



# **BASEMENT IMPACT ASSESSMENT**

# Land Adjacent to 1 Ellerdale Road London NW3 6BA

**CLIENT** Mr. Georg Galberg Flat C, 15 Cleveland Square London W2 6DG

Ref: 4555/2.3F Date: November 2012

#### **CONSULTING ENGINEERS**

GTA Civils Ltd. 66a Church Walk Burgess Hill West Sussex RH15 9AS

> Tel: 01444 871444 Fax: 01444 871401

#### **INDEX**

- 1.0 Introduction
- 2.0 Existing Site & Current Flood Conditions
- 3.0 CPG4 Screening Flowcharts
- 4.0 Scoping Stage

#### **SCHEDULE OF APPENDICES**

- A Site Location Plan & Aerial Photos
- B Environment Agency's Goundwater Maps
- C Architect's Scheme Drawings
- D Structural Method Statement, Specifications & Sketches
- E Soil Borehole Records
- F Planning Decision Notice
- G Figures from the Camden Geological, Hydrogeological and Hydrological Study

| Issue        | Date            | Compiled | Checked |
|--------------|-----------------|----------|---------|
| First Issue  | 13 November '12 | JP       | MR      |
| Second Issue | 29 July '13     | JP       | MR      |
|              |                 |          |         |
|              |                 |          |         |

# Report by:John Pakenham - GTA Civils - (Hydrology) BSc (Hons)Jeff Walker - AND Designs - (Structural) C.Eng, MIStructEChecked by:Martin Roberts - GTA Civils - (Hydrology) I Eng, CIWEM, MCIHT

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports/F. BIA                                                  | November 2012 | 4555/2.3F |

#### 1.0 INTRODUCTION

- 1.1 This report has been prepared for Mr. G. Galberg in relation to land adjacent to the rear garden of 1 Ellerdale Road, London NW3 6BA. No responsibility is accepted to any third party for all or part of this study in connection with this or any other development.
- 1.2 GTA Civils Ltd. was appointed by its client to provide a Basement Impact Assessment (BIA) as requested by Camden Council in order to achieve Planning Approval at said property.
- 1.3 This report has been structured to cover the topics outlined in Camden's policy document DP27, namely the proposed scheme's impact on local drainage and flooding and on the structural stability of neighbouring properties through its effect on groundwater conditions and ground movement.
- 1.4 Note that the structural 'design' is sufficiently comprehensive for planning purposes only. It is not intended as a fully worked up design to comply with current Building Regulations.

#### 2.0 EXISTING SITE

- 2.1 The site comprises an area of cleared garden adjacent to the rear garden of 1 Ellerdale Road, which is in the London Borough of Camden.
- 2.2 The site is 45m southwest of the junction with Fitzjohns Avenue. An existing site location map and photos of the site are shown in Appendix A. The site slopes to the southwest.
- 2.3 The BGS online geology map indicates this site lies on the junction between the Bagshot Formation (Sandstone) and the Claygate Member (clay, silt and sand.) This is the highest solid (or bedrock) stratum with no superficial (or 'drift') deposits recorded.
- 2.4 As there are no particular groundwater issues (e.g. underground rivers nearby) this assessment was not deemed to need input from a chartered professional hydro-geologist.
- 2.5 There is already planning permission to build a single storey flat roofed garden house. The proposal is to extend this scheme by forming and additional basement level see the proposed scheme drawings in Appendix C and the planning decision notice in Appendix F.

#### 3.0 CPG4 SCREENING FLOWCHARTS

#### 3.1 Subterranean (Groundwater) Flow

1A: Is the site located directly above an aquifer? Yes, the site is underlain by a minor aquifer, as denoted on the EA's 'Groundwater Vulnerability' and solid bedrock aquifers maps – see excerpts in Appendix D: carry forward to scoping stage.

1B: Will the proposed basement extend beneath the water table surface? No water was encountered in the boreholes.

2: Is the site within 100m of a watercourse, well (used/disused) or potential spring line? No, the site is over 200m from the nearest watercourse (see Figure 11 of the Camden Study in Appendix G.)

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports/F. BIA                                                  | November 2012 | 4555/2.3F |

*3: Is the site within the catchment of the pond chains on Hampstead Heath?* No, it is not near this area.

4: Will the proposed basement development result in a change in the proportion of hard surface/paved areas?

Yes the amount of hardstanding areas will increase as the new unit will replace soft landscaped area – carry forward to scoping stage.

5: As part of the site drainage, will more surface water (e.g. rainfall and run-off) than at present be discharged to ground (e.g. via soakaways and/or SUDS)?

No, the use of infiltration methods is not possible due to lack of external space.

6: Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level of any local pond (not just the chain of ponds in Hampstead Heath) or spring line?

No, the elevation of the site is approximately 100m AOD and there are no ponds or spring lines hydraulically connected to the site.

#### 3.2 Slope Stability

1: Does the existing site include slopes, natural or man-made, greater than 7° (approximately 1 in 8)? No, the site's gradient is less than 1:8.

2: Will the proposed re-profiling of landscaping at site change slopes at the property boundary to greater than 7° (approximately 1 in 8)?

No, the proposal does not include landscaping that affects the boundaries.

3: Does the development neighbour land, including railway cuttings and the like, with a slope greater than 7 °?

No, the neighbouring sites are at a similar gradient.

4: Is the site within a wider hillside setting in which the general slope is greater than  $7^{\circ}$  (approximately 1 in 8)?

No, the wider gradient is less than 1:8.

*5: Is London Clay the shallowest stratum on the site?* No London Clay was found on this site, just Bagshot Beds and Claygate member deposits.

6: Will any trees be felled as part of the proposed development and/or are there any proposed works within any tree protection zones where trees are to be retained? No trees are to be felled as part of this proposal.

7: Is there a history of shrink-swell subsidence in the local area and/or evidence of such effects at the site?

There is no such evidence to this or neighbouring properties, which is expected as London Clay is not the major stratum.

8: Is the site within 100m of a watercourse, or spring line? No, the site is further away than 100m from the nearest watercourse or spring line.

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports\F. BIA                                                  | November 2012 | 4555/2.3F |

*9: Is the site within an area of previously worked ground?* Yes, the borehole records show made ground to 2.9m below ground level – carry forward to scoping stage.

10: Is the site within an aquifer? If so, will the proposed basement extend beneath the water table such that dewatering will be required during construction? Yes, the site is within an aquifer - carry forward to scoping stage.

11: Is the site within 50m of the Hampstead Heath ponds? No, it is significantly further than 50m away from these ponds.

*12: is the site within 5m of a public highway or pedestrian right of way?* No, the proposed extension is further than 5m from the nearest highway/pedestrian right of way.

13: Will the proposed basement significantly extend the differential depth of basements relative to neighbouring properties?

Yes, the basement is being formed adjacent to the neighbouring property – carry forward to scoping stage.

14: Is the site over (or within the exclusion zone of) any tunnels, e.g. railway lines? No, the site is outside all such exclusion zones.

#### 3.3 Surface Flow and Flooding

1: Is the site within the catchment of the pond chains on Hampstead Heath? No, the site is well removed from these ponds and outside the catchment area.

2: As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off) be materially changed from the existing route?

No, these will be unaffected: the site is effectively cut off from the wider landscape as it is surrounded by buildings on all 4 sides.

*3:* Will the proposed basement development result in a change in the proportion of hard surfaces/paved external areas?

Yes, the amount and proportion of hardstanding areas will increase - carry forward to scoping stage.

4: Will the proposed basement result in changes to the profile of the inflows (instantaneous and longterm) of surface water being received by adjacent properties or downstream watercourses? No, there will be no surface water flow off-site as a result of this proposal.

5 Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses?

No, there will be no surface water flow off-site as a result of this proposal.

6 Is the site in an area known to be at risk from surface water flooding, such as Hampstead Heath, Gospel Oak and King's Cross, or is it at risk from flooding, for example because the proposed basement is below the static water level of a nearby surface water feature?

No, the site is not in an area susceptible to surface water flooding – as per Figure 15 of the Camden Geological, Hydrogeological and Hydrological Study (see Appendix G).

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports\F. BIA                                                  | November 2012 | 4555/2.3F |

#### 4.0 SCOPING STAGE

#### 4.1 Subterranean (Groundwater) Flow

1A: The site overlies a minor aquifer as denoted on the EA's 'Groundwater Vulnerability' and solid bedrock aquifers maps – see excerpt in Appendix D. The proposal does not impact on this, however, as there will be no deleterious materials produced as a result of this proposal.

4 & 5: The increase in impermeable area does not impact on the groundwater flow as the water table is considerably lower than 9m below current ground levels.

#### 4.2 Slope Stability

9: The presence of made ground to the depth of 2.9m does not constitute a cause for concern as the depth of the new construction is greater than this: all made ground below formation level will be removed.

13. There will be a sequence of remedial work to underpin the adjacent properties, together with a complex sequence of work involving 'top-down' construction methodology. This is necessary due to the limited access and minimal stable working area within the confines of this site. See Appendix D for the structural method statements, sketches and specifications.

#### 4.3 Surface Flow and Flooding

3: the roof's surface water will drain to to the nearest sewer in Ellerdale Road. There is insufficient space for infiltration methods to be used on this site.

It is concluded that this proposal is safe and all of the points requiring to be covered in Section 1.3 have been dealt with conclusively.

- End of Report -

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports/F. BIA                                                  | November 2012 | 4555/2.3F |

#### APPENDIX A



#### Site Location Map & Photos of the Site

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports\F. BIA                                                  | November 2012 | 4555/2.3F |



| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports\F. BIA                                                  | November 2012 | 4555/2.3F |

#### **APPENDIX B**





© Environment Agency copyright and database rights 2012. © Ordnance Survey Crown copyright, All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2012. This service is designed to inform members of the public, in line with our terms and conditions. For business or commercial use, please contact us.



| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports/F. BIA                                                  | November 2012 | 4555/2.3F |



© Environment Agency copyright and database rights 2012. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380. Contains Royal Mail data © Royal Mail copyright and database right 2012. This service is designed to inform members of the public, in line with our **terms and conditions**. For business or commercial use, please contact us.



| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports\F. BIA                                                  | November 2012 | 4555/2.3F |



© Environment Agency copyright and database rights 2012. © Ordnance Survey Crown copyright. All rights reserved. Environment Agency, 100026380 Contains Royal Mail data © Royal Mail copyright and database right 2012.

This service is designed to inform members of the public, in line with our terms and conditions. For business or commercial use, please contact us.



| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |
|----------------------------------------------------------------------------------|---------------|-----------|
| Specifications & Reports/F. BIA                                                  | November 2012 | 4555/2.3F |

### APPENDIX C

Architect's Scheme Drawings

|                                 | Bato          | JUD NU.   |
|---------------------------------|---------------|-----------|
| Specifications & Reports/F. BIA | November 2012 | 4555/2.3F |



SITE PLAN SCALE 1:1250 @ A4

BFF/777B AL(0)001.P1 03.12.12

BURRELL FOLEY FISCHER



| P1 F                                              | PLANNING ISSUE                                                                                        |                                                                    | SR                                       | JB                             | 03.12.12      |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------|--------------------------------|---------------|
| REV NO: F                                         | REV DETAILS:                                                                                          |                                                                    | BY:                                      | CHKD                           | DATE          |
| PLAN                                              | INING                                                                                                 |                                                                    |                                          |                                |               |
| DO NOT S                                          | CALE OFF THIS DRA                                                                                     | WING                                                               |                                          |                                |               |
| BURR                                              | ELL . FOLE                                                                                            | Y . FIS                                                            | сн                                       | ER.                            | LLP           |
| BURRELL FO                                        | DLEY FISCHER LLP .                                                                                    | ARCHITECT                                                          | 'S & UI                                  | rban de                        | SIGNERS       |
| CARLOW HO                                         | DUSE . (                                                                                              | CARLOW STREE                                                       | ET                                       |                                | NW1 7LH       |
| TEL 020 7755 6                                    | 3868 . FAX 020 7383 06                                                                                | 48 . E-M                                                           | AIL ma                                   | il@bff-arch                    | itects.co.uk  |
| WEE                                               | s www.on-architects.co.uk                                                                             | BLUG bri-archi                                                     | tects.bic                                | gspot.com                      |               |
|                                                   | 1 ELLERDALE                                                                                           | HOUSE<br>ROAD, HA                                                  | MPS                                      | STEAD                          | )             |
|                                                   |                                                                                                       |                                                                    |                                          |                                |               |
| FOR:                                              | GEORG AND B                                                                                           | ABETTE (                                                           | GALE                                     | BERG                           |               |
| FOR:<br>                                          | GEORG AND B<br>15 C CLEVELA<br>LONDON, W2 6                                                           | ABETTE (<br>ND SQUA                                                | GALE                                     | BERG                           |               |
| FOR:<br>AT:<br>DRAWING TI                         | GEORG AND B<br>15 C CLEVELA<br>LONDON, W2 6                                                           | ABETTE (<br>ND SQUA                                                | GALE                                     | BERG                           |               |
| FOR:<br>AT:<br>DRAWING TI                         | GEORG AND B<br>15 C CLEVELA<br>LONDON, W2 G<br>TE:<br>EXISTING SITE                                   | ND SQUA                                                            | RE                                       | BERG                           |               |
| FOR:<br>AT:<br>DRAWING TI<br>DATE:                | GEORG AND B<br>15 C CLEVELA<br>LONDON, W2 6<br>TE:<br>EXISTING SITE<br>26.05.11                       | ABETTE (<br>ND SQUAI<br>DG<br>PLAN<br>SCALE:                       | RE                                       | BERG                           | 13            |
| FOR:<br>AT:<br>DRAWING TI<br>DATE:<br>DRAWN BY:   | GEORG AND B<br>15 C CLEVELA<br>LONDON, W2 6<br>TE:<br>EXISTING SITE<br>26.05.11<br>SR                 | ABETTE C                                                           | BALE<br>RE<br>1:<br>1:<br>1:<br>1:<br>1: | BERG<br>100@A<br>50@A          | N3<br>1       |
| FOR:<br>AT:<br>DRAWING TI<br>DRAWN BY:<br>JOB NO. | GEORG AND B<br>15 C CLEVELA<br>LONDON, W2 6<br>TLE:<br>EXISTING SITE<br>26.05.11<br>SR<br>BFF/777 (B) | ABETTE (<br>ND SQUAI<br>DG<br>PLAN<br>SCALE:<br>CHECKED<br>DWG NO. | ALL                                      | 100@A<br>50@A<br>JB<br>(0)100. | A3<br>1<br>P1 |



| P1           | PLANNING ISSU       | IE          |               | SR          | JB        | 03.1     |
|--------------|---------------------|-------------|---------------|-------------|-----------|----------|
| REV NO:      | REV DETAILS:        |             |               | BY:         | CHK       | ): D     |
|              | NNING               |             |               |             |           |          |
|              |                     |             | WING          |             |           |          |
|              | JUALE OIT TI        |             | WING .        |             |           |          |
|              |                     |             |               | CUI         | - D       |          |
| DUNN         | CLL . F             | OLE         | 1             | СП          |           |          |
| BURRELL F    | OLEY FISCHER L      | LP .        | ARCHITEC      | TS & UP     | RBAN D    | ESIGN    |
| CARLOW H     | OUSE .              | С           | ARLOW STRE    | ET          |           | NW1      |
| TEL 020 7755 | 6868 . FAX 0        | 20 7383 064 | 8 . E-!       | MAIL ma     | il@b#-arc | hitects. |
| WE           | B www.bff-architect | s.co.uk     | BLOG bff-arcl | nitects.blo | gspot.co  | m        |
| JOB:         |                     |             |               |             |           |          |
|              | THE GAP             | RDENH       | HOUSE         |             |           | _        |
|              | 1 ELLER             | DALE I      | ROAD, H       | AMPS        | SIEA      | J        |
| FOR:         |                     |             |               |             |           |          |
|              | GEORG               | AND B.      | ABETTE        | GALE        | BERG      |          |
|              |                     |             |               |             |           |          |
| AT-          |                     |             |               |             |           |          |
| AI.          | 15 C CLE            | VELA        | ND SQUA       | RE          |           |          |
|              | LONDON              | I, W2 6     | DG            |             |           |          |
|              |                     |             |               |             |           |          |
| DRAWING 1    | TTLE:               |             |               |             |           |          |
|              | GENERA              |             | ANGEME        | NT          |           |          |
|              | GROUNL              | JLEVE       | L             |             |           |          |
| DATE:        | 26.05.              | 11          | SCALE:        | 1:          | 100@      | A3       |
|              | 20.00.              |             | OUFOVER       |             |           |          |
| UNAMIN BI    | SR                  |             | UNECKEL       | 01:         | JB        |          |
|              |                     |             | DWO NO        |             |           |          |
| JOB NU.      |                     |             | Ding NO.      |             |           |          |

