


Superficial Geology

Superficial Deposits are the youngest geological deposits formed during the most recent period of geological time, the Quaternary, which extends back about 1.8 million years from the present.

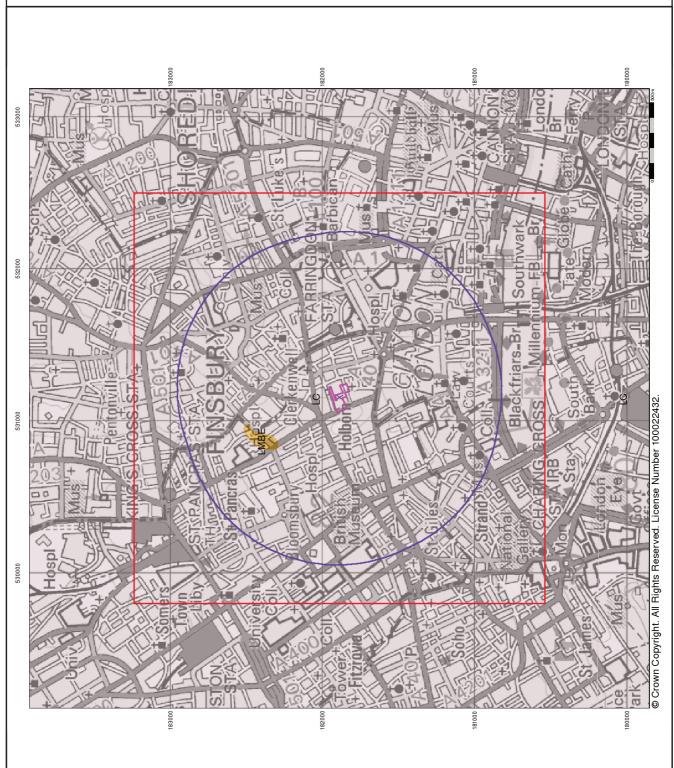
They rest on older deposits or rocks referred to as Bedrock. This dataset contains Superficial deposits that are of natural origin and 'in place.' Other superficial strata may be held in the Mass Movement dataset where they rave been moved, or in the Artificial Ground dataset where they are of

Most of these Superficial deposits are unconsolidated sediments such as gravel, send, silt and day, and onshore they form relatively thin, often discontinuous patches or larger spreads.

Superficial Geology Map - Slice A

Order Details:

Order Number: Customer Reference: National Grid Reference: Silice: Site Area (Ha): Search Buffer (m):

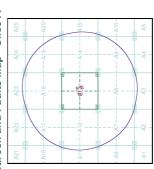

1:09 1000

37161780_1_1 10907 531160, 181890

Site Details: Bourne Estate, Holborn, London

Tel: Fax: Web:

Bedrock and Faults


Bedrock geology is a term used for the main mass of rocks forming the Earth and are present everywhere, whether exposed at the surface in outcrops or concealed beneath superficial deposits or water.

The bedrock has formed over vast lengths of geological time ranging from ancient and highly altered rocks of the Proterozoic, some 2500 million years ago, or older, up to the relatively young Pliocene, 1.8 million years ago.

The bedrock geology includes many lithologies, often classified into three types based on origin: igneous, metamorphic and sedimentary.

The BCS Faults and Rook Segments dataset includes geological faults (e.g. normal, thrust), and thin beds mapped as lines (e.g. ocal seam, gypsum bed), Some of these are linked to other particular 1:50,000 Geology datasets, for example, coal seams are part of the bedrook sequence, most faults and mineral veins primarily affect the bedrook across the strata and post date its deposition.

Bedrock and Faults Map - Slice A

Order Details:

Order Number: Customer Reference: National Grid Reference: Silice: Site Area (Ha): Search Buffer (m):

37161780_1_1 10907 531160, 181890

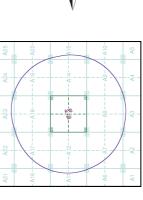
A 1.09 1000

Site Details: Bourne Estate, Holborn, London

Landmark

Tel: Fax: Web:

Combined Surface Geology


The Combined Surface Geology map combines all the previous maps into one combined geological overview of your site.

Please consult the legends to the previous maps to interpret the Combined "Surface Geology" map.

Additional Information

More information on 1:50,000 Geological mapping and explanations of rock classifications can be found on the BGS website. Using the LEX Codes in this report, further descriptions of rock types can be obtained by interrogating the "BGS Lexicon of Named Rock Units." This database can be accessed by following the "information and Data" link on the BGS website.

Combined Geology Map - Slice A

Order Details:

37161780_1_1 10907 531160, 181890 A 1.09 1000 Order Number. Customer Reference: National Grid Reference: Silice. Site Area (Ha): Search Buffer (m):

Site Details: Bourne Estate, Holborn, London

Tel: Fax: Web:

Date 19 January 2012

Our Ref 20878-SI-3-190112

Your Ref

To Emma Brett

Campbell Reith

EmmaBrett@campbellreith.com

Hello Emma,

Proposed developments in the Holborn area - Bourne Site

Thank you for your communication of 19th January 2012.

I can confirm that London Underground has no assets within 50 metres of this area.

Should you have any further enquiries, please do not hesitate to contact me.

Shahina Inayathusein
Information Manager
LUL Infrastructure Protection

E-mail: Locationenquiries@tube.tfl.gov.uk

Tel: 020 7918 0016

London Underground Limited

APPENDIX C: GROUND INVESTIGATION DATA

HARRISON GROUP ENVIRONMENTAL LIMITED

Document:

Ground Investigation Report

Project:

Bourne Estate, Camden

Reference No.: GL16482

Date:

June 2012

Prepared for: Tibbalds Planning and Urban Design

Instructed By: Campbell Reith Hill LLP

REPORT STATUS:

Revision	Comments	Prepared By	Approved By	Issued By	Audited By
		DATE	DATE	DATE	DATE
		Сомментѕ	Сомментѕ	COMMENTS	COMMENTS
		Sign	Sign	SIGN	SIGN
0	DRAFT	INIT GP	INIT JK	INIT GP	INIT JK
		DATE 28/06/2012	DATE 28/06/2012	DATE 28/06/2012	DATE 28/06/2012
		COMMENTS	COMMENTS	COMMENTS	COMMENTS
		SIGN 5	SIGN	SIGN	SIGN
1	FINAL	INIT GP	INIT JK	INIT GP	INIT JK
		DATE	DATE	DATE	DATE
		Сомментѕ	COMMENTS	COMMENTS	COMMENTS
		Sign	Sign	Sign	Sign
		INIT	INIT	INIT	INIT
		DATE	DATE	DATE	DATE
		Сомментѕ	COMMENTS	COMMENTS	COMMENTS
		Sign	Sign	Sign	Sign
		INIT	INIT	INIT	INIT

This sheet to be kept on PSI / Report file.

Auditors to insert their comments on the table, to annotate the report itself or provide comments on a separate sheet. (Please state which)

For final reports a hard copy of the signed off form will be kept on the appropriate QA file.

Document: Ground Investigation Report

Project: Bourne Estate, Camden

Reference No.: GL16482

Date: June 2012

Prepared for: Tibbalds Planning and Urban Design

Instructed by: Campbell Reith Hill LLP

CONTENTS

	FOREV	WORD	
1	TERMS	S OF REFERENCE & INTRODUCTION	1
2	SITE D	ESCRIPTION	1
3	EXPEC	CTED GEOLOGY	1
4	FIELD	WORK	2
	4.1	Cable Percussive Boreholes	2
	4.2	Window Sample Boreholes	2
	4.3	Installations	2
	4.4	Gas and Groundwater Monitoring	3
5	GROUI	ND CONDITIONS	3
	5.1	Exploratory Hole Lithology	3
	5.2	Groundwater	3
6	LABOF	RATORY TESTING	4
	6.1	Geotechnical Laboratory Testing	4
	6.2	Environmental Laboratory Testing	4
	REFER	RENCES	
	LIST O	F APPENDICES	

FOREWORD

General Conditions Relating To Ground Investigation

This investigation has been devised to generally comply with the relevant principles and requirements of BS10175: 2001 "Investigation of potentially contaminated sites - Code of practice" and where directed by the principles and application rules of Eurocode 7 (EC7 – Part 1 and Part 2). The recommendations made and opinions expressed in this report are based on the information obtained from the sources described using a methodology intended to provide reasonable consistency and robustness.

The opinions expressed in this report are based on the ground conditions revealed by the site works, together with an assessment of the site and of laboratory test results. Whilst opinions may be expressed relating to sub-soil conditions in parts of the site not investigated, for example between exploratory positions, these are only for guidance and no liability can be accepted for their accuracy.

Boring and sampling procedures are undertaken in accordance with BS5930:1999+A2:2010, "Code of Practice for Site Investigations". Likewise in situ and laboratory testing complies with B.S.1377, "Methods of Tests for Soils for Civil Engineering Purposes", unless stated otherwise in the text. Chemical Testing has been undertaken by UKAS accredited laboratory, ALcontrol.

The groundwater conditions entered on the boring records are those observed at the time of investigation. The normal rate of boring usually does not permit the recording of an equilibrium water level for any one water strike. Moreover, groundwater levels are subject to seasonal variation or changes in local drainage conditions.

Some items of the investigation have been provided by third parties and whilst Harrison Group have no reason to doubt the accuracy, the items relied on have not been verified. No responsibility can be accepted for errors within third party items presented in this report.

This report is produced for the benefit of the client alone. No responsibility can be accepted for any consequences of this information being passed to a third party who may act upon its contents/recommendations.

www.harrisongroupuk.com May 2012

REPORT

ON A

GROUND INVESTIGATION AT

THE BOURNE ESTATE, LONDON BOROUGH OF CAMDEN.

1 TERMS OF REFERENCE & INTRODUCTION

The work covered by this report was undertaken on behalf of Tibbalds Planning and Urban Design in accordance with the relevant contract documentation (EJBejb10907-200212-GI Spec V10.2) received from Campbell Reith Hill LLP (CampbellReith). CampbellReith also acted as Consulting Engineers for the project.

Consideration is being given to the re-development of the structures currently occupying the site. The investigation was required to provide factual geotechnical and geoenvironmental data, both from field work and from subsequent laboratory testing.

This report presents the results of the fieldwork and laboratory testing, along with a summary of the ground conditions encountered and records of the post-fieldwork monitoring completed to date.

2 SITE DESCRIPTION

The site comprises the various residential blocks of flats identified as being part of the Bourne Estate in the London Borough of Camden.

The site comprises an irregular area of land enclosed within Portpool Lane (north of the site), Baldwin's Gardens (south of the site), existing buildings fronting onto Leather Lane (east of the site) and various structures fronting onto Grays Inn Road (western site boundary).

The site incorporates existing multi-storey blocks of flats (Gooch House and Saint Albans School House), a single storey community building, areas of hardstanding, car parking and access roads, together with two playgrounds, landscaped areas, and a hardstanding sports ground.

The site can be identified by approximate National Grid reference 531250mE, 181900mN, with a general elevation of 20m above Ordnance Datum (aOD) for the majority of the site area. The area immediately surrounding Saint Albans School House was approximately 1.5m to 2.0m lower in elevation.

A site location plan (GL16482-DR001) has been presented in Appendix A.

3 EXPECTED GEOLOGY

The 1:50,000 scale British Geological Survey (BGS) Sheet 156, North London, indicates that the site is underlain by solid geology consisting of the London Clay Formation, which in turn overlies the Lambeth Group. The BGS sheet identifies the presence of superficial Hackney Gravel Deposits beneath the site overlying the London Clay Formation.

4 FIELDWORK

The scope of the site works was generally in accordance with that proposed by CampbellReith and comprised the following:

- 3 no. Cable Percussive Boreholes
- 6 no. Window Sample Boreholes
- Installations

The investigation locations were agreed on site with the Engineer subject to local constraints. The intrusive fieldworks were carried out between 7th to the 12th March 2012 at the locations shown on the appended Exploratory Borehole Location Plan presented in the appendix as drawing GL16482-DR002.

4.1 Cable Percussive Boreholes

Two percussive boreholes, BHB1 to 10.00m and BH B2A to 30.00m below existing ground level (bgl) were drilled using 200mm reducing to150mm diameter casing and equipment. Borehole B2 was replaced by BH B2A due to encountering a service at 0.70m.

The boreholes were required in order to sample, test and log the sub-soils underlying the site. During drilling one falling head test was undertaken in borehole BH B1 and one in borehole BH B2A, the results of which are presented in Appendix B.

Upon completion the boreholes were installed with combined gas and groundwater monitoring wells, as summarised in Table 4.3.

A detailed description of all the strata encountered, position and types of samples taken along with any groundwater observations made at the time of drilling are included on the borehole logs presented in Appendix B.

4.2 Window Sample Boreholes

Six window sample boreholes, WS B1 to WS B6, were undertaken in order to sample, test and log the sub-soils underlying the site. Window sample boreholes WS B1 to WS B4, were drilled by a Premier tracked window sampler rig to a maximum depth of 3.45mbgl. Window sample boreholes WS B5 and WS B6 were drilled using hand held equipment to a maximum depth of 2.50mbgl.

Upon completion window sample boreholes WS B2, WS B3 and WS B4 were installed with combined gas and groundwater monitoring wells, as summarised in Table 4.3.

A detailed description of all the strata encountered, position and types of samples taken along with any groundwater observations made at the time of drilling are included on the window sample borehole records presented in Appendix B.

4.3 Installations

The following boreholes were installed with standpipes for monitoring gas and groundwater. Table 4.3 below summarises these installations.

Monitoring Point	Diameter of Installation	Base Depth of Installation	Response	Zone (m bgl)	Target Strata
2	(mm)	(m bgl)	Тор	Base	
BH B1 (shallow)	50	3.00	1.00	3.00	Made Ground
BH B1 (deep)	50	8.00	4.00	8.00	Natural Soils (Hackney Gravel)
BH 2A	50	8.00	5.00	8.00	Natural Soils (Hackney Gravel)
WS B2	50	3.00	1.00	3.00	Made Ground
WS B3	50	3.00	1.00	3.00	Made Ground
WS B4	50	2.95	1.00	2.95	Made Ground

Table 4.3: Summary details of the gas and groundwater standpipe installations.

Detailed descriptions of the installations and their corresponding backfill materials are included on the relevant exploratory borehole logs presented in Appendix B.

4.4 Gas and Groundwater Monitoring

A programme of gas and groundwater monitoring has been commissioned.

The results of gas and groundwater monitoring carried out to date are presented in Appendix C.

Gas monitoring

Gas monitoring was undertaken prior to groundwater monitoring and sampling.

Gas monitoring was carried out in accordance with Clause 9.10X of the CampbellReith Specification for Ground Investigation (Reference: EJBejb10907-200212-GI Spec V10.2).

Gas samples, where required, were stored in cool boxes with bubble wrap and were sent to the laboratory within 24 hours of being sampled along with chain of custody sheets.

Groundwater monitoring

Groundwater monitoring was carried out in accordance with Clause 7.8A of the CampbellReith Specification for Ground Investigation (Reference: EJBejb10907-200212-GI Spec V10.2).

Determination of the groundwater levels were derived using an interface dip-meter.

Where sufficient groundwater was encountered the borehole installations were purged prior to obtaining groundwater samples using low flow techniques. The depth to the groundwater level and the depth of the installation were recorded and the required purge volume calculated as follows:

Purge volume (litres) = 3 to 5 x π r² x l x 1000

Where, r = radius of installation (millimetres), I = length of water column in installation (metres).

Samples of the groundwater were obtained for subsequent laboratory analysis with use of disposable bailers.

Samples were stored in cool boxes with ice packs and were sent to the laboratory within 24 hours of being sampled along with chain of custody sheets.

5 GROUND CONDITIONS

5.1 Exploratory Hole Lithology

Detailed descriptions of the lithology encountered can be found on the appropriate logs included in Appendix B. It is our understanding that an appraisal of the site's lithology is being presented under separate cover by the consulting engineer.

5.2 Groundwater

Groundwater and any LNAPL levels encountered during the drilling and subsequent monitoring of the exploratory holes to date are summarised in Table 5.2 below.

	Depth groundwater	Depth encountered during monitoring (mbgl)							
Exploratory Hole Location	encountered during drilling (mbgl)	Round 1 (23 rd March 2012)	Round 2 (5 th April 2012)	Round 3 (17 th April 2012)					
BH B1 (shallow)	22.50 rising to 20.42*	Parked car over standpipe cover	Dry at 3.09	Dry at 3.08					
BH B1(deep)	22.50 rising to 20.42*	Parked car over standpipe cover	6.04	6.04					
BH B2A	Not encountered	6.22	7.01	7.23					
WS B2	Not encountered	Dry at 3.00	Dry at 3.00	Dry at 3.00					
WS B3	Not encountered	Dry at 3.00	Dry at 3.00	Dry at 2.99					
WS B4	Not encountered	Dry at 2.94	Dry at 2.94	Dry at 2.93					

^{*}Water added to assist drilling. Groundwater strike may have been obscured.

Table 5.2: Summary of Groundwater levels during drilling/excavation & monitoring

6 LABORATORY TESTING

6.1 Geotechnical Laboratory Testing

Geotechnical laboratory testing on selected soil samples recovered from the exploratory holes was scheduled by CampbellReith and was carried out to identify the physical characteristics of the soils encountered and the requirements for the design of buried concrete.

The geotechnical laboratory testing was undertaken at HGE's UKAS accredited laboratory. Unless otherwise stated the tests were performed to B.S. 1377, "Methods of Test for Soils for Civil Engineering Purposes". The exception being pH, water soluble sulphate, acid soluble sulphate and total sulphur, which were undertaken at Alcontrol using methods prescribed in BRE Digest SD1 "Concrete in aggressive ground" (2005 edition). Organic matter determinants were also undertaken at Alcontrol to B.S. 1377

The schedule of laboratory testing and results available to date are presented in Appendix D.

6.2 Environmental Laboratory Testing

All environmental laboratory testing on the soil, groundwater and gas samples recovered from the exploratory holes was scheduled by CampbellReith in order to facilitate the assessment of the chemical characteristics and potential contamination of the site.

Alcontrol laboratories carried out the analytical chemical testing to UKAS accredited procedures unless stated otherwise.

The schedule of laboratory testing and results available to date are presented in Appendix D.

Report Compiled by:

pp. Kl

Report Checked by

Graham Dowlen BSc (Hons), MSc, C.Geol, F.G.S. Geotechnical Engineer.

John Keay B.Sc. (Hons), F.G.S. Associate Director Geotechnical.

REFERENCES

BSI British Standard BS5930:1999 (with Amendment 2:2010), 'Code of Practice for Site Investigations'.

BSI British Standard, 2001, BS10175:2001, 'Investigation of Potentially Contaminated Sites'

BSI British Standard. 1990. BS1377:1990, 'Methods of Test for Soils for Civil Engineering Purposes'.

Building Research Establishment, 2005. Special Digest 1:2005, 'Concrete in Aggressive Ground'.

CampbellReith Specification for Ground Investigation (EJBejb10907-200212-GI Spec V10.2)

LIST OF APPENDICES

APPENDIX A: DRAWINGS

Site Location Plan (GL16482-DR001)

Exploratory Hole Location Plan (GL16482-DR002)

APPENDIX B: EXPLORATORY BOREHOLE RECORDS

Data Sheet: Site Investigation Methods

Key to Site Investigation Records

Cable Percussion Borehole Records

Window Sample Borehole Records

APPENDIX C: GAS AND GROUNDWATER MONITORING RECORDS

Gas Round 1 (23rd March 2012)

Round 2 (5th April 2012)

Round 3 (17th April 2012)

Groundwater Round 1 (23rd March 2012)

Round 2 (5th April 2012)

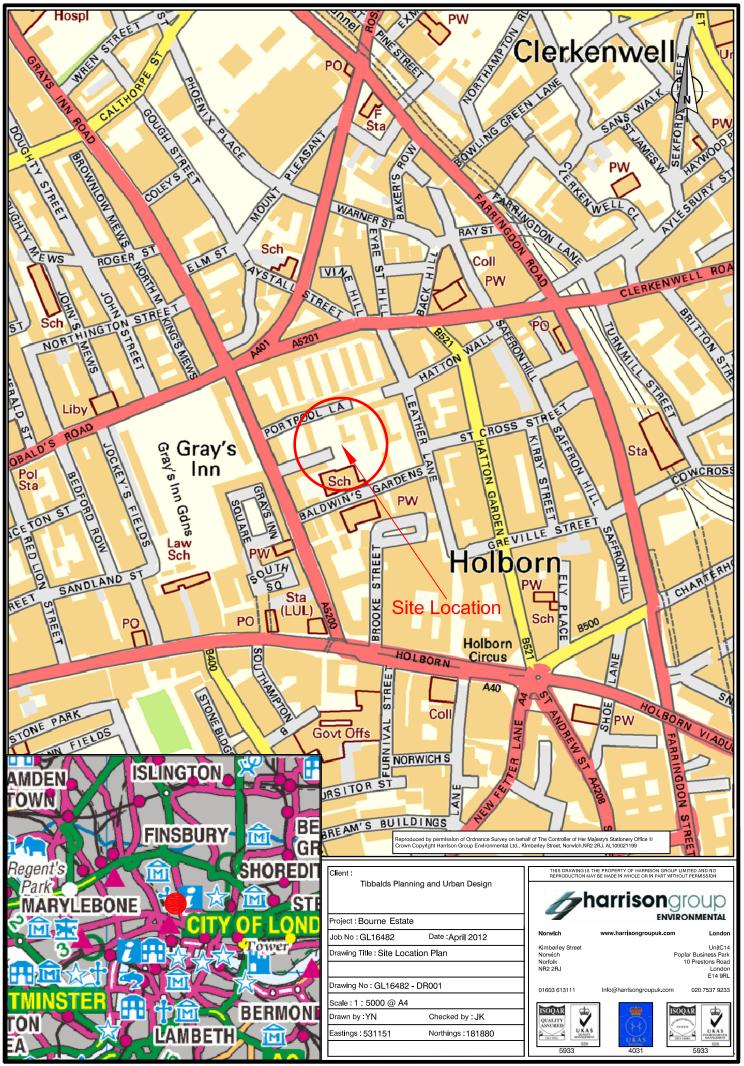
Round 3 (17th April 2012)

APPENDIX D: LABORATORY TESTING

Summary Geotechnical Laboratory Testing Schedule

Geotechnical Laboratory Results

Summary of Chemical Laboratory Schedule (Soils)


Chemical Laboratory Test Results

Summary of Chemical Laboratory Schedule (Water)

Chemical Laboratory Test Results

APPENDIX A

DRAWINGS

APPENDIX B

EXPLORATORY HOLE RECORDS

DATA SHEET: SITE INVESTIGATION METHODS

The following sheet provides basic details of the site investigation methods employed in the direct investigation phase of this report. Detailed method statements may be provided if, requested, or further information may be obtained from the relevant British Standard, or Environment Agency publications. Prior to any excavation being undertaken, a surface sweep using a cable detector is undertaken, in order to avoid services. Details of the lithology encountered are generally presented on the relevant field record sheets, which also detail the type and depths of samples taken, the results of any in-situ tests, and any groundwater observations noted at the time. Other pertinent information may also be recorded.

CABLE PERCUSSIVE BOREHOLES

The cable percussive borehole drilling rig may be towed by a 4x4 pick up or similar vehicle, and is capable of obtaining disturbed and undisturbed soil samples down to approximately 40m depth. The hole may be formed at a diameter of 200mm or most typically 150mm, with samples obtained direct from the drilling tools. Undisturbed samples (U100) may be obtained, and in-situ testing may include Standard or Cone Penetration Tests (SPT/ CPT) to BSEN ISO22476-3, plus permeability testing as per BS5930:1999. Please note we report raw SPT N values rather than corrected $N_{(60)}$ values. We can report in either format if requested by our client.

The equipment requires a minimum 2m access width, and the rig itself is 6m long (11m including tow). A rough $3m \times 5m$ base area is required for drilling, but each site should be considered on specifics.

The technique can penetrate dense made ground, rubble and concrete or weathered rock/thin bands of rock using a chisel. However, in some cases these materials can form obstructions.

Standpipes can be installed, otherwise the borehole would be backfilled with spoil, or where instructed bentonite, concrete or sand may be used. Excess spoil is either removed from site or left in a tidy heap nearby.

In wet drilling conditions, the spoil can spread over a wide area through splashing and flow of the spoil from the tools, unless precautions are taken to prevent this. Conversely, the system can be very clean for instance when drilling through dry clay soil.

WINDOW SAMPLER BOREHOLES

The window sampler system comprises a series of varying diameter (max 80mm) steel tubes of either 1m or 2m length having a slot or window cut along the side. The tubes are driven into the ground using a light percussive hammer attached to solid rods, and withdrawn by use of a jack. The hammer may be machine mounted, or for restricted access work, hand held. The soil sample is forced up into the tube during the driving, samples being obtained directly through the slot or window. The sampler generally achieves depths of around 3-5m in favourable soils. Use of a super heavy tracked rig allows samples to be retrieved in liners. Greater diameter boreholes are also achievable (<115mm).

STANDPIPE INSTALLATIONS


Window sampler boreholes may be fitted with gas/ water monitoring standpipes, which generally comprise a 38mm diameter upvc slotted and plain casing to the required depths as appropriate, and may be fitted with a gas tap bung or end cap, and lockable cover. Full details of the standpipe installations and associated backfill are given on the relevant borehole records. Other diameters and types of standpipe are available if required.

