

FACTUAL REPORT

OF

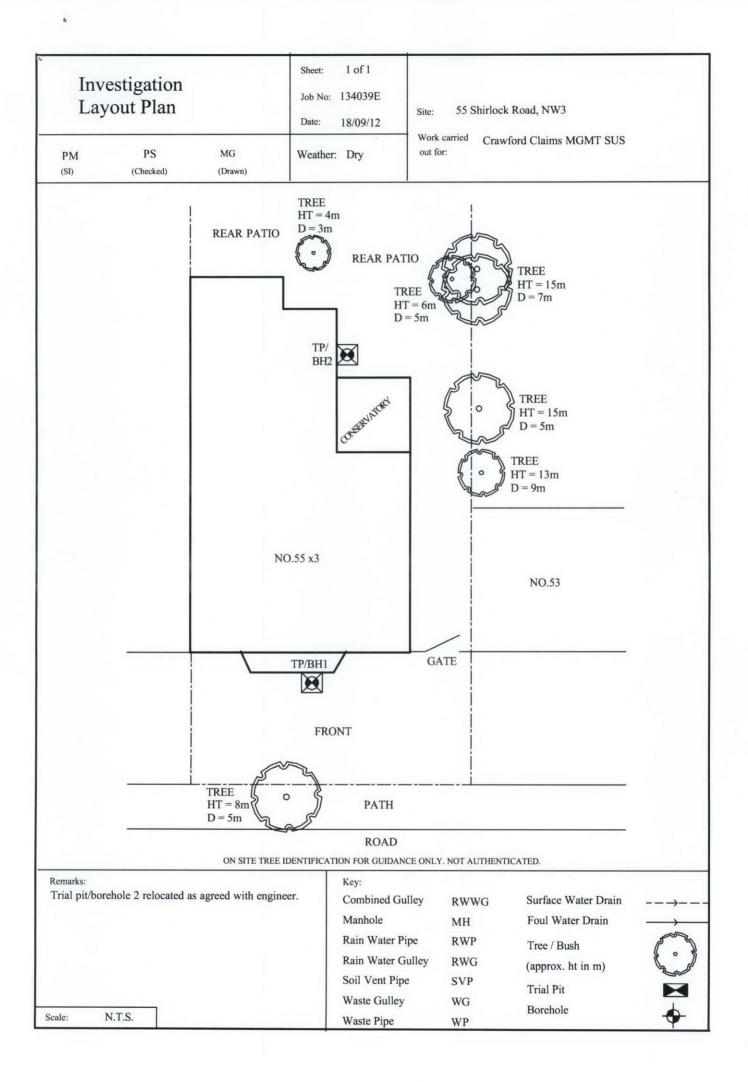
INVESTIGATION

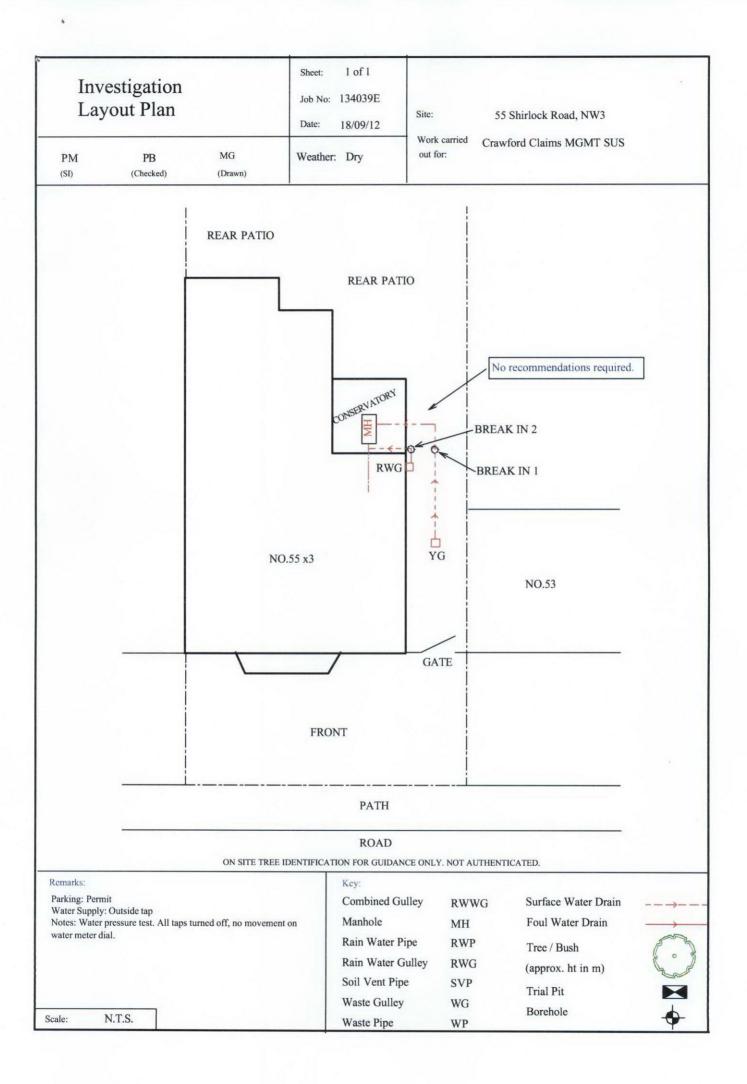
AT:-	55 Shirlock Road, London
ON:-	18/09/2012
FOR:-	CRAWFORD CLAIMS MGMT SUS
REF:-	SU1203736-Mr Martin Jourdan
JOB NO:-	134039

