

The Coutyard House Parfitt Close Hampstead, London, NW3

DESIGN CONSTRUCTION STATEMENT

CONTEN	ітя	PAGE
1.0	Introduction	3
2.0	Existing Site	3
3.0	Proposed Works	3
4.0	Soil Investigation	4
5.0	Adjacent Properties	4-5
6.0	Assessment of the Effects of Movement on Adjacent Properties	5-6
7.0	Basement Construction Sequence of Works	7
8.0	Conclusion	7-8

APPENDICES

Appendix A	TWS - 8396_SK01 – Site Location Plan Indicating adjoining properties.
Appendix B	Architects Ground Floor Layout & Long Section
Appendix C	TWS - 8396_SK02 – Staged Sequence Showing Temporary and Permanent Works
Appendix D	TWS - 8396_SK03 – Section A _ A - Adjacent No. 2 Parfett Close TWS - 8396_SK04 – Section B _ B - Adjacent Wildwood Cottage Garden TWS - 8396_SK06 – Monitoring Settlement of Surrounding Area Berryrange Sheet Pile Design Calculation No. E3807_rev 1_25-6-12
Appendix E	MRH Ground Investigation Report Ref 121311-January 2012
Appendix F	Camden Geological-Hydrogeolocical & Hydrological Study Extracts Figures 11, 12, 14, 15 & 16.
Appendix G	London Underground Limited Tunnel Location Drawing ND-W001 TWS - 8396_SK05 – Basement Layout Showing LUL Tunnel Crowns
Appendix H	Topographical Survey Drawing 11025-P-SI-rev 2

1.0 INTRODUCTION

- 1.1. This Design Construction Statement has been prepared by Taylor Whalley Spyra as requested by Canaway Fleming Architects as part of the current planning approval and the additional area of basement on the site.
- 1.2. This report considers the structural stability of the proposed development and the limited effect on the adjoining properties.
- 1.3. The proposal is to construct a 2 store single residential property including a basement.
- 1.4. A previous report by Barton Engineers has been undertaken for the planning application which outlined the general works. We reviewed this report and under took the Design Construction Statement with further ground investigation and amended the scheme in line with the latest Architects drawings and the installation of temporary sheet piles to the basement suitable propped to allow for an open excavation form of construction. We have updated this report to include the additional basement area
- 1.5. The information contained within this Construction Design Statement has been reviewed against Camdens Planning Guidance Basements and Lightwells (CPG4) and Camden Development Policy DP27 and have indicated the site location on the Camden Geological Hydrogeolocical & Hydrological Study Extracts Figures 11, 12, 14, 15 & 16 which confirm the site is outside the influence of these areas (refer to Appendix F).

2.0 EXISTING SITE

- 2.1. The site is at the end of Parfitt Close and adjacent to no.2 Parfitt Close and located at the end the large rear garden to Wildwood Lodge which is on the corner of North End and the entrance to Parfitt Close.
- 2.2. The site is approximately orientated North to South, existing level at the front is 107.600 and at the rear 108.200 (refer to Appendix A & H).

3.0 PROPOSED WORKS

- 3.1. The works involve the construction of a single RC basement with RC walls and RC ground floor slab with a steel framed structure over built off the ground floor slab to form the ground floor structure and roof (refer to Appendix B).
- 3.2. The level of the main basement area is 104.040 with the ground floor level of 107.660.
- 3.3. Sheet piling is to be installed around the perimeter of the proposed basement to provide the temporary support to retain the surrounding ground. This will allow for the open excavation construction of the basement. The sheet piling will be suitable propped and braced at a level of 107.00 from inside around the perimeter by the sheet pile contractor and at second level by main concrete contractor (refer to Appendix D).
- 3.4. The new RC basement raft with the RC retaining walls and RC ground floor slab over will form a solid RC box structure (refer to Appendix C).
- 3.5. The new basement structure when complete is designed to form the permanent support works. Once the basement structure is completed then the steel framed structure over will be constructed.
- 3.6. The main contractor has undertaken a construction & Traffic Management Plan (refer to Appendix I).

4.0 SOIL INVESTIGATION

- 4.1. In 2012 a full soil investigation was undertaken by MRH Geotechnical comprising 3 boreholes between 13 & 15m deep which confirms the ground conditions as Bagshot Beds approximately 4m deep overlaying Claygate Beds.
- 4.2. Monitoring of the groundwater has been undertaken with the water table level being at a level of 105.540 (refer to Appendix E).
- 4.3. In 2008 soil investigation has been undertaken on site by Ground Engineering comprising 3 Boreholes and 4 deep trial holes The perched ground water level was recorded at 105.560. Also a full ground investigation with 3 boreholes at the nearby site at No. 4 North End also confirms the surrounding ground conditions and ground water conditions.
- 4.4. The soil investigation ground water levels indicate that the main basement area is below the ground water level by 1500mm. During construction of the basement this will require temporary localised pumping and monitoring of the water with a couple of shallow well points positioned within the basement area. This will not affect the adjoining properties as dewater will be controlled and restricted local to the zone of the basement.

5.0 ADJACENT PROPERTIES

- 5.1. No. 2 Parfitt Close is a rectangular building approximately 7.5m x 21m to the north of the site and is set back approximately 3m from the closest point of the proposed basement with a wide passage way between. The house is a single residential property over 3 levels consisting of a 2 storey masonry construction at ground floor & first floor, with pitched timber roof structure at second floor and was constructed in the 1980's. The Foundation have been confirmed as Piled on RC Ground beams. Section A_A on drawing 8396_SK03 shows the permanent and temporary works (refer to Appendix D).
- 5.2. No.1 Parfitt Close is located to the north of the site and is of the same construction as that of no.2 and is set back 9m away from the basement at its closest point. It is positioned to the NW of no. 2 Parfitt Close and set back a further 7m (refer to Appendix A).
- 5.3. The Wildwood Cottage garden is adjacent to the East boundary with an existing boundary timber fence between. The Cottage is set back a considerable distance from the basement. Section B_B on drawing 8396_SK04 shows the permanent and temporary works (refer to Appendix D).
- 5.4. London Underground has a section of the Northern Line Tunnel running under the east of the site with a crown level of 73.800 above Ordnance Datum (refer to Appendix G).
- 5.5. This puts the tunnel crown 30m below the lowest point of the basement which is of sufficient depth not be affected by the proposed development.
- 5.6. All properties that are adjacent to the proposed developments and fall within The Party Wall Act 1996 will have condition surveys undertake.
- 5.7. The design of the basement and temporary support works is to be undertaken so as to minimise any structural disturbance to the adjoining properties, but as the nearest building foundations area reasonable deep and the 45 deg zone of influence is below the basement level and not directly adjacent to the proposed basement works at approximately 3m away, it is envisage that any structural disturbance to them will be minimal.

- 5.8. A final detailed design of calculations & layout drawings for the sheet pile and temporary propping and walling beams has been undertaken by Berryrange using CADS Piled Wall Suite Version 5.19. Berryrange are the specialist sheet piling sub-contractor for the temporary works construction stage. (refer to Appendix D).
- 5.9. Prior to this an initial analysis of the basement retaining walls and required temporary works scheme has been undertaken using WALLAP version 5.4.

6.0 ASSESSMENT OF THE EFFECTS OF MOVEMENT ON ADJACENT PROPERTIES

- 6.1. There are three possible causes of ground movement; the installation of the wall sheet piles, the excavation of the basement and the adjustment of the ground under the net load changes. The only structure outside the site which may be affected is no. 2 Parfitt Close which is solid 2 storey brick building with piled foundations and a with framed roof structure over.
- 6.2. The proposed design and analysis of the temporary sheet pile wall shows a section through the proposed basement adjacent the next door building. The basement is constructed just 600mm from the face of the existing free standing boundary wall, with the external building wall to no. 2 Parfitt Close a further 2.4m away. The area between is the long entrance passage for no. 2.
- 6.3. The installation of the sheet piles will result in some ground movement. CIRIA C580, which summarises empirical evidence on the effects of installing walls in London Clay, suggest that settlements are likely to fall within an envelop defined by 0.04% of the wall depth next to the wall, diminishing to zero at a distance of around 1 to 1.5 times the wall depth from the back of the wall, ie in this case 3 to 4 mm ext to the wall, decreasing to zero at 9 to 14 metres.
- 6.4. In our experience it is likely that a limited movement will take place with sheet piles as they displaced the ground with upward movement, if the wall is carefully constructed the movement at the wall to no.2 Parfitt Close will not exceed 2 mm.
- 6.5. The process of excavation will result in the forward translation of the sheet pile retaining wall and rise of ground inside the basement as the overburden is removed. Provided that the wall is carefully propped the movement affecting the property next door can be limited to acceptable amounts. Based on the empirical evidence presented in the CIRIA C580 document, a 3.6 metre dig would result in a forward movement of the wall at the base of the excavation of around 0. 2% of the excavation depth, i.e. around 7 mm, and we therefore asked the temporary sheet pile contractor to limit this to 5mm maximum. The ground movement might extend to around 3 to 4 times the excavation depth from the back of the wall. The empirical data from the CIRIA document shows that the settlement behind the wall is unlikely to exceed 0.08% of the depth, i.e. around 3 mm. The data also suggests that lateral movements lie within an envelop defined by 0.15% of the excavation depth at the back of the wall (i.e. 5.5 mm) and zero at a distance of around 4 times the excavation depth. Lateral movement of the foundation of no. 2 Parfitt Close can be constrained by installing a stiff prop at a high level and low level before significant excavation has taken place.
- 6.6. The above estimates are presented and checked from the sheet pile subcontractor, using a wall analysis program which also enables the structural design of the wall (refer to Appendix D).
- 6.7. The possible effect in terms of damage to the structure of the adjacent properties can be estimated based on the above values assuming that any differential settlement under the building is largely likely to result in a small forward rotation of the structure towards the basement as a result of a differential settlement of around 5 mm across the structure (taking account of the effect of installing the piles and the excavation). The attached table 1.1 gives ranges of lateral strains associated with different degrees of damage. If it

is assumed that the structure moves with the ground, and assuming that the structure is around 7.5 metres wide, the estimated horizontal strain would, at most be estimated from 4 mm differential lateral movement over 7.5 metres, i.e. a lateral strain of just over 0.05%. This would put the damage in the 'very slight' category.

Category of damage	Description of typical damage	Approximate crack width (mm)	Limiting tensile strain ε _{lim} (per cent)
0 Negligible	Hairline cracks of less than about 0.1 mm are classed as negligible	<0.1	0.0-0.05
1 Very slight	Fine cracks that can easily be treated during normal decoration. Perhaps isolated slight fracture in building. Cracks in external brickwork visible on inspection	<1	0.05-0.075
2 Slight	Cracks easily filled. Redecoration probably required. Several slight fractures showing inside of building. Cracks are visible externally and some repointing may be required externally to ensure weathertightness. Doors and windows may stick slightly.	<5	0.075-0.15
3 Moderate	The cracks require some opening up and can be patched by a mason. Recurrent cracks can be masked by suitable lining. Repointing of external brickwork and possibly a small amount of brickwork to be replaced. Doors and windows sticking. Service pipes may fracture. Weathertightness often impaired.	5-15 or a number of cracks > 3	0.15-0.3
4 Severe	Extensive repair work involving breaking-out and replacing sections of walls, especially over doors and windows. Windows and frames distorted, floor sloping noticeably. Walls leaning or bulging noticeably, some loss of bearing in beams. Service pipes disrupted.	15-25 but also depends on number of cracks	>0.3
5 Very severe	This requires a major repair involving partial or complete rebuilding. Beams lose bearings, walls lean badly and require shoring. Windows broken with distortion, Danger of instability.	Usually > 25 but depends on number of cracks	

Damage Category Chart (CIRIA C580)

Table 1.1

6.8. In the long term the claygate within which the basement is constructed will adjust to the changes that have taken place as a result of the net load changes and water pressure will build up on the underside of the slab. In this case, there will be a net load reduction and there will be a tendency for the structure to rise a small amount. This re-adjustment may result in small upward movement of the surrounding ground, but this is unlikely to result in any significant effect on the adjacent structure.

