

PULL OUT TEST

CLIENT: CJ O'Shea

SITE ADDRESS: 42-45 Park, I

42-45 Belsize Park, London, NW3 4EE

REPORT SC-550-PT-001 NUMBER: JOB NUMBER: SC-

SC-0550

Test Procedure Requirements:

BS 8539:2012 Code of practice for the selection and installation of post-installed anchors in concrete and masonry

CFA Procedure for Site Testing Construction Fixings 2012

TEST DETAILS:

- There are 8no. Pull out tests in total
- These tests were carried out on 12mm diameter Hilti HIT V-R anchors.
- The anchors had been resin fixed into the inner leaf of the retained brick facade using Hilti Hit HY-70 max.
- These bolts were being tested to failure to determine the allowable resistance.

FAILURE CRITERIA:

These tests are being carried out to the point of failure. The failure load will be recorded as:

- The point at which either the base material will fail (cone failure) this is taken when the base material can no longer sustain load.
- The point at which the anchor fails in tension (steel failure)
- The point at which there is bond failure between the anchor and the resin or the resin and the brick (Bond failure).

Report By: Conor McHugh

Checked By: Tim Lohmann

Date: 27th August 2013

Test Carried Out By	Conor McHugh - Theodoros Isokratous	
Date of Test	23rd August 2013	
Purpose of Test	Determine the allowable resistance	
Test Requested By	Niall O'Shea	
Report Number	SC-0550-PT-01	
Clients Contact	Niall O'Shea	
Anchors Installed By	Mr P Singh (C J O'Shea)	
ANCHOR DETAILS		
Anchor manufacturer	Hilti	
Anchor Type, Size and Finish	Hilti HIT-V M12	
Purpose of Anchor	Façade retention	
Characteristic Resistance		
Design Resistance		
TEST DETAILS		
Type of Loading	Tension Load - Incremental	
Proof or Allowable Resistance	Allowable resistance	
Required Proof Load	Test to failure	
TEST LOCATION		
Location	Façade	
Anchor reference	1-8	
Edge Distance	n/a	
Centre Spacing	n/a	
BASE MATERIAL		
Material type and Strength	Solid Bricks	
Thickness	Unknown	
INSTALLATION DETAILS		
Hole Diameter	14mm	
Drill Bit Cutting Diameter	14mm	
Hole Depth	230mm	
Resin Type	Hilt HIT-HY 70 max	
Embedment Depth	220mm	
Hole Cleaning Method	Brush and blow	
Temperature When Installed		
Manufacturer Curing Time		
TEST EQUIPMENT		
Hydraulic Jack	Hydrajaws 2000	
Pressure Gauge	30kN Hydrajaws pressure gauge.	
	Calibration Reference: SWX1F 62078	
weasurement Gauge	Hydrajaws linear gauge	
1		

BOLT #1 - Ground Floor			
LOAD APPLIED	GAUGE READING DISPLACEMEN		
kN	mm	mm	
0	17	0	
2.5	17.5	0.5	
5	18.7	1.7	
6	19.5 2.5		
7	20	3	
8	20.5	3.5	

BEFORE TESTING

BASE MATERIAL FAILURE

BOLT #2 - Ground Floor		
LOAD APPLIED GAUGE READING		DISPLACEMENT
kN	mm	mm
0	23	0
2.5	23.3	0.3
4	23.5	0.5
5	23.9	0.9
6	24	1
7	24.9	1.9
8	26	3

BEFORE TESTING

BASE MATERIAL FAILURE

AFTER TESTING

BOLT #3 - First Floor		
LOAD APPLIED GAUGE READING DISI		DISPLACEMENT
kN	mm	mm
0	5.8	0
2.5	6.1	0.3
5	6.5	0.7
6	6.8	1
7	6.9	1.1
8	7.2	1.4
9	7.8	2

BEFORE TESTING

BASE MATERIAL FAILURE

AFTER TESTING

BOLT #4 - First Floor		
LOAD APPLIED	GAUGE READING	DISPLACEMENT
kN	mm	mm
0	18	0
2.5	18.2	0.2
5	18.5	0.5
6	18.7	0.7
7	18.9	0.9
8	19	1
9	19.1	1.1
10	19.3	1.3
11	19.5	1.5
12	19.7	1.7
13	19.9	1.9
14	20.4	2.4
15	21	3

