.75 27.55		(ITIICK-ness) - 0.15 - 0.35 - (0.65) - 1.00	[MADE GROUND] Medium dense to dense di sand. Gravel is subangular concrete. [MADE GROUND]	ark brownish grey gravelly fin to subrounded fine to medit andy gravelly clay. Gravel is so of flint, coal, plastic, brick an towards the base.	e to medium um of flint and
Boring Pro	ogress	and Wa	ater	Observ	vations	-	General Remarks		
	mment	Depth		Casin epth D		Water Depth		ored through concrete. Refus	al on obstruction at
		·		сриі Ц	u. 111111	υσμαι	0.9mbgl.	-	
Method/ Plant Used	T	ed wind			_		Field Crew Bainbridge	Logged By CK	Checked By IMM




Project					BOREHOLE No
103 Camley S	treet, London				WS21B
Job No	Date 05-04-12	Ground Level (m)		AASSTD	
CG/5521C			27.90 E 529,725.2 N 183		
Client			•		Sheet
Urbanest UK I	Limited				1 of 1

	Urb	anest L	JK Limit	:ed	1 of 1						
Ī	SAMPL	ES & TI	ESTS	_				STRATA			ent
	Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		DESCRIPTION		Instrument /Backfill
CGL BH LOG CG5521C.GPJ GINT STD AGS 3_1.GDT_23/5/12	Boring Pr	DES	and Wa	ater D		vation	0.15 0.25 (0.65)	[MADE GROUND] Medium dense to dense d sand. Gravel is subangular concrete. [MADE GROUND] Firm dark greyish brown says subrounded fine to coarse	ark brownish grey gravelly fito subrounded fine to medical andy gravelly clay. Gravel is of flint, coal, plastic, brick a and black staining towards rete.	subangular to	
G5521C.GPJ GINT											
HL0G C	Dani II							Field Co.	L I B	Charles LD	
CGL B	Method/ Plant Used	lethod/ ant Used Tracked window sample rig						Field Crew Bainbridge	Logged By CK	Checked By IMM	

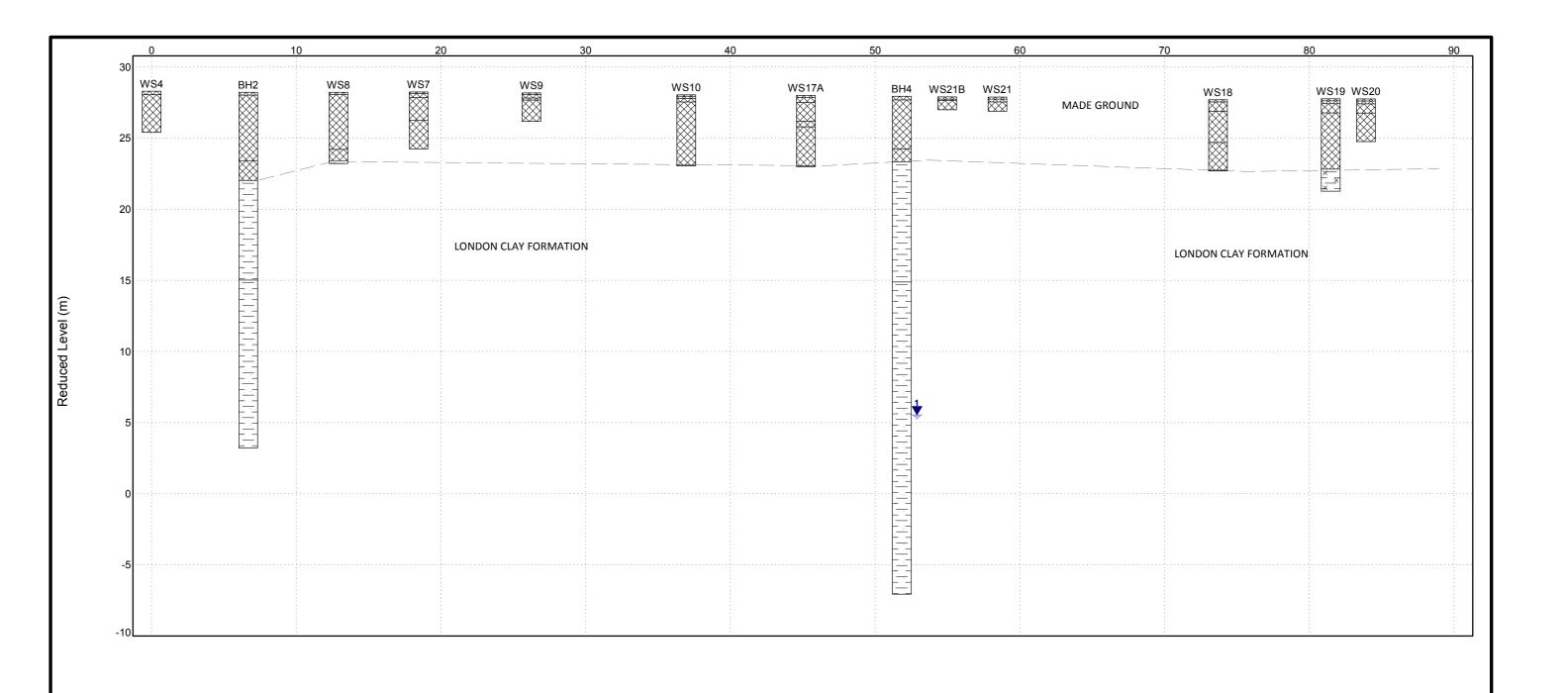
APPENDIX C

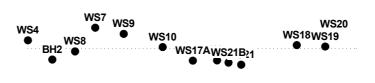
Geological cross sections

LITHOLOGY GRAPHICS

MADE GROUND CLAY

Sandy CLAY


Silty CLAY


SUBSURFACE SECTION Cross Section 1

Client: Urbanest UK Limited

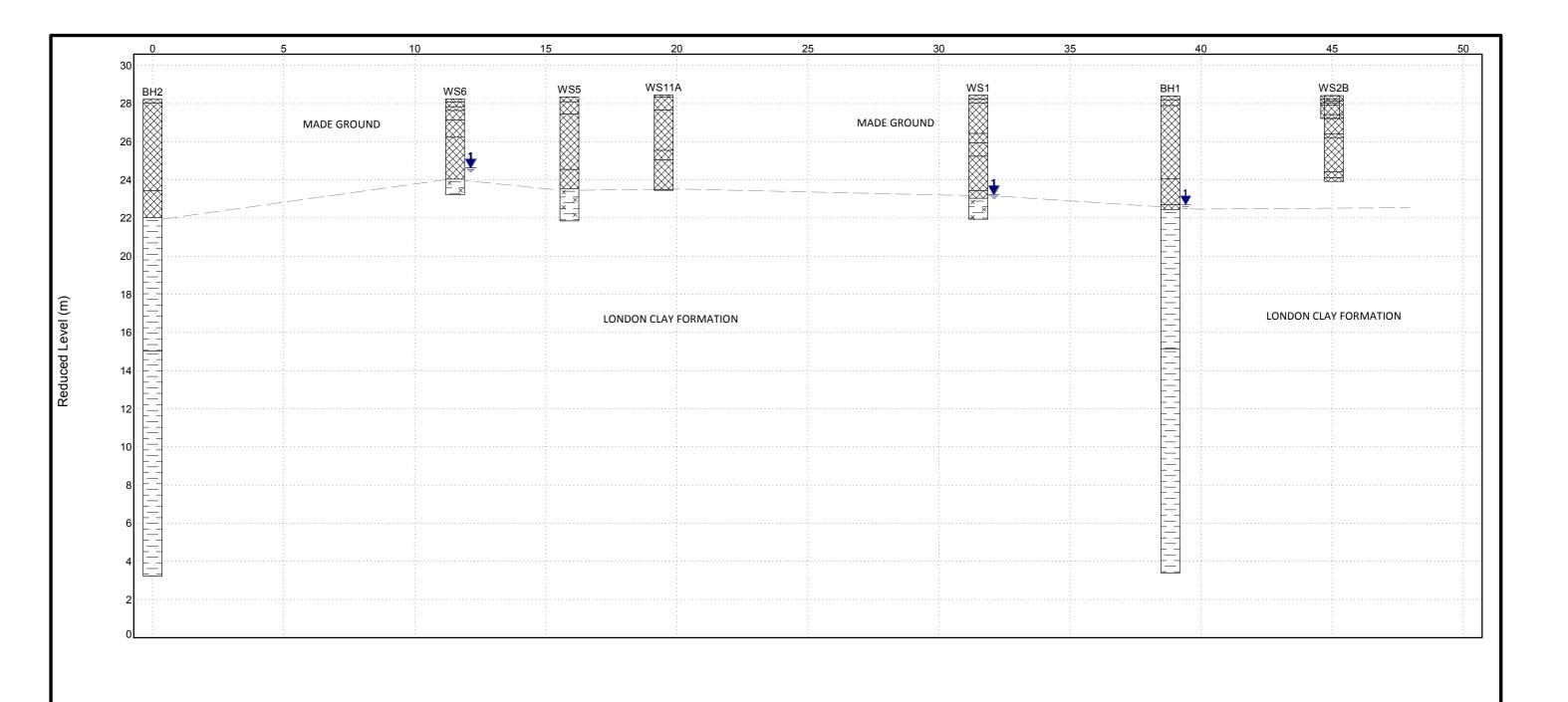
Project: 103 Camley Street, London

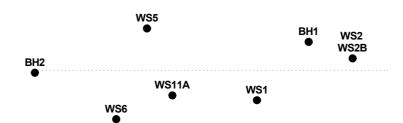
Number: CG/5521C

LITHOLOGY GRAPHICS

MADE GROUND

Sandy CLAY




SUBSURFACE SECTION Cross Section 2

Client: Urbanest UK Limited

Project: 103 Camley Street, London

Number: CG/5521C

LITHOLOGY GRAPHICS

MADE GROUND CLAY

Sandy CLAY

Silty CLAY

SUBSURFACE SECTION Cross Section 3

Client: Urbanest UK Limited

Project: 103 Camley Street, London

Number: CG/5521C

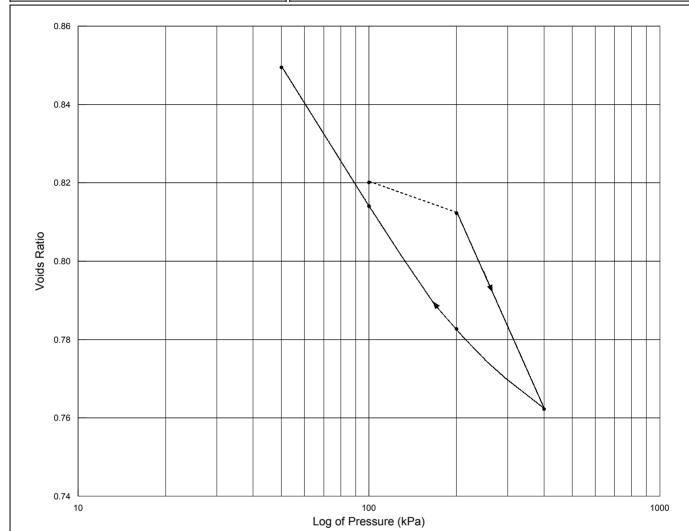
APPENDIX D

Geotechnical results

BS1377: Part 5: Clause 3: 1990

Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH1


Sample No:

Depth (m): 6.00 - 6.45

Depth of test specimen (m): 6.05
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Stiff brown silty CLAY

Initial Conditions:

Moisture Content (%) 32 Particle Density (Mg/m³) 2.72 (Assumed)

Voids Ratio 0.836 Diameter (mm) 76.2 Laboratory Temperature (°C) 19.1

Height (mm) 18.5
Bulk Density (Mg/m³) 1.95
Dry Density (Mg/m³) 1.48

Pressure Range	M∨	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 100	-	Specimen swelled	-	0.820
100 - 200	0.0432	9.13	t90	0.812
200 - 400	0.138	0.355	t50	0.762
400 - 200	- 0.0581	0.334 (Sv)	t50	0.783
200 - 100	- 0.176	0.139 (Sv)	t50	0.814
100 - 50	- 0.390	0.0653 (Sv)	t50	0.849

Checked and Approved

Initials:

Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

BS1377: Part 5: Clause 3: 1990

Determination of One Dimensional Consolidation Properties of Soil

Borehole No: BH4


Sample No:

Depth (m): 8.00 - 8.45

Depth of test specimen (m): 8.05
Orientation: Vertical
Specimen preparation: Undisturbed

Description:

Firm to stiff brown silty CLAY

Initial Conditions:

Moisture Content (%) 33 Particle Density (Mg/m³) 2.72 (Assumed)

Voids Ratio 0.880

Diameter (mm) 75.0 Laboratory Temperature (°C) 19.6 Height (mm) 18.9

Height (mm) 18.9 Bulk Density (Mg/m³) 1.92 Dry Density (Mg/m³) 1.45

Pressure Range	Mv	Cv	Time Fitting	Voids Ratio
(kPa)	(m²/MN)	(m²/yr)	Method	
0 - 150	0.126	0.487	t50	0.844
150 - 300	0.168	0.215	t50	0.797
300 - 150	- 0.0698	0.313 (Sv)	t50	0.816
150 - 75	- 0.187	0.172 (Sv)	t50	0.842
75 - 25	- 0.434	0.0825 (Sv)	t50	0.882

Checked and Approved

Initials:

Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229 CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

BS1377: Part 2: Clause 9: 1990

Determination of Particle Size Distribution

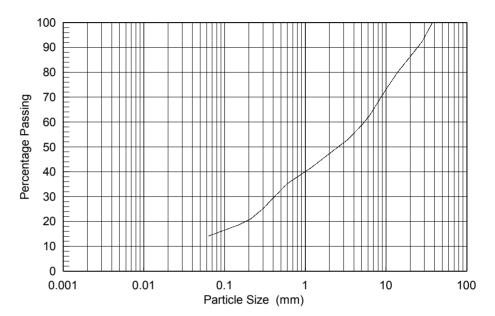
BH1 Borehole Number:

Sample Number:

Depth (m): 5.00 - 5.45

Description:

MADE GROUND (Brown silty sandy gravel.


Gravel includes clinker and slag)

Insufficient material supplied to be representative in accordance with BS1377 requirements.

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIE	/E
Sieve	% pass
200 mm	100
125 mm	100
90 mm	100
75 mm	100
63 mm	100
50 mm	100
37.5 mm	100
28 mm	92
20 mm	86
14 mm	80
10 mm	73
6.3 mm	63
5 mm	59
3.35 mm	53
2 mm	47
1.18 mm	42
600 µm	35
425 µm	30
300 µm	25
212 µm	21
150 µm	19
63 µm	14

LAY		SILT			SAND			GRAVEL			
0	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL	

Particle Proportions	
0.0	%
52.7	%
33.2	%
14.1	%
	0.0

Checked and Approved

Initials:

SB Date: 14/05/2012 Project Number:

Project Name:

CAMLEY STREET (KINGS CROSS)

GEO / 18229

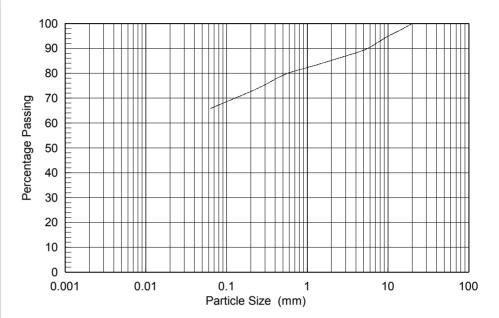
Project No: CG5221C

BS1377 : Part 2 : Clause 9 : 1990

Determination of Particle Size Distribution

BH2 Borehole Number:

Sample Number:


Description:

Depth (m): 5.45 - 5.50 Firm brown silty fine to medium gravelly sandy CLAY

BS1377: Part 2: Clause 9.2: 1990 Wet Sieving Method

SIEV	/E				
Sieve	% pass				
200 mm	100				
125 mm	100				
90 mm	100				
75 mm	100				
63 mm	100				
50 mm	100				
37.5 mm	100				
28 mm	100				
20 mm	100				
14 mm	97				
10 mm	95				
6.3 mm	91				
5 mm	89				
3.35 mm	87				
2 mm	85				
1.18 mm	83				
600 µm	80				
425 µm	78				
300 µm	75				
212 µm	73				
150 µm	71				
63 µm	66				

LAY		SILT			SAND		(GRAVEL	-	BLES
0	Fine	Medium	Coarse	Fine	Medium	Coarse	Fine	Medium	Coarse	COBBL

Particle Proportions						
0.0	%					
14.8	%					
19.4	%					
65.8	%					
	0.0					

Checked and Approved

Initials:

SB Date: 14/05/2012 Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

PROJECT NAME

CAMLEY STREET (KINGS CROSS) Project No: CG5221C

PROJECT NO: GEO / 18229

Date	14/05/2012					
Approved	Simo	on B	urke			
Page	1	of	2			

	Sample details					Classification Tests		Densi	ty Tests	Undrained Triaxial Compression Tests			Chemical Tests					
Borehole No.	Depth (m)	No.	Туре	Description	MC (%)		PL (%)	PI (%)	<425 mic (%)	Bulk (Mg/m³)	Dry (Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Shear Stress (kPa)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/l)	Other tests and comments
BH1	5.00 - 5.45	-	D	MADE GROUND (Brown silty sandy gravel. Gravel includes clinker and slag)														Particle Size Distribution Test
BH1	6.00 - 6.45	-	U	Stiff brown silty CLAY														Oedometer Consolidation Test
BH1	8.00 - 8.45	-	U	Stiff brown CLAY	36					1.87	1.38	150	195	97				
BH1	13.50 - 13.95	-	U	Stiff dark grey CLAY	23					2.05	1.66	250	297	149				
BH1	19.50 - 19.95	-	U	Stiff dark grey CLAY	27					1.96	1.55	400	262	131				
ВН2	5.45 - 5.50	-	D	Firm brown silty fine to medium gravelly sandy CLAY														Particle Size Distribution Test
BH2	16.50 - 16.95	-	U	Stiff dark grey CLAY	29					2.01	1.56	300	235	117				
ВН3	10.50 - 10.95	-	U	Stiff brown CLAY	29					1.90	1.47	200	243	122				
BH4	4.00 - 4.45	-	В	Firm dark brown and black sandy gravelly clayey SILT. Gravel is fine to medium flint	35	66	34	32	81									
BH4	6.00 - 6.45	-	U	Firm brown CLAY	26					1.97	1.56	100	102	51				
BH4	6.45 - 6.50	-	D	Stiff mottled brown, orange and grey silty CLAY	30	73	28	45	100									
BH4	8.00 - 8.45	-	U	Firm to stiff brown silty CLAY														Oedometer Consolidation Test

SUMMARY OF GEOTECHNICAL TESTING

Client: Card Geotechnics Limited, 4 Godalming Business Centre, Woolsack Way, Godalming, Surrey, GU7 1XW

PROJECT NAME

PROJECT NO:

CAMLEY STREET (KINGS CROSS)
Project No: CG5221C
GEO / 18229

Date	14/05/2012					
Approved	Simon Burke					
Page	2 of 2					

	Sample details	s			Classification Tests		Density Tests	Undrained Triaxial Compression Tests			Chemical Tests						
Borehole No.	Depth (m)	No.	Туре	Description	MC) (%)		PI (%)	mic	Bulk Dry (Mg/m³)(Mg/m³)	Cell Pressure (kPa)	Deviator Stress (kPa)	Shear Stress (kPa)	рН	2:1 W/S SO4 (g/l)	Ground Water SO4 (g/I)	Other tests and comments
BH4	10.50 - 10.95	-	U	Stiff brown silty CLAY with rare selenite crystals	36	79	33	46	100								
BH4	15.00 - 15.45	-	В	Stiff dark grey-brown silty CLAY	28	64	26	38	100								
BH4	22.50	-	U	Stiff dark brown silty CLAY	26	72	28	44	100								
BH4	28.50 - 28.95	-	U	Stiff dark grey-brown slight fine sandy silty CLAY	23	56	23	33	100								