GROUNDWATER MONITORING

Groundwater monitoring is undertaken in accordance with the Specification for Ground Investigation EJBejb-10907-200212-GI Spec V10.2

GROUND GAS MONITORING

Ground gas composition and flow monitoring is undertaken in accordance with Clause 9.10X of the Specification for Ground Investigation EJBejb-10907-200212-GI Spec V10.2.

In-situ Testing & Observations

S or C Standard Penetration Test as per BS1377:1990 'Methods of test for soils for civil engineering

purposes'. Uncorrected test result shown on the log at the relevant depth. S - split spoon or C

- solid cone.

* n100 - dynamic penetration test graphical presentation of the blows taken to drive 100mm.

Equivalent SPT 'N' value. Based on standard empirical calculation after Card & Roche for sandy

soils unless specificed in the text.

IV In-situ (down hole) vane shear strength

peak - p or remoulded - r

HV In-situ hand vane test, shear strength reported in kPa

peak - p or remoulded - r

PP Pocket penetrometer test, shear strength reported in kPa

K In-situ permeability test result, expressed in m/s

PID In-situ screening by photo-lonisation detector, expressed as ppm

Head space testing undertaken as per contract documents.

TCR Total Core Recovery, % As defined in BS5930:1999. Details of flush returns etc. are

SCR Solid Core Recovery, % given on the relevant log sheet.

RQD Rock Quality Designation, %

If Fracture spacing, mm

Groundwater strike Level to which groundwater has risen after the specified time. (Nominal 20 mins)

Sampling

D / GD	Small / geotechnical disturbed sample, around 1kg
B / GB	Bulk / geotechnical disturbed sample, around 5Kg

LB Large bulk disturbed sample, around 20Kg for earthworks testing

W Water sample

ES Environmental soil sample, in more than one container if appropriate
EW Environmental water sample, in more than one container if appropriate

U / UT Undisturbed / Ultra Thin undisturbed driven tube sample. Nominal 100mm diameter, 450mm length in

CP boreholes, 38mm diameter, 100mm length in WS borehole. Dimension of trial pit cores to be

specfied on the individual records.

The number of blows taken to drive the sample tube the full length is reported on the log

sheet at the appropriate depth. 'NR' indicates no recovery achieved.

P Pushed piston sampler, nominal 100mm diameter

LS / C Liner sample, e.g. from windowless sampler / Core sample, e.g. from rotary core drilling CBR California Bearing Ratio (CBR) test - either mould sample taken or in situ testing. See

individual record sheet for further information

General comments

- Samples have been described in accordance with BS5930:1999 'Code of practice for site investigation' unless an alternative material specific weathering classification is considered more appropriate. This will be recorded in the report text.
- 2. Electronic data provided in relation to this project has been produced using the Association of Geotechnical & Geoenvironmental Specalists (AGS) data transfer format, with specific reference the their publication

Electronic Transfer of Geotechnical and Geoenvironmental Data Edition 3.1, 2004 including addendum May 2005'. All legend and backfill codes are as per this document.

Site specific comments

Percussion Borehole Record

BH B1

Project: Bourne Estate, Camden

Coordinates: 531163.3E Ground Level: 19.53mAOD Project ID.: GL16482

181908.3N Sheet 1 of 1

	181908.3N						Sheet 1 of 1		
Description	Legend	Depth	O.D.	Samp	oles/ Test	Casing (Water)	Remarks and		
		(m)	Level (m)	Type	Depth (m)	Depth (m)	Test Results	Installation	
ASPHALT.		0.15	19.38	ES1	0.25			0.20	
MADE GROUND. Medium dense brown, dark brown and grey brown locally slightly clayey silty gravelly fine and medium occasionally coarse		Ē		D1 ES2	0.50 0.50				
SAND. Gravel is angular fine to coarse brick, occasional concrete, rare wood, glass and metal fragments.				ES3 C B1 ES4	1.00 1.20 1.20-1.65 1.50	1.20	N=13 (2,2,3,3,3,4)	1.00	
		E		D2 ES5	1.80 2.00				
Medium dense to dense yellow brown and brown silty fine to coarse SAND and subrounded to		2.90	16.63	C B2 ES6 D3 ES7	2.50 2.50-2.95 2.50 2.90 3.00	2.50	N=23 (4,7,9,4,3,7)	3.00	
rounded fine to coarse flint GRAVEL. (HACKNEY GRAVEL).				C B3 ES8 D4 ES9	3.50 3.50-3.95 3.50 4.00 4.00	3.50	N=26 (3,4,4,6,7,9)	4.00	
				C B4	4.50 4.50-4.95	4.50	N=35 (4,6,8,8,9,10)		
		E		ES10	5.00				
				D5 C ES11 B5	6.00 6.00 6.00 6.00-6.45	6.00	N=33 (2,5,7,8,9,9)		
				ES12 D6	7.00 7.00				
Firm to stiff brown silty CLAY. (LONDON CLAY).	<u> </u>	7.70	11.83	C B6 D7 ES13	7.50 7.50-7.95 7.70 7.90	7.50	N=16 (3,3,4,4,4,4)		
(Firm to stiff) fissured dark grey silty CLAY. Occasional light grey silt laminae and fissure infill. (LONDON CLAY).	X X X X X X X X X X X X X X X X X X X	8.00	11.53	D8 ES14	8.00 8.25			8.00	
	X X X X X X X X X X X X X X X X X X X	¥ × ×		UT1	9.00-9.45		46 blows: 100% recovery		
	* * * * * * * * * * * * * * * * * * *	X- X-		D9	9.45-9.55			- - -	
Parabala Campleta et 10.00 m	1								

Borehole Complete at 10.00 m

Water Level Observations

Casing Depth
Dopan Dopan
Depth (m) Sealed (m)

Client:

Tibbalds Planning and Urban Design

Engineer:

Campbell Reith Hill LLP

Contractor:

FM-Hn-R-3080

Harrison Group Environmental Limited

Dates:

12/03/2012

Plant:

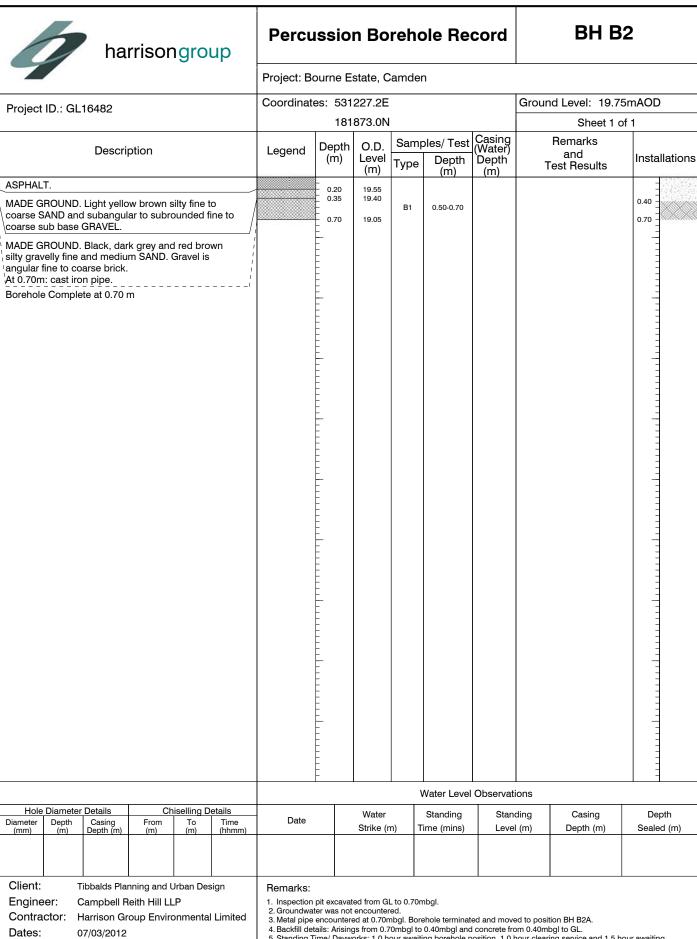
Dando 2000 Cable Percussive Rig

Drilled By: K. Gorbould Logged By: G. Dowlen Checked By: J. Keay

Print Date: 28/06/2012

Remarks:

- 1. Inspection pit excavated from GL to 1.20mbgl.
 2. Groundwater was not encountered.
 3. Water added to assist drilling from 2.90mbgl to 7.70mbgl (300 litres).
 4. Installation details (Dual): 50mm diameter HDPE standpipe (A) installed from 8.00mbgl to GL. Slotted from 8.00mbgl to 4.00mbgl, plain from 4.00mbgl to GL. 50mm diameter HDPE standpipe (B) installed from 3.00mbgl to GL. Slotted from 3.00mbgl to 1.00mbgl, plain from 1.00mbgl to GL. Finished with gas taps, end caps and flush fitting cover.


 Geowrap and geosock used.

 Final fitting to the first property and the form 10.00mbgl to 8.00mbgl ground fitter people from 8.00mbgl to 4.00mbgl.
- Geowrap and geosock used.

 5. Backfill details: Bentonite pellets from 10.00mbgl to 8.00mbgl, gravel filter packs from 8.00mbgl to 4.00mbgl, bentonite pellets from 4.00mbgl to 3.00mbgl, gravel filter packs from 3.00mbgl to 1.00mbgl, bentonite pellets from 1.00mbgl to 0.20mbgl and concrete from 0.20mbgl to GL.

 6. Standing Time/ Dayworks: 1.0 hour filling bowser, 0.5 hour movong rig, 1.0 hour bagging spoil and cleaning the site, 0.5 hour collecting installation material on 12/03/2012.

Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

M-Hn-R-3080

Plant: Dando 2000 Cable Percussive Rig

Print Date: 28/06/2012

Drilled By: K. Gorbould Logged By: G. Dowlen Checked By: J. Keay

Standing Time/ Dayworks: 1.0 hour awaiting borehole position, 1.0 hour clearing service and 1.5 hour awaiting instruction on pipe on 07/03/2012.

Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

Percussion Borehole Record

BH B2A

Project: Bourne Estate, Camden

Ground Level: 19.74mAOD Coordinates: 531227.1E Project ID.: GL16482

Project ID.: GL16482									
		181	873.9N				Sheet 1 of 3		
Description	1	Depth	O.D.	Samp	oles/ Test	Casing (Water)	Remarks		
Description	Legend	(m)	Level (m)	Туре			and Test Results	Installations	
ASPHALT.		0.20	19.54	ES1	0.00			0.20	
MADE GROUND. Light yellow brown silty fine to coarse SAND and subangular to subrounded fine to coarse sub base GRAVEL.		0.35	19.39	ES2	0.30 0.50				
MADE GROUND. Loose becoming medium dense brown, grey brown and dark brown silty gravelly fine to coarse SAND. Gravel is angular fine to coarse		-		D1 ES3 C	1.00 1.00		N=8 (1,1,1,2,3,2)	1.00	
brick. Occasional brick cobbles and lenses of grey brown silty sandy gravelly clay.				B1 ES4	1.50-1.95 1.50		N=0 (1,1,1,2,3,2)		
		E		D2 ES5	2.00 2.00				
				C B2 ES6	2.50 2.50-2.95 2.50	1.50	N=15 (2,4,4,5,3,3)		
				D3 ES7	3.00 3.00				
				C B3 ES8	3.50 3.50-3.95 3.50	3.00	N=12 (2,2,2,3,3,4)		
		-		D4 ES9	4.00 4.00			4.00	
				C ES10 B4	4.50 4.50 4.50-4.95	3.00	N=12 (1,2,2,3,3,4)		
Dense yellow brown silty fine to coarse SAND and		5.10	14.64	ES11 D5	5.00 5.00			5.00	
GRAVEL. Gravel is subrounded to rounded fine to coarse flint. (HACKNEY GRAVEL).				ES12	5.50				
				C ES13 B5	6.00 6.00 6.00-6.45	6.00	N=33 (3,5,7,7,9,10)		
				ES14	6.50				
				ES15	7.00				
(Firm to stiff) brown and grey brown slightlt	1	7.70	12.04	C ES16 B6	7.50 7.50 7.50-7.95	6.00	N=17 (2,3,4,4,4,5)		
sandy slightly gravelly sitty CLAY. Gravel is rounded fine to coarse flint. (REWORKED LONDON /CLAY).		8.00 - 8.00	11.74	ES17 D6 ES18	7.80 8.00 8.20			8.00	
Firm to stiff fissured grey silty CLAY. Occasional light grey silt laminae and fissure infill. (LONDON CLAY).	x = x = x = x = x = x = x = x = x = x =			S D7	9.00 9.00-9.45	9.00	N=17 (3,4,4,4,5)	-	
	x_x_x_x_x_x_x_x_x_x_x_x_x_x_x_x_x_x_x_								

Continued next sheet

Water Level Observations

Hol	Hole Diameter Details		Chiselling Details				Water	Standing	Standing	Casing	Depth
Diameter (mm)	Depth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)	Date	Strike (m)	Time (mins)	Level (m)	Depth (m)	Sealed (m)
200 150	18.00 30.00	9.00 30.00				08/03/12	22.50	20	20.42	18.50	

Client:

Tibbalds Planning and Urban Design

Engineer:

Campbell Reith Hill LLP

Contractor:

Harrison Group Environmental Limited

Dates:

07/03/2012-09/03/2012

Plant:

FM-Hn-R-3080

Dando 2000 Cable Percussive Rig

Drilled By: K. Gorbould Logged By: G. Dowlen Checked By: J. Keay

Remarks:

- Inspection pit excavated from GL to 1.20mbgl.
 Water added to assist drilling from 4.90mbgl to 7.70mbgl (250 litres).
 Installation details: 50mm diameter HDPE standpipe installed from 8.00mbgl to GL. Slotted from 8.00mbgl to 5.00mbgl, plain from 5.00mbgl to GL. Finished with gas tap, end cap and flush fitting cover. Geowrap and geosock
- used.

 4. Backfill details: Arisings from 30.00mbgl to 10.00mbgl, bentonite pellets from 10.00mbgl to 8.00mbgl, gravel filter packs from 8.00mbgl to 5.00mbgl, bentonite pellets from 5.00mbgl to 4.00mbgl, arisings from 4.00mbgl to 1.00mbgl, bentonite pellets from 1.00mbgl to 0.20mbgl and concrete from 0.20mbgl to GL.

 5. Standing Time/ Dayworks: 3.0 hours bagging spoil and cleaning the site, 2.0 hours leaving rig set up to give access to the car park on 09/03/2012.

Print Date: 28/06/2012

Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

1	hai	rrison	aroi	ın	Percussion Borehole Record							BH B2	2 A	
	i iqi	110011	gio	ч	Project: Bo	ourne	Estate, C	amde	en					
Project ID : CI :	16490				Coordinate	es: 53	31227.1E				Grour	nd Level: 19.74	4mAOD	
Project ID.: GL	10402					18	31873.9N		Sheet 2 o	f 3				
						Dept	h O.D.	San	nples/ Test	Casing (Water)		Remarks		
	Descri	otion			Legend	(m)		Туре		Depth (m)	1	and Fest Results	Installation	
Occasional light of	Firm to stiff fissured grey silty CLAY. Docasional light grey silt laminae and fissure nfill. (LONDON CLAY). Stiff closely fissured grey silty CLAY. Docasional light grey silt laminae and fissure nfill. Occasional sand size selenite crystals. (LONDON CLAY).				X X X X X X X X X X X X X X X X X X X	×		UT1	10.50-10.95	(,	61 blo	ows: 90% recovery	10.00	
Occasional light of					X X X X X X X X X X X X X X X X X X X	11.00	8.74	D8	10.95-11.05					
At 12.00m: becon	m: becomes stiff.			X			S D9	12.00 12.00-12.45	9.00	N=	24 (3,4,5,6,6,7)			
					x x x x x x x x x x x x x x x x x x x			UT2	13.50-13.95 13.95-14.05		77 blo	ws: 100% recovery		
								S D11	15.00 15.00-15.45	9.00	N=	28 (4.4.6,7,7,8)		
					X			UT3	16.50-16.95 16.95-17.05		100 blo	ws: 100% recovery		
					X X X X X X X X X X X X X X X X X X X	18.60	1.14	S D13	18.00 18.00-18.95	9.00	N=	27 (4,5,5,7,7,8)		
Very stiff to hard closely fissured grey blue and brown CLAY. (LAMBETH GROUP).						18.60		UT4	19.50-19.95		100 blows: 75% recovery			
						1		D15	19.95-20.05 Water Level	Observat	ions			
Hole Diameter			iselling D				Water		Standing	Stan		Casing	Depth	
Diameter (mm) Depth (m) 200 18.00 150 30.00	Casing Depth (m) 9.00 30.00	From (m)	To (m)	Time (hhmm)	Date 08/03/12		Strike (r 22.50	n)	Time (mins)	Leve 20.4	l (m)	Depth (m) 18.50	Sealed (m)	
Engineer: C Contractor: H Dates: 0 Plant: D	ibbalds Plar campbell R larrison Gr 7/03/2012- cando 2000	eith Hill LL oup Enviro 09/03/2012 Cable Pero	.P onmental 2	Limited	Remarks:									

Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

Logged By: G. Dowlen Checked By: J. Keay

Print Date: 28/06/2012

FM-Hn-R-3080

	7	hai	rrisor	ngro	up	Percu	ıssio	n Bo	BH B2A					
						Project: Bo	ourne E	state, C	amde	en		•		
						Coordinate	es: 531	227.1E				Grour	nd Level: 19.74	mAOD
Project ID	.: GL1	6482						873.9N		Sheet 3 of				
										plos/Tost	Casing		Remarks	
	Description				Legend	Depth (m)	O.D. Level (m)	Type	Depth (m)	Casing (Water) Depth (m)	٦	and Fest Results	Installatio	
Very stiff to	hard c	losely fissi	ured grey	blue							, ,			
and brown (CLAY.	(LAMBE I I	H GROUP).			F							
							E							
							-		S	21.00	9.00	50/230m	nm (8,17,20,14,15,1)	-
							ļ.		D16	21.00-21.45				
							E							
							F							
						<u> </u>	F							
							Ė							
Blue green	clavev	fine to coa	arse SANI) (LAME	RETH		22.50	-2.76	W1 UT5	22.50 22.50-22.95		100 blo	ws: 100% recovery	
ROUP).							22.90	-3.16						
ery stiff to	hard o	loselv fissi	ured varia	blv		X X X X	-2.30	0.10	D17	22.95-23.05				
ght blue gr	rey, red	d brown ar	nd light gr	ey		× × ×	E							3
lightly silty	CLAY	. (LAMBET	H GROUP	P).		× × × ×	ŧ							
						<u> </u>								
						×-×-×-×	-		S D18	24.00 24.00-24.45	(23.10) 24.00	50/200	mm (7,12,16,18,16)	=
						XX-X	E							
						× × × ×								
						× × × ×	E							
						<u> </u>	E							
						×-×-×-×	E							
						X	Ė		UT6	25.50-25.95		100 blo	ows: 60% recovery	
						××-×	-		D19	25.95-26.05				
						× × × ×	E							
						<u> </u>	E							
						×	-							
						× × × ×	E		s	27.00	(20.20)	N=4	8 (3,5,8,12,13,15)	
						× × × × ×	-		D20	27.00-27.45	26.00	'' ''	0 (0,0,0,12,10,10)	
						××_××	E							
						×	-							
						×	E							
						× × × ×	-							
						× × × ×	E		s	28.50	(22.30)	50/265m	nm (5,7,10,13,16,11)	1 3
						×_×_×_×	E		D21	28.50-28.95	`30.00	,	(,,,,,,,,,	
						x-x-x-x-x	L							
						X X X X	F							
						x_x_x_x	E							
						× × × × ×	F							=
Borehole Co	omple	te at 30.00	m			× * -×× * -	Ε			 Water Level	Observat	ions		
Hole Dia				niselling D		Date		Water		Standing	Stan	ding	Casing	Depth
(mm)	epth (m)	Casing Depth (m)	From (m)	To (m)	Time (hhmm)			Strike (r	n)	Time (mins)	Leve		Depth (m)	Sealed (m)
	8.00 0.00	9.00 30.00				08/03/12		22.50		20	20.4	2	18.50	
Client:	т:	bbalds Plar	ning and I	Irhan Do	l sian	Domorto								
Engineer:		ampbell R	_		9.,	Remarks:								
Contracto		arrison Gr			l I imited									
Dates:		amson Gn 7/03/2012-			. Limiteu									
					Di~									
Plant:		ando 2000		rcussive	nıg									
Drilled By		. Gorbould	1											
Logged E														
Checked	By: J.	Keay												
/I-Hn-R-3080					: 28/06/2012		Н	arrison Gro	ın Enviro	nmental Ltd. Llr	nit A11 Ponla	ar Rusines	s Park, 10 Prestons Roa	d Landan E14

Window Sample Record WS B1 harrisongroup Sheet 1 of 1 Project: Bourne Estate, Camden Project ID: GL16482 Coordinates: 531151.0E Ground Level: 19.55mAOD 181888.5N O.D. Remarks Sample Test Description Legend Depth Installations Level and **Test Results** (m) (m) Type Depth (m) ASPHALT. 0.08 19.47 ES1 0.10 MADE GROUND. Yellow brown silty gravelly fine and medium occasionally coarse SAND. Gravel is rounded 0.20 19.35 0.30 19.25 fine and medium flint. ES2 0.50 Reinforced CONCRETE. MADE GROUND. Yellow brown silty gravelly fine to coarse SAND. Gravel is angular to rounded fine to coarse flint, brick and rare concrete. ES3 1.00 1.20 1.20 Window Sample Complete at 1.20 m Water Level Observations Standing Standing Time (Mins) Casing Depth (m) Drive Records Water Depth Diameter (mm) From (m) Recovery (%) To (m) Client: Tibbalds Planning and Urban Design Remarks: 1. Inspection pit excavated from GL to 1.20mbgl. Engineer: Campbell Reith Hill LLP Groundwater was not encountered. Obstruction encountered at 1.20mbgl. Window sample hole terminated. Contractor: Harrison Group Environmental Limited 4. Backfill details: Arisings from 1.20mbgl to GL. 07/03/2012 Date: Plant: Terrier Window Sampling Rig Drilled By: M. Rose Logged By: G. Dowlen Checked By: J. Keay M-Hn-R-3081 Print Date:28/06/2012 Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

Window Sample Record WS B2 harrisongroup Sheet 1 of 1 Project: Bourne Estate, Camden Project ID: GL16482 Coordinates: 531161.4E Ground Level: 19.51mAOD 181877.7N O.D. Remarks Sample Test Description Legend Depth Installations Level and **Test Results** (m) (m) Depth (m) Type MADE GROUND. (Soft) dark brown slightly gravelly ES1 0.10 silty sandy CLAY. Gravel is angular to rounded 0.20 19.31 0.20 fine and medium brick and glass fragments. MADE GROUND. (Soft to firm) dark brown and dark grey brown slightly sandy silty gravelly CLAY. ES2 0.50 Gravel is angular to rounded fine and medium occasionally coarse flint, brick and concrete. Rare brick cobbles. ES3 1.00 1.00 1.10 18.41 MADE GROUND. very loose red brown brick GRAVEL 1.20 1.20-1.65 N=3 (2,2,1,1,0,1) and COBBLES. 1.30 18.21 LS₁ 1.20-2.00 MADE GROUND. (Soft to firm) black, dark grey and grey brown slightly sandy silty gravelly CLAY. ES4 1.50 Gravel is angular to rounded fine and medium occasionally coarse flint, occasional brick and charcoal. Occasional oyster shells. 2.00 2.00-2.45 2.00-3.00 N=3 (1,0,0,1,0,2) D2 LS2 ES5 2.00 ES6 2.50 S D3 ES7 3.00 3.00-3.45 N=10 (1,1,1,1,3,5) 3 00 3.45 16.06 3.45 Window Sample Complete at 3.45 m Water Level Observations Standing Time (Mins) Drive Records Standing Water Casing Depth (m) Depth Diameter (mm) Recovery (%) From (m) To (m) 115 115 2.00 100 100 1.20 Client: Tibbalds Planning and Urban Design Remarks: Inspection pit excavated from GL to 1.20mbgl. Campbell Reith Hill LLP Engineer: Groundwater was not encountered. Installation details: 50mm diameter HDPE standpipe installed from 3.45mbgl to GL. Slotted Contractor: Harrison Group Environmental Limited from 3.45mbgl to 1.00mbgl, plain from 1.00mbgl to GL. Finished with gas tap, end cap and Date: 07/03/2012 flush fitting cover. Geowrap and geosock used. 4. Backfill details: Arisings from 3.45mbgl to 3.00mbgl. gravel filter packs from 3.00mbgl to 1.00mbgl, bentonite pellets from 1.00mbgl to 0.20mbgl and concrete from 0.20mbgl to GL. Terrier Window Sampling Rig Plant: M. Rose Drilled By: Logged By: G. Dowlen Checked By: J. Keay M-Hn-R-3081 Print Date:28/06/2012 Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RI

