

Non-

...sustainable building services solutions

B

ace

Inne

644

Ei i

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

DATE OF ISSUE	DETAILS OF CHANGE	AUTHOR	CHECKED
7 TH DECEMBER 2012	ISSUE ONE	MA	MG

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

CONTENTS

1.0 INTRODUCTION

- 2.0 DESIGN NOISE CRITERIA
- 3.0 PLANT NOISE ASSESSMENT
- 4.0 CONCLUSION
- APPENDIX A CALCULATION SHEETS

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

1.0 INTRODUCTION

MTT has been commissioned to undertake a noise assessment of the new extract fans and air handling units proposed to be installed at Craven House, 121 Kingsway, London WC2. The plant is to be installed externally at 1st and 6th floor roof levels; all as shown on the Architects drawings. Additionally it should be noted that the fans will be fitted with in-line duct attenuators to reduce noise transmission to atmosphere.

The purpose of the assessment is to ascertain whether the proposed new plant will achieve the design noise criteria detailed in the **M**TT Environmental Noise Survey Report dated 29th September 2011 (summarised as follows), and thereby satisfy the planning requirements of the local planning authority (London Borough of Camden)

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

2.0 DESIGN NOISE CRITERIA

The London Borough of Camden current noise emission criteria in relation to this site states that;

"Noise levels at a point 1 metre external to sensitive facades shall be at least 5dB(A) less than the existing background measurement (LA90), expressed in dB(A) when all plant/equipment are in operation. Where it is anticipated that any plant/equipment will have noise that has a distinguishable, discrete continuous note (whine, hiss, screech, hum), and/or if there are distinct impulses (bangs, clicks, clatters, thumps) special attention should be given to reducing the noise levels from that piece of plant/equipment at any sensitive facade to at least 10dB(A) below the LA90, expressed in dB(A)"

To conform to the above criteria and in accordance with the **M**TT environmental noise survey report dated 29th September 2011, noise from the proposed plant installations should not exceed the following values.

Daytime plant operation (07:00 to 23:00hrs)	- 49.9 L _{Aeq}
24hour plant operation	- 47.1 L _{Aeq}

Note: These levels must be achieved cumulatively with all plant operating, and as measured at 1 metre external to the nearest noise sensitive facades.

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

3.0 PLANT NOISE ASSESSMENT

MECHANICAL PLANT DETAILS AND NOISE DATA

Plant located at 1st floor roof level

1								
	63	125	250	500	1K	2K	4K	8K
1.0 EF02								
Fan outlet SWL	80	75	62	58	62	57	54	49
Attenuator insertion loss	1	1	2	4	7	9	7	5
2.0 SF-B/04								
Fan inlet SWL	64	62	60	58	57	55	52	48
Attenuator insertion loss	5	7	10	18	26	28	23	20
		-						
Plant located at 6 th floor (roof leve							
Plant located at 6 th floor	roof leve <u>63</u>	125	250	500	١K	2K	4K	8K
Plant located at 6 th floor 3.0 EF01	roof leve 63	125	250	500	1K	2K	4K	8K
Plant located at 6 th floor a 3.0 EFO1 Fan outlet SWL	63 85	125 80	250	500	1K 75	2K	4K	8K
Plant located at 6 th floor (3.0 EF01 Fan outlet SWL Attenuator insertion loss	63 63 85 1	125 80 2	250 79 3	500 80 6	1K 75 8	2K 68 8	4K 68 6	8K 63 4
Plant located at 6 th floor 3.0 EF01 Fan outlet SWL Attenuator insertion loss 4.0 SF-05/02	63 63 85 1	125 80 2	250 79 3	500 80 6	1K 75 8	2K 68 8	4K 68 6	8K 63 4
Plant located at 6 th floor (3.0 EF01 Fan outlet SWL Attenuator insertion loss 4.0 SF-05/02 Fan inlet SWL	63 63 85 1 62	125 80 2 67	250 79 3 67	500 80 6 6 61	1K 75 8 54	2K 68 8 51	4K 68 6 46	8K 63 4 53
Plant located at 6 th floor in 3.0 EF01 Fan outlet SWL Attenuator insertion loss 4.0 SF-05/02 Fan inlet SWL Attenuator insertion loss	63 85 1 62 4	125 80 2 67 67	250 79 3 67 12	500 80 6 61 25	1K 75 8 54 32	2K 68 8 51 32	4K 68 6 46 26	8K 63 4 53 20
Plant located at 6 th floor i 3.0 EF01 Fan outlet SWL Attenuator insertion loss 4.0 SF-05/02 Fan inlet SWL Attenuator insertion loss 5.0 SF-06/03	63 85 1 62 4	125 80 2 67 67 6	250 79 3 67 12	500 80 6 6 61 25	1K 75 8 54 32	2K 68 8 51 32	4K 68 6 46 26	8K 63 4 53 20
Plant located at 6 th floor i 3.0 EF01 Fan outlet SWL Attenuator insertion loss 4.0 SF-05/02 Fan inlet SWL Attenuator insertion loss 5.0 SF-06/03 Fan inlet SWL	63 85 1 62 4 64	125 80 2 67 6 6 62	250 79 3 67 12 60	500 80 6 6 61 25 58	1K 75 8 54 32 57	2K 68 8 51 32 55	4K 68 6 46 26 52	8K 63 4 53 20 48

Nearest noise sensitive properties

The nearest noise sensitive properties are considered to be the residential flats in Newton Street, the facade of which is approximately 40 metres away from fan item EF-01, and 50 metres away from the remaining fans. Additionally it should be noted that there is no line of sight between the fans at 1st floor roof level and the flats, due to the shielding provided by the edge of the development building.