Π

ALL WORKS TO BE CARRIED OUT IN ACCORDANCE WITH ALL PARTY WALL

ONFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO

HIS DRAWING IS BASED ON DIMENSIONAL SURVEY IFORMATION PROVIDED BY OTHERS. THE ARCHITECT ANNOT ACCEPT RESPONSIBILITY FOR THE ACCURACY

ALL PROPOSALS, APART FROM THE INTERNAL LAYOUT OF THE HOUSE ARE AS PER THE DRAWINGS SUBMITTED AS AN AMENDMENT TO APPLICATION 2010/5841/P WHICH WAS SUBSEQUENTLY APPROVED FOR PLANNING PERMISSION. THE INTERNAL LAYOUT OF THE HOUSE & THE ROOF PLAN HAVE BEEN REVISED & A NEW BASEMENT LEVEL HAS BEEN ADDED



#### CONFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO COMMENCING WORK. IF IN DOUBT ASK! THIS DRAWING REMAINS THE COPYRIGHT OF **BURRELL** FOLEY RECHER LLP

REPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OR OMISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE PROCEEDING.

PRAMING, OR THE CENTRE LINE OF STRUCTURAL STEEL MEMBERS, UNLESS NOTED OTHERWISE. DO NOT SCALE FROM THIS DRAWING.

IN THE CASE OF NEW WORKS, ALL DIMENSIONS SHOWN ARE TO THE FACE OF MASONRY, METAL OR TIMBER STUD FRAMING, OR THE CENTRE LINE OF STRUCTURAL STEEL MEMBERS, UNLESS NOTED OTHERWISE.

THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS, SPECIFICATIONS, SCHEDULES AND OTHER CONTRACT INFORMATION ISSUED BY THE ARCHITECT, STRUCTURAL ENGINEER, SERVICES ENGINEEI AND ANY OTHER CONSULTANT EMPLOYED OR RETAINED BY THE EMPLOYER IN RESPECT OF THESE WORKS.

THIS DRAWING IS BASED ON DIMENSIONAL SURVEY INFORMATION PROVIDED BY OTHERS. THE ARCHITECT CANNOT ACCEPT RESPONSIBILITY FOR THE ACCURACY OF THIS SURVEY INFORMATION. ALL PROPOSALS, APART FROM THE INTERNAL LAYOUT OF THE HOUSE ARE AS PER THE DRAWINGS SUBMITTED AS AN AMENDMENT TO APPLICATION 2010/5841/P WHICH WAS SUBSEQUENTLY APPROVED FOR PLANNING PERMISSION. THE INTERNAL LAYOUT OF THE HOUSE & THE ROOF PLAN HAVE BEEN REVISED & A NEW BASEMENT LEVEL HAS BEEN ADDED



CONFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO COMMENCING WORK. IF IN DOUBT ASK! THIS DRAWING REMAINS THE COPYRIGHT OF **BURRELL** 

REPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OR OMISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE PROCEEDING.

FRAMING, OR THE CENTRE LINE OF STRUCTURAL STEEL MEMBERS, UNLESS NOTED OTHERWISE. DO NOT SCALE FROM THIS DRAWING.

IN THE CASE OF NEW WORKS, ALL DIMENSIONS SHOWN ARE TO THE FACE OF MASONRY, METAL OR TIMBER STUD FRAMING, OR THE CENTRE LINE OF STRUCTURAL STEEL MEMBERS, UNLESS NOTED OTHERWISE.

THIS DRAWING SHOULD BE READ IN CONJUNCTION WITH ALL RELEVANT DRAWINGS, SPECIFICATIONS, SCHEDULES AND OTHER CONTRACT INFORMATION ISSUED BY THE ARCHITECT. STRUCTURAL ENGINEER, SERVICES ENGINEEI AND ANY OTHER CONSULTANT EMPLOYED OR RETAINED BY THE EMPLOYER IN RESPECT OF THESE WORKS.

THIS DRAWING IS BASED ON DIMENSIONAL SURVEY INFORMATION PROVIDED BY OTHERS. THE ARCHITECT CANNOT ACCEPT RESPONSIBILITY FOR THE ACCURACY OI THIS SURVEY INFORMATION.





APPLICATION 2010/5841/P WHICH WAS SUBSEQUENTLY APPROVED FOR PLANNING PERMISSION. THE INTERNAL LAYOUT OF THE HOUSE & THE ROOF PLAN HAVE BEEN REVISED & A NEW BASEMENT LEVEL HAS BEEN ADDED

4 5m 2 3

#### EXISTING TIMBER TRELLIS TO GARDEN OF 81 FITZJOHN'S AVE

53.23 51<u>.</u>87 ARTHUR WEST HOUSE

**EXISTING SECTION A-A** SCALE 1:50 @ A1, 1:100 @ A3

## **PROPOSED SECTION A-A** SCALE 1:50 @ A1, 1:100 @ A3

RAWING IS BASED ON DIMENSIONAL MATION PROVIDED BY OTHERS. THE DT ACCEPT RESPONSIBILITY FOR TH

DO NOT SCALE FROM THIS DRAWING.

REPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OF OMISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE

CONFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO

NS THE COPYRIGHT

#### P1 PLANNING ISSUE REV NO: REV DETAILS: SR JB 03.12.12 BY: CHKD: DATE: PLANNING ISSUE BURRELL . FOLEY . FISCHER . LLP BURRELL FOLEY FISCHER LLP ARCHITECTS & URBAN DESIGNER co.uk BLOG JOB: THE GARDEN HOUSE 1 ELLERDALE ROAD, HAMPSTEAD GEORG AND BABETTE GALBERG 15 C CLEVELAND SQUARE LONDON, W2 6DG DRAWING TITLE:

EXISTING & PROPOSED SECTION A-A

| DATE:     |             | SCALE:                 |
|-----------|-------------|------------------------|
|           | 26.05.11    | 1:100@A3               |
| DRAWN BY: | SR          | CHECKED BY:<br>JB      |
| JOB NO.   | BFF/777 (B) | DWG NO.<br>AL(0)300.P1 |
| Copyright |             |                        |



ALL PROPOSALS, APART FROM THE INTERNAL LAYOUT OF THE HOUSE ARE AS PER THE DRAWINGS SUBMITTED AS AN AMENDMENT TO APPLICATION 2010/5841/P WHICH WAS SUBSEQUENTLY APPROVED FOR PLANNING PERMISSION. THE INTERNAL LAYOUT OF THE HOUSE & THE ROOF PLAN HAVE BEEN REVISED & A NEW BASEMENT LEVEL HAS BEEN ADDED

#### **EXISTING SECTION BB** SCALE 1:50 @ A1, 1:100 @ A3





**PROPOSED SECTION CC** SCALE 1:50 @ A1, 1:100 @ A3

#### **PROPOSED SECTION BB** SCALE 1:50 @ A1, 1:100 @ A3

THIS DRAWING IS BASED ON DIMENSIONAL SURVEY NFORMATION PROVIDED BY OTHERS. THE ARCHITEC

TIONS, SCHEDU

O NOT SCALE FROM THIS DRAWING

REPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OR OMISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE

NFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO MENCING WORK. IF IN DOUBT ASK!

HIS DRAWING REMAINS THE COPYRIGHT O

51.64 ....∇...

GARDEN TO 81 FITZJOHN AVENUE

49.77

| P1 F                                                       | PLANNING ISSUE                                                                                                     |                                                            | SR                | JB                  |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|---------------------|
| REV NO: F                                                  | REV DETAILS:                                                                                                       |                                                            | BY:               | CHKD                |
|                                                            | INING                                                                                                              |                                                            |                   |                     |
|                                                            |                                                                                                                    |                                                            |                   |                     |
| DONOTS                                                     | CALE OFF THIS DR                                                                                                   | AWING                                                      |                   |                     |
|                                                            |                                                                                                                    |                                                            | ~                 |                     |
| DURR                                                       |                                                                                                                    | .115                                                       | Спі               | сп.                 |
| BURRELL FO                                                 | DLEY FISCHER LLP .                                                                                                 | ARCHITECT                                                  | 'S & UF           | rban Di             |
| CARLOW HO                                                  | DUSE .                                                                                                             | CARLOW STREE                                               | ET                |                     |
| TEL 020 7755 6                                             | 6868 . FAX 020 7383 0                                                                                              | 648 . E-M                                                  | AIL mai           | il@b#-arch          |
| WEE                                                        | 3 www.bff-architects.co.uk                                                                                         | BLOG bff-archi                                             | tects.blo         | gspot.con           |
| JOB:                                                       |                                                                                                                    |                                                            |                   |                     |
|                                                            |                                                                                                                    | POAD HA                                                    | MDS               | TEAR                |
|                                                            |                                                                                                                    |                                                            | 11.011            |                     |
|                                                            |                                                                                                                    | 100/10,11/                                                 |                   |                     |
| FOR:                                                       |                                                                                                                    |                                                            |                   |                     |
| FOR:                                                       | GEORG AND I                                                                                                        | BABETTE C                                                  | GALE              | BERG                |
| FOR:                                                       | GEORG AND E                                                                                                        | BABETTE C                                                  | GALB              | BERG                |
| FOR:                                                       | GEORG AND E                                                                                                        | BABETTE (                                                  | GALB              | BERG                |
| FOR:                                                       | GEORG AND E                                                                                                        | BABETTE C                                                  | GALB              | BERG                |
| FOR:                                                       | GEORG AND E                                                                                                        | AND SQUA                                                   | GALE              | BERG                |
| FOR:<br>AT:<br>DRAWING TI                                  | GEORG AND E<br>15 C CLEVEL¢<br>LONDON, W2                                                                          | ABETTE C                                                   | GALB              | BERG                |
| FOR:<br>AT:<br>DRAWING TI                                  | GEORG AND E<br>15 C CLEVELA<br>LONDON, W2                                                                          | AND SQUAL                                                  | GALE              | BERG                |
| FOR:<br>AT:<br>DRAWING TI                                  | GEORG AND E<br>15 C CLEVELA<br>LONDON, W2<br>TLE:<br>EXISTING & P<br>SECTION BB 8                                  | AND SQUAL<br>6DG<br>ROPOSED                                | GALB              | BERG                |
| FOR:<br>AT:<br>DRAWING TI                                  | GEORG AND E<br>15 C CLEVEL<br>LONDON, W2<br>EXISTING & P<br>SECTION BB &                                           | ABETTE (<br>AND SQUAL<br>6DG<br>ROPOSED<br>& CC            | GALB              | BERG                |
| FOR:<br>AT:<br>DRAWING TI<br>DATE:                         | GEORG AND F<br>15 C CLEVELA<br>LONDON, W2<br>EXISTING & P<br>SECTION BB &<br>26.05.11                              | AND SQUAL<br>AND SQUAL<br>6DG<br>ROPOSED<br>& CC<br>SCALE: | GALB<br>RE        | BERG                |
| FOR:<br>AT:<br>DRAWING TI<br>DATE:<br>DRAWN BY:            | GEORG AND F<br>15 C CLEVELA<br>LONDON, W2<br>THE<br>EXISTING & P<br>SECTION BB 8<br>26.05.11                       | AND SQUAI<br>6DG<br>ROPOSED<br>& CC<br>SCALE:<br>CHECKED   | GALB<br>RE<br>1:* | 8ERG                |
| FOR:<br>AT:<br>DRAWING TI<br>DATE:<br>DRAWN BY:            | GEORG AND R<br>15 C CLEVELA<br>LONDON, W2<br>me:<br>EXISTING & P<br>SECTION BB &<br>26.05.11<br>SR                 | AND SQUAI<br>6DG<br>ROPOSED<br>& CC<br>SCALE:<br>CHECKED   | GALB<br>RE<br>1:" | 3ERG<br>100@/       |
| FOR:<br>AT:<br>DRAWING TI<br>DATE:<br>DRAWN BY:<br>JOB NO. | GEORG AND F<br>15 C CLEVELA<br>LONDON, W2<br>TLE:<br>EXISTING & P<br>SECTION BB &<br>26.05.11<br>SR<br>REF(777 (B) | AND SQUAI<br>6DG<br>CC<br>SCALE:<br>CHECKED                | BY:               | 3ERG<br>100@/<br>JB |



ALL PROPOSALS, APART FROM THE INTERNAL LAYOUT OF THE HOUSE ARE AS PER THE DRAWINGS SUBMITTED AS AN AMENDMENT TO APPLICATION 2010/5841/P WHICH WAS SUBSEQUENTLY APPROVED FOR PLANNING PERMISSION. THE INTERNAL LAYOUT OF THE HOUSE & THE ROOF PLAN HAVE BEEN REVISED & A NEW BASEMENT LEVEL HAS BEEN ADDED



**EXISTING ELEVATION A** SCALE 1:50 @ A1, 1:100 @ A3

## **PROPOSED ELEVATION A** SCALE 1:50 @ A1, 1:100 @ A3

EPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OF MISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE

TIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO MENCING WORK. IF IN DOUBT ASK!

INS THE COPYRIGHT O

47.38

#### No 1 ELLERDALE RD

ACCESS TO NEW DEVELOPMENT VIA EXISTING UPPER LEVEL PATH. PATH WIDENED TO 1100mm MIN WITH NEW METAL BALUSTRADE.

| P1          | PLANNING ISSUE                   | SR                   | JB          | 03.12.12     |
|-------------|----------------------------------|----------------------|-------------|--------------|
| REV NO:     | REV DETAILS:                     | BY:                  | CHKD        | DATE         |
|             |                                  | E                    |             |              |
|             | SCALE OFE THIS DRAWN             |                      |             |              |
|             | SCALE OFF THIS DRAWN             | 10                   |             |              |
| BUR         | RELL . FOLEY                     | . FISCH              | ER.         | LLP          |
| BURRELL     | FOLEY FISCHER LLP . A            | RCHITECTS & L        | IRBAN DI    | SIGNERS      |
| CARLOW      | HOUSE . CARL                     | OW STREET            | •           | NW1 7LH      |
| TEL 020 775 | i5 6868 . FAX 020 7383 0648      | . E-MAIL m           | ail⊚b#-arch | itects.co.uk |
| W           | /EB www.bff-architects.co.uk BL  | OG bff-architects.bl | ogspot.com  | 1            |
| JOB:        |                                  |                      |             |              |
|             | 1 ELLERDALE RO                   | AD, HAMP             | STEAD       | )            |
| FOR:        | GEORG AND BAB                    | ETTE GALI            | BERG        |              |
| AT:         | 15 C CLEVELAND<br>LONDON, W2 6D0 | SQUARE               |             |              |
| DRAWING     | TITLE:                           |                      |             |              |
|             |                                  |                      |             |              |

EXISTING & PROPOSED

|           | ELEVATION A |         |             |
|-----------|-------------|---------|-------------|
| DATE:     | 26.05.11    | SCALE:  | 1:100@A3    |
| drawn by: | SR          | CHECKED | BM:<br>JB   |
| Job No.   | BFF/777 (B) | DWG NO. | AL(0)400.P1 |





DO NOT SCALE FROM THIS DRAWING REPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OF DMISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE PROCEFDING

CONFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO COMMENCING WORK. IF IN DOUBT ASK!