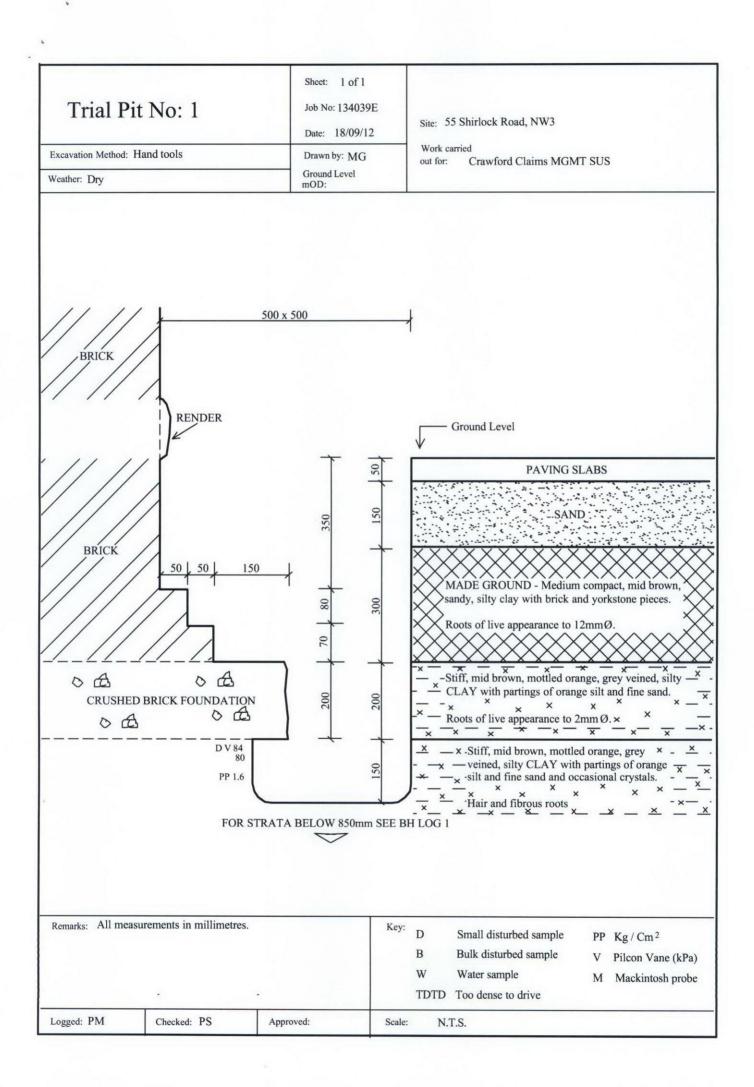
SITE INVESTIGATION DIVISION

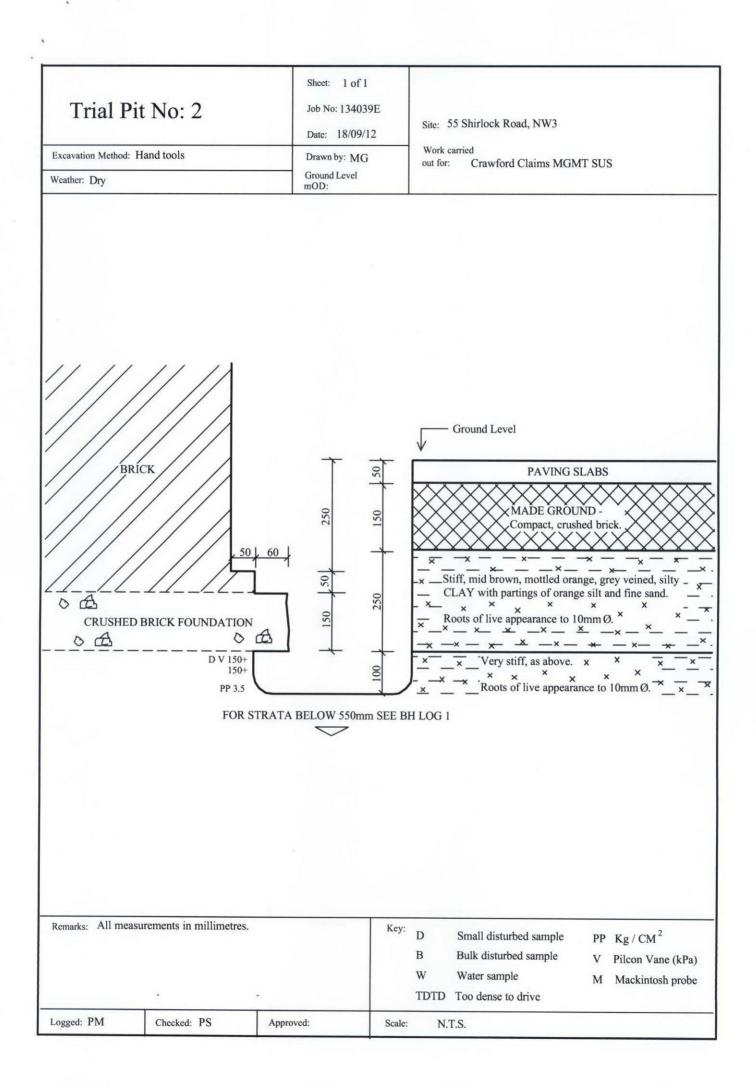
Issuing office: Lawness Barns, Mountnessing Road, Billericay, Essex CM12 OTS