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

CALCULATIONS

Detailed calculations for all plant items are contained within the appendix attached to this report, with the resultant noise levels at the nearest flats summarised as follows:

PLANT REFERENCE	DISTANCE TO NEAREST WINDOW	RESULTANT NOISE LEVEL
EF-02	50m	7dBA
SF-B/04	50m	0dBA
EF-01	40m	32dBA
SF-05/02	50m	3dBA
SF-06/03	50m	0dBA
TOTAL		32dBA
Facade correction		+3dB
TOTAL		35dBA
Daytime Criteria		49.9dBA
Margin of safety		14.9dBA
Nightime criteria		47.1dBA
Margin of safety		12.1dBA

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

4.0 CONCLUSION

A plant noise assessment of the proposed new equipment to be installed at Craven House, 121 Kingsway, has been carried out.

It has been established that based upon the proposed plant selections and locations, and with fan noise control measures incorporated, the design noise criterion will be achieved, and therefore the requirements of the local planning authority (London Borough of Camden) will be achieved.

CRAVEN HOUSE

...sustainable building services solutions

PLANT NOISE ASSESSMENT REPORT

DATE: 07/12/2012 SYSTEM: EF-01 VOLUME: 1.33 ATTR REF: CALC: 3		NOISE UNTREATED:					NR dB'A'				
		АТМС	OSPHI	ERE	SIDE	ANA	LYSIS				
		ост	AVE	BAND	CENT	RE F	REQ				
	63	125	250	500	1K	2K	4K	8K			
SWL	85	80	79	80	75	68	68	63			
BENDS	0	0	1	2	3	3	3	3	500	1	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
RECTANGULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
CIRCULAR DUCTS	0	0	0	0	0	0	0	0	500	2	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
EQUIPMENT LOSSES	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	M2		
GRILLE END REFLECTION	9	5	2	0	0	0	0	0	0.00		CENTRE
SYSTEM ATTENUATION	9	5	3	2	3	3	3	3	0.20		OMNI
SWL AT GRILLE	76	75	76	78	72	65	65	60	0.00		JUNC 2
DIRECTIVITY	1	1	2	3	4	6	6	6	0.00		JUNC 3
DISTANCE TO LISTENER	43	43	43	43	43	43	43	43	40.00		METERS
SPL AT LISTENER	34	33	35	38	33	28	28	23	0		ANGLE
NOISE CRITERION	59	48	40	34	30	27	25	23	NR 30		CRITERION
ALLOWANCE	0	0	0	0	0	0	0	0			
REQUIRED INSERTION LOSS	0	0	0	4	3	1	3	0			
ATTENUATOR DIL	1	2	3	6	8	8	6	4	CA50S		
ATTENUATED SPL	33	31	32	32	25	20	22	19			
ATTENUATED NOISE LEVEL ATTENUATED NOISE LEVEL	28 32	NR Dba									

DATE: 07/12/2012 SYSTEM: EF02 EXHAU VOLUME: 0.17 ATTR REF: CALC: 1	NOI	SE UI	NTRE/	ATED:	11 14	NR dB'A'					
		АТМО	OSPHI	ERE	SIDE	ANA	LYSIS				
		ОСТ	AVE	BAND	CENT	RE FI	REQ				
	63	125	250	500	1K	2K	4K	8K			
SWL	80	75	62	58	62	57	54	49			
BENDS	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
RECTANGULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
CIRCULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
EQUIPMENT LOSSES	0	0	0	0	0	0	0	0			
BUILDING EDGE	10	10	10	10	10	10	10	10			
	0	0	0	0	0	0	0	0	M2		
GRILLE END REFLECTION	14	9	5	2	0	0	0	0	0.00		CENTRE
SYSTEM ATTENUATION	24	19	15	12	10	10	10	10	0.05		OMNI
	56	56	47	46	52	47	44	39	0.00		JUNC 2
	0	0	1	3	4	5	5	6	0.00		JUNC 3
	45	45	45	45	45	45 7	45	45	50.00		METERS
SPL AT LISTENER	11	11	3	4	11	/	4	0			
	29	48	40	34	30	21	25	23	NR 30		CRITERION
	0	0	0	0	0	0	0	0			
	1	1	0 2	1	7	0	7	5	CV326	меі	
	10	10	2 1	4	і Л	_2	-3	-5	GAZJS		
ATTENDATED SPL	10	10	•	U	4	-2	-3	-5			
ATTENUATED NOISE LEVEL ATTENUATED NOISE LEVEL	4 7	NR Dba									