7.0 BASEMENT CONSTRUCTION SEQUENCE OF WORKS

- 7.1. Proposed Sequence of Works.
 - Install within the site area and surrounding area a number of fixed monitoring nodes to monitor possible movement during the works. (refer to drawing 8396_SK05)
 - The existing garden top soil is to be stripped off and any garden walls removed and foundations are to be grubbed out. Cut roots as approved by arboricultural specialist and detailed in their report)
 - The sheet piling is to be installed with a Silent Piler similar to a Giken Rig which presses the sheet piles into the ground using the resistance of the adjoining installed sheet piles.
 - The ground is to be locally excavated 1.5m around the steel wailers and props at high level to allow their installation.
 - The ground at the front of the site to No 2 Perfitt close and Wildwood Cottage Garden is to be retained to allow a ground retaining berm to be formed to retain the sheet piling
 - The ground to the rear is then to be excavated to formation level.
 - The drainage pipes and granular drainage channels are to be installed.
 - The rear section of basement slab build-up is to be installed and then the RC basement slab to this area cast with 150mm high kickers for all the basement walls and internal columns.
 - With the rear section of RC basement slab cast install the diagonal rakers to the waling beams and sheet piling at the front of the site and fixed to the rear section of RC basement slab
 - With the rakers in and the slab having reached the required design strength remove the ground retaining berm.
 - The ground to the front can now be excavated to formation level.
 - The drainage pipes and granular drainage channels are to be installed.
 - The front section of basement slab build-up is to be installed and then the RC basement slab to this area cast with 150mm high kickers for all the basement walls and internal columns.
 - Install and cast all internal RC walls and columns to underside of ground floor slab.
 - The basement RC walls are then to be cast to 600mm below the underside of the high level walling beams.
 - Once the basement RC walls have gained the required design strength, install diagonal props fixed to the RC wall & RC basement slab and then remove the high level sheet piling walling beams and shoring.
 - The RC ground floor slab and RC wall down stands can then be cast.
 - Once the RC ground floor slab has gained the required design strength the additional diagonal props can be removed.
 - Install the main steel frame fixed to the RC ground floor slab
 - During the construction period the sheet piling and surrounding ground will be monitored at regular intervals to confirm the construction tolerances stays within the agreed design parameters.
 - The RC basement structure now forms a solid box construction to retain the surround ground and structure over
 - Continue with construction of remainder of the structure over.

8.0 CONCLUSIONS

8.1. The selection of the main contractor and sheet piling sub-contractor and designer of temporary works has been based on having previous experience constructing similar projects and a requirement to provide programmes and method statements detailing the final sequence of construction prior to carrying out works on site and is registered with The Considerate Constructers Scheme.

- 8.2. Site personnel have been selected based on experienced of similar projects. Selection of plant and machinery has been based on minimising noise and vibration.
- 8.3. Detailed analysis of the various aspects of construction has been reviewed to demonstrate that the level of sequencing will enable the basement to be constructed safely and with ground movements kept within acceptable tolerances.
- 8.4. The stability of the adjacent Parfitt properties and Wildwood House garden should not be affected by the basement works with the influence of adjoining building foundation outside the zone of the basement with depths as indicated by the 45° guide line on drawing 8396_SK03 & 8396_SK04 showing the retained garden.
- 8.5. Within the calculations an allowance has been allowed for surcharge from adjoining building/road and the detailed design calculations confirm that the selected sizes of sheet piles and walling & propping will keep ground movement within the specified design limits (refer to Appendix D).
- 8.6. The temporary dewater of the basement area is being designed and monitored to reduce the water level locally to the area of works and will only be needed for a short period of time. Water levels are being monitored on a weekly base.
- 8.7. The construction of the basement will incorporate perforated ground water pipes within a granular drainage channel installed under the basement slab and to the sides this will allow the existing ground water regime to be maintained This will stop ground water building up behind the basement walls and also stop any change in ground water flow effecting adjoining properties (refer to Appendix D).
- 8.8. The above ground surface water drainage design will incorporate SUDS and a number of soakaways within the rear garden.
- 8.9. The project as currently being undertaken on site is being monitored as further detailed design is undertaken and as works progress on site and to keep in terms of the general construction process, structural stability the long term integrity of adjacent buildings and the existing property and surrounding infrastructure.

Appendix A

TWS - 8396_SK01 - Site Location Plan Indicating Adjoining Properties

			Drawn GB	Rev. A	
GEEN	til han at ill /		Date 24.03.11	Drawing No. SK01	
EUBLIC GF	A Relation of the second secon	HOGARTH HOUSE GRAGES	Scale NTS	Job No. 8250	
Morth End	Hatched area Indicated Hatched area Indicated Figure Bore Holes Listing Bore Holes Mo. 1.7 Mo. 1.	Indee of The former of the fo	Title SITE LOCATION PLAN ALSO		
No. 15	Portuge and the second se	Inde of Inde o	Contract WILDWOOD LODGE,	e NOKTH END LONDON NW3 7HH,	

IMAGE 04

03

MA

02 IMAGE (

IMAGE 01

WILDWOOD

Appendix B

Architects Ground Floor Layout & Long Section

NOTE: INTERNAL LAYOUTS ARE INDICATIVE ONLY AND ARE SUBJECT TO DETAILED DESIGN

FFL : EFFL : SSL : FOW :	Finished Floor Level External Finished Floor Level Structural Slab Level Top of Wall
DB09	Door reference
WB05	Window reference
1	Acer Pseudoplatanus 'Brilliantissimum
2	Betula ermanii
3	Betula Papyrifera
4	Cornus Kousa 'Chinesis'
5	Hedge: Laurus Nobilis
6	Shrub Planted Area: Mix of Hypericum Forrest, Escallonia Laevis and Potentilla Fruticosa

D	06.09.2012	Utility room relocated to ground floor
C	02 00 2012	Revised proposed boundary line

C 03.09.2012 Revised prop

B 30.08.2012 Land registry line added Revisions A 28.08.2012 Issued for client sign off

CANAWAY FLEMING ARCHITECTS

Canaway Fleming Architects Ltd The Dutch House 307 - 308 High Holborn London WC1V 7LL T: 020 7430 2262 F: 020 7430 2274

E: mailbox@canawayfleming.com

^{Client} Mr Mickey Nurtman Project The Courtyard House

Drawing Title Proposed Ground Floor Plan for client sign off Date Scale August 2012 1:50@A1

Project	Origin	Туре	Level/View	Package Dwg No.	Revision
P12-101	A	Ρ	00	E-088	D
Status			Drawn	Checked	
SKETCH				CTs	-

Notes

Copyright remains the property of Canaway Fleming Architects and this drawing is not to be used for any purposes without the express permission of the Architect. No implied License is given for its use.

Do not scale from this drawing. All dimensions should be checked on site for accuracy.

Structural Work

All indications as to structure are for graphic purposes only and must not be relied upon for accuracy in terms of size, detail or position. All structure and temporary propping to be confirmed by a suitably qualified structural engineer before beginning works.

M&E Work All indications as to M&E items are for graphic purposes only and must not be relied upon for accuracy in terms of size, detail or position. All services to service engineers detail

Survey Information

Topographical survey was produced by CAD survey. All levels are in meters and site datum corresponds with OS datum.

Landscaping Interfaces between hard and soft landscaping to be confirmed in landscaping tender package.

FINAL STRUCTURAL SLAB LEVEL SUBJECT TO INSULATION THICKNESS TO MEET THE STATUTORY REQUIREMENT.

ALL STRUCTURAL UPSTANDS TO STRUCTURAL ENGINEER'S DETAIL. STRUCTURAL ENGINEER TO CONFIRM BELOW GROUND DRAINAGE LAYOUT TO INCORPORATE CAVITY DRAINAGE SYSTEM.

INTERNAL FIT OUT AND ABOVE GROUND CONSTRUCTION TO BE CONFIRMED

Kev

Кеу	
FFL : EFFL : CH : SSL :	Finished Floor Level External Finished Floor Level Ceiling Height above finished floor level Structural Slab Level
DB09	Door reference
$\langle WB05 \rangle$	Window reference
	Existing Ground line
	External Stone Cladding To be confirmed
	Blockwork
	Concrete
	Screed

Area in abeyance

Safety, Health and Environment Information Notes below are additional to hazards/risks normally associated with this type of work:

Construction - Unknown condition of existing footings of boundary

walls. - Conflict with buried uncharted services

Operations

- Safe storage and disposal of waste materials on shared site

- Conflict between construction vehicles and residents vehicle access to Hogarth Court and Parfitt Close

Maintenance

- No significant/unusal residual hazards identified at this stage

Dismantling/Demolition

- No significant/unusal residual hazards identified at this stage

These notes are based on the use of experienced and competent contractors carrying out the work using an approved safe method of working.

B 04.10.2012 Drawing updated to reflect basement layout agreed with client 06.09.2012 Revisions A 27.07.2012 Issued for ground works tender

CANAWAY FLEMING ARCHITECTS

Canaway Fleming Architects Ltd The Dutch House 307 - 308 High Holborn London WC1V 7LL T: 020 7430 2262

F: 020 7430 2274 E: mailbox@canawayfleming.com

Client TBC

Project The Courtyard House

Drawing Title Section EE (Courtyard)

March 2012

1:50@A1

Project	Origin	Туре	Level/View	Package Dwg No.	Revision
P12-101	Α	Х	EE	20009	В
Status			Drawn	Checked	
PRELIMINARY				DH	-

Appendix C

TWS - 8396_SK02 - Staged Sequence Showing Temporary and Permanent Works

-0

- Install within the site area and surrounding area a number of fixed monitoring nodes to monitor possible movement during the works. (refer to drawing 936, SKO5)
 Ine existing grateen top solils to be stropped off and any garden walls removed and foundations are to be grubbed out. Cut roots as approved by arboricultural specialist and detailed in their report)
 The stream of the resisting off and any garden walls removed and foundations are to be grubbed out. Cut roots as approved by arboricultural specialist and detailed in their report)
 The stream off the resistance of the adjoining installed sheet plates much as least their shall arbor. The ground is to be locating berm to be hormed to retain the sheet plates.
 The ground site for the resist in the site into the secarated 1.7.m around the stele willst to a Grange plates and granular drainage them the second the stele willst to a Grange darken is to be retained to allow a ground resist plate for other server stell to the rest is then to be exceeded to fromation for the rest is then to be exceeded to fromation for the rest is form of the rest is then to be exceeded to from the rest.
 The drainage plates and granular drainage channels are to be installed.
 With the rear section of tRC basement valls and internal colums.
 With the rear section of tRC basement valls and internal colums.
 With the rear section of tRC basement valls and internal colums.
 With the rear section of tRC basement valls and internal colums.
 The ground the rest and granular drainage channels are to be installed.
 The ground the rear section of tRC basement valls and internal columns.
 The ground the front can be excavated to formation feet.
 The ground the reare the plate required design attempt.
 The rear section of tRC valls are observated to formation feet.
 The ground retaining the reare the set of the reare section of the rear stable.
 The rear sec

Appendix D

TWS - 8396_SK03 – Section A _ A - Adjacent No. 2 Parfett Close TWS - 8396_SK04 – Section B _ B - Adjacent Wildwood Cottage Garden TWS - 8396_SK06 – Monitoring Settlement of Surrounding Area

Berryrange Sheet Pile Design Calculation No. E3807_rev 1_25-6-12

CONSTRUCTION METHOD SEQUENCE

This Drawing to be read in conjunction with all other Engineers, Architects and Specialists drawings and specifications.

No dimensions are to be scaled from this drawing.
 No deviation may be made from the details shown on this drawing without prior agreement of the Englances.

Any discrepancy between this drawing and any other document should be referred immediately to the Engin

4

- Install within the site area and surrounding area a number of fixed monitoring nodes to monitor possible movement during the works. (refer to drawing 8396_SK05)
 The existing granten tops oils its to be stripped off and any grantem wilds removed and foundations are to be grubbed out. Curroots as approved by arboriculant specialized in their report)
 The shreet pilling is to be installed with all shert of silent. This around the sile is the stripping the works.
 The shreet pilling is to be installed with all shert of the adjoining installed sheet pilles.
 The ground is to be locally berm to be loreally berm to be loreally berm to be loreally berm to be loreally berm to be loreal by excavated to firm the sile to No. 2 Perfit close and Wildwood Cotage Gardem is to be retained to allow their installation.
 The ground is the front of the sile to No. 2 Perfit close and Wildwood Cotage Gardem is to be retained to allow their installation.
 The ground to the rear is clono of Chasement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed.
 With the rear section of basement slab build-up is to be installed and then the RC basement slab build-up is to be installed.
 The front section of basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC basement slab build-up is to be installed and then the RC baseread to retain the structure owell.
 The crainage

SECTION A.A (2 PARFITT CLOSE BOUNDARY WALL) (SCALE 1:28)

CONSTRUCTION METHOD SEQUENCE

- Install within the site area and surrounding area a number of fixed monitoring nodes to monitor possible movement during the works. (refer to drawing 3396, SK05)
 The existing grane not possible is to be stripped off and any garden walls removed and foundations are to be grubbed out. Cut roots as approved by arboricultural specialist and detailed in their report)
 The sheet pilling is to be installed within a Stern Tiler similar to a Giken Rig which presses the sheet pillers into the ground sity the resistance or the adjoining installed sheet pilles.
 The ground is to be locally berm to be installed with a Stern Tiler similar to a Giken Rig which presses the sheet pilles into the ground is to be locally berm to be accessible from the site of No. 2 Perflit close and Wildwood Cotage Garden is to be retained to allow their installation.
 The ground is to the installed of retain the sheet pille the ground to the rear is then to be accessible from the site of No. 2 Perflit close and Wildwood Cotage Garden is to be retained to allow their installation.
 The accession of Dasement slab build-up is to be installed.
 With the rear section of basement slab cast install the diagonal rakers to the willing at the front of the site and fixed to the rear section for Chasement slab.
 With the rear section of Dasement slab custication for the site and fram and columns.
 With the rear section of Dasement slab custication for the maximum stal.
 With the rear section of Dasement slab build-up is to be installed.
 The front section of basement slab build-up is to be installed.
 The front section of basement slab build-up is to be installed.
 The front section of basement slab build-up is to be installed.
 The front section of basement slab build-up is to be installed and then the RC basement slab to this area cast with from tof the site and fixed to the rear section

This Drawing to be read in conjunction with all other Engineers. Architects and Specialists drawings and specifications.