Tel: 0845 4504573 Fax: 01332 814750 email: enquiries@cetsafehouse.com






Head Office: Unit E2 First Floor Suite, Boundary Court, Willow Farm Business Park, Castle Donington, DE74 2NN


Home Emergency Services - Site Investigation - Drainage Services - Construction Materials Testing

WWW.CETSAFEHOUSE.COM

_	ehole No		Job No:	1 of 1 134039		Site:		55 Shirlock	k Road, NW3	
Boring Diamet	Method: ter: 75mm	Hand Auger Coordinates:	Date: Ground mOD:	18/09/2 Level	2012	Work (Carried	Cr	awford Claims MGMT SUS	
Depth (m)		Description of Strata	Thick- ness (m)	Legend	Sample	Г	est Result	Depth (m)	Field Records/Comments	Dept to wat (m)
0.85		As trial pit 1.	0.85							
3.00	CLAY with pa sand and cryst	vn/orange, grey veined, silty and fine als.	2.15	X	D D D	V PP V PP V PP	80 86 1.8 98 102 2.3 98 106 02 110 118 2.2	 1.50 2.00 2.50 3.00 	No roots observed	
Remar Boreh		en on completion.			D Sr B Bu	nall dist	urbed sa		 Kg / Cm² Pilcon Vane (kPa) 	

•

Bor	rehole No:	2	Sheet: Job No:	1 of 1 13403	9E	Site:		55 Shir	lock Road, NW3	
Boring	g Method:	Hand Auger	Date:	18/09/	2012					
Diame	eter: 75mm	Coordinates:	Ground mOD:	Level		Work out for	Carried		Crawford Claims MGMT SUS	
Depth (m)		Description of Strata	Thick- ness (m)	Legend	Sample		Test Result	Depth (m)	Field Records/Comments	Depth to water (m)
0.55		As trial pit 2.	0.55							
1.00	Very stiff, mid silty CLAY wi fine sand.	Very stiff, mid brown/orange, grey veined, ilty CLAY with partings of orange silt and ine sand.		×	D	v	140	1.00	From 0.55m to 1.5m roots of	
	Very stiff, mid silty CLAY wi	brown/orange, grey veined, th partings of orange silt and stone nodules and crystals.		×		PP	142 3.1		live appearance to 0.5mm diameter.	
1.50				xx	D	V PP	114 114 1.9	1.50	From 1.5m to 2.3m, dead and decomposing root fragments.	
	Stiff, as above.		1.50	×	D	V PP	112 120 2.1	2.00		
					D	V PP	126 130 2.7	2.50	From 2.3m to 3m, no roots observed.	
3.00	Во	rehole ends at 3m.			D	V PP	130 130 2.3	3.00		
Remar					Key:	T.D.T.	.D. Too I	Dense to		
Boreh	ole dry and ope	n on completion.			D Sr B Bu	nall dis	turbed sa urbed san	mple	PPKg / Cm²VPilcon Vane (kPa)MMackintosh Probe	
Logged	l: PM	Checked: PS Drawn by	y: MG		Scale:		NTS		Weather: Dry	

Our Ref :

134039

Laboratory Testing Results

Date Sampled:

18/09/2012

Location : 55 Shirlock Road, NW3

Date Received : 28/09/2012 Date Tested : 29.09-17.10.12 Date of Report : 01/11/2012

Work carried

out for:

CRAWFORD CLAIMS MGMT SUS

TP/BH No	Sample Ref Depth (m)	Туре	Moisture Content	Soil Fraction > 0.425mm	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Modified Plasticity Index	Soil Class	Oedometer Strain	Estimated Heave	In situ Shear Vane	Organic Content	pH Value	Sulphate (g SO3	(1)	Class
			(%)[1]	(%) [2]	(%)[3]	(%)[4]	(%)[5]	[5]	(%)[6]	[7]	[8]	Potential (Dd) (mm)[9]	Strength (kPa) [10]	(%)[11]	[12]	[13]	so ₄ [14]	[1:
1	0.70(U/S)	D	30	0.2	72	. 23	50	0.16	49	CV	0.0258	3.5	82					
	1.5	D	29								0.0256	4.0	83					
	2.0	D	30	0.6	70	25	45	0.13	45	СН	0.0212	2.5	100					
	2.5	D	33								0.0232	2.5	102					
	3.0	D	34	0.9	73	26	48	0.18	47	CV	0.0230	2.5	114					
BS 1377 Estimated BS 1377 BS 1377 BS 1377 BRE Dig	tods / Notes : Part 2 : 1990, Test Ni if <5%, otherwise me: : Part 2 : 1990, Test Ni : Part 2 : 1990, Test Ni : Part 2 : 1990, Test Ni set 240 : 1993 : 1981 : Figure 31 - Pl ils	asured o 4.4 o 5.3 o 5.4 asticity Char			 11] BS 1377 : Part 2 12] BS 1377 : Part 2 13] BS 1377 : Part 2 13] BS 1377 : Part 3 14] SO₄ = 1.2 x SO₂ 15] BRE Special Dip Note that if the S 	ne or Geonor vane 3 : 1990, Test No 4 2 : 1990, Test No 9 3 : 1990, Test No 5 4 gest One (Concrete 604 content falls in	(GV). .6 in Aggressive Gro	ound) August 200: -5 class, it would	be prudent to co	nsider the samp	ole as falling			B U W ENP	Disturbed sam Disturbed sam Undisturbed sa Groundwater s Essentially No Underside of F	ple (bulk) imple ample n-Plastic by ins	pection	

[8] In-house Test Procedure S17a: One Dimensional Swell/Strain Test

to prove otherwise.