REMAINS THE COPYRIGHT OF

REV NO: REV DETAILS: PLANNING DO NOT SCALE OFF THIS DRAWIN BURRELL , FOLEY , FISCHER LLP BURRELL FOLEY FISCHER LLP . ARCHITECTS & URBAN DESIGNERS JOB: ELLERDALE ROAD

| FOR:        | GEORG             | & BABETT          | E GALBERG |
|-------------|-------------------|-------------------|-----------|
| AT:         | 1 ELLER<br>LONDON | DALE ROA<br>I NW3 | ١D        |
| DRAWING TIT | ELEVAT            | ON VIEW           | с         |
| DATE:       | 18.10.10          | SCALE:            | 1:100@ A3 |
| DRAWN BY:   | SR                | CHECKED           | 3%:<br>JB |
| JOB NO.     | BFF/777 (B)       | DWG NO.           | AL(0)402  |

SR JB 03.12.12

BY: CHKD: DATE:



DO NOT SCALE FROM THIS DRAWING REPORT ANY DISCREPANCIES, CONFLICTS, ERRORS OF DMISSIONS TO THE CA AND SEEK DIRECTIONS BEFORE PROCEFDING

CONFIRM ALL DIMENSIONS AND LEVELS ON SITE PRIOR TO COMMENCING WORK. IF IN DOUBT ASK!

REMAINS THE COPYRIGHT OF

REV NO: REV DETAILS: PLANNING DO NOT SCALE OFF THIS DRAWIN BURRELL , FOLEY , FISCHER LLP BURRELL FOLEY FISCHER LLP . ARCHITECTS & URBAN DESIGNERS JOB: ELLERDALE ROAD

| FOR:        | GEORG             | & BABETT          | E GALBERG |
|-------------|-------------------|-------------------|-----------|
| AT:         | 1 ELLER<br>LONDON | DALE ROA<br>I NW3 | ١D        |
| DRAWING TIT | ELEVAT            | ON VIEW           | с         |
| DATE:       | 18.10.10          | SCALE:            | 1:100@ A3 |
| DRAWN BY:   | SR                | CHECKED           | 3%:<br>JB |
| JOB NO.     | BFF/777 (B)       | DWG NO.           | AL(0)402  |

SR JB 03.12.12

BY: CHKD: DATE:

## APPENDIX D

Structural Method Statement, Specifications & Sketches

| Specifications & Reports/F. BIA |              | 500 110.  |
|---------------------------------|--------------|-----------|
| NOV                             | ovember 2012 | 4555/2.3F |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project                                                                                                                                                                   |                                                                                                                                |                                                                                                                               |                                                                                                                  | Inh Pef                                                                             |                                                                                               |   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---|
| AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 F                                                                                                                                                                       |                                                                                                                                |                                                                                                                               | ר אא                                                                                                             | JOD Rel.                                                                            | 17 195                                                                                        |   |
| 90 Meadrow,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Part of Structur                                                                                                                                                          | re                                                                                                                             |                                                                                                                               |                                                                                                                  | Sheet No                                                                            | ./rev.                                                                                        |   |
| Godalming, Surrey GU7 3HY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                           | PROPOSED N                                                                                                                     | EW BASEMENT                                                                                                                   | Г                                                                                                                |                                                                                     | Design principles                                                                             |   |
| e-mail: info@anddesigns.co.uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calc. by                                                                                                                                                                  | Date                                                                                                                           | Chck <sup>*</sup> đ by                                                                                                        | Date                                                                                                             | App'd by                                                                            | Date                                                                                          |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | JW                                                                                                                                                                        | OCT 12                                                                                                                         |                                                                                                                               |                                                                                                                  |                                                                                     |                                                                                               |   |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | La                                                                                                                                                                        | alculations                                                                                                                    |                                                                                                                               |                                                                                                                  |                                                                                     | Output                                                                                        |   |
| The existing site is surrour<br>basement to the rear of the<br>obtain the required depths<br>The Geological report indi-<br>supporting a ground slab of<br>and has an allowable bear<br>METHOD STATEMENT. (In F<br>1. Cast the retaining wall<br>the retaining wall cast the<br>retaining wall.<br>2. Cast the ground floor sl<br>hardcore and blinding rein                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nded on four<br>te property a<br>s of the based<br>cates fill to 2<br>luring the cou<br>ing Pressure of<br>Principle)<br>to the propose<br>toe of the sl<br>ab in the tem | boundaries an<br>ccess is limite<br>ment.<br>2.9m below th<br>urse of the wo<br>of 100 Kpa<br>sed ground flo<br>lab with reinf | nd it is inter<br>ed and there<br>ne existing g<br>orks. The gra<br>por level allo<br>orcement to<br>tion on the              | nded to des<br>efore under<br>ground level<br>ound below<br>owing for al<br>o allow for t                        | ign for a to<br>pinning is<br>but shoul<br>the fill is<br>I loading o<br>the design | wo story<br>required to<br>d be capable of<br>Bagshot beds<br>conditions on<br>of the slab or |   |
| <ul> <li>3. Allow for a central trens support prop and strut to a bases/props to allow for the support props to allow for the support prop support props to allow for the support props to</li></ul> | ch under the<br>allow for the<br>he excavatior                                                                                                                            | centre of the<br>construction<br>of the lower                                                                                  | nditions and<br>e building an<br>of the pins i<br>r underpin si                                                               | d forming t<br>install the c                                                                                     | he line of<br>columns an                                                            | the new<br>d temporary<br>o basement.                                                         |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trends support prop and strut to a bases/props to allow for the support props to allow for the structure as in the sequence as in the</li></ul> | ch under the<br>allow for the<br>he excavatior<br>ndicated on t<br>slab and desig                                                                                         | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr                                           | e building and<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load                                                | d forming t<br>install the c<br>ections fror<br>ement slab                                                       | he line of<br>columns an<br>n ground t<br>onto the l                                | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trens support prop and strut to a bases/props to allow for the data sequence as in the formation of the data sequence as in the data sequence as in</li></ul> | ch under the<br>allow for the<br>he excavatior<br>ndicated on t<br>slab and desig<br>nstall waterp                                                                        | centre of the<br>construction<br>of the lower<br>the sketches a<br>gn for all hydr<br>roof system t                            | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf                 | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d                                | he line of<br>columns an<br>n ground t<br>onto the l<br>etails                      | the new<br>id temporary<br>o basement.<br>bagshot beds                                        | · |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the datases/props to allow for the datases.</li> <li>4. Excavate sequence as in the formation of the dataset of the dataset.</li> <li>6. Allow slab to cure and in the dataset.</li> <li>7. Refer to method statemeters.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ch under the<br>allow for the<br>he excavatior<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th                | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        | • |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the support props to allow for the support property of the support property and structure and in the support property of the support pr</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>ement slab<br>ds<br>facturer's d<br>ience for th                 | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>Id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the support prop and strut to a bases/props to allow for the statement of the support properties of the suppor</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>of the lower<br>che sketches a<br>gn for all hydr<br>roof system t<br>eneral underp           | nditions and<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ                  | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th                | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>Id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ol> <li>Allow for a central trensupport prop and strut to a bases/props to allow for the factor of the factor</li></ol>     | ch under the<br>allow for the<br>he excavatior<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th                | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and in the sequence and the sequence and the sequence are sequence as in the sequence are sequence as a sequence are sequence as in the sequence are sequence as in the sequence are sequence are</li></ul>  | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ence for th                 | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>Id temporary<br>o basement.<br>bagshot beds                                        | • |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and the sequence are and the sequence at the sequence are and the sequence at the seq</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th                | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        | • |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and the sequence and the sequence and the sequence are sequence as in the sequence are sequence ar</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manut<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>ement slab<br>ds<br>facturer's d<br>ience for th                 | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>Id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and in the sequence are sequence as a sequence are sequence as a sequence are sequence are sequence are sequence as in the sequence are sequenc</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp           | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>sement slab<br>facturer's d<br>ence for th                       | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and the sequence and the sequence are sequence as in the sequence are sequence</li></ul>  | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manut<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>ement slab<br>ds<br>facturer's d<br>ence for th                  | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and in the sequence are sequence as a sequence are sequence as a sequence are sequence are sequence as a sequence are sequence are</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp           | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | all relevan<br>d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence as in the sequence and in the sequence and the sequence are sequence and in the sequence are sequence as in the sequence are sequence are sequence as in the sequence are sequence as in the sequence are sequence as in the sequence are sequence are</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | all relevan<br>d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| loadings.<br>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence are sequence          | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | all relevan<br>d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |
| <ul> <li>loadings.</li> <li>3. Allow for a central trensupport prop and strut to a bases/props to allow for the sequence as in the sequence as in the sequence as in the sequence and in the sequence and in the sequence and the sequence are as in the sequence and the sequence are as in the sequence are as a sequence are a</li></ul> | ch under the<br>allow for the<br>he excavation<br>ndicated on t<br>slab and desig<br>nstall waterp<br>ent for the g                                                       | centre of the<br>construction<br>n of the lower<br>the sketches a<br>gn for all hydr<br>roof system t<br>eneral underp         | nditions and<br>e building an<br>of the pins<br>r underpin s<br>and cast bas<br>rostatic load<br>to the manuf<br>pinning sequ | d forming t<br>install the c<br>ections fror<br>sement slab<br>ds<br>facturer's d<br>ience for th                | he line of<br>columns an<br>n ground t<br>onto the l<br>etails<br>e pins            | the new<br>id temporary<br>o basement.<br>bagshot beds                                        |   |

- :



#### METHOD STATEMENT FOR STRUCTURAL BASEMENT WORKS TO 1 ELLERDALE ROAD, HAMPSTEAD

1. Carefully excavate the external area directly in front of the existing front bay window. Construct form work insert mesh and pour concrete base to front garden storage. Insert trench sheets behind the slab position (if ground conditions dictate this), construct mesh for vertical concrete walls and construct formwork and pour vertical sides. Construct formwork for slab over inserting mesh and re-bar as per structural engineer's details. Prop beneath and pour concrete. Leave for 14 days before removing props.

2. The concrete box will be used as a loading platform for excavated spoil before being loaded into skips on the road.

3. Each pin is excavated and is no more than 1m in width and poured strictly in line with the sequence and the structural engineer's details with props installed, 4 for each pin. We will use our best endeavours to ensure that the thickness of the underpin matches the thickness of the party wall unless shown otherwise. As the excavation for each underpin progresses, the thickness and depth of the pin will be carefully monitored, ensuring a vertical and where possible smooth shuttering face against the substrate soil. Each pin will be poured in 4 Stages as follows:

- a. The strip foundations will be excavated and cast first and these will be done so in 1m lengths. The excavation below the neighbour's properties will be carried out carefully and assuming that the soil is self supporting enough to allow a plywood box to be inserted to act as formwork and support the soil above. This will then enable the strip foundation (mass concrete) to be poured. Plywood will be secured against the face of the excavation and propped off the central mass while the excavation is open.
- b. The re-enforcement will be installed in the toe section refer to Structural Engineers details. The Toe will be poured with shuttering propped at high and low level at the back of the pin if necessary (ground conditions will dictate this) to stop spoil falling into the excavation.
- c. 24 Hours after the toe has been poured, mesh will be installed to the vertical section (refer to Structural Engineers details). Shuttering will be installed on the nearside of the pin and propped using acro props at high and low level (4 or 6 in total). The vertical section of the pin will be poured.
- d. 48 Hours after the pin has been poured, the props and shuttering can be removed before the next pin in the sequence (not adjacent) is started. Finally 75mm of drypacking is rammed in to the gap between the top of the pin and the underside of the existing foundation with the exposed section of the footing on the nearside being removed. Temporary propping (Acro Props) is installed to support the pin once the shuttering has been removed, with 2 across at high level and 2 across at low level per pin.

4. The Retaining walls will be created in a similar methodology to the underpins, but there is no need for the strip foundation to be excavated and cast.

.

5. The maximum width of any pin will be 1M. Each underpin shall be dug with both mechanical and hand digging and when hand digging is taking place, a trench box will be installed to protect the operative.

6. The central area of excavation shall not be carried out until the perimeter underpinning and retaining walls have been completed.

7. The central section will now be excavated and this will be done in 3 sections to avoid any slippage. Lateral Mabey bracing struts or similar will be installed to counter this. The Re-inforced mesh will be prepared and laid and will be overlapped to ensure integrity. The basement slab is cast as detailed by the structural engineer and will be cast in 3 sections, with only 1 section being excavated and poured at a time.

8. Once the concrete slab has been poured, the struts will be removed 48 hours after the pour and the sequence is followed again for the next section.