No dimensions are to be scaled from this drawing.
 No deviation may be made from the details shown on this drawing without prior agreement of the Engineers.

Any discrepancy between this drawing and any other document should be referred immediately to the Engineer

4

FFL + 107.840

300mm thick RC slab on Isolation membrane on 75mm concrete blinding on Existing ground well compacted

150x300mm thick gran drainage channels @ 3r

Γ

E3807

CLIENT: Roadfern Ltd SITE: The Courtyard House

CALCULATIONS

For

Permanent Sheet Pile Design for proposed Courtyard House

Rev:	Date:	Author:	Comments:	Signature:
0	25/05/2012	Sara Vijayasarathy	For Approval	Committee V.
А	11/06/12	Alan Herbert	For Approval	APperter
В	25/06/2012	Sara Vijayasarathy	For Approval	Jarmutton. V.

Unit 7, The Oaks Business Village Revenge Road Chatham Kent ME5 8LF Tel 01622-794460 Fax 01634-863016 e-mail admin@berryrange.com

INDEX

1.	Design Information	
----	---------------------------	--

- 2. Design Approach
- 3. Summary of Levels
- 4. Design Summary & Stability Calculations

Appendix A & B CADS Stability Calculations

- 5. Frame Calculations
 - Appendix C SPAN Analysis
- 6. Drawings

Appendix D

AutoCAD drawing showing Sheet Pile Layout

1. Design Information Ground Conditions & Groundwater

The ground conditions have been interpreted from MRH Geotechnical, Borehole Log No BH3. Top of the borehole is assumed to be commencing level. *Customer to confirm that this is a valid assumption*. The following values have been attributed to the ground conditions below commencing level.

Soil Description (WS2)	Depth (mAOD)	Bulk Density (kN/m ³)	Effective Angle of Shear Resistance, ϕ (Degrees)	Undrained Shear Strength, C _u (kN/m ²)
Made Ground (Clay Fill)	108.2	20	26	-
Silty CLAY	107	19.5	26	-
Silty SAND	105.9	17	30	-
Stiff CLAY	104.4	19.5	23	-
Stiff CLAY	101.1	20.5	23	100

Groundwater was encountered at 104.8mAOD. If groundwater / ground conditions vary significantly from that shown in the design, please seek advice/re-design immediately.

Surcharge / Live Loading

The following Live Load Surcharges have been considered within this sheet piling design:-

Design Case A

General Surcharge for Plant Load:

A ground level surcharge of 10kN/m² has been adopted to consider a Construction Live Load (in accordance with CIRIA Special Publication 95 cl. 4.2.1 recommendation for adjacent plant laden wt. up to 30 Tonnes).

Design Case B

General Surcharge for Plant Load:

A ground level surcharge of 5kN/m² has been adopted to consider a Construction Live Load.

Additional Load for nearby/adjacent structures:

A strip load of 60kN/m at an offset of approximately 0.40m over a width of 1800mm has been adopted to consider load from the existing boundary wall. The client should advise if there are any additional surcharges / loads to consider (other than those identified within this TWs design), and seek redesign immediately.

2. Design Approach

Bespoke software (CADS Retain) is used for the design and the software determines the earth pressure coefficients from the values of phi-dash and wall friction/adhesion. The Burland and Potts Approach is to be used for the design.

Temporary Condition

- 1. A minimum overall FOS of 2.0 is achieved
- 2. Total stress soil parameters have been adopted in this design
- 3. Sheet piles are designed to act in Cantilever

3. Summary of Levels

Case 1 & 2

Commencing Level	:108.20mAOD
Formation Level	:103.2mAOD
Retained Height	:5m
Prop Level	:106.7

4. Design Summary & Stability Design

Method of Installation: Slient Vibration free method.

Case 1

Sheet Specification: 8.0m Long PU18 ⁻¹ (Grade St	355) Sheet Piles
Bending moment capacity of the sheet pile is	382kNm/m.
Maximum anticipated moment on the sheet pile is	56kNm/m.
Maximum predicted deflection is	5mm**
For stability design, please refer to CADS Output,	Appendix A
Case 2	
Sheet Specification: 8.0m Long SMJ (Grade S27	0) Sheet Piles
Bending moment capacity of the sheet pile is	204kNm/m.
Maximum anticipated moment on the sheet pile is	59kNm/m.
Maximum predicted deflection is	10.2mm**

For stability design, please refer to CADS Output, Appendix B

**The customer must satisfy himself that this is an acceptable amount with consideration to any surrounding structures, surfaces, services and the construction of the permanent works.

5. Frame Calculations

Appendix C- SPAN Analysis

6. Drawings

Appendix D AutoCAD drawing showing Sheet Pile Layout

APPENDIX A

	Page No Analysis	1
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 em-rh-temp (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Pile geometry

Pile top Level108.2mPile Length8mPile toe level100.2mActive ground slope0Degrees (To horizontal)

Soils and ground water initial data

(Soils data given for active and passive sides)

Initial Ground Water level 104.8

Top Level m	Description	Bulk Dens kN/m3	Sat' Dens kN/m3	Young Mod kN/m2	Young Inc. kN/m3	Cu C' kN/m2	C Inc. kN/m3	Phi Deg	Wall Shear Ratio	Ка Кр	Кас Крс
108.20	Clay Fill	19.00	20.00	13867	0			26 26	.50 .50	.35 3.40	
107.00	Silty CLAY	19.50	19.50	24000	0			26 26	.50 .50	.35 3.40	
105.90	Silty SAND	17.00	20.00	14000	0			30 30	.50 .50	.29 4.29	
104.40	CLAY	19.50	19.50	30000	0	50		27	.50 .50	.33 1.00	2.45
101.10	CLAY	20.50	20.50	60000	0	100		28	.50	.32 1.00	2.00

Construction sequence

Stage Ref	Stage Type	Level or Angle Load m/deg. kN(/m)	Offset m	Width Length m m
1 2 A 3 4 5 A	Active surcharge Passive side excavation Insert prop Passive side excavation Passive water level	108.20 10.0 106.10 106.50 103.20 103.20	.0	

	Page No Analysis	2	
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 em-rh-temp (1.0m).pw	/S
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012	

Code of practice

ſ

Code of practice or reference document Application of pressures for stability FOS on moments (stability check) ULS factor on Tan(Phi) values ULS fFactor on drained cohesion values ULS factor on undrained cohesion values ULS factor on active soil pressures ULS factor on passive soil pressures ULS factor on active water pressures	CIRIA R104 Burland and Potts Temporary Works (Drained) FOS on available passive 1.50 1.00 1.00 1.00 1.00 1.00 1.00
III S factor on loads applied to the soil	1.00
ULS factor on loads applied to the wall	1.00
FOS on embedment (stability check)	1.00
Correction factor on cantilever embedment	t 1.20
Wall analysis detail options	
Nominal Phi for load distribution Depth of water filled tension cracks Density of water Minimum equivalent fluid density Depth of passive softened soil Continuity model for wall analysis	30.0 Degrees .0 m 10.0 kN/m3 5.0 kN/m3 1.0 m Pins at second and lower props
Deflection parameters	
Wall moment of inertia Wall Youngs modulus	35905 cm4/m 21000000 kN/m2
Properties for prop at 106.5 Prop/Tie cross sectional area Prop/Tie Youngs modulus Prop/Tie length Prop/Tie spacing Waling moment of inertia Waling Youngs modulus Prop/Tie preload	200 cm2 each 210000000 kN/m2 10.0 m 6.0 m Waling deflection not included Waling deflection not included 0 kN
Initial lack of fit	0.0 mm

	Page No Analysis	3
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 em-rh-temp (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Stage ref.5Stage typePassive water level

	Page No Analysis	4
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 em-rh-temp (1.0m).pw
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Tabular results from analysis of stage ref 5

Calc Level m	Active Vert kN/m2	Active Earth kN/m2	Active Water kN/m2	Pas' Vert kN/m2	Pas' Earth kN/m2	Pas' Water kN/m2	Total Nett kN/m2	Bend. Moment kNm/m	Shear Force kN/m	Defl't mm	Prop Force kN/m	FOS
108.20	10.0	3.5	.0	.0	.0	.0	3.5	0	1	2.7		.00
108.00	13.8	4.8	.0	.0	.0	.0	4.8	.1	9	2.8		.00
107.00	32.8	11.4	.0	.0	.0	.0	11.4	4.5	-9.0	3.3		.00
107.00	32.8	11.4	.0	.0	.0	.0	11.4	4.5	-9.0	3.3		.00
106.50	42.5	14.8	.0	.0	.0	.0	14.8	10.6	-15.6	3.6	64.8	.00
106.50	42.6	14.8	.0	.0	.0	.0	14.8	10.6	49.2	3.6		.00
106.10	50.3	17.5	.0	.0	.0	.0	17.5	-7.7	42.8	3.8		.00
106.10	50.3	17.5	.0	.0	.0	.0	17.5	-7.8	42.8	3.8		.00
106.00	52.3	18.2	.0	.0	.0	.0	18.2	-12.0	41.0	3.9		.00
105.90	54.2	18.9	.0	.0	.0	.0	18.9	-16.0	39.1	3.9		.00
105.90	54.2	16.0	.0	.0	.0	.0	16.0	-16.1	39.1	3.9		.00
105.00	69.5	20.5	.0	.0	.0	.0	20.5	-44.2	22.7	4.2		.00
104.80	72.9	21.5	.0	.0	.0	.0	21.5	-48.3	18.5	4.3		.00
104.40	76.9	22.7	4.0	.0	.0	.0	26.7	-53.9	8.9	4.2		.00
104.40	76.9	25.7	4.0	.0	.0	.0	29.7	-53.9	8.9	4.2		.00
104.10	79.8	26.6	7.0	.0	.0	.0	33.6	-55.1	5	4.1		.00
104.00	80.7	27.0	8.0	.0	.0	.0	35.0	-54.9	-4.0	4.1		.00
103.20	88.3	29.5	16.0	.0	.0	.0	45.5	-39.4	-36.1	3.5		.00
103.20	88.3	29.5	16.0	.0	.0	.0	45.5	-39.4	-36.2	3.5		.00
103.00	90.2	30.1	18.0	3.9	28.4	.0	19.7	-31.4	-42.7	3.3		.05
102.00	99.7	33.3	28.0	23.4	145.9	.0	-84.6	0	-1.1	2.6		.99
101.99	99.9	33.3	28.1	23.7	146.1	.0	-84.7	0	0	2.5		1.00
101.10	108.3	36.2	37.0	40.9	163.4	.0	-90.3	0	0	1.9		1.57
101.10	108.3	34.7	37.0	40.9	241.0	.0	-169.3	0	0	1.9		1.57
101.00	109.3	35.0	38.0	43.0	243.0	.0	-170.0	0	0	1.8		1.67
100.20	117.8	37.7	46.0	59.4	259.4	.0	-175.7	0	0	1.2		2.23

	Page No Analysis	5
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 em-rh-temp (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Structural design of wall

Wall section properties

Sheet pile section ref PU18-1

Wall material properties

Yield stress of steel Bending Stress Ratio Allowable bending stress Allowable shear stress	355 1.55 229 137		
Wall structural design checks	De su ins d	Dura di da d	
Check description	or Limit	or Actual	Units
Max. bending moment Design stress check	55	382	kNm/m
Min. section modulus Design stress check	240	1670	cm3/m
Maximum shear force Design stress check	87	824	kN/m

APPENDIX B

	Page No Analysis	1
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 ezero pile (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Pile geometry

Pile top Level108.2mPile Length8mPile toe level100.2mActive ground slope0Degrees (To horizontal)

Soils and ground water initial data

(Soils data given for active and passive sides)

Initial Ground Water level 104.8

Top Level m	Description	Bulk Dens kN/m3	Sat' Dens kN/m3	Young Mod kN/m2	Young Inc. kN/m3	Cu C' kN/m2	C Inc. kN/m3	Phi Deg	Wall Shear Ratio	Ка Кр	Кас Крс
108.20	Clay Fill	19.00	20.00	13867	0			26 26	.50 .50	.35 3.40	
107.00	Silty CLAY	19.50	19.50	24000	0			26 26	.50 .50	.35 3.40	
105.90	Silty SAND	17.00	20.00	14000	0			30 30	.50 .50	.29 4.29	
104.40	CLAY	19.50	19.50	30000	0	50		27	.50 .50	.33 1.00	2.45
101.10	CLAY	20.50	20.50	60000	0	100		28	.50	.32 1.00	2.00