[9] Estimated Heave Potential (Dd)

Our Ref :

134039

Laboratory Testing Results

28/09/2012

29.09-17.10.12

Date Received :

Date Tested :

Location : 55 Shirlock Road, NW3

Work carried

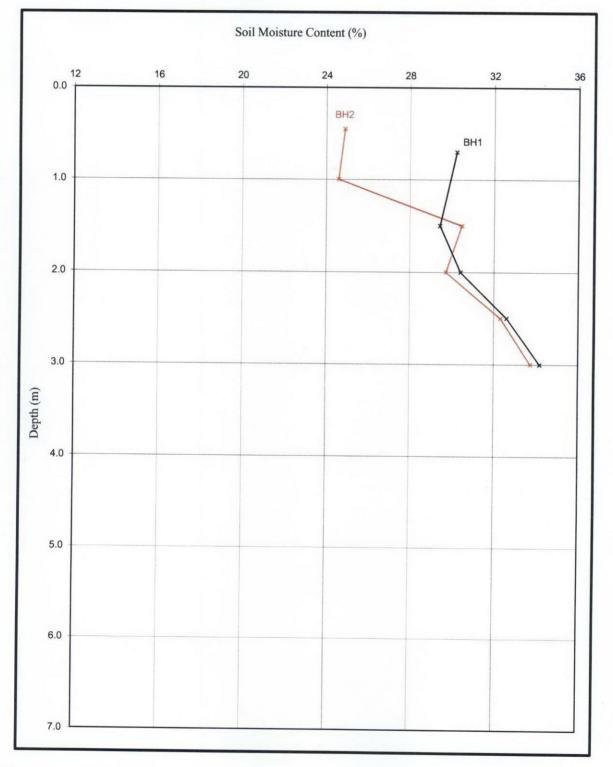
out for: CRAWFORD CLAIMS MGMT SUS

uid Plastic nit Limit)[3] (%)[4] 0 20 2 24	Limit I (%)[4] (lasticity Index (%)[5] 50	Liquidity Index [5] 0.09	Modified Plasticity Index (%)[6] 49	Soil Class [7]	Oedometer Strain	Estimated Heave Potential (Dd) (mm)[9]	In situ Shear Vane Strength (kPa) [10]	Organic Content (%)[11]	pH Value [12]	Sulphate (g/	(1) ^{SO} 4	Class
0 20				(%)[6]	[7]	[8]	a service and the service of the ser		(%)[11]	[12]			
	20	50	0.09	40							[13]	[14]	[
2 24				49	CH	0.0539	2.3	> 150			-		
2 24						0.0253	2.8	141					
2 24						0.0245	2.5	114					
24	24	49	0.12	48	CV	0.0005	2.5	116	2				
						0.0045	2.5	128					
5 27	27	49	0.13	48	CV	0.0227	2.5	130					
	6 - 6 1												
				-						-			
						9							
	1												
n hand vane or Geonor vane (77 : Part 3 : 1990, Test No 4 77 : Part 2 : 1990, Test No 9 77 : Part 3 : 1990, Test No 5.0 1.2 x SO ₃	ne or Geonor vane (GV). : 1990, Test No 4 : 1990, Test No 9 : 1990, Test No 5.6		ET Group using						D B U W ENP	Disturbed samp Undisturbed sar Groundwater sa Essentially Non	ele (bulk) mple mple -Plastic by insp	section	
n 7'7'1	hand var 7 : Part 3 7 : Part 2 7 : Part 3 .2 x SO ₃ gest 363 nade to 7 osure con	hand vane or Geonor vane (GV) 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Refere nade to Table 2 which depending	hand vane or Geonor vane (GV). 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Reference should nade to Table 2 which depending on the pH source conditions may require the class to be	7 : Part 3 : 1990, Test No 4 7 : Part 2 : 1990, Test No 9 7 : Part 3 : 1990, Test No 5.6 .2 x SO ₃ gest 363 : 1991, Table 1. Reference should nade to Table 2 which depending on the pH usure conditions may require the class to be	hand vanc or Geonor vane (GV). 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Reference should nade to Table 2 which depending on the pH source conditions may require the class to be	hand vane or Geonor vane (GV). 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Reference should nade to Table 2 which depending on the pH usure conditions may require the class to be	hand vane or Geonor vane (GV). 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Reference should nade to Table 2 which depending on the pH source conditions may require the class to be	hand vane or Geonor vane (GV). 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Reference should nade to Table 2 which depending on the pH source conditions may require the class to be	hand vane or Geonor vane (GV). 7: Part 3: 1990, Test No 4 7: Part 2: 1990, Test No 9 7: Part 3: 1990, Test No 5.6 .2 x SO ₃ gest 363: 1991, Table 1. Reference should nade to Table 2 which depending on the pH source conditions may require the class to be	Instrume Instrume hand vane or Geonor vane (GV). D 7: Part 3: 1990, Test No 4 B 7: Part 2: 1990, Test No 9 U 7: Part 3: 1990, Test No 5.6 W .2 x SO ₃ ENP gest 363: 1991, Table 1. Reference should U/S nade to Table 2 which depending on the pH U/S	hand vane or Geonor vane (GV). D Disturbed samp 7: Part 3: 1990, Test No 4 B Disturbed samp 7: Part 2: 1990, Test No 9 U Undisturbed samp 7: Part 3: 1990, Test No 5.6 W Groundwater samp gest 363: 1991, Table 1. Reference should ENP Essentially Nor gest 363: 1991, Table 2 which depending on the pH U/S Underside of Fe	hand vane or Geonor vane (GV). D Disturbed sample (small) 7: Part 3: 1990, Test No 4 B Disturbed sample (small) 8: Pisturbed sample (bulk) U Undisturbed sample (bulk) 7: Part 3: 1990, Test No 5.6 U Undisturbed sample 2: x SO ₃ W Groundwater sample est 363: 1991, Table 1. Reference should ENP Essentially Non-Plastic by insp under to Table 2 which depending on the pH U/S Underside of Foundation	hand vane or Geonor vane (GV). D Disturbed sample (small) 7: Part 3: 1990, Test No 4 B Disturbed sample (bulk) 8: Pisturbed sample (bulk) U Undisturbed sample (bulk) 7: Part 3: 1990, Test No 5.6 U Undisturbed sample (bulk) 2: x SO ₃ ENP Essentially Non-Plastic by inspection gest 363: 1991, Table 1. Reference should U/S Underside of Foundation