SUMMARY OF GEOTECHNICAL TESTING

GEOLABS®

Test Report by GEOLABS Limited Bucknalls Lane, Garston, Watford, Hertfordshire, WD25 9XX

Authorised Signatories: J R Masters (Qual Mgr) C F Wallace (Tech Mgr) J Sturges (Ops Mgr) [X] Simon Burke (Snr Tech) J J M Powell (Tech Dir)

© GEOLABS LIMITED

(Ref5043.459919)

BS1377 : Part 7 : Clause 8 : 1990

Quick Undrained Triaxial Compression Test

Borehole Number: Sample Number:

BH1

Description:

Sample Number Depth (m):

8.00 - 8.45

Stiff brown CLAY

Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	198.1
Diameter (mm):	103.4
Moisture Content (%):	36
Bulk Density (Mg/m³):	1.87
Dry Density (Mg/m³):	1.38
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.7
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	150
Strain at failure (%):	10.6
Maximum Deviator Stress (kPa):	195
Shear Stress Cu (kPa):	97
N	

Mode of failure:

Checked and Approved

Initials:

SB Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

GEOLABS ®

Orientation and position of sample

BS1377: Part 7: Clause 8: 1990

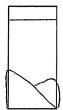
Quick Undrained Triaxial Compression Test

Borehole Number: Sample Number:

BH1

Description:

Depth (m):


13.50 - 13.95

Stiff dark grey CLAY

Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	202.4
Diameter (mm):	102.9
Moisture Content (%):	23
Bulk Density (Mg/m³):	2.05
Dry Density (Mg/m³):	1.66
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.6
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	250
Strain at failure (%):	7.9
Maximum Deviator Stress (kPa):	297
Shear Stress Cu (kPa):	149

Mode of failure:

Checked and Approved

Initials:

SB

Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

GEOLABS ®

Orientation and position of sample

BS1377: Part 7: Clause 8: 1990

Quick Undrained Triaxial Compression Test

Borehole Number: Sample Number:

BH1

Description:

Depth (m):

19.50 - 19.95

Stiff dark grey CLAY

Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	202.2
Diameter (mm):	102.9
Moisture Content (%):	27
Bulk Density (Mg/m³):	1.96
Dry Density (Mg/m³):	1.55
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.5
Axial displacement rate (%/min):	2.0
Cell pressure (kPa):	400
Strain at failure (%):	7.4
Maximum Deviator Stress (kPa):	262
Shear Stress Cu (kPa):	131
Mode of failure:	

Checked and Approved

Initials:

SBDate: 14/05/2012 Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

BS1377 : Part 7 : Clause 8 : 1990

Quick Undrained Triaxial Compression Test

Borehole Number: Sample Number:

BH2

Description:

Depth (m):

16.50 - 16.95

Stiff dark grey CLAY

Single Stage Specimen

Specimen details	Single Specimen		
Specimen condition:	Undisturbed	- B	
Length (mm):	191.8	Orientation and osition of sample	
Diameter (mm):	102.6	1 5 6	
Moisture Content (%):	29	Orienta	
Bulk Density (Mg/m³):	2.01	0 8	
Dry Density (Mg/m³):	1.56		
Test details		-	
Latex membrane thickness (mm):	0.3		
Membrane correction (kPa):	0.8		
Axial displacement rate (%/min):	2.1		
Cell pressure (kPa):	300		
Strain at failure (%):	13.0		
Maximum Deviator Stress (kPa):	235		
Shear Stress Cu (kPa):	117		
Mode of failure:			

Checked and Approved

Initials:

SB Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

BS1377: Part 7: Clause 8: 1990

Quick Undrained Triaxial Compression Test

Borehole Number: Sample Number:

внз

Description:

Depth (m):


10.50 - 10.95

Stiff brown CLAY

Single Stage Specimen

Specimen details	Single Specimen
Specimen condition:	Undisturbed
Length (mm):	178.2
Diameter (mm):	103.5
Moisture Content (%):	29
Bulk Density (Mg/m³):	1.90
Dry Density (Mg/m³):	1.47
Test details	
Latex membrane thickness (mm):	0.3
Membrane correction (kPa):	0.7
Axial displacement rate (%/min):	2.2
Cell pressure (kPa):	200
Strain at failure (%):	11.2
Maximum Deviator Stress (kPa):	243
Shear Stress Cu (kPa):	122
Mode of failure:	

Mode of failure:

Checked and Approved

Initials:

SB

Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

BS1377: Part 7: Clause 8: 1990

Quick Undrained Triaxial Compression Test

Borehole Number: Sample Number:

BH4

Description:

Depth (m):

6.00 - 6.45

Firm brown CLAY

Single Stage Specimen

Particular Control Con	<u> </u>	
Specimen details	Single Specimen	
Specimen condition:	Undisturbed	₽ <u>8</u>
Length (mm):	202.6	an and sample
Diameter (mm):	103.4	# w
Moisture Content (%):	26	Orientation and position of sampl
Bulk Density (Mg/m³):	1.97	° &
Dry Density (Mg/m³):	1.56	
Test details		
Latex membrane thickness (mm):	0.3	
Membrane correction (kPa):	0.6	
Axial displacement rate (%/min):	2.0	
Cell pressure (kPa):	100	
Strain at failure (%):	7.9	
Maximum Deviator Stress (kPa):	102	
Shear Stress Cu (kPa):	51	
Mode of failure:		

Checked and Approved

Initials:

SB Date: 14/05/2012

Project Number:

Project Name:

GEO / 18229

CAMLEY STREET (KINGS CROSS)

Project No: CG5221C

APPENDIX E

Dynamic probe results

Project				PROBE No
103 Camley	Street, London			DDT1 A
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT1A
CG/5521C	10-04-12			
Client	,	•		Sheet
Urbanest UK	Urbanest UK Limited			1 of 1

Depth (m)	Readings (blows/100mm)		Diagrai	m (N100 Va	alues)			Torque (Nm)	Remarks
(m)		5	10	15	20	25	30	(Nm)	Remarks
1	0						50		
2								-	
3							 		
4								-	
- 5 - - - -								- - - - - - - - - -	
6									
7				Canaval			 		

STD AGS 3_1.GDT 23/5/12						
GS 3_1.0	Hamme	r Wt (kg)		63.5		
T STD A	Hamme	r Drop (mm)		750		
CG5521C.GPJ GINT	Cone Dia	a (mm)		50.5		
5521C.G	Cone Ty	ре		DPSH		
50 SO	Damper					
CGL DP I	Method/ Plant Used	Tracked win	dov	w sample r	ig	

- DPT 1A positioned 1.5m from retaining wall
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.2mbgl where refusal met (+50 blows)

Method/		Field Crew	Logged By	Checked By
Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley S	Street, London			DDT1P
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT1B
CG/5521C	10-04-12			
Client	-			Sheet
Urbanest UK Limited			1 of 1	

Depth (m)	Readings (blows/100mm	5	Diagra 10		100 Value 5 2		25 30	ı	Torque (Nm)	Remarks
- 1 - 2 - 3 - 4	0 0 18 13 5 2 2 2 2 50									
	r Wt (kg)	63.5		11	eral Rem		rom retaining 1mbgl where refusa	wal		1
Cone Di		50.5		3. IVI	aue Ground	to 1.ZITIDGI	where refusa	11116	ει (+ 50 β](Uvvəj
Cone Ty		DPSH								
Damper										
Method/ Plant Used	Tracked windo	ow sample rig		Field	Crew Bainbridg	re I	ogged By CK			Checked By IMM

Hammer Wt (kg)	63.5
Hammer Drop (mm)	750
Cone Dia (mm)	50.5
Cone Type	DPSH
Damper	

- DPT 1B positioned 2.0m from retaining wall
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.2mbgl where refusal met (+50 blows)

러 Method/		Field Crew	Logged By	Checked By
ಕ್ಷ Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley	Street, London			DDT1C
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT1C
CG/5521C	10-04-12			
Client	,		-	Sheet
Urbanest UK Limited				1 of 1

Depth (m)	Readings (blows/100mm)		agram (N100) Values)			Torque (Nm)	Remarks
(m)		5 1	0 15	20	25	30	(Nm)	Remarks
- 1	0 9 8 6 3 3 2 4 3 2 2 50					50		
2								
3								
4							-	
- 5 - - -								
- 6 -							-	
7				al Domonto			-	

STD AGS 3_1.GDT 23/5/12						
GS 3_1.0	Hamme	r Wt (kg)		63.5		
T STD A	Hamme	r Drop (mm)		750		
CG5521C.GPJ GINT	Cone Dia	a (mm)		50.5		
5521C.G	Cone Ty	ре		DPSH		
50 SO	Damper					
CGL DP I	Method/ Plant Used	Tracked win	dov	w sample r	ig	

- DPT 1C positioned 2.5m from retaining wall
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.2mbgl where refusal met (+50 blows)

Method/		Field Crew	Logged By	Checked By
ಕ್ಷ Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley S	Street, London			DDT1D
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT1D
CG/5521C	10-04-12			
Client	Sheet			
Urbanest UK	1 of 1			

Depth (m)	Readings (blows/100mm)		Diagram (N10	0 Values)			Torque (Nm)	Remarks
(m)		5	10 15	20	25	30	(Nm)	Remarks
- 1	0 0 8 5 5 3 2 3 4 4 3 3 2 8 50					50		
2						 	- - - - - - - - - - - - - - - - - - -	
- 3						 		
4						 	-	
5							- - - - - - - - - -	
6								
7							- - - - - - - - - - - - - - - - - - -	

Hammer Wt (kg)	63.5
Hammer Drop (mm)	750
Cone Dia (mm)	50.5
Cone Type	DPSH
Damper	

- DPT 1D positioned 2.5m from retaining wall, and 1.0m west of DPT 1C
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.4mbgl where refusal met (+50 blows)

DT 23/5/12	- - - - - -							
GS 3_1.G	Hammer Wt (kg)	63.5	l——	eral Rem		from rotaining	wall and 1	Om west of DPT 10
r STD AC	Hammer Drop (mm)	750	2. Re	inforced con	crete to 0).1mbgl gl where refusa	,	
GPJ GIN	Cone Dia (mm)	50.5						
.G5521C.G	Cone Type	DPSH						
50 SO	_							
CGL DP	1	dow sample rig	Field	Crew Bainbridg	e	Logged By CK		Checked By IMM

Project				PROBE No
103 Camley S	treet, London			DPT1E
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DAITE
CG/5521C	10-04-12			
Client				Sheet
Urbanest UK	1 of 1			

Depth (m)	Readings (blows/100mm)		Diagram (N10	0 Values)			Torque (Nm)	Remarks
(m)		5	10 15	20	25 3	0	(Nm)	Remarks
- 1	0 0 8 9 6 5 5 10 8 5 4 13 10 10 50							
- 2 -							-	
- 3 -								
- 4							-	
5								
- 6 -								
7							-	

3DT 23/5/12					
CG5521C.GPJ GINT STD AGS 3_1.GDT	Hammer Wt (kg)	63.5			
T STD A	Hammer Drop (mm)	750			
PJ GIN	Cone Dia (mm)	50.5			
5521C.G	Cone Type	DPSH			
90 907	Damper				
. DP I	Method/				

- DPT 1E positioned 2.5m from retaining wall and 1.0m to the west of DPT 1D
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.4mbgl where refusal met (+50 blows)

Method/		Field Crew	Logged By	Checked By
ಕ್ಷ Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley S	treet, London			DPT1F
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DAITE
CG/5521C	10-04-12			
Client	Sheet			
Urbanest UK I	1 of 1			

Depth (m)	Readings (blows/100mr	n) 5	Diagra 10	m (N100 15	Values) 20	25	30	Torque (Nm)	Remarks
. 1	0 0 15 7 5 3 2 2 2 2 1 1 5								
2							 		
- 3							 		
4									
5									
6									
- 7									
Hamme	er Wt (kg)	63.5			Remarks		-	1	
	er Drop (mm)	750		1. DPT 1F 2. Reinford 3. Made G	positioned 2. ced concrete round to 1.4	5m from re to 0.1mbgl mbgl where	taining wa	all and 1.0r net (+50 bl	m to the east of DPT 1C
Cone Di		50.5				-			
Cone Ty		DPSH							
Damper	r								
Method/ Plant Used	Tracked wind	low sample rig		Field Crew Bair	nbridge	Logged	By CK		Checked By IMM

Hammer Wt (kg)	63.5
Hammer Drop (mm)	750
Cone Dia (mm)	50.5
Cone Type	DPSH
Damper	

- DPT 1F positioned 2.5m from retaining wall and 1.0m to the east of DPT 1C
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.4mbgl where refusal met (+50 blows)

러 Method/		Field Crew	Logged By	Checked By
ಕ್ಷ Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley S	Street, London			DDT1C
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT1G
CG/5521C	10-04-12			
Client	-			Sheet
Urbanest UK	1 of 1			

Depth (m)	Readings (blows/100mm)	5	Diagram (N100 10 15		25 30	Torque (Nm)	Remarks
1	0 0 13 11 18 13 7 5 3 3 3 50				50		
- 2						-	
- 3 						-	
- 4						-	
- - - 5						- - - - - - - - - - - - - - - - - - -	
- - - 6							
7							
				al Remarks		-	

STD AGS 3_1.GDT 23/5/12	-					
GS 3_1.0	Hamme	r Wt (kg)		63.5		
T STD A	Hamme	r Drop (mm)		750		
CG5521C.GPJ GINT	Cone Di	a (mm)		50.5		
:5521C.G	Cone Ty	pe		DPSH		
50 SO	Damper					
CGL DP I	Method/ Plant Used	Tracked wind	dov	v sample r	ig	

- DPT 1G positioned 3.25m from retaining wall
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.4mbgl where refusal met (+50 blows)

Method/		Field Crew	Logged By	Checked By
ಕ್ಷ Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley S	Street, London			DDT1H
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT1H
CG/5521C	10-04-12			
Client	-		'	Sheet
Urbanest UK	1 of 2			

Depth (m)	Readings (blows/100mm)		Diagram	(N100 Val	ues)			Torque (Nm)	Remarks
(m)		5	10	15	20	25 3	30	(Nm)	Remarks
-	0 12 11 13						İ	-	
-	11 0							-	
1	4 4						İ	= =	
	2 3 4						İ		
2	2 1							-	
	3 3 4								
-	4 5 4 1 1							-	
3	1 0 0								
	1 1 2 1							-	
4	1 2 1							-	
	1 2						 		
5	1 1							- -	
	1 1 1								
6								-	
	1 2 1 2								
<u> </u>	1 0 1 2 2							-	
7	1 2 1 2							-	
- - 5 - -	2 2 2								
-	5			`anaval Da				_	

CG5521C.GPJ GINT STD AGS 3_1.GDT 23/5/12	- - - - -	2 2 2 3	2	
GS 3_1.0	Hamme	r Wt (kg)	63.5	
T STD A	Hamme	r Drop (mm)	750	
SPJ GIN	Cone Dia	a (mm)	50.5	
5521C.0	Cone Ty	ре	DPSH	
50 SO	Damper	4		
CGL DP I	Method/ Plant Used	Tracked win	dow sample rig	

General Remarks

- DPT 1H positioned 3.50m from retaining wall
 Reinforced concrete to 0.1mbgl
 No obstructions, probe hole completed to 8.0mbgl

Logged By Checked By Field Crew Tracked window sample rig Bainbridge ĺММ

									Caru	deotechnics Limited
Project										PROBE No
103	3 Camley St	reet, l	ondon							DDT1LI
Job No		Date	10-04-12	Ground Lev	vel (m)	Co-Ordin	ates (m)			DPT1H
CG/	5521C		10-04-12							
Client										Sheet
Urk	oanest UK L	imited	i							2 of 2
Depth (m)	Readin (blows/10	gs Omm)	5	Diagran 10	n (N100 Va 15	alues) 20	25	30	Torque (Nm)	Remarks

Depth (m)	Readings (blows/100mm)		agram (N	100 Value	es)		Torque (Nm)	Remarks
(m)		5 1	.0 1	5 2	0 2	5 30	(Nm)	Remarks
<u> </u>	2 2						-	
-							-	
9							-	
							-	
10							-	
10							-	
[-	
11							-	
[İ		
- 12							-	
12							-	
							-	
13							-	
- 14							-	
<u> </u>								
<u> </u>							-	
15							-	
-							-	

STD AGS 3_1.GDT 23/5/12			
GS 3_1.0	Hammer Wt (kg)	63.5	
T STD A	Hammer Drop (mm)	750	
CG5521C.GPJ GINT	Cone Dia (mm)	50.5	
:5521C.G	Cone Type	DPSH	
90 90T	Damper		
CGL DP I	Method/ Plant Used Tracked wir	ndow sample rig	

General Remarks

- DPT 1H positioned 3.50m from retaining wall
 Reinforced concrete to 0.1mbgl
 No obstructions, probe hole completed to 8.0mbgl

Checked By Field Crew Logged By Tracked window sample rig Bainbridge ĺММ

Project				PROBE No
103 Camley	Street, London			DDT2A
Job No	Date 10-04-12	Ground Level (m)	Co-Ordinates (m)	DPT2A
CG/5521C	10-04-12			
Client	,		-	Sheet
Urbanest UK	1 of 1			

Depth (m)	/ ' \				Values)	Torque (Nm)	Torque (Nm) Remarks		
(m) 1 2 3 4 5			10	15	20	25	30		Remarks
7									
Hamme	r Wt (kg)	63.5	1		Remarks	L	'	1	
Hammer Wt (kg) 63.5 Hammer Drop (mm) 750 Cone Dia (mm) 50.5 Cone Type DPSH Damper Method/ Plant Used Tracked window sample rig		1. DPT 2A 2. Reinford	positioned 1. ced concrete	5m from reto 0.1mbgl	etaining wa	all at (+50 bl	owe)		
Cone Di		50.5		DPT 2A positioned 1.5m from retaining wall Reinforced concrete to 0.1mbgl Made Ground to 1.4mbgl where refusal met (+50 blows)					
Cone Ty		DPSH							
Damper Method/ Plant Used		low sample rig		Field Crew	nbridge	Logged	l By CK		Checked By

Hammer Wt (kg)	63.5
Hammer Drop (mm)	750
Cone Dia (mm)	50.5
Cone Type	DPSH
Damper	

- DPT 2A positioned 1.5m from retaining wall
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.4mbgl where refusal met (+50 blows)

ੇ Method/		Field Crew	Logged By	Checked By
팅 Plant Used	Tracked window sample rig	Bainbridge	CK	IMM

Project			PROBE No
103 Camley	Street, London		DDT2B
Job No	DPT2B		
CG/5521C	10-04-12 10-04-12		
Client	,	'	Sheet
Urbanest UK	1 of 1		