Construction sequence

Stage Ref	Stage Type	Level or Angle m/deg. I	Load kN(/m)	Offset m	Width L m	ength. m
1 2 3 A 4 5 6 A	Active surcharge Strip load Passive side excavation Insert prop Passive side excavation Passive water level	108.20 107.20 106.10 106.50 103.20 103.20	5.0 60.0	.0 .4	1.8	

	Page No Analysis	2
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 ezero pile (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Code of practice

ſ

Code of practice or reference document Application of pressures for stability FOS on moments (stability check) ULS factor on Tan(Phi) values ULS fFactor on drained cohesion values ULS factor on undrained cohesion values ULS factor on active soil pressures ULS factor on passive soil pressures ULS factor on passive soil pressures ULS factor on passive water pressures ULS factor on passive water pressures ULS factor on loads applied to the soil ULS factor on loads applied to the wall FOS on embedment (stability check) Correction factor on cantilever embedment	CIRIA R104 Burland and Potts Temporary Works (Drained) FOS on available passive 1.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Nominal Phi for load distribution Depth of water filled tension cracks Density of water Minimum equivalent fluid density Depth of passive softened soil Continuity model for wall analysis	30.0 Degrees .0 m 10.0 kN/m3 5.0 kN/m3 1.0 m Pins at second and lower props
Deflection parameters	
Wall moment of inertia Wall Youngs modulus	11750 cm4/m 210000000 kN/m2
Properties for prop at 106.5 Prop/Tie cross sectional area Prop/Tie Youngs modulus Prop/Tie length Prop/Tie spacing Waling moment of inertia Waling Youngs modulus Prop/Tie preload Initial lack of fit	200 cm2 each 210000000 kN/m2 10.0 m 6.0 m Waling deflection not included Waling deflection not included 0 kN 0.0 mm

	Page No Analysis	3
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 zero pile (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Stage ref.6Stage typePassive water level

	Page No 4 Analysis
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project E3807 File Namezero pile (1.0m).pws
The Courtyard House	Engineer Sara Vijay Date 26/06/2012

Tabular results from analysis of stage ref 6

Calc	Active	Active	Active	Pas'	Pas'	Pas'	Total	Bend.	Shear	5 (1).	Prop	
Level	Vert	Earth	Water	Vert	Earth	Water	Nett	Moment	Force	Defl't	Force	FOS
m	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kN/m2	kNm/m	kN/m	mm	kN/m	
108.20	5.0	1.7	.0	.0	.0	.0	1.7	0	0	4.0		.00
108.00	8.8	3.1	.0	.0	.0	.0	3.1	.1	5	4.4		.00
107.97	9.4	3.3	.0	.0	.0	.0	3.3	.1	6	4.5		.00
107.00	27.8	9.7	.0	.0	.0	.0	9.7	3.2	-6.9	6.5		.00
107.00	27.8	9.7	.0	.0	.0	.0	9.7	3.2	-6.9	6.5		.00
106.50	37.5	22.8	.0	.0	.0	.0	22.8	8.8	-16.4	7.6	73.3	.00
106.50	37.6	22.8	.0	.0	.0	.0	22.8	8.8	56.9	7.6		.00
106.10	45.3	24.2	.0	.0	.0	.0	24.2	-12.0	47.5	8.5		.00
106.10	45.3	24.2	.0	.0	.0	.0	24.2	-12.1	47.5	8.5		.00
106.00	47.3	24.6	.0	.0	.0	.0	24.6	-16.7	45.0	8.7		.00
105.90	49.2	25.0	.0	.0	.0	.0	25.0	-21.1	42.5	8.9		.00
105.90	49.2	22.3	.0	.0	.0	.0	22.3	-21.2	42.5	8.9		.00
105.00	64.5	24.0	.0	.0	.0	.0	24.0	-50.1	21.7	10.2		.00
104.80	67.9	24.4	.0	.0	.0	.0	24.4	-54.0	16.8	10.3		.00
104.40	71.9	24.3	4.0	.0	.0	.0	28.3	-58.7	6.3	10.2		.00
104.40	71.9	27.2	4.0	.0	.0	.0	31.2	-58.7	6.3	10.2		.00
104.39	72.0	27.2	4.1	.0	.0	.0	31.3	-58.7	6.0	10.2		.00
104.00	75.7	27.2	8.0	.0	.0	.0	35.2	-58.6	-7.0	9.8		.00
103.92	76.5	27.2	8.8	.0	.0	.0	36.0	-57.9	-9.9	9.6		.00
103.20	83.3	27.8	16.0	.0	.0	.0	43.8	-40.9	-38.4	8.0		.00
103.20	83.3	27.8	16.0	.0	.0	.0	43.8	-40.9	-38.4	8.0		.00
103.00	85.2	28.5	18.0	3.9	28.4	.0	18.1	-32.5	-44.6	7.5		.05
102.00	94.7	31.6	28.0	23.4	145.9	.0	-86.2	0	-1.4	5.3		.98
101.98	94.9	31.7	28.2	23.7	146.2	.0	-86.3	0	0	5.2		1.00
101.10	103.3	34.5	37.0	40.9	163.4	.0	-91.9	0	0	3.2		1.58
101.10	103.3	33.1	37.0	40.9	241.0	.0	-170.9	0	0	3.2		1.58
101.00	104.3	33.4	38.0	43.0	243.0	.0	-171.6	0	0	3.0		1.68
100.20	112.8	36.1	46.0	59.4	259.4	.0	-177.3	0	0	1.2		2.26

	Page No Analysis	5
CADS Piled Wall Suite Version 5.19 Design of embedded retaining walls and cofferdams	Project File Name	E3807 ezero pile (1.0m).pws
The Courtyard House	Engineer Date	Sara Vijay 26/06/2012

Structural design of wall

Wall section properties

Sheet pile section ref SMJ

Wall material properties

Yield stress of steel Bending Stress Ratio Allowable bending stress Allowable shear stress	270 1.55 174 104		
Wall structural design checks	Dequired	Drovidod	
Check description	or Limit	or Actual	Units
Max. bending moment Design stress check	59	204	kNm/m
Min. section modulus Design stress check	340	1175	cm3/m
Maximum shear force Design stress check	99	450	kN/m
APPENDIX C

PU Piles

Page: 2	Input Data	
Date: 26.6.12 Max Prop Load x 1.6 = U.D.L	Beam Name L b h A W E I _{xx} EI f Z M (m) (mm) (cm²) (kg/m) (kN/m²) (cm ⁴) (N/mn²) (cm³) (kNm)	
	254 x 254 x 73 UC 9.500 254.600 254.100 20.40 73.10 2.1E+08 11400.0 23940.0 270.0 898.0 125.55	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Solution	
	Supports x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 102.5 0.0 3.000 -45.0 630.3 159.3 7.500 45.0 568.3 139.1 9.500 0.0 34.9 0.0	
	Maxima	
	Maximum x (m) Reaction 445.7 kN 3.000 Shear Force 237.0 kN 3.000 Sagging Moment 110.40 kNm 5.273 Hogging Moment -159.32 kNm 2.983 Sagging Deflection 7.040 mm 5.263 Hogging Deflection -0.675 mm 8.123	

Page: 2	Input Data
Max Prop Load x 1.6 x 1.25= U.D.L	Beam Name L b h A W E I_{xx} El f Z M (m) (mm) (mm) (cm ²) (kg/m) (kN/m ²) (cm ⁴) (kNm ²) (N/mm ²) (cm ³) (kNm) 254 x 254 x 73 UC 9.500 254.600 254.100 20.40 73.10 2.1E+08 11400.0 23940.0 270.0 898.0 125.55 Distributed Loads I_{1} L I_{2} (kN/m) x (m) w (m) L (kN/m) L (kN/m)
	Supports Solution x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 128.1 0.0 3.000 -45.0 787.9 199.1 7.500 45.0 710.4 173.8 9.500 0.0 43.6 0.0
	Maxima Reaction 557.1 kN 3.000 Shear Force 296.2 kN 3.000 Sagging Moment 137.99 kNm 5.273 Hogging Moment -119.15 kNm 2.983 Sagging Deflection 8.800 mm 5.263 Hogging Deflection -0.844 mm 8.123
	Berryrange SPAN, v2.46

Page: 2	Input Data	
Date: 26.6.12	Beam	
Max Prop Load x 1.6 = U.D.L	Name L b h A W E I _{xx} EI f Z M	
	(m) (mm) (mm) (cm ²) (kg/m) (kN/m ²) (cm ³) (kN/m ²) (cm ³) (kN/m ²) (kN/m ²) (kN/m ²) (kN/m ²) (cm ³) (kN/m) (kN/m ²) (z54 x 254 x 89 UC 8.100 256.300 260.300 16.90 88.90 2.1F+08 14300.0 30030.0 270.0 1100.0 329.40	
	\mathbf{x} (m) \mathbf{w} (m) \mathbf{L}_1 (kN/m) \mathbf{L}_2 (kN/m)	
	0.000 8.100 103.7 103.7	
	Solution	
	Supports	
	x (m) Angle (°) R (kN) M (kNm)	
	$\begin{vmatrix} 0.000 & 0.0 & -82.5 & 0.0 \\ 2.000 & -45.0 & 942.9 & 372.4 \end{vmatrix}$	
	8.100 45.0 361.4 0.0	
	Maxima	
	Maximum x (m)	
	Reaction 666.7 kN 2.000 Shear Force 376.8 kN 2.000	
	Sagging Moment 311.60 kNm 5.621	
	Sagging Deflection 33.518 mm 5.346	
	Hogging Deflection -2.469 mm 1.191	
		SPAN, v2.46
	Berryrange	© 1998 - 2011, GTSoft Lto Tel/Fax: +44 (0)1292 4777
		Email: GTSoftLtd@aol.c Web: www.GTSoft.org

Page: 2	Input Data
Date: 26.6.12	Beam
Max Prop Load x 1.6 x 1.25= U.D.L	Name L b h A W E I _{xx} EI f Z M
	(m) (mm) (cm ²) (kg/m) (kN/m ²) (cm ⁴) (kNm ²) (cm ³) (kNm)
	254 x 254 x 89 UC 8.100 256.300 260.300 16.90 88.90 2.1E+08 14300.0 30030.0 270.0 1100.0 329.40
	Distributed Loads
	\mathbf{x} (m) \mathbf{w} (m) \mathbf{L}_{1} (kN/m) \mathbf{L}_{2} (kN/m)
	0.000 8.100 129.6 129.6
	Solution
	Supports
	x (m) Angle (°) R (kN) M (kNm)
	0.000 0.0 -103.1 0.0
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Shear Force 471.0 kN 2.000
	Sagging Moment 389.50 kNm 5.621
	Hogging Moment -465.48 kNm 1.985 Sagging Deflection 41.898 mm 5.346
	Hogging Deflection -3.086 mm 1.191

Page: 2					Input Data	1	
Date: 26.6.12	Beam						
Max Prop Load x 1.6 = U.D.L	Name	L b	h A	W E	I _{xx}	El f Z I	M
		(m) (mm)	(mm) (cm ²) (kg/m) (kN/m²)	(cm ⁴) (kl	Nm ²) (N/mm ²) (cm ³) (kl	Vm)
	254 x 254 x 89 UC	7.800 256.300	260.300 16.9	0 88.90 2.1E+08	14300.0 300	030.0 270.0 1100.0 32	9.40
	Distributed Loads L₁ L K X W Y X (m) W (m) L₁ (k 0.000 7.800	2 N/m) L ₂ (kl 103.7	<mark>N/m)</mark> 103.7				
					Solution		
	Supports						
	x (m) Angle (°) R (k	N) M (kNm)					
	0.000 0.0 158	3.5 0.0 2 105 7					
	7.800 45.0 206	5.2 0.0					
	Maxima						
		Maximum	x (m)				
	Reaction	504.4 kN	4.000				
	Snear Force Sagging Moment	255.5 KN 120.25 kNr	4.000 n 1.513				
	Hogging Moment	-195.67 kNr	n 3.986				
	Sagging Deflection	5.104 mm	1.708				
	Hogging Dellection	-0.021 mm	4.064				

Page: 2 Date: 26.6.12	Input Data
Max Prop Load x 1.6 x 1.25= U.D.L	Name L b h A W E Ixx EI f Z M (m) (mm) (mm) (cm²) (kg/m) (kN/m²) (cm³) (kNm²) (cm³) (kNm) 254 x 254 x 89 UC 7.800 256.300 260.300 16.90 88.90 2.1E+08 14300.0 30030.0 270.0 1100.0 329.40 Distributed Loads
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	Supports x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 198.1 0.0 4.000 -45.0 891.6 244.6 7.800 45.0 257.8 0.0
	Maxima Reaction 630.4 kN 4.000 Shear Force 319.4 kN 4.000 Sagging Moment 150.31 kNm 1.513 Hogging Moment -244.58 kNm 3.986 Sagging Deflection 6.380 mm 1.708 Hogging Deflection -0.027 mm 4.064
	Berryrange SPAN, v2.46