Moisture Content Profiles

Our Ref : 134039 Location : 55 Shirl Work carried out for:

55 Shirlock Road, NW3


CRAWFORD CLAIMS MGMT SUS

 Date Sampled :
 18/09/2012

 Date Received :
 28/09/2012

 Date Tested :
 29.09-17.10.12

 Date of Report :
 01/11/2012

Notes

1. If the Soil Fraction > 0.425mm exceeds 5% the Equivalent Moisture Content of the remainder (calculated in accordance with BS 1377: Part 2 : 1990, cl.3.2.4 note 1) is also plotted and the alternative profile additionally shown as an appropriately coloured broken line.

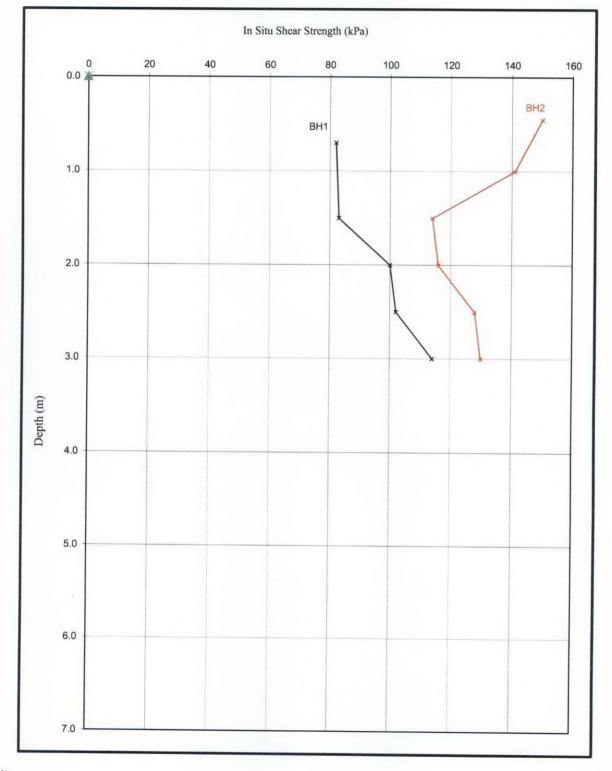
2. If plotted, 0.4 LL and PL+2 (after Driscoll, 1983) should only be applied to London Clay (and similarly overconsolidated clays) at shallow depths.

3. Unless specifically noted the profiles have not been related to a site datum.

Shear Strength Profiles

Our Ref : Location :

134039 55 Shirlock Road, NW3


Work carried out for:

 Date Sampled :
 18/09/2012

 Date Received :
 28/09/2012

 Date Tested :
 29.09-17.10.12

 Date of Report :
 01/11/2012

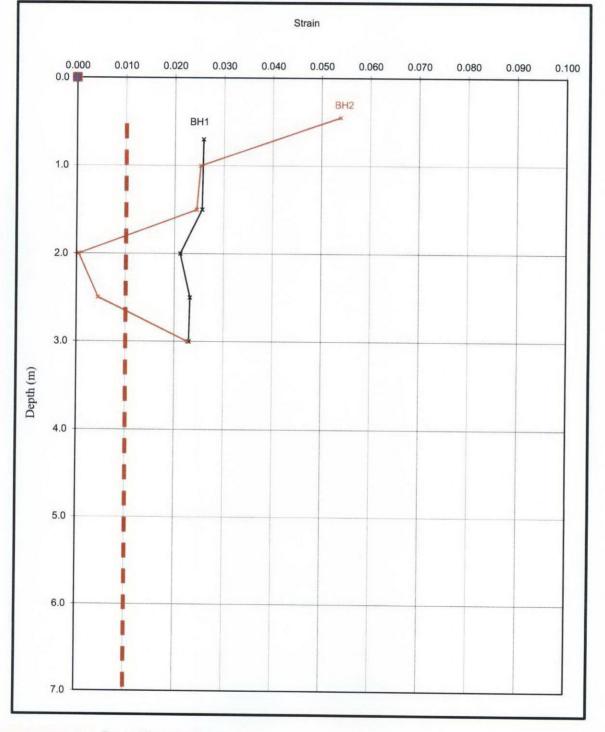
Note

1. Unless otherwise stated, values of Shear Strength were determined in situ by

CET Group using a Pilcon Hand Vane the calibration of which is limited to

a maximum reading of 150 kPa.