BEFORE TESTING

AFTER TESTING

BASE MATERIAL

FAILURE

BOLT #5 - Second Floor		
LOAD APPLIED GAUGE READING DISPLACEME		DISPLACEMENT
kN	mm	mm
0	16.9	0
1	17	0.1
1.5	1.5 17.5 0.6	
2.5	18.4	1.5

Page **7** of **11**

BOLT #6 - Second Floor		
LOAD APPLIED GAUGE READING DISPLACEM		DISPLACEMENT
kN	mm	mm
0	8	0
2	8.1	0.1
4	8.3	0.3
5	9.5	1.5
6	10.4	2.4
7	11.2	3.2

MORTAR JOINT FAILURE

BEFORE TESTING

MORTAR JOINT FAILURE

BOLT #7 - Third Floor		
LOAD APPLIED GAUGE READING		DISPLACEMENT
kN	mm	mm
0	14.8	0
2	15	0.2
3	15.2	0.4
4	15.8	1
5	17	2.2
6	18.2	3.3
7	19.3	4.2

BEFORE TESTING

AFTER TESTING

BASE MATERIAL FAILURE

BOLT #8 - Third Floor		
LOAD APPLIED	GAUGE READING	DISPLACEMENT
kN	mm	mm
0	8.5	0
1	8.6	0.1
2	8.8	0.3
3	9	0.5
4	9.1	0.6
5	9.2	0.7
6	9.3	0.8
7	9.5	1
8	9.8	1.3
9	10	1.5
10	10.1	1.6
11	10.3	1.8
12	10.6	2.1
13	11	2.5
14	11.8	3.3
15	13	4.5

NOTE:

Anchor #8 was resin fixed into a concrete mortar joint. This concrete mortar may be stronger than the actual masonry itself and therefore this test result cannot be included in determining the allowable resistance of the masonry.

Applied Load vs Displacement 5 Displacement (mm) 4 3 2 BOND 1 FAILURE 0 2 6 8 0 4 10 12 14 16 Load (kN)

BEFORE TESTING

AFTER TESTING

BOND FAILURE

Results

Based on equation *B.2.3.2.2 of BS 8539:2012*

 $N_{RK1}=N_{Ru,m}(1-K^*v)^*\Omega$

BOLT NUMBER	FAILURE LOAD kN
1	6
2	6
3	7
4	13
5	1.5
6	5
7	5
SUM	43.5
STDEV	3.2
MEAN	6.2

 $N_{Ru,m}$ = 5.4 kN

v = 0.3, K=3, Ω=0.9

Characteristic Resistance N_{Rk1}

N_{Rk1}=6.2(1 - 3*0.3)*0.9= 0.56kN

 $N_{R,all} = N_{Rk1} / \nu$ (Equation B.10)

 $\nu\text{=}$ 2.5 Global safety factor

Allowable Resistance N_{R,all}

= 0.22kN

Conclusions

- The majority of the tests resulted in a base material failure, with the exception of test #6. Test #8 was not included in determining the allowable resistance as the anchor was resin fixed into the concrete mortar joint.
- The results varied from 1.5kN failure to 13kN failure which leads to a higher standard deviation and a lower overall resistance value.
- By removing these tests from the overall result gives a more accurate allowable resistance of 1.2kN

If we remove bolts #4 and #5 as they are the highest and lowest result which lead to a much higher standard deviation and overall lower allowable resistance then the results are as follows

 $N_{RK1}=N_{Ru,m}(1-K^*v)^*\Omega$

BOLT NUMBER	FAILURE LOAD kN	
1	6	
2	6	
3	7	
6	5	
7	5	
SUM	29	
STDEV	0.7	
MEAN	5.8	

N_{Ru,m}= 3.6 kN

v = 0.19, K=3.4, Ω=0.9

Characteristic Resistance N_{Rk1}

 $N_{Rk1} = 5.8(1 - 3.4*0.12)*0.9 = 3kN$

 $N_{R,all} = N_{Rk1} / v$ (Equation B.10)

 ν = 2.5 Global safety factor

Allowable Resistance N_{R,all}

= 1.2kN