Page: 2	Input Data	
Date: 26.6.12 Max Prop Load x 1.6 = U.D.L	Name L b h A W E I _{xx} EI f Z M (m) (mm) (mm) (cm²) (kg/m) (kN/m²) (cm ⁴) (kNm²) (N/m²) (m³) (kNm) 254 x 254 x 73 UC 5.500 254.600 254.100 20.40 73.10 2.1E+08 11400.0 23940.0 270.0 898.0 125.55	
	Distributed Loads $L_1 L_2$ $(m) w (m) L_1 (kN/m) L_2 (kN/m)$ 0.000 5.500 103.7 103.7	
	Solution	
	Supports x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 86.9 0.0 2.000 -45.0 280.4 34.1 3.500 45.0 280.4 34.1 5.500 0.0 86.9 0.0	
	Maxima	
	Maximum x (m) Reaction 198.3 kN 2.000 Shear Force 120.7 kN 3.500 Sagging Moment 35.96 kNm 0.825 Hogging Moment -34.33 kNm 3.481 Sagging Deflection 0.546 mm 0.913 Hogging Deflection -0.121 mm 2.734	

Page: 2	Input Data
Max Prop Load x 1.6 x 1.25= U.D.L	Beam Name L b h A W E I _{xx} EI f Z M (m) (mm) (mm) (cm²) (kg/m) (kN/m²) (cm⁴) (kNm²) (N/mm²) (cm³) (kNm) 254 x 254 x 73 UC 5.500 254.600 254.100 20.40 73.10 2.1E+08 11400.0 23940.0 270.0 898.0 125.55
	Distributed Loads L1 L2 $x (m)$ $w (m)$ L1 (kN/m) L2 (kN/m) 0.000 5.500 129.6 129.6
	Solution
	Supports x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 108.6 0.0 2.000 -45.0 350.5 42.6 3.500 45.0 350.5 42.6 5.500 0.0 108.6 0.0
	Reaction 247.8 kN 2.000 Shear Force 150.9 kN 3.500 Sagging Moment 44.95 kNm 0.825 Hogging Moment -42.91 kNm 3.481 Sagging Deflection 0.683 mm 0.913 Hogging Deflection -0.152 mm 2.734
	SPAN v2 46

J

Z Piles

Page: 2 Date: 26.6.12	Input Data	
Date: 26.6.12 Max Prop Load x 1.6 = U.D.L	Beam Name L b h A W E I_{xx} El f Z M (m) (mm) (mm) (cm²) (kg/m) (kN/m²) (cm⁴) (kNm²) (N/mm²) (cm³) (kNm) 305 x 305 x 97 UC 25.700 305.300 307.900 18.50 96.90 2.1E+08 22300.0 46830.0 270.0 1450.0 429.30 Distributed Loads L <thl< th=""> L <thl< th=""> <thl< th=""></thl<></thl<></thl<>	
	Solution	
	Supports x (m) Angle (°) R (kN) x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 188.3 0.0 18.000 0.0 790.5 434.5 11.000 -30.0 939.3 460.2 22.000 45.0 798.6 245.1 11.000 -30.0 939.3 460.2 25.700 0.0 -43.2 0.0 Maxima Maximum x (m) Reaction 813.5 kN 11.000 Shear Force 412.1 kN 11.000 Sagging Moment -462.73 kNm 10.923 Sagging Deflection -0.737 mm 24.621	
	Berryrange	SPAN, v2.46 © 1998 - 2011, GTSoft Li Tel/Fax: +44 (0)1292 477 Email: GTSoftLid@aol Web: www.GTSoft.org

Page: 2	Input Data	
Date: 26.6.12 Max Prop Load x 1.6 X 1.25 = U.D.L	Beam Name L b h A W E Ixx EI f Z M (m) (mm) (mm) (cm²) (kg/m) (kN/m²) (cm³) (kNm²) (cm³) (kNm) 305 x 305 x 97 UC 25.700 305.300 307.900 18.50 96.90 2.1E+08 22300.0 46830.0 270.0 1450.0 429.30 Distributed Loads L <th< th=""><th></th></th<>	
	Supports	
	x (m) Angle (°) R (kN) M (kNm) 0.000 0.0 235.4 0.0 18.000 0.0 988.1 543.1 4.500 -45.0 1238.0 424.2 24.000 45.0 998.2 306.3 11.000 -30.0 1174.1 575.3 25.700 0.0 -53.9 0.0 Maxima Maxima Maximum x (m) Reaction 1016.8 kN 11.000 -53.9 0.0 0.0 Shear Force 515.1 kN 11.000 Shear Force 515.1 kN 10.002 Sagging Moment -578.39 kNm 10.923 Sagging Deflection 22.700 mm 14.495 Hogging Deflection -0.921 mm 24.621	
	Berryrange	SPAN, v2.46

Page: 2	Input Data
Date: 26.6.12	Beam
$\begin{bmatrix} Max & Prop \ Load x \\ 1.6 \\ = \\ 0.D.L \end{bmatrix}$	Name L b h A W E I _{xx} EI f Z M
	(m) (mm) (cm ²) (kg/m) (kN/m ²) (cm ³) (kN/m ²) (cm ³) (kN/m ²) (kN/m ²) (kN/m ²) (cm ³) (kN/m)
	Distributed Loads
	$x (m) w (m) L_1 (kN/m) L_2 (kN/m)$
	0.000 11.000 117.3 117.3
	Solution
	Supports
	Angle (°) R (kN) M (kNm)
	0.000 0.0 214.6 0.0
	11.000 0.0 145.2 0.0
	Maxima
	Reaction 553.8 kN 4.500
	Shear Force 311.8 kN 4.500
	Sagging Moment 194.58 kNm 1.804
	Sagging Deflection 11.504 mm 2.013
	Hogging Deflection -1.143 mm 5.225

Page: 2	Input Data
Date: 26.6.12	Beam
Max Prop Load x 1.6 x 1.25= U.D.L	Name L b h A W E I _{xx} El f Z M
	(m) (mm) (cm ²) (kg/m) (kN/m ²) (cm ³) (kNm ²) (cm ³) (kNm ²) (cm ³) (kNm) (kNm) (254 x 254 x 89 UC 11 000 256 300 260 300 16 90 88 90 2 1E+08 1/300 0 30030 0 270 0 1100 0 329 40
	Distributed Leade
	\mathbf{x} (m) \mathbf{w} (m) \mathbf{L}_{1} (kN/m) \mathbf{L}_{2} (kN/m)
	0.000 11.000 146.6 146.6
	Solution
	Supports
	4.500 -45.0 979.0 277.1
	Maxima
	Maximum x (m)
	Reaction 692.3 kN 4.500
	Silear Force 389.7 kN 4.500 Sagging Moment 243.23 kNm 1.804
	Hogging Moment -277.07 kNm 4.477
	Sagging Deflection 14.380 mm 2.013 Hogging Deflection -1.429 mm 5.225
	Dorry (ropoo
	Web: www.GTSoft.org

Appendix E

MRH Ground Investigation Report Ref 121311-January 2012

CONSULTANCY, SITE INVESTIGATION CONSTRUCTION MATERIALS TESTING, CONTAMINATED LAND SURVEYS, DESK STUDIES, RISK ASSESSMENT.

GROUND INVESTIGATION FOR

WILDWOOD LODGE 9 NORTH END LONDON NW3 7HH

Job No: 121311

Date January 2012

60 Station Road, Chingford, London E4 7BE Tel: 020 8559 3134 Fax: 020 8559 3135

 Director: S.J. Hudson BSc
 Associates: S. Corrigan BSc MSc DIC FGS
 S. Brooks BEng (Hons)

 Consultants: E.J. Murray Bsc, PhD, CEng, FICE, CGeol, FGS, MaPS D.W. Rix BSc, MSc, CEng, MICE
 A.W. Hutchings MIAT

REPORT ON A GROUND INVESTIGATION AT WILDWOOD LODGE, 9 NORTH END, HAMPSTEAD, LONDON NW3 7HH

1 INTRODUCTION

- 1.1 This report has been prepared for Taylor Whalley Spyra, who are acting on behalf of Allenton Ltd.
- 1.2 Our brief for the investigation was to:

a) Construct three boreholes with associated soil sampling and in situ testingb) Laboratory testing of soil samples for classification

2 DETAILS OF FIELD WORK

- 2.1 The fieldwork comprised the construction of three boreholes at the positions indicated in appendix A.
- 2.2 Soil samples were recovered at regular intervals during the drilling operations, sealed in inert, airtight containers and transported to the laboratory for testing and detailed descriptions.
- 2.3 Water level observations were made during the drilling works and noted on the borehole logs.
- 2.4 The fieldwork was carried out on the 23rd and 24th January 2012.

3 GENERAL GEOLOGY AND REVEALED STRATA

- 3.1 The boreholes proved Made Ground to depths varying from 1.20m 1.60m.
- 3.2 The boreholes then penetrated firm silty Clay with clayey Sands and Gravels from 1.80m 3.60m (BH 2) and 2.30m 3.80m (BH 2).
- 3.3 The boreholes were extended and encountered firm to stiff, becoming stiff silty Clay with laminations of silt.
- 3.4 Details of the boreholes, sample depths, in situ test results and revealed stratum are given in appendix B.
- 3.5 The 1:50,000 scale geological map indicates the natural deposits of area to be near a boundary of The Bagshot Formation and Claygate Beds with London Clay at depth.

4 **GROUNDWATER**

- 4.1 Water seepage's were noted at depths of 3.30m (BH 1), 2.10m (BH 2) and 3.40m (BH 3).
- 4.2 In order to allow long term monitoring, piezometers were installed in each borehole. On completion of the drilling works, water levels of 2.80m (BH's 1 and 3), and 2.75m (BH 2) were recorded.

Wildwood Lodge, 9 North End, Hampstead, London NW3 7HH

5 LABORATORY TESTING

- 5.1 The recovered soil samples were tested for moisture levels, together with ten Atterberg Limit determinations.
- 5.2 The results and detailed sample descriptions are tabulated in appendix C, categorising the Clay elements to be of medium to high plasticity (Plasticity Index 28% 42%).
- 5.3 Although this is indicative of a moderately high susceptibility to moisture related cyclic volume change there were no indications of desiccation within the samples tested.

6 <u>CONCLUSIONS</u>

- 6.1 The findings of the boreholes indicate natural ground at depths of 1.20m 1.60m.
- 6.2 We understand that the proposed development will comprise the construction of a new structure incorporating basements
- 6.3 The in situ tests carried out in the boreholes indicate the following bearing capacities for foundation design purposes within the natural ground. However, any open excavations would require shoring and the facility of pumping groundwater, due to the instability of the ground and high water table.:

BH No	Depth (m)	Allowable Bearing Capacity (KN/m ²)		
1	2.00	105		
1	2.50	110		
2	1.50	110		
2	2.00-2.45	160 (SPT)		
3	1.50	120		
3	2.00	110		
3	2.50-2.95	120 SPT)		

6.4 Plots of the Shear Strengths versus depth profiles are presented in appendix B (Sheet 7), while the SPT (N) values are noted on the borehole logs.

6.5 The soluble sulphate contents of the samples tested from boreholes 1 and 3 at a depth of 2.00m were 340mg/l and 360mg/l with corresponding pH values of 7.4 and 7.5 respectively.

6.6 The site can therefore be categorised as DS1 in accordance with BRE guidelines, thus not requiring any special precautions for concrete in contact with the ground.

Wildwood Lodge, 9 North End, Hampstead, London NW3 7HH

7 <u>REFERENCES</u>

- 1) British Standard EN ISO 14688-1:2002
- 2) British Standard 5930: 1999
- 3) British Standard 1377: Parts 1-9
- 4) British Geological Survey Sheet 256 (1:50,000 scale) North London
- 5) BRE Special Digest 1: Concrete in aggressive ground (2005)
- 6) NHBC Standards, Chapter 4.2
- 7) Foundation Design and Construction (M.J. Tomlinson, Fifth Edition)

Stephen Hewhen.