WS B3 Window Sample Record harrisongroup Sheet 1 of 1 Project: Bourne Estate, Camden Project ID: GL16482 Coordinates: 531163.4E Ground Level: 19.73mAOD 181856.5N O.D. Remarks Sample Test Description Legend Depth Installations Level and **Test Results** (m) (m) Depth (m) Type Grass over TOPSOIL. Dark brown clayey sandy SILT. 0.20 0.30 19.43 MADE GROUND. Medium dense becoming loose brown, grey brown and dark brown silty gravelly fine ES2 0.50 and medium occasionally coarse SAND. Gravel is angular fine and medium occasionally coarse brick and rare concrete. Occasional brick cobbles. ES3 0.90 1.00 ES4 1.10 1.20 1.20-1.45 1.20-2.00 S D1 N=18 (2,3,5,7,3,3) ES5 1.50 2.00 2.00-2.45 2.00-3.00 N=6 (1,2,2,2,1,1) D2 LS2 ES6 2.00 2.30 17.43 MADE GROUND. Very loose dark brown and yellow brown silty gravelly fine and medium occasionally ES7 2.50 coarse SAND. Gravel is angular to rounded fine and medium occasionally coarse flint, occasional brick and charcoal fragments. Occasional oyster shells. S D3 ES8 3.00 3.00-3.45 N=2 (1,0,0,1,0,1) 3 00 3.45 16.28 3.45 Window Sample Complete at 3.45 m Water Level Observations Standing Time (Mins) Drive Records Standing Water Casing Depth (m) Depth Diameter (mm) Recovery (%) From (m) To (m) 115 115 2.00 100 100 1.20 Client: Tibbalds Planning and Urban Design Remarks: Inspection pit excavated from GL to 1.20mbgl. Engineer: Campbell Reith Hill LLP Groundwater was not encountered. Installation details: 50mm diameter HDPE standpipe installed from 3.45mbgl to GL. Slotted Contractor: Harrison Group Environmental Limited from 3.45mbgl to 1.00mbgl, plain from 1.00mbgl to GL. Finished with gas tap, end cap and Date: 07/03/2012 flush fitting cover. Geowrap and geosock used. 4. Backfill details: Arisings from 3.45mbgl to 3.00mbgl. gravel filter packs from 3.00mbgl to 1.00mbgl, bentonite pellets from 1.00mbgl to 0.20mbgl and concrete from 0.20mbgl to GL. Plant: Terrier Window Sampling Rig M. Rose Drilled By: Logged By: G. Dowlen Checked By: J. Keay M-Hn-R-3081 Print Date:28/06/2012 Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RI

WS B4 Window Sample Record harrisongroup Sheet 1 of 1 Project: Bourne Estate, Camden Project ID: GL16482 Coordinates: 531233.2E Ground Level: 19.95mAOD 181842.9N O.D. Remarks Sample Test Description Legend Depth Installations Level and **Test Results** (m) (m) Depth (m) Type Grass over TOPSOIL. Dark brown organic clayey ES1 0.10 19.80 silty fine SAND. 0.20 ES2 0.25 MADE GROUND. Dark brown silty gravelly fine and medium occasionally coarse SAND. Gravel is subangular fine to coarse brick and concrete. ES3 0.50 Occasional brick cobbles. ES4 1.00 1.00 1.20 18.75 1.20 1.20-1.65 N=12 (2,1,2,3,3,4) MADE GROUND. Medium dense off white and light 1.20-2.00 yellow brown silty gravelly fine and medium SAND. LS₁ Gravel is angular fine to coarse brick and ES5 1.50 concrete. 2.00 2.00-2.45 2.00-2.80 N=12 (1,2,2,3,3,4) D2 LS2 ES6 2.00 ES7 2.50 2.80 50/75mm (25,50) 2.80-2.95 2.80 At 2.80m: becomes very dense. 2.95 17.00 2.95 Window Sample Complete at 2.95 m Water Level Observations Standing Time (Mins) Drive Records Standing Water Casing Depth (m) Depth Diameter (mm) Recovery (%) From (m) To (m) 115 115 2.00 2.95 100 100 1.20 Client: Tibbalds Planning and Urban Design Remarks: Inspection pit excavated from GL to 1.20mbgl. Engineer: Campbell Reith Hill LLP Groundwater was not encountered. Installation details: 50mm diameter HDPE standpipe installed from 2.95mbgl to GL. Slotted Contractor: Harrison Group Environmental Limited from 2.95mbgl to 1.00mbgl, plain from 1.00mbgl to GL. Finished with gas tap, end cap and Date: 07/03/2012 flush fitting cover. Geowrap and geosock used. 4. Backfill details: Gravel filter packs from 2.95mbgl to 1.00mbgl, bentonite pellets from 1.00mbgl to 0.20mbgl and concrete from 0.20mbgl to GL. Terrier Window Sampling Rig Plant: M. Rose Drilled By: Logged By: G. Dowlen Checked By: J. Keay M-Hn-R-3081 Print Date:28/06/2012 Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RI

Window Sample Record WS B5 harrisongroup Sheet 1 of 1 Project: Bourne Estate, Camden Project ID: GL16482 Coordinates: 531196.5E Ground Level: 17.76mAOD 181827.8N O.D. Remarks Sample Test Description Legend Depth Installations Level and **Test Results** (m) (m) Туре Depth (m) Grass over TOPSOIL. Dark brown organic clayey 0.00 ES1 17.61 silty fine and medium SAND. 0.25 ES2 MADE GROUND. Brown, grey brown and grey silty gravelly fine and medium occasionally coarse SAND. Gravel is angular fine to coarse brick, rare ES3 0.50 concrete, wood and glass fragments. ES4 1.00 1.10 16.66 Yellow brown silty fine and medium occasionally coarse SAND and subrounded to rounded fine and ES5 1.25 medium occasionally coarse flint GRAVEL. (HACKNEY GRAVEL). 1.60 ES6 1.60 1.60 Window Sample Complete at 1.60 m Water Level Observations Standing Time (Mins) Standing Drive Records Water Casing Depth (m) Depth Recovery (%) Diameter (mm) From (m) To (m) 115 1.20 1.60 100 Client: Tibbalds Planning and Urban Design Remarks: Inspection pit excavated from GL to 1.20mbgl. Engineer: Campbell Reith Hill LLP Groundwater was not encountered. Obstruction encountered at 1.60mbgl. Window sample hole terminated. Contractor: Harrison Group Environmental Limited 4. Backfill details: Arisings from 1.60mbgl to GL. Date: 08/03/0012 Plant: Handheld Window Sampling Rig Drilled By: M. Rose Logged By: G. Dowlen Checked By: J. Keay M-Hn-R-3081 Print Date:28/06/2012 Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

WS B6 Window Sample Record harrisongroup Sheet 1 of 1 Project: Bourne Estate, Camden Project ID: GL16482 Coordinates: 531193.5E Ground Level: 17.91mAOD 181852.5N O.D. Remarks Sample Test Description Legend Depth Installations Level and **Test Results** (m) (m) Type Depth (m) Grass over MADE GROUND. Dark brown slightly ES1 0.10 gravelly sandy SILT. Gravel is angular fine brick ES2 0.25 and rare glass fragments. MADE GROUND. Brown, grey brown and dark brown silty gravelly fine and medium occasionally coarse SAND. Gravel is angular fine and medium occasionally coarse brick, occasional glass and ES3 0.75 rare concrete fragments. 1.00 16.91 MADE GROUND. (Firm) dark grey and dark grey ES4 1.10 brown slightly sandy slightly gravelly silty CLAY. Gravel is angular to rounded fine to coarse quartz, brick and rare wood fragments. Rare oyster shells. ES5 1.50 2.10 2.40 15.51 MADE GROUND. Yellow brown brick GRAVEL and 2.50 15.41 2.50 Window Sample Complete at 2.50 m Water Level Observations Standing Time (Mins) Standing Drive Records Water Casing Depth (m) Depth Diameter (mm) Recovery (%) From (m) To (m) 115 115 1.20 2.00 2.00 2.50 100 100 Client: Tibbalds Planning and Urban Design Remarks: Inspection pit excavated from GL to 1.20mbgl. Engineer: Campbell Reith Hill LLP Groundwater was not encountered. Obstruction encountered at 2.50mbgl. Window sample hole terminated. Contractor: Harrison Group Environmental Limited 4. Backfill details: Arisings from 2.50mbgl to GL. Date: 08/03/0012-08/03/2012 Plant: Handheld Window Sampling Rig Drilled By: M. Rose Logged By: G. Dowlen Checked By: J. Keay M-Hn-R-3081 Print Date:28/06/2012 Harrison Group Environmental Ltd, Unit A11, Poplar Business Park, 10 Prestons Road, London E14 9RL

Falling Head Permeability
Test (Borehole)

Job No: GL16482

Date: 12/03/2012

Borehole No./ BH B1 Test No.: 1 of 1

Client: Tibbalds Planning and Urban

Design

Location: Bourne Estate, Camden

Description: Medium dense to dense yellow brown and brown silty SAND and GRAVEL

Borehole depth (m): 6.00 Borehole diameter (m): 0.15 Groundwater level before test: 6.00 Depth of casing (m): 5.00 Initial driving head (m) (Ho): 6.00 Top of test zone (m): 5.00 Base of test zone(m): 6.00 Initial water level(m): 0.00 Weather: Sunny

		,		
TIME (sec)	ELAPSED TIME (sec)	DEPTH TO WATER (mb top of casing)	DRIVING HEAD (m)	COMMENTS
0	0	0.00	6.00	
30	30	0.41	5.59	
60	60	0.82	5.18	
90	90	1.21	4.79	
120	120	1.42	4.58	
150	150	1.65	4.35	
180	180	1.89	4.11	
210	210	2.12	3.88	
240	240	2.41	3.59	
270	270	2.73	3.27	
300	300	2.94	3.06	
360	360	3.23	2.77	
420	420	3.64	2.36	
480	480	3.90	2.10	
540	540	4.08	1.92	
600	600	4.19	1.81	
1200	1200	4.23	1.77	
1800	1800	4.23	1.77	
2400	2400	4.23	1.77	
3000	3000	4.23	1.77	
3600	3600	4.23	1.77	

Remarks:

The test has been carried out in general accordance with BS5930:1999+A2:2010. However, it should be noted that the test has been carried out above groundwater level.

Coefficient of Permeability: 7.4E-06 m/s (Using the General Approach - method d)

Falling Head Permeability
Test (Borehole)

Location: Bourne Estate, Camden

Job No: GL16482

Date: 12/03/2012

Borehole No./ BH B2A Test No.: 1 of 1

Client: Tibbalds Planning and Urban

Design

Description: Dense yellow brown silty SAND and GRAVEL

Borehole depth (m): 8.00 Borehole diameter (m): 0.20 Groundwater level before test: 6.22 Depth of casing (m): 4.00 Initial driving head (m) (Ho): 6.22 Top of test zone (m): 4.00 Base of test zone(m): 8.00 Initial water level(m): 0.00 Weather: Sunny

Wouther.		Garning		
TIME (sec)	ELAPSED TIME (sec)	DEPTH TO WATER (mb top of casing)	DRIVING HEAD (m)	COMMENTS
0	0	0.00	6.22	
30	30	0.55	5.67	
60	60	0.89	5.33	
90	90	1.36	4.86	
120	120	1.52	4.70	
150	150	1.73	4.49	
180	180	1.94	4.28	
210	210	2.19	4.03	
240	240	2.59	3.63	
270	270	2.99	3.23	
300	300	3.24	2.98	
360	360	3.57	2.65	
420	420	3.96	2.26	
480	480	4.21	2.01	
540	540	4.48	1.74	
600	600	4.73	1.49	
1200	1200	5.01	1.21	
1800	1800	5.23	0.99	
2400	2400	5.65	0.57	
3000	3000	5.93	0.29	
3600	3600	6.15	0.07	

Remarks:

The test has been carried out in general accordance with BS5930:1999+A2:2010.

NB. Test carried out in standpipe post completion of borehole.

Coefficient of Permeability: 1.4E-06 m/s (Using the General Approach - method d)

APPENDIX C

GAS AND GROUNDWATER MONITORING RECORDS

	harrison group	Gas Monitoring Field Record							
	ag.cap	Project Name: Bourne Estate, Camden		Job No: GL16482					
Client: Tibbalds Planning and Urban Design									
Equipment	Model	Serial Number		Manufacturer's Calibration Date					
Land Gas Analyser	GA2000	GA05814		19/10/2011					
PID	PHOCHECK+	06-01410	06-01410 10/02/2011						
Weather Conditions 24hrs									

Broken cloud, 13°C, 1027hPa. Prior to Monitoring Weather Conditions Broken cloud, 13°C, 1024hPa. During Monitoring

Location I.D	Date	Time (hhmmss)	Temp (°C)	Atmospheric Pressure 72hrs Prior to Sampling (hPa)	Atmospheric Pressure 48hrs Prior to Sampling (hPa)	Atmospheric Pressure 24hrs Prior to Sampling (hPa)	Atmospheric Pressure When Sampled (hPa)	Relative Pressure (hPa)	PID -Peak (ppm)	PID - Stabilised (ppm)	CH4 (%)	Peak CH4 (%)	LEL (%)	CO2 (%)	O2 (%)	H2S (ppm)	CO (ppm)	Flow Pod (I/Hr)
BH B1 (shallow)	23/03/2012	No access due t	o car on cover.															
BH B1 (deep)	23/03/2012	No access due t	o car on cover.															
BH B2A	23/03/2012	13:25:00	13	1032	1033	1027	1025	-3.30	0.0	0.0	0.0	0.0	0.0	0.1	18.9	0	0	0.0
WS B2	23/03/2012	13:55:00	13	1032	1033	1027	1024	-3.16	0.0	0.0	0.0	0.0	0.0	0.4	19.1	0	0	<0.1
WS B3	23/03/2012	14:05:00	13	1032	1033	1027	1024	-3.44	0.0	0.0	0.0	0.0	0.0	0.2	19.4	0	0	<0.1
WS B4	23/03/2012	13:40:00	13	1032	1033	1027	1024	-3.72	0.0	0.0	0.0	0.0	0.0	0.0	20.3	0	0	0.0
										_								
															_			
Field Engineer:	G. Pursey	G. Pursey																

Pump Running Time (sampling): (Standard 120 sec)
Pump Running Time (purge): (Standard 30 sec)

Flow Details (e.g. 5 sec average for 1 min.):

Other Remarks:

PID : Photo-Ionisation Detector

"<" indicates that reading is **under** the limit range,

">" indicates that reading is **over** the limit range,

"*" Level to be determined

	harrison group	Gas Monitoring Field Record								
	g.e.ap	Project Name: Bourne Estate, Camden		Job No: GL16482						
Client:	Tibbalds Planning and Urban Design									
Equipment	Model	Serial Number		Manufacturer's Calibration Date						
Land Gas Analyser	GA2000	GA05814		19/10/2011						
PID	PHOCHECK+	06-01410 10/02/2011								
Weather Conditions 24hrs										

Scattered showers, 10c, 1005mBar Prior to Monitoring

Weather Conditions During Monitoring

Cloudy, 6c, 1019mBar

Location I.D	Date	Time (hhmmss)	Temp (°C)	Prior to	Prior to	Atmospheric Pressure 24hrs Prior to Sampling (hPa)	Atmospheric Pressure When Sampled (hPa)	Relative Pressure (hPa)	PID -Peak (ppm)	PID - Stabilised (ppm)	CH4 (%)	Peak CH4 (%)	LEL (%)	CO2 (%)	O2 (%)	H2S (ppm)	CO (ppm)	Flow Pod (I/Hr)
BH B1 (shallow)	05/04/2012	14:00:00	8	996	1000	1005	1019	-3.30	0.0	0.0	0.0	0.0	0.0	0.0	20.6	0	0	0.0
BH B1 (deep)	05/04/2012	14:05:00	8	996	1000	1005	1019	-3.02	0.0	0.0	0.0	0.0	0.0	0.0	20.6	0	0	0.0
BH B2A	05/04/2012	14:20:00	8	996	1000	1005	1019	-3.02	0.0	0.0	0.0	0.0	0.0	0.2	19.1	0	0	0.0
WS B2	05/04/2012	14:40:00	8	996	1000	1005	1019	-2.64	0.0	0.0	0.0	0.0	0.0	0.3	19.0	0	0	0.0
WS B3	05/04/2012	14:50:00	8	996	1000	1005	1019	-2.57	0.0	0.0	0.0	0.0	0.0	0.5	18.9	0	0	0.0
WS B4	05/04/2012	14:05:00	8	996	1000	1005	1019	-2.88	0.0	0.0	0.0	0.0	0.0	0.1	20.1	0	0	0.0
Field Engineer:	G. Pursey	ursey																

Pump Running Time (sampling): (Standard 120 sec)
Pump Running Time (purge): (Standard 30 sec)

Flow Details (e.g. 5 sec average for 1 min.):

Other Remarks:

PID : Photo-Ionisation Detector

"<" indicates that reading is **under** the limit range,

">" indicates that reading is **over** the limit range,

"*" Level to be determined

	harrison group	G	as Monitoring F	ield Record			
	a.r.se.r.g.c.a.p	Project Name: Bourne Estate, Camden		Job No: GL16482			
Client:	Tibbalds Planning and Urban Design						
Equipment	Model	Serial Number		Manufacturer's Calibration Date			
Land Gas Analyser	GA2000	GA05814		19/10/2011			
PID	PHOCHECK+	06-01410		10/02/2011			
Weather Conditions 24hrs	Cloudy, 11c, 1023mBar						

Prior to Monitoring

Weather Conditions During Monitoring

Scattered showers, 12c, 998mBar

Location I.D	Date	Time (hhmmss)	Temp (°C)	Atmospheric Pressure 72hrs Prior to Sampling (hPa)	Prior to	Prior to	Atmospheric Pressure When Sampled (hPa)	Relative Pressure (hPa)	PID -Peak (ppm)	PID - Stabilised (ppm)	CH4 (%)	Peak CH4 (%)	LEL (%)	CO2 (%)	O2 (%)	H2S (ppm)	CO (ppm)	Flow Pod (I/Hr)
BH B1 (shallow)	17/04/2012	14:30:00	12	1020	1019	1023	997	-3.09	0.0	0.0	0.0	0.0	0.0	0.0	20.5	0	0	0.0
BH B1 (deep)	17/04/2012	14:20:00	12	1020	1019	1023	997	-2.98	0.0	0.0	0.0	0.0	0.0	0.0	20.3	0	0	0.0
BH B2A	17/04/2012	14:45:00	12	1020	1019	1023	997	-3.12	0.0	0.0	0.0	0.0	0.0	0.3	19.2	0	0	0.0
WS B2	17/04/2012	14:55:00	12	1020	1019	1023	997	-2.84	0.0	0.0	0.0	0.0	0.0	0.4	19.0	0	0	0.0
WS B3	17/04/2012	15:05:00	12	1020	1019	1023	997	-3.09	0.0	0.0	0.0	0.0	0.0	0.1	19.6	0	0	0.0
WS B4	17/04/2012	15:10:00	12	1020	1019	1023	996	-3.14	0.0	0.0	0.0	0.0	0.0	0.0	20.1	0	0	0.0
Field Engineer:	G. Pursey	rsey																

Pump Running Time (sampling): (Standard 120 sec)
Pump Running Time (purge): (Standard 30 sec)

Flow Details (e.g. 5 sec average for 1 min.):

Other Remarks:

PID : Photo-Ionisation Detector

"<" indicates that reading is **under** the limit range,

">" indicates that reading is **over** the limit range,

"*" Level to be determined

	harrison group	Wa	ter Monitorin	g Field Reco	rd
		Date:	23/03/2012	Job No :	GL16482
Client :	Tibbalds Planning and Urban Design	Project :	Bourne Estate, 0	Camden	
Method: Dipmeter		Drawing No.:			
Weather (include 1	emperature & Pressure)	State of Ground (e.g. Dry, Wet, Sno	ow covered.)	
Broken cloud, 13o	C, 1024hPa.	Dry			
Position No.	Time (hh:mm:ss)	Water Level (m)		Comments	
BH B1 (shallow)	11:23:00	-	No access due	to car on cover.	
BH B1 (deep)	11:23:00	-	No access due	to car on cover.	
BH B2A	11:30:00	6.22	Base of the pipe taken.	e: 7.90m, purged	l dry, no sample
WS B2	12:40:00	Dry	Base of the pipe	e: 3.00m.	
WS B3	12:20:00	Dry	Base of the pipe	e: 3.00m.	
WS B4	12:00:00	Dry	Base of the pipe	e: 2.94m.	
		1	Field Crew:	G. Pursey	

	harrisongroup	Wa	ter Monitoring	j Field Rec	ord
		Date:	05/04/2012	Job No :	GL16482
Client :	Tibbalds Planning and Urban Design	Project :	Bourne Estate, C	Camden	
Method: Dipmeter		Drawing No.:			
Weather (include T	emperature & Pressure)	State of Ground (e	e.g. Dry, Wet, Sno	w covered.)	
Cloudy, 6c, 1019m	Bar	Dry			
Position No.	Time (hh:mm:ss)	Water Level (m)		Comments	
BH B1 (shallow)	14:00:00	Dry	Base 3.09m.		
BH B1 (deep)	14:05:00	6.04	Base 8.00m. Sar litres to achieve a brown		ter purging 10 e. Sample orange
BH B2A	14:20:00	7.01	Base 7.90m. Bor	ehole purgec	l dry. No sample
WS B2	14:40:00	Dry	Base 3.00m.		
WS B3	14:50:00	Dry	Base 3.00m.		
WS B4	14:05:00	Dry	Base 2.94m.		
			Field Crew:	G. Pursey	

	harrisongroup	Wa	ter Monitoring	Field Rec	ord
		Date:	17/04/2012	Job No :	GL16482
Client :	Tibbalds Planning and Urban Design	Project :	Bourne Estate, C		
Method: Dipmeter	Orban Besign	Drawing No.:			
Weather (include T	emperature & Pressure)	State of Ground (e.g. Dry, Wet, Sno	w covered.)	
Scattered showers	, 12c, 998mBar	Wet			
Position No.	Time (hh:mm:ss)	Water Level (m)		Comments	
BH B1 (shallow)	14:00:00	Dry	Base 3.08m.		
BH B1 (deep)	14:05:00	6.04	Base 8.00m. San litres to achieve a brown	•	
BH B2A	14:20:00	7.23	Base 7.88m. Bor	ehole purged	dry. No sample
WS B2	14:40:00	Dry	Base 3.00m.		
WS B3	14:50:00	Dry	Base 2.99m.		
WS B4	14:05:00	Dry	Base 2.93m.		
	1	ı	Field Crew:	G. Pursey	

APPENDIX D

LABORATORY TESTING

www.harrisongroupuk.com

June 2012

														GEC	TECH	NICAL	LABOI	RATOR	Y SCH	EDULE							0
		h	arris	ongr	oup					Projec	t Name	e:		Bourne Estate	e, Camo	den											Date Scheduled: 16/03/2012
										Projec	t ID:			GL16482													Lab turn around: 2 Weeks
Project Engineer	r:	Camp	bell Rei	ith Hill L	LP.					Projec	t Client	::		Tibbalds Plan	ning ar	ıd Urba	n Desi	gn									Results Due Date: 30/03/2012
Email Reports to:	GL@h	arrison	groupu	k.com																							
		Sar	nple				Cl	assifica	tion				Che	mical	Co	mpact	ion			Strengt	h			Addi	tional	1	_
Exploratory Hole No.	Sample Type	Sample Ref	Depth From	Depth To	Moisture Content	Density	Atterberg Limit	Particle Density	Wet Sieve	Dry Sieve	Pipette	Organic Matter	Water soluble sulphate & pH	Initial BRE Special Digest 1 suite for "Brownfield sites" Initial BRE Special Digest 1 suite for"Pyrite bearing ground	2.5kg Rammer	4.5kg Rammer	Vibrating Rammer	CBR Test	Oedometer	Unconfined	Triaxial U100	Triaxial U38					Remarks
BH B1	В	1	1.20	1.65					Х																		
BH B1	D	2	1.80	1.80									Х														
BH B1	D	4	4.00	4.00									Х														
BH B1	В	4	4.50	4.95					Х																		
BH B1	D	8	8.00	8.00	Х		Х																				
BH B1	U	1	9.00	9.45																	Х						Cell pressure 360kPa
BH B1	D	9	9.45	9.55										Х													
BH B2A	D	2	2.00	2.00									Х														
BH B2A	В	2	2.50	2.95					Х																		
BH B2A	В	5	6.00	6.45					Х																		
BH B2A	D	6	8.00	8.00										х													
BH B2A	D	7	9.00	9.45	Х		Х																				
BH B2A	U	1	10.50	10.95																	Х						Cell pressure 420kPa
BH B2A	D	9	12.00	12.45									Х														
BH B2A	U	2	13.50	13.95																	Х						Cell pressure 540kPa
BH B2A	U	3	16.50	16.95																	Х						Cell pressure 660kPa
BH B2A	D	12	16.95	17.05									Х														
BH B2A	U	4	19.50	19.95																	Х						Cell pressure 780kPa
BH B2A	D	16	21.00	21.45									Х														
BH B2A	W	1	22.50	22.50									TR														
BH B2A	D	17	22.95	23.05	Х																						
BH B2A	D	18	24.00	24.45	Х		Х																				
BH B2A	U	6	25.50	25.95																	Х						Cell pressure 1020kPa
	1	1	1	+	1	1	+	+	•		+	1	+				1	1	+	1	1	.	1	1	1	1	