Depth (m)	Readings (blows/100mn	n) 5	Diagra 10	am (N1) 15	00 Value 2		5 30		Torque (Nm)	Remarks
1	0 0 10 5 8 5 2 1 2 2 2 2 1 18 5					- -		 50		
3								 		
4								 		
5								 		
6								 		
7								 		
Hamme	r Wt (kg)	63.5		11	ral Rem			_		
	r Drop (mm)	750	-	1. DPT 2. Rein	2B position	ned 2.5m fro	om retaining mbgl	wal) - -	owe)
Cone Di		50.5	-	1. DPT 2B positioned 2.5m from retaining wall 2. Reinforced concrete to 0.1mbgl 3. Made Ground to 1.4mbgl where refusal met (+50 blows)						
Cone Ty		DPSH								
Damper		2. 3	-							
Method/ Plant Used	Tracked wind	ow sample rig	-11	Field Cı	rew Bainbridg	e Lo	egged By CK			Checked By IMM

Hammer Wt (kg)	63.5
Hammer Drop (mm)	750
Cone Dia (mm)	50.5
Cone Type	DPSH
Damper	

- DPT 2B positioned 2.5m from retaining wall
 Reinforced concrete to 0.1mbgl
 Made Ground to 1.4mbgl where refusal met (+50 blows)

Method/		Field Crew	Logged By	Checked By
ಕ್ಷ Plant Used	Tracked window sample rig	Bainbridge	СК	IMM

Project				PROBE No
103 Camley St	treet, London			DDT2C
Job No	DPT2C			
CG/5521C	10-04-12 10-04-12			
Client		•		Sheet
Urbanest UK I	1 of 2			

Depth (m)	Readings (blows/100mm)		Diagram	n (N100 Va	lues)			Torque (Nm)	Remarks
(m)		5	10	15	20	25	30	(Nm)	Remarks
	0 0							-	
-	9 ,						 	-	
- 1	5 5 2							-	
-	2 1 1						İ	-	
	1 1						i I	-	
- 2	1 1 2								
	3 2 2						İ		
	1 1 1							-	
- 3	1 1 1								
	1 1 1						İ	-	
-	2 1 1						l I	-	
- 4	0 1								
-	1 4 2						i	-	
[2 2 1							-	
- 5 -	2 3 6							-	
-	3 2 2						i i	-	
- - 6	3 2 3								
	3 2 2						İ		
-	1 2 2						į Į	-	
7	3 2								
	3 3 3							-	
1	2 3 2 3							-	
	5			Conoral D				_	

DT 23/5/12	- - - - -	2 3 2 3	3	
3GL DP LOG CG5521C.GPJ GINT STD AGS 3_1.GDT	Hamme	r Wt (kg)	63.5	
T STD A	Hamme	r Drop (mm)	750	
SPJ GIN	Cone Dia	a (mm)	50.5	
5521C.G	Cone Ty	pe	DPSH	
90 SO	Damper			
CGL DP I	Method/ Plant Used	Tracked wind	dow sample rig	

General Remarks

- DPT 2C positioned 3.5m from retaining wall
 Reinforced concrete to 0.1mbgl
 Terminated at 8.0mbgl in London Clay Formation

Logged By Checked By Field Crew Tracked window sample rig Bainbridge ĺММ

									Card	Geotechnics Limited
Project										PROBE No
10	3 Camley St	reet, L	ondon							DPT2C
Job No		Date	10-04-12	Ground Le	vel (m)	Co-Ordin	ates (m)			DP12C
CG/	CG/5521C 10-04-12									
Client										Sheet
Url	banest UK L	imited	l							2 of 2
Depth (m)	Readin (blows/10	gs Omm)	5	Diagrai 10	m (N100 15	Values) 20	25	30	Torque (Nm)	Remarks
-	3	2							_	

Depth (m)	Readings (blows/100mm)				100 Value			Torque (Nm)	Remarks
(m)		5	1	0 1	5 2	0 2	5 30	(NM)	
- - -	3 2							-	
9							 		
- 10							 		
- 11								-	
- 12							 		
13							 		
14							 		
15									
<u>x</u> - 5 - 3 - -									

- - - -					
Hamme	r Wt (kg)		63.5		
	r Drop (mm)		750		
Cone Dia	a (mm)		50.5		
Cone Ty	pe		DPSH		
Damper					
Method/ Plant Used	Tracked win	dov	w sample r	ig	
	Hamme Cone Dia Cone Ty Damper Method/	Method/	Hammer Drop (mm) Cone Dia (mm) Cone Type Damper Method/	Hammer Drop (mm) 750 Cone Dia (mm) 50.5 Cone Type DPSH Damper	Hammer Drop (mm) 750 Cone Dia (mm) 50.5 Cone Type DPSH Damper

- DPT 2C positioned 3.5m from retaining wall
 Reinforced concrete to 0.1mbgl
 Terminated at 8.0mbgl in London Clay Formation

ੇ Method/		Field Crew	Logged By	Checked By
팅 Plant Used	Tracked window sample rig	Bainbridge	CK	IMM

APPENDIX F

Chemical test results

Charlene Knox

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 **f:** 01483 527285

e: charlenek@cardgeotechnics.co.uk

i2 Analytical Ltd. Building 19, BRE, Garston, Watford, WD25 9XX

t: 01923 67 00 20 **f:** 01923 67 00 30

e: reception@i2analytical.com

Analytical Report Number: 12-33502

Project / Site name: 103 Camley Street **Samples received on:** 05/04/2012

Your job number: CG/5521C Samples instructed on: 13/04/2012

Your order number: Analysis completed by: 20/04/2012

Report Issue Number: 1 Report issued on: 23/04/2012

Samples Analysed: 8 leachate samples - 46 soil samples

Signed:

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Thurstan Plummer

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				211048	211049	211050	211051	211052
Sample Reference				WS1	WS1	WS1	WS1	WS2B
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.80	2.00	3.50	1.50
Date Sampled				02/04/2012	02/04/2012	02/04/2012	02/04/2012	02/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	N/A	< 0.1	38	< 0.1
Moisture Content	%	N/A	NONE	22	N/A	20	20	11
Total mass of sample received	kg	0.001	NONE	1.8	N/A	1.6	1.7	1.5
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	Chrysotile - Hard/cement type material	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	Present	N/A	N/A	N/A
	. ,,	,				.4		
General Inorganics								
pH	pH Units	N/A	MCERTS	8.1	N/A	8.1	8.1	7.8
Total Cyanide	mg/kg	1	MCERTS	< 1	N/A	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	830	N/A	2900	1700	2000
Organic Matter	%	0.1	MCERTS	1.5	N/A	1.4	2.1	1.5
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	N/A	< 2.0	< 2.0	< 2.0
Total Friends (monoriyane)	Hig/kg		PICERTS	< 2.0	IN/A	₹ 2.0	₹ 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	N/A	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	N/A	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	1.4	1.9
Anthracene	mg/kg	0.1	MCERTS	< 0.10	N/A	< 0.10	0.40	0.57
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	2.7	2.3
Pyrene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	2.3	2.0
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	1.1	0.79
Chrysene	mg/kg	0.05	MCERTS	< 0.05	N/A	< 0.05	1.4	1.2
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	N/A	< 0.10	1.5	1.4
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	0.90	0.45
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	N/A	< 0.10	1.3	0.89
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	0.77	0.60
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	N/A	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	N/A	< 0.05	1.0	0.69
Coronene	mg/kg	0.05	NONE	< 0.05	N/A	< 0.05	< 0.05	< 0.05
Total PAH								
Total WAC-17 PAHs	mg/kg	1.6	NONE	< 1.6	N/A	< 1.6	15	13
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	13	N/A	15	14	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	130	N/A	290	150	160
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.2	N/A	1.2	1.2	1.0
Boron (water soluble)	mg/kg	0.2	MCERTS	2.0	N/A	1.9	1.8	1.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	N/A	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	N/A	N/A	< 4.0	N/A
Chromium (III)	mg/kg	1	NONE	38	N/A	N/A	78	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	38	N/A	31	78	32
Copper (aqua regia extractable)	mg/kg	1	MCERTS	33	N/A	44	74	58
Lead (aqua regia extractable)	mg/kg	2	MCERTS	230	N/A	2100	330	310
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	N/A	0.6	0.4	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	43	N/A	32	57	30
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg	1	MCERTS	62	N/A	59 120	65 160	54 150
zinc (aqua regia extractable)	mg/kg	2	MCERTS	92	N/A	120	160	150

Lab Sample Number				211048	211049	211050	211051	211052
Sample Reference				WS1	WS1	WS1	WS1	WS2B
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	0.80	2.00	3.50	1.50
Date Sampled				02/04/2012	02/04/2012	02/04/2012	02/04/2012	02/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics		•						
Benzene	μg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons		0.1	MOEDEC	< 0.1	N/A	< 0.1	< 0.1	.01
TPH7 - Aliphatic >EC5 - EC6	mg/kg		MCERTS		N/A			< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	N/A	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	N/A	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	N/A	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16 TPH7 - Aliphatic >EC16 - EC21	mg/kg	2	MCERTS	< 2.0	N/A	< 2.0	3.5	< 2.0
	mg/kg	8	MCERTS	< 8.0	N/A	< 8.0	15	< 8.0
TPH7 - Aliphatic >EC21 - EC35 TPH7 - Aliphatic (EC5 - EC35)	mg/kg	8 10	MCERTS MCERTS	< 8.0 < 10	N/A N/A	< 8.0 < 10	91 110	25 25
IPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	N/A	< 10	110	25
TPH7 - Aromatic >EC5 - EC7	//	0.1	MCERTS	< 0.1	N/A	401	401	401
TPH7 - Aromatic >EC5 - EC7 TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1		< 0.1	N/A N/A	< 0.1 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1
TPH7 - Aromatic >EC7 - EC8 TPH7 - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS MCERTS	< 0.1	N/A N/A	< 0.1	< 0.1	< 0.1 < 0.1
TPH7 - Aromatic >EC8 - EC10 TPH7 - Aromatic >EC10 - EC12	mg/kg				· · · · · · · · · · · · · · · · · · ·			
TPH7 - Aromatic >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS MCERTS	< 1.0 < 2.0	N/A N/A	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 < 2.0
TPH7 - Aromatic >EC12 - EC16 TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	N/A N/A	< 10	< 10	< 10
TPH7 - Aromatic >EC16 - EC21 TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	N/A N/A	< 10	< 10	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg mg/kg	10	MCERTS	< 10	N/A N/A	< 10	< 10	< 10
PCBs by GC-MS	Ilig/kg	10	MCERTS	< 10	N/A	< 10	< 10	< 10
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
I CD COURCIEL 133	mg/kg							
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211053	211054	211055	211056	211057
Sample Reference				WS2B	WS3	WS3	WS4	WS5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				3.50	1.00	4.50	0.50	0.50
Date Sampled				02/04/2012	02/04/2012	02/04/2012	02/04/2012	02/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	45	51
Moisture Content	%	N/A	NONE	4.8	21	21	8.1	5.6
Total mass of sample received	kg	0.001	NONE	1.8	1.3	1.6	2.0	1.4
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos III Soli Serceli	1//	N/A	130 17023	N/A	N/A	N/A	N/A	N/A
General Inorganics								
pH	pH Units	N/A	MCERTS	8.2	7.8	8.1	8.9	8.3
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	2	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	2300	1400	950	3900	230
Organic Matter	%	0.1	MCERTS	1.4	3.0	1.7	3.0	0.8
Total Phenois		_						
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.03	MCERTS	0.35	< 0.20	< 0.20	0.82	< 0.20
Acenaphthene	mg/kg	0.2	MCERTS	< 0.10	< 0.10	< 0.10	2.0	< 0.10
Fluorene	mg/kg	0.2	MCERTS	0.47	< 0.20	< 0.20	2.3	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	4.0	< 0.20	< 0.20	19	< 0.20
Anthracene	mg/kg	0.1	MCERTS	1.1	< 0.10	< 0.10	5.9	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	4.2	< 0.20	0.75	33	< 0.20
Pyrene	mg/kg	0.2	MCERTS	3.1	< 0.20	0.66	27	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	1.5	< 0.20	0.34	14	< 0.20
Chrysene	mg/kg	0.05	MCERTS	1.6	< 0.05	0.52	14	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	1.6	< 0.10	0.53	17	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	0.87	< 0.20	< 0.20	5.8	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	1.2	< 0.10	0.37	13	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	0.70	< 0.20	< 0.20	6.9	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	1.2	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.78	< 0.05	< 0.05	8.0	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	4.1	< 0.05
T-t-1 DAII								
Total PAH Total WAC-17 PAHs	ma/ka	1.6	NONE	21	< 1.6	3.2	170	< 1.6
TOTAL WAC-17 FAIIS	mg/kg	1.0	INUNE	<u> </u>	< 1.0	٥.۷	1/0	< 1.0
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	10	14	15	29	11
Barium (aqua regia extractable)	mg/kg	1	MCERTS	240	150	150	1300	56
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.6	1.2	1.2	1.1	0.8
Boron (water soluble)	mg/kg	0.2	MCERTS	0.7	3.0	2.6	0.4	< 0.2
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	1.6	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	N/A	N/A	N/A	< 4.0	N/A
Chromium (III)	mg/kg	1	NONE	N/A	N/A	N/A	38	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	19	30	32	38	19
Copper (aqua regia extractable)	mg/kg	1	MCERTS	60	66	78	160	28
Lead (aqua regia extractable)	mg/kg	2	MCERTS	310	240	310	2500	69
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	1.4	1.2	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	20	24	23	44	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	37	64	67	46	33
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	180	84	110	1900	35

Lab Sample Number				211053	211054	211055	211056	211057
Sample Reference				WS2B	WS3	WS3	WS4	WS5
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				3.50	1.00	4.50	0.50	0.50
Date Sampled				02/04/2012	02/04/2012	02/04/2012	02/04/2012	02/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8		0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg mg/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC10 - EC12		2	MCERTS	< 2.0	< 2.0	< 2.0	3.7	< 2.0
TPH7 - Aliphatic >EC12 - EC16 TPH7 - Aliphatic >EC16 - EC21	mg/kg mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	24	< 8.0
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	19	< 8.0	< 8.0	140	< 8.0
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	19	< 10	< 10	160	< 10
Triii Anphade (Les Less)	ilig/kg	10	PICERTS	13	< 10	V 10	100	\ 10
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	15	< 2.0
TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	14	< 10	< 10	140	< 10
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	290	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	14	< 10	< 10	450	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211058	211059	211060	211061	211062
Sample Reference				WS5	WS5	WS6	WS6	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.50	4.50	0.60	1.80	2.00
Date Sampled				02/04/2012	02/04/2012	03/04/2012	03/04/2012	03/04/2012
Time Taken			_	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	33	54	41
Moisture Content	%	N/A	NONE	21	23	18	6.8	20
Total mass of sample received	kg	0.001	NONE	1.5	1.2	1.1	1.3	1.3
Asbestos Identification Name		N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	Type P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Aspestos III Soli Screen	F/A	IN/A	130 17023	N/A	N/A	IN/A	IN/A	IN/A
General Inorganics								
pH	pH Units	N/A	MCERTS	8.0	7.9	8.1	8.2	8.0
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO₄	mg/kg	100	ISO 17025	1800	1300	930	510	3000
Organic Matter	//////////////////////////////////////	0.1	MCERTS	3.6	2.7	2.9	1.0	1.0
organic riduo	70	U.1	PICENTO	5.0	۷./	۷.7	1.0	1.0
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Friends (mononyarie)	mg/kg		FICERTS	1 2.0	1 2.0	1 2.0	1 2.0	1 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.03	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.2	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	0.85	3.0	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.48	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	1.1	3.8	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	< 0.20	0.93	2.8	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	0.59	1.4	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	< 0.05	0.86	1.8	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	0.78	1.5	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	0.57	0.86	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	0.72	1.2	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	0.49	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.58	< 0.05	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Total WAC-17 PAHs	mg/kg	1.6	NONE	< 1.6	6.4	18	< 1.6	< 1.6
	·							
Heavy Metals / Metalloids	_					1		
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	17	18	12	17
Barium (aqua regia extractable)	mg/kg	1	MCERTS	130	120	140	49	160
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.5	1.3	1.3	0.8	0.7
Boron (water soluble)	mg/kg	0.2	MCERTS	0.8	2.4	3.6	< 0.2	1.4
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	N/A	N/A	N/A	N/A
Chromium (III)	mg/kg	1	NONE	39	N/A	N/A	N/A	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	39	30	27	21	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	48	210	140	23	51
Lead (aqua regia extractable)	mg/kg	2	MCERTS	170	280	490	59	330
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.7	0.9	1.8	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	33	31	27	19	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	81	70	61	38	54
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	82	97	170	37	120

Lab Sample Number				211058	211059	211060	211061	211062
Sample Reference				WS5	WS5	WS6	WS6	WS7
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.50	4.50	0.60	1.80	2.00
Date Sampled				02/04/2012	02/04/2012	03/04/2012	03/04/2012	03/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	2.2	3.7	180	18	2.9
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons	•		1					
TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0 < 10	< 8.0	< 8.0	< 8.0	< 8.0
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	0.2	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	11	< 10	< 10
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	11	< 10	< 10
PCBs by GC-MS								·
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211063	211064	211065	211066	211067
Sample Reference				WS7	WS8	WS8	WS9	WS9
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				3.00	2.00	4.00	0.50	1.50
Date Sampled				03/04/2012	03/04/2012	03/04/2012	03/04/2012	03/04/2012
Time Taken		_		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	42	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	25	12	15	20	22
Total mass of sample received	kg	0.001	NONE	1.5	1.3	1.2	1.2	1.3
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos III son serecii	1//	IV/A	150 17025	N/A	N/A	N/A	N/A	IV/A
General Inorganics								
рН	pH Units	N/A	MCERTS	8.4	9.4	8.4	8.2	8.0
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	2100	16000	34000	680	670
Organic Matter	%	0.1	MCERTS	1.9	1.7	1.9	1.1	1.6
Total Phenols								
Total Phenois (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Friendis (mononyanc)	mg/kg		MCLKIS	₹ 2.0	< 2.0	₹ 2.0	₹ 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	2.1	0.82	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	1.1	0.47	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	11	4.3	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	< 0.10	1.7	0.93	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	12	6.2	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	< 0.20	9.3	5.0	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	4.9	3.0	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	< 0.05	5.1	2.7	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	5.2	4.1	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	2.4	1.2	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	4.1	2.8	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	2.3	1.7	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	0.32	0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	2.6	2.0	< 0.05	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total DAH								
Total PAH Total WAC-17 PAHs	mg/kg	1.6	NONE	< 1.6	64	35	< 1.6	< 1.6
TOTAL WAC-17 PAILS	my/ky	1.0	NONE	< 1.0	UT	33	< 1.0	< 1.0
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	16	20	13	14	16
Barium (aqua regia extractable)	mg/kg	1	MCERTS	160	320	210	100	120
Beryllium (aqua regia extractable)	ma/ka	0.06	MCERTS	1.0	0.3	0.6	1.4	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	0.9	0.4	1.4	0.4	0.3
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	N/A	N/A	N/A	< 4.0	N/A
Chromium (III)	mg/kg	1	NONE	N/A	N/A	N/A	38	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	31	21	25	38	37
Copper (aqua regia extractable)	mg/kg	1	MCERTS	74	160	76	46	46
Lead (aqua regia extractable)	mg/kg	2	MCERTS	330	280	230	170	130
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.1	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	28	23	25	37	26
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	65	30	41	77	70
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	130	350	340	75	66