9. END,



EVERDAVE ROAD HAMPS DOADD

12/195/94./03



## 1 ELLERDAVE ROAD HAMPSPOAD

12.195/1k/01p







| Project  |                                          |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job Ref.                                                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                                                                                                    |
|----------|------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1        | ELLERDALE ROA                            | AD HAMPST                                                                              | EAD NW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                       | 12.199                                                                                                                                                                                                                       |                                                                                                                                                                                    |
| Section  |                                          |                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sheet no./rev                                                                                                                                                           |                                                                                                                                                                                                                              |                                                                                                                                                                                    |
|          | PROPOSE                                  | D BASEMEN                                                                              | IT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         | 2                                                                                                                                                                                                                            |                                                                                                                                                                                    |
| Calc. by | Date                                     | Chk'd by                                                                               | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | App'd by                                                                                                                                                                | Date                                                                                                                                                                                                                         |                                                                                                                                                                                    |
| J        | 30/10/2012                               |                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |                                                                                                                                                                                                                              |                                                                                                                                                                                    |
|          | Project<br>1<br>Section<br>Calc. by<br>J | Project<br>1 ELLERDALE ROA<br>Section<br>PROPOSE<br>Calc. by<br>J Date<br>J 30/10/2012 | Project           Project           1 ELLERDALE ROAD HAMPST           Section           PROPOSED BASEMEN           Calc. by         Date         Chk'd by           J         30/10/2012         Chk'd by         Chk' | Project       Project       1 ELLERDALE ROAD HAMPSTEAD NW3       Section       PROPOSED BASEMENT       Calc. by     Date       Chk'd by     Date       J     30/10/2012 | Project     Job Ref.       1 ELLERDALE ROAD HAMPSTEAD NW3     Section       Section     Sheet no./rev       PROPOSED BASEMENT     Chk'd by       Calc. by     Date     Chk'd by       J     30/10/2012     Date     App'd by | Project     Job Ref.       1 ELLERDALE ROAD HAMPSTEAD NW3     12.199       Section     Sheet no./rev.       PROPOSED BASEMENT     2       Calc. by     Date       J     30/10/2012 |

#### **RETAINING WALL ANALYSIS (BS 8002:1994)**

260



TEDDS calculation version 1.2.01.06

#### Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall Retained material details Mobilisation factor

#### 

Cantilever propped at base

$$\begin{split} h_{wall} &= h_{stem} + t_{base} + d_{ds} = 2250 \text{ mm} \\ d_{cover} &= 0 \text{ mm} \\ d_{exc} &= 0 \text{ mm} \\ h_{water} &= 0 \text{ mm} \\ h_{sat} &= \max(h_{water} - t_{base} - d_{ds}, 0 \text{ mm}) = 0 \text{ mm} \\ \gamma_{wall} &= 23.6 \text{ kN/m}^3 \\ \gamma_{base} &= 23.6 \text{ kN/m}^3 \\ \alpha &= 90.0 \text{ deg} \\ \beta &= 0.0 \text{ deg} \end{split}$$

#### $h_{eff} = h_{wall} + l_{heel} \times tan(\beta) = 2250 \text{ mm}$

M = 1.2

|                                                          | Project<br>1 ⊏                                           |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      | Job Ref.           | 12 100                                              |
|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------|-----------------------------------------------------|
|                                                          | Section                                                  |                                   | 10 1 17 19 F O T C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      | Sheet no./rev.     |                                                     |
| 90 MEADROW, GODALMING                                    |                                                          | PROPOSEI                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | т                                    | GHEEL HEALEN       | 3                                                   |
| SURREY, GU7 3HY<br>Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by                                                 | Date                              | Chk'd by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Date                                 | App'd by           | Date                                                |
| email: info@anddesigns.co.uk                             | J                                                        | 30/10/2012                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
|                                                          |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                    |                    | ·······                                             |
| Moist density of retained materi                         | al                                                       | γ <sub>m</sub> = 6.5 kM           | ۱/m <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                    |                                                     |
| Saturated density of retained m                          | aterial                                                  | γ <sub>5</sub> = 13.0 k           | N/m³                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |                                                     |
| Design shear strength                                    |                                                          | φ' = 29.3 d                       | eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |                                                     |
| Angle of wall friction                                   |                                                          | δ <b>= 22.8</b> de                | eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |                                                     |
| Base material details                                    |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
| Moist density                                            |                                                          | γ <sub>mb</sub> = <b>6.5</b> k    | N/m <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                    |                                                     |
| Design shear strength                                    |                                                          | φ' <sub>b</sub> = <b>25.7</b> α   | deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                    |                                                     |
| Design base friction                                     |                                                          | δ <sub>b</sub> = <b>19.8</b> d    | eg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |                                                     |
| Allowable bearing pressure                               |                                                          | $P_{bearing} = 40$                | 0 kN/m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                      |                    |                                                     |
| Using Coulomb theory                                     |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
| Active pressure coefficient for re                       | etained materia                                          | l –                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
| K <sub>a</sub> = sin(α                                   | + $\phi'$ ) <sup>2</sup> / (sin( $\alpha$ ) <sup>2</sup> | × sin(α - δ) × [1 ·               | + √(sin(∳' + δ)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) × sin(φ' - β) / (si                | n(α - δ) × sin(α - | + β)))] <sup>2</sup> ) = <b>0.304</b>               |
| Passive pressure coefficient for                         | base material                                            |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
|                                                          | K <sub>P</sub> = sin(                                    | 90 - ¢' <sub>b</sub> )² / (sin(90 | ) - δ <sub>b</sub> ) × [1 - √                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $(sin(\phi_b + \delta_b) \times si)$ | n(¢'b) / (sin(90 + | - δ <sub>b</sub> )))] <sup>2</sup> ) = <b>4.741</b> |
| At-rest pressure                                         |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
| At-rest pressure for retained ma                         | iterial                                                  | $K_0 = 1 - sir$                   | n(φ') = 0.511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                    |                                                     |
| Loading details                                          |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
| Surcharge load on plan                                   |                                                          | Surcharge                         | $= 10.0 \text{ kN/m}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                    |                    |                                                     |
| Applied vertical dead load on wa                         | all                                                      | W <sub>dead</sub> = 5.0           | kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |                                                     |
| Applied vertical live load on wall                       |                                                          | Wive = 5.0                        | kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |                                                     |
| Position of applied vertical load                        | on wall                                                  | l <sub>load</sub> = 1375          | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                      |                    |                                                     |
| Applied horizontal dead load on                          | wall                                                     | F <sub>dead</sub> = 0.0           | kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |                                                     |
| Applied horizontal live load on w                        | vall                                                     | F <sub>iive</sub> = 0.0 k         | :N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                    |                                                     |
| Height of applied horizontal load                        | i on wall                                                | h <sub>load</sub> = 0 mr          | n .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                      |                    |                                                     |
|                                                          |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
|                                                          |                                                          |                                   | 10<br>I [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TTT110                               |                    |                                                     |
|                                                          |                                                          | · .                               | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |                    |                                                     |
|                                                          | •                                                        |                                   | phenometric et al estimation and an effective of the second se         | ∞∞                                   |                    |                                                     |
|                                                          |                                                          |                                   | Biologica - Laborational and a constrainty of a memory of memory of a memor         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | Control of the second secon         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | Constraints and Constraints         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | and the second secon         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | Topper and the second action of the second actio         |                                      |                    |                                                     |
| · · · · · · · · · · · · · · · · · · ·                    |                                                          |                                   | <ul> <li>and the increase of the second second</li></ul> |                                      |                    |                                                     |
|                                                          |                                                          | -                                 | The second se         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | Security of the 2015 security of units of the security of t         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | B. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                      |                    |                                                     |
|                                                          |                                                          |                                   | In other provides in the other instruction of the company of th         |                                      |                    |                                                     |
|                                                          |                                                          |                                   | 1 Comparison of the second          | H H                                  |                    |                                                     |
| А                                                        |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
| <u> </u>                                                 |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <u><u> </u></u>                      |                    |                                                     |
| 7.2                                                      | 9.6                                                      |                                   | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.8 4.1<br>6.4                       |                    |                                                     |
|                                                          |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
|                                                          |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                      |                    |                                                     |
|                                                          |                                                          |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Loads sho                            | wπ in kN/m, pressu | res shown in kN/m²                                  |

|      | N   | D |
|------|-----|---|
| DESI | ONS |   |

Project

#### 1 FLI ERDALE ROAD HAMPSTEAD NW3

App'd by

90 MEADROW, GODALMING SURREY, GU7 3HY Tel: 01483 418 140 Fax: 01483 421 304 email: info@anddesigns.co.uk

| Section           |          |          |      |  |  |  |  |  |
|-------------------|----------|----------|------|--|--|--|--|--|
| PROPOSED BASEMENT |          |          |      |  |  |  |  |  |
| Calc, by          | Date     | Chk'd by | Date |  |  |  |  |  |
| J                 | 30/10/20 | 12       |      |  |  |  |  |  |

#### Vertical forces on wall

Wall stem Wall base Applied vertical load Total vertical load

Horizontal forces on wall Surcharge Moist backfill above water table Total horizontal load

#### Calculate propping force

Passive resistance of soil in front of wall Propping force

#### Overturning moments Surcharge

Moist backfill above water table Total overturning moment

#### **Restoring moments**

Wall stem Wall base

Design vertical dead load Total restoring moment

Check bearing pressure Design vertical live load Total moment for bearing Total vertical reaction Distance to reaction Eccentricity of reaction

Bearing pressure at toe Bearing pressure at heel  $w_{wall} = h_{stem} \times t_{wall} \times \gamma_{wall} = 16.5 \text{ kN/m}$  $w_{base} = l_{base} \times t_{base} \times \gamma_{base} = 9.1 \text{ kN/m}$ W<sub>v</sub> = W<sub>dead</sub> + W<sub>live</sub> = 10 kN/m  $W_{total} = W_{walt} + W_{base} + W_v = 35.7 \text{ kN/m}$ 

 $F_{sur} = K_a \times cos(90 - \alpha + \delta) \times Surcharge \times h_{eff} = 6.3 \text{ kN/m}$  $F_{m_a} = 0.5 \times K_a \times \cos(90 - \alpha + \delta) \times \gamma_m \times (h_{eff} - h_{water})^2 = 4.6 \text{ kN/m}$  $F_{total} = F_{sur} + F_{m_a} = 10.9 \text{ kN/m}$ 

 $F_{p} = 0.5 \times K_{p} \times \cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = 0.9 \text{ kN/m}$  $F_{prop} = max(F_{total} - F_p - (W_{total} - W_{live}) \times tan(\delta_b), 0 \text{ kN/m})$  $F_{prop} = 0.0 \text{ kN/m}$ 

 $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 7.1 \text{ kNm/m}$  $M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 3.5 \text{ kNm/m}$  $M_{ot} = M_{sur} + M_{m_a} = 10.6 \text{ kNm/m}$ 

 $M_{wall} = w_{wall} \times (l_{toe} + t_{wall} / 2) = 22.7 \text{ kNm/m}$  $M_{base} = w_{base} \times I_{base} / 2 = 7.1 \text{ kNm/m}$ M<sub>dead</sub> = W<sub>dead</sub> × I<sub>load</sub> = 6.9 kNm/m  $M_{rest} = M_{wall} + M_{base} + M_{dead} = 36.7 \text{ kNm/m}$ 

M<sub>live</sub> = W<sub>live</sub> × I<sub>load</sub> = 6.9 kNm/m M<sub>total</sub> = M<sub>rest</sub> - M<sub>ot</sub> + M<sub>live</sub> = 33 kNm/m R = W<sub>iotal</sub> = 35.7 kN/m  $x_{bar} = M_{total} / R = 925 mm$  $e = abs((l_{base} / 2) - x_{bar}) = 150 mm$ 

Reaction acts within middle third of base

 $p_{loe} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 9.6 \text{ kN/m}^2$  $p_{heal} = (R / I_{base}) + (6 \times R \times e / I_{base}^2) = 36.4 \text{ kN/m}^2$ 

PASS - Maximum bearing pressure is less than allowable bearing pressure

| AND                                                      | Project                                                                                                                |                                                                                      | Job Ref.                                                                                                                                  | Job Ref.<br>12 199                                                                  |                                                          |                                       |  |  |  |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|--|--|--|
|                                                          | Section                                                                                                                |                                                                                      |                                                                                                                                           |                                                                                     | Sheet no./rev                                            | /                                     |  |  |  |
| 90 MEADROW, GODALMING                                    |                                                                                                                        | PROPOSE                                                                              | D BASEMEN                                                                                                                                 | т                                                                                   |                                                          | 5                                     |  |  |  |
| SURREY, GU7 3HY<br>Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by                                                                                                               | Date                                                                                 | Chk'd by                                                                                                                                  | Date                                                                                | App'd by Date                                            |                                       |  |  |  |
| email: info@anddesigns.co.uk                             | J                                                                                                                      | 30/10/2012                                                                           |                                                                                                                                           |                                                                                     | ·,                                                       |                                       |  |  |  |
|                                                          |                                                                                                                        |                                                                                      |                                                                                                                                           | <u></u>                                                                             |                                                          |                                       |  |  |  |
| RETAINING WALL DESIGN (E                                 | S 8002:1994                                                                                                            | 4)                                                                                   |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
|                                                          |                                                                                                                        |                                                                                      |                                                                                                                                           |                                                                                     | TEDDS calculat                                           | tion version 1.2.01.0                 |  |  |  |
| Ultimate limit state load facto                          | rs                                                                                                                     |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Dead load factor                                         |                                                                                                                        | γ <sub>f_d</sub> = 1.4                                                               |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Live load factor                                         |                                                                                                                        | $\gamma_{f_{-}1} = 1.6$                                                              |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Earth and water pressure factor                          | 1                                                                                                                      | γ <sub>[-</sub> ս = 1.4                                                              |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Factored vertical forces on w                            | all                                                                                                                    |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Wall stem                                                |                                                                                                                        | $W_{wall f} = \gamma_f$                                                              | н х h <sub>stem</sub> х t <sub>wa</sub>                                                                                                   | אוו × זעסוו = 23.1 k                                                                | دN/m                                                     |                                       |  |  |  |
| Wali base                                                |                                                                                                                        | $W_{\text{base } f} = Y_f$                                                           | A X Ibesa X that                                                                                                                          | en × Vhorea = 12.8                                                                  | kN/m                                                     |                                       |  |  |  |
| Applied vertical load                                    | $W_{\text{res}} = \frac{1}{12} \times \frac{1}{1000} \times \frac{1}{1000} \times \frac{1}{1000} = 15 \text{ kN/m}$    |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Total vertical load                                      |                                                                                                                        | $W_{\text{relative}} = W_{\text{relative}} + W_{\text{relative}} = 15 \text{ KeV/m}$ |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Eactored horizontal at-rest fo                           | rece on wall                                                                                                           | • • (Li)ez_ •                                                                        | wanjipasoji                                                                                                                               | · ••••_1 •••••                                                                      | <b>W</b> (1)                                             |                                       |  |  |  |
|                                                          | CES UN WAN                                                                                                             |                                                                                      | K. v Surch                                                                                                                                |                                                                                     | 4 661/00                                                 |                                       |  |  |  |
| Maist bookfill shove water table                         |                                                                                                                        | ⊑sur_f = ¥f_i -                                                                      |                                                                                                                                           | arge x n <sub>eff</sub> - 10.•                                                      | 4  KiN/(1)                                               |                                       |  |  |  |
| Total barizontal load                                    | $F_{m\_a\_f} = \gamma_{f\_e} \times 0.5 \times K_a \times \gamma_m \times (h_{eff} - h_{water})^e = 11.8 \text{ kN/m}$ |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
|                                                          |                                                                                                                        | Ftotal_f — Fsu                                                                       | <u>]"_f + ⊨</u> m_a_t →                                                                                                                   | 30.7 KIWIII                                                                         |                                                          | 7                                     |  |  |  |
| Calculate propping force                                 |                                                                                                                        | _                                                                                    |                                                                                                                                           |                                                                                     |                                                          | -                                     |  |  |  |
| Passive resistance of soil in from                       | it of wall                                                                                                             | $F_{p_f} = \gamma_{f_{\Theta}} \times$                                               | : 0.5 × K <sub>P</sub> × Cr                                                                                                               | $os(\delta_b) \times (d_{cover} +$                                                  | t <sub>base</sub> + d <sub>ds</sub> - d <sub>exc</sub> ) | $\gamma^{2} \times \gamma_{mb} = 1.3$ |  |  |  |
| kN/m                                                     |                                                                                                                        | _                                                                                    |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Propping force                                           |                                                                                                                        | $F_{prop_f} = ma$                                                                    | $F_{prop_{f}} = max(F_{total_{f}} - F_{p_{f}} - (W_{total_{f}} - \gamma_{f_{f}} \times W_{live}) \times tan(\delta_{b}), 0 \text{ kN/m})$ |                                                                                     |                                                          |                                       |  |  |  |
|                                                          |                                                                                                                        | F <sub>prop_f</sub> = 13                                                             | .4 kN/m                                                                                                                                   |                                                                                     |                                                          |                                       |  |  |  |
| Factored overturning moment                              | S                                                                                                                      |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Surcharge                                                | Surcharge                                                                                                              |                                                                                      |                                                                                                                                           | $M_{sur_f} = F_{sur_f} \times (h_{eff} - 2 \times d_{ds}) / 2 = 20.7 \text{ kNm/m}$ |                                                          |                                       |  |  |  |
| Moist backfill above water table                         |                                                                                                                        | M <sub>m_a_f</sub> ≕ F <sub>r</sub>                                                  | $M_{m\_a\_f} = F_{m\_a\_f} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 8.8 \text{ kNm/m}$                               |                                                                                     |                                                          |                                       |  |  |  |
| Total overturning moment                                 |                                                                                                                        | $M_{ot_{f}f} = M_{sur_{f}f} + M_{m_{a}f} = 29.5 \text{ kNm/m}$                       |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Restoring moments                                        |                                                                                                                        |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Wali stem                                                |                                                                                                                        | $M_{wall_f} = w_v$                                                                   | <sub>vall_f</sub> × (l <sub>toe</sub> + t <sub>v</sub>                                                                                    | <sub>wall</sub> / 2) = 31.8 kN                                                      | lm/m                                                     |                                       |  |  |  |
| Wall base                                                |                                                                                                                        | M <sub>base_f</sub> = w                                                              | bese (× lbase / )                                                                                                                         | 2 = 9.9 kNm/m                                                                       |                                                          |                                       |  |  |  |
| Design vertical load                                     |                                                                                                                        | $M_{v,f} = W_{v,f}$                                                                  | $M_{\rm x,f} = W_{\rm x,f} \times I_{\rm load} = 20.6 \rm kNm/m$                                                                          |                                                                                     |                                                          |                                       |  |  |  |
| Total restoring moment                                   |                                                                                                                        | $M_{rest f} = M_{wall f} + M_{base f} + M_v f = 62.3 \text{ kNm/m}$                  |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Factored bearing pressure                                |                                                                                                                        |                                                                                      |                                                                                                                                           | -                                                                                   |                                                          |                                       |  |  |  |
| Total moment for bearing                                 |                                                                                                                        | $M_{\text{total }f} = M_{t}$                                                         | rest f = Mot f = :                                                                                                                        | 32.8 kNm/m                                                                          |                                                          |                                       |  |  |  |
| Total vertical reaction                                  |                                                                                                                        | $R_f = W_{\text{intel } f} = 50.9 \text{ kN/m}$                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |
| Distance to reaction                                     |                                                                                                                        | $x_{bar f} = M_{tot}$                                                                | $a_{f} = 645$                                                                                                                             | mm                                                                                  |                                                          | e a como a                            |  |  |  |
| Eccentricity of reaction                                 |                                                                                                                        | e <sub>f</sub> = abs((l <sub>b</sub>                                                 |                                                                                                                                           | r) = 130 mm                                                                         |                                                          |                                       |  |  |  |
| · · · · · · · · · · · · · · · · · · ·                    |                                                                                                                        |                                                                                      |                                                                                                                                           | ,<br>Reaction ac                                                                    | sts within midd                                          | le third of basi                      |  |  |  |
| Bearing pressure at toe                                  |                                                                                                                        | $p_{toe_f} = (R_f)$                                                                  | / I <sub>base</sub> ) + (6 × 1                                                                                                            | $R_f \times e_f / l_{base}^2$ =                                                     | 49.4 kN/m <sup>2</sup>                                   |                                       |  |  |  |
| Bearing pressure at heel                                 |                                                                                                                        | $p_{heal,f} = (R_f)$                                                                 | $p_{heel f} = (R_f / l_{base}) - (6 \times R_f \times e_f / l_{base}^2) = 16.3 \text{ kN/m}^2$                                            |                                                                                     |                                                          |                                       |  |  |  |
| ÷.                                                       | e of base reaction rate = $(n_{\text{track}} - n_{\text{track}}) / (n_{\text{track}} - 21.35 \text{ kN/m}^2/m)$        |                                                                                      |                                                                                                                                           |                                                                                     |                                                          |                                       |  |  |  |