Х

Χ

X

BH B2A

WS B3

WS B4

WS B2A

D

D

D

ES

1

19 25.95 26.05

1 1.20 1.65

3 1.00

1.20 1.45

Χ

Χ

/Z-															GEC	TECH	NICAL	LABOR	RATOR	Y SCHI	EDULE						0
		h	arris	ongr	oup					Projec	t Name			Bourn	e Estate	e, Cam	den									Date Scheduled:	16/03/2012
										Projec	t ID:			GL164	182											Lab turn around:	2 Weeks
Project Enginee	r:	Camp	bell Rei	th Hill L	.LP					Projec	t Client:			Tibba	lds Plan	ning ar	id Urba	n Desi	gn							Results Due Date:	30/03/2012
Email Reports to:	GL@h		groupul	c.com																							
		Sar	nple			1	Cla	assificat	tion				Che	mical		Co	mpacti	ion			Strengt	:h		Addi	tional		
Exploratory Hole No.	Sample Type	Sample Ref	Depth From	Depth To	Moisture Content	Density	Atterberg Limit	Particle Density	Wet Sieve	Dry Sieve	Pipette	Organic Matter	Water soluble sulphate & pH	Initial BRE Special Digest 1 suite for "Brownfield sites"	Initial BRE Special Digest 1 suite for"Pyrite bearing ground"	2.5kg Rammer	4.5kg Rammer	Vibrating Rammer	CBR Test	Oedometer	Unconfined	Triaxial U100	Triaxial U38			Rem	arks
WS B2A	ES	5	2.00		Х		Х																				
WS B2A	ES	6	2.50											Х													
WS B6	ES	4	1.10											Х													
WS B6	ES	5	1.50		Х		Х																				
		To	otal Sch	eduled	7		6		4				9	4	ļ							6					
			Total	Tested	7		6		4				9	4								6					

harrisontesting

SERVICES

Harrison Testing Services

Units 1 & 2 Alston Road Hellesdon Park Industrial Estate Norwich NR6 5DS Tel:+44 (0) 1603 416333 Fax +44 (0) 1603 416443

Client: Harrison Group Environmental Poplar Business Park 10 Preston Road London E14 9RL

For the attention of: Jiban Bajracharya

Date of Issue: 04/05/2012 Page Number 1 of 12

TEST REPORT TRANSMITTAL

Project	Bourne Estate, Camden	Samples	Received	11/04/2012
Report No	GL16482	Instruction	on received	03/04/2012
Your Ref	GL16482	Testing o	commenced	20/04/2012
	SUMMARY OF RESULTS ATTAC	HED		•
	Test Method and Description		Quantity	UKAS Accredited
SS1377: Part 2	: 1990:3.2 Moisture Content		7	Yes
	: 1990:4.3/4.5 Liquid & Plastic Limits - Definitive Method		6	Yes
	: 1990:9.3 Particle Size Distribution - Wet Sieve Method		4	Yes
	: 1990:8.0 Unconsolidated Undrained Shear Strength - Sing	le Stage	6	Yes
Remarks:				
iemarks:				
ssued by: M \	Willson			
pproved Signator	ine:			

Approved Signatories:

M Willson (Laboratory Manager), G Bream (Senior Laboratory Technician)

Unless we are notified to the contrary, samples will be disposed after a period of one month from this date This report should not be reproduced except in full without the written approval of the laboratory Only those results indicated in this report are UKAS accredited and any opinion or interpretations expressed are outside the scope of UKAS accreditation

SERVICES

PROJECT NAME: Bourne Estate, Camden

PROJECT NUMBER: GL

CLIENT: London Borough of Camden

DATE OF ISSUE: 04/05/2012

SUMMARY OF MOISTURE CONTENT, LIQUID LIMIT (ONE POINT CONE PENETROMETER METHOD), PLASTIC LIMIT, PLASTICITY INDEX AND LIQUIDITY INDEX TO BS1377: PART 2: 1990

BH/TP No	Depth (m)	Sample No.	Moisture Content (%)	Liquid Limit (%)	Plastic Limit (%)	Plasticity Index	Liquidity Index	Passing 0.425mm (%)	Soil Class	Sample Description
BH B1	8.00	D8	32	67	26	41	0.15	83		Dark grey mottled orange brown slightly gravelly CLAY. Gravel is of pyrite
BH B2A	9.00	D7	25	75	26	50	-0.01	100	CV	Dark grey mottled orange brown CLAY
BH B2A	22.95	D17	19							Light grey very sandy CLAY
BH B2A	24.00	D18	24	54	23	30	0.02	100	СН	Brown mottled orange brown and blue grey CLAY
WS B2A	1.00	ES3	22	35	20	15	0.13	59		MADE GROUND (Dark brown gravelly CLAY. Gravel is of flint, brick, concrete and shell fragments)
WS B2A	2.00	ES5	22	37	21	16	0.05	61		MADE GROUND (Brown and dark brown slightly sandy gravelly CLAY. Gravel is of flint, brick and shell fragments)
WS B6	1.50	ES5	15	36	23	14	0.58	44		MADE GROUND (Brown slightly sandy gravelly CLAY. Gravel is of flint, chalk and brick fragments)

BS1377: Part 2: Clause 3.2: 1990 Determination of Moisture Content

BS1377: Part 2: Clause 4.4: 1990 Determination of Liquid Limit (Single Point Cone Penetrometer Method)

BS1377: Part 2: Clause 5: 1990 Determination of Plastic Limit and Plasticity Index

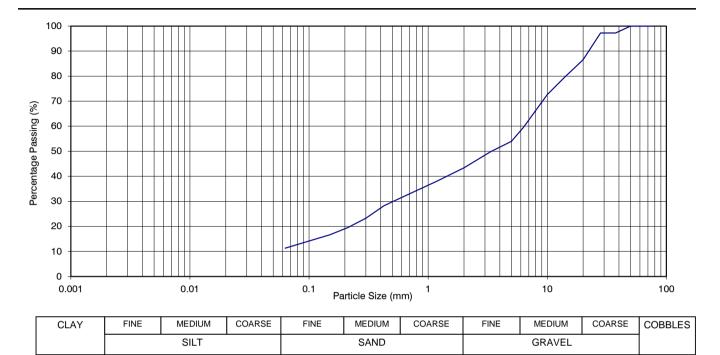
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road

Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

BH B1



PROJECT NAME: Bourne Estate, Camden

BH/TP No.: GL16482 1.20 PROJECT NUMBER: Depth (m): CLIENT: London Borough of Camden Sample No.: В1

DATE OF ISSUE: 04/05/2012

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	97
28.0	97
20.0	87
14.0	80
10.0	73
6.30	59
5.00	54
3.35	50
2.00	43
1.18	38
0.600	32
0.425	28
0.300	23
0.212	20
0.150	17
0.063	11

Sample Description						
MADE GROUND (Brown and reddish brown clayey silty very sandy GRAVEL.						
Gravel is of flint, concrete, brick and slag fragments)						

Sample Proportions %							
Cobbles	0.0						
Gravel	56.6						
Sand	32.1						
Silt / Clay	11.3						

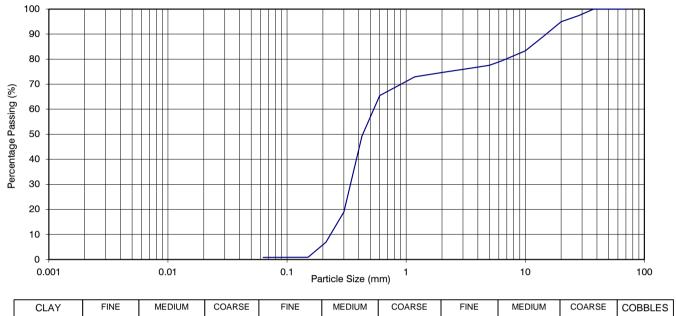
Remarks	

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road

Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME: Bourne Estate, Camden

BH/TP No.: BH B1 GL16482 4.50 PROJECT NUMBER: Depth (m): CLIENT: London Borough of Camden Sample No.: В4

DATE OF ISSUE: 04/05/2012

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
		SILT			SAND			GRAVEL		

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	100
28.0	97
20.0	95
14.0	89
10.0	83
6.30	79
5.00	78
3.35	76
2.00	75
1.18	73
0.600	65
0.425	49
0.300	19
0.212	7
0.150	1
0.063	1

Sample Proportions %						
Cobbles	0.0					
Gravel	25.4					
Sand	73.8					
Silt / Clay	0.8					

Remarks

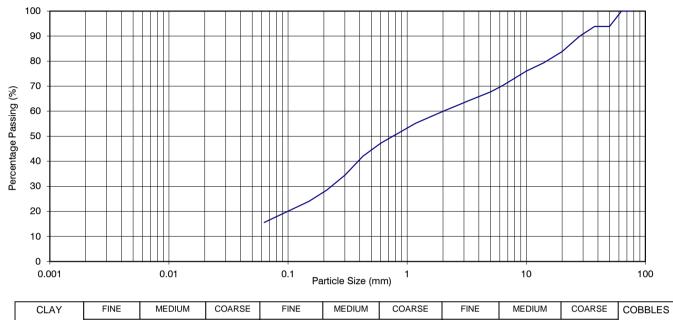
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road

Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

BH B2A



PROJECT NAME: Bourne Estate, Camden

BH/TP No.: GL16482 2.50 PROJECT NUMBER: Depth (m): CLIENT: London Borough of Camden Sample No.: В2

DATE OF ISSUE: 04/05/2012

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING

ſ	CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
			SILT			SAND			GRAVEL		

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	94
37.5	94
28.0	90
20.0	84
14.0	79
10.0	76
6.30	70
5.00	68
3.35	64
2.00	60
1.18	55
0.600	47
0.425	42
0.300	34
0.212	29
0.150	24
0.063	16

Sample Description					
MADE GROUND (Brown and reddish brown clayey silty SAND / GRAVEL.					
Gravel is of flint, brick, concrete and occasional shell fragments)					

Sample Proportions %							
Cobbles	0.0						
Gravel	40.0						
Sand	44.3						
Silt / Clay	15.6						

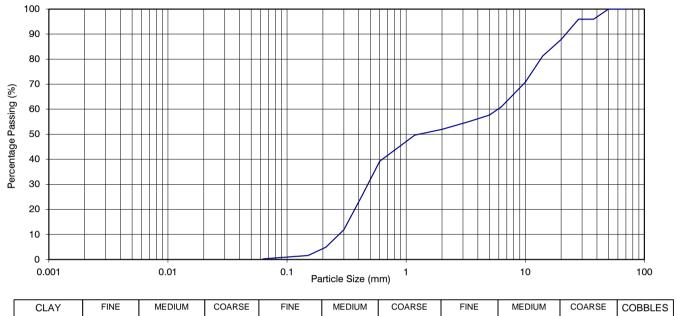
Remarks	

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road

Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME: Bourne Estate, Camden

BH/TP No.: BH B2A GL16482 6.00 PROJECT NUMBER: Depth (m): CLIENT: London Borough of Camden Sample No.: В5

DATE OF ISSUE: 04/05/2012

DETERMINATION OF PARTICLE SIZE DISTRIBUTION TO BS1377: PART 2: 1990: CLAUSE 9.2 - WET SIEVING

CLAY	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	FINE	MEDIUM	COARSE	COBBLES
		SILT			SAND			GRAVEL		

Particle Size (mm)	Percentage Passing
75.0	100
63.0	100
50.0	100
37.5	96
28.0	96
20.0	88
14.0	81
10.0	71
6.30	61
5.00	58
3.35	55
2.00	52
1.18	50
0.600	39
0.425	25
0.300	12
0.212	5
0.150	2
0.063	0

Sample Description			
Orange brown SAND / GRAVEL. Gravel is of flint and quartzite			

Sample Proporti	ons %
Cobbles	0.0
Gravel	48.0
Sand	51.7
Silt / Clay	0.2
	<u> </u>

Remarks

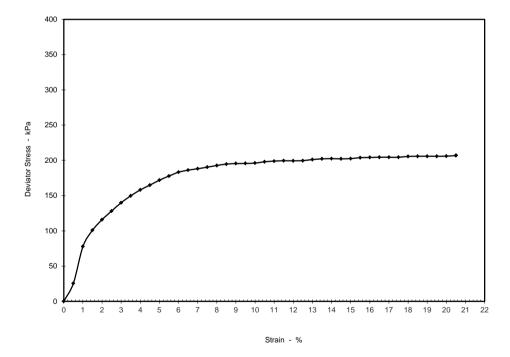
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road

Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

PROJECT NAME: Bourne Estate, Camden BH/TP No.: BH B1
PROJECT NUMBER: GL16482 Depth (m): 9.00
CLIENT: London Borough of Camden Sample No.: U1


DATE OF ISSUE: 04/05/2012

DETERMINATION OF UNCONSOLIDATED UNDRAINED SINGLE STAGE SHEAR STRENGTH TO BS1377 : PART 7 : 1990 : CLAUSE 8

Sample Details			
Sample Condition		Undisturbed	
Height	mm	200.0	
Diameter	mm	101.5	
Moisture Content	%	27	
Bulk Density	Mg/m ³	2.04	
Dry Density	Mg/m³	1.60	
Test Details			
Membrane Thickness	mm	0.25	
Membrane Correction	kPa	0.95	
Rate of Axial Displacement	%/min	2.00	
Cell Pressure	kPa	360	
Strain at Failure	%	20.5	
Maximum Deviator Stress	kPa	207	
Shear Strength	kPa	103	
Mode of Failure		Compound	
		High strength da	ark grey brown and occasional
Sample Description		orange brown C	LAY

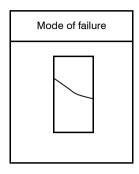
Shear Strength		
Parameters		
Cu	103 kPa	
Phi	N/A°	

REMARKS (Including any abnormalities or departures from procedure)

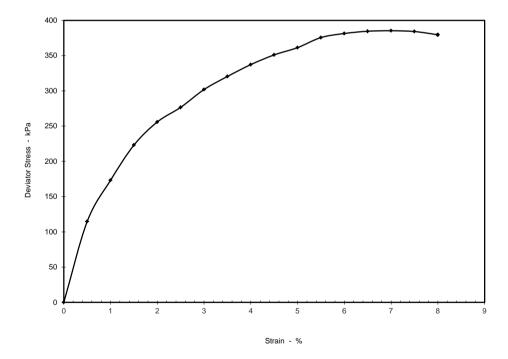
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME: Bourne Estate, Camden BH/TP No.: BH B2A
PROJECT NUMBER: GL16482 Depth (m): 10.50
CLIENT: London Borough of Camden Sample No.: U1


DATE OF ISSUE: 04/05/2012

DETERMINATION OF UNCONSOLIDATED UNDRAINED SINGLE STAGE SHEAR STRENGTH TO BS1377 : PART 7 : 1990 : CLAUSE 8

Sample Details				
Sample Condition		Undisturbed		
Height	mm	200.0		
Diameter	mm	103.1		
Moisture Content	%	25		
Bulk Density	Mg/m ³	1.98		
Dry Density	Mg/m³	1.59		
Test Details				
Membrane Thickness	mm	0.25		
Membrane Correction	kPa	0.41		
Rate of Axial Displacement	%/min	2.00		
Cell Pressure	kPa	420		
Strain at Failure	%	7.0		
Maximum Deviator Stress	kPa	385		
Shear Strength	kPa	193		
Mode of Failure		Brittle		
		Very high streng	th dark grey brow	n and
Sample Description		occasional orang	ge brown CLAY	

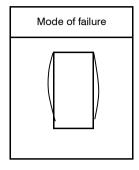
Shear Strength			
Parameters			
Cu	193 kPa		
Phi N/A °			

REMARKS (Including any abnormalities or departures from procedure)

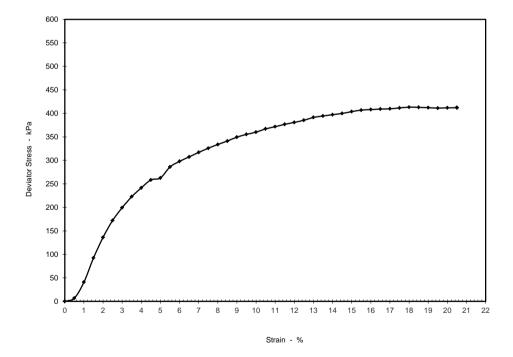
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME:Bourne Estate, CamdenBH/TP No.:BH B2APROJECT NUMBER:GL16482Depth (m):13.50CLIENT:London Borough of CamdenSample No.:U2


DATE OF ISSUE: 04/05/2012

DETERMINATION OF UNCONSOLIDATED UNDRAINED SINGLE STAGE SHEAR STRENGTH TO BS1377 : PART 7 : 1990 : CLAUSE 8

Sample Details			
Sample Condition		Undisturbed	
Height	mm	200.0	
Diameter	mm	103.1	
Moisture Content	%	22	
Bulk Density	Mg/m³	2.02	
Dry Density	Mg/m³	1.65	
Test Details			
Membrane Thickness	mm	0.25	
Membrane Correction	kPa	0.86	
Rate of Axial Displacement	%/min	2.00	
Cell Pressure	kPa	540	
Strain at Failure	%	18.0	
Maximum Deviator Stress	kPa	413	
Shear Strength	kPa	207	
Mode of Failure		Plastic	
Sample Description		Very high streng	th dark grey brown CLAY

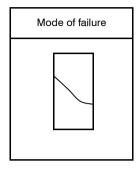
She	Shear Strength		
Parameters			
Cu	207 kPa		
Phi N/A°			

REMARKS (Including any abnormalities or departures from procedure)

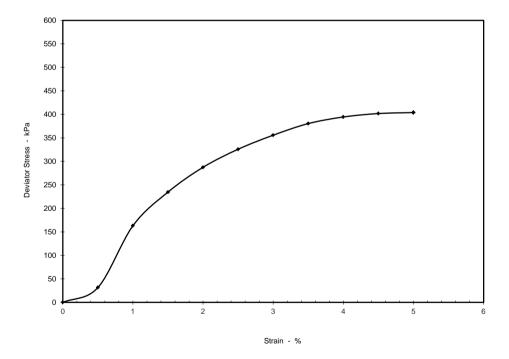
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME:Bourne Estate, CamdenBH/TP No.:BH B2APROJECT NUMBER:GL16482Depth (m):16.50CLIENT:London Borough of CamdenSample No.:U3


DATE OF ISSUE: 04/05/2012

DETERMINATION OF UNCONSOLIDATED UNDRAINED SINGLE STAGE SHEAR STRENGTH TO BS1377 : PART 7 : 1990 : CLAUSE 8

Sample Details			
Sample Condition		Undisturbed	
Height	mm	200.0	
Diameter	mm	101.8	
Moisture Content	%	24	
Bulk Density	Mg/m³	2.06	
Dry Density	Mg/m³	1.66	
Test Details			
Membrane Thickness	mm	0.25	
Membrane Correction	kPa	0.32	
Rate of Axial Displacement	%/min	2.00	
Cell Pressure	kPa	660	
Strain at Failure	%	5.0	
Maximum Deviator Stress	kPa	404	
Shear Strength	kPa	202	
Mode of Failure		Brittle	
		Very high streng	th dark grey brown CLAY
Sample Description			

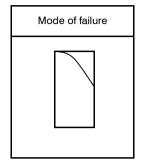
She	Shear Strength										
Parameters											
Cu	202 kPa										
Phi	N/A°										

REMARKS (Including any abnormalities or departures from procedure)

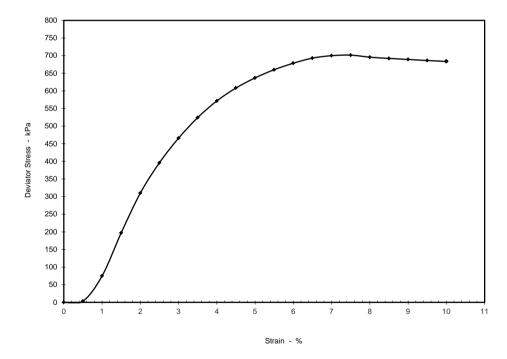
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME:Bourne Estate, CamdenBH/TP No.:BH B2APROJECT NUMBER:GL16482Depth (m):19.50CLIENT:London Borough of CamdenSample No.:U4


DATE OF ISSUE: 04/05/2012

DETERMINATION OF UNCONSOLIDATED UNDRAINED SINGLE STAGE SHEAR STRENGTH TO BS1377 : PART 7 : 1990 : CLAUSE 8

Sample Details			
Sample Condition		Undisturbed	
Height	mm	200.0	
Diameter	mm	102.8	
Moisture Content	%	17	
Bulk Density	Mg/m ³	2.13	
Dry Density	Mg/m ³	1.81	
Test Details			
Membrane Thickness	mm	0.25	
Membrane Correction	kPa	0.44	
Rate of Axial Displacement	%/min	2.00	
Cell Pressure	kPa	780	
Strain at Failure	%	7.5	
Maximum Deviator Stress	kPa	701	
Shear Strength	kPa	351	
Mode of Failure		Brittle	
		Extremely high	orange brown mottled blue grey
Sample Description		CLAY	

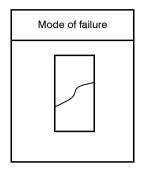
Shear Strength									
Parameters									
Cu	351 kPa								
Phi	N/A°								

REMARKS (Including any abnormalities or departures from procedure)

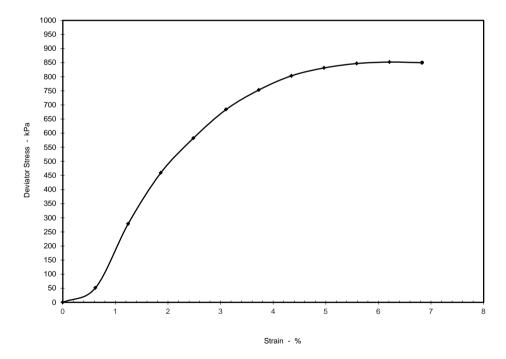
Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443



PROJECT NAME: Bourne Estate, Camden BH/TP No.: BH B2A
PROJECT NUMBER: GL16482 Depth (m): 25.50
CLIENT: London Borough of Camden Sample No.: U6


DATE OF ISSUE: 04/05/2012

DETERMINATION OF UNCONSOLIDATED UNDRAINED SINGLE STAGE SHEAR STRENGTH TO BS1377 : PART 7 : 1990 : CLAUSE 8

Sample Details			
Sample Condition		Undisturbed	
Height	mm	161.0	
Diameter	mm	102.6	
Moisture Content	%	19	
Bulk Density	Mg/m ³	2.16	
Dry Density	Mg/m ³	1.82	
Test Details			
Membrane Thickness	mm	0.25	
Membrane Correction	kPa	0.38	
Rate of Axial Displacement	%/min	2.48	
Cell Pressure	kPa	1020	
Strain at Failure	%	6.2	
Maximum Deviator Stress	kPa	852	
Shear Strength	kPa	426	
Mode of Failure		Brittle	
Sample Description		Extremely high CLAY	orange brown mottled blue grey

Shear Strength									
Parameters									
Cu	426 kPa								
Phi	N/A °								

REMARKS (Including any abnormalities or departures from procedure)

Harrison Geotechnical Engineering

Units 1 & 2 Alston Road Norwich Norfolk NR6 5DS

Tel: +44 (0)1603 416333 Fax: +44 (0)1603 416443

																					TODY SH																				
								Sent from:		rison Gro										act Name:	Jiban Baj					te Sample															
							A	Address:		A11, Po									Ema	l:	GL@ha	rrisong	roupul	k.com		jectCode		GL16482											Sheet:	1	of 1
												_ondon	E14 9RL													mpler ID:															
					Tel: Fax:		-	Fel. No.: Project/Site		7537 92		o Entoto	, Camder						Fax.	No: 020 7	987 0361					ote Refer		GL1	6482			Doto	Requir	od:					One p	roject p	per sheet plea
			Т	T	гах.			-TOJECT/SITE	IVallie	В.	Bouill	ELSIAIE	, Carrider	-			-	-	1					_	Tui	narounu	illie.		1				nequii	eu.	_		-			-	$\overline{}$
iampling Date (dd/mm/yr)	lorehole(Trial Pit No.	ample Type	sample Number	kample Depth in Metres (Top)	kample Depth in Metres (Bottom)	chain of Custody Reference	S)soil or (W)water or (G)gas (specify if other)	iulte Name (from Contract Rates or Quotation) fetals	yanide (free) and (total)	SCMS	henol	МО	sbestos Indentification	РН Ѕαеел			.25 Asbestos screen .26 Asbestos screen and microscopy ID	tion Organic Carbon				(AAA) abaa immada (AAA)	Individual Determinants (GAS)	.58 VOCs inc BTEX. 10ppm			ndividual Determinants (WATER and LEACHATE)	.60 PAH (Total) 61 PAH (Total of USEPA 16)	.62 PAH (16 speciated) (Modified EPA 8100)	.63 TPH - CWG (C5-35) based on TNRCC method 1006	.64 Petrol Range Organics/ BTEX/ MTBE	i. 65 BTEX by GC-MS (Modified US EPA 8150) 1.66 SVOCs target list (one extraction only) (Modified US EPA	2270) 1.67 SVOCs scan (up to 10 peaks, > 80% fft)	list only (Modified US El	1.69 VOCs target list plus TICs (top 10 peaks to 0.01mg/l only) (Modified US EPA 8280)	.70 Phenols (Total) by HPLC		.72 Glycol Suite (See below)			
Ö	<u></u>	ő	ő	ιχ	υχ	ō	s) S	ຫ້ ≥	- 0	п.	à	S	₹ t		_	드 ,	2 2	- 2	+ 2				= -				드	2 2	+		₽	8	8 ÷	- 2	- ≥		-	=		-	++
07/03/2012	BH B2A			4.00			S	X				x	X)	X						-	-	-		-						-			-		+						\rightarrow
07/03/2012 07/03/2012	BH B2A BH B2A		-	8.20			S	X		X	^	^	^ /	X	+	+	+	+	+		++	+	+-	+	+	+		-	+	-		+-	+	+-	\vdash		-+		+	-+	+++
/00/2012	511551	-	1.5	3.20	3.20		††	-	+	+ *				+^	+		+	+	+				+		-	+			1	l			+	t	1					$-\dagger$	
07/03/2012	WS B1	ES	1	0.10	0.10		S	х	х	х	х	х	x >	х																											
07/03/2012	WS B1	ES	2	0.50	0.50		S	х		х	х		x >																												
			$\perp \mathbb{I}$	T	T		$\perp \Gamma$									[_																					[
07/03/2012	WS B2	ES	1	0.10	0.10		S	х	x	X	x		x >						_													_									
07/03/2012	WS B2			0.50			S	х			X	Х	X)								$\perp \perp$									<u> </u>											\perp
07/03/2012	WS B2		-	1.50	1.50		S	Х			Х		X)						4																1						
07/03/2012	WS B2	ES	7	3.00	3.00		S	Х	X	Х	Х	Х	x >	X																											
07/03/2012	WS B3			0.15			S	х			х	х							-		\perp	_							-	ļ			-	<u> </u>	1				1		
07/03/2012	WS B3		+	0.90	+		S	х			х	х							_											ļ			-	-	\perp				\perp		\perp
07/03/2012	WS B3	ES	7	2.50	2.50		S	X	X	X	х	х	x >	X	 	-	+	+-	-			-							-	-			-	-	+-		\dashv		+	\dashv	\rightarrow
07/03/2012	WS B4		1	0.10	0.10		S	x	x	x	х	х	x)	×		-+	-	+-			\vdash	-		-		-				-			-	-	\vdash				+-	-	+++
07/03/2012	WS B4		$\rightarrow - +$	0.10			S	X			X		x >			-	+	+	+	+	+-+	-		+	+	+-	+-+		+	-			+	+	+-	\vdash	\dashv		+	-+	+++
07/03/2012	WS B4		-	1.50	+		s	X			-	X				-+	+	+	+-	+		-		-	+	+			+	-		-	+	-	\vdash		-+		+	-+	+++
07/03/2012	WS B4			2.80			S	^	\rightarrow		X	x			-	-	+	+-	+		++	_		+	+	+-	\vdash		+	 			+	+	+		\dashv		+	-+	+++
,,		-					\Box	- ~	+ ^		· · ·			1	_			+	\top				-	\top					_	1		_	1	1	\vdash		\neg		+		
08/07/2012	WS B5	ES	1	0.10	0.10		S	х	x	х	х	х	x >	х	_	\top	\top		\top		+		_	\top		\top			1	1			1		\top		\neg			-	
08/07/2012	WS B5		-	0.50			s	х					x >																												
08/07/2012	WS B5	ES		1.00			S	х	х	х	х		x >	х																											
			\perp				$\perp \perp$												4	-										<u> </u>			-	-	\perp						
08/07/2012	WS B6			0.10	+		S			Х				Х							\vdash	_								<u> </u>				-	1				\perp		
08/07/2012	WS B6			0.75			S	X			х	х				_	-	-	-	-	-			-					-	1			-	-	+				+	-+	\rightarrow
08/07/2012	WS B6	ES	6	2.10			S	_	X				X)	_	_	+	-	-	-				-	+					-			-	-		\vdash		-			+	++
						Total Sched							21 2 21 2		_	_	-		-		+	-	-	-					-	-		-	-		\vdash		_		+		+++
COMMENTS: da	ata required in AGS	S format	t (V3.1).			TOIR I	esteu	22	21	- 22	21	21	£1 Z	42													1 1			-				-							

1.71 Speciated Phenol Suite: 2-methylphenol (o-cresol); 4-methylphenol (p-cresol); 2, 4-Dimethylphenol; Napthols; 3-methyphenol (m-cresol).