Lab Sample Number				211063	211064	211065	211066	211067
Sample Reference				WS7	WS8	WS8	WS9	WS9
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				3.00	2.00	4.00	0.50	1.50
Date Sampled				03/04/2012	03/04/2012	03/04/2012	03/04/2012	03/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	13	< 1.0	< 1.0	< 1.0	2.9
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons		r	T					
TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	67	21	< 2.0	< 2.0
TPH7 - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	190	84	< 8.0	< 8.0
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	35	170	91	< 8.0	< 8.0
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	35	430	200	< 10	< 10
TPH7 - Aromatic >EC5 - EC7	mq/kq	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC0 - EC10	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	20	5.3	< 2.0	< 2.0
TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	110	42	< 10	< 10
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	110	49	< 10	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	240	96	< 10	< 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number									
Sample Number									
Depth (m)									
Date Sampled	•								
None Supplied None Supplie									
Analytical Parameter Soil Analysis)									
Stone Content	Time Taken			_	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Moster Content		Units	Limit of detection	Accreditation Status					
Moster Content	Stone Content	%	0.1		45	< 0.1	< 0.1	< 0.1	< 0.1
Total Premote (monthydric) Total Premote		_							
Asbestos Identification Name Type N/A ISD 17055 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A									
Assession Soll Screen P/A N/A SO 17025 N/A N/A N/A N/A N/A N/A N/A	·								
Pit Install	Ashertos in Soil Screen								
pH of the pH of	Aspestos III Soli Screen	F/A	IN/A	130 17023	IN/A	IN/A	IN/A	IN/A	IN/A
pH of the pH of	General Inorganics								
Total Cypanide		nH Unite	N/Δ	MCFRTS	8.3	8 1	8 1	7 9	7.8
Total Suphate as SQ1									
Organic Matter 96 0.1 MCERTS 1.6 1.6 2.1 0.9 5.0 Total Phenols (monohydric) Speciated PAHS Naphthalene mg/kg 0.05 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0									
Total Phenols Total Phenols (monthydric) mg/kg 2 MCERTS < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 < 2.0 <	,			1					
Speciated PAths	organic Flatter	70	V.1	PICENTO	1.0	1.0	۲.1	0.5	5.0
Speciated PAths	Total Phenois								
Naphthalene		ma/ka	2	MCFRTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Naphthalene	Total Theriois (mononyune)	mg/kg		FICERTS	1 2.0	1 2.0	1 2.0	1 2.0	1 2.0
Naphthalene	Speciated PAHs								
Acenaphthylene		ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene									
Fluorene	/								
Phenanthrene	·								
Anthracene									
Fluoranthene									
Pyrene									
Benzo(a)anthracene									
Chrysene mg/kg 0.05 MCERTS 0.45 0.37 < 0.05 < 0.05 0.55 Benzo (D)fluoranthene mg/kg 0.1 MCERTS 0.23 < 0.10	•								
Senzo(b)fluoranthene									
Benzo(k)fluoranthene mg/kg 0.2 MCERTS 0.22 0.20 < 0.20 < 0.20 < 0.20 0.33 Benzo(a)pyrene mg/kg 0.1 MCERTS 0.23 < 0.10									
Benzo(a)pyrene									
Indeno(1,2,3-cd)pyrene									
Dibenz(a,h)anthracene mg/kg 0.2 MCERTS < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.20 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05									
Benzo(ghi)perylene									
Coronene mg/kg 0.05 NONE < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Total PAH									
Total WAC-17 PAHs						_	_	_	
Heavy Metals / Metalloids	Total PAH								
Heavy Metals / Metalloids Mrsenic (aqua regia extractable) mg/kg 1 MCERTS 18 14 15 13 17 17 19 19 19 19 19 19	Total WAC-17 PAHs	mg/kg	1.6	NONE	2.8	< 1.6	< 1.6	< 1.6	3.0
Arsenic (aqua regia extractable) mg/kg 1 MCERTS 18 14 15 13 17 Barium (aqua regia extractable) mg/kg 1 MCERTS 240 110 120 58 120 Beryllium (aqua regia extractable) mg/kg 0.06 MCERTS 3.8 1.2 1.3 1.3 1.3 Boron (water soluble) mg/kg 0.2 MCERTS < 0.2									
Barium (aqua regia extractable) mg/kg 1 MCERTS 240 110 120 58 120	Heavy Metals / Metalloids								
Beryllium (aqua regia extractable)	Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	18	14	15	13	17
Boron (water soluble) mg/kg 0.2 MCERTS < 0.2 2.2 1.7 2.0 6.5	Barium (aqua regia extractable)	mg/kg		MCERTS		110	120	58	120
Cadmium (aqua regia extractable) mg/kg 0.2 MCERTS < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2		mg/kg	0.00						
Chromium (hexavalent) mg/kg 4 MCERTS N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A<		mg/kg							
Chromium (III) mg/kg 1 NONE N/A N/A N/A 46 N/A Chromium (aqua regia extractable) mg/kg 1 MCERTS 25 35 37 46 33 Copper (aqua regia extractable) mg/kg 1 MCERTS 52 49 69 41 230 Lead (aqua regia extractable) mg/kg 2 MCERTS 200 140 270 58 1200 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 1.7 < 0.3		mg/kg							
Chromium (aqua regia extractable) mg/kg 1 MCERTS 25 35 37 46 33 Copper (aqua regia extractable) mg/kg 1 MCERTS 52 49 69 41 230 Lead (aqua regia extractable) mg/kg 2 MCERTS 200 140 270 58 1200 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 1.7 < 0.3		mg/kg							
Copper (aqua regia extractable) mg/kg 1 MCERTS 52 49 69 41 230 Lead (aqua regia extractable) mg/kg 2 MCERTS 200 140 270 58 1200 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 1.7 < 0.3	` /	mg/kg							
Lead (aqua regia extractable) mg/kg 2 MCERTS 200 140 270 58 1200 Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 1.7 < 0.3		mg/kg	1						
Mercury (aqua regia extractable) mg/kg 0.3 MCERTS 1.7 < 0.3		mg/kg							
Nickel (aqua regia extractable) mg/kg 2 MCERTS 34 34 27 46 29 Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0		mg/kg							
Selenium (aqua regia extractable) mg/kg 1 MCERTS < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	7 7 7 7	mg/kg							2.6
Vanadium (aqua regia extractable) mg/kg 1 MCERTS 60 65 64 75 69		mg/kg	2	MCERTS					29
		mg/kg	1						
IZinc (aqua regia extractable) mg/kg 2 MCERTS 57 110 82 85 120									
	Zinc (aqua regia extractable)	mg/kg	2	MCERTS	57	110	82	85	120

Lab Sample Number				211068	211069	211070	211071	211072
Sample Reference				WS10	WS10	WS11A	WS11A	WS11A
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.50	3.50	1.00	2.50	4.50
Date Sampled				03/04/2012	03/04/2012	03/04/2012	03/04/2012	03/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons			1					
TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC5 - EC7	//	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC3 - EC7 TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC8 - EC8 TPH7 - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC10 - EC12	mg/kg mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Afoliauc >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aromatic >EC12 - EC10 TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC10 - EC21 TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS	mg/kg	10	HELKIS	110	110	110	110	110
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211073	211074	211075	211076	211077
Sample Reference				WS12	WS12	WS13	WS14	WS14
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	3.00	0.60	0.80	1.20
Date Sampled				04/04/2012	04/04/2012	04/04/2012	04/04/2012	04/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	23	24	6.6	18	18
Total mass of sample received	kg	0.001	NONE	1.1	1.3	1.4	1.2	1.1
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Appealed in Self-cell	1//	14/73	130 17023	14/74	14/71	14/71	14/71	14/71
General Inorganics								
рН	pH Units	N/A	MCERTS	7.9	8.1	8.2	7.8	7.9
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	1100	840	150	6500	1500
Organic Matter	%	0.1	MCERTS	2.5	1.9	0.6	1.8	1.6
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Thenois (monorityane)	mg/kg		TICERTS	1 2.0	1 2.0	1 2.0	1 2.0	1 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	3.4	< 0.20	1.7	< 0.20
Anthracene	mg/kg	0.1	MCERTS	< 0.10	0.86	< 0.10	0.61	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	< 0.20	4.2	< 0.20	3.2	0.68
Pyrene	mg/kg	0.2	MCERTS	< 0.20	3.2	< 0.20	2.8	0.63
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	1.6	< 0.20	1.7	0.22
Chrysene	mg/kg	0.05	MCERTS	< 0.05	2.3	< 0.05	2.0	0.52
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1.9	< 0.10	2.2	0.48
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	0.76	< 0.20	1.2	0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	< 0.10	1.5	< 0.10	2.2	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20	0.55	< 0.20	1.2	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.61	< 0.05	1.6	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Total WAC-17 PAHs	mg/kg	1.6	NONE	< 1.6	21	< 1.6	20	2.8
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	12	3.2	17	15
Barium (aqua regia extractable)	mg/kg	1	MCERTS	130	140	43	300	140
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.3	1.4	0.2	0.9	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	2.1	1.8	< 0.2	3.5	3.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	0.4	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	N/A	< 4.0	N/A	N/A	N/A
Chromium (III)	mg/kg	1	NONE	N/A	41	N/A	N/A	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	32	41	6.7	32	34
Copper (aqua regia extractable)	mg/kg	1	MCERTS	78	54	140	120	71
Lead (aqua regia extractable)	mg/kg	2	MCERTS	270	160	37	550	240
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	0.5	< 0.3	< 0.3	0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	27	38	7.0	29	39
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable) Zinc (aqua regia extractable)	mg/kg	2	MCERTS MCERTS	62 97	79 79	8.5 120	55 500	61 140
zine (aqua regia extractable)	mg/kg	۷	PICERIO	31	13	120	300	1-10

Lab Sample Number				211073	211074	211075	211076	211077
Sample Reference				WS12	WS12	WS13	WS14	WS14
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.00	3.00	0.60	0.80	1.20
Date Sampled				04/04/2012	04/04/2012	04/04/2012	04/04/2012	04/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								Γ
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons				· · · · · · · · · · · · · · · · · · ·				
TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	5.0	< 2.0
TPH7 - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	40	< 8.0
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	140	< 8.0
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	180	< 10
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC3 - EC7 TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8 TPH7 - Aromatic >EC8 - EC10	mg/kg ma/ka	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC10 - EC12	mg/kg ma/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg mg/kg	2	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0 < 2.0
TPH7 - Aromatic >EC12 - EC10 TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	12	< 10	< 10	< 10
TPH7 - Aromatic >EC10 - EC21 TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	11	< 10	15	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg mg/kg	10	MCERTS	< 10	24	< 10	15	< 10
The Albindic (LCS LCSS)	mg/kg	10	PICEIXIS	\ 10	۷.1	` 10	15	\ 10
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211078	211079	211080	211081	211082
Sample Reference				WS14	WS15	WS16	WS16	WS16
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.50	1.00	1.50	2.50	3.50
Date Sampled				04/04/2012	04/04/2012	04/04/2012	04/04/2012	04/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	22	13	22	16	17
Total mass of sample received	kg	0.001	NONE	1.1	1.2	1.4	1.1	1.0
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
General Inorganics				- -				
pH	pH Units	N/A	MCERTS	7.7	7.2	7.9	8.0	7.7
Total Cyanide	mg/kg	100	MCERTS	< 1	< 1 4400	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	650		700	1400	1700
Organic Matter	%	0.1	MCERTS	0.8	1.8	2.0	0.8	0.7
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Thenois (mononyane)	9/119		HOLITIO	12.0	, , , , ,	1 2.0	12.0	12.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	2.2	1.0	1.5
Anthracene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	0.59	< 0.10	0.41
Fluoranthene	mg/kg	0.2	MCERTS	0.64	1.7	3.0	1.6	2.6
Pyrene	mg/kg	0.2	MCERTS	0.54	1.6	2.3	1.3	2.2
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20	0.69	0.95	0.70	1.0
Chrysene	mg/kg	0.05	MCERTS	< 0.05	1.1	1.2	0.75	1.5
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	< 0.10	1.3	1.0	0.83	1.4
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	< 0.20	0.56 1.1	0.45 0.95	0.46 0.77	0.55
Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg mg/kg	0.1	MCERTS MCERTS	< 0.10 < 0.20	0.59	< 0.20	0.77	1.1 0.60
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	0.67	0.63	0.44	0.80
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH		1.0	NONE	. 4.6	0.4	12	0.4	1.4
Total WAC-17 PAHs	mg/kg	1.6	NONE	< 1.6	9.4	13	8.4	14
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	18	9.1	10	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	100	230	90	120	150
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.6	1.1	0.9	0.5	0.7
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	2.3	1.8	1.4	1.7
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	0.6	0.3	< 0.2	0.3
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	N/A	N/A	N/A	N/A
Chromium (III)	mg/kg	1	NONE	45	N/A	N/A	N/A	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	45	28	34	29	30
Copper (aqua regia extractable)	mg/kg	1	MCERTS	46	87	35	50	62
Lead (aqua regia extractable)	mg/kg	2	MCERTS	120	550	130	190	350
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3	0.4
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	56	29	38	22	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	90	50	50	48	49
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	93	250	260	170	230

Lab Sample Number				211078	211079	211080	211081	211082
Sample Reference				WS14	WS15	WS16	WS16	WS16
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				4.50	1.00	1.50	2.50	3.50
Date Sampled				04/04/2012	04/04/2012	04/04/2012	04/04/2012	04/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH7 - Aliphatic >EC5 - EC6	(l	0.1	MCEDIC	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg		MCERTS					
TPH7 - Aliphatic >EC8 - EC10 TPH7 - Aliphatic >EC10 - EC12	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1 < 1.0	< 0.1 < 1.0	< 0.1 < 1.0
TPH7 - Aliphatic >EC10 - EC12 TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 1.0 < 2.0	< 1.0 < 2.0	< 1.0 20	< 1.0 5.3	< 1.0 28
TPH7 - Aliphatic >EC12 - EC16 TPH7 - Aliphatic >EC16 - EC21	mg/kg mg/kg	<u>2</u> 8	MCERTS MCERTS	< 2.0	< 2.0 < 8.0	20 49	30	72
TPH7 - Aliphatic >EC10 - EC21 TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0	25	30	56
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	94	65	160
TFTD Allphade (Ee3 Ee33)	ilig/kg	10	PICERTS	\ 10	< 10	51	03	100
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	19
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	12
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	32
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211083	211084	211085	211086	211087
Sample Reference				WS17A	WS17A	WS17A	WS18	WS18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80	1.50	4.50	1.50	4.80
Date Sampled				04/04/2012	04/04/2012	04/04/2012	05/04/2012	05/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	40	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	18	21	19	24	25
Total mass of sample received	kg	0.001	NONE	1.2	1.2	1.5	1.3	1.2
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Appealed in Son Screen	1//5	14//	130 17023	14/74	14/71	14/71	14/71	14/71
General Inorganics								
pH	pH Units	N/A	MCERTS	8.1	8.1	8.0	8.0	7.4
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	1500	1000	1000	560	2300
Organic Matter	%	0.1	MCERTS	1.8	0.9	1.9	1.5	5.7
Total Phenols								
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Total Friends (monoriyane)	Hg/kg	2	PICERTS	₹ 2.0	₹ 2.0	₹ 2.0	₹ 2.0	₹ 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	1.7	< 0.20	1.3	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	0.51	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	2.4	0.44	1.7	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	2.1	0.45	1.4	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	0.94	0.31	0.58	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	1.3	0.43	1.1	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	1.2	0.35	0.90	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	0.46	0.21	0.44	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.94	0.34	0.65	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	0.43	< 0.20	< 0.20	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.59	< 0.05	< 0.05	< 0.05	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Total WAC-17 PAHs	mg/kg	1.6	NONE	13	2.6	8.2	< 1.6	< 1.6
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	20	17	16	17	16
Barium (aqua regia extractable)	mg/kg	1	MCERTS	170	93	92	96	120
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.0	1.0	1.0	1.4	1.1
Boron (water soluble)	mg/kg	0.2	MCERTS	1.5	1.3	1.1	< 0.2	4.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	N/A	N/A	N/A	N/A	N/A
Chromium (III)	mg/kg	1	NONE	N/A	N/A	N/A	N/A	N/A
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28	31	25	36	29
Copper (aqua regia extractable)	mg/kg	1	MCERTS	87	51	49	90	95
Lead (aqua regia extractable)	mg/kg	2	MCERTS	400	170	290	200	290
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	0.9	0.3	0.7	0.5	1.8
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	27	32	25	34	23
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	58	58	48	69	66
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	150	74	71	110	93

Lab Sample Number				211083	211084	211085	211086	211087
Sample Reference				WS17A	WS17A	WS17A	WS18	WS18
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.80	1.50	4.50	1.50	4.80
Date Sampled				04/04/2012	04/04/2012	04/04/2012	05/04/2012	05/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons TPH7 - Aliphatic >EC5 - EC6		0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
	mg/kg							
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	_	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2 8	MCERTS	< 2.0 < 8.0	< 2.0	< 2.0 < 8.0	< 2.0 < 8.0	< 2.0 < 8.0
TPH7 - Aliphatic > EC16 - EC21	mg/kg		MCERTS		< 8.0			
TPH7 - Aliphatic >EC21 - EC35 TPH7 - Aliphatic (EC5 - EC35)	mg/kg mg/kg	8 10	MCERTS MCERTS	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10	< 8.0 < 10
TPH7 - Aliphatic (ECS - ECSS)	nig/kg	10	MCER 13	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC8 - EC10	ma/ka	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
PCBs by GC-MS	9/1.59		HOLINIO		1 120		1 12	1 20
PCB Congener 28	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	N/A	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	N/A	N/A	N/A	N/A	N/A

Lab Sample Number				211088	211089	211090	211091	211092
Sample Reference				WS19	WS19	WS19	WS20	WS20
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	3.00	0.50	1.50
Date Sampled				05/04/2012	05/04/2012	05/04/2012	05/04/2012	05/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	33	< 0.1	37	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	13	14	12	18	14
Total mass of sample received	kg	0.001	NONE	1.1	1.0	1.3	1.0	0.95
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A	N/A	N/A	N/A	N/A
Appealed in Son Screen	1//5	14/73	130 17023	Nyte	14/73	14/73	14/71	Nyte
General Inorganics								
pH	pH Units	N/A	MCERTS	N/A	7.9	8.0	7.1	7.5
Total Cyanide	mg/kg	1	MCERTS	N/A	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	N/A	1800	1400	860	2100
Organic Matter	%	0.1	MCERTS	N/A	1.0	1.2	0.8	0.7
Total Bloomile								
Total Phenois	1 "	٠,	MCERTO	N1/A	. 2.0	. 2.0	. 2.0	. 2.0
Total Phenols (monohydric)	mg/kg	2	MCERTS	N/A	< 2.0	< 2.0	< 2.0	< 2.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.2	MCERTS	N/A	< 0.20	< 0.20	< 0.20	< 0.20
Acenaphthene	mg/kg	0.1	MCERTS	N/A	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	mg/kg	0.2	MCERTS	N/A	< 0.20	< 0.20	< 0.20	< 0.20
Phenanthrene	mg/kg	0.2	MCERTS	N/A	< 0.20	< 0.20	< 0.20	< 0.20
Anthracene	mg/kg	0.1	MCERTS	N/A	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	mg/kg	0.2	MCERTS	N/A	< 0.20	0.92	< 0.20	< 0.20
Pyrene	mg/kg	0.2	MCERTS	N/A	< 0.20	0.80	< 0.20	< 0.20
Benzo(a)anthracene	mg/kg	0.2	MCERTS	N/A	< 0.20	0.33	< 0.20	< 0.20
Chrysene	mg/kg	0.05	MCERTS	N/A	< 0.05	0.52	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	N/A	< 0.10	0.55	< 0.10	< 0.10
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	N/A	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(a)pyrene	mg/kg	0.1	MCERTS	N/A	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	N/A	< 0.20	< 0.20	< 0.20	< 0.20
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	N/A	< 0.20	< 0.20	< 0.20	< 0.20
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Coronene	mg/kg	0.05	NONE	N/A	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH								
Total WAC-17 PAHs	mg/kg	1.6	NONE	N/A	< 1.6	3.2	< 1.6	< 1.6
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	N/A	11	12	12	12
Barium (aqua regia extractable)	mg/kg	1	MCERTS	N/A	100	86	37	61
Beryllium (aqua regia extractable)	ma/ka	0.06	MCERTS	N/A	1.1	0.7	1.3	1.2
Boron (water soluble)	mg/kg	0.2	MCERTS	N/A	1.5	0.7	0.8	1.6
Cadmium (agua regia extractable)	mg/kg	0.2	MCERTS	N/A	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	N/A	< 4.0	N/A	< 4.0	< 4.0
Chromium (III)	mg/kg	1	NONE	N/A	37	N/A	47	44
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	N/A	37	22	47	44
Copper (aqua regia extractable)	mg/kg	1	MCERTS	N/A	35	40	32	33
Lead (aqua regia extractable)	mg/kg	2	MCERTS	N/A	72	560	21	42
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	N/A	< 0.3	0.4	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	N/A	36	22	50	44
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	N/A	60	41	83	74
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	N/A	64	50	72	74