Stephen J. Hudson mail@mrhgeotechnical.com

APPENDIX A

BOREHOLE LOCATION PLAN

	BOREHOLE L	DCATION PLAN
Location:	Wildwood Lodge	Appendix: A
	9 North End London NW3 7HH	Job No: 121311
		Date: January 2012

APPENDIX B

BOREHOLE LOGS

CLIENT	T Allenton Ltd SITE Wildwood Lodge, 9 No					orth End. London NW3 788				
DATE OF FIELDWORK SCALE 23/01/12 23/01/12 1:50		LEVEL/POSITION OPERATOR LOGGED BY GROUND / AS APPENDIX A PA/SA SH		LOGGED BY	JOB NO. 121311					
SAMPLE F	RECORD	SPT N (Cu-kN/m	²) Standp/ Piezo	DESCRIPTION OF	STRATUM (thickne	ss)	DEPTH	LEGEN		
Ē				Cobble paving (0.10) Sand (0.05) Soft grey very silty, sandy clay with rounded stones and brick fragments. MADE GROUND (1.45)			0.10			
0.50	D1						0.15			
1.00	D2	(38)								
1.50	D3	(40)		Firm pale brown laminated or	ange brown verv si	ilty slightly	1.60			
2.00	D4	(52)		sandy CLAY with traces of gravel (2.20)				× × × × × × × ×		
2.50	D5	(54)						× × × × × × ×		
3.00	D6	(54)		Water standing at 2.80m				× × × × × ×		
3.50	D7	(56)		Water seepage at 3.30m			Z	* * * *		
_4.00	D8	(60)		Firm dark greenish brown with traces of orange brown very silty CLAY (0.90)		3.80	×. × × × × × ×			
4.50	D9	(58)					4.70	< x × × × × × ×		
_5,00	D10	(60)		Firm grey very silty CLAY wi	th laminations of	silt (2.40)	4.70	× × × × × × × × × × × × × ×		
5.50	D11									
_6.00	D12	(64)		Piezometer installed						
6,50	D13		1					× × ×		
-7.00	D14	(74)		Firm to stiff arey very silty	CLAY (3.70)		7,10	× × ×		
7.50	D15				, chin (317)37			* * *		
-8.00	⁻ D16	(78)								
-9.00	D17	(76)								
					a hush					
-10.00	D18	(88)		Borehole conti	nues on Sheet 2			* *		
BROUNDWAT	ER AND C	ASING INF			BORING METHO	D AND REMARKS				
3.30 -	TIME 1HOUR	2.80	- Water instal	MARKS ON GROUNDWATER AND CASING seepage at 3.30m, piezometer led	Mechanical aug Piezometer ins	er talled				
ROKE	HOLE	L0(/ - E	/ R F	GEOTECH	NICAL		Sheet 2 of	2	+
-------------------------	---	----------------	--------------------------	------------------	------------------------	---------------	-------------------------------------	-------------------------------	-----------------------------	-------------------------
CLIENT			Allent	ton Ltd		SITE Wild	wood Lodge, 9 No	rth End, London	NW3 7HH	
DATE OF FII 23/01/11	ELDWORK SCALE LEVEL/POSITIC 2 - 23/01/12 1:50 GROUND					APPENDIX A	OPERATOR PA/SA	LOGGED BY SH	JOB NO	1311
SAMPLE DEPTH	RECORD TYPE	SP (Cu-k)	TN V/m ²)	Standp/ Piezo	DESC	RIPTION OF S	TRATUM (thicknes	s)	DEPTH	LEGEN
					Pirm to stiff grey	very silty	CLAY			
11.00	D19	(110)		Stiff grey very si	lty CLAY (2.)	40)		10.80	
12.00	D20	(114)	1							
.13.00	D21	(122)		-	Borehole en	ds, unable to	penetrate obst	ruction	13.20	× × × × × × × × ×
ROUNDWAT	ER AND C	ASING	INFORM	ATION				O AND REMARKS		
RUCK CASED	ELAPSED TIME	WATER LEVEL	DEPTH SEALED	REN	MARKS ON GROUNDWATER A	ND CASING	Mechanical auge Piezometer inst	r alled		
	LIOUR	2.00		instal	led	erongrat.	KEY: D = Disturbed U = Undisturb	Sample B = ed Sample W = 1	Bulk Sample Water Sample	

DRK J/01/12 RD SPT N (Cu-kN/m) D1	SCALE 1:50 Jn ² Standp/ Piezo	SITE LEVEL/POSITION GROUND / AS APPENDIX DESCRIPTION (Turf over Firm greyish brown laminaticlay with occasional grave (1.10) Firm yellowish brown lamination orange brown very silty CL Medium dense orange brown silty of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	Wildwood Lodge, 9 No OPERATOR PA/SA DF STRATUM (thickness topsoil (0,20) ad dark orange brown 1 and brick fragment ated pale bluish great AY (0.50) silty, clayey SAND a y, slightly sandy C	Drth End, London M LOGGED BY SH SS) I silty, sandy Is. MADE GROUND S. MADE GROUND Ty and dark Ind GRAVEL (0.30) LAY with traces	<pre>W3 7HH JOB NO 121 DEPTH 0.20 1.30 1.80 2.10 ⊻</pre>	311 LEGE/
ORK SPT N RD SPT N Q2 (58) Q3 (52) Q4 N=16 Q5 (50) Q6 (58) Q7 (72)	SCALE 1:50 Standp/ Piezo	LEVEL/POSITION GROUND / AS APPENDIX DESCRIPTION (Turf over Firm greyish brown laminat- clay with occasional grave (1.10) Firm yellowish brown lamina- orange brown very silty CL Medium dense orange brown silts of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	OPERATOR PA/SA DF STRATUM (thickness topsoil (0.20) ed dark orange brown 1 and brick fragment ated pale bluish gree Y (0.50) silty, clayey SAND a y, slightly sandy C	LOGGED BY SH SS) A silty, sandy s. MADE GROUND A and dark and GRAVEL (0.30) LAY with traces	JOB NO 121 DEPTH 0.20 1.30 1.80 2.10 ⊻	.311 LEGE
RD SPT N (Cu-kN/m D1 (58) D2 (58) D3 (52) D4 N=16 D5 (50) D6 (58) D7 (72)	La Standp/ Piezo	DESCRIPTION (Turf over Firm greyish brown laminat clay with occasional grave (1.10) Firm yellowish brown lamina orange brown very silty CL Medium dense orange brown s Firm orange brown very silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	DF STRATUM (thickness topsoil (0,20) ed dark orange brown 1 and brick fragment ated pale bluish gre AY (0.50) silty, clayey SAND a ty, slightly sandy C	n silty, sandy s. MADE GROUND y and dark nd GRAVEL (0.30) LAY with traces	DEPTH - 0.20 1.30 1.80 2.10 ⊻	
D1 D2 (58) D3 (52) D4 N=16 D5 (50) D6 (58) D7 (72)		Turf over Firm greyish brown laminat- clay with occasional grave (1.10) Firm yellowish brown lamina- orange brown very silty CLA Medium dense orange brown silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	topsoil (0.20) ed dark orange brown 1 and brick fragment ated pale bluish gre AY (0.50) silty, clayey SAND a :y, slightly sandy C	n silty, sandy s. MADE GROUND by and dark nd GRAVEL (0.30) LAY with traces	- 0.20 1.30 - 1.80 - 2.10 ⊻	
D1 (58) D3 (52) D4 N=16 D5 (50) D6 (58) D7 (72)		Firm greyish brown laminat- clay with occasional grave (1.10) Firm yellowish brown lamin orange brown very silty CLi Medium dense orange brown s Firm orange brown very silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	ed dark orange brown 1 and brick fragment ated pale bluish gre AY (0.50) silty, clayey SAND a :y, slightly sandy C	n silty, sandy s. MADE GROUND y and dark nd GRAVEL (0.30) LAY with traces	- 0.20 1.30 1.80 - 2.10 ⊻	× × × × ×
02 (58) 03 (52) 04 N=16 05 (50) 06 (58) 07 (72)		Firm yellowish brown lamine orange brown very silty CL Medium dense orange brown s Firm orange brown very silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	ated pale bluish gre AY (0.50) silty, clayey SAND a :y, slightly sandy C	y and dark nd GRAVEL (0.30) LAY with traces	1.30 1.80 - 2.10 ⊻	× × × ×
 (52) N=16 (50) (50) (58) (72) 		Firm yellowish brown lamins orange brown very silty CL Medium dense orange brown s Firm orange brown very silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	ated pale bluish gre AY (0.50) silty, clayey SAND a :y, slightly sandy C	y and dark nd GRAVEL (0.30) LAY with traces	1.30 1.80 2.10 🗸	
04 N=16 05 (50) 06 (58) 07 (72)		Medium dense orange brown s Firm orange brown very silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	silty, clayey SAND a :y, slightly sandy C	nd GRAVEL (0.30) LAY with traces	1.80 2.10 🛛	1. 1. 1.
05 (50) 06 (58) 07 (72)		Firm orange brown very silt of gravel (1.30) Water seepage at 2.10m Water standing at 2.75m	y, slightly sandy C	LAY with traces	2.10 1	×
06 (58) 07 (72)		Water standing at 2.75m				×
(72)						×
		Firm to stiff dark grey ver	y silty CLAY (2.90)		3.40	× × × ×
08 (78)						× × ×
9 (76)						× × × × × × × × × × × × × × × × × × ×
10 (76)					4 4 4	× × × × × ×
11					e e	× × × × × × ×
12 (80)		Piezometer installed		-		* * * * * * * *
13		Firm to stiff dark bluish g laminations of silt (4.50)	rey very silty CLAY	with	6.30	× × × × × × × × × × × × × × ×
14 (76)					4 4	× × × × × × × ×
15					*	× × × × × × × ×
16 (76)					*	× × × × × × × × × × × × × × × × × × ×
L7 (82)					* * * *	× × × × × × × × × × × × × × × × × × ×
					* * *	× × × × × × × ×
.8 (94)		Borehole conti	nues on Sheet 2		ł.	× × × ×
D CASING INF	ORMATION		BORING METHOD	AND REMARKS		
ED WATER DE LEVEL SEA R 2.75	ALED REM - Water instal	MARKS ON GROUNDWATER AND CASING seepage at 2.10m. Piezometer led	Mechanical auge Piezometer inst	r alled		
	9 (76) 10 (76) 11 (76) 11 (80) 13 (76) 14 (76) 15 (76) 16 (76) 17 (82) 8 (94) D CASING INF ED WATER DE R 2.75	9 (76) 10 (76) 11 1 12 (80) 13 1 14 (76) 15 1 16 (76) 16 (76) 17 (82) 18 (94) D CASING INFORMATION ED WATER DEPTH REI R 2.75 - Water instal	9 (76) 10 (76) 11 12 (80) 14 (76) 15 16 (76) 17 (82) 18 (94) D CASING INFORMATION ED VATER DEPTH R 2.75 R 2.75 VATER DEPTH REMARKS ON GROUNDWATER AND CASING Water seepage at 2.10m. Piezometer installed	9 (76) 10 (76) 11	9 (76) 10 (76) 11	9 (76) 10 (76) 11 Piezometer installed 12 (80) 13 Firm to stiff dark bluich grey very silty CLAY with 14 (76) 15 Iminations of silt (4.50) 16 (76) 17 (82) 0 Borehole continues on Sheet 2 0 CASING INFORMATION EP Installed 17 (82) 18 (2.175) 19 Mater seepage at 2.10m. Plezometer Plezometer installed Plezometer installed 18 2.75 Vater seepage at 2.10m. Plezometer 19 Undistributed Sample B - Buik Sample 0 Undistributed Sample B - Buik Sample

BORE	HOLE	LOG -	MRH	I GEOTECHI	NICAL		HOLE NO. Sheet 2 of	BH 2	2
CLIENT		A11	enton Ltd		SITE Wildw	vood Lodge, 9 No	rth End, London	NW3 7HH	
DATE OF FIELDWORK SCALE 23/01/12 - 24/01/12 1:50			LEVEL/POSITION OPERATOR LOGO GROUND / AS APPENDIX A PA/SA				JOB NO	1311	
SAMPLE	RECORD TYPE	SPT N (Cu-kN/m ²	Standp/ Piezo	DESC	RIPTION OF ST	RATUM (thicknes	s)	DEPTH	LEGE
_11.00	D19	(118)		Firm to stiff dark laminations of sil Stiff dark grey ve	t bluish grey	very silty CLAY	with	10.80	
_12.00	D20	(114)							* * * * * * * * * * * * * * * * * * *
_13.00	D21								× × × × × × × × × × × × × × × × × × ×
_14.00	D22	(128)							
15.00	003	(130)			Borehole	ends		15.00	× × × × ×
GROUNDWA DEPTH DEPT STRUCK CASE 2.10 -	TER AND C H ELAPSED TIME 1HOUR	CASING INF WATER DE LEVEL SE 2.75	ORMATION PTH R - Water insta	EMARKS ON GROUNDWATER S seepage at 2.10m. 1 111ed	AND CASING	BORING METHO Mechanical aug Piezometer ins	DD AND REMARKS ger scalled	5	