2. Unless specifically noted the profiles have not been related to a site datum.


Oedometer Strain Profiles

Our Ref: Location : Work carried out for: 134039

55 Shirlock Road, NW3

CRAWFORD CLAIMS MGMT SUS

Date Sampled : 18/09/2012 Date Received : 28/09/2012 Date Tested : 29.09-17.10.12 Date of Report : 01/11/2012

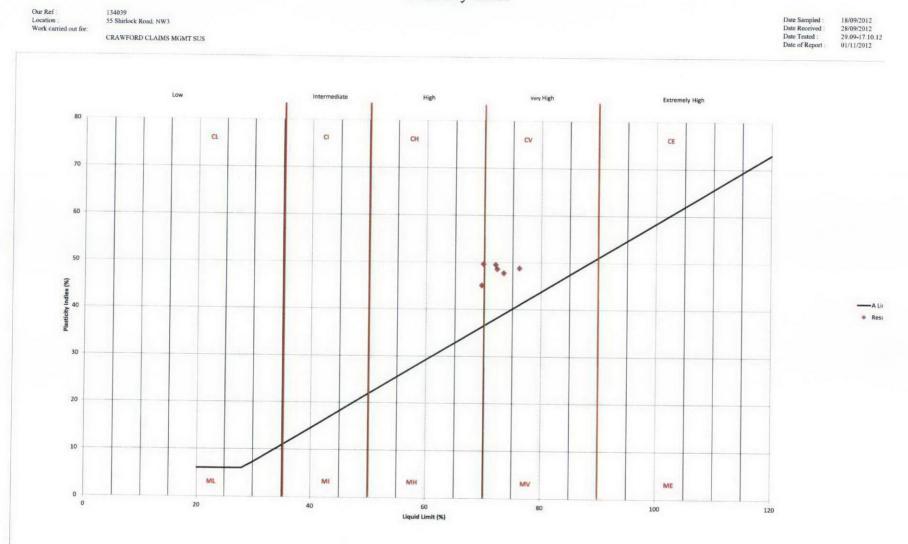
Remoulding Disturbance

Assumptions

1. Soil Bulk Density (moist unit weight) is equal to 2039kg/m3

2. The water table is assumed as 1.0m below ground level.

3. Shrinkage Factor (sf) of 2 has been applied to the predicted heave, where applicable


4. Any possible surcharge stresses due to construction are not considered

Notes

1. Sample prepared in accordance with BS1377: Part 1: 1990 clause 7.7 at Natural (as received) Moisture

2. Unless specifically noted the profiles have not been related to a site datum.

Plasticity Chart

Tree Root Identification Ltd	Job No: Date:		Site:	CC Obide to Deed
Identification Ltd		134039		55 Shirlock Road, London.
	Order No:	20/09/2012 415281	Work carried out for:	Crawford Claims MGMT SUS
	Our Ref:	CET200912		
	Certificate	of Analysis	d.	
e following work was commissioned by CET Sat ove site with no reference given as to the types of e results were as follows -				samples were obtained in sealed packets from the nated.
Trial pit/Root diameterBorehole(mm)number			b or climber root originates	Result of <u>starch test</u> #
TP1 (underside) thread-like			re to analyse oots)	—
TP2 (underside) 10.0			(lime) roots)	positive
BH2 (depth: 1.5m) <0.5			(lime) roots)	positive
he presence of starch indicates that the root was	alive in the rece	nt past.		
Ronald Machard				

Principal Scientist

Address for correspondence: 3 Langley Drive, Kinnoull Hill, Perth, PH2 7XA. Telephone: 01738 630873

e-mail: rdmmacleod@btconnect.com web site : www.treerootidentification.com Principal Scientist: R.D. MacLeod, B.Sc., Ph.D.,

Accounts/Quality Manager: Fiona M. Sinclair, H.N.C. (Management)