DATE: 07/12/2012 SYSTEM: SF-05/02 VOLUME: .31 ATTR REF: CALC: 4		NOI	SE UI	NTRE/	ATED:	21 21	NR dB'A'				
		АТМС	SPH	ERE	SIDE	ANA	LYSIS				
		ОСТ	AVE	BAND	CENT	RE FF	REQ				
	63	125	250	500	1K	2K	4K	8K			
SWL	62	67	67	61	54	51	46	53			
BENDS	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
RECTANGULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
CIRCULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
EQUIPMENT LOSSES	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	M2		
GRILLE END REFLECTION	9	5	2	0	0	0	0	0	0.00		CENTRE
SYSTEM ATTENUATION	9	5	2	0	0	0	0	0	0.20		OMNI
SWL AT GRILLE	53	62	65	61	54	51	46	53	0.00		JUNC 2
	1	1	2	3	4	6	6	6	0.00		JUNC 3
DISTANCE TO LISTENER	45	45	45	45	45	45	45	45	50.00		METERS
SPL AT LISTENER	9	18	22	19	13	12	(14	0		ANGLE
NOISE CRITERION	59	48	40	34	30	27	25	23	NR 30		CRITERION
	0	0	U	0	0	0	0	0			
REQUIRED INSERTION LOSS	0	0	10	0	0	0	0	0	011		
	4	10	12	25	32	32	20	20	SIL		
ATTENUATED SPL	5	12	10	-0	-19	-20	-19	-0			
ATTENUATED NOISE LEVEL	2	NR									
ATTENUATED NOISE LEVEL	3	Dba									

DATE: 07/12/2012 SYSTEM: SF-06/03 VOLUME: .11 ATTR REF: CALC: 5		NOI	SE UI	NTRE/	ATED:	18 21	NR dB'A'				
		АТМС	OSPH	ERE	SIDE	ANA	LYSIS				
		ост	AVE	BAND	CENT	RE FI	REQ				
	63	125	250	500	1K	2K	4K	8K			
SWL	64	62	60	58	57	55	52	48			
BENDS	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
RECTANGULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
CIRCULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
EQUIPMENT LOSSES	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0	M2		
GRILLE END REFLECTION	14	9	5	2	0	0	0	0	0.00		CENTRE
SYSTEM ATTENUATION	14	9	5	2	0	0	0	0	0.05		OMNI
SWL AT GRILLE	50	53	55	56	57	55	52	48	0.00		JUNC 2
	0	0	1	3	4	5	5	6	0.00		JUNC 3
	45	45	45	45	45	45	45	45	50.00		METERS
SPL AT LISTENER	5	8	11	14	16	15	12	9			ANGLE
	59	48	40	34	30	27	25	23	NR 30		CRITERION
	0	0	0	0	0	0	0	0			
	5	7	10	10	0	0 20	0	20	eii		
	5	1	10	-1	-10	_12	-11	-11	SIL		
ATTENDATED OFL	U	1	1	-4	-10	-13	-11	-11			
ATTENUATED NOISE LEVEL	-3	NR									
ATTENUATED NOISE LEVEL	-1	Dba									

DATE: 07/12/2012 SYSTEM: SF B/04 FRE VOLUME: 0.135 ATTR REF: CALC: 2	SH AI	NOI R INLE	se ui et	NTRE#	ATED:	8 11	NR dB'A'				
		ATMC	SPHE	ERE S	SIDE	ANA	LYSIS				
		ост	AVE	BAND	CENT	RE FF	REQ				
	63	125	250	500	1K	2K	4K	8K			
SWL	64	62	60	58	57	55	52	48			
BENDS	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
	0	0	0	0	0	0	0	0	0	0	BEND W/QTY
RECTANGULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
CIRCULAR DUCTS	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
	0	0	0	0	0	0	0	0	0	0	DUCT W/L
EQUIPMENT LOSSES	0	0	0	0	0	0	0	0			
BUILDING EDGE	10	10	10	10	10	10	10	10			
	0	0	0	0	0	0	0	0	M2		
GRILLE END REFLECTION	14	9	5	2	0	0	0	0	0.00		CENTRE
SYSTEM ATTENUATION	24	19	15	12	10	10	10	10	0.05		OMNI
SWL AT GRILLE	40	43	45	46	47	45	42	38	0.00		JUNC 2
DIRECTIVITY	0	0	1	3	4	5	5	6	0.00		JUNC 3
DISTANCE TO LISTENER	45	45	45	45	45	45	45	45	50.00		METERS
SPL AT LISTENER	-5	-2	1	4	6	5	2	-1	0		ANGLE
NOISE CRITERION	59	48	40	34	30	27	25	23	NR 30		CRITERION
ALLOWANCE	0	0	0	0	0	0	0	0			
REQUIRED INSERTION LOSS	0	0	0	0	0	0	0	0			
ATTENUATOR DIL	5	7	10	18	26	28	23	20	SIL		
ATTENUATED SPL	-10	-9	-9	-14	-20	-23	-21	-21			
ATTENUATED NOISE LEVEL	-13	NR									
ATTENUATED NOISE LEVEL	-11	Dba									