CLIEN	ΙT		1	Allent	on Ltd		SITE Wildwood Lodge, 9 North End, London NW3 7HH				
DATE 24	OF FIEI	DWORK	/12	SCA	ALE 1:50	LEVEL/POSITION GROUND / AS	APPENDIX A	OPERATOR PA/SA	LOGGED BY	JOB NO	1311
SAN	MPLE R	ECORD TYPE	SPT (Cu-kN/		andp/ Piezo	DESC	ss)	DEPTH	LEGEN		
0.50		D1				Black sandy topsoi fragments. MADE GR	l with trace CUND (0.60)	s of fine gravel	l and brick		
1.00		D2				Friable pale brown MADE GROUND (0.60)	silty clay (with traces of h	orick fragments.	- 0.60	
1.50		D3	(60)			Firm pale brown las silty CLAY (1.10)	minated bluis	sh grey and yell	owish brown	- 1.20	×
2.00		D4	(54)								×
2.50	- 2.95	D5	N=12			Medium dense yello gravel and black re	wish brown si bunded pebble	ilty clayey SAND es (1.50)) with some	2.30	× 1 • •
3.00		D6				water standing at :	2,80m				с х о
3.50	+ 3.95	D7	N=19			Water seepage at 3	. 4 0m			3.80	0 0 0 × 0
4.00		D8 D9	(58)			Firm to stiff dark CLAY with lamination	grey laminat ons of silt (ed dark bluish 3.30)	grey very silty		
_5.00		D10	(64)								
5.50		D11								. 3	
-6.00		D12	(76)			Piezometer installe	:d				
6.50		D13									
-7.00		D14	(94)		-	Stiff dark grey ver	y silty CLAY	with lamination	ns of silt	- 7.10	
7.50		D15				(6,10)					
8.00		D16	(104)								
9.00		D17	(112)							* *	× × × × × × × × × × × × × × × × × × ×
						Bore	hole continue	es on Sheet 2			× × × × × × × × × × × × × × × × × × ×
10.00		D18	(106)	FORM	ATION						×
DEPTH	DEPTH	ELAPSED	WATER 1	DEPTH	ATION	MARKS ON GROUNDWATER A		BORING METHO	D AND REMARKS		
1.40	CASED	TIME	2.80	FALED	Water instal	seepage at 3.40m. Pi lled	ezometer	Piezometer inst	talled		

CLIENT			Allen	ton Ltd		SITE Wildw	wood Lodge, 9 N	orth End. London	NW3 7HH	
DATE OF FI 24/01/1	ELDWORK 2 - 24/01	/12	SC	CALE 1:50	LEVEL/POSITION GROUND / AS A	APPENDIX A	OPERATOR PA/SA	LOGGED BY	JOB NO	
SAMPLE DEPTH	RECORD TYPE	SPT (Cu-kN	N N/m ²)	Standp/ Piezo	DESCF	RIPTION OF ST	RATUM (thickne	ss)	DEPTH	LEGEN
11.00	D19 D20	(116)			Stiff dark grey ver	ry silty CLAY	? with laminati	ons of silt		
13.00	D21	(130)			Borehole end	s, unable to	penetrate obst	ruction	13.20	
PTH DEPTH RUCK CASED	ER AND C ELAPSED TIME 1HOUR	ASING I WATER LEVEL 2.80	DEPTH SEALED	WATION REM Water s install	MARKS ON GROUNDWATER AN seepage at 3.40m. Pie led	D CASING zometer	BORING METHO Mechanical auge Piezometer inst KEY: D = Disturbe U = Undistur	D AND REMARKS er salled I Sample B = E bed Sample W = V	Bulk Sample Vater Sample	

APPENDIX C

MOISTURE CONTENT TEST RESULTS AND ATTERBERG LIMIT DETERMINATIONS

ISSUED BY : M R H GEOTECHNICAL LTD

Appendix C

PAGE 1

Job No.

Contract Wildwood Lodge, 9 North End, 121311 London NW3 7HH

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

Borehole/ Pit No.	Depth m.	Sample	Moisture Content (な)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index (%)	Description (BS 5930:1981:41)
BH 1	0.50	D1	32			1.00		Soft grey very silty, sandy clay with rounded stones and brick fragments. MADE GROUND
BH 1	1.00	D2	30	÷.	÷	101		Soft grey very silty, sandy clay with rounded stones and brick fragments. MADE GROUND
BH 1	1.50	D3	30	-	-	÷		Soft grey very silty, sandy clay with rounded stones and brick fragments. MADE GROUND
BH 1	2.00	D4	20	46	16	30	0.13	Firm pale brown laminated orange brown very silty slightly sandy CLAY with traces of gravel. CI: CLAY of medium plasticity. (97% passing 425um)
BH 1	2.50	D5	21		1	1.51		Firm pale brown laminated orange brown very silty slightly sandy CLAY with traces of gravel
BH 1	3.00	D6	23	48	19	29	0.14	Firm pale brown laminated orange brown very silty slightly sandy CLAY with traces of gravel. CI: CLAY of medium plasticity. (94% passing 425um)
BH 1	3.50	D7	27	2	÷	(÷)		Firm pale orange brown very silty CLAY
BH 1	4.00	D8	27	59	24	35	0.09	Firm dark greenish brown with traces of orange brown very silty CLAY with laminations of silt. CH: CLAY of high plasticity. (100% passing 425um)
BH 1	4.50	D9	29	÷	2	1		Firm dark greenish brown with traces of orange brown very silty CLAY with laminations of silt
BH 1	5.00	D10	30	66	26	40	0.10	Firm grey very silty CLAY with laminations of silt. CH: CLAY of high plasticity. (100% passing 425um)
BH 1	5.50	D11	30	÷	- êg	-		Firm grey very silty CLAY with laminations of silt
BH 1	6.00	D12	29	÷.	1.1	-		Firm grey very silty, slightly sandy CLAY
BH 1	6,50	D13	32	8	-	-		Firm grey very silty CLAY
BH 1	7.00	'D14	32	-	-			Firm grey very silty CLAY with laminations of silt
BH 1	7.50	D15	31		-	1.00		Firm to stiff grey very silty CLAY
BH 1	8.00	D16	31	-	ie.	-		Firm to stiff grey very silty CLAY
METHOD METHOD TYPE OF COMMENT	OF PREPA OF TEST F SAMPLE	RATION	: BS 1377 : BS 1377 : U = Und C = Cor :	PART 1:1 PART 2:1 isturbed, e Cutter	990:7.4 990:3.2, B = Bulk	& PART 4.4, 5.3, :, D = Dis	2:1990:4.; 5.4 turbed, J	2 = Jar, W = Water, SPT = Split Spoon Sample,
REMARKS	S TO INCL	UDE	: Sample of test	disturbar specimer	ice, loss 1 within c	of moistu original s	re, varia ample. Ov	tion from test procedure, location and origin en drying temperature if not 105-110 deg C.

ISSUED BY : M R H GEOTECHNICAL LTD

Appendix C

PAGE 2

Contract Wildwood Lodge, 9 North End, 121311 London NW3 7HH

Job No.

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

Borehole/	Depth	Sample	Moisture	Liguid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Description
Pit No.	m.	1	(%)	(8)	(동)	(%)	(%)	(BS 5930:1981:41)
BH 1	9.00	D17	36	7	1.1	100		Firm to stiff grey very silty CLAY with numerous laminations of silt
BH 1	10.00	D18	32	13	3	131		Firm to stiff grey very silty CLAY with laminations of silt
BH 1	11.00	D19	30	-	-	e)		Stiff grey very silty CLAY
BH 1	12.00	D20	29	2	-	1.811		Stiff grey very silty CLAY
BH 1	13.00	D21	29	8	-	- 20		Stiff grey very silty CLAY
BH 2	0,50	D1	23	÷	æ	- 14		Firm greyish brown silty, sandy clay with occasional gravel, topsoil and brick fragments. MADE GROUND
BH 2	1.00	D2	22	-	-	-		Firm dark brown laminated dark orange brown very silty, sandy clay with occasional gravel and brick fragments. MADE GROUND
BH 2	1.50	D3	23	48	19	29	0.14	Firm yellowish brown laminated pale bluish grey and dark orange brown very silty CLAY, CI: CLAY of medium plasticity. (98% passing 425um)
BH 2	2.00	D4	15	1		-		Medium dense orange brown silty, clayey SAND and GRAVEL
BH 2	2.50	D5	23	2	÷.			Firm orange brown very silty, slightly sandy CLAY with traces of gravel
BH 2	3.00	D6	27	12	8	-		Firm orange brown very silty, slightly sandy CLAY with traces of gravel
BH 2	3.50	D7	28	66	24	42	0.10	Firm to stiff dark grey laminated brown very silty CLAY. CH: CLAY of high plasticity. (100% passing 425um)
BH 2	4,00	D8	28					Firm to stiff dark grey very silty CLAY
BH 2	4,50	99	28	-	*	-		Firm to stiff dark grey very silty CLAY with laminations of silt
BH 2	5.00	D10	29	~	-	-		Firm to stiff dark grey very silty CLAY
BH 2	5.50	D11	29		2	4		Firm to stiff dark bluish grey very silty CLAY
METHOD O	F DDFDAD	ATTON .	PC 1377.1	ADT 1.10	0.74		1000 4 0	
METHOD 0	T TREFAM	ATTON :	D3 1377.1	ARI 1:19	90:7.4	& PARI 2:	1990:4.2	
TYPE OF	F TEST SAMPLE KI	ey i	U = Undis	turbed, 1	90:3.2, 4 B = Bulk,	.4, 5.3, 5 D = Distu	rbed, J =	= Jar, W = Water, SPT = Split Spoon Sample,
COMMENTE			c = core	cutter				
COMPLENTS								
REMARKS	TO INCLUE	DE ;	Sample di of test s	sturbance pecimen y	e, loss of within ori	f moisture iginal sam	, variati ple. Oven	on from test procedure, location and origin n drying temperature if not 105-110 deg C.

ISSUED BY : M R H GEOTECHNICAL LTD

Appendix C PAGE 3

Contract Job No. Wildwood Lodge, 9 North End, 121311

London NW3 7HH

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

Borehole/	Depth		Moisture	Liquid	Plastic	Plasticity	Liquidity	
Pit No.	m.	Sample	Content (%)	Limit (%)	Limit	Index	Index	Description
PU 2	6.00	510			(1)	(%)	(*)	(BS 5930:1981:41)
DR 2	0.100	112	31	68	28	40	0,08	Firm to stiff dark grey very silty CLAY. CH: CLAY of high plasticity. (100% passing 425um)
BH 2	6.50	D13	34	-		-		Firm to stiff dark bluish grey very silty CLAY with numerous laminations of silt
BH 2	7.00	D14	31	- 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 199 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		-		Firm to stiff dark bluish grey very silty CLAY with laminations of silt
BH 2	7.50	D15	30	-		100		Firm to stiff dark bluish grey very silty CLAY
BH 2	8.00	D16	31	÷.		-		Firm to stiff dark bluish grey very silty CLAY with laminations of silt
BH 2	9.00	D17	31	-	0	0		Firm to stiff dark bluish grey very silty CLAY with laminations of silt
BH 2	10.00	D18	29	÷	1	1.801		Firm to stiff dark bluish grey very silty CLAY
BH 2	11.00	D19	28	1	e i			Stiff dark grey very silty CLAY
BH 2	12.00	D20	29	3		0900		Stiff dark grey very silty CLAY with laminations of silt
BH 2	13.00	D21	28	4	-	5		Stiff dark grey very silty CLAY
BH 2	14.00	D22	27	2	8	-		Stiff dark grey with traces of orange brown very silty CLAY, occasional laminations of silt
BH 2	15.00	D23	27	1.5	÷	-		Stiff dark bluish grey very silty CLAY
BH 3	0.50	D1	30	-	्रः	-		Black sandy topsoil with traces of fine gravel and brick fragments. MADE GROUND
BH 3	1.00	D2	15	-	-	(7)		Friable pale brown silty clay with traces of brick fragments. MADE GROUND
BH 3	1.50	D3	23	47	19	28	0.14	Firm pale brown laminated bluish grey and yellowish brown silty CLAY. CI: CLAY of medium plasticity. (99% passing 425um)
BH 3	2.00	D4	26	-	•	14		Firm pale brown laminated bluish grey and yellowish brown silty CLAY
METHOD OF METHOD OF TYPE OF S COMMENTS	° PREPARA ' TEST GAMPLE KE	TION : : Y = 1	BS 1377:PP BS 1377:PP U = Undist C = Core C	RT 1:199 RT 2:199 urbed, B utter	0:7.4 0:3.2, 4. = Bulk, 1	& PART 2:1 4, 5.3, 5. D = Distur	1990:4.2 4 bed, J =	Jar, W = Water, SPT = Split Spcon Sample,
REMARKS T	O INCLUDE	1 r 1	Sample dis of test sp	turbance, ecimen wi	loss of thin orig	moisture, inal samp	variatio le. Oven	on from test procedure, location and origin drying temperature if not 105-110 deg C.