Lab Sample Number				211088	211089	211090	211091	211092
Sample Reference				WS19	WS19	WS19	WS20	WS20
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.00	2.00	3.00	0.50	1.50
Date Sampled				05/04/2012	05/04/2012	05/04/2012	05/04/2012	05/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	μg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
Petroleum Hydrocarbons			T		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	N/A	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	N/A	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	N/A	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	N/A	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	N/A	< 8.0	< 8.0	< 8.0	< 8.0
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	N/A	< 8.0	< 8.0	< 8.0	< 8.0
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	N/A	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	N/A	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	N/A	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC7 - EC6 TPH7 - Aromatic >EC8 - EC10	mg/kg	0.1	MCERTS	N/A	< 0.1	< 0.1	< 0.1	< 0.1
TPH7 - Aromatic >EC0 - EC10	mg/kg	1	MCERTS	N/A	< 1.0	< 1.0	< 1.0	< 1.0
TPH7 - Aromatic >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	N/A	< 2.0	< 2.0	< 2.0	< 2.0
TPH7 - Aromatic >EC12 - EC10	mg/kg	10	MCERTS	N/A	< 10	< 10	< 10	< 10
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	N/A	< 10	< 10	< 10	< 10
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	N/A	< 10	< 10	< 10	< 10
PCBs by GC-MS				i		·		
PCB Congener 28	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
PCB Congener 52	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
PCB Congener 101	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
PCB Congener 118	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
PCB Congener 138	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
PCB Congener 153	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
PCB Congener 180	mg/kg	0.02	NONE	< 0.02	N/A	N/A	N/A	N/A
Total PCBs	mg/kg	0.3	NONE	< 0.30	N/A	N/A	N/A	N/A

Lab Sample Number				211093				
Sample Reference				WS21				
Sample Number				None Supplied				
Depth (m)				0.80				
Date Sampled				04/04/2012				
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	N/A	NONE	14				
Total mass of sample received	kg	0.001	NONE	1.0				
Asbestos Identification Name	Туре	N/A	ISO 17025	N/A				
Asbestos in Soil Screen	P/A	N/A	ISO 17025	N/A				
A DESCRIPTION OF COLUMN	.,,,	,	100 17020	.,,,,				I.
General Inorganics								
pH	pH Units	N/A	MCERTS	7.2				
Total Cyanide	mg/kg	1	MCERTS	< 1				
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	3300				
Organic Matter	%	0.1	MCERTS	1.8				
T. 181								
Total Phenois					ı	ı		
Total Phenols (monohydric)	mg/kg	2	MCERTS	< 2.0				
Speciated DAUs								
Speciated PAHs Naphthalene	mg/kg	0.05	MCERTS	< 0.05				
Acenaphthylene	mg/kg	0.03	MCERTS	< 0.20				
Acenaphthene	mg/kg	0.2	MCERTS	< 0.10				
Fluorene	mg/kg	0.2	MCERTS	< 0.20				
Phenanthrene	mg/kg	0.2	MCERTS	< 0.20				
Anthracene	mg/kg	0.1	MCERTS	< 0.10				
Fluoranthene	mg/kg	0.2	MCERTS	1.3				
Pyrene	mg/kg	0.2	MCERTS	1.2				
Benzo(a)anthracene	mg/kg	0.2	MCERTS	< 0.20				
Chrysene	mg/kg	0.05	MCERTS	< 0.05				
Benzo(b)fluoranthene	mg/kg	0.1	MCERTS	0.59				
Benzo(k)fluoranthene	mg/kg	0.2	MCERTS	0.29				
Benzo(a)pyrene	mg/kg	0.1	MCERTS	0.34				
Indeno(1,2,3-cd)pyrene	mg/kg	0.2	MCERTS	< 0.20				
Dibenz(a,h)anthracene	mg/kg	0.2	MCERTS	< 0.20				
Benzo(ghi)perylene	mg/kg	0.05 0.05	MCERTS	< 0.05 < 0.05			-	-
Coronene	mg/kg	0.05	NONE	< 0.05	<u> </u>	<u> </u>	<u> </u>	<u> </u>
Total PAH								
Total WAC-17 PAHs	mg/kg	1.6	NONE	3.8				
	<u>.</u> ., .,	-		-	-	-	-	-
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14				
Barium (aqua regia extractable)	mg/kg	1	MCERTS	72				
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.1				
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3				
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2				
Chromium (hexavalent)	mg/kg	4	MCERTS	N/A				
Chromium (III)	mg/kg	1	NONE	N/A			-	-
Chromium (aqua regia extractable) Copper (aqua regia extractable)	mg/kg	1	MCERTS MCERTS	31 73	1	1	 	
Lead (aqua regia extractable)	mg/kg mg/kg	2	MCERTS	130				
Mercury (aqua regia extractable)	mg/kg mg/kg	0.3	MCERTS	< 0.3				
Nickel (aqua regia extractable)	mg/kg	2	MCERTS	30				
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	1	1	Ì	Ì
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	62	Ì	Ì		
Zinc (aqua regia extractable)	mg/kg	2	MCERTS	73	1	1		

Lab Sample Number				211093		1	
Sample Reference							
Sample Number				WS21 None Supplied			
Depth (m)				0.80			
,				04/04/2012			
Date Sampled Time Taken				None Supplied			
Time Taken				None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/kg	1	MCERTS	< 1.0			
Toluene	μg/kg	1	MCERTS	< 1.0			
Ethylbenzene	μg/kg	1	MCERTS	< 1.0			
p & m-xylene	μg/kg	1	MCERTS	< 1.0			
o-xylene	μg/kg	1	MCERTS	< 1.0			
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0			
Petroleum Hydrocarbons							1
TPH7 - Aliphatic >EC5 - EC6	mg/kg	0.1	MCERTS	< 0.1			
TPH7 - Aliphatic >EC6 - EC8	mg/kg	0.1	MCERTS	< 0.1			
TPH7 - Aliphatic >EC8 - EC10	mg/kg	0.1	MCERTS	< 0.1			
TPH7 - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0			
TPH7 - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0			
TPH7 - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0			
TPH7 - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0			
TPH7 - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10			
TPH7 - Aromatic >EC5 - EC7	mg/kg	0.1	MCERTS	< 0.1		1	1
TPH7 - Aromatic >EC7 - EC8	mg/kg	0.1	MCERTS	< 0.1			
TPH7 - Aromatic >EC8 - EC10	mg/kg ma/ka	0.1	MCERTS	< 0.1			
TPH7 - Aromatic >EC10 - EC12	mg/kg ma/ka	1	MCERTS	< 1.0			
TPH7 - Aromatic >EC10 - EC12 TPH7 - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0			
TPH7 - Aromatic >EC12 - EC10 TPH7 - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10			
TPH7 - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10			
TPH7 - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10			
PCBs by GC-MS	9,9						
PCB Congener 28	mg/kg	0.02	NONE	N/A			
PCB Congener 52	mg/kg	0.02	NONE	N/A			
PCB Congener 101	mg/kg	0.02	NONE	N/A			
PCB Congener 118	mg/kg	0.02	NONE	N/A			
PCB Congener 138	mg/kg	0.02	NONE	N/A			
PCB Congener 153	mg/kg	0.02	NONE	N/A			
PCB Congener 180	mg/kg	0.02	NONE	N/A			
Total PCBs	mg/kg	0.3	NONE	N/A			

Lah Camula Nijumbay				211004	211005	211006	211007	211000
Lab Sample Number				211094	211095	211096	211097	211098
Sample Reference				WS1	WS4	WS6	WS9	WS13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.50	2.00 02/04/2012	1.20 03/04/2012	1.00	1.50 04/04/2012
Date Sampled				02/04/2012			03/04/2012	
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status					
General Inorganics								
pH	pH Units	N/A	ISO 17025	7.9	7.7	7.8	7.1	6.9
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Sulphate as SO ₄	μg/l	100	ISO 17025	64000	82000	25000	25000	7600
Total Phenois							-	
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
	r Ji		3.5 12.0					
Speciated PAHs		0.01		. 6.64	. 6.51	. 6.51	. 6.51	. 6.61
Naphthalene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluorene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Phenanthrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Fluoranthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total PAH Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
	P9/1	0.2	NONE	₹ 0.2	₹ 0.2	₹ 0.2	₹ 0.2	₹ 0.2
Heavy Metals / Metalloids		1		ļ .				
Arsenic (dissolved)	μg/l	1.1	ISO 17025	4.1	5.4	8.7	3.0	5.0
Barium (dissolved)	μg/l	0.05	ISO 17025	27	81	20	28	18
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Boron (dissolved)	μg/l	10	ISO 17025	29	170	100	62	43
Cadmium (dissolved)	μg/l	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chromium (dissolved)	μg/l	0.4	ISO 17025	7.3	9.0	2.9	2.4	1.7
Copper (dissolved)	μg/l	0.7	ISO 17025	6.3	6.6	12	2.7	3.1
Lead (dissolved)	μg/l	1	ISO 17025	11	21	20	2.5	3.7
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	0.9	< 0.5	< 0.5	< 0.5
Nickel (dissolved)	μg/l	0.3	ISO 17025	2.3	2.1	4.4	1.9	1.2
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	< 4.0	< 4.0
Vanadium (dissolved)	μg/l	1.7	ISO 17025	4.2	< 1.7	13	< 1.7	< 1.7
Zinc (dissolved)	μg/l	0.4	ISO 17025	14	13	8.9	2.3	3.2

Lab Sample Number				211094	211095	211096	211097	211098
Sample Reference				WS1	WS4	WS6	WS9	WS13
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				2.50	2.00	1.20	1.00	1.50
Date Sampled				02/04/2012	02/04/2012	03/04/2012	03/04/2012	04/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status	нопе эцррпец	ноне заррже	нопе эцррпец	ноне заррже	нопе заррпец
Monoaromatics								
Benzene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
	-							
TPH7 - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C5 - C7	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH7 - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

Lab Sample Number				211099	211100	211101	
Sample Reference				WS14	WS17A	WS19	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				2.50	3.50	5.00	
Date Sampled				04/04/2012	04/04/2012	05/04/2012	
Time Taken				None Supplied	None Supplied	None Supplied	
			Þ				1
Analytical Parameter	_ ا	효교	် င်ငံ				1
	Units	ec m	ta dii				1
(Leachate Analysis)	&	Limit of detection	Accreditation Status				1
		_	S				
General Inorganics							
рН	pH Units	N/A	ISO 17025	6.5	6.9	6.9	
Total Cyanide	μg/l	10	ISO 17025	< 10	< 10	< 10	
Sulphate as SO ₄	μg/l	100	ISO 17025	190000	11000	39000	<u> </u>
Total Phonois							
Total Phenols		10	100 17025	z 10	- 10	. 10	Г Т
Total Phenols (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	L
Speciated PAHs							
Naphthalene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	I
Acenaphthylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Acenaphthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Fluorene	μg/I	0.01	NONE	< 0.01	< 0.01	< 0.01	
Phenanthrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Anthracene	μg/I	0.01	NONE	< 0.01	< 0.01	< 0.01	
Fluoranthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	1
Chrysene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(b)fluoranthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(k)fluoranthene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Benzo(a)pyrene	ug/l	0.01	NONE	< 0.01	< 0.01	< 0.01	
Indeno(1,2,3-cd)pyrene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	1
Dibenz(a,h)anthracene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	1
Benzo(ghi)perylene	μg/l	0.01	NONE	< 0.01	< 0.01	< 0.01	1
		-					
Total PAH							
Total EPA-16 PAHs	μg/l	0.2	NONE	< 0.2	< 0.2	< 0.2	
Heavy Metals / Metalloids	-				_	_	
Arsenic (dissolved)	μg/l	1.1	ISO 17025	8.0	5.9	2.2	
Barium (dissolved)	μg/l	0.05	ISO 17025	47	12	20	
Beryllium (dissolved)	μg/l	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	
Boron (dissolved)	μg/l	10	ISO 17025	61	51	16	
Cadmium (dissolved)	μg/l	0.1	ISO 17025	< 0.10	< 0.10	< 0.10	
Chromium (dissolved)	μg/l	0.4	ISO 17025	1.6	3.6	1.5	
Copper (dissolved)	μg/l	0.7	ISO 17025	11	4.8	2.6	
Lead (dissolved)	μg/l	1	ISO 17025	4.6	3.9	1.4	
Mercury (dissolved)	μg/l	0.5	ISO 17025	< 0.5	< 0.5	< 0.5	
Nickel (dissolved)	μg/l	0.3	ISO 17025	1.6	1.4	2.2	
Selenium (dissolved)	μg/l	4	ISO 17025	< 4.0	< 4.0	< 4.0	
Vanadium (dissolved)	μg/l	1.7	ISO 17025	< 1.7	4.2	< 1.7	
Zinc (dissolved)	μg/l	0.4	ISO 17025	3.8	2.8	2.8	<u>i </u>

Lab Sample Number				211099	211100	211101	
Sample Reference				WS14	WS17A	WS19	
Sample Number				None Supplied	None Supplied	None Supplied	
Depth (m)				2.50	3.50	5.00	
Date Sampled				04/04/2012	04/04/2012	05/04/2012	
Time Taken				None Supplied	None Supplied	None Supplied	
Analytical Parameter (Leachate Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
Toluene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
Ethylbenzene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
p & m-xylene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
o-xylene	μg/l	1	NONE	< 1.0	< 1.0	< 1.0	
MTBE (Methyl Tertiary Butyl Ether)	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C5 - C6	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C6 - C8	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C5 - C7	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C7 - C8	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C8 - C10	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	
TPH7 - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of

a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Lab Sample	Sample	Sample	Depth (m)	Sample Description *
Number	Reference	Number	Depui (iii)	Sample Description
211048	WS1	None Supplied	0.50	Light brown clay with brick.
211049	WS1	None Supplied	0.80	N/A
211050	WS1	None Supplied	2.00	Light brown clay with brick.
211051	WS1	None Supplied	3.50	Light brown clay with chalk and stones.
211052	WS2B	None Supplied	1.50	Light brown clay and topsoil with brick and chalk.
211053	WS2B	None Supplied	3.50	Light brown sandy topsoil with gravel and brick.
211054	WS3	None Supplied	1.00	Light brown clay and topsoil with brick.
211055	WS3	None Supplied	4.50	Grey clay and topsoil with brick.
211056	WS4	None Supplied	0.50	Brown sandy topsoil with stones and brick.
211057	WS5	None Supplied	0.50	Light brown gravelly sand with stones and brick.
211058	WS5	None Supplied	2.50	Light brown clay with brick.
211059	WS5	None Supplied	4.50	Grey clay with brick.
211060	WS6	None Supplied	0.60	Brown clay with brick and stones.
211061	WS6	None Supplied	1.80	Brown topsoil and gravel with brick and stones.
211062	WS7	None Supplied	2.00	Light brown clay with stones and brick.
211063	WS7	None Supplied	3.00	Light brown clay with brick.
211064	WS8	None Supplied	2.00	Brown gravelly sand with rubble and brick.
211065	WS8	None Supplied	4.00	Light brown sandy clay with stones and brick.
211066	WS9	None Supplied	0.50	Light brown clay with brick.
211067	WS9	None Supplied	1.50	Brown clay with brick.
211068	WS10	None Supplied	0.50	Light brown clay with brick and stones.
211069	WS10	None Supplied	3.50	Light brown clay with brick.
211009	WS11A	None Supplied	1.00	Light brown clay.
211070	WS11A WS11A	None Supplied	2.50	Light brown clay.
211071	WS11A WS11A	None Supplied	4.50	Grey clay with brick.
211072	WS11A WS12		2.00	Grey clay with brick.
211073	WS12	None Supplied None Supplied	3.00	Brown clay with brick.
211074	WS12 WS13	None Supplied	0.60	Light brown sand.
211075	WS13		0.80	Light brown clay with brick.
		None Supplied		
211077	WS14	None Supplied	1.20	Light brown clay with brick.
211078	WS14	None Supplied	4.50	Light brown clay.
211079	WS15	None Supplied	1.00	Light brown clay and topsoil with brick.
211080	WS16	None Supplied	1.50	Light brown clay.
211081	WS16	None Supplied	2.50	Light brown sand with brick.
211082	WS16	None Supplied	3.50	Light brown sand with brick.
211083	WS17A	None Supplied	0.80	Light brown clay with brick.
211084	WS17A	None Supplied	1.50	Light brown clay with brick.
211085	WS17A	None Supplied	4.50	Light brown clay with brick and stones.
211086	WS18	None Supplied	1.50	Brown clay with brick and chalk.
211087	WS18	None Supplied	4.80	Grey clay and topsoil.
211088	WS19	None Supplied	1.00	Light brown sandy topsoil with chalk and stones.
211089	WS19	None Supplied	2.00	Light brown clay.
211090	WS19	None Supplied	3.00	Light brown clay and sand with brick and stones.
211091	WS20	None Supplied	0.50	Light brown clay.
211092	WS20	None Supplied	1.50	Light brown clay with brick and chalk.
211093	WS21	None Supplied	0.80	Light brown clay and topsoil with brick and chalk.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-UK	W	ISO 17025
Asbestos Screening in Soil	Screening of samples for Asbestos Fibres in Soil	In-house method based on HSG 248	A001-UK	W	ISO 17025
Boron in leachate	Determination of boron by acidification followed by ICP-OES.	In-house method based on MEWAM	L039-PL	W	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in leachates	Determination of BTEX and MTBE in leachates by headspace GC-MS.	In-house method based on USEPA8260	L036-UK	W	NONE
BTEX and MTBE in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	D	NONE
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	D	MCERTS
Metals by ICP-OES in leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK	W	NONE
Monohydric phenols in leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	ISO 17025
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023-PL	D	MCERTS
PCB's By GC-MS in soil		In-house method based on USEPA 8082	L027-PL		NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
pH in leachate	Determination of pH in leachate by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	ISO 17025
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Speciated EPA-16 PAHs in leachate	Determination of PAH compounds in leachate by extraction in hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L070-UK	w	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Stones not passing through a 2 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK	D	NONE
Sulphate in leachates	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L039-PL	W	ISO 17025
Total cyanide in leachate	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	ISO 17025
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
TPHCWG (Leachates)	Determination of dichloromethane extractable hydrocarbons in leachate by GC-MS, speciation by interpretation.	In-house method	L070-UK	W	NONE
TPHCWG (Soil)	Determination of pentane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L076-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

i2 Analytical Ltd.