 $p_{stem\_toe\_f} = max(p_{toe\_f} - (rate \times I_{toe}), 0 \text{ kN/m}^2) = 23.8 \text{ kN/m}^2$   $p_{stem\_mid\_f} = max(p_{toe\_f} - (rate \times (I_{toe} + t_{wall} / 2)), 0 \text{ kN/m}^2) = 20.1 \text{ kN/m}^2$   $p_{stem\_heel\_f} = max(p_{toe\_f} - (rate \times (I_{toe} + t_{wall})), 0 \text{ kN/m}^2) = 16.3 \text{ kN/m}^2$ 

Design of reinforced concrete retaining wall toe (BS 8002:1994)

Material properties Characteristic strength of concrete

Bearing pressure at stem / toe

Bearing pressure at mid stem

Bearing pressure at stem / heel

 $f_{cu} = 40 \text{ N/mm}^2$
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | miect                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | teh Def                                                                                                                                        | 1                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1 EL                                            | LERDALE ROA                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AD NW3                                                                                                                                                                                                                                                                                                    | 300 Kel.                                                                                                                                       | 12 199                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Section                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | Sheet no./rev                                                                                                                                  |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 | PROPOSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Т                                                                                                                                                                                                                                                                                                         |                                                                                                                                                | 6                                                                                                             |
| Fel: 01483 418 140 Fax: 01483 421 304                                                                                                                                                                                                                                                                                                                                                                                                                      | Calc. by                                        | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chk'd by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Date                                                                                                                                                                                                                                                                                                      | App'd by                                                                                                                                       | Date                                                                                                          |
| email: info@anddesigns.co.uk                                                                                                                                                                                                                                                                                                                                                                                                                               | J                                               | 30/10/2012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | , 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ement                                           | Ty = 500 N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 'mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Base details                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Minimum area of reinforcement                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | K = 0.13 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Cover to reinforcement in toe                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                 | $c_{toe} = 50 \text{ m}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Calculate shear for toe design                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Shear from bearing pressure                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | $V_{\text{toe\_bear}} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Ptoe_f + Pstem_t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sub>oe_f</sub> ) × I <sub>toa</sub> / 2 = 4                                                                                                                                                                                                                                                              | 43.9 kN/m                                                                                                                                      |                                                                                                               |
| Shear from weight of base                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 | $V_{toe\_wt\_bese}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = γ <sub>f_d</sub> × γ <sub>base</sub> ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $l_{\text{toe}} \times t_{\text{base}} = 9.9$                                                                                                                                                                                                                                                             | 9 kN/m                                                                                                                                         |                                                                                                               |
| Total shear for toe design                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | $V_{toe} = V_{toe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sub>bear</sub> - V <sub>toe_wt_ba</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sub>150</sub> = <b>34</b> kN/m                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Calculate moment for toe desig                                                                                                                                                                                                                                                                                                                                                                                                                             | n                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Moment from bearing pressure                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                 | M <sub>toe_bear</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (2 × p <sub>toe_f</sub> + p <sub>s</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | stern_mid_f) × (I <sub>toe</sub> ·                                                                                                                                                                                                                                                                        | + $t_{wall}$ / 2) <sup>2</sup> / 6 = 3                                                                                                         | 7.5 kNm/m                                                                                                     |
| Moment from weight of base                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                 | M <sub>loe_wl_base</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $=$ ( $\gamma_{f_d} \times \gamma_{base}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\times$ t <sub>base</sub> $\times$ (I <sub>toe</sub> + t                                                                                                                                                                                                                                                 | $(w_{all} / 2)^2 / 2) = 7.8$                                                                                                                   | 3 kNm/m                                                                                                       |
| Total moment for toe design                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 | $M_{toe} = M_{toe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _bear - M <sub>toe_wt_t</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sub>base</sub> = 29.6 kNm                                                                                                                                                                                                                                                                                | ı/m                                                                                                                                            |                                                                                                               |
| <b>₹₹</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| 132                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | æ                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                              |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>.</b>                                                                                                                                                                                                                                                                                                  | •                                                                                                                                              |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>*</b><br>  <b>4</b> —_200—                   | <b>&gt;</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                           | *                                                                                                                                              |                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>*</b><br>  <b>∢</b> 200                      | •<br>►                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                               |
| ↓ ↓<br>↓ Check toe in bending                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>*</b><br>  <b>4</b> —_200—                   | •<br>•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                                                                                                                                                                                         |                                                                                                                                                |                                                                                                               |
| Check toe in bending<br>Width of toe                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>*</b><br>  <b>∢</b> —200—                    | •<br>→ <br>b = 1000 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •<br>im/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                                                                                                               |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement                                                                                                                                                                                                                                                                                                                                                                                             | <b>*</b><br>  <b>⊲</b> —_200—                   | •<br>b = 1000 m<br>d <sub>toe</sub> = t <sub>bese</sub> -                                                                                                                                                                                                                                                                                                                                                                                                                                 | т/т<br>- Сюа — (фtое / 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •<br>2) = 195.0 mm                                                                                                                                                                                                                                                                                        |                                                                                                                                                |                                                                                                               |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                                                                                                                                                                                                                                                 | <b>*</b><br>  <b>∢</b> 200                      | ■<br>b = 1000 m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub>                                                                                                                                                                                                                                                                                                                                                                                          | •<br>im/m<br>- c <sub>toe</sub> - (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toe</sub> <sup>2</sup> × f <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2) = 195.0 mm<br>-u) = 0.019                                                                                                                                                                                                                                                                              |                                                                                                                                                |                                                                                                               |
| ↓ ↓<br>Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant                                                                                                                                                                                                                                                                                                                                                                          | <b>*</b><br>  <b>∢</b> 200                      | b = 1000 m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub>                                                                                                                                                                                                                                                                                                                                                                                               | •<br>im/m<br>- c <sub>toa</sub> (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toa</sub> <sup>2</sup> × f <sub>c</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *<br>2) = 195.0 mm<br>-u) = 0.019<br>Compression                                                                                                                                                                                                                                                          | reinforcement                                                                                                                                  | is not required                                                                                               |
| ↓ ↓<br>Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm                                                                                                                                                                                                                                                                                                                                                             | <b>*</b><br>  <b>4</b> 200                      | b = 1000 m<br>d <sub>toe</sub> = t <sub>bese</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub><br>z <sub>toe</sub> = min(0                                                                                                                                                                                                                                                                                                                                                                   | ∎<br>- c <sub>los</sub> (φ <sub>toe</sub> / 2<br>/ (b × d <sub>tos</sub> <sup>2</sup> × f <sub>c</sub><br>).5 + √(0.25 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2) = 195.0 mm<br>cu) = 0.019<br><i>Compression</i><br>(min(Ktop, 0.22)                                                                                                                                                                                                                                    | reinforcement<br>5) / 0.9)),0.95) ×                                                                                                            | is not required<br>d <sub>toe</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm                                                                                                                                                                                                                                                                                                                                                                    | <b>*</b><br>  <b>∢</b> 200                      | b = 1000 m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub> z <sub>toe</sub> = min(C<br>z <sub>toe</sub> = 185 m                                                                                                                                                                                                                                                                                                                                          | ∎<br>- c <sub>los</sub> (φ <sub>tos</sub> / 2<br>/ (b × d <sub>tos</sub> <sup>2</sup> × f <sub>c</sub><br>).5 + √(0.25 -<br>nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) = 195.0 mm<br>cu) = 0.019<br><i>Compression</i><br>(min(K <sub>top</sub> , 0.22)                                                                                                                                                                                                                       | <i>reinforcement</i><br>5) / 0.9)),0.95) ×                                                                                                     | is not required<br>d <sub>toa</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ                                                                                                                                                                                                                                                                                                                              |                                                 | <ul> <li>b = 1000 m</li> <li>d<sub>toe</sub> = t<sub>bese</sub> -</li> <li>K<sub>toe</sub> = M<sub>toe</sub></li> <li>z<sub>toe</sub> = min(0</li> <li>z<sub>toe</sub> = 185 m</li> <li>A<sub>s_toe_des</sub> =</li> </ul>                                                                                                                                                                                                                                                                | am/m<br>- c <sub>toe</sub> (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toe</sub> <sup>2</sup> × f <sub>c</sub><br>).5 + √(0.25 -<br>nm<br>M <sub>toe</sub> / (0.87 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) = 195.0 mm<br>cu) = 0.019<br><i>Compression</i><br>(min(K <sub>top</sub> , 0.22)<br>f <sub>y</sub> × z <sub>top</sub> ) = 368                                                                                                                                                                          | <i>reinforcement</i><br>5) / 0.9)),0.95) ×<br>mm²/m                                                                                            | is not required<br>d <sub>toa</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce                                                                                                                                                                                                                                                                                         | iired<br>ment                                   | <ul> <li>b = 1000 m</li> <li>d<sub>toe</sub> = t<sub>base</sub> -</li> <li>K<sub>toe</sub> = M<sub>toe</sub></li> <li>z<sub>toe</sub> = min(0</li> <li>z<sub>toe</sub> = 185 m</li> <li>A<sub>s_toe_des</sub> =</li> <li>A<sub>s_toe_min</sub> =</li> </ul>                                                                                                                                                                                                                               | am/m<br>- c <sub>toa</sub> (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toa</sub> <sup>2</sup> × f <sub>c</sub><br>).5 + √(0.25 -<br>nm<br>M <sub>toe</sub> / (0.87 ×<br>k × b × t <sub>base</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) = 195.0 mm<br>cu) = 0.019<br><i>Compression</i><br>(min(Ktor, 0.223<br>f <sub>y</sub> × ztor) = 368<br>325 mm <sup>2</sup> /m                                                                                                                                                                          | <b>reinforcement</b><br>5) / 0.9)),0.95) ×<br>mm²/m                                                                                            | is not required<br>d <sub>toa</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ                                                                                                                                                                                                                                                   | Iired<br>ment<br>Jired                          | <ul> <li>b = 1000 m</li> <li>d<sub>10e</sub> = t<sub>bese</sub> -</li> <li>K<sub>toe</sub> = M<sub>toe</sub></li> <li>z<sub>toe</sub> = min(0</li> <li>z<sub>toe</sub> = 185 m</li> <li>A<sub>s_toe_des</sub> =</li> <li>A<sub>s_toe_req</sub> =</li> </ul>                                                                                                                                                                                                                               | am/m<br>- c <sub>toe</sub> (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toe</sub> <sup>2</sup> × f <sub>c</sub> )<br>).5 + √(0.25 -<br>nm<br>M <sub>toe</sub> / (0.87 ×<br>k × b × t <sub>base</sub> =<br>Max(A <sub>s_toe_dea</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) = 195.0 mm<br>$t_{cu}$ ) = 0.019<br><b>Compression</b><br>(min(K <sub>toe</sub> , 0.228<br>$f_y \times z_{toe}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_toe_min</sub> ) = 36                                                                                                                   | <i>reinforcement</i><br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m                                                                                | <i>is not required</i><br>d <sub>toe</sub>                                                                    |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided                                                                                                                                                                                                                         | iired<br>ment<br>uired                          | <ul> <li>b = 1000 m</li> <li>d<sub>toe</sub> = t<sub>bese</sub> -</li> <li>K<sub>toe</sub> = M<sub>toe</sub></li> <li>z<sub>toe</sub> = min(0</li> <li>z<sub>toe</sub> = 185 m</li> <li>A<sub>s_toe_das</sub> =</li> <li>A<sub>s_toe_req</sub> =</li> <li>A<sub>393</sub> mesi</li> </ul>                                                                                                                                                                                                 | $m/m = c_{los} - (\phi_{los} / 2)$ $/ (b \times d_{los}^2 \times f_c)$ $0.5 + \sqrt{(0.25 - m)}$ $M_{los} / (0.87 \times k \times b \times t_{base} = Max(A_{s_tos_des})$ $1 = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2) = 195.0 mm<br>$c_{u}$ ) = 0.019<br>Compression<br>(min(K <sub>toe</sub> , 0.228<br>$f_y \times z_{toe}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_toe_min</sub> ) = 36                                                                                                                           | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>\$8 mm²/m                                                                                      | is not required<br>d <sub>tos</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided                                                                                                                                                                                       | iired<br>ment<br>uired                          | b = 1000 m<br>d <sub>toe</sub> = t <sub>basa</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub><br>z <sub>toe</sub> = min(C<br>z <sub>toe</sub> = 185 m<br>A <sub>s_toe_des</sub> =<br>A <sub>s_toe_req</sub> =<br>A393 mesi<br>A <sub>s_toe_prov</sub> =                                                                                                                                                                                                                                     | am/m<br>- c <sub>ioa</sub> (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toa</sub> <sup>2</sup> × f <sub>c</sub> )<br>).5 + √(0.25 -<br>nm<br>M <sub>toe</sub> / (0.87 ×<br>k × b × t <sub>base</sub> =<br>Max(A <sub>s_toa_dea</sub><br>1<br>393 mm <sup>2</sup> /m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2) = 195.0 mm<br>$t_{cu}$ ) = 0.019<br><b>Compression</b><br>(min(K <sub>top</sub> , 0.22)<br>f <sub>y</sub> × z <sub>top</sub> ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_top_min</sub> ) = 36                                                                                                      | <i>reinforcement</i><br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m                                                                                | is not required<br>d <sub>toa</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided                                                                                                                                                                                       | ired<br>ment<br>ired                            | <ul> <li>b = 1000 m</li> <li>d<sub>toe</sub> = t<sub>bese</sub> -</li> <li>K<sub>toe</sub> = M<sub>toe</sub></li> <li>z<sub>toe</sub> = min((</li> <li>z<sub>toe</sub> = 185 m</li> <li>A<sub>5_toe_des</sub> =</li> <li>A<sub>5_toe_req</sub> =</li> <li>A393 mesi</li> <li>A<sub>5_toe_prav</sub> =</li> <li>PASS - Reim</li> </ul>                                                                                                                                                     | $m/m = c_{los} - (\phi_{los} / 2)$ $/ (b \times d_{los}^2 \times f_c)$ $0.5 + \sqrt{(0.25 - m)}$ $M_{los} / (0.87 \times k \times b \times t_{base} = Max(A_{s_toe_dea})$ $393 mm^2/m$ $forcement particular (A_s)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2) = 195.0 mm<br>$c_{u}$ = 0.019<br>Compression<br>(min(K <sub>toe</sub> , 0.228<br>f <sub>y</sub> × z <sub>toe</sub> ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_toe_min</sub> ) = 36<br>rovided at the                                                                                              | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>58 mm²/m                                                                           | is not required<br>d <sub>toa</sub><br>oe is adequate                                                         |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided                                                                                                                                                                                       | iired<br>ment<br>iired                          | b = 1000 m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = min(0<br>z <sub>toe</sub> = min(0<br>z <sub>toe</sub> = 185 m<br>A <sub>s_toe_des</sub> =<br>A <sub>s_toe_des</sub> =<br>A <sub>s_toe_req</sub> =<br>A393 mesi<br>A <sub>s_toe_prov</sub> =<br>PASS - Reim                                                                                                                                                                                                     | am/m<br>- c <sub>toa</sub> - (φ <sub>toe</sub> / 2<br>/ (b × d <sub>toa</sub> <sup>2</sup> × f <sub>c</sub> )<br>0.5 + √(0.25 -<br>nm<br>M <sub>toe</sub> / (0.87 ×<br>k × b × t <sub>base</sub> =<br>Max(A <sub>s_toa_daa</sub> )<br>1<br>393 mm <sup>2</sup> /m<br>forcement p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2) = 195.0 mm<br>cu) = 0.019<br>Compression<br>(min(K <sub>top</sub> , 0.22)<br>fy × $z_{top}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, $A_{s_top_min}$ ) = 36<br>rovided at the                                                                                                                            | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>58 mm²/m                                                                           | is not required<br>d <sub>toa</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe<br>Design shear stress                                                                                                                               | ired<br>ment<br>ired                            | b = 1000 m<br>d <sub>toe</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = min(C<br>z <sub>toe</sub> = min(C<br>z <sub>toe</sub> = 185 m<br>A <sub>5_toe_des</sub> =<br>A <sub>5_toe_req</sub> =<br>A393 mesi<br>A <sub>5_toe_prov</sub> =<br>PASS - Reim                                                                                                                                                                                                                                 | $\mathbf{m/m} = -c_{los} - (\phi_{los} / 2)$ $/ (b \times d_{los}^2 \times f_{c}^2)$ $(b \times d_{los}^2 \times f_{c}^2)$ $M_{los} / (0.25 - m)$ $M_{los} / (0.87 \times b)$ $k \times b \times t_{base} = m$ $M_{ax}(A_{s\_tos\_dea})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) = 195.0 mm<br>$z_{u}$ ) = 0.019<br><b>Compression</b><br>(min(K <sub>top</sub> , 0.228<br>$f_y \times z_{top}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_top_min</sub> ) = 36<br><b>rovided at the</b><br>174 N/mm <sup>2</sup>                                                                  | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>58 mm²/m                                                                           | is not required<br>d <sub>toa</sub>                                                                           |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe<br>Design shear stress<br>Allowable shear stress                                                                                                     | iired<br>ment<br>iired                          | b = 1000 m<br>d <sub>toe</sub> = t <sub>bese</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub><br>z <sub>toe</sub> = min(C<br>z <sub>toe</sub> = 185 m<br>A <sub>s_toe_das</sub> =<br>A <sub>s_toe_req</sub> =<br>A393 mesi<br>A <sub>s_toe_prov</sub> =<br>PASS - Rein<br>v <sub>toe</sub> = V <sub>toe</sub> /<br>v <sub>adm</sub> = min(C                                                                                                                                                 | $m/m = c_{los} - (\phi_{los} / 2)$ $/ (b \times d_{los}^2 \times f_d)$ $0.5 + \sqrt{(0.25 - m)}$ $M_{los} / (0.87 \times k \times b \times t_{base} = Max(A_{s_1 tos} - d_{eas})$ $393 mm^2/m$ $forcement p_d$ $(b \times d_{tos}) = 0.$ $0.8 \times \sqrt{(f_{cu} / 1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2) = 195.0 mm<br>$c_{u}$ ) = 0.019<br>Compression<br>(min(K <sub>toe</sub> , 0.228<br>$f_y \times z_{toe}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_toe_min</sub> ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1                                                 | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>retaining wall t<br>N/mm² = 5.000                                                  | is not required<br>d <sub>toa</sub><br>oe is adequate<br>N/mm²                                                |
| Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement requ Minimum area of tension reinforce Area of tension reinforcement requ Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress                                                                                                                                         | iired<br>ment<br>iired                          | <ul> <li>b = 1000 m</li> <li>d<sub>toe</sub> = t<sub>base</sub> -</li> <li>K<sub>toe</sub> = M<sub>toe</sub></li> <li>z<sub>toe</sub> = min(0</li> <li>z<sub>toe</sub> = 185 m</li> <li>A<sub>5</sub>toe_das =</li> <li>A<sub>5</sub>toe_min =</li> <li>A<sub>5</sub>toe_req =</li> <li>A393 mesi</li> <li>A<sub>5</sub>toa_prav =</li> <li>PASS - Reim</li> <li>v<sub>toe</sub> = V<sub>toe</sub> /</li> <li>v<sub>adm</sub> = min(</li> <li>PASS -</li> </ul>                           | $m/m = c_{100} - (\phi_{100} / 2)$ $/ (b \times d_{100}^{2} \times f_{c}^{2})$ $/ (b \times d_{100}^{2} \times f_{c}^{2})$ $/ (b \times d_{100}^{2} \times f_{c}^{2})$ $/ (0.25 - f_{c}^{2})$ $/$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) = 195.0 mm<br>cu) = 0.019<br>Compression<br>(min(K <sub>top</sub> , 0.22)<br>fy × z <sub>top</sub> ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_top_min</sub> ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1<br>ar stress is les                                  | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>7etaining wall t<br>N/mm² = 5.000<br>s than maximul                                | is not required<br>d <sub>toa</sub><br>oe is adequate<br>N/mm <sup>2</sup><br>n shear stress                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe<br>Design shear stress<br>Allowable shear stress<br>From BS8110:Part 1:1997 – Tabl                                                                   | aired<br>ment<br>iired<br>ared<br>sired         | b = 1000 m<br>dtoe = tbasa -<br>Ktoe = Mtoe<br>Ztoe = Mtoe<br>Ztoe = 185 m<br>As_toe_das =<br>As_toe_req =<br>A393 mesi<br>As_toe_prov =<br>PASS - Reim<br>Vtoe = Vtoe /<br>Vadm = min(<br>PASS -                                                                                                                                                                                                                                                                                         | $m/m = c_{los} - (\phi_{los} / 2)$ $/ (b \times d_{los}^2 \times f_{c}^2)$ $/ (b \times d_{los}^2 \times f_{c}^2)$ $/ (b \times d_{los}^2 \times f_{c}^2)$ $/ (b \times d_{los} / (0.87 \times b \times b_{asse}) = m$ $/ (b \times b \times b_{asse}) = m$ $/ (b \times d_{los}) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2) = 195.0 mm<br>$z_{u}$ ) = 0.019<br>Compression<br>(min(K <sub>toe</sub> , 0.228<br>$f_y \times z_{toe}$ ) = 368<br>$325 \text{ mm}^2/\text{m}$<br>, $A_{s_toe_min}$ ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1<br>ar stress is les                               | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>7 retaining wall t<br>N/mm² = 5.000<br>5 than maximum                              | is not required<br>d <sub>toe</sub><br>oe is adequate<br>N/mm <sup>2</sup><br>n shear stress                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe<br>Design shear stress<br>Allowable shear stress<br>From BS8110:Part 1:1997 – Tabl                                                                   | ired<br>ment<br>ired<br>e 3.8                   | <ul> <li>b = 1000 m<br/>d<sub>toe</sub> = t<sub>bese</sub> -<br/>K<sub>toe</sub> = M<sub>toe</sub><br/>z<sub>toe</sub> = min(0<br/>z<sub>toe</sub> = 185 m<br/>A<sub>s_toe_des</sub> =<br/>A<sub>s_toe_req</sub> =<br/>A393 mesi<br/>A<sub>s_toe_req</sub> =<br/>A393 mesi<br/>A<sub>s_toe_req</sub> =<br/>PASS - Reim<br/>v<sub>toe</sub> = V<sub>toe</sub> /<br/>v<sub>adm</sub> = min(<br/>PASS -<br/>v<sub>c_toe</sub> = 0.51</li> </ul>                                              | $m/m = c_{loa} - (\phi_{loa}) / 2$ $/ (b \times d_{loa}^2 \times f_d)$ $0.5 + \sqrt{(0.25 - m)}$ $M_{loa} / (0.87 \times k \times b \times t_{base} = Max(A_{s_toa} - d_{aa})$ $393 mm^2/m$ $forcement p.$ $(b \times d_{loa}) = 0.$ $0.8 \times \sqrt{(f_{cu} / 1)}$ $Design shea$ $19 N/mm^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2) = 195.0 mm<br>cu) = 0.019<br>Compression<br>(min(K <sub>toe</sub> , 0.22)<br>$f_y \times z_{toe}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_toe_min</sub> ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1<br>ar stress is les                                   | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>retaining wall t<br>N/mm² = 5.000<br>s than maximus                                | is not required<br>d <sub>toa</sub><br>oe is adequate<br>N/mm <sup>2</sup><br>n shear stress                  |
| Check toe in bending Width of toe Depth of reinforcement Constant Lever arm Area of tension reinforcement requ Minimum area of tension reinforce Area of tension reinforcement requ Reinforcement provided Area of reinforcement provided Check shear resistance at toe Design shear stress Allowable shear stress From BS8110:Part 1:1997 – Tabl Design concrete shear stress                                                                             | ired<br>ment<br>ired<br>e 3.8                   | b = 1000 m<br>d <sub>10e</sub> = t <sub>basa</sub> -<br>K <sub>toe</sub> = min(C<br>z <sub>toe</sub> = min(C<br>z <sub>toe</sub> = 185 m<br>As_toa_das =<br>As_toa_min =<br>As_toa_min =<br>A393 mesi<br>As_toa_prov =<br>PASS - Reim<br>V <sub>toe</sub> = V <sub>toe</sub> /<br>V <sub>adm</sub> = min(<br>PASS -<br>V <sub>c_toe</sub> = 0.51                                                                                                                                          | am/m<br>- C <sub>los</sub> - ( $\phi_{los}$ / 2<br>/ (b × d <sub>los</sub> <sup>2</sup> × f <sub>c</sub> )<br>).5 + √(0.25 -<br>m<br>M <sub>loe</sub> / (0.87 ×<br>k × b × t <sub>base</sub> =<br>Max(A <sub>s_toe_dea</sub> )<br>393 mm <sup>2</sup> /m<br>forcement p<br>(b × d <sub>los</sub> ) = 0.<br>0.8 × √(f <sub>cu</sub> / 1<br>Design sheat<br>19 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) = 195.0 mm<br>cu) = 0.019<br>Compression<br>(min(K <sub>top</sub> , 0.228<br>$f_y \times z_{top}$ ) = 368<br>$325 \text{ mm}^2/\text{m}$<br>, $A_{s_1 top_min}$ ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1<br>ar stress is less<br>$top < v_{c_1 top} - No$      | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>58 mm²/m<br>retaining wall t<br>N/mm² = 5.000<br>s than maximus<br>shear reinforce | is not required<br>d <sub>toa</sub><br>oe is adequate<br>N/mm <sup>2</sup><br>n shear stress                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe<br>Design shear stress<br>Allowable shear stress<br>From BS8110:Part 1:1997 – Tabl<br>Design concrete shear stress | ired<br>ment<br>ired<br>ared<br>taining wall s  | <ul> <li>b = 1000 m<br/>d<sub>toe</sub> = t<sub>besa</sub> -<br/>K<sub>toe</sub> = M<sub>toe</sub><br/>z<sub>toe</sub> = min(0<br/>z<sub>toe</sub> = 185 m<br/>A<sub>s_toe_das</sub> =<br/>A<sub>s_toe_das</sub> =<br/>A<sub>s_toe_req</sub> =<br/>A393 mesi<br/>A<sub>s_toe_req</sub> =<br/>PASS - Reim<br/>v<sub>toe</sub> = V<sub>toe</sub> /<br/>v<sub>toe</sub> = V<sub>toe</sub> /<br/>v<sub>toe</sub> = min(<br/>PASS -<br/>v<sub>c_toe</sub> = 0.51<br/>stem (BS 8002:</li> </ul> | $m/m = c_{los} - (\phi_{los} / 2)$ $/ (b \times d_{los}^{2} \times f_{c}^{2})$ $/ (b \times d_{los}^{2} \times f_{c}^{2})$ $/ (b \times d_{los}^{2} \times f_{c}^{2})$ $/ (b \times d_{los} / (0.25 - m))$ $M_{los} / (0.25 - m)$ $/ (0.25 -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2) = 195.0 mm<br>cu) = 0.019<br>Compression<br>(min(K <sub>toe</sub> , 0.22)<br>$f_y \times z_{toe}$ ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_toe_min</sub> ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1<br>ar stress is less<br>toe < V <sub>c_toe</sub> - No | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>7etaining wall t<br>N/mm² = 5.000<br>s than maximus<br>shear reinforce             | is not required<br>d <sub>toa</sub><br>oe is adequate<br>N/mm <sup>2</sup><br>n shear stress                  |
| Check toe in bending<br>Width of toe<br>Depth of reinforcement<br>Constant<br>Lever arm<br>Area of tension reinforcement requ<br>Minimum area of tension reinforce<br>Area of tension reinforcement requ<br>Reinforcement provided<br>Area of reinforcement provided<br>Check shear resistance at toe<br>Design shear stress<br>Allowable shear stress<br>From BS8110:Part 1:1997 – Tabl<br>Design concrete shear stress                                   | ired<br>ment<br>ired<br>e 3.8<br>taining wall s | b = 1000 m<br>d <sub>10e</sub> = t <sub>base</sub> -<br>K <sub>toe</sub> = M <sub>toe</sub><br>z <sub>toa</sub> = min(0<br>z <sub>1oe</sub> = 185 m<br>As_toa_das =<br>As_toa_min =<br>As_toa_min =<br>As_toa_min =<br>As93 mesi<br>As_toa_prov =<br>PASS - Reim<br>v <sub>toe</sub> = V <sub>toa</sub> /<br>v <sub>adm</sub> = min(<br>PASS -<br>v <sub>c_toa</sub> = 0.51<br>stem (BS 8002:                                                                                             | $m/m = -c_{los} - (\phi_{los} / 2) / (\phi_{los} - (\phi_{los} / 2) / (\phi_{los} - \phi_{los} - \phi_{$ | 2) = 195.0 mm<br>cu) = 0.019<br>Compression<br>(min(K <sub>top</sub> , 0.22)<br>fy × z <sub>top</sub> ) = 368<br>325 mm <sup>2</sup> /m<br>, A <sub>s_top_min</sub> ) = 36<br>rovided at the<br>174 N/mm <sup>2</sup><br>N/mm <sup>2</sup> ), 5) × 1<br>ar stress is less<br>top < $v_{c_{top}} - No$     | reinforcement<br>5) / 0.9)),0.95) ×<br>mm²/m<br>58 mm²/m<br>58 mm²/m<br>retaining wall t<br>N/mm² = 5.000<br>s than maximus<br>shear reinforce | is not required<br>d <sub>toa</sub><br>oe is adequate<br>N/mm <sup>2</sup><br>n shear stress<br>ment required |