1.72 Glycol Suite: Monoethylene glycol, Propylene glycol, Diethylene glycol, Triethylene glycol. PCB (WHO 12) Congener: 77, 81, 105, 114, 118, 123, 126, 156, 157, 167, 169, 189.

Special Instructions / Known Hazards:

Intended Use of Results:
Required for Environment Agency? Y / (N) (Please Circle as Applicable) Date Recieved: Time: Signature: Report No.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden

Deeside CH5 3US Tel: (01244) 528700

Fax: (01244) 528701 email: mkt@alcontrol.com Website: www.alcontrol.com

Campbell Reith Hill Somerset House 47-49 London Road Redhill Surrey RH1 1LV

Attention: Rhyadd Watkins

CERTIFICATE OF ANALYSIS

Date: 31 May 2012

Customer: H_CAMREITH_REH

Sample Delivery Group (SDG): 120317-4

Your Reference:

Location: Redhill - Bourne Estate

Report No: 183005

We received 36 samples on Thursday March 15, 2012 and 17 of these samples were scheduled for analysis which was completed on Thursday May 31, 2012. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

120317-4 Location: Redhill - Bourne Estate H_CAMREITH_REH-5 **Customer:**

SDG: Order Number: 183005 Job: Campbell Reith Hill Report Number: Client Reference: Attention: Rhyadd Watkins Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
5333440	BHB2	ES1	0.25	08/03/2012
5333441	BHB2	ES2	0.50	08/03/2012
5333442	BHB2	ES3	1.00	08/03/2012
5333443	BHB2	ES4	1.50	08/03/2012
5333445	BHB2	ES5	2.00	08/03/2012
5333446	BHB2	ES6	2.50	08/03/2012
5333447	BHB2	ES7	3.00	08/03/2012
5333448	BHB2	ES8	3.50	08/03/2012
5333449	BHB2	ES9	4.00	08/03/2012
5333450	BHB2	ES10	5.00	08/03/2012
5333451	BHB2	ES11	6.00	08/03/2012
5333452	BHB2	ES12	7.00	08/03/2012
5333453	BHB2	ES13	7.90	08/03/2012
5333454	BHB2	ES14	8.25	08/03/2012
5334285	WSB1	ES1	0.10	08/03/2012
5334286	WSB1	ES2	0.50	08/03/2012
5334287	WSB1	ES3	1.00	08/03/2012
5333017	WSB2	ES1	0.10	08/03/2012
5333018	WSB2	ES2	0.50	08/03/2012
5333019	WSB2	ES3	1.00	08/03/2012
5333020	WSB2	ES4	1.50	08/03/2012
5333021	WSB2	ES5	2.00	08/03/2012
5333022	WSB2	ES6	2.50	08/03/2012
5333024	WSB2	ES7	3.00	08/03/2012
5334288	WSB5	ES4	0.10	09/03/2012
5334289	WSB5	ES5	0.25	09/03/2012
5334290	WSB5	ES6	0.50	09/03/2012
5334291	WSB5	ES7	1.00	09/03/2012
5334292	WSB5	ES8	1.25	09/03/2012
5334293	WSB5	ES9	1.60	09/03/2012
5334294	WSB6	ES10	0.10	09/03/2012
5334295	WSB6	ES11	0.25	09/03/2012
5333254	WSB6	ES8	0.75	09/03/2012
5333255	WSB6	ES9	1.10	09/03/2012
5333256	WSB6	ES10	1.50	09/03/2012
5333257	WSB6	ES11	2.10	09/03/2012

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG

Job:

120317-4

H_CAMREITH_REH-5

CERTIFICATE OF ANALYSIS

Order Number:

Report Number:

Redhill - Bourne Estate

Campbell Reith Hill

Location:

Customer:

Validated

183005

Superseded Report: Client Reference: Attention: Rhyadd Watkins **SOLID** 5334291 5333255 5333254 5333257 5334290 5334294 **Results Legend** Lab Sample No(s) X Test No Determination Possible Customer BHB2 BHB2 BHB2 WSB2 WSB2 WSB2 WSB5 WSB5 WSB6 WSB6 WSB1 WSB1 WSB2 Sample Reference ES11 ES14 ES9 ES3 ES1 ES ES2 ES2 ES4 ES6 ES7 ES4 ES6 ES7 ES8 **AGS Reference** 0.10 0.10 0.50 0.10 0.50 2.50 3.00 0.10 0.50 1.10 0.75 2.10 8.25 4.00 1.00 1.50 Depth (m) .0 1kg TUB
1kg TUB
1kg TUB
1kg TUB
400g Tub (ALE214)
250g Amber Jar (AL
250g Amber Jar (AL
250g Amber Jar (AL
1kg TUB
250g Amber Jar (AL 250g / 400g 250g / 400g 250g / 250g / 400g 250g / 250g / g Tub (ALE21 g Amber Jar (, g Amber Jar (, 1kg TUB Tub (ALE21 Amber Jar (Tub (ALE21 Amber Jar (Amber Jar (Container (AL (AL (AL (AL (AL (AL (AL (AL Anions by Kone (soil) All NDPs: 0 Tests: 2 Asbestos Identification (Soil) All NDPs: 0 Tests: 13 хх Asbestos Quant. - Waste Limit* All NDPs: 0 Tests: 3 Cyanide All NDPs: 0 Comp/Free/Total/Thiocyanate Tests: 13 EPH CWG (Aliphatic) GC (S) All NDPs: 0 Tests: 2 EPH CWG (Aromatic) GC (S) All NDPs: 0 Tests: 2 GRO by GC-FID (S) All NDPs: 0 Tests: 2 X Magnesium (BRE) All NDPs: 0 Tests: 2 Metals by iCap-OES (Soil) Arsenic NDPs: 0 Tests: 15 ХХ x x хх хх Cadmium NDPs: 0 Tests: 15 ХХ XX ХХ X X Chromium NDPs: 0 Tests: 15 ХХ X X X X Copper NDPs: 0 Tests: 15 ХХ X X X X Lead NDPs: 0 Tests: 15 X X X X X X X Mercury NDPs: 0 Tests: 15 ΧХ XX Х X XX XX Х X Nickel NDPs: 0 Tests: 15 XX X X ΧХ

SDG

120317-4

CERTIFICATE OF ANALYSIS

Order Number:

Redhill - Bourne Estate

Location:

Validated

183005

Job: H_CAMREITH_REH-5 **Customer:** Campbell Reith Hill Report Number: Attention: Rhyadd Watkins Superseded Report: Client Reference: **SOLID** 5334291 5333255 5333254 5333257 5334290 5334294 **Results Legend** Lab Sample No(s) X Test No Determination Possible Customer BHB2 BHB2 BHB2 WSB2 WSB1 WSB2 WSB5 WSB6 WSB6 WSB1 Sample Reference ES11 ES14 ES9 ES3 ES ES1 ES2 ES4 ES6 ES2 ES7 ES4 ES6 ES7 ES8 **AGS Reference** 0.10 0.50 0.10 0.50 0.10 2.50 3.00 0.10 0.50 1.10 0.75 2.10 8.25 4.00 1.00 1.50 Depth (m) .0 1kg TUB
1kg TUB
1kg TUB
1kg TUB
400g Tub (ALE214)
250g Amber Jar (AL
250g Amber Jar (AL
250g Amber Jar (AL
1kg TUB
250g Amber Jar (AL 250g / 400g 250g / 400g 250g / 250g / 400g 250g / 250g / g Tub (ALE21 g Amber Jar (, g Amber Jar (, 1kg TUB Tub (ALE21 Amber Jar (Tub (ALE21 Amber Jar (Amber Jar (Container (AL (AL (AL (AL (AL (AL (AL (AL Metals by iCap-OES (Soil) Selenium NDPs: 0 Tests: 15 XX x x Zinc NDPs: 0 Tests: 15 хх хх X X NO3, NO2 and TON by KONE (s) All NDPs: 0 Tests: 2 PAH by GCMS All NDPs: 0 Tests: 15 рΗ All NDPs: 0 Tests: 15 X X X X Phenols by HPLC (S) All NDPs: 0 Tests: 13 XX Sample description All NDPs: 0 Tests: 17 XX X XX XX XX Total Organic Carbon All NDPs: 3 Tests: 10 Total Organic Carbon (Asb) All NDPs: 0 Tests: 3 TPH c6-40 Value of soil All NDPs: 0 Tests: 15 X X X X X X TPH CWG GC (S) All NDPs: 0 Tests: 2

Validated

SDG: 120317-4 **Job:** H_CAMR

H_CAMREITH_REH-5

Location:Redhill - Bourne EstateCustomer:Campbell Reith HillAttention:Rhyadd Watkins

Order Number: Report Number: Superseded Report:

183005

Sample Descriptions

Grain Sizes

Client Reference:

very fine <	0.063mm	fine	0.063mm - 0.1mm	medi	um 0.1mn	n - 2mm	coars	e 2mm - 10)mm	very coar	se >10m		
Lab Sample No(s)	Custon	ner Sample R	ef. Depth (m)		Colour	Description	1	Grain size	Inclu	sions	Inclusions 2		
5333442		BHB2	1.00		Dark Brown	Sand		0.063 - 0.1 mm	Sto	nes	Brick		
5333449		BHB2	4.00		Light Brown	Sand		0.1 - 2 mm	Sto	nes	N/A		
5333454		BHB2			Dark Brown	Silty Clay Loa	am	<0.063 mm	No	one	None		
5334285	WSB1		0.10		Light Brown	rown Loamy Sand		0.1 - 2 mm	Sto	nes	None		
5334286	WSB1		0.50		Dark Brown	Sandy Loan	n	0.1 - 2 mm	Sto	nes	Vegetation		
5333017	WSB2		0.10		Dark Brown	Silt Loam		0.063 - 0.1 mm	Glass &	Stones	Vegetation		
5333018		WSB2			Dark Brown	Silty Clay Loam		0.063 - 0.1 mm	Stones		Vegetation		
5333020		WSB2			Dark Brown	Silt Loam		0.063 - 0.1 mm	Sto	nes	Brick		
5333022		WSB2	2.50		Dark Brown	Silty Clay		0.063 - 0.1 mm	No	one	None		
5333024		WSB2	3.00		Light Brown	Sandy Clay		0.063 - 0.1 mm	Sto	nes	Vegetation		
5334288		WSB5	0.10		Dark Brown	Silty Clay Loam		0.063 - 0.1 mm	Sto	nes	Vegetation		
5334290		WSB5	0.50		Dark Brown	Sandy Silt Loa	am	0.063 - 0.1 mm	Sto	nes	Vegetation		
5334291		WSB5	1.00		Dark Brown	Silty Clay Loa	am	0.063 - 0.1 mm	Sto	nes	Vegetation		
5333254		WSB6	0.75		Dark Brown	Loamy Sand	d	0.063 - 0.1 mm	Br	ick	Stones		
5333255	WSB6		WSB6		1.10		Dark Brown	Sandy Clay		0.1 - 2 mm	Sto	nes	None
5333257	WSB6		2.10		Dark Brown	Loam Loamy Sand	d	0.063 - 0.1 mm	Br	ick	Stones		
5334294	294 WSB6		0.10		Dark Brown	Silty Clay Loam		0.063 - 0.1 mm	m Stones		Vegetation		

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

120317-4 SDG:

Client Reference:

Job: H_CAMREITH_REH-5 **Customer:** Attention:

Location:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins

Order Number: Report Number:

183005 Superseded Report:

Customer Sample R BHB2 BHB2 WSB1 WSB1 WSB2 BHB2 ISO17025 accredited mCERTS accredited Deviating sample Depth (m) 1.00 4.00 8.25 0.10 0.50 0.10 Aqueous / settled sample Aqueous / settled sample.
Dissolved / filtered sample.
Total / unfiltered sample.
Subcontracted test.
% recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery dies filt Sample Type Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Date Sampled 08/03/2012 08/03/2012 08/03/2012 08/03/2012 08/03/2012 08/03/2012 Sample Time 15/03/2012 15/03/2012 15/03/2012 15/03/2012 15/03/2012 15/03/2012 120317-4 120317-4 120317-4 SDG Ref 120317-4 120317-4 120317-4 5333442 5333449 5333454 5334285 5334286 5333017 Lab Sample No.(s) Trigger breach confirmed ES3 ES9 ES14 ES2 ES1 (F) AGS Reference ES1 LOD/Units Method Component TM062 (S) <0.01 <0.01 <0.01 <0.01 Phenol < 0.01 mg/kg § M §Μ § M §Μ Soil Organic Matter (SOM) <0.35 % TM132 5.02 4.97 4.34 4.1 # # рΗ Hq 1 TM133 10.7 11.8 11.5 7 74 Units Μ М Μ M Cyanide, Total TM153 <1 <1 <1 2.38 <1 mg/kg § M §Μ § M §Μ TM153 <1 <1 <1 Cvanide. Free <1 mg/kg <1 §Μ §Μ §Μ §Μ TPH >C6-C40 <10 TM154 1140 12.1 50.3 727 349 409 ma/ka § # § # § # § # § # § # 7.91 TM181 117 138 11 6 14 4 136 Arsenic < 0.6 mg/kg Μ М Μ M M M Cadmium <0.02 TM181 0.173 <0.02 0.216 <0.02 0.0558 4.66 Μ mg/kg Μ Μ М Μ М Chromium TM181 10.3 38.9 28.5 17.1 60.8 < 0.9 15 mg/kg M M Μ М Μ М Copper <1.4 TM181 57 5.64 29 35.8 58.2 99.8 Μ Μ Μ Μ М Μ ma/ka Lead TM181 329 13.9 215 652 381 5 14 < 0.7 mg/kg M M Μ M M M Mercury <0.14 TM181 1.8 <0.14 <0.14 1.01 2.6 1.23 ma/ka Μ М Μ М Μ М Nickel TM181 15.3 12.9 39.3 11.3 13.8 28.3 < 0.2 mg/kg M M M M M M Selenium <1 mg/kg TM181 <1 <1 1.75 <1 <1 1.03 # Zinc <1.9 TM181 89.7 13.1 89.3 84.5 134 432 М Μ М Μ М Μ mg/kg

Validated

SDG: 120317-4

Client Reference:

Job: H_CAMREITH_REH-5

Location: Customer: Attention: Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins Order Number: Report Number: Superseded Report:

# ISO17025 accredited.	Cus	stomer Sample R	WSB2	WSB2	WSB2	WSB2	WSB5	WSB5
M mCERTS accredited.								
§ Deviating sample. aq Aqueous / settled sample.		Depth (m)	0.50	1.50	2.50	3.00	0.10	0.50
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 08/03/2012	Soil/Solid 08/03/2012	Soil/Solid 08/03/2012	Soil/Solid 08/03/2012	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012
* Subcontracted test.		Sample Time				00/03/2012	09/03/2012	09/03/2012
** % recovery of the surrogate stand check the efficiency of the method		Date Received	15/03/2012	15/03/2012	15/03/2012	15/03/2012	15/03/2012	15/03/2012
results of individual compounds v	vithin	SDG Ref	120317-4 5333018	120317-4 5333020	120317-4 5333022	120317-4 5333024	120317-4 5334288	120317-4 5334290
samples aren't corrected for the re (F) Trigger breach confirmed	ecovery La	ab Sample No.(s) AGS Reference	ES2	ES4	ES6	ES7	ES4	ES6
Component	LOD/Units	Method						
Waste Limit, Gravimetric -	<0.001 %							<0.001 (F)
%*		(ASB)						`´#
Waste Limit, PCOM	<0.001 %	SUB						<0.001
evaluation - %*		(ASB)						
Waste Limit, Total - %*	<0.001 %							<0.001
		(ASB)						#
Phenol	<0.01	TM062 (S)	<0.01	<0.01		<0.01	<0.01	<0.01
Cail Oscaria Matter (COM)	mg/kg	TM400	§ M	§ M		§ M	§ M	§ M
Soil Organic Matter (SOM)	<0.35 %	TM132	2.1	9.74 #		0.781 #	2.93 #	
pH	1 pH	TM133	8.68	8.14	8.12	8.04	7.76	8.41
P'	Units	1 101 1 33	0.00 M	0.1 4 M	6.12 § M	6.0 4 M	7.76 M	0.41 M
Cyanide, Total	<1 mg/kg	TM153	<1	<1	S IVI	<1	<1	<1
J , . 			§ M	§ M		§ M	§ M	§ M
Cyanide, Free	<1 mg/kg	TM153	<1	<1		<1	<1	<1
	"		§ M	§ M		§ M	§ M	§ M
TPH >C6-C40	<10	TM154	66.5	94.2		<10	147	167
	mg/kg		§ #	#		§#	#	#
Arsenic	<0.6	TM181	18.7	15		9.28	10.2	16.8
	mg/kg		M	M		M	M	M
Cadmium	<0.02	TM181	0.373	<0.02		<0.02	0.296	0.0737
01 :	mg/kg	T11101	M	M		M	M	M
Chromium	<0.9	TM181	19.6 M	15.1		18.6 M	17.7 M	14.9
Copper	mg/kg <1.4	TM181	88.3	M 184		22	47.7	139
Copper	mg/kg	1101101	66.3 M	10 4 M		M	47.7 M	139 M
Lead	<0.7	TM181	631	1090		55.3	129	393
Lead	mg/kg	1111101	М	M		00.0 M	123 M	M
Mercury	<0.14	TM181	1.36	2.61		0.27	0.769	3.27
,	mg/kg		М	M		M	М	M
Nickel	<0.2	TM181	21	21.5		17.4	17	16.6
	mg/kg		M	M		M	М	M
Selenium	<1 mg/kg	TM181	<1	<1		<1	<1	<1
			#	#		#	#	#
Zinc	<1.9	TM181	89.4	113		39.8	108	205
Oalahla Oalahata Od	mg/kg	TN4040	M	M	-0.000	M	M	M
Soluble Sulphate 2:1 extract as SO4 BRE	<0.003	TM243			<0.003 § M			
Chloride 2:1 water/soil	g/l <0.001	TM243			0.0019			
extract BRE	g/l	1101243			0.0019 § M			
Nitrate as NO3, 2:1 water	<0.0003	TM243			0.012			
soluble (BRE)	g/l				3.5. <u>-</u>			
Magnesium (BRE)	<0.008	TM282			<0.008			
	g/l							
Soil Organic Matter (SOM)	<0.1 %	TM321						1.44
								#

Validated

SDG: 120317-4

Client Reference:

Job: H_CAMREITH_REH-5 Location: **Customer:** Attention:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins

Order Number: Report Number:

183005 Superseded Report:

Results Legend # ISO17025 accredited.	Cu	stomer Sample R	WSB5	WSB6	WSB6	WSB6	WSB6	
M mCERTS accredited.								
§ Deviating sample. aq Aqueous / settled sample.		Depth (m)	1.00	0.10	0.75	1.10	2.10	
diss.filt Dissolved / filtered sample.		Sample Type	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012	
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled Sample Time	09/03/2012	09/03/2012	09/03/2012	09/03/2012	09/03/2012	
** % recovery of the surrogate standar check the efficiency of the method.		Date Received	15/03/2012	15/03/2012	15/03/2012	15/03/2012	15/03/2012	
results of individual compounds wit	thin	SDG Ref	120317-4 5334291	120317-4 5334294	120317-4 5333254	120317-4 5333255	120317-4 5333257	
samples aren't corrected for the rec (F) Trigger breach confirmed	overy L	ab Sample No.(s) AGS Reference	ES7	ES10	ES8	ES9	ES11	
Component	LOD/Units							
Waste Limit, Gravimetric -	<0.001 %	SUB	<0.001 (F)				<0.001 (F)	
%*		(ASB)	#				#	
Waste Limit, PCOM	<0.001 %						<0.001	
evaluation - %*		(ASB)						
Waste Limit, Total - %*	<0.001 %		<0.001				<0.001	
Phenol	<0.01	(ASB)	*	<0.01	<0.01		<0.01	
Prierioi	mg/kg	TM062 (S)	<0.01 § M	<0.01 § M	<0.01 § M		<0.01 § M	
Soil Organic Matter (SOM)	<0.35 %	TM132	S IVI	4.41	2.22		S IVI	
Con Organio Matter (COM)	10.00 /0	111102		#	#			
рH	1 pH	TM133	8.28	7.29	8.51	8.54	8.62	
·	Units		M	М	M	§ M	M	
Cyanide, Total	<1 mg/kg	TM153	<1	<1	<1		<1	
			§ M	§ M	§ M		§ M	
Cyanide, Free	<1 mg/kg	TM153	<1 S.M.	<1	<1 S.M.		<1 S.M.	
TPH >C6-C40	<10	TM154	§ M	§ M 280	§ M 70.1		§ M	
1777 /00-040	<10 mg/kg	1 IVI 1 54	207 §#	280 §#	70.1 #		<10 #	
Arsenic	<0.6	TM181	14.3	12.4	9.58		13.9	
	mg/kg		M	12.4	0.00 M		М	
Cadmium	<0.02	TM181	0.157	0.543	0.279		0.41	
	mg/kg		М	M	M		M	
Chromium	<0.9	TM181	15.5	21	13.2		25.2	
0	mg/kg	T1404	M	M	M		M	
Copper	<1.4	TM181	150 M	61.5 M	34.4 M		7550 M	
Lead	mg/kg <0.7	TM181	370	327	95.7		327	
Lead	mg/kg	1101101	370 M	M	95.7 M		327 M	
Mercury	<0.14	TM181	2.66	0.734	0.942		2.05	
	mg/kg		М	М	М		М	
Nickel	<0.2	TM181	17.3	17.4	12.5		24.2	
	mg/kg		M	M	M		M	
Selenium	<1 mg/kg	TM181	<1	<1 "	<1		<1 #	
Zinc	<1.9	TM181	# 219	# 188	# 89.2		493	
Ziiic	mg/kg	1101101	Z19	M	03.2 M		493 M	
Soluble Sulphate 2:1	<0.003	TM243				0.017		
extract as SO4 BRE	g/l					§ M		
Chloride 2:1 water/soil	<0.001	TM243				0.0021		
extract BRE	g/l					§ M		
Nitrate as NO3, 2:1 water	<0.0003	TM243				0.0139		
soluble (BRE) Magnesium (BRE)	g/l <0.008	TM282				<0.008		
iviagricolulli (DRE)	<0.008 g/l	i ivi∠0∠				~U.UU0		
Soil Organic Matter (SOM)	<0.1 %	TM321	1.29				1.58	
- 5: ()			#				#	
	-	_						

Validated

SDG: 120317-4

Job: H_CAMREITH_REH-5 Client Reference:

Location: **Customer:** Attention:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins

Order Number: Report Number: Superseded Report:

DALL by CCMC			Attention. IXII	yadd Watkins		Ouperscaed Repo	-	
PAH by GCMS Results Legend	Cu	stomer Sample R	BHB2	BHB2	BHB2	WSB1	WSB1	WSB2
# ISO17025 accredited.	- Cu	istomer Sample K	BHBZ	BHB2	BHB2	M2R1	M2R1	WSBZ
M mCERTS accredited. § Deviating sample.								
aq Aqueous / settled sample.		Depth (m) Sample Type	1.00 Soil/Solid	4.00 Soil/Solid	8.25 Soil/Solid	0.10 Soil/Solid	0.50 Soil/Solid	0.10 Soil/Solid
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Date Sampled	08/03/2012	08/03/2012	08/03/2012	08/03/2012	08/03/2012	08/03/2012
* Subcontracted test. ** % recovery of the surrogate standar	rd to	Sample Time						
check the efficiency of the method.	The	Date Received SDG Ref	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4
results of individual compounds wit samples aren't corrected for the rec		ab Sample No.(s)	5333442	5333449	5333454	5334285	5334286	5333017
(F) Trigger breach confirmed		AGS Reference	ES3	ES9	ES14	ES1	ES2	ES1
Component	LOD/Units	Method	00.4	04.0	07	0.4.0	101	22.4
Naphthalene-d8 %	%	TM218	99.1	94.2	87	94.9	101	98.4
recovery** Acenaphthene-d10 %	%	TM218	101	93.6	81.6	87.5	§ 96	99.6
recovery**	70	1101210	101	93.0	01.0	67.5 §	90 §	99.0 §
Phenanthrene-d10 %	%	TM218	100	92.5	78.5	86.2	95.6	96.9
recovery**	/*	1111210	100	02.0	70.0	§	§	§
Chrysene-d12 %	%	TM218	91.8	91.3	68.9	83.5	99.6	96.2
recovery**						§	§	§
Perylene-d12 % recovery**	%	TM218	101	90.3	65	86.3	107	100
						§	§	§
Naphthalene	<9 µg/kg	TM218	122	<9	<9	31.5	79	134
	.10	T14040	§ M	§ M	§ M	§ M	§ M	§ M
Acenaphthylene	<12	TM218	<12	<12	<12	<24 § M	23.1 8 M	218 8 M
Acenaphthene	μg/kg <8 μg/kg	TM218	§ M 24.8	§ M <8	§ M <8	\$ IVI <16	§ M <8	§ M 46.2
/ wellaphulelle	-ο μg/kg	1 IVIZ 10	24.0 § M	~o § M	~o § M	\$ M	~ o § M	46.2 § M
Fluorene	<10	TM218	22	<10	<10	<20	<10	52.4
	μg/kg		§ M	§ M	§ M	§ M	§ M	§ M
Phenanthrene	<15	TM218	375	<15	<15	126	180	1070
	μg/kg		§ M	§ M	§ M	§ M	§ M	§ M
Anthracene	<16	TM218	47	<16	<16	45.7	47.6	298
	µg/kg		§ M	§ M	§ M	§ M	§ M	§ M
Fluoranthene	<17	TM218	241	<17	<17	143	132	2730
	µg/kg	T14040	§ M	§ M	§ M	§ M	§ M	§ M
Pyrene	<15	TM218	218	<15 § M	<15	179 S.M.	152	2260
Ponz/a)anthracona	μg/kg <14	TM218	§ M	<14	§ M	§ M 87.5	§ M 121	§ M
Benz(a)anthracene	μg/kg	1101210	147 § M	~14 § M	~14 § M	87.5 § M	121 § M	1500 § M
Chrysene	μ <u>α/κα</u> <10	TM218	141	<10	<10	137	167	1290
Onlysene	μg/kg	1101210	§ M	§ M	§ M	§ M	§ M	§ M
Benzo(b)fluoranthene	<15	TM218	199	<15	<15	315	419	2210
` '	μg/kg		§ M	§ M	§ M	§ M	§ M	§ M
Benzo(k)fluoranthene	<14	TM218	61.1	<14	<14	128	139	751
	μg/kg		§ M	§ M	§ M	§ M	§ M	§ M
Benzo(a)pyrene	<15	TM218	157	<15	<15	222	304	1750
1 1 (100)	µg/kg	T14040	§ M	§ M	§ M	§ M	§ M	§ M
Indeno(1,2,3-cd)pyrene	<18	TM218	79.5	<18	<18	101 8 M	146 S.M.	1090
Dibenzo(a,h)anthracene	μg/kg <23	TM218	§ M 37.6	§ M	§ M <23	§ M <46	§ M 55.4	§ M
Dibenzo(a,rr)antinacene	μg/kg	1101210	8 M		§ M	§ M	§ M	§ M
Benzo(g,h,i)perylene	<24	TM218	154	<24	<24	141	195	1340
G. V.	μg/kg		§ M	§ M	§ M	§ M	§ M	§ M
PAH, Total Detected	<118	TM218	2030	<118	<118	1660	2160	17000
USEPA 16	µg/kg					§	§	§
		+						
		1						
		+ +						
		1						
		1						
		1						
		1						
		1						
		+						
		1						

Validated

SDG: 120317-4

Job: H_CAMREITH_REH-5 Client Reference:

Location: **Customer:** Attention:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins

Order Number: Report Number: Superseded Report:

PAH by GCMS											
#	Results Legend ISO17025 accredited.		Customer Sample R	WSB2	WSB2	WSB2	WSB5	WSB5	WSB5		
М	mCERTS accredited.										
§ aq	Deviating sample. Aqueous / settled sample.	Depth (m) Sample Type		0.50	1.50	3.00	0.10	0.50	1.00		
diss.filt tot.unfilt	Dissolved / filtered sample. Total / unfiltered sample. Subcontracted test.		Sample Type Date Sampled	Soil/Solid 08/03/2012	Soil/Solid 08/03/2012	Soil/Solid 08/03/2012	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012	Soil/Solid 09/03/2012		
*	Subcontracted test.		Sample Time								
** % recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recove		The	Date Received SDG Ref	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4	15/03/2012 120317-4		
results of individual compounds with samples aren't corrected for the record; (F) Trigger breach confirmed			Lab Sample No.(s)	5333018	5333020	5333024	5334288	5334290	5334291		
(F)	Trigger breach confirmed		AGS Reference	ES2	ES4	ES7	ES4	ES6	ES7		
Compo		LOD/Uni									
	nalene-d8 %	%	TM218	97.9	91.6	89.8	93.6	94.9	98.9		
recove	phthene-d10 %	%	TM218	95.7	91.5	§ 81.2	91.7	92.9	97.2		
recove		/0	1101210	30.1	91.5 §	§	91.7	92.9 §	31.2		
	nthrene-d10 %	%	TM218	92.8	86.6	80	89.4	90.9	94.8		
recove	ry**					§					
,	ene-d12 %	%	TM218	83.6	82.1	74.3	81.2	85.9	89.3		
recove		21			§	§	21.2	§			
Peryle	ne-d12 % recovery**	%	TM218	82.7	81.4	74 §	81.9	85.6	89.8		
Naphth	nalene	<9 µg/	kg TM218	13.5	64.8	12.6	23.6	\$ 103	75.3		
Napriu	iaiche	\ \ \ μg/\	kg 11VIZ10	15.5 M	04.0 M	§ M	25.0 M	105 § M	7 J. J		
Acena	phthylene	<12	TM218	<12	<12	<12	<12	<12	17.1		
	. ,	μg/kg		M	§ M	§ M	M	§ M	М		
Acena	phthene	<8 µg/	kg TM218	<8	<8	<8	<8	<8	14.7		
				M	§ M	§ M	M	§ M	M		
Fluore	ne	<10	TM218	<10	<10	<10	<10	<10	12.2		
Dhono	nthrono	μg/kg	TM218	36.7	§ M 245	§ M	109	§ M 176	204		
Filelia	nthrene	<15 µg/kg		30.7 M	245 M	\$ M	109 M	176 M	204 M		
Anthra	cene	49/16 <16	TM218	<16	<16	<16	23	26.5	42.4		
		μg/kg		M	§ M	§ M	М	§ M	М		
Fluora	nthene	<17	TM218	60.7	48.2	<17	208	198	297		
				M	§ M	§ M	M	§ M	М		
Pyrene		<15 µg/kg	TM218	52.4	53.1	<15	179	211	306		
D (-	- () (M	M	§ M	M	M	M		
Benz(a)anthracene		<14 µg/kg	TM218	36.6 M	65.4 § M	<14 § M	119 M	161 § M	231 M		
Chrysene		μ <u>α/κα</u> <10	TM218	31.9	74.8	<10	108	166	209		
Chrysene		μg/kg		M	7 4.0 § M	§ M	M	§ M	200		
Benzo	(b)fluoranthene	<15	TM218	58.2	92.5	<15	191	269	352		
		µg/kg		M	§ M	§ M	M	§ M	M		
Benzo	(k)fluoranthene	<14	TM218	22.9	22.3	<14	64.2	78	115		
Danne	(a)	μg/kg		M	§ M	§ M	M	§ M	229		
Belizo	(a)pyrene	<15 µg/kg	TM218	39.9 M	32.3 § M	< 15 § M	123 M	165 § M	229 M		
Indend	o(1,2,3-cd)pyrene	μ <u>α/κα</u> <18	TM218	25.6	26.2	<18	84.3	111	144		
maone	(1,2,0 0d)pyrono	μα/kα		М	M M	§ M	M	ş M			
Dibenz	o(a,h)anthracene	<23	TM218	<23	<23	<23	<23	36.6	51.8		
		μg/kg		M	§ M	§ M	M	§ M	M		
Benzo	(g,h,i)perylene	<24		37.3	44.3	<24	91	145	183		
DALL 7	Fotal Detected	μg/kg <118		416	§ M 768	§ M <118	1320 M	§ M 1850	2480		
USEP/		µg/kg		410	700	~116 §	1320	1650 §	2400		
OOL! /	110	рулку	_			3		3			

Validated

SDG: 120317-4

H_CAMREITH_REH-5 Job: Client Reference:

Location: **Customer:** Attention:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins

Order Number: Report Number: Superseded Report:

PAH by GCMS										
Results Legend # ISO17025 accredited.		Customer Sample R	WSB6	WSB6	WSB6					
M mCERTS accredited. § Deviating sample.		Double (m)	0.40	0.75	0.40					
aq Aqueous / settled sample. diss.filt Dissolved / filtered sample.		Depth (m) Sample Type	0.10 Soil/Solid	0.75 Soil/Solid	2.10 Soil/Solid					
tot.unfilt Total / unfiltered sample. * Subcontracted test.		Date Sampled	09/03/2012	09/03/2012	09/03/2012					
** % recovery of the surrogate standard to		Sample Time Date Received	15/03/2012	15/03/2012	15/03/2012					
check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery (F) Trigger breach confirmed		SDG Ref	120317-4 5334294	120317-4 5333254	120317-4 5333257					
	overy	Lab Sample No.(s) AGS Reference	ES10	ES8	ES11					
Component	LOD/Unit									
Naphthalene-d8 % recovery**	%	TM218	95.7	102	87.3					
Acenaphthene-d10 %	%	TM218	93.6	104	85.6					
recovery**	0/	T14040	24.5	101						
Phenanthrene-d10 % recovery**	%	TM218	91.5	104	82.4					
Chrysene-d12 %	%	TM218	85.1	93.4	76					
recovery**										
Perylene-d12 % recovery**	%	TM218	88.2	101	69.1					
Naphthalene	<9 µg/k	g TM218	41.7	36.3	27.5					
Acenaphthylene <12		TM218	39	§ M 17.3	<12					
	μg/kg		M	§ M	M					
Acenaphthene	<8 µg/k	kg TM218	12.9	8>	<8 M					
Fluorene	<10	TM218	<10	§ M	<10					
	μg/kg		M	§ M	M					
Phenanthrene	<15	TM218	210	121	59.3					
Anthracene	μg/kg <16	TM218	49.4	§ M 26.7	M_					
	μg/kg		M	§ M	M					
Fluoranthene	<17	TM218	563 M	249 § M	52 M					
Pyrene	μg/kg <15	TM218	467	212	46.9					
,	μg/kg		M	§ M	M					
Benz(a)anthracene	<14	TM218	331	136	39.6					
Chrysene	μg/kg <10	TM218	323	§ M 133	M 38.5					
	μg/kg		M	§ M	M					
Benzo(b)fluoranthene	<15	TM218	589 M	210 § M	54.9 M					
Benzo(k)fluoranthene	μg/kg <14	TM218	210	67.2	<14					
	μg/kg		M	§ M	M					
Benzo(a)pyrene	<15 µg/kg	TM218	370 M	145 § M	25.7 M					
Indeno(1,2,3-cd)pyrene	μ <u>α/κα</u> <18	TM218	259	94.1	24.6					
	μg/kg		M	§ M	M					
Dibenzo(a,h)anthracene	<23 µg/kg	TM218	69.8 M	27.4 § M	<23 M					
Benzo(g,h,i)perylene	μ <u>α/κα</u> <24	TM218	319	123	36.9					
	μg/kg		M	§ M	<u>M</u>					
PAH, Total Detected USEPA 16	<118 µg/kg		3850	1600	406					
OOL! /\ IO	рулку									

Validated

183005

SDG: 120317-4 Location: Redhill - Bourne Estate Order Number:

H_CAMREITH_REH-5 Campbell Reith Hill Job: **Customer:** Report Number: Attention: Rhyadd Watkins Superseded Report:

Client Reference:

Client Reference:			Attention: Rh	iyadd Watkins	Superseded Report:
TPH CWG (S)					
Results Legend # ISO17025 accredited.	Cu	stomer Sample R	BHB2	WSB1	
M mCERTS accredited.					
§ Deviating sample. aq Aqueous / settled sample.		Depth (m)	1.00	0.10	
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 08/03/2012	Soil/Solid 08/03/2012	
* Subcontracted test.		Sample Time			
check the efficiency of the method	d. The	Date Received SDG Ref	15/03/2012 120317-4	15/03/2012 120317-4	
results of individual compounds v samples aren't corrected for the re	within ecovery L	ab Sample No.(s)	5333442	5334285	
(F) Trigger breach confirmed		AGS Reference	ES3	ES1	
Component	LOD/Units	Method			
GRO Surrogate %	%	TM089	38	74	
recovery** GRO >C5-C12	<44	TM089	92.3	<44	
01.0 1 00 0 12	μg/kg	1111000	§	.,,	
Methyl tertiary butyl ether	<5 µg/kg	TM089	<5	<5	
(MTBE)			§ #		
Benzene	<10	TM089	<10	<10	
Toluene	μg/kg <2 μg/kg	TM089	5.7	<2 M	
Toluene	~2 μg/kg	1 101009	5.7 § M	M	
Ethylbenzene	<3 µg/kg	TM089	4.56	<3	
, , , , , , , , , , , , , , , , , , , ,	1 7 3		§ M	М	
m,p-Xylene	<6 µg/kg	TM089	12.5	<6	
	1 -		§ M	M	
o-Xylene	<3 µg/kg	TM089	6.84	<3	
sum of detected mpo	<9 μg/kg	TM089	§ M	<9 M	
xylene by GC	→ µg/kg	1 101009	19.3 §	`*	
sum of detected BTEX by	<24	TM089	29.6	<24	
GC	μg/kg		§		
Aliphatics >C5-C6	<10	TM089	<10	<10	
	µg/kg		<u>§</u>		
Aliphatics >C6-C8	<10	TM089	10.3	<10	
Aliphatics >C8-C10	μg/kg <10	TM089	§	<10	
Aliphatics > Co-C To	μg/kg	110009	Ş.	~10	
Aliphatics >C10-C12	<10	TM089	12.5	<10	
·	μg/kg		§		
Aliphatics >C12-C16	<100	TM173	7040	2760	
Ali I. II	µg/kg	T14470	5070	4000	
Aliphatics >C16-C21	<100	TM173	5070	1220	
Aliphatics >C21-C35	μg/kg <100	TM173	31800	7480	
7.11.01.00 - 02 1 000	μg/kg	'''''	01000	7 100	
Aliphatics >C35-C44	<100	TM173	35600	5340	
	μg/kg				
Total Aliphatics >C12-C44	<100	TM173	79600	16800	
Aromatics >EC5-EC7	μg/kg <10	TM089	<10	<10	
Alomatics >EC5-EC7	μg/kg	1 101009	<10 §	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Aromatics >EC7-EC8	<10	TM089	<10	<10	
	μg/kg		§		
Aromatics >EC8-EC10	<10	TM089	35.3	<10	
A	µg/kg	T14000	§	.40	
Aromatics >EC10-EC12	<10 µg/kg	TM089	<10 §	<10	
Aromatics >EC12-EC16	μg/kg <100	TM173	4820	5040	
	μg/kg				
Aromatics >EC16-EC21	<100	TM173	4690	3340	
	μg/kg				
Aromatics >EC21-EC35	<100	TM173	61500	15900	
Aromatica > FOOF FO44	µg/kg	TN 4470	00000	00000	
Aromatics >EC35-EC44	<100	TM173	96000	23200	
Aromatics >EC40-EC44	μg/kg <100	TM173	50300	11900	
511104100 - LOTO-LOTT	µg/kg	1,11,173	30000	11000	
Total Aromatics	<100	TM173	167000	47500	
>EC12-EC44	μg/kg				
Total Aliphatics >C5-35	<100	TM173	44000	11500	
Total Aromatics >C5-35	µg/kg <100	TM173	71100	24300	
rotal Aromatics >C5-35	<100 µg/kg	11011/3	71100	24300	
Total Aliphatics &	μg/kg <100	TM173	115000	35700	
Aromatics >C5-35	μg/kg				
Total Aliphatics &	<100	TM173	247000	64300	
Aromatics >C5-C44	μg/kg				
	+	+			
	1				
	_				

Job: Client Reference:

SDG:

120317-4 H_CAMREITH_REH-5

Campbell Reith Hill **Customer:** Attention: Rhyadd Watkins

Location:

Order Number: Report Number:

183005

Validated

Superseded Report:

Redhill - Bourne Estate

Asbestos Identification - Soil											
	·	Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	BHB2 ES 3 1.00 SOLID 08/03/2012 00:00:00 120317-4 5333442 TM048	05/04/12	Tomasz Pawlikowski	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB1 ES 1 0.10 SOLID 08/03/2012 00:00:00 120317-4 5334285 TM048	04/05/12	Tomasz Pawlikowski	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB1 ES 2 0.50 SOLID 08/03/2012 00:00:00 120317-4 5334286 TM048	04/05/12	Martin Cotterell	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB2 ES 1 0.10 SOLID 08/03/2012 00:00:00 120317-4 5333017 TM048	05/04/12	Paul Poynton	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB2 ES 2 0.50 SOLID 08/03/2012 00:00:00 120317-4 5333018 TM048	04/04/12	Martin Cotterell	·	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected

Validated

120317-4 Location: Redhill - Bourne Estate Order Number:

SDG: Job: H_CAMREITH_REH-5 Customer: Campbell Reith Hill Report Number: 183005 Client Reference: Attention: Rhyadd Watkins Superseded Report:

Client Reference:			Atte	ention: Rh	yadd Watkins			Supersede	a Report:		
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB2 ES 4 1.50 SOLID 08/03/2012 00:00:00 120317-4 5333020 TM048	05/04/12	Paul Poynton	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB2 ES 7 3.00 SOLID 08/03/2012 00:00:00 120317-4 5333024 TM048	04/04/12	Lauren Sargeant	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSBS ES 4 0.10 SOLID 09/03/2012 00:00:00 120317-4 5334288 TM048	04/05/12	Tomasz Pawlikowski	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB5 ES 6 0.50 SOLID 09/03/2012 00:00:00 120317-4 5334290 TM048	04/05/12	Tomasz Pawlikowski	Loose fibres in soil	Not Detected (#)	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSBS ES 7 1.00 SOLID 09/03/2012 00:00:00 120317-4 5334291 TM048	04/04/12	Lauren Sargeant	Loose fibres in soil.	Not Detected (#)	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB6 ES 10 0.10 SOLID 09/03/2012 00:00:00 120317-4 5334294 TM048	05/04/12	Tomasz Pawlikowski	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Detected

Validated

 SDG:
 120317-4
 Location:
 Redhill - Bourne Estate
 Order Number:

 Job:
 H_CAMREITH_REH-5
 Customer:
 Campbell Reith Hill
 Report Number:
 183005

 Client Reference:
 Attention:
 Rhyadd Watkins
 Superseded Report:

Chefft Keleren	ice.	Attention. Istryadu watkins						Superseded Report.					
		Date of Analysis	Analysed By	Comments	Amosite (Brown) Asbestos	Chrysotile (White) Asbestos	Crocidolite (Blue) Asbestos	Fibrous Actinolite	Fibrous Anthophyllite	Fibrous Tremolite	Non-Asbestos Fibre		
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Receieved SDG Original Sample Method Number	WSB6 ES 11 2.10 SOLID 09/03/2012 00:00:00 120317-4 5333257 TM048	05/04/12	Martin Cotterell	Loose fibres in soil.	Not Detected (#)	Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected		
Customer Sample Ref. Depth (m) Sample Type Date Sampled Date Received SDG Original Sample Method Number	WSB6 ES 8 0.75 SOLID 09/03/2012 00:00:00 120317-4 5333254 TM048	05/04/12	Martin Cotterell	-	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected (#)	Not Detected		

Validated

SDG: 120317-4
Job: H_CAMREIT
Client Reference:

H_CAMREITH_REH-5 Custor

Location:Redhill - Bourne EstateCustomer:Campbell Reith HillAttention:Rhyadd Watkins

Order Number: Report Number: Superseded Report:

183005

Notification of Deviating Samples

Notification of Deviating Samples								
Sample Number	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment		
5397077	WSB5 ES6	0.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded		
5397077	WSB5 ES6	0.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded		
5397098	WSB5 ES6	0.50	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded		
5397163	WSB5 ES4	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded		
5397163	WSB5 ES4	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded		
5397249	WSB5 ES4	0.10	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded		
5397527	WSB1 ES2	0.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded		
5397527	WSB1 ES2	0.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded		
5397567	WSB1 ES2	0.50	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded		
5400875	WSB2 ES1	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded		
5400875	WSB2 ES1	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded		
5400886	WSB2 ES1	0.10	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Phenanthrene-d10 % recovery**	Sample holding time exceeded		
5400950	WSB2 ES7	3.00	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded		
5401062	WSB6 ES10	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded		
5401062	WSB6 ES10	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded		
5401064	WSB6 ES10	0.10	SOLID	Phenois by HPLC (S)	Phenol	Sample holding time exceeded		
5401074	WSB1 ES2 WSB1 ES2	0.50	SOLID	PAH by GCMS	Acenaphthene d10 % recover ***	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery** Acenaphthylene	Sample holding time exceeded		
5401074 5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS PAH by GCMS	Anthracene	Sample holding time exceeded Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Phenanthrene-d10 % recovery**	Sample holding time exceeded		
5401074	WSB1 ES2	0.50	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded		
					•			

CERTIFICATE OF ANALYSIS

120317-4 Location: Redhill - Bourne Estate Order Number: H_CAMREITH_REH-5 Campbell Reith Hill Report Number:

SDG: Job: 183005 Client Reference: Attention: Rhyadd Watkins Superseded Report:

Sample	Customer	-				
Number	Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	•	Indeno(1,2,3-cd)pyrene	
				PAH by GCMS		Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Phenanthrene-d10 % recovery**	Sample holding time exceeded
5401098	WSB1 ES1	0.10	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5401409	WSB1 ES1	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5401409	WSB1 ES1	0.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5401443	WSB1 ES1	0.10	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded
5401462	WSB5 ES7	1.00	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5401462	WSB5 ES7	1.00	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5401486	WSB5 ES7	1.00	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded
5402407	WSB2 ES7	3.00	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5402407	WSB2 ES7	3.00	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5402434	WSB2 ES7	3.00	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded
5402638	WSB6 ES11	2.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5402638	WSB6 ES11	2.10	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5402663	WSB6 ES11	2.10	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded
5402823	WSB6 ES8	0.75	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5402823	WSB6 ES8	0.75		yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5402855	WSB6 ES8	0.75	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded
5403679	WSB2 ES4	1.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5403679	WSB2 ES4	1.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5403725	WSB2 ES4	1.50	SOLID	Phenois by HPLC (S)	Phenol	Sample holding time exceeded
5403774	WSB2 ES2	0.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5403774	WSB2 ES2	0.50	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
				•	•	· •
5403815	WSB2 ES2	0.50	SOLID	Phenols by HPLC (S) TPH c6-40 Value of soil	Phenol	Sample holding time exceeded
5404905	BHB2 ES14	8.25	SOLID		TPH > C6-C40	Sample holding time exceeded
5410146	BHB2 ES9	4.00	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5413362	BHB2 ES3	1.00	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Free	Sample holding time exceeded
5413362	BHB2 ES3	1.00	SOLID	yanide Comp/Free/Total/Thiocyanat	Cyanide, Total	Sample holding time exceeded
5413370	BHB2 ES3	1.00	SOLID	Phenols by HPLC (S)	Phenol	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded

CERTIFICATE OF ANALYSIS

Redhill - Bourne Estate 120317-4 SDG: Location: Order Number: 183005 H_CAMREITH_REH-5 Campbell Reith Hill Job: **Customer:** Report Number: Attention: Rhyadd Watkins Superseded Report:

Client Reference:

Client Refere	ence:		Attentio	on: Rhyadd Watkins	Superseded Repor	t:
Sample	Customer	Depth (m)	Matrix	Test Name	Component Name	Comment
Number 5414757	Sample Ref. BHB2 ES9	4.00	SOLID	PAH by GCMS		
	BHB2 ES9			•	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5414757		4.00	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5414757	BHB2 ES9	4.00	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
	BHB2 ES14		SOLID	•	Fluorene	
5414776	BHB2 ES14	8.25		PAH by GCMS		Sample holding time exceeded
5414776		8.25	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5414776	BHB2 ES14	8.25	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5418768	WSB2 ES7	3.00	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5418783	WSB2 ES2	0.50	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5418813	WSB1 ES1	0.10	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5418825	WSB1 ES2	0.50	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5419061	WSB6 ES10	0.10	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS		
	WSB2 ES1			•	Benz(a)anthracene	Sample holding time exceeded
5419326		0.10	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	PAH by GCMS	Phenanthrene-d10 % recovery**	Sample holding time exceeded
5419326	WSB2 ES1	0.10	SOLID	•	•	· · ·
				PAH by GCMS	Pyrene	Sample holding time exceeded
5419347	WSB2 ES1	0.10		TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
0-10071		1.00	JOLID	1 / 11 by GOIVIG	Dibonzo(a,n)anunacene	Cample holding time exceeded

CERTIFICATE OF ANALYSIS

 SDG:
 120317-4
 Location:
 Redhill - Bourne Estate
 Order Number:

 Job:
 H_CAMREITH_REH-5
 Customer:
 Campbell Reith Hill
 Report Number:
 183005

 Client Reference:
 Attention:
 Rhyadd Watkins
 Superseded Report:

Sample	Customer			,		
Number	Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5419371	WSB2 ES4	1.50	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
	WSB5 ES6			•		•
5419707		0.50	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Acenaphthene-d10 % recovery**	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
				•	• • • • • • • • • • • • • • • • • • • •	, ,
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Chrysene-d12 % recovery**	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
				•		•
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Naphthalene-d8 % recovery**	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	PAH, Total Detected USEPA 16	Sample holding time exceeded
5419707	WSB5 ES6	0.50	SOLID	PAH by GCMS	Perylene-d12 % recovery**	Sample holding time exceeded
5419768	WSB5 ES7	1.00	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
	BHB2 ES3					•
5429882		1.00	SOLID	TPH c6-40 Value of soil	TPH >C6-C40	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
	BHB2 ES3		SOLID	•		•
5430074		1.00		PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
				•	·	, ,
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5430074	BHB2 ES3	1.00	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Acenaphthene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Acenaphthylene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Anthracene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Benz(a)anthracene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Benzo(a)pyrene	Sample holding time exceeded
				•		· · · · · · · · · · · · · · · · · · ·
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Benzo(b)fluoranthene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Benzo(g,h,i)perylene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Benzo(k)fluoranthene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Chrysene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Dibenzo(a,h)anthracene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Fluoranthene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Fluorene	Sample holding time exceeded
	WSB6 ES8			•		· · · · · · · · · · · · · · · · · · ·
5430448		0.75	SOLID	PAH by GCMS	Indeno(1,2,3-cd)pyrene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Naphthalene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Phenanthrene	Sample holding time exceeded
5430448	WSB6 ES8	0.75	SOLID	PAH by GCMS	Pyrene	Sample holding time exceeded
5660343	WSB2 ES6	2.50	SOLID	рН	рН	Sample holding time exceeded
5661245	WSB6 ES9	1.10	SOLID	pH	pH	Sample holding time exceeded
5667203	WSB6	1.10	SOLID	Anions by Kone (soil)	Chloride 2:1 water/soil extract BRE	Sample holding time exceeded
	WSB6			• • • •		•
5667203	***************************************	1.10	SOLID	Anions by Kone (soil)	Soluble Sulphate 2:1 extract as SO4 BRE	Sample holding time exceeded
5667210	WSB2	2.50	SOLID	Anions by Kone (soil)	Chloride 2:1 water/soil extract BRE	Sample holding time exceeded
555.210			COLID	, 25 (tolio (boll)		Sample Heland Mille Checould

Validated

 SDG:
 120317-4
 Location:
 Redhill - Bourne Estate
 Order Number:

 Job:
 H_CAMREITH_REH-5
 Customer:
 Campbell Reith Hill
 Report Number:
 183005

Client Reference: Attention: Rhyadd Watkins Superseded Report:

				tontion: Tanyada Wattanio		···
Sample Number	Customer Sample Ref.	Depth (m)	Matrix	Test Name	Component Name	Comment
5667210	WSB2	2.50	SOLID	Anions by Kone (soil)	Soluble Sulphate 2:1 extract as SO4 BRE	Sample holding time exceeded
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aliphatics >C10-C12	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aliphatics >C5-C6	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aliphatics >C6-C8	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aliphatics >C8-C10	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aromatics >EC10-EC12	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aromatics >EC5-EC7	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aromatics >EC7-EC8	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Aromatics >EC8-EC10	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Benzene	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Ethylbenzene	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	GRO >C5-C12	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	GRO Surrogate % recovery**	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	m,p-Xylene	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Methyl tertiary butyl ether (MTBE)	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	o-Xylene	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	sum of detected BTEX by GC	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	sum of detected mpo xylene by GC	Volatile container not received
5506717	BHB2 ES3	1.00	SOLID	GRO by GC-FID (S)	Toluene	Volatile container not received

Note : Test results may be compromised

Validated

183005

 SDG:
 120317-4
 Location:
 Redhill - Bourne Estate
 Order Number:

 Job:
 H_CAMREITH_REH-5
 Customer:
 Campbell Reith Hill
 Report Number:

Attention: Rhyadd Watkins Superseded Report:

Notification of NDPs (No determination possible)

Date Received: 17/03/2012 08:25:04

Client Reference:

Sample No	Customer Sample Ref.	Depth (m)	Test	Comment
5333257	WSB6 ES11	2.10	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5333257	WSB6 ES11	2.10	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5333257	WSB6 ES11	2.10	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5334290	WSB5 ES6	0.50	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5334290	WSB5 ES6	0.50	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5334290	WSB5 ES6	0.50	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5334291	WSB5 ES7	1.00	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5334291	WSB5 ES7	1.00	Total Organic Carbon	Test unsuitable for analysis - Asbestos
5334291	WSB5 ES7	1.00	Total Organic Carbon	Test unsuitable for analysis - Asbestos

Validated

SDG: Job: Client Reference:

120317-4 H_CAMREITH_REH-5 Location: Customer: Attention:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins Order Number: Report Number: Superseded Report:

183005

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ¹	Surrogat Correcte
PM001		Preparation of Samples for Metals Analysis	Gample	Oorrecte
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
SUB (ASB)				
TM048	HSG 248, Asbestos: The analysts' guide for sampling, analysis and clearance procedures	Identification of Asbestos in Bulk Material		
TM062 (S)	National Grid Property Holdings Methods for the Collection & Analysis of Samples from National Grid Sites version 1 Sec 3.9	Determination of Phenols in Soils by HPLC		
TM089	Modified: US EPA Methods 8020 & 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM153	Method 4500A,B,C, I, M AWWA/APHA, 20th Ed., 1999	Determination of Total Cyanide, Free (Easily Liberatable) Cyanide and Thiocyanate using the Skalar SANS+ System Segmented Flow Analyser		
TM154	In - house Method	Determination of Petroleum Hydrocarbons by EZ Flash GC-FID in the Carbon range C6- C40		
TM173	Analysis of Petroleum Hydrocarbons in Environmental Media – Total Petroleum Hydrocarbon Criteria	Determination of Speciated Extractable Petroleum Hydrocarbons in Soils by GC-FID		
TM181	US EPA Method 6010B	Determination of Routine Metals in Soil by iCap 6500 Duo ICP-OES		
TM218	Microwave extraction – EPA method 3546	Microwave extraction - EPA method 3546		
TM243		Mixed Anions In Soils By Kone		
TM282		Extraction of Magnesium by BRE Method		
TM321		Organic matter Content of Soil By Titration		

¹ Applies to Solid samples only. DRY indicates samples have been dried at 35°C. NA = not applicable.

Validated

SDG: 120317-4

Job: H_CAMREITH_REH-5 Client Reference:

Location: Redhill - Bourne Estate
Customer: Campbell Reith Hill

Rhyadd Watkins

Attention:

Order Number: Report Number: Superseded Report:

183005

Test Completion Dates

				P - 0 - 0 -						
Lab Sample No(s)	5333442	5333449	5333454	5334285	5334286	5333017	5333018	5333020	5333022	5333024
Customer Sample Ref.	BHB2	BHB2	BHB2	WSB1	WSB1	WSB2	WSB2	WSB2	WSB2	WSB2
AGS Ref.	ES3	ES9	ES14	ES1	ES2	ES1	ES2	ES4	ES6	ES7
Depth	1.00	4.00	8.25	0.10	0.50	0.10	0.50	1.50	2.50	3.00
Туре	SOLID									
Anions by Kone (soil)									31-May-2012	
Asbestos Identification (Soil)	05-Apr-2012			04-Apr-2012	04-Apr-2012	05-Apr-2012	04-Apr-2012	05-Apr-2012		04-Apr-2012
Cyanide Comp/Free/Total/Thiocyanate	11-Apr-2012			05-Apr-2012	04-Apr-2012	04-Apr-2012	05-Apr-2012	05-Apr-2012		05-Apr-2012
EPH CWG (Aliphatic) GC (S)	25-Apr-2012			25-Apr-2012						
EPH CWG (Aromatic) GC (S)	25-Apr-2012			25-Apr-2012						
GRO by GC-FID (S)	28-Apr-2012			26-Apr-2012						
Magnesium (BRE)									31-May-2012	
Metals by iCap-OES (Soil)	11-Apr-2012	06-Apr-2012	06-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012		05-Apr-2012
NO3, NO2 and TON by KONE (s)									31-May-2012	
PAH by GCMS	12-Apr-2012	12-Apr-2012	11-Apr-2012	05-Apr-2012	05-Apr-2012	08-Apr-2012	08-Apr-2012	08-Apr-2012		05-Apr-2012
pH	10-Apr-2012			05-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012	30-May-2012	05-Apr-2012
Phenols by HPLC (S)	11-Apr-2012			05-Apr-2012	04-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012		05-Apr-2012
Sample description	05-Apr-2012	04-Apr-2012	03-Apr-2012	02-Apr-2012	02-Apr-2012	02-Apr-2012	02-Apr-2012	02-Apr-2012	30-May-2012	02-Apr-2012
Total Organic Carbon	11-Apr-2012			11-Apr-2012	11-Apr-2012	11-Apr-2012	10-Apr-2012	11-Apr-2012		11-Apr-2012
TPH c6-40 Value of soil	11-Apr-2012	11-Apr-2012	11-Apr-2012	11-Apr-2012	25-Apr-2012	11-Apr-2012	25-Apr-2012	25-Apr-2012		11-Apr-2012
TPH CWG GC (S)	28-Apr-2012			26-Apr-2012						
	500,1000	E004000	E004004	E0000E4	E0000EE	E0000EE	E004004	t		

Lab Sample No(s)	5334288	5334290	5334291	5333254	5333255	5333257	5334294
Customer Sample Ref.	WSB5	WSB5	WSB5	WSB6	WSB6	WSB6	WSB6
AGS Ref.	ES4	ES6	ES7	ES8	ES9	ES11	ES10
Depth	0.10	0.50	1.00	0.75	1.10	2.10	0.10
Туре	SOLID						
Anions by Kone (soil)					31-May-2012		
Asbestos Identification (Soil)	04-Apr-2012	04-Apr-2012	04-Apr-2012	05-Apr-2012		05-Apr-2012	05-Apr-2012
Asbestos Quant Waste Limit*		04-May-2012	04-May-2012			04-May-2012	
Cyanide Comp/Free/Total/Thiocyanate	04-Apr-2012	04-Apr-2012	05-Apr-2012	05-Apr-2012		05-Apr-2012	04-Apr-2012
Magnesium (BRE)					31-May-2012		
Metals by iCap-OES (Soil)	05-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012		05-Apr-2012	05-Apr-2012
NO3, NO2 and TON by KONE (s)					31-May-2012		
PAH by GCMS	08-Apr-2012	08-Apr-2012	08-Apr-2012	12-Apr-2012		08-Apr-2012	08-Apr-2012
pН	05-Apr-2012	05-Apr-2012	05-Apr-2012	05-Apr-2012	30-May-2012	05-Apr-2012	05-Apr-2012
Phenols by HPLC (S)	04-Apr-2012	04-Apr-2012	05-Apr-2012	05-Apr-2012		05-Apr-2012	05-Apr-2012
Sample description	02-Apr-2012	02-Apr-2012	02-Apr-2012	02-Apr-2012	30-May-2012	02-Apr-2012	02-Apr-2012
Total Organic Carbon	11-Apr-2012			10-Apr-2012			11-Apr-2012
Total Organic Carbon (Asb)		10-Apr-2012	10-Apr-2012			10-Apr-2012	
TPH c6-40 Value of soil	25-Apr-2012	26-Apr-2012	26-Apr-2012	25-Apr-2012		05-Apr-2012	25-Apr-2012

QUALITY FORM	QF.5.10.1
ALCONTROL LABORATORIES	SHEET 1 OF 1
ALCONTROL LABORATORIES	ISSUE NO: 2
	ISSUED BY: J Howard
Title of Form	ISSUE DATE: 22/04/10
Notification of No Determination Possible	APPROVED BY: Vicky Muir

ISSUED BY:

SDG Number: 120317-4 LAB AREA: RASPA

Client: H_CAMREITH_REH ANALYST:

Sample Type: Solid DATE: 25/04/2012

Sample No.	Depth	Sample ID.	Analyte(s)	Reason
5332872	0.5	FTP4	TPH_C6-C40_S	Sample sent back to client.
5332872	0.5	FTP4	Moisture	Sample sent back to client.
5332872	0.5	FTP4	Description	Sample sent back to client.
	5332872	5332872 0.5	5332872 0.5 <u>FTP4</u>	5332872 0.5 <u>FTP4</u> Moisture

Certificate of Analysis

Date: 30/04/2012

Client: Alcontrol Laboratories

Units 7 & 8

Hawarden Business Park

Manor Road Hawarden Deeside CH5 3US

Our Reference: 12-61870

Client Reference: SDG 120317-4

Contract Title: SDG 120317-4

Description: 8 soil samples

Date Received: 18 April 2012

Date Started: 18 April 2012

Date Completed: 30 April 2012

Test Procedures: Asbestos Analysis (DETS 082)

Notes: Observations and interpretations are outside the scope of UKAS accreditation

Approved By:

Paul Woodbridge, Senior Operations Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Information in Support of the Analytical Results

Analysis

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425um sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample.

Key

- * Denotes test not included in laboratory scope of accreditation
- # Denotes test that holds MCERTS accreditation, however, MCERTS accreditation is only implied if the report carries the MCERTS logo
- \$ Denotes tests completed by an approved subcontractor
- I/S Denotes insufficient sample to carry out test
- U/S Denotes that the sample is not suitable for testing

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month

Liquids - 2 weeks

Asbestos (test portion) - 6 months

Summary of Asbestos Analysis Soil Samples

Our Ref: 12-61870
Client Ref: SDG 120317-4
Contract Title: SDG 120317-4

Lab No	Sample Ref	Material Type*	Result	Comment	Analyst
404298	5461988	Soil	Chrysotile	Contains Small Clumps & Loose Fibre Bundles	Jeff Cruddas
404299	5462026	Soil	Chrysotile Amosite	Contains Bundles of Unbound Asbestos Fibres	Jeff Cruddas
404300	5462042	Soil	Chrysotile	Contains Bundle of Unbound Asbestos Fibres	Jeff Cruddas
404301	5462067	Soil	Chrysotile	Contains Bundle of Unbound Asbestos Fibres	Jeff Cruddas
404302	5462097	Soil	Chrysotile Amosite	Contains Bundles of Unbound Asbestos Fibres	Jeff Cruddas
404303	5462111	Soil	Chrysotile	Contains Bundle of Unbound Asbestos Fibres	Jeff Cruddas
404304	5462120	Soil	Chrysotile	Contains Bundles of Unbound Asbestos Fibres	Jeff Cruddas
404305	5462130	Soil	Chrysotile	Contains Bundles of Unbound Asbestos Fibres	Jeff Cruddas

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. NAD = No Asbestos Detected. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETS 082 using polarised light microscopy in accordance with HSG248 and documented in-house methods. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'.

Summary of Asbestos Analysis Soil Samples

Our Ref: 12-61870
Client Ref: SDG 120317-4
Contract Title: SDG 120317-4

		Lab No.	404298	404299	404300	404301
		Sample Ref	5461988	5462026	5462042	5462067
		Depth				
		Other Ref				
		Sample Type	Soil	Soil	Soil	Soil
Test	Units	DETSxx				
Asbestos ID		DETS 082	Chrysotile	Amosite, Chrysotile	Chrysotile	Chrysotile
Total Mass% Asbestos (i+ii)	Mass %		<0.001	<0.001	<0.001	<0.001
Quantification by Phase Contrast Optical Microscopy (i)	Mass %	DETSC 1102	<0.001	<0.001	<0.001	<0.001
Gravimetric Quantification (ii)	Mass %	DETSC 1102	na	na	na	na
Breakdown of Gravimetric Analysis						
Mass of Sample	g		589.98	351.28	507.13	405.54
ACMs present*						
Mass of ACM in sample	g					
% ACM by mass	%					
% asbestos in ACM	%					
% asbestos in sample	%					
Potentially Respirable Fibres	Fibres/g	DETSC 1102	na	na	na	na

^{*} Denotes test or material description outside of UKAS accreditation.

Recommended sample size for quantification is approximately 1kg

denotes deviating sample

[%] asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264.

Summary of Asbestos Analysis Soil Samples

Our Ref: 12-61870
Client Ref: SDG 120317-4
Contract Title: SDG 120317-4

		Lab No.	404302	404303	404304	404305
		Sample Ref	5462097	5462111	5462120	5462130
		Depth				
		Other Ref				
		Sample Type	Soil	Soil	Soil	Soil
Test	Units	DETSxx				
Asbestos ID		DETS 082	Amosite, Chrysotile	Chrysotile	Chrysotile	Chrysotile
Total Mass% Asbestos (i+ii)	Mass %		<0.001	<0.001	0.005	0.002
Quantification by Phase Contrast Optical Microscopy (i)	Mass %	DETSC 1102	<0.001	<0.001	0.005	0.002
Gravimetric Quantification (ii)	Mass %	DETSC 1102	na	na	na	na
Breakdown of Gravimetric Analysis						
Mass of Sample	g		754.75	361.18	117.23	164.45
ACMs present*						
Mass of ACM in sample	g					
% ACM by mass	%					
% asbestos in ACM	%					
% asbestos in sample	%					
Potentially Respirable Fibres	Fibres/g	DETSC 1102	na	na	na	na

^{*} Denotes test or material description outside of UKAS accreditation.

Recommended sample size for quantification is approximately 1kg

denotes deviating sample

[%] asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264.

Certificate of Analysis

Date: 03/05/2012

Client: Alcontrol Laboratories

Units 7 & 8

Hawarden Business Park

Manor Road Hawarden Deeside CH5 3US

Our Reference: 12-62276

Client Reference: SDG 120317-4

Contract Title: SDG 120317-4

Description: 1 soil sample

Date Received: 27 April 2012

Date Started: 27 April 2012

Date Completed: 03 May 2012

Test Procedures: Asbestos Analysis (DETS 082)

Notes: Observations and interpretations are outside the scope of UKAS accreditation

Approved By:

Paul Woodbridge, Senior Operations Manager

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Information in Support of the Analytical Results

Analysis

Inorganic soil analysis was carried out on a dried sample, crushed to pass a 425um sieve, in accordance with BS1377.

Organic soil analysis was carried out on an 'as received' sample.

Key

- Denotes test not included in laboratory scope of accreditation
- # Denotes test that holds MCERTS accreditation, however, MCERTS accreditation is only implied if the report carries the MCERTS logo
- \$ Denotes tests completed by an approved subcontractor
- I/S Denotes insufficient sample to carry out test
- U/S Denotes that the sample is not suitable for testing

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-

Soils - 1 month

Liquids - 2 weeks

Asbestos (test portion) - 6 months

Summary of Asbestos Analysis Soil Samples

Our Ref: 12-62276
Client Ref: SDG 120317-4
Contract Title: SDG 120317-4

Lab No	Sample Ref	Material Type*	Result	Comment	Analyst
406778	5502714	Soil	Chrysotile	Contains Bundle of	Jeff Cruddas
				Unbound Asbestos	
				Fibres	

Crocidolite = Blue Asbestos, Amosite = Brown Asbestos, Chrysotile = White Asbestos. NAD = No Asbestos Detected. Anthophyllite, Actinolite and Tremolite are other forms of Asbestos. Samples are analysed by DETS 082 using polarised light microscopy in accordance with HSG248 and documented in-house methods. Where a sample is NAD, the result is based on analysis of at least 2 sub-samples and should be taken to mean 'no asbestos detected in sample'.

Summary of Asbestos Analysis Soil Samples

Our Ref: 12-62276

Client Ref: SDG 120317-4

Contract Title: SDG 120317-4

		Lab No.	406778
			5502714
		Sample Ref	5502714
		Depth	
		Other Ref	
		Sample Type	Soil
Test	Units	DETSxx	
Asbestos ID		DETS 082	Chrysotile
Total Mass% Asbestos (i+ii)	Mass %		<0.001
Quantification by Phase Contrast Optical Microscopy (i)	Mass %	DETSC 1102	<0.001
Gravimetric Quantification (ii)	Mass %	DETSC 1102	na
Breakdown of Gravimetric Analysis			
Mass of Sample	g		290.69
ACMs present*	, and the second		
Mass of ACM in sample	g		
% ACM by mass	%		
% asbestos in ACM	%		
% asbestos in sample	%		
Potentially Respirable Fibres	Fibres/g	DETSC 1102	na

^{*} Denotes test or material description outside of UKAS accreditation. % asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264.

Recommended sample size for quantification is approximately 1kg # denotes deviating sample

CERTIFICATE OF ANALYSIS

120317-4 Location: Redhill - Bourne Estate Order Number: H CAMREITH REH-5 Customer: Campbell Reith Hill Report Number:

 Job:
 H_CAMREITH_REH-5
 Customer:
 Campbell Reith Hill

 Client Reference:
 Attention:
 Rhyadd Watkins

Appendix

SDG

 Results are expressed on a dry weight basis (dried at 35°C) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICS and SVOC TICS.

- 2. Samples will be run in duplicate upon request, but an additional charge may be incurred.
- 3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 2 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. Alcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
- 4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
- 5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
- 6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible. The quantity of asbestos present is not determined unless specifically requested.
- 7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
- 8. If appropriate preserved bottles are not received preservation will take place on receipt. However, the integrity of the data may be compromised.
- 9. NDP -No determination possible due to insufficient/unsuitable sample.
- 10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals -total metals must be requested separately.
- 11. Results relate only to the items tested.
- 12. LODs for wet tests reported on a dry weight basis are not corrected for moisture content.
- 13. **Surrogate recoveries** -Most of our organic methods include surrogates, the recovery of which is monitored and reported. For EPH, MO, PAH, GRO and VOCs on soils the result is not surrogate corrected, but a percentage recovery is quoted. Acceptable limits for most organic methods are 70 -130 %.
- 14. Product analyses -Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
- 15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethylphenol, 3,5 Dimethylphenol).
- 16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
- 17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
- 18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
- 19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
- 20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
- 21. For all leachate preparations (NRA, DIN, TCLP, BSEN 12457-1, 2, 3) volatile loss may occur, as we do not employ zero beginning extraction.
- 22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials whether these are derived from naturally occurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
- 23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.