Building 19, BRE,

Garston,

Watford,

WD25 9XX

Charlene Knox

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

e: charlenek@cardgeotechnics.co.uk e: reception@i2analytical.com

Analytical Report Number: 12-33503

Project / Site name: 103 Camley Street **Samples received on:** 05/04/2012

Your job number: CG/5521C Samples instructed on: 13/04/2012

Your order number: Analysis completed by: 24/04/2012

Report Issue Number: 1 **Report issued on:** 25/04/2012

Samples Analysed: 12 wac multi samples

Signed:

Anna Romanska Quality Manager

For & on behalf of i2 Analytical Ltd.

Thurstan Plummer

Organics Technical Manager

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Page 1 of 16

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
		400.0 1.0					
Location		103 Camley Stre	eet	I JGII Wt- At Criti-			
Lab Reference (Sample Number)		211102	ŀ	Landfill Waste Acceptance Criter Limits			
Sampling Date		02/04/2012			Stable Non-		
Sample ID		WS1			reactive		
Depth (m)		0.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis							
FOC (%)**	0.9			3%	5%	6%	
oss on Ignition (%) **	6.5					10%	
3TEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg)	< 0.30	 		1			
Mineral Oil (mg/kg)	< 10			500			
Fotal PAH (WAC-17) (mg/kg)	< 1.6			100			
oH (units)**	8.1			-	>6		
Acid Neutralisation Capacity (mol / kg)	3.3				To be evaluated	To be evaluate	
	2:1	8:1	Cumulative 10:1		es for compliance l		
Eluate Analysis	mg/l	mg/l	mg/kg	using BS EN 12457-3 at L/S		.o , kg (mg/kg)	
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.11	0.089	0.92	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0027	< 0.0010	0.010	0.5	10	70	
Copper	0.0068	< 0.0030	0.027	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.022	0.021	0.21	0.5	10	30	
Nickel	0.0023	< 0.0010	0.0079	0.4	10	40	
_ead	< 0.0050	< 0.0050	0.034	0.5	10	50	
Antimony	< 0.0050	< 0.0050	0.023	0.06	0.7	5	
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc	0.0077	0.0013	< 0.020	4	50	200	
Chloride	5.3	< 4.0	< 15	800	4000	25000	
Fluoride	1.4	1.3	13	10	150	500	
Sulphate	700	130	1800	1000	20000	50000	
TDS	700	200	2500	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	6.7	5.1	52	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.8						
Ory Matter (%)	78						
Moisture (%)	22						
Stage 1							
/olume Eluate L2 (litres)	0.31						
Filtered Eluate VE1 (litres)	0.16						
	1	1			1		

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
					0		
Location		103 Camley St	eet				
Lab Reference (Sample Number)		211103		Landfill Waste Acceptance Criteria			
Sampling Date		02/04/2012			Limits Stable Non-		
Sample ID		WS2B			reactive		
Depth (m)		1.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis							
TOC (%)**	0.9			3%	5%	6%	
Loss on Ignition (%) **	4.6					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) Mineral Oil (mg/kg)	< 0.30 32	 		1 500			
Total PAH (WAC-17) (mg/kg)	13			100			
pH (units)**	7.8				>6		
Acid Neutralisation Capacity (mol / kg)	10				To be evaluated	To be evaluate	
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit values for compliance leaching using BS EN 12457-3 at L/S 10 l/kg (m			
	mg/l	mg/l	mg/kg			. 3 (3, 3)	
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.11	0.077	0.80	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0054	0.0026	0.030	0.5	10	70	
Copper	0.0080	< 0.0030	0.032	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.017	0.012	0.13	0.5	10	30	
Nickel	0.0014	< 0.0010	0.0099	0.4	10	40	
Lead Antimony	< 0.0050 < 0.0050	< 0.0050 < 0.0050	0.026 < 0.020	0.5 0.06	10 0.7	50 5	
Selenium	0.021	< 0.010	0.041	0.00	0.5	7	
Zinc	0.0082	0.0012	0.020	4	50	200	
Chloride	8.0	< 4.0	20	800	4000	25000	
Fluoride	0.94	0.91	9.2	10	150	500	
Sulphate	820	190	2600	1000	20000	50000	
TDS	820	250	3200	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	7.0	4.6	49	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.5						
Dry Matter (%)	89						
Moisture (%)	11						
Stage 1							
Volume Eluate L2 (litres)	0.33				ļ		
Filtered Eluate VE1 (litres)	0.20				-		
	+				 		

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
Location		103 Camley St	rant				
		103 Calliley St	eet	Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		211104			Limits		
Sampling Date		02/04/2012			Stable Non-		
Sample ID Depth (m)		WS5 2.50		Inert Waste Landfill	reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	2.1			3%	5%	6%	
Loss on Ignition (%) **	7.6					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg)	< 0.30			1			
Mineral Oil (mg/kg) Total PAH (MAC-17) (mg/kg)	< 10 < 1.6	 		500 100			
Total PAH (WAC-17) (mg/kg) pH (units)**	< 1.6 8.0	 		100	>6		
Acid Neutralisation Capacity (mol / kg)	7.7				To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1	Cumulative 10:1		eaching test) I/kg (mg/kg)		
	mg/l	mg/l	mg/kg				
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.082	0.069	0.70	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0013	< 0.0010	0.0080	0.5	10	70	
Copper	0.0038	0.0034	0.035	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.028	0.013	0.14	0.5	10	30	
Nickel	0.0028	0.0028	0.028	0.4	10	40	
Lead	< 0.0050	< 0.0050	< 0.020	0.5	10	50	
Antimony	< 0.0050	< 0.0050	0.036	0.06	0.7	5	
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc	0.0056	0.0022	0.025	4	50	200	
Chloride	30	5.3	74	800	4000	25000	
Fluoride Sulphate	1.3	1.2 69	12 860	10 1000	150 20000	500 50000	
TDS	390	140	1600	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	21	11	120	500	800	1000	
Leach Test Information							
Ecacii Test Anormacion							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.5						
Dry Matter (%)	79						
Moisture (%)	21						
Stage 1							
Volume Eluate L2 (litres)	0.31						
Filtered Eluate VE1 (litres)	0.15						
				1	1		

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
Location		103 Camley S	rant				
Location		103 Calliley S	reet	Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		211105			Limits		
Sampling Date		03/04/2012 WS6			Stable Non-		
Sample ID Depth (m)		0.60			reactive HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.7			3%	5%	6%	
Loss on Ignition (%) **	7.6					10%	
BTEX (µg/kg) **	180			6000			
Sum of PCBs (mg/kg)	< 0.30 < 10			1 500			
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10 18			100			
pH (units)**	8.2	 			>6		
Acid Neutralisation Capacity (mol / kg)	21				To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit values for compliance lea using BS EN 12457-3 at L/S 10			
	mg/l	mg/l	mg/kg				
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.10	0.069	0.72	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0019	0.0010	0.011	0.5	10	70	
Copper	0.018	0.012	0.12	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.11	0.030	0.38	0.5	10	30	
Nickel	0.011	0.0050	0.056	0.4	10	40	
Lead	0.011	0.0086	0.088	0.5	10	50	
Antimony	0.012	0.011	0.11	0.06	0.7	5	
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc	0.0076	0.0050	0.053	4	50	200	
Chloride	16	< 4.0	31	800	4000	25000	
Fluoride Sulphate	0.67 180	0.50 87	5.1 970	10 1000	150 20000	500 50000	
TDS	300	190	2000	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	41	15	180	500	800	1000	
Leach Test Information		 			1		
Leach fest Information							
Stone Content (%)	33						
Sample Mass (kg)	1.1			1			
Dry Matter (%)	82						
Moisture (%)	18						
Stage 1							
Volume Eluate L2 (litres)	0.32						
Filtered Eluate VE1 (litres)	0.19						

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
Location		102 Camlay St	anat .				
Location		103 Camley St	eet	Landfill	Waste Acceptane	e Criteria	
Lab Reference (Sample Number)		211106			Limits		
Sampling Date		03/04/2012 WS7			Stable Non- reactive		
Sample ID Depth (m)		3.00			HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.1			3%	5%	6%	
Loss on Ignition (%) **	7.5					10%	
BTEX (µg/kg) **	13			6000			
Sum of PCBs (mg/kg)	< 0.30	 		1			
Mineral Oil (mg/kg)	39			500			
Total PAH (WAC-17) (mg/kg)	< 1.6			100			
pH (units)**	8.4				>6		
Acid Neutralisation Capacity (mol / kg)	19				To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1	Cumulative 10:1		eaching test I/kg (mg/kg)		
	mg/l	mg/l	mg/kg				
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.077	0.057	0.59	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0026	< 0.0010	0.0090	0.5	10	70	
Copper	0.012	0.0049	0.056	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.065	0.021	0.25	0.5	10	30	
Nickel	0.0033	0.0031	0.031	0.4	10	40	
Lead	0.013	0.0051	0.060	0.5	10	50	
Antimony	0.0081	0.0056	0.059	0.06	0.7	5	
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc	0.0059	0.0032	0.035	4	50	200	
Chloride	15	< 4.0	40	800	4000	25000	
Fluoride	0.64	0.59	6.0	10	150	500	
Sulphate	230	50	700	1000	20000	50000	
TDS	330	110	1300	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	11	7.0	74	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.5						
Dry Matter (%)	75						
Moisture (%)	25						
Stage 1							
Volume Eluate L2 (litres)	0.31						
Filtered Eluate VE1 (litres)	0.19						
		i	I	l	1	l	

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-3350	3				
				Client:	CARDGEO		
Location		103 Camley S	treet				
Lab Reference (Sample Number)				Landfill Waste Acceptance Criteria			
Sampling Date		03/04/201	2		Limits Stable Non-	ı	
Sample ID		WS8	2	_	reactive		
Depth (m)		2.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.0			3%	5%	6%	
Loss on Ignition (%) **	6.9					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg)	< 0.30	 		1 500			
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	430 64	 		100			
Total PAH (WAC-17) (mg/kg) pH (units)**	9.4	 		100	>6		
Acid Neutralisation Capacity (mol / kg)	34				To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1	Cumulative 10:1		eaching test O I/kg (mg/kg)		
	mg/l	mg/l	mg/kg				
Arsenic	< 0.010	< 0.010	0.052	0.5	2	25	
Barium	0.082	0.067	0.70	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.013	0.0058	0.069	0.5	10	70	
Copper	0.077	0.059	0.62	2	50	100	
Mercury	< 0.0015	< 0.0015	0.012	0.01	0.2	2	
Molybdenum	0.036	0.0083	0.12	0.5	10	30	
Nickel	0.016	0.0050	0.066	0.4	10	40	
Lead	0.0060	< 0.0050	0.041	0.5	10	50	
Antimony	0.075	0.045	0.49	0.06	0.7	5	
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc	0.0051	< 0.0010	< 0.020	4	50	200	
Chloride	15	< 4.0	41	800	4000	25000	
Fluoride	0.31	0.22	2.4	10	150	500	
Sulphate	1500	1300	14000	1000	20000	50000	
TDS	1200	1100	11000	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	16	9.3	100	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.3						
Dry Matter (%)	88						
Moisture (%)	12						
Stage 1							
Volume Eluate L2 (litres)	0.33						
Filtered Eluate VE1 (litres)	0.26						
				ļ	ļ		
		1	I	1	1	l	

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
Location		103 Camley St	reet				
Lab Reference (Sample Number)		211108		Landfill Waste Acceptance Criteria Limits			
Sampling Date		04/04/2012			Stable Non-		
Sample ID		WS12			reactive	l	
Depth (m)		3.00		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.1			3%	5%	6%	
Loss on Ignition (%) **	8.8			-		10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg)	< 0.30			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg)	21			100			
pH (units)**	8.1			-	>6		
Acid Neutralisation Capacity (mol / kg)	5.4				To be evaluated	To be evaluated	
	2:1	8:1	Cumulative 10:1		eaching test		
Eluate Analysis	mg/l	mg/l	mg/kg	using BS EN	I 12457-3 at L/S 10	i i/kg (mg/kg)	
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.14	0.11	1.1	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0015	< 0.0010	0.0087	0.5	10	70	
Copper	0.0057	0.0047	0.048	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.060	0.021	0.24	0.5	10	30	
Nickel	0.0057	0.0046	0.047	0.4	10	40	
Lead	0.0054	0.0050	0.051	0.5	10	50	
Antimony	< 0.0050	< 0.0050	0.041	0.06	0.7	5	
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7	
Zinc	0.0029	0.0015	< 0.020	4	50	200	
Chloride	33	5.4	73	800	4000	25000	
Fluoride	1.9	1.3	13	10	150	500	
Sulphate	150	53	600	1000	20000	50000	
TDS	310	160	1700	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	6.0	13	120	500	800	1000	
Leach Test Information							
Chara Cambank (0/)							
Stone Content (%)	< 0.1				1		
Sample Mass (kg)	1.3 76	 			1		
Dry Matter (%) Moisture (%)	24					-	
Stage 1	27	 			1		
Volume Eluate L2 (litres)	0.31	 			1		
Filtered Eluate VE1 (litres)	0.12	 					
microa Eddic VET (IIdes)	0.12						
	- 	 	1		1	 	

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-33503					
				Client:	CARDGEO		
Location		103 Camley Str	eet				
Lab Reference (Sample Number)		211109	ŀ	Landfill Waste Acceptance Criteria Limits			
Sampling Date		04/04/2012			Stable Non-		
Sample ID		WS13		Inert Waste	reactive		
Depth (m)		0.60			HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.3			3%	5%	6%	
Loss on Ignition (%) **	0.9					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg)	< 0.30			500			
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10 < 1.6			100			
pH (units)**	8.2	 			>6		
Acid Neutralisation Capacity (mol / kg)	2.1				To be evaluated	To be evaluated	
Eluate Analysis	2:1	8:1	Cumulative 10:1	Limit values for compliance le using BS EN 12457-3 at L/S 10			
	mg/l	mg/l	mg/kg		7.13 (3/3/		
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25	
Barium	0.038	0.026	0.27	20	100	300	
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5	
Chromium	0.0032	0.0025	0.026	0.5	10	70	
Copper	0.012	0.011	0.11	2	50	100	
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2	
Molybdenum	0.015	0.0047	0.061	0.5	10	30	
Nickel	0.0023	0.0012	0.014	0.4	10	40	
Lead	0.010	0.0056	0.062	0.5	10	50	
Antimony Selenium	< 0.0050 < 0.010	< 0.0050 < 0.010	< 0.020	0.06	0.7	5 7	
Zinc	0.025	0.0158	< 0.040 0.17	4	50	200	
Chloride	< 4.0	< 4.0	< 15	800	4000	25000	
Fluoride	1.6	0.49	6.4	10	150	500	
Sulphate	14	2.1	38	1000	20000	50000	
TDS	40	20	230	4000	60000	100000	
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-	
DOC	4.9	3.8	39	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.4						
Dry Matter (%)	93				ļ		
Moisture (%)	6.6				-		
Stage 1	0.24						
Volume Eluate L2 (litres)	0.34						
Filtered Eluate VE1 (litres)	0.24						
				_			

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Waste Acceptance Criteria ANALY Report No:		12-33503						
				Client:	CARDGEO			
Location		103 Camley S	treet					
			ii eet	Landfill Waste Acceptance Criteria				
Lab Reference (Sample Number)		211110			Limits			
Sampling Date		04/04/2012			Stable Non- reactive			
Sample ID Depth (m)		WS14 4.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis								
TOC (%)**	0.5			3%	5%	6%		
Loss on Ignition (%) **	9.5					10%		
BTEX (µg/kg) **	< 10			6000				
Sum of PCBs (mg/kg)	< 0.30 < 10	 		1 500				
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10 < 1.6			100				
pH (units)**	7.7				>6			
Acid Neutralisation Capacity (mol / kg)	1.2				To be evaluated	To be evaluated		
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance I I 12457-3 at L/S 10			
	mg/l	mg/l	mg/kg					
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25		
Barium	0.068	0.052	0.53	20	100	300		
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5		
Chromium	0.0017	0.0011	0.012	0.5	10	70		
Copper	0.0084	0.0035	0.038	2	50	100		
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2		
Molybdenum	0.0040	0.0035	0.035	0.5	10	30		
Nickel	0.0036	0.0030	0.030	0.4	10	40		
Lead	< 0.0050	< 0.0050	0.025	0.5	10	50		
Antimony	< 0.0050	< 0.0050	< 0.020	0.06	0.7	5		
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7		
Zinc	0.0098	0.0032	0.036	4	50	200		
Chloride	30	6.0	72	800	4000	25000		
Fluoride Sulphate	1.4	1.3 35	14 380	10 1000	150 20000	500 50000		
TDS	240	100	1100	4000	60000	100000		
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-		
DOC	22	11	110	500	800	1000		
Leach Test Information								
Lead Test Anormation								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.1							
Dry Matter (%)	78	i i						
Moisture (%)	22							
Stage 1		i i						
Volume Eluate L2 (litres)	0.31							
Filtered Eluate VE1 (litres)	0.090							
Results are expressed on a dry weight basis, after correction for moisture co	ntont where no-P11-			l	l .	Ь		

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Waste Acceptance Criteria ANAL Report No:		12-33503				
				Client:	CARDGEO	
Location		103 Camley Str	eet			
Lab Reference (Sample Number)		211111		Landfill	Waste Acceptant	e Criteria
Sampling Date		05/04/2012			Stable Non-	
Sample ID		WS18			reactive	
Depth (m)		1.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis						
TOC (%)**	0.9			3%	5%	6%
Loss on Ignition (%) **	7.2					10%
BTEX (µg/kg) **	< 10			6000		
Sum of PCBs (mg/kg) Mineral Oil (mg/kg)	< 0.30 < 10			500		
Mineral Oil (mg/kg) Total PAH (WAC-17) (mg/kg)	< 10 < 1.6			100		
pH (units)**	< 1.6 8.0				>6	
Acid Neutralisation Capacity (mol / kg)	9.5				To be evaluated	To be evaluated
Eluate Analysis	2:1	8:1	Cumulative 10:1		es for compliance lo	
	mg/l	mg/l	mg/kg			4.15 (5/5)
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium	0.032	0.028	0.28	20	100	300
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium	0.0038	0.0015	0.017	0.5	10	70
Copper	0.0099	0.0073	0.075	2	50	100
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum	0.083	0.043	0.46	0.5	10	30
Nickel	0.0027	0.0026	0.026	0.4	10	40
Lead	0.013	< 0.0050	0.039	0.5	10 0.7	50
Antimony Selenium	< 0.0050 < 0.010	< 0.0050 < 0.010	< 0.020	0.06	0.7	5 7
Zinc	0.0054	0.0020	< 0.040 0.023	4	50	200
Chloride	6.8	< 4.0	27	800	4000	25000
Fluoride	1.5	1.2	12	10	150	500
Sulphate	23	6.6	79	1000	20000	50000
TDS	150	80	860	4000	60000	100000
Phenol Index	< 0.13	< 0.13	< 0.50	1	-	-
DOC	5.4	5.3	54	500	800	1000
Leach Test Information						
Total Total Tillo Tillation						
Stone Content (%)	< 0.1					
Sample Mass (kg)	1.3				_	
Dry Matter (%)	76	 			ļ	
Moisture (%)	24	 			ļ	
Stage 1	0.24				1	
Volume Eluate L2 (litres)	0.31				 	
Filtered Eluate VE1 (litres)	0.14					
	1	 	- 1		†	