| ·····                                 | ,                                             |                                                                                          |                                               |                                                              |                                             |                  |  |  |
|---------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------|--------------------------------------------------------------|---------------------------------------------|------------------|--|--|
|                                       | Project                                       |                                                                                          | D. LANGOT                                     | Job Ref.                                                     |                                             |                  |  |  |
|                                       | 16                                            | LLERDALE ROA                                                                             |                                               | EAD NW3                                                      |                                             | 12.199           |  |  |
| 90 MEADROW, GODALMING                 | Section                                       | PROPOSE                                                                                  |                                               | Ŧ                                                            | Sheet no./rev                               |                  |  |  |
| SURREY, GU7 3HY                       | Calc by                                       |                                                                                          |                                               | I Date                                                       | Ang'd by                                    | /                |  |  |
| 161: 01483 418 140 Fax: 01483 421 304 |                                               | 30/10/2012                                                                               | Спка ду                                       | Date                                                         | App o by                                    | Date             |  |  |
|                                       | U                                             | 30/10/2012                                                                               |                                               |                                                              | I                                           | I                |  |  |
| Characteristic strength of reinfo     | rcement                                       | f <sub>y</sub> = 500 N/                                                                  | mm <sup>2</sup>                               |                                                              |                                             |                  |  |  |
| Wall details                          |                                               |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| Minimum area of reinforcement         |                                               | k = 0.13 %                                                                               |                                               |                                                              |                                             |                  |  |  |
| Cover to reinforcement in stem        |                                               | c <sub>stem</sub> = <b>50</b> r                                                          | nm                                            |                                                              |                                             |                  |  |  |
| Cover to reinforcement in wall        |                                               | c <sub>wati</sub> = 50 m                                                                 | nm                                            |                                                              |                                             |                  |  |  |
| Factored horizontal at-rest for       | ces on stem                                   |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| Surcharge                             |                                               | $F_{s\_sur\_f} = \gamma_{f\_}$                                                           | J × K₀ × Surci                                | harge × (h <sub>aff</sub> - t <sub>b</sub>                   | <sub>ase</sub> - d <sub>ds</sub> ) = 16.3 k | ۸۷/m             |  |  |
| Moist backfill above water table      |                                               | F <sub>s_m_s_f</sub> = 0                                                                 | $.5 \times \gamma_{f_{-}} \times K_0$         | $\times \gamma_m \times (h_{eff} - t_{best})$                | $_{se} - d_{ds} - h_{sat})^2 = 9$           | ).3 kN/m         |  |  |
| Calculate shear for stem desig        | gn                                            |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| Shear at base of stem                 |                                               | $V_{stem} = F_{s_s}$                                                                     | ur_f + Fs_m_a_f                               | - F <sub>prop_f</sub> = <b>12.2</b>                          | kN/m                                        |                  |  |  |
| Calculate moment for stem de          | sian                                          |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| Surcharge                             | •                                             | $M_{s,sur} = F_{s}$                                                                      | <sub>sur f</sub> x (h <sub>stern</sub> +      | + t <sub>hese</sub> ) / 2 = <b>18.</b> 4                     | 4 kNm/m                                     |                  |  |  |
| Moist backfill above water table      |                                               | M <sub>sma</sub> ≕ F <sub>s</sub>                                                        | <sub>imaf</sub> x(2×1                         | ,<br>h <sub>set</sub> + h <sub>eff</sub> - d <sub>ds</sub> + | $t_{base} / 2) / 3 = 7.4$                   | 4 kNm/m          |  |  |
| Total moment for stem design          |                                               | M <sub>stem</sub> = M <sub>s</sub>                                                       | <br>_sur + M_s_m_a ≃                          | = 25.7 kNm/m                                                 |                                             |                  |  |  |
|                                       |                                               |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| <b>▲</b> 350 <b> </b>                 |                                               |                                                                                          |                                               |                                                              |                                             |                  |  |  |
|                                       | <b> ⊲</b> —22                                 | 5                                                                                        |                                               |                                                              |                                             |                  |  |  |
| <b>.</b>                              |                                               |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| Check wall stem in bending            |                                               |                                                                                          | ,                                             |                                                              |                                             |                  |  |  |
| Vildin of wall stem                   |                                               | 0 = 1000 m                                                                               | m/m                                           | (0) - 00 ( 0                                                 |                                             |                  |  |  |
|                                       |                                               | O <sub>stem</sub> = I <sub>wall</sub> -                                                  | – C <sub>stem</sub> – (Ø <sub>ster</sub><br>2 | $m/2) = 294.0 \text{ m}^2$                                   | im                                          |                  |  |  |
| Constant                              |                                               | itstern ≕ Mste                                                                           | m / (D × O <sub>stem</sub>                    | $\times T_{cu}$ = 0.007                                      |                                             | in maker with at |  |  |
| l ever arm                            |                                               | $\mathbf{z}_{i} = \min($                                                                 | 05+1/025                                      | (min/K · O'                                                  |                                             | is not required  |  |  |
|                                       |                                               | $z_{\rm stem} = 779$                                                                     | mm                                            |                                                              | 220/70.9)),0.90)                            | × Ustem          |  |  |
| Area of tension reinforcement re      | auired                                        |                                                                                          | : M <sub>stam</sub> / (0.87                   | $7 \times f_{\rm tr} \times Z_{\rm stam} = 2$                | 212 mm <sup>2</sup> /m                      |                  |  |  |
| Minimum area of tension reinford      | cement                                        | As stem min =                                                                            | :kxbxtwa⊫                                     | = 455 mm <sup>2</sup> /m                                     |                                             | ·                |  |  |
| Area of tension reinforcement re      | quired                                        | As stem reg =                                                                            | Max(As stem                                   | des. As siem min) :                                          | = 455 mm²/m                                 |                  |  |  |
| Reinforcement provided                | •                                             | 12 mm dia.                                                                               | bars @ 225                                    | mm centres                                                   |                                             |                  |  |  |
| Area of reinforcement provided        | As_stem_prov =                                | = <b>503</b> mm²/m                                                                       | L                                             |                                                              |                                             |                  |  |  |
|                                       |                                               | PASS - Reinfo                                                                            | rcement pro                                   | ovided at the re                                             | etaining wall ste                           | em is adequate   |  |  |
| Check shear resistance at wai         | stem                                          |                                                                                          |                                               |                                                              |                                             |                  |  |  |
| Design shear stress                   | v <sub>stem</sub> = V <sub>stem</sub>         | / (b × d <sub>stem</sub> ) :                                                             | = <b>0.042</b> N/mm <sup>2</sup>              |                                                              |                                             |                  |  |  |
| Allowable shear stress                |                                               | $v_{adm} = min(0.8 \times \sqrt{(f_{cu} / 1 N/mm^2)}, 5) \times 1 N/mm^2 = 5.000 N/mm^2$ |                                               |                                                              |                                             |                  |  |  |
|                                       |                                               | PASS -                                                                                   | Design shea                                   | ar stress is les                                             | s than maximu                               | m shear stress   |  |  |
| From BS8110:Part 1:1997 – Ta          | ble 3.8                                       | -                                                                                        |                                               |                                                              |                                             |                  |  |  |
| Design concrete shear stress          | v <sub>c_stem</sub> = 0.443 N/mm <sup>2</sup> |                                                                                          |                                               |                                                              |                                             |                  |  |  |
|                                       |                                               |                                                                                          | Vster                                         | m < v <sub>c_stem</sub> - No                                 | shear reinforce                             | ement required   |  |  |
|                                       |                                               |                                                                                          |                                               |                                                              |                                             |                  |  |  |

|                                       | Project                      |                             |                           |                                              | Job Ref.                                               |               |
|---------------------------------------|------------------------------|-----------------------------|---------------------------|----------------------------------------------|--------------------------------------------------------|---------------|
|                                       | 1 E                          | LLERDALE ROA                | D HAMPS1                  | TEAD NW3                                     | 12                                                     | .199          |
| 90 MEADROW, GODALMING                 | Section                      |                             |                           |                                              | Sheet no./rev.                                         |               |
| SURREY, GU7 3HY                       |                              | PROPOSEI                    | D BASEME                  | NT                                           |                                                        | 8             |
| Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by                     | Date                        | Chk'd by                  | Date                                         | App'd by                                               | Date          |
|                                       | J                            | 30/10/2012                  |                           |                                              |                                                        |               |
| Check retaining wall deflectio        | n                            |                             |                           |                                              |                                                        | ,             |
| Basic span/effective depth ratio      |                              | ratio <sub>bas</sub> = 7    |                           |                                              |                                                        |               |
| Design service stress                 |                              | $f_s = 2 \times f_y \times$ | As_stem_req /             | $(3 \times A_{s\_stem\_prov}) = 30$          | 1.7 N/mm <sup>2</sup>                                  |               |
| Modification factor                   | factor <sub>tens</sub> = min | (0.55 + (477 N/n            | nm² - f₅)/(12             | 0 × (0.9 N/mm <sup>2</sup> + (M <sub>s</sub> | <sub>lem</sub> /(b × d <sub>stem</sub> <sup>2</sup> )) | )),2) = 1.77  |
| Maximum span/effective depth r        | atio                         | ratio <sub>max</sub> = n    | atio <sub>bas</sub> × fac | tor <sub>tens</sub> = 12.39                  |                                                        |               |
|                                       |                              | $rallo_{act} = n_s$         | item / Ostem =            | 0.80<br>PASS - Span to                       | donth mtio                                             | ia accontable |
|                                       |                              |                             |                           | FA33 - 3pan li                               | оперитацо (                                            | s acceptable  |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        | ·             |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
| · · ·                                 |                              |                             |                           |                                              |                                                        | · · ·         |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              | ·                                                      |               |
|                                       |                              |                             |                           |                                              |                                                        | н.<br>Н       |
|                                       |                              |                             |                           |                                              |                                                        | . *           |
|                                       |                              |                             |                           | •                                            |                                                        |               |
|                                       |                              |                             |                           | · :                                          |                                                        |               |
|                                       |                              |                             |                           |                                              | ·                                                      |               |
|                                       |                              |                             |                           |                                              |                                                        | an an an an   |
|                                       |                              |                             |                           |                                              |                                                        | ,             |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
| ·                                     |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              | *                           |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        | E             |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        |               |
|                                       |                              |                             |                           |                                              |                                                        | Ĩ             |