SOLID	MATRICES	FXTRACT	ION	SUMMARY
SOLID	MALINGES		IOIN	COMMENT

Superseded Report:

183005

ANALYSIS	D&C OR WET	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS	
SOLVENTEXTRACTABLE MATTER	D&C	DOM	SOXTHERM	GRAVIMETRIC	
CYCLOHEXANE EXT. MATTER	D&C	CYCLCHEXANE	SOXTHERM	GRAVIMETRIC	
ELEMENTAL SULPHUR	D&C	DOM	SOXTHERM	HPLC	
PHENOLS BY GOMS	WET	DOM	SOXTHERM	GC-MS	
HERBICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS	
PESTICIDES	D&C	HEXANEACETONE	SOXTHERM	GC-MS	
EPH (DRO)	D&C	HEXANEACETONE	ENDOVEREND	GC-FID	
EPH (MIN OL)	D&C	HEXANEACETONE	BND OVER END	GC-FID	
EPH(CLEANED UP)	D&C	HEXANE ACETONE	ENDOVEREND	GC-FID	
EPH CWGBY GC	D&C	HEXANEACETONE	BND OVER END	GC-FID	
PCBAROCLOR 1254/ PCBCON	D&C	HEXANEACETONE	ENDOVEREND	GC-MS	
POLYAROMATIC HYDROCARBONS (MS)	WET	HEXANEACETONE	MICROWAVE TM218.	GC-MS	
>06C40	WET	HEXANEACETONE	SHAKER	GC-FID	
POLYAROMATIC HYDROCARBONS RAFID GC	WET	HEXANE ACETONE	SHAKER	GC-FID	
SEMIVOLATILEORGANIC COMPOUNDS	WET	DOMACETONE	SONICATE	GC-MS	

LIQUID MATRICES EXTRACTION SUMMARY

ANALYSIS	EXTRACTION SOLVENT	EXTRACTION METHOD	ANALYSIS
PAHMS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC MS
BPH BPH	HEXANE	STRRED EXTRACTION (STIR-BAR)	CC FID
EPH CWG	HEXANE	STRRED EXTRACTION (STIR-BAR)	CC FID
MNERALOL	HEXANE	STRRED EXTRACTION (STIR-BAR)	CC FID
PCB7 CONGENERS	HEXANE	STRRED EXTRACTION (STIR-BAR)	GC MS
PCBAROCLOR 1254	HEXANE	STIRRED EXTRACTION (STIR-BAR)	GCMS
svoc	DCM	LIQUID/LIQUID/SHAKE	GC MS
FREESULPHUR	DCM	SOLID PHASEEXTRACTION	HPLC
PESTOCPOPP	DCM	LIQUID/LIQUID/SHAKE	GC MS
TRIAZINE HERBS	DCM	LIQUID/LIQUID/SHAKE	GC MS
PHENOLSMS	ACETONE	SOLID PHASEEXTRACTION	GC MS
TPH byINFRARED (IR)	TCE	STIRRED EXTRACTION (STIR-BAR)	R
MNERALOLbyIR	TCE	STIRRED EXTRACTION (STIR-BAR)	R
GLYCOLS	NONE	DRECTINJECTION	GC FID

Identification of Asbestos in Bulk Materials & Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials or those identified as potentially asbestos containing during sample description which have been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using Alcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name					
Chrysofile	White Asbestos					
Amoste	BrownAsbestos					
Orodolite	Blue Asbestos					
Fibrous Adindite	=					
Florous Anhaphylite	=					
Fibrous Trendile	-					

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: Trace -Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Unit 7-8 Hawarden Business Park Manor Road (off Manor Lane) Hawarden Deeside

> CH5 3US Tel: (01244) 528700 Fax: (01244) 528701

email: mkt@alcontrol.com
Website: www.alcontrol.com

Campbell Reith Hill Somerset House 47-49 London Road Redhill Surrey RH1 1LV

Attention: Rhyadd Watkins

CERTIFICATE OF ANALYSIS

 Date:
 22 May 2012

 Customer:
 H_CAMREITH_REH

Sample Delivery Group (SDG): 120312-4

Your Reference:

Location: Redhill - Bourne Estate

Report No: 181857

We received 45 samples on Saturday March 10, 2012 and 20 of these samples were scheduled for analysis which was completed on Tuesday May 22, 2012. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan
Operations Manager

Validated

SDG: Job: Client Reference: 120312-4 H_CAMREITH_REH-4 Location: Customer: Attention:

Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins Order Number: Report Number: Superseded Report:

181857

Received Sample Overview

	Neceived 5a	inple Overview		
Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)	Sampled Date
5308454	BH2A	ES4	4.50	08/03/2012
5490776	BHB1	D2	1.80	12/03/2012
5490783	BHB1	D4	4.00	12/03/2012
5490773	BHB1	D9	9.44 - 9.55	12/03/2012
5308512	BHB2A	ES	0.30	08/03/2012
5308513	BHB2A	ES	0.50	08/03/2012
5308514	BHB2A	ES	1.00	08/03/2012
5308515	BHB2A	ES	1.50	08/03/2012
5490789	BHB2A	D9	12.00 - 12.45	08/03/2012
5490791	BHB2A	D12	16.95 - 17.05	08/03/2012
5308516	BHB2A	ES	2.00	08/03/2012
5490779	BHB2A	D2	2.00	07/03/2012
5308517	BHB2A	ES	2.50	08/03/2012
5490784	BHB2A	D16	21.00 - 21.45	08/03/2012
5490787	BHB2A	D19	25.95 - 26.05	08/03/2012
5308518	BHB2A	ES	3.00	08/03/2012
5308520	BHB2A	ES	3.50	08/03/2012
5308521	BHB2A	ES	4.00	08/03/2012
5308994	BHB2A	ES	5.00	08/03/2012
5308999	BHB2A	ES	5.50	08/03/2012
5309000	BHB2A	ES	6.00	08/03/2012
5309003	BHB2A	ES	6.50	08/03/2012
5309004	BHB2A	ES	7.00	08/03/2012
5309005	BHB2A	ES	7.50	08/03/2012
5309007	BHB2A	ES	7.80	08/03/2012
5490781	BHB2A	D6	8.00	08/03/2012
5309008	BHB2A	ES	8.20	08/03/2012
5308501	WS B3	ES	0.15	08/03/2012
5308502	WS B3	ES	0.50	08/03/2012
5308503	WS B3	ES	0.90	08/03/2012
5308504	WS B3	ES	1.10	08/03/2012
5308505	WS B3	ES	1.50	08/03/2012
5308508	WS B3	ES	2.00	08/03/2012
5308509	WS B3	ES	2.50	08/03/2012
5308510	WS B3	ES	3.00	08/03/2012
5308486	WS B4	ES1	0.10	08/03/2012
5308487	WS B4	ES2	0.25	08/03/2012
5308492	WS B4	ES3	0.50	08/03/2012
5308493	WS B4	ES4	1.00	08/03/2012
5308495	WS B4	ES5	1.50	08/03/2012
5308496	WS B4	ES6	2.00	08/03/2012
5308497	WS B4	ES7	2.50	08/03/2012
5308499	WS B4	ES8	2.80	08/03/2012
5490793	WSB3	D1	1.20 - 1.65	
5490792	WSB4	D1	1.20 - 1.65	
0.00.02	11051		1.23 1.00	

Only received samples which have had analysis scheduled will be shown on the following pages.

Validated

 SDG:
 120312-4
 Location:
 Redhill - Bourne Estate
 Order Number:

 Job:
 H_CAMREITH_REH-4
 Customer:
 Campbell Reith Hill
 Report Number:
 181857

 Client Reference:
 Attention:
 Rhyadd Watkins
 Superseded Report:

Client Reference:	T	Attentior	÷		XII	yau	u v	·uu	\III I	_							_		_	Jup	,013	Jou	ear		-
SOLID Results Legend X Test	Lab Sample	No(s)	5490773	5490776	5490783	1	T 0000 T 1	5308521	5490779	5490784	5490787	5490789	5490791	5308501	5308503	T 000000	5490793	1	5308486	5308492	5000	5308495	5308499	5490792	
No Determination Possible	Custome Sample Refe		BHB1	BHB1	BHB1	5	D E DO	BHB2A	BHB2A	BHB2A	BHB2A	BHB2A	BHB2A	WS B3	Wo Bo	W/S D3	WS B3		WS B4	Wo B4	WO DA	WS B4	WS B4	WSB4	
	AGS Refere	ence	D9	D2	D4	5	П	ES	D2	D16	D19	D9	D12	ES	E.	ם כ	F _S	?	ES1	ПОС	7 2 3	ES5	ES8	D1	
	Depth (m	1)	9.44 - 9.55		4.00		2	4.00	2.00	21.00 - 21.45	25.95 - 26.05	12.00 - 12.45	16.95 - 17.05	0.15			1.20 - 1.65 2.50		0.10	0.50		1.50		1.20 - 1.65	
	Containe	er	BAG	BAG	BAG	250g Amber Jar (AL	250g Amber Jar (AL	400g Tub (ALE214)		BAG			_	400g Tub (ALE214) 250g Amber Jar (AL	250g Amber Jar (AL	400° T.:P (VICE 1-1)	1kg TUB	250g Amber Jar (AL	400g Tub (ALE214)	250g Amber Jar (Al	250g Amber Jar (AL	400g Tub (ALE214)	250g Amber Jar (AL	1kg TUB	
Anions by Kone (soil)	All	NDPs: 0 Tests: 11	L	X					X	x x	X	x	X				X						Ī	X	
Asbestos Identification (Soil)	All	NDPs: 0 Tests: 13	F	X		 <mark>;</mark>	(X	x					X	>	()	x x	2	X)	(X	X	X	
Cyanide Comp/Free/Total/Thiocyanate	All	NDPs: 0 Tests: 9				,	(X						X	>	()	x		X)	(X	X	4	
Magnesium (BRE)	All	NDPs: 0 Tests: 2	x							X															
Metals by iCap-OES (Soil)	Arsenic	NDPs: 0 Tests: 9				X	X							X	X		X	X		X	X		X		
	Cadmium	NDPs: 0 Tests: 9	F			X	X							X	X	1	x	X		x	X		X		
	Chromium	NDPs: 0 Tests: 9	F			X	X							X	X		x	x		x	X		x		
	Copper	NDPs: 0 Tests: 9	F			X	X							X	X	1	x	x		x	x		x		
	Lead	NDPs: 0 Tests: 9				X	X							X	X	2	X	X		x	X		X		
	Mercury	NDPs: 0 Tests: 9	F			X	X							X	X		X	X		x	X		X		
	Nickel	NDPs: 0 Tests: 9				X	X							X	X	2	X	X		x	X		X		
	Selenium	NDPs: 0 Tests: 9				X	X							X	X		x	X		x	X		X		
	Zinc	NDPs: 0 Tests: 9				X	X							X	X		X	X		x	X		X		
NO3, NO2 and TON by KONE (s)	All	NDPs: 0 Tests: 2	x							X							<u> </u>								
PAH by GCMS	All	NDPs: 0 Tests: 9	F			X	X							X	X	2	X	X		x	X		X		

SDG:

120312-4

CERTIFICATE OF ANALYSIS

Order Number:

Redhill - Bourne Estate

Validated

181857

Job: H_CAMREITH_REH-4 **Customer:** Campbell Reith Hill Report Number: Attention: Rhyadd Watkins Superseded Report: Client Reference: **SOLID** 5490791 5490789 5490787 5490784 5490781 5490779 5308521 5308492 5308495 5490792 5308499 5490783 5490776 5490773 5308501 5490793 5308509 5308503 **Results Legend** Lab Sample No(s) X Test No Determination Possible Customer BHB2A BHB2A BHB2A BHB2A BHB2A BHB2A BHB2A WS B3 WS B4 WS B4 BHB1 BHB1 BHB1 WSB3 WS B3 WS B3 WS B4 WSB4 Sample Reference D12 D9 D19 D16 D6 D2 ES ES3 ES5 D1 **AGS Reference** D D D ES ES ES D1 ES1 16.95 -12.00 -25.95 -21.00 -8.0 4.00 1.80 9.44 - 9.55 1.20 - 1.65 2.50 0.90 1.20 - 1.65 2.80 5-17.0 5-12.5 5-26.0 8.00 2.00 0.10 0.50 .8 1.50 Depth (m) .45 Container рΗ All NDPs: 0 Tests: 20 XXXXXX XXX XXX XX Phenols by HPLC (S) All NDPs: 0 Tests: 9 Sample description All NDPs: 0 Tests: 20 X XXXX XXXXXX XXX Total Organic Carbon All NDPs: 0 Tests: 9

> NDPs: 0 Tests: 9

Location:

TPH c6-40 Value of soil

All

X X

X

X

Validated

SDG: 120312-4 **Job:** H_CAMR

H_CAMREITH_REH-4

Location: Customer: Attention:

: Redhill - Bourne Estate r: Campbell Reith Hill n: Rhyadd Watkins Order Number: Report Number: Superseded Report:

181857

t:

Sample Descriptions

Grain Sizes

Client Reference:

very fine	<0.063mm	fine	0.063mm - 0.1mm	medium	0.1mm	n - 2mm C	oarse	2mm - 10	10mm very coa		>10mm				
Lab Sample I	No(s) Cus	stomer Sample R	ef. Depth (m)	С	olour	Description		Grain size	Inclus	sions	Inclusions 2				
5490773		BHB1	9.44 - 9.55	Dar	k Brown	Clay	<	0.063 mm	No	ne	None				
5490776		BHB1	1.80	Dar	k Brown	Loamy Sand	amy Sand 0.063 - 0.1 mm		0.063 - 0.1 mm Crushed Brid		Stones				
5490783		BHB1	4.00	Ligh	t Brown	Sand	().1 - 2 mm	2 mm Stones		None				
5308514		BHB2A	1.00	Dar	k Brown	Sandy Loam	0.0	163 - 0.1 mm	Stor	nes	Brick				
5308521		BHB2A	4.00	Dar	k Brown	Sandy Clay Loam	().1 - 2 mm	Bri	ck	Stones				
5490779		BHB2A	2.00	Dar	k Brown	Sand	().1 - 2 mm	Bri	ck	Stones				
5490781		BHB2A	8.00	Dar	k Brown	Clay	<	0.063 mm	N/	Ά	N/A				
5490784		BHB2A	21.00 - 21.45	. (Grey Clay		ay <0.063 mm		Stor	nes	None				
5490787		BHB2A	25.95 - 26.05	Dar	k Brown	Clay	<	0.063 mm	No	ne	None				
5490789		BHB2A	12.00 - 12.45	Dar	k Brown	Clay	<	0.063 mm	No	ne	None				
5490791		BHB2A	16.95 - 17.05	Dar	k Brown	Clay	<	0.063 mm	No	ne	None				
5308501		WS B3	0.15	Dar	k Brown	Sandy Clay Loam	().1 - 2 mm	Stor	nes	Vegetation				
5308503		WS B3	0.90	Dar	k Brown	Sandy Clay Loam	0.0	063 - 0.1 mm	Stor	nes	None				
5308509		WS B3	2.50	Dar			Silty Clay 0.063 - 0.1 mm		m Stones		N/A				
5308486		WS B4	0.10	Dar	Dark Brown San		0.0	063 - 0.1 mm	Stor	nes	None				
5308492		WS B4	0.50	Dar	Dark Brown Sandy Clay 0.1 - 2 mm				Bri	ck	Stones				
5308495		WS B4	1.50	Ligh	t Brown	Sand	().1 - 2 mm	- 2 mm Stones		None				
5308499		WS B4	2.80	E	Beige Sand		Beige San		and 0.1 - 2 mm		Sand 0.1 - 2 mm		nm Stones		None
5490793		WSB3	1.20 - 1.65	Dar	k Brown	Top Soil	0.063 - 0.1 mm		Brick		Stones				
5490792		WSB4	1.20 - 1.65	Y	ellow	Sand	().1 - 2 mm	Crushe	d Brick	Ash/Soot				

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

Validated

SDG: 120312-4

Job:

Client Reference:

H_CAMREITH_REH-4

Location: Customer: Attention: Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins Order Number: Report Number: Superseded Report:

181857

Customer Sample R BHB1 BHB1 BHB1 BHB2A BHB2A BHB2A ISO17025 accredited.

mCERTS accredited.

Deviating sample. Depth (m) 1.80 4.00 9.44 - 9.55 1.00 12.00 - 12.45 16.95 - 17.05 Aqueous / settled sample Aqueous / settled sample.
Dissolved / filtered sample.
Total / unfiltered sample.
Subcontracted test.

% recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery Trigger breach confirmed dies filt Sample Type Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Date Sampled 12/03/2012 12/03/2012 12/03/2012 08/03/2012 08/03/2012 08/03/2012 Sample Time 10/03/2012 10/03/2012 10/03/2012 10/03/2012 10/03/2012 10/03/2012 120312-4 120312-4 SDG Ref 120312-4 120312-4 120312-4 120312-4 5490776 D2 5490783 D4 5490773 D9 5490789 D9 5490791 D12 5308514 Lab Sample No.(s) ES (F) AGS Reference LOD/Units Method Component TM062 (S) <0.01 Phenol < 0.01 mg/kg §Μ Soil Organic Matter (SOM) <0.35 % TM132 7.53 рΗ Ha 1 TM133 10.8 8.77 4 42 8 22 7.15 9.1 Units §Μ §Μ §Μ M §Μ §Μ Cyanide, Total TM153 <1 <1 mg/kg §Μ TM153 Cyanide, Free <1 <1 mg/kg §Μ TPH >C6-C40 <10 TM154 <10 ma/ka TM181 14 5 Arsenic < 0.6 mg/kg Μ Cadmium <0.02 TM181 0.341 М mg/kg Chromium TM181 14.7 < 0.9 mg/kg M Copper <1.4 TM181 163 Μ mg/kg Lead TM181 323 < 0.7 mg/kg M Mercury <0.14 TM181 2.8 ma/ka М Nickel TM181 18.4 < 0.2 mg/kg M Selenium <1 mg/kg TM181 <1 Zinc <1.9 TM181 106 Μ mg/kg Soluble Sulphate 2:1 < 0.003 TM243 0.316 0.009 1.73 0.592 0.307 extract as SO4 BRE g/l § M § M § M § M § M <0.001 TM243 0.0315 Chloride 2:1 water/soil extract BRE g/l §Μ Nitrate as NO3, 2:1 water <0.0003 TM243 <0.0003 soluble (BRE) g/l Magnesium (BRE) <0.008 TM282 0.0441 g/l

120312-4

SDG:

CERTIFICATE OF ANALYSIS

Job: H_CAMREITH_REH-4 **Customer:**

Client Reference: Attention: Rhyadd Watkins

Location: Redhill - Bourne Estate Order Number:

Campbell Reith Hill 181857 Report Number: Superseded Report:

Validated

# ISO17025 accredited.	С	Customer Sample R	BHB2A	BHB2A	BHB2A	BHB2A	BHB2A	WS B3
# ISO17025 accredited. M mCERTS accredited.								
§ Deviating sample.		Depth (m)	2.00	21.00 - 21.45	25.95 - 26.05	4.00	8.00	0.15
aq Aqueous / settled sample.		Sample Type	Soil/Solid	Soil/Solid	25.95 - 26.05 Soil/Solid	Soil/Solid	Soil/Solid	Soil/Solid
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Date Sampled	07/03/2012	08/03/2012	08/03/2012	08/03/2012	08/03/2012	08/03/2012
* Subcontracted test.		Sample Time						
** % recovery of the surrogate standar		Date Received	10/03/2012	10/03/2012	10/03/2012	10/03/2012	10/03/2012	10/03/2012
check the efficiency of the method.' results of individual compounds wit		SDG Ref	120312-4	120312-4	120312-4	120312-4	120312-4	120312-4
samples aren't corrected for the rec	overy	Lab Sample No.(s)	5490779	5490784	5490787	5308521	5490781	5308501
(F) Trigger breach confirmed		AGS Reference	D2	D16	D19	ES	D6	ES
Component	LOD/Units	s Method						
Phenol	<0.01	TM062 (S)				<0.01		0.013
	mg/kg					§ M		§ M
Soil Organic Matter (SOM)	<0.35 %	6 TM132				6.38		10.4
Soil Organic Matter (SOM)	\0.35 %	0 1101132						
						#		#
pH	1 pH	TM133	8.34	8.73	9.49	8.52	5.44	7.45
	Units		§ M	§ M	§ M	M	§ M	M
Cyanide, Total	<1 mg/k	g TM153				<1		<1
,		~				§ M		М
Cyanide, Free	<1 mg/k	g TM153				<1		<1
Cyanide, Tiee	- Tillg/K	ig TWT155				§ M		M
TDU. 00 040	.10	T14454						
TPH >C6-C40	<10	TM154				15.5		237
	mg/kg					#		#
Arsenic	<0.6	TM181				16.3		27.3
	mg/kg					М		М
Cadmium	<0.02	TM181				0.391		7.2
I	mg/kg					М		M
Chromium	<0.9	TM181				14.8		84.1
	mg/kg					14.0 M		M
Conner	T	T84404						
Copper	<1.4	TM181				151		533
	mg/kg					M		M
Lead	<0.7	TM181				471		1940
	mg/kg					M		M
Mercury	<0.14	TM181				2.91		0.508
	mg/kg					М		M
Nickel	<0.2	TM181				18.7		40.6
	mg/kg					М		М
Selenium	<1 mg/kg	q TM181				<1		1.14
Selemum	~ i ilig/k	y IIVIIOI						
						#		#
Zinc	<1.9	TM181				142		834
	mg/kg					M		M
Soluble Sulphate 2:1	<0.003	TM243	0.133	0.293	0.0377		0.797	
extract as SO4 BRE	g/l		§ M	§ M	§ M		§ M	
Chloride 2:1 water/soil	<0.001	TM243					0.0284	
extract BRE	g/l						§ M	
Nitrate as NO3, 2:1 water	< 0.0003	3 TM243					0.00265	
soluble (BRE)	g/l							
Magnesium (BRE)	<0.008	TM282					0.0147	
Magneolam (BRE)	g/l	TWIZOZ					0.0117	
	9/1							
<u></u>		_						
		_						
		+						
		+						
		+						
		+						

Validated

SDG: 120312-4

Job: H_CAMREITH_REH-4

Location: Customer: Attention: Redhill - Bourne Estate Campbell Reith Hill Rhyadd Watkins Order Number: Report Number: Superseded Report:

181857

Client Reference:

Customer Sample R WS B3 WS B4 WS B4 WSB3 WS B3 WS B4 ISO17025 accredited mCERTS accredited Deviating sample Depth (m) 0.90 2.50 0.10 0.50 1.50 1.20 - 1.65 Aqueous / settled sample Aqueous / settled sample.
Dissolved / filtered sample.
Total / unfiltered sample.
Subcontracted test.
% recovery of the surrogate standard to check the efficiency of the method. The results of individual compounds within samples aren't corrected for the recovery dies filt Sample Type Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Soil/Solid Date Sampled 08/03/2012 08/03/2012 08/03/2012 08/03/2012 08/03/2012 Sample Time 10/03/2012 10/03/2012 10/03/2012 10/03/2012 10/03/2012 10/03/2012 120312-4 SDG Ref 120312-4 120312-4 120312-4 120312-4 120312-4 5490793 D1 5308503 5308509 5308486 5308492 5308495 Lab Sample No.(s) Trigger breach confirmed ES1 ES3 ES5 (F) AGS Reference ES ES LOD/Units Method Component <0.01 <0.01 <0.01 <0.01 <0.01 Phenol < 0.01 TM062 (S) mg/kg § M § M § M §Μ § M Soil Organic Matter (SOM) <0.35 % TM132 3.84 5.78 7.84 6.52 0.784 # # # рΗ Hq 1 TM133 7 67 7 84 7.69 8.58 8.87 8 57 Units Μ M Μ Μ Μ §Μ Cyanide, Total TM153 1.22 <1 <1 <1 <1 <1 mg/kg § M М § M §Μ § M TM153 <1 <1 <1 <1 Cvanide. Free <1 mg/kg <1 §Μ Μ §Μ §Μ §Μ TPH >C6-C40 <10 TM154 219 23.3 318 156 127 ma/ka TM181 15.5 23 1 14 7 17 8 66 Arsenic < 0.6 М mg/kg Μ Μ Μ M Cadmium <0.02 TM181 4.74 0.478 2.57 0.571 0.192 Μ mg/kg Μ Μ М Μ Chromium TM181 57 14.8 30 23.2 < 0.9 13.6 mg/kg Μ M Μ М Μ Copper <1.4 TM181 124 321 61.2 144 54.5 Μ Μ Μ Μ Μ ma/ka Lead TM181 595 563 227 297 42.3 < 0.7 mg/kg M М Μ M M Mercury <0.14 TM181 1.14 3.14 1.27 1.32 0.191 ma/ka Μ М Μ М Μ Nickel TM181 26.6 37.7 30.5 22.5 14.5 < 0.2 mg/kg M M M M M Selenium <1 mg/kg TM181 1.02 1.08 1.2 <1 <1 # Zinc <1.9 TM181 417 214 292 254 39.8 Μ М Μ Μ mg/kg M Soluble Sulphate 2:1 < 0.003 TM243 0.0518 g/l extract as SO4 BRE § M

Validated

SDG: 120312-4 Location: Redhill - Bourne Estate

Order Number: Job: H_CAMREITH_REH-4 Customer: Campbell Reith Hill

181857 Report Number: Client Reference: Attention: Rhyadd Watkins Superseded Report:

Results Legend # ISO17025 accredited.		ustomer Sample R	WS B4	WSB4		
M mCERTS accredited. § Deviating sample. aq Aqueous / settled sample.		Depth (m)	2.80	1.20 - 1.65		
diss.filt Dissolved / filtered sample. tot.unfilt Total / unfiltered sample.		Sample Type Date Sampled	Soil/Solid 08/03/2012	Soil/Solid -		
Subcontracted test. ** % recovery of the surrogate standar check the efficiency of the method.	rd to	Sample Time Date Received	10/03/2012	10/03/2012		
results of individual compounds wit samples aren't corrected for the rec	thin	SDG Ref Lab Sample No.(s)	120312-4 5308499	120312-4 5490792		
(F) Trigger breach confirmed Component	LOD/Units	AGS Reference	ES8	D1		
Phenol	<0.01 mg/kg	TM062 (S)	<0.01 § M			
Soil Organic Matter (SOM)	<0.35 %	TM132	2.12 #			
рН	1 pH Units	TM133	10.6 M	9.21 § M		
Cyanide, Total	<1 mg/kg	g TM153	<1 § M	J		
Cyanide, Free	<1 mg/k	g TM153	<1 § M			
TPH >C6-C40	<10 mg/kg	TM154	197 #			
Arsenic	<0.6 mg/kg	TM181	18.3 M			
Cadmium	<0.02 mg/kg	TM181	0.318 M			
Chromium	<0.9 mg/kg	TM181	18.5 M			
Copper	<1.4 mg/kg	TM181	33.9 M			
Lead	<0.7 mg/kg	TM181	373 M			
Mercury	<0.14 mg/kg	TM181	0.531 M			
Nickel	<0.2 mg/kg	TM181	18.5 M			
Selenium	<1 mg/k		<1 #			
Zinc	<1.9 mg/kg	TM181	141 M			
Soluble Sulphate 2:1 extract as SO4 BRE	<0.003 g/l	TM243		1.04 § M		
				J		