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		<i>TS</i> 12-335	03				
7							
					Client:	CARDGEO	
Location		103 Camley	Street				
Lab Reference (Sample Number)		21111	2		Landfill	Waste Acceptance	e Criteria
Sampling Date		05/04/20				Limits Stable Non-	
Sample ID		WS19				reactive	
Depth (m)		2.00			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis							
TOC (%)**	0.6				3%	5%	6%
Loss on Ignition (%) **	5.2				-		10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg)	< 0.30				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 1.6				100		
pH (units)**	7.9					>6	
Acid Neutralisation Capacity (mol / kg)	3.4					To be evaluated	To be evaluated
	2:1	8:1	Cumul	ative 10:1		es for compliance le	
Eluate Analysis	mg/l	mg/l	m	ng/kg	using BS EN	l 12457-3 at L/S 10	l/kg (mg/kg)
Arsenic	< 0.010	< 0.010		0.050	0.5	2	25
Barium	0.075	0.063		0.63	20	100	300
Cadmium	< 0.0005	< 0.0005		0.0020	0.04	1	5
	0.0015	< 0.0003		.0094	0.04	10	70
Chromium Copper	0.0013	< 0.0010		0.021	2	50	100
Mercury	< 0.0037	< 0.0015		0.010	0.01	0.2	2
Molybdenum	0.036	0.019		0.010	0.5	10	30
Nickel	0.0015	< 0.0010		0.010	0.4	10	40
Lead	< 0.0050	< 0.0050		0.024	0.5	10	50
Antimony	< 0.0050	< 0.0050		0.023	0.06	0.7	5
Selenium	< 0.010	< 0.010		0.044	0.1	0.5	7
Zinc	0.0036	0.0016		0.020	4	50	200
Chloride	12	< 4.0		29	800	4000	25000
Fluoride	2.3	2.1		21	10	150	500
Sulphate	280	62		730	1000	20000	50000
TDS	400	140		1500	4000	60000	100000
Phenol Index	< 0.13	< 0.13		0.50	1	-	-
DOC	9.0	6.4		65	500	800	1000
Leach Test Information		+	-			†	
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.0						
Dry Matter (%)	86					1	1
Moisture (%)	14					Ì	
Stage 1						Ì	
Volume Eluate L2 (litres)	0.32					Ì	
Filtered Eluate VE1 (litres)	0.090						
						1	1

^{*=} UKAS accredited

** = MCERTS accredited

Building 19 BRE, Bucknalls Lane Watford, WD25 9XX

Report No:		12-3350	3			
				Client:	CARDGEO	
Location		103 Camley	Street			
Lab Reference (Sample Number)		211113		Langrill	Waste Acceptano Limits	ce Criteria
Sampling Date		05/04/20	2		Stable Non-	
Sample ID		WS20			reactive	l
Depth (m)		0.50		Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill
Solid Waste Analysis						
TOC (%)**	0.7			3%	5%	6%
Loss on Ignition (%) **	3.3					10%
BTEX (μg/kg) **	< 10			6000		
Sum of PCBs (mg/kg)	< 0.30			1		
Mineral Oil (mg/kg)	< 10			500		
Total PAH (WAC-17) (mg/kg)	290			100		
pH (units)**	7.7				>6	
Acid Neutralisation Capacity (mol / kg)	12				To be evaluated	To be evaluated
Floring Application	2:1	8:1	Cumulative 10:1		es for compliance le	
Eluate Analysis	mg/l	mg/l	mg/kg	using BS Er	I 12457-3 at L/S 10	ri/kg (mg/kg)
Arsenic	< 0.010	< 0.010	< 0.050	0.5	2	25
Barium	0.096	0.035	0.42	20	100	300
Cadmium	< 0.0005	< 0.0005	< 0.0020	0.04	1	5
Chromium	0.0024	0.0020	0.021	0.5	10	70
Copper	0.0044	0.0034	0.035	2	50	100
Mercury	< 0.0015	< 0.0015	< 0.010	0.01	0.2	2
Molybdenum	0.024	0.0086	0.10	0.5	10	30
Nickel	0.0011	< 0.0010	0.0092	0.4	10	40
Lead	< 0.0050	< 0.0050	0.022	0.5	10	50
Antimony	0.0053	< 0.0050	0.045	0.06	0.7	5
Selenium	< 0.010	< 0.010	< 0.040	0.1	0.5	7
Zinc	0.0042	0.0023	0.025	4	50	200
Chloride	14	< 4.0	30	800	4000	25000
Fluoride	1.5	1.1	11	10	150	500
Sulphate	660	71	1400	1000	20000	50000
TDS	700	120	1900	4000	60000	100000
Phenol Index DOC	< 0.13 5.6	< 0.13	< 0.50 49	500	800	1000
	3.0	7.0	79	300	000	1000
Leach Test Information						
Stone Content (%)	32					
Sample Mass (kg)	0.98	1		1		
Dry Matter (%)	91					
Moisture (%)	9.0	ĺ				
Stage 1						
Volume Eluate L2 (litres)	0.33					
Filtered Eluate VE1 (litres)	0.20					
Results are expressed on a dry weight basis, after correction for moisture co						

^{*=} UKAS accredited

** = MCERTS accredited

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
211102	WS1	None Supplied	0.50	Light brown clay with brick.
211103	WS2B	None Supplied	1.50	Light brown clay and topsoil with brick and chalk.
211104	WS5	None Supplied	2.50	Light brown clay with brick.
211105	WS6	None Supplied	0.60	Brown clay with brick and stones.
211106	WS7	None Supplied	3.00	Light brown clay with brick.
211107	WS8	None Supplied	2.00	Brown gravelly sand with rubble and brick.
211108	WS12	None Supplied	3.00	Brown clay with brick.
211109	WS13	None Supplied	0.60	Light brown sand.
211110	WS14	None Supplied	4.50	Light brown clay.
211111	WS18	None Supplied	1.50	Brown clay with brick and chalk.
211112	WS19	None Supplied	2.00	Light brown clay.
211113	WS20	None Supplied	0.50	Light brown clay and sand with brick and stones.

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046	W	NONE
BTEX in soil	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073S	W	MCERTS
Chloride in WAC leachate	Determination of chloride in leachate by titration against silver nitrate.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L024	W	NONE
Fluoride in WAC leachate	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L033	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L047-PL	D	MCERTS
Metals in WAC leachate	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039	W	ISO 17025
Mineral Oil in Soil	Determination of dichloromethane/hexane extractable hydrocarbons in soil by GC-MS.	In-house method based on USEPA 8270	L064	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK	W	NONE
Monohydric phenols in WAC leachate	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	NONE
PCB's by GC-MS in soil	Determination of PCB by extraction with DCM and analysis by GC-MS.	In-house method based on USEPA 8270	L064	D	NONE
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-UK	W	MCERTS
Seciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064	D	NONE
Stones content of soil	Stones not passing through a 2 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK	D	NONE
Sulphate in WAC leachate	Determination of sulphate in leachate by acidification followed by ICP-OES.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L039	W	NONE
Total dissolved solids in WAC leachate	Determination of total dissolved solids in leachate by electrometric measurement.	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L004	W	NONE

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Total organic carbon in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L023	D	MCERTS
	5	In-house method based on Standard Methods for the Examination of Water and Waste Water, 21st Ed.	L037	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Charlene Knox

Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 **f:** 01483 527285

e: charlenek@cardgeotechnics.co.uk

i2 Analytical Ltd. Building 19, BRE, Garston, Watford, WD25 9XX

t: 01923 67 00 20 **f:** 01923 67 00 30

e: reception@i2analytical.com

Analytical Report Number: 12-33749

Project / Site name: Camley Street **Samples received on:** 27/04/2012

Your job number: CG/5521C **Samples instructed on:** 27/04/2012

Your order number: Analysis completed by: 09/05/2012

Report Issue Number: 1 Report issued on: 10/05/2012

Samples Analysed: 10 soil samples

Signed: CGStattle

Dr Claire Stone Quality Manager

For & on behalf of i2 Analytical Ltd.

Anna Romanska Quality Manager

Signed:

For & on behalf of i2 Analytical Ltd.

Other office located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Lab Sample Number				212539	212540	212541	212542	212543
Sample Reference				BH1	BH2	BH2	BH2	BH3
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				1.20-1.65	2.00-2.45	7.45-7.50	18.00-18.45	3.00-3.45
Date Sampled		19/04/2012	18/04/2012	18/04/2012	18/04/2012	16/04/2012		
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	14	18	18	20
Total mass of sample received	kg	0.001	NONE	2.0	2.0	1.0	2.0	2.0
General Inorganics								
рН	pH Units	N/A	MCERTS	7.9	8.9	7.9	7.4	10.3
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	N/A	N/A	79000	1300	N/A
Water Soluble Sulphate as SO ₄ (2:1)	g/l	0.0025	MCERTS	6.5	6.6	9.1	1.3	0.41
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	6500	6600	9100	1300	410

Heavy Metals / Metalloids

Total Sulphur

Magnesium (water soluble)	ma/ka	-	NONE	220	20	NI/A	N/A	NI/A

N/A

100

NONE

N/A

25000

5500

N/A

Lab Sample Number				212544	212545	212546	212547	212548
Sample Reference				BH3	BH1	BH4	WS19	WS14
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				12.00-12.45	8.45-8.50	13.95-14.00	4.00	4.50
Date Sampled				16/04/2012	19/04/2012	17/04/2012	05/04/2012	04/04/2012
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	17	19	18	19	0.00
Total mass of sample received	kg	0.001	NONE	2.0	1.2	1.2	0.91	0.49
General Inorganics								
pH	pH Units	N/A	MCERTS	7.3	7.2	8.1	7.2	8.1
Total Sulphate as SO ₄	mg/kg	100	ISO 17025	15000	8100	1400	N/A	N/A

pH	pH Units	N/A	MCERTS	7.3	7.2	8.1	7.2	8.1
Total Sulphate as SO₄	mg/kg	100	ISO 17025	15000	8100	1400	N/A	N/A
Water Soluble Sulphate as SO ₄ (2:1)	g/l	0.0025	MCERTS	5.0	8.0	1.3	2.3	1.4
Water Soluble Sulphate as SO ₄ (2:1)	mg/kg	2.5	MCERTS	5000	8000	1300	2300	1400
Total Sulphur	mg/kg	100	NONE	5400	2700	3100	N/A	N/A

Heavy Metals / Metalloids

Magnesium (water soluble)	ma/ka	5	NONE	N/A	N/A	N/A	N/A	N/A

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and topsoil/loam soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content

of a sample is calculated as the % weight of the stones not passing a 2 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *	
212539	BH1	None Supplied	1.20-1.65	Light brown clay and sand.	
212540	BH2	None Supplied	2.00-2.45	ht brown clay and sand.	
212541	BH2	None Supplied	7.45-7.50	ight brown clay and sand.	
212542	BH2	None Supplied	18.00-18.45	Grey clay.	
212543	BH3	None Supplied	3.00-3.45	Grey clay and topsoil.	
212544	BH3	None Supplied	12.00-12.45	Light grey clay.	
212545	BH1	None Supplied	8.45-8.50	Light brown clay.	
212546	BH4	None Supplied	13.95-14.00	Grey clay.	
212547	WS19	None Supplied	4.00	rown clay and topsoil.	
212548	WS14	None Supplied	4.50	Brown clay and topsoil.	

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-UK	D	NONE
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L019-UK	W	NONE
pH in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L005-PL	W	MCERTS
Stones content of soil	Stones not passing through a 2 mm sieve is determined gravimetrically and reported as a percentage of the dry weight. Sample results are not corrected for the stone content of the sample.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by extraction with water followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	ISO 17025
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, and MEWAM 2006 Methods for the Determination of Metals in Soil	L038-PL	D	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX G

Monitoring records

JOB DETAILS	S										
Site:	103 Camley Stree	t, London			Job	No:	CG/5521C				
Date:	26.04.12				Eng	gineer:	CK				
Time:	09.00-11.00, retu	rning 15.00-16.00			Clie	ent	Urbanest U	K Limite	d		
	•				•		•				
METEOROLO	OGICAL & SITE INF	ORMATION									
State of grou	und:	Dry		Moist	х	Wet					
Wind:		Calm		Light	<u></u>	Moderate			Strong		
Cloud cover		None		Slight		Cloudy		х	Overcast		
Precipitation		None		Slight		Moderate		X	Heavy		
						_			Heavy		1
Barometric	pressure (mb):	990-991				Air temperatu	re (oC):	12			
Well No.	Time (s)	Flow (I/hr)	dA (PA)	O ₂ (% vol. in air)	CO₂ (% vol. in air)	CH₄ (% vol. in air)	H₂S (ppm)	PID (ppm)	Depth to GW (mbgl)	Free product (mm)	Comments
	0	-0.8	-2.7	20.3	0.0	0.0	NR	NR	5.09	NONE	BH depth = 6.00m
	15	0.1	0.0	20.8	0.0	0.0					i i
	30	0.0	0.0	20.8	0.0	0.0					Very windy
	45	0.0	0.1	20.8	0.0	0.0					
BH 1	60	-0.4	1.0	20.8	0.0	0.0					
	90	0.5	1.8	20.8	0.0	0.0					
	120	-0.1	2.8	20.8	0.0	0.0					
	150	0.8	3.1	20.8	0.0	0.0					
	180	0.6	0.8	20.8	0.0	0.0					
	0	0.1	0.2	19.9	0.0	0.0	NR	NR	4.24	NONE	BH depth = 6.00m
	15	0.1	0.2	19.8	0.0	0.0					,
	30	0.0	0.0	19.7	0.1	0.0					
	45	0.0	0.0	19.7	0.2	0.0					
BH2	60	0.0	-0.1	19.7	0.3	0.0					
	90	0.0	0.0	19.7	0.3	0.0					
	120	0.0	0.0	19.7	0.0	0.0					
	150	0.0	0.0	19.7	0.3	0.0					
	180	0.0	0.0	19.7	0.3	0.0					
	0	-0.1	0.0	20.7	0.0	0.0	NR	NR	DRY	NONE	Shallow BH depth = 1.00m
	15	0.0	0.0	21.0	0.0	0.0			NA	NONE	Deep BH depth = NA
	30	0.0	0.0	21.0	0.0	0.0					
	45	0.0	0.0	21.0	0.0	0.0					Blockage in shallow standpipe at 1mbgl and at
BH3 (Dual)	60	0.0	0.0	21.0	0.0	0.0					0.15m in deep standpipe.
51.15 (E dd.)	90	0.0	0.0	21.0	0.0	0.0					No gas tap in deep pipe,
	120	0.0	0.0	21.0	0.0	0.0					gas data relates to shallow
	150	0.0	0.1	21.0	0.0	0.0					install but might be
	180	0.0	0.0	21.0	0.0	0.0					spurious given blockage.
			0.0			0.0	ND		4.20	NONE	
	0	0.1	0.6	20.4	0.5	0.0	NR	NR	4.28	NONE	Shallow BH depth = 6.00m
	15	-0.1	-0.3	20.1	0.0	0.0			5.90	NONE	Deep BH depth = 16.78
	30	0.0	-0.3	19.7	0.4	0.0					
DIIA /D "	45	0.0	0.0	19.6	0.5	0.0					
BH4 (Dual)	60	0.0	0.0	19.6	0.5	0.0					Possible block in deep
	90	0.0	0.0	19.5	0.5	0.0					
	120	0.0	0.0	19.5	0.5	0.0					borehole.
	150	0.0	0.0	19.5	0.5	0.0					
	180	0.0	0.0	19.5	0.5	0.0	1				

Notes:

NR = Not recorded

JOB DETAIL	.S										
Site:	103 Camley Stree	et, London			Job	No:	CG/5521C				
Date:	02.05.12				En	gineer:	CK				
Time:	09.00-11.00, retu	ırning 14.00 - 16.3	0		Cli	ent	Urbanest L	JK Limite	d		
METEOROL	OGICAL & SITE IN	FORMATION									
State of gro	ound:	Dry	•	Moist	х	Wet	t				
Wind:				Light		Moderate			Strong		
Cloud cover		None	!	Slight		Cloudy	/	Х	Overcast		
Precipitatio	n:	None	!	Slight	x	Moderate	e to	Х	Heavy		
Barometric	pressure (mb):	1019-1018				Air temperatu	re (oC):	10]
		1		T			ı		1		1
Well No.	Time (s)	Flow (I/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH ₄ (% vol. in air)	H ₂ S (ppm)	PID (ppm)	Depth to GW (mbgl)	Free product (mm)	Comments
	0	-0.1	-0.2	20.4	0.0	0.0	NR	NR	4.98	NONE	BH depth = 6.00m
	15	0.0	-0.1	20.7	0.0	0.0					
	30	0.0	0.0	20.8	0.0	0.0					
	45	0.0	0.0	20.8	0.0	0.0					
BH 1	60	0.0	-0.1	20.8	0.0	0.0					
	90	0.0	-0.1	20.8	0.0	0.0					
	120	0.0	0.0	20.8	0.0	0.0					
	150	0.0	0.0	20.8	0.0	0.0					
	180	0.0	0.1	20.8	0.0	0.0					
			0.0	10.1		0.0	ND		2.20	NONE	DILL II COO
	0 15	0.0	0.0	19.1 20.4	0.0 0.1	0.0	NR	NR	3.28	NONE	BH depth = 6.00m
	30	0.1	0.4	20.4	0.1	0.0					
	45	0.0	0.2	20.7	0.1	0.0					
BH2	60	0.0	0.2	20.8	0.1	0.0					1
DITZ	90	0.0	0.2	20.8	0.1	0.0					Lots of standing water had
	120	0.0	0.2	20.8	0.1	0.0					gone down the standpipe
	150	0.0	0.2	20.8	0.1	0.0					during period of heavy
	180	0.0	0.2	20.8	0.1	0.0					rainfall on previous visit.
			_		-						, , , , , , , , , , , , , , , , , , ,
	0	0.0	0.2	19.0	0.0	0.0	NR	NR	4.82	NONE	Shallow BH depth = 5.00m
	15	0.0	0.2	20.1	0.1	0.0			9.82	NONE	Deep BH depth = 27.05m
	30	0.0	0.0	20.1	0.1	0.0					
BH3 (Dual)	45	0.0	-0.1	20.1	0.1	0.0					Boreholes repaired during monitoring visit.
	60	0.0	0.0	20.0	0.1	0.0					
	90	0.0	0.1	19.9	0.1	0.0					No gas tap in deep
	120	0.0	0.1	19.8	0.1	0.0					installation - gas data
	150	0.0	0.0	19.8	0.1	0.0					relates to MG only.
	180	0.0	0.0	19.4	0.1	0.0					relates to lvid only.
	0	0.0	0.0	20.4	0.0	0.0	NR	NR	4.32	NONE	Shallow BH depth = 6.00m
	15	0.0	0.0	20.4	0.0	0.0	ININ	INK	5.43	NONE	Deep BH depth = 29.00m
	30	0.1	0.3	20.1	0.3	0.0			3.43	NONE	Deep вп deptn = 29.00m
	45	0.1	0.4	20.1	0.3	0.0	 	 	1	-	
BH4 (Dual)	60	0.1	0.3	20.0	0.3	0.0	 	 	1	-	Deep borehole repaired
J (Buul)	90	0.0	0.2	20.0	0.3	0.0	1	1	1	1	during monitoring visit.
	120	0.1	0.3	20.0	0.3	0.0	1	1	<u> </u>		
	150	0.0	0.2	19.9	0.4	0.0					
	180	0.0	0.2	19.8	0.4	0.0	1	1		1	
	1										

Notes:

NR = Not recorded

NR = Not recorded

JOB DETAILS											
	103 Camley Stree	t London			loh	No:	CG/5521C				
	10.05.12	t, London				gineer:	CK				
	09.00				Clie		Urbanest UK	Limited			
·····c·	03.00				Į Gino		Orbanest on	Limited			
METEOROLO	OGICAL & SITE INF	ORMATION									
State of grou	ınd:		ry	Moist	Moist x Wet						
Wind:		Ca		Light	х	Moderate	to	Х	Strong		
Cloud cover:		No	ne	Slight		Cloudy		х	Overcast		
Precipitation	n:	x No	ne	Slight		Moderate			Heavy		
	oressure (mb):	1005-1007		<u> </u>		Air temperatur		17]
				1			()-				
Well No.	Time (s)	Flow (I/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH₄ (% vol. in air)	H ₂ S (ppm)	PID (ppm)	Depth to GW (mbgl)	Free product (mm)	Comments
	0	-0.3	-0.4	20.6	0.0	0.0	NR	NR	5.11	NONE	BH depth = 6.00m
	15	0.1	0.3	20.8	0.0	0.0					_
	30	0.0	-0.2	20.8	0.0	0.0					
	45	-0.2	-0.7	20.8	0.0	0.0					
BH 1	60	-0.7	-2.4	20.8	0.0	0.0					
	90	-0.7	-2.4	20.8	0.0	0.0					
	120	-0.5	-1.2	20.8	0.0	0.0					
	150	-0.3	-1.0	20.8	0.0	0.0					
	180	-0.3	-1.0	20.8	0.0	0.0					
									2.22		
	0	0.9	3.2	20.4	0.0	0.0	NR	NR	3.28	NONE	BH depth = 6.00m
	15	0.3	0.9	20.7	0.0	0.0					
	30	1.8	2.4	20.6	0.0	0.0					
BH2	45 60	0.2 1.3	0.9 2.4	20.6 20.6	0.0	0.0					
DITZ	90	0.4	1.0	20.6	0.0	0.0					
	120	0.4	2.8	20.6	0.0	0.0					
	150	0.4	1.3	20.6	0.0	0.0					
•	180	0.0	0.0	20.6	0.0	0.0					
	0	-0.3	-1.1	20.4	0.0	0.0	NR	NR	4.74	NONE	Shallow BH depth = 5.00m
	15	-0.4	-1.5	20.8	0.0	0.0			6.83	NONE	Deep BH depth = 27.05m
	30	-0.4	-1.5	21.0	0.0	0.0					
	45	-0.5	-1.8	21.0	0.0	0.0					
BH3 (Dual)	60	-0.5	-2.1	21.0	0.0	0.0					
	90	-0.8	-2.7	21.0	0.0	0.0					No gas tap in deep
	120	-0.8	-2.7	21.0	0.0	0.0					installation - gas data
	150	-0.1	-0.5	21.0	0.0	0.0					relates to MG only.
	180	-0.1	-0.4	21.0	0.0	0.0					,
	0	0.2	0.9	20.4	0.0	0.0	NR	NR	4.52	NONE	Shallow BH depth = 6.00m
	15	0.1	0.6	20.7	0.0	0.0		1	5.62	NONE	Deep BH depth = 29.00m
	30	0.2	0.7	20.7	0.0	0.0					
	45	0.2	0.6	20.6	0.0	0.0					
BH4 (Dual)	60	-0.1	-0.2	20.5	0.1	0.0					
	90	0.3	1.1	20.5	0.0	0.0					
	120	0.2	0.7	20.4	0.0	0.0					
	150	0.1	0.5	20.5	0.0	0.0					
	180	0.1	0.5	20.4	0.0	0.0					

Notes: NR = Not recorded

JOB DETAILS																	
Site:	103 Camley Stree	et, Lond	don					_	No:	CG/5521C							
Date:	17.05.12							_	gineer:	CK							
Time:	09.00							Clie	ent	Urbanest U	K Limited	t					
METEOROLO	OGICAL & SITE IN	FORMA	ATION														
State of grou	ınd:	х	Dry			Moist			Wet								
Wind:				Light				Moderate			Strong						
Cloud cover		Х	None			Slight		X	Cloudy			Strong Overcast					
Precipitation		X	None			_		_	Moderate								
			1			Slight				(0)		Heavy		1			
Barometric	pressure (mb):	1018	-1017		J				Air temperatur	e (oc):	12						
	Ţ	1							r					1			
Well No.	Time (s)	Flo	ow (I/hr)	dA (PA)	(%)	O ₂ vol. in air)	CO₂ (% vol. in a	ir)	CH₄ (% vol. in air)	H ₂ S (ppm)	PID (ppm)	Depth to GW (mbgl)	Free product (mm)	Comments			
	0		-0.1	-0.3		18.8	0.0		0.0	NR	NR	5.14	NONE	BH depth = 6.00m			
	15		0.0	0.2		19.9	0.0		0.0								
	30		0.0	-0.3		20.8	0.0		0.0								
	45		0.0	-0.3		20.8	0.0		0.0								
BH 1	60		-0.1	-0.4		20.8	0.0		0.0								
	90		0.0	-0.1		20.8	0.0		0.0								
	120	0.0		0.0		21.0	0.0		0.0								
	150		0.0	0.0		21.0	0.0		0.0								
	180		-0.1	-0.4		21.0	0.0		0.0								
				0.0					0.0	ND		2.20	NONE	DILL II COO			
	0		0.0	0.0		20.7	0.0		0.0	NR	NR	3.38	NONE	BH depth = 6.00m			
	15		0.0	0.0 0.1		20.6	0.1		0.0								
	30 45		0.0	0.1		20.4	0.2		0.0								
BH2	60		0.0	0.0		20.3	0.2		0.0								
DITZ	90	1	0.0	0.0		20.3	0.2		0.0								
	120		0.0	0.0		20.3	0.3		0.0								
	150		0.0	0.0		20.3	0.3		0.0								
	180		0.0	0.0		20.3	0.3		0.0								
	0		0.0	0.0		20.4	0.0		0.0	NR	NR	4.91	NONE	Shallow BH depth = 5.00m			
	15		0.0	0.0		20.6	0.0		0.0			6.32	NONE	Deep BH depth = 27.05m			
	30		0.0	0.0		20.6	0.0		0.0								
	45		0.0	0.0		20.6	0.0		0.0								
BH3 (Dual)	60		0.0	0.0		20.6	0.0		0.0								
	90		0.0	0.0		20.6	0.0		0.0					No gas tap in deep			
	120		0.0	0.0		20.6	0.0		0.0					installation - gas data			
	150		0.0	0.0		20.6	0.0		0.0					relates to MG only.			
	180		0.0	0.0		20.6	0.0		0.0					,			
	0		0.1	0.4		20.5	0.0		0.0	ND	NID	4.55	NONE				
	0 15		0.1	0.4		20.5	0.0		0.0	NR	NR	4.55 5.59	NONE NONE	Shallow BH depth = 6.00m Deep BH depth = 29.00m			
	30	1	0.0	0.0		19.8	0.3		0.0			3.33	INUINE	Deep on depth = 29.00m			
	45	1	0.0	0.2		19.8	0.4		0.0			 					
BH4 (Dual)	60	1	0.0	0.3		19.7	0.5		0.0		 	 					
5.14 (Budi)	90	1	0.0	0.3		19.7	0.5		0.0			t					
	120	1	0.0	0.0		19.7	0.5		0.0			t					
	150	1	0.1	0.4		19.7	0.5		0.0								
	180	İ	0.1	0.4		19.7	0.5		0.0								
		+								 	 	 		 			

JOB DETAILS											
	103 Camley Stree	t, London				No:	CG/5521C				
	24.05.12					gineer:	CK				
Time:	09.00				Clie	ent	Urbanest UK L	mited			
METEOROLOG	GICAL & SITE INFO	RMATION									
State of groun	d:	x Dry		Moist		Wet					
Wind:		x Calm		Light		Moderate			Strong		
Cloud cover:		x None		Slight		Cloudy			Overcast		
Precipitation:		x None		Slight		Moderate			Heavy		
Barometric pre	essure (mb):	1024-1023		<u> </u>		Air temperatu	e (oC):	18	· · · · · · · · · · · · · · · · · · ·]
- по по по по по по по по по по по по по	,.						- ()-				
Well No.	Time (s)	Flow (I/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH ₄ (% vol. in air)	H ₂ S (ppm)	PID (ppm)	Depth to GW (mbgl)	Free product (mm)	Comments
	0	0.0	0.1	20.6	0.0	0.0	NR	0.0	5.16	NONE	BH depth = 6.00m
	15	0.1	0.3	20.6	0.1	0.0					
	30	0.0	0.2	20.4	0.2	0.0					
	45	0.0	0.2	20.0	0.4	0.0					
BH 1	60	0.0	0.1	20.0	0.4	0.0					
	90	0.0	0.1	20.0	0.4	0.0					
	120	0.0	0.1	20.0	0.4	0.0					
	150	0.0	0.1	20.0	0.4	0.0					
	180	0.0	0.1	20.0	0.4	0.0					
	0	0.0	0.1	20.7	0.0	0.0	NR	0.0	3.53	NONE	DII danth - C 00m
	15	0.0	0.0	20.7 20.7	0.0 0.1	0.0	INK	0.0	3.33	INOINE	BH depth = 6.00m
	30	0.0	0.0	20.7	0.1	0.0					
	45	0.0	0.0	20.7	0.1	0.0					
BH2	60	0.0	0.0	20.7	0.1	0.0					
	90	0.0	0.0	20.7	0.1	0.0					
	120	0.0	0.1	20.7	0.1	0.0					
	150	0.0	0.2	20.7	0.1	0.0					
	180	0.0	0.1	20.7	0.1	0.0					
	0	0.4	0.1	20.3	0.0	0.0	NR	0.0	4.92	NONE	Shallow BH depth = 5.00m
	15	0.2	0.8	20.4	0.0	0.0			6.42	NONE	Deep BH depth = 27.05m
	30	0.2	0.8	20.1	0.1	0.0					
5.115 (S. 1)	45	0.3	1.0	20.0	0.1	0.0					
BH3 (Dual)	60	0.3	1.0	20.0	0.1	0.0					
	90 120	0.3	1.0 0.9	20.0 20.0	0.1	0.0		-			No gas tap in deep
	150	0.2 0.2	0.9	20.0	0.1 0.1	0.0		+			installation - gas data
	180	0.2	0.8	20.0	0.1	0.0					relates to MG only.
	180	0.2	0.6	20.0	0.1	0.0					
	0	0.1	0.3	20.5	0.0	0.0	NR	0.0	4.68	NONE	Shallow BH depth = 6.00m
	15	0.0	0.2	20.5	0.1	0.0		0.0	5.67	NONE	Deep BH depth = 29.00m
	30	0.0	0.0	19.8	0.3	0.0				-	
	45	0.0	0.0	19.3	0.4	0.0					
BH4 (Dual)	60	0.0	0.0	19.2	0.5	0.0					
	90	0.0	0.2	19.2	0.5	0.0					
	120	0.1	0.3	19.2	0.5	0.0					
	150	0.0	0.3	19.2	0.5	0.0					
	180	0.0	0.2	19.2	0.5	0.0					
Notes:											
NR = Not reco	rded										

JOB DETAILS		•									
	103 Camley Street	t, London			Jol	b No:	CG/5521C				
	31.05.12	•			En	gineer:	CK				
	11.30					ent	Urbanest UK I	Limited			
METEOROLOG	GICAL & SITE INFO	RMATION									
State of groun	ıd:	x Dry	į	Moist	Moist Wet						
Wind:	:	Calm		x Light		Moderate			Strong		
Cloud cover:	!	None		x Slight		Cloudy			Overcast		
Precipitation:	!	x None		Slight		Moderate			Heavy		
Barometric pre	eccure (mh).	1016-1015]	<u> </u>	Air temperatur	<u> </u>				
Daronicano p	233410 (1110).	1010 1015		<u>ı</u>		All telliperata.	e (00).	10			<u> </u>
						Т		T	1	1	
Well No.	Time (s)	Flow (I/hr)	dA (PA)	O ₂ (% vol. in air)	CO ₂ (% vol. in air)	CH ₄ (% vol. in air)	H₂S (ppm)	PID (ppm)	Depth to GW (mbgl)	Free product (mm)	Comments
	0	0.2	0.7	19.3	0.0	0.0	NR	0.0	5.16	NONE	BH depth = 6.00m
ı	15	0.2	0.7	20.4	0.0	0.0					† · ·
ľ	30	0.2	0.6	20.7	0.0	0.0					
	45	0.0	0.0	20.8	0.1	0.0		T			
BH 1	60	0.0	0.0	20.8	0.1	0.0					
	90	0.0	0.0	20.6	0.2	0.0					
	120	0.2	0.7	20.5	0.2	0.0					
	150	0.2	0.7	20.5	0.2	0.0					
	180	0.1	0.4	20.5	0.2	0.0	<u> </u>	 			
	 '		<u> </u>	<u> </u>		<u> </u>					
	0	0.0	0.0	20.8	0.0	0.0	NR	0.0	3.52	NONE	BH depth = 6.00m
	15	0.0	0.0	20.8	0.0	0.0	 	 		 	
	30	0.0	0.0	20.8	0.0	0.0	<u> </u>	 		 	
BH2	45 60	0.0	0.0 0.1	20.8 20.8	0.0	0.0		 			
DFIZ	90	0.0	0.1	20.8	0.0	0.0		 		 	
 	120	0.0	0.0	20.8	0.0	0.0	-	 		 	
	150	0.0	0.0	20.8	0.0	0.0		 		<u> </u>	
	180	0.0	0.0	20.8	0.0	0.0	 	<u> </u>			
	100	0.0	<u></u>	1	J.5	1 0.0					
	0	0.1	0.4	20.5	0.0	0.0	NR	0.0	4.92	NONE	Shallow BH depth = 5.00m
	15	0.0	0.2	20.8	0.0	0.0			6.40	NONE	Deep BH depth = 27.05m
ľ	30	0.0	0.0	20.8	0.0	0.0					
	45	0.0	0.0	20.7	0.0	0.0					
BH3 (Dual)	60	0.0	0.0	21.0	0.0	0.0					
	90	0.1	0.3	21.0	0.0	0.0					No gas tap in deep
	120	0.0	0.0	21.0	0.0	0.0					installation - gas data
	150	0.0	0.0	21.0	0.0	0.0					relates to MG only.
	180	0.0	0.0	21.0	0.0	0.0		<u> </u>			relates to this only.
			<u> </u>	20.5			ND	0.0	4.60	NONE	
	0 15	0.3	1.1 0.7	20.5	0.0	0.0	NR	0.0	4.60 5.70	NONE	Shallow BH depth = 6.00m
 	30	0.2	0.7	20.8 20.8	0.0	0.0	 	 	5.70	NONE	Deep BH depth = 29.00m
}	45	0.0	0.2	20.8	0.0	0.0	 	 		 	-
BH4 (Dual)	60	0.0	0.0	20.8	0.0	0.0		 		 	
BH4 (Duai)	90	0.0	0.1	20.8	0.0	0.0	1	 			
	120	0.0	0.4	20.8	0.0	0.0		 		 	
 	150	0.1	0.4	20.8	0.0	0.0	-	 		-	
ŀ	180	0.0	0.3	20.8	0.0	0.0		<u> </u>		 	
	100	0.0	0.2	20.0	0.0	0.0					+
Notes:						_!	<u> </u>				<u> </u>
NR = Not recor	rdod										

APPENDIX H Maximum permissible concentrations

Proposed MPCs for imported capping layer soils

Dete	erminand	Public open spaces	Rationale
Arsenic		35	SGV⁴
Cadmium		85	SGV⁴
Chromium (total)		38	GAC ⁵
Lead		450	SGV ⁴
Mercury		240	SGV ⁴
Selenium		600	SGV ⁴
Copper		135 (6,700) ³	Sludge Regulations 1989 ⁶ (GAC ⁵)
Nickel		130	SGV ⁴
Zinc		300 (20,000) ³	Sludge Regulations 1989 ⁶ (GAC ⁵)
Boron		5	Limit for phytotoxic effect ⁷
Barium		300	Former GAC ¹⁴
Beryllium		26	GAC ⁵
Vanadium		210	GAC ⁵
Benzo(a)pyrene		[2.5]	(GAC [±])
Benzo(a)anthracene		18	(GAC)
Benzo(b)fluoranther		24	1
Benzo(k)fluoranther		25	4
Chrysene	ie	230	GAC ⁵
Dibenzo(a,h)anthrac	enno	2.4	GAC
		2.4	4
Indeno(1,2,3-cd)pyro Naphthalene	ene	9.2	-
марпинанене			+
	EC ₅₋₆	79	4
_	EC> ₆₋₈	230 59	-
TPH aliphatic ⁸	EC> ₈₋₁₀	540	GAC ⁵
	EC> ₁₀₋₁₂ EC> ₁₂₋₁₆	1,000 ⁹	GAC
	EC> ₁₆₋₃₅	1,000°	Comparison of TPH must also be
	EC ₅₋₇	1.0	made against the TPH waste
	EC> ₇₋₈	1,0009	assessment banding below to
	EC> ₈₋₁₀	96	confirm the material does not classify
TPH aromatic ⁸	EC> ₁₀₋₁₂	480	as hazardous waste.
	EC> ₁₂₋₁₆	1,000 ⁹	1
	EC> ₁₆₋₂₁	1,000 ⁹	1
	EC> ₂₁₋₃₅	1,000 ⁹	1
Sum of TPH aliphation		< 1,000	Hazardous waste thresholds ¹⁰ (C ₁₀ +
Sum of TPH aliphation	& aromatic C ₁₀ +	< 1,000	MPC based on threshold for C_{25} +)
рН		5-10	
Phenols		520	SGV ⁴
Sulphate - 2:1 water	/soil extract (SO ₄ mg/l)	500 ¹¹	Limit for Design Sulphate Class DS-1 ¹²
Total Cyanide		17	GAC ⁵
Asbestos		No fibres detected	-

Notes:

- $These \ maximum \ permissible \ concentrations \ (MPCs) \ are \ import \ criteria \ only \ and \ are \ not \ necessarily \ appropriate for \ human \ health \ risk \ assessment.$
- In mg/kg dry soil except sulphate and pH.
- 2. 3. In mg/kg dry soil except sulphate and pH.

 MPCS limited by waste assessment thresholds - if failure occurs further assessment can be made—copper and zinc concentrations may individually exceed MPC, subject to the assessment of the cumulative effect of copper and zinc, but may not exceed bracketed human health GAC values.

 Soil Guideline Value for residential with plant uptake assuming 6% SOM.

 Generic Assessment Criteria generated 'in-house' based on CLEA model.

 Schedule 2, Sludge (Use in Agriculture) Regulations 1989. Values taken for pH 6-7.

 Nable, Banuelos and Paul. (1997). Boron Toxicity. Plant and Soil, Vol. 193, pp1 81-198.

 Speciated TPH values must not exceed GAC. Assessment of TPH must also be made against hazardous waste thresholds to confirm imported soils do not classify as hazardous material.

 GAC derived MPC for TPH fraction limited to 1,000mg/kg based on 'waste thresholds'.

 Environment Agency. (2007). A Guide to Hazardous Waste Regulations: How to find out if waste oil and waste that contain oil are hazardous. HWR08.

 If failure occurs further assessment can be made.

- 11. 12.
- If failure occurs further assessment can be made. 2:1 water/soil sulphate extract limit for DS-1 in accordance with BRE SD1.
- Laboratory screen by microscopy may be required subject to source of material.

 GAC created under the old approach (Dutch Intervention Value is 625mg/kg, so the GAC is considered conservative).