ISSUED BY : M R H GEOTECHNICAL LTD

Appendix C

PAGE 4

Contract Wildwood Lodge, 9 North End, 121311 London NW3 7HH

Job No.

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT, PLASTIC LIMIT,

Borehole/ Pit No,	Depth m.	Sample	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index (%)	Liquidity Index	Description
BH 3	2.50	D5	14	-	-			Medium dense yellowish brown silty clavey SAND with
BH 3	3.00	D6	15	-	-	- 2		Medium dense yellowish brown silty clayey SAND and GRAVEL with some black rounded with some black
ВН З	3.50 -3.95	D7	11	3	1			Medium dense yellowish brown silty, clayey, sandy GRAVEL
BH 3	4.00	D8	29	66	25	41	0.10	Firm to stiff dark bluish grey very silty CLAY. CH: CLAY of high plasticity. (100% passing 425um)
BH 3	4.50	D9	29	~	-	2		Firm to stiff dark grey very silty CLAY with numerous laminations of silt
BH 3	5,00	D10	31	×	-	~		Firm to stiff dark grey laminated dark bluish grey very silty CLAY with laminations of silt
BH 3	5.50	D11	30	68	27	41	0.07	Firm to stiff dark grey laminated dark bluish grey very silty CLAY. CH: CLAY of high plasticity. (100% passing 425um)
ВН З	6.00	D12	28					Firm to stiff dark grey silty CLAY
BH 3	6.50	D13	28	-	~	÷		Firm to stiff dark grey laminated dark bluish grey very silty CLAY
BH 3	7.00	D14	28	1	-	Ť		Firm to stiff dark grey silty CLAY with occasional white shell debris
BH 3	7.50	D15	28	-	Ξ	-		Stiff dark grey silty CLAY with occasional white shell debris
BH 3	8.00	D16	29	0	÷	-		Stiff dark bluish grey very silty CLAY
BH 3	9,00	D17	29	- 1	-	-		Stiff dark bluish grey very silty CLAY
BH 3	10.00	D18	33	-	-	-		Stiff dark grey very silty CLAY with laminations of silt
BH 3	11.00	DÌ9	32		2	-		Stiff dark grey very silty CLAY with laminations of silt
BH 3	12.00	D20	29	50		\sim		Stiff dark grey very silty CLAY
BH 3	13.00	D21	30	-		-		Stiff dark grey silty CLAY
METHOD OF METHOD OF TYPE OF S COMMENTS	PREPARAT	FION : E ; E ; U C	3S 1377:PA 3S 1377:PA 7 = Undist 7 = Core C	RT 1:1990 RT 2:1990 urbed, B utter):7.4 8 :3.2, 4.4 = Bulk, D	2 PART 2:1 4, 5.3, 5.) = Distur	990:4.2 4 bed, J =	Jar, W = Water, SPT = Split Spoon Sample,
REMARKS T	0 INCLUDE	: S	ample dist f test spe	urbance, cimen wi	loss of t thin_orig	moisture, inal sampl	variatic le. Oven	n from test procedure, location and origin drying temperature if not 105-110 deg C.

Appendix F

Camden Geological-Hydrogeological & Hydrological Study Extracts Figures 11, 12, 14, 15 & 16

THE COURTYARD HOUSE HAMPSTEAD LONDON, NW3

CAMDEN GEOLOGICAL, HYDROGEOLOGICAL AND HYDROLOGICAL STUDY EXTRACTS

FIGURES 11 - WATERCOURSES FIGURES 12 – CAMDEN SURFACE WATER FEATURES FIGURES 14 – HAMPSTEAD HEATH SURFACE WATER CATCHMENTS AND DRAINAGE FIGURES 15 – FLOOD MAP FIGURES 16 – SLOPE ANGLE MAP

 3 Dufferin Avenue,
 T: 020 7253 2626
 E: tws@tws.uk.com

 Barbican, London, EC1Y 8PQ
 F: 020 7253 2767
 W: www.tws.uk.com

consulting civil & structural engineers

Camden Geological, Hydrogeological and Hydrological Study Watercourses

Source - Barton, Lost Rivers of London

213923

FIGURE 11

Figure 5 from Core Strategy, London Borough of Camden

Camden Geological, Hydrogeological and Hydrological Study Flood Map

FIGURE 15

Appendix G

London Underground Limited Tunnel Location Drawing ND-W001 TWS - 8396_SK05 – Basement Layout Showing LUL Tunnel Crowns V: #WIP# UPESV8#PLTDRV# UPES_PEN.TBI

distil odf inprotA4

Appendix H

Topographical Survey Drawing 11025-P-SI-rev 2

Appendix I

Construction & Traffic Management Plan (J & Z Construction Lid)

TRAFFIC MANAGEMENT PLAN

For works at rear of 9 North End, London NW3 7HH with access from Parfitt Close

This document is to supplement the granted planning decisions / listed building consents 2009/5102/P.

Furthermore, it covers the steps that will be taken to reduce potential traffic congestion outside of the property, during deliveries and waste removal.

	Background Information
Property information	The property is in a residential area with two way traffic.
Proposal	Renewal of planning permission granted on 05/02/2007 (ref 2006/4989/P)
	for the erection of a singley storey plus 4-
	bedroom courtyard dwelling house with
	access from Partitt Close.
Main contractor	J & Z Construction Ltd.
	Unit 14, 715 North Circular Road, London NW2 7AQ Tel :
	020 8830 5038, Fax : 020 8450 1206
	Mobile : 07770 472507
Ground works	ТВС
subcontractor	
Architect	Canaway Fleming Architects
	The Dutch House
	307-308 High Holborn
	London WC1V 7LL Tel.
	020 7430 2252
	Fax. 020 7430 2274
	mailbox@canawayfleming.com
Structural Engineer	Taylor Whalley Spyra
	3 Dufferin Avenue, London, EC1Y 8PQ
	T: 020 7253 2626 F: 020 7253 2767
CDM / H&S	N/A

Building Control	Assent Building Control Ltd
	Unit 3 Brook Farm Salford Road Milton Keynes MK17 8BS
	Tel: 01525 288614 Fax: 01525 288615 <u>www.assentbc.co.uk</u>
Site address contact name / number	Zbigniew Niemiec - 07770 472507
Duration of works (estimated)	The project is estimated to start at the end of July 2012, estimated
(estimated)	duration is 18 months.
Key timescales	Site start : End of July 2012 (day to be confirmed)
	Ground works and Construction : 9 months
	Finishes and fit out : 9 months

Proposed Site Plan (not to scale)

TRAFFIC MANAGEMENT PLAN For works at rear of 9 North End, London NW3 7HH with access from Parfitt Close

View 1:

Existing view from North End onto the front of the site – seeing the existing building surrounded by temporary hoarding, and the entrance along the site to the left into Parfitt Close, an internal road.

View 2:

Existing view when entering into Parfitt Close.

Proposed demolition of a part of existing brick wall (shown in red) in order to allow construction traffic to enter construction site.

Some shrubs visible behind proposed the entrance gate (shown in red) will need to be removed and replaced with matching plants at completion proposed the entrance gate (in red) **Blue** indicates the construction vehicle route.

View 3:

Existing gate is too close to 9 Wildwood Lodge development therefore cannot be used. New proposed gate and adjacent existing gate.

Parfitt Close provides joint access to Hogarth Court therefore the road should be kept accessible at all times.

Page 2 of 7 – issued 02/06/2012

TRAFFIC MANAGEMENT PLAN

For works at rear of 9 North End, London NW3 7HH with access from Parfitt Close

	Site control
Hours of work	No construction work will be carried out on the premises at
2009/5102/P)	after 1.00 pm on Saturdays, or before 8.00 am or after
	6.00pm on other days . If any other times are required due to yet
	unforeseen circumstances, consent will be sought from the Local Planning Authority.
Deliveries	All deliveries are aimed to be scheduled after 9 or 10am and
	finish by 4pm to avoid congesting the street and become a
	nindrance to neighbours. Should this not be possible to achieve, the
	derivery hours will be in line with the planning decision. Deriveries
	as possible. Any necessary additional licenses or nermits will be
	applied for in advance.
Traffic volume (estimated)	We estimate the maximum number of vehicles coming to site
	in any one day to be four . This would typically be two grab lorries,
	one concrete wagon and periodically miscellaneous deliveries of
	materials. The estimated dwell time would be 15-
	20minutes.
Traffic control	Traffic management will consist of temporary signage and
	cones as required to sufficiently warn all pedestrians and
	passing traffic of our operations.
	nlan above. An existing site entrance just off North End will be
	utilised for smaller deliveries.
Traffic route for demolition /	The route for site related traffic would be :
excavation / construction and	1) Vehicle entering North End by way of North End Way
delivery vehicles	2) Turning left into Parfitt Close
	 Turning right into the site – for details refer to site plan as shown above
	4) Unloading procedures as described
	5) Reversing on site and returning via Parfitt Close onto
(see diagram below)	North End and eventually North End Way.
	We aim to leave a reasonable time between scheduled
	deliveries to avoid area congestion.

TRAFFIC MANAGEMENT PLAN

For works at rear of 9 North End, London NW3 7HH with access from Parfitt Close

The second secon	Tri Loren de la construcción de la constru
Delivery call-up procedure	We will operate a call-up procedure, in which the delivery companies are asked to notify the site foreman of any changes in the agreed arrival time, and additionally 5min prior to arrival. Upon arrival, the site foreman sets up the site and confirms that the delivery can take place. Banksmen will clear off the pavement and access on Parfitt Close and alert any pedestrians of a delivery taking place and take all necessary steps to ensure safety of third parties.
Traffic diversion	No diversion of traffic will be required.
Parking suspension	There is no parking suspension proposed.
Strategy for coordinating the connection of services on site	We will apply for new services at the beginning of the contract and we will work closely with utility companies to program connections at suitable rate. We will remove any temporary structures and skip from affected parking bays for utility companies to enable them to carry out their work. We will make sure that no other deliveries will be done while utilities company carries out their work.
Waste disposal	Construction waste will be disposed using grab lorries which will be loaded directly from construction site.

Street / pavement cleaning	The street close to the property entrance and the whole length of associated paving will be kept clean and regularly checked after each delivery and collection.
On-site storage	Construction materials will be stored on site as needed. No hazardous materials will be stored on site. Tools, equipment and noxious materials (e.g. cement) will be stored in designated areas which will be kept under supervision and locked after working hours.
Site security	The site will be secured after working hours using a scaffolding alarm, or boundary alarm at all times. The alarm will be concealed and connected to the site foreman's mobile phone and audible external sounder. This will be clearly labeled.

Г

Construction management plan (brief)		
Hazardous Task / Risk	Method of Control	
General notes	This method statement should be read in conjunction with the structural engineers and architects drawings. Following site set up, pilling will commence and temporary support will be installed to provide safety support and stability to adjacent land and properties. Excavation will commence afterwards with basement concrete work, wall construction and roof over formation. A more detailed breakdown of any of the sequence of work described above will be supplied if required.	
Demolition of brick fence wall	A 4.5m wide opening is proposed to be created in the existing brick fence facing Parfitt Close and the adjacent car park.	
Shrubs clearence	Some shrubs need to be removed at proposed construction access. The appointed arboricultural consultant will be assessing the importance of these trees if required.	
New site entrance gate and wall	The proposed gate is to be 4.5m clear to allow for adequate access to delivery vehicles to site. The gate will be lockable and recessed by about 1m into the site to create better maneuvering space for construction traffic. Construction site will be surrounded by hoarding to create safe and secure access space.	

TRAFFIC MANAGEMENT PLAN

For works at rear of 9 North End, London NW3 7HH with access from Parfitt Close

Installation of temporary	For Health and Safety, a highly visible barrier will be erected
safety barrier within 1m of	marking the area designated for works and excavation. All
the site boundary.	contractors will be made aware.
Ground protection / handling	To prevent leakage into the soil area under the ground
of noxious substances during	protection, fuels, oils, chemicals and cement will be carried in a
construction	portable bowser and petrol will be stored in a ventilated tool
	box. There will be no mixing/preparation of noxious substances
	(e.g. cement) on the ground protection surface).
Ground protection	Install temporary ground protection to whole tree protection
	zone as described by arboricultural consultant.
Hoarding	Erect plywood hoarding with vertical standards, anchored to the
_	ground. The hoarding will be fully secured with a lockable door
	for access.
Site office	A site office is to be erected at the front of the property, with
	social facilities for the builders – changing room, WC and a room
	for breaks.
Temporary supply	Install temporary electrical and water supplies from existing
	permanent connections at No 9 Wildwood Lodge
	until separate supply is in place.
Site drainage	All drainage pipes, following routes specified by the M&E
	consultants, will be laid according to their design and
	specification. Drainage runs to be connected into existing
	sewer. Permission and point of connection to be agreed with
	Thames Water
Scaffolding /	Scaffolding will be erected as/when needed to allow safe and
dust protection	secure method of construction.
	A dust protection system will be implemented as/when
	required to minimize the impact on the surrounding area.