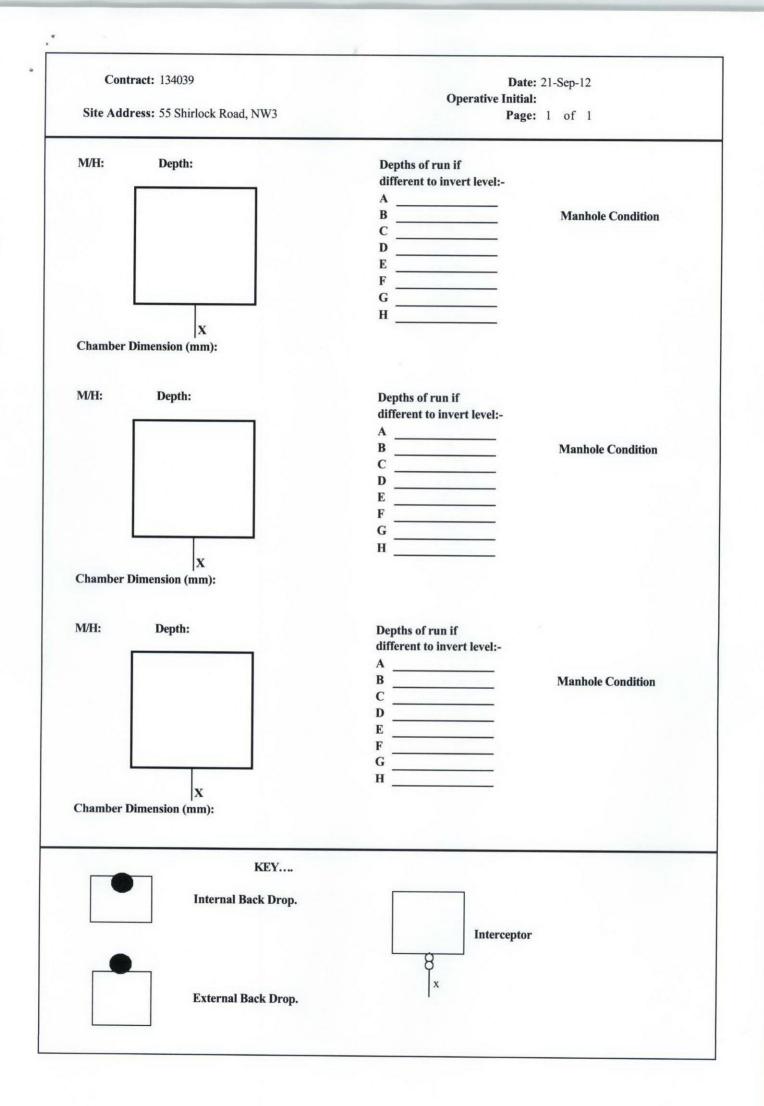
Registered in Scotland, No. 358068. Registered Office: "Mandaya", Highfield Place, Bankfoot, PH1 4AX.

Item				Amount
	ESTIMATE			
Site:	55 Shirlock Road, NW3	Date:	21-Sep-12	
Ftao: M Onofrio		Job No. Claim No:	134039 12NU602854	
То:	CRAWFORD CLAIMS MGMT SUS	Client Ref:	SU1203736	
	Villow Farm Business Park, Castle Donington. DE74 2NN 50 E-mail - drainage.solutions@cetsafehouse.com			

Notes		
Repairs to shared runs and off boundary pipe-work may be the responsibility of the local authority.	Total	£0.00
Condition Grade	plus VAT @20%	£0.00
A - Structurally sound with no leakage evident.		
B - Cracks and fractures observed.	Total + VAT	£0.00
C - Structurally unsound		
Quotation is binding only if accepted within 28 days from date of issue and is subject to	o our Standard Terms and Conditions	
The price qualification notes, stated on the drainage solutions schedule of ra	ates, apply to this quotation.	
The SubsNet undertakes to return to site free of charge to carry out remedial work to th	e drainage repairs set out above for a	
period of 2 months from the date of this invoice. The company standard charge rates	will apply to the visit should the work	
requested be unrelated to the said repairs.	2.0/4	

n	lerground	d Drainage	e Report	Sheet: 1 of 2 Job No: 134039 Date: 18-Sep-12	Site: Work carried out for:	55 Shirlock Road, NW3 CRAWFORD CLAIMS MGMT SU
MA	NHOLE D	ETAILS				
Ma	nhole N/A		Depth to N/A			Condition N/A
CC	TV Survey:	Ŀ				
1.	Drainage 1	Run:				
	Break in 1	to yard gully	- 100mm cla	y surface water - U	Jpstream (not	
	Metres:	Code:	Observat	tions:		Surface Material/ Condition:
	0.0		Start			Concrete
	0.5	DEG	10%			
	2.4	DEC	20%			
	2.4	DEG	2070			
	3.2 Gully Con	GO adition: As b	Reached y	vard gully		
2.	3.2 Gully Con Drainage	GO adition: As b Run:	Reached y puilt	vard gully ay surface water - I	Downstream (
2.	3.2 Gully Con Drainage	GO adition: As b Run:	Reached y puilt	ay surface water - I	Downstream ((not shared) Surface Material/ Condition:
2.	3.2 Gully Con Drainage D Break in 2	GO adition: As b Run: ? to manhole 1	Reached y puilt - 100mm cla	ay surface water - I	Downstream (Surface Material/
2.	3.2 Gully Con Drainage I Break in 2 Metres:	GO adition: As b Run: ? to manhole 1	Reached y puilt - 100mm cla Observa t	ay surface water - I	Downstream (Surface Material/ Condition:
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0	GO adition: As b Run: ? to manhole 1 Code:	Reached y puilt - 100mm cla Observa t Start	ay surface water - I	Downstream (Surface Material/ Condition:
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2	GO adition: As b Run: ? to manhole 1 Code: DEG	Reached y puilt - 100mm cla Observa t Start	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
2.	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions:	Downstream (Surface Material/ Condition: Concrete
	3.2 Gully Con Drainage D Break in 2 Metres: 0.0 0.2 2.1	GO adition: As b Run: ? to manhole 1 Code: DEG LL FH	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions: manhole 1		Surface Material/ Condition: Concrete Slabs
2. Wa	3.2 Gully Con Drainage I Break in 2 Metres: 0.0 0.2 2.1 2.7	GO adition: As b Run: P to manhole 1 Code: DEG LL FH FH	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions: manhole 1 2 - Mediu	m Loss over 2	Surface Material/ Condition: Concrete Slabs
	3.2 Gully Con Drainage I Break in 2 Metres: 0.0 0.2 2.1 2.7 ter Test Gr 0 - Un	GO adition: As b Run: ? to manhole 1 Code: DEG LL FH	Reached y puilt - 100mm cla Observa t Start 80%	ay surface water - I tions: manhole 1 2 - Mediu	m Loss over 2 Loss over 5 m	Surface Material/ Condition: Concrete Slabs

Jn	dergroun	d Drainag	e Report	Sheet: 2 of 2 Job No: 134039 Date: 18-Sep-12	Site: Work carried out for:	55 Shirlock Road, NW3 CRAWFORD CLAIMS MGMT SUS
3.	Drainage	Run:				
	Break in ?	to rain water	- gully - 100m	m clay surface wat	er Unstraam	(not shared)
	Dreak In 2	to fail water	guny - 100m	in clay surface wat	er - Opstream	Surface Material/
	Metres:	Code:	Observat	tions:		Condition:
						- Charlow
	0.0		Start			
	0.3	FH	Reached r	ain water gully 1		
	Gully Con	dition: As	built			
4.	Drainage l	Run:				
	Proat in 2	to downstray	100	1C	D	(. 1 D
	break in 2	to downstrea	im - 100mm c	lay surface water -	Downstream	
	Metres:	Code:	Observat	ions		Surface Material/ Condition:
		couci	Observat	ions.		Condition.
	0.0		Start			Concrete
	0.1	LR				
	0.3	DE	25%			
	0.5	LL				Under conservatory
	0.7	FH	Unable to manhole	push camera, reach	ed main run f	rom
			- E	ND OF SURVEY	-	
	Our as	sessment of the	e drainage syste	em is based on our vi	sual inspection	and on
	a sub-section and a sub-section and and			e survey. Where assi	-	
				nd do not constitute a		
				ration will not occur		
				or a period of 3 month		
				I		


Water Test Grade:

- 0 Unable to fill
- 1 Heavy Loss

- 2 Medium Loss over 2 minutes
- 3 Slow Loss over 5 minutes
- 4 No Loss

Water Authority Sewer Condition Codes

в	Broken pipe at (or from to) o'clock	JN	Junction ato'clock, diametermm
BR	Branch Major	JX	Junction defective at o'clock, diameter mm
CC	Crack circumferential from to o'clock	LC	Lining of sewer changes/starts/finishes at this point
CL	Crack longitudinal @ o'clock	LD	Line of sewer deviates down
СМ	Cracks multiple from to o'clock	LL	Line of sewer deviates left
CN	Connection at o'clock, diameter mm	LN	Line defect at (or from to) o'clock
CNI	Connection at o'clock, diameter mm, intrusion	r LR	Line of sewer deviates right
CU	Camera under water	LU	Line of sewer deviates up
сх	Connection defective at o'clock	MB	Missing bricks at (or from to) o'clock
СХІ	Connection defective at o'clock, diameter mm,	MC	Material of sewer changes at this point
	intrusion mm	мн	Manhole/node
D	Deformed sewer %	MM	Mortar missing medium at (or from to) o'clock
DB	Displaced bricks at (or from to) o'clock	MS	Mortar missing surface at (or from to) o'clock
DC	Dimension of sewer changes at this point	МТ	Mortar missing total at (or from to) o'clock
DE	Debris (non silt/grease) % cross-sectional loss	OB	Obstruction % height/diameter loss
DEG	Debris grease % cross-sectional area loss	OJL	
DES	Debris silt % cross-sectional area loss	OJN	Open joint medium
DI	Dropped invert, gap mm	PC	Length of pipe forming sewer changes at this point,
EHJ	Encrustation heavy from to o'clock % cross-section	al	new lengthmm
	area loss (at joint)	RFJ	Roots fine (at joint)
ELJ	Encrustation light from to o'clock%	RMJ	Roots mass % cross-sectional area loss (at joint)
EMJ	Encrustation medium from to o'clock %, cross-sect	RTJ	Roots tap (at joint)
	area loss (at joint)	SA	Survey abandoned
ESH	Scale heavy % cross-sectional area loss from to	SC	Shape of sewer changes at this point
	o'clock	SSL	Surface damage, spalling large at (or from to)
ESL	Scale light from to o'clock		o'clock
ESM	Scale medium % cross-sectional area loss from t o'clock	SSN	Surface damage, spalling medium at (or from to) o'clock
FC	Fracture circumferential from to o'clock	SSS	Surface damage, spalling slight at (or from to)
FL	Fracture longitudinal at o'clock		o'clock
FM	Fractures multiple from to o'clock	SWI	. Surface damage, wear large at (or from to)
GO	General observation at this point		o'clock
GP	General photograph number taken at this point	SWI	Surface damage, wear medium at (or from to)
н	Hole in sewer at o'clock		o'clock
IDJ	Infiltration dripper at (or from to) o'clock (at joint)	SWS	Surface damage, wear slight at (or from to)
IGJ	Infiltration gusher at (or from to) o'clock (at joint)		o'clock
IRJ	Infiltration runner at (or from to) o'clock (at joint)	V	Vermin (rats and mice)
ISJ	Infiltration seeper at (or from to) o'clock (at joint)	WL	Water level % height/diameter
JDM	Joint displaced medium	X	Sewer collapsed % cross-sectional area loss
JDL	Joint displaced large	FH	End of survey