|                                                           | Project        |                                      |                             |                                        | Job Re                                                          | ef.                                | 105  |     |
|-----------------------------------------------------------|----------------|--------------------------------------|-----------------------------|----------------------------------------|-----------------------------------------------------------------|------------------------------------|------|-----|
|                                                           |                | ERDALE ROA                           |                             | AD NVV3                                | Sheet                                                           | 12.                                | 195  |     |
| 90 MEADROW, GODALMING                                     |                | PROPOSED                             |                             | г                                      | Differ                                                          | 110./TEV.                          | 12   |     |
| SURREY, GU7 3HY<br>Tel: 01483 418 140 Fax: 01483 421 304  | Calc. by       | Date                                 | Chk'd by                    | Date                                   | App'd I                                                         | ру                                 | Date |     |
| email: info@anddesigns.co.uk                              | J              | 30/10/2012                           |                             |                                        |                                                                 |                                    |      |     |
|                                                           |                |                                      | 1                           |                                        |                                                                 |                                    |      |     |
|                                                           |                | Span 2                               |                             | [                                      | Dead × 1.50                                                     |                                    |      |     |
|                                                           |                |                                      |                             | I                                      | mposed × 1.5                                                    | 0                                  |      |     |
|                                                           |                | Support C                            |                             | ĺ                                      | Dead × 1.50                                                     |                                    |      |     |
|                                                           |                |                                      |                             | 1                                      | mposed × 1.5                                                    | 0                                  |      |     |
| Analysis results                                          |                |                                      |                             |                                        |                                                                 |                                    |      |     |
| Maximum moment support A                                  |                | M <sub>A_max</sub> = 0               | kNm                         | N                                      | M <sub>A_red</sub> = 0 kNn                                      | ו                                  |      |     |
| Maximum moment span 1 at 1756 mm                          |                | M <sub>s1_max</sub> = 1              | 28 kNm                      | N                                      | M <sub>s1_red</sub> = 128 k                                     | :Nm                                |      |     |
| Maximum moment support B                                  |                | M <sub>B_max</sub> = -3              | 8 kNm                       | Ν                                      | M <sub>B_red</sub> = -38 kN                                     | ١m                                 |      |     |
| Maximum moment span 2 at supp                             | ort            | $M_{s2_max} = -3$                    | 38 kNm                      | N                                      | M <sub>s2_red</sub> = -38 k                                     | Nm                                 |      |     |
| Maximum moment support C                                  |                | M <sub>C_max</sub> = 0               | kNm                         | Ν                                      | M <sub>C_red</sub> = 0 kNn                                      | 1                                  |      |     |
| Maximum shear support A                                   | at 282 mm      | V <sub>A_max</sub> = 15              | 126 LAL                     | \                                      | / <sub>A_red</sub> = 153 kľ<br>/ 100                            | N<br>1661                          |      |     |
| Maximum shear support A span 1<br>Maximum shear support B | αι 202 ΜΠ      | ∨A_s1_max =<br>V 4                   | 120 KIN                     | \<br>\                                 | /A_s1_red = 126                                                 | KIN<br>NI                          |      |     |
| Maximum shear support B<br>Maximum shear support B span 1 | at 3700 mm     |                                      | 123 KN                      | `````````````````````````````````````` | V <sub>B_red</sub> = -137 kN                                    |                                    |      |     |
| Maximum shear support B span 2                            | at 300 mm      | $V_{B_{s1}_{max}} = -123 \text{ kN}$ |                             |                                        | v <sub>B_s1_md</sub> = -123 KN<br>V <sub>B_s2 cod</sub> = 42 kN |                                    |      |     |
| Maximum shear support C                                   |                | $V_{C, max} = 0$                     | $V_{B_{s2}} = 0 \text{ kN}$ |                                        |                                                                 | $V_{B_{s2}_{red}} = 42 \text{ kN}$ |      |     |
| Maximum shear support C span 2                            | at 1200 mm     | $V_{C s2 max} = 9 \text{ kN}$        |                             |                                        | / <sub>C_s2_red</sub> = 9 kN                                    | 1                                  |      |     |
| Maximum reaction at support A                             |                | $R_{A} = 153 \text{ kN}$             |                             |                                        |                                                                 |                                    |      |     |
| Unfactored dead load reaction at s                        | support A      | $R_{A\_Dead} = 1$                    | 02 kN                       |                                        |                                                                 |                                    | •    |     |
| Maximum reaction at support B                             |                | R <sub>B</sub> = <b>193</b> k        | N                           |                                        |                                                                 |                                    |      |     |
| Unfactored dead load reaction at s                        | support B      | $R_{B_{Dead}} = 1$                   | 28 kN                       |                                        |                                                                 |                                    |      |     |
| Maximum reaction at support C                             |                | R <sub>c</sub> = 0 kN                |                             |                                        |                                                                 | •                                  |      |     |
| Unfactored dead load reaction at a                        | support C      | Rc_Dead = 0                          | kN                          |                                        |                                                                 |                                    |      |     |
| Rectangular section details                               |                |                                      |                             |                                        |                                                                 |                                    |      |     |
| Section width                                             |                | b = 1000 m                           | m                           |                                        |                                                                 |                                    |      |     |
| Section depth                                             |                | h = 350 mn                           | n                           |                                        |                                                                 |                                    |      |     |
|                                                           |                |                                      |                             |                                        |                                                                 |                                    |      |     |
|                                                           |                |                                      |                             |                                        |                                                                 |                                    |      |     |
|                                                           |                |                                      |                             |                                        |                                                                 |                                    |      |     |
| Concrete details                                          |                |                                      |                             |                                        |                                                                 |                                    |      |     |
| Concrete strength class                                   |                | C32/40                               | 2                           |                                        |                                                                 |                                    |      |     |
| Characteristic compressive cube s                         | trength        | f <sub>cu</sub> = <b>40</b> N/n      | nm <sup>-</sup>             | _                                      |                                                                 |                                    |      |     |
| Modulus of elasticity of concrete                         |                | $E_c = 20 k N/r$                     | mm <sup>-</sup> + 200 × 1   | f <sub>cu</sub> = 28000 N              | N/mm <sup>2</sup>                                               |                                    |      |     |
| Maximum aggregate size                                    |                | h <sub>agg</sub> = 20 m              | m                           |                                        |                                                                 |                                    |      |     |
| Reinforcement details                                     |                |                                      | -                           |                                        |                                                                 |                                    |      | • • |
| Characteristic yield strength of reir                     | forcement      | f <sub>y</sub> = 500 N/r             | nm²                         |                                        |                                                                 |                                    |      |     |
| Characteristic yield strength of she                      | ar reinforceme | nt f <sub>yv</sub> = <b>500</b> N/   | mm <b>*</b>                 |                                        |                                                                 |                                    |      |     |
| Nominal cover to reinforcement                            |                |                                      |                             |                                        |                                                                 |                                    |      |     |
| Nominal cover to top reinforcemen                         | t              | C <sub>nom_t</sub> = 50 (            | mm                          |                                        |                                                                 |                                    |      |     |
| Nominal cover to bottom reinforcer                        | nent           | Слот в = 50                          | mm                          |                                        |                                                                 |                                    |      |     |

.

Nominal cover to side reinforcement

c<sub>nom\_5</sub> = 50 mm

|                                       | Project                        |               |                |      | Job Ref. |        |  |
|---------------------------------------|--------------------------------|---------------|----------------|------|----------|--------|--|
|                                       | 1 ELLERDALE ROAD HAMPSTEAD NW3 |               |                |      |          | 12.195 |  |
|                                       | Section                        | Sheet no./rev | Sheet no./rev. |      |          |        |  |
| SURREY, GU7 3HY                       | PROPOSED BASEMENT              |               |                |      |          | 13     |  |
| Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by                       | Date          | Chk'd by       | Date | App'd by | Date   |  |
| email: info@anddesigns.co.uk          | J                              | 30/10/2012    |                |      |          |        |  |

nothing of white Rotating

WAR SPAN MONNEWS A-350-50-10-5=285mm, m/bifr = h8:32150/10=2285240=0.0.39 a -094 ATT - W.B.3266) 0.872 5102 295,034 = 110 mm²/m WIE HUG'S AF FYSMIN MP WE HIN BARE AF WIST.

CANT MSMENT

375×156/0.57×500×265-094 = 32/ um²/m Kir

Who HIZ'I AT TY OR MIN.



|                                       | Project           |                                |                |      | Job Ref. |        |  |
|---------------------------------------|-------------------|--------------------------------|----------------|------|----------|--------|--|
|                                       | 1                 | 1 ELLERDALE ROAD HAMPSTEAD NW3 |                |      |          | 12.195 |  |
|                                       | Section           |                                | Sheet no./rev. |      |          |        |  |
| SUBBEY, GUZ 3HY                       | PROPOSED BASEMENT |                                |                |      |          | 15.    |  |
| Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by          | Date                           | Chk'd by       | Date | App'd by | Date   |  |
| email: info@anddesigns.co.uk          | J                 | 30/10/2012                     |                |      |          |        |  |
|                                       |                   |                                |                |      | •        |        |  |



|                                       | Project  | Job Ref.   | Job Ref.  |      |          |                |  |
|---------------------------------------|----------|------------|-----------|------|----------|----------------|--|
|                                       | 1 EL     |            | 12.195    |      |          |                |  |
| 90 MEADROW, GODALMING                 | Section  |            |           |      |          | Sheet no./rev. |  |
| SURREY, GU7 3HY                       |          | PROPOSED N | IEW BASEN | IENT |          | 16             |  |
| Tel: 01483 418 140 Fax: 01483 421 304 | Caic, by | Date       | Chk'd by  | Date | App'd by | Date           |  |
| email: info@anddesigns.co.uk          | J        | 31/10/2012 |           |      |          |                |  |

TEDDS calculation version 1.2.01.06

#### RETAINING WALL ANALYSIS (BS 8002:1994)



#### Wall details

Retaining wall type Height of retaining wall stem Thickness of wall stem Length of toe Length of heel Overall length of base Thickness of base Depth of downstand Position of downstand Thickness of downstand Height of retaining wall Depth of cover in front of wall Depth of unplanned excavation Height of ground water behind wall Height of saturated fill above base Density of wall construction Density of base construction Angle of rear face of wall Angle of soil surface behind wall Effective height at virtual back of wall Retained material details Mobilisation factor

Cantilever propped at both h<sub>stem</sub> = 2500 mm t<sub>wali</sub> = 350 mm l<sub>toe</sub> = 1250 mm  $l_{heat} = 0 mm$  $I_{\text{base}} = I_{\text{toe}} + I_{\text{heel}} + t_{\text{wall}} = 1600 \text{ mm}$ t<sub>base</sub> = 300 mm  $\mathbf{d}_{ds} = \mathbf{0} \text{ mm}$ l<sub>ds</sub> = 1150 mm t<sub>ds</sub> = 300 mm  $h_{wall} = h_{stem} + t_{base} + d_{ds} = 2800 \text{ mm}$ d<sub>cover</sub> = 0 mm  $d_{exc} = 0 mm$ h<sub>water</sub> = 1500 mm  $h_{sat} = max(h_{water} - t_{base} - d_{ds}, 0 mm) = 1200 mm$  $\gamma_{\text{wall}} = 23.6 \text{ kN/m}^3$  $\gamma_{\text{bese}} = 23.6 \text{ kN/m}^3$  $\alpha = 90.0 \text{ deg}$  $\beta = 0.0 \text{ deg}$  $h_{eff} = h_{wall} + l_{heel} \times tan(\beta) = 2800 \text{ mm}$ 

M = 1.5



|                                       | Project                        |            |          |      | Job Ref.      |        |  |
|---------------------------------------|--------------------------------|------------|----------|------|---------------|--------|--|
|                                       | 1 ELLERDALE ROAD HAMPSTEAD NW3 |            |          |      |               | 12.195 |  |
| 90 MEADROW, GODALMING                 | Section                        |            |          |      | Sheet no./rev | ,      |  |
|                                       | PROPOSED NEW BASEMENT          |            |          |      |               | 18     |  |
| Tel: 01483 416 140 Fax: 01483 421 304 | Caic. by                       | Date       | Chk'd by | Date | App'd by      | Date   |  |
| email: info@anddesigns.co.uk          | J                              | 31/10/2012 |          |      |               |        |  |

| Vertical forces on wall                        |                                                                                                                                                |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Wall stem                                      | $w_{wall} = h_{stem} \times t_{watl} \times \gamma_{wall} = 20.7 \text{ kN/m}$                                                                 |
| Wall base                                      | $w_{base} = I_{base} \times t_{base} \times \gamma_{base} = 11.3 \text{ kN/m}$                                                                 |
| Applied vertical load                          | $W_v = W_{dead} + W_{live} = 30 \text{ kN/m}$                                                                                                  |
| Total vertical load                            | $W_{\text{total}} = W_{\text{wall}} + W_{\text{base}} + W_{v} = 62 \text{ kN/m}$                                                               |
| Horizontal forces on wall                      |                                                                                                                                                |
| Surcharge                                      | $F_{sur} = K_a \times Surcharge \times h_{eff} = 11.7 \text{ kN/m}$                                                                            |
| Moist backfill above water table               | $F_{m_a} = 0.5 \times K_a \times \gamma_m \times (h_{eff} - h_{water})^2 = 6.4 \text{ kN/m}$                                                   |
| Moist backfill below water table               | $F_{m_b} = K_a \times \gamma_m \times (h_{eff} - h_{water}) \times h_{water} = 14.7 \text{ kN/m}$                                              |
| Saturated backfill                             | $F_s = 0.5 \times K_a \times (\gamma_{s} - \gamma_{water}) \times h_{water}^2 = 5.3 \text{ kN/m}$                                              |
| Water                                          | $F_{water} = 0.5 \times h_{water}^2 \times \gamma_{water} = 11 \text{ kN/m}$                                                                   |
| Total horizontal load                          | $F_{total} = F_{sur} + F_{m_a} + F_{m_b} + F_s + F_{water} = 49.1 \text{ kN/m}$                                                                |
| Calculate total propping force                 |                                                                                                                                                |
| Passive resistance of soil in front of wall    | $F_{p} = 0.5 \times K_{p} \times \cos(\delta_{b}) \times (d_{cover} + t_{base} + d_{ds} - d_{exc})^{2} \times \gamma_{mb} = 3.2 \text{ kN/m}$  |
| Propping force                                 | F <sub>prop</sub> = max(F <sub>total</sub> - F <sub>P</sub> - (W <sub>totat</sub> - W <sub>five</sub> ) × tan(δ <sub>b</sub> ), 0 kN/m)        |
|                                                | F <sub>prop</sub> = 28.4 kN/m                                                                                                                  |
| Overturning moments                            |                                                                                                                                                |
| Surcharge                                      | $M_{sur} = F_{sur} \times (h_{eff} - 2 \times d_{ds}) / 2 = 16.4 \text{ kNm/m}$                                                                |
| Moist backfill above water table               | $M_{m_a} = F_{m_a} \times (h_{eff} + 2 \times h_{water} - 3 \times d_{ds}) / 3 = 12.3 \text{ kNm/m}$                                           |
| Moist backfill below water table               | $M_{m_b} = F_{m_b} \times (h_{water} - 2 \times d_{ds}) / 2 = 11 \text{ kNm/m}$                                                                |
| Saturated backfill                             | $M_s = F_s \times (h_{water} - 3 \times d_{ds}) / 3 = 2.6 \text{ kNm/m}$                                                                       |
| Water                                          | $M_{water} = F_{water} \times (h_{water} - 3 \times d_{ds}) / 3 = 5.5 \text{ kNm/m}$                                                           |
| Total overturning moment                       | $M_{ot} = M_{sur} + M_{m_a} + M_{m_b} + M_s + M_{water} = 47.9 \text{ kNm/m}$                                                                  |
| Restoring moments                              |                                                                                                                                                |
| Wall stem                                      | $M_{wall} = w_{wall} \times (I_{loa} + t_{wall} / 2) = 29.4 \text{ kNm/m}$                                                                     |
| Wall base                                      | M <sub>base</sub> = w <sub>base</sub> × I <sub>base</sub> / 2 = 9.1 kNm/m                                                                      |
| Design vertical dead load                      | M <sub>dead</sub> = W <sub>dead</sub> × I <sub>load</sub> = 27.5 kNm/m                                                                         |
| Total restoring moment                         | $M_{rest} = M_{wall} + M_{base} + M_{dead} = 66 \text{ kNm/m}$                                                                                 |
| Check bearing pressure                         |                                                                                                                                                |
| Total vertical reaction                        | R = W <sub>total</sub> = 62.0 kN/m                                                                                                             |
| Distance to reaction                           | $x_{bar} = l_{base} / 2 = 800 mm$                                                                                                              |
| Eccentricity of reaction                       | e = abs((l <sub>base</sub> / 2) - x <sub>bar</sub> ) = 0 mm                                                                                    |
|                                                | Reaction acts within middle third of base                                                                                                      |
| Bearing pressure at toe                        | $p_{toe} = (R / I_{base}) - (6 \times R \times e / I_{base}^2) = 38.7 \text{ kN/m}^2$                                                          |
| Bearing pressure at heel                       | $p_{\text{heel}} = (\text{R} / \text{I}_{\text{base}}) + (6 \times \text{R} \times \text{e} / \text{I}_{\text{base}}^2) = 38.7 \text{ kN/m}^2$ |
| PASS                                           | - Maximum bearing pressure is less than allowable bearing pressure                                                                             |
| Calculate propping forces to top and base of w | vall                                                                                                                                           |
| Propping force to top of wall                  |                                                                                                                                                |

Fprop\_top = (Mot - Mrest

Propping force to base of wall

$$\begin{split} F_{prop\_top} &= (M_{ot} - M_{rest} + R \times I_{base} / 2 - F_{prop} \times t_{base} / 2) / (h_{stem} + t_{base} / 2) = 10.272 \text{ kN/m} \\ F_{prop\_base} &= F_{prop} - F_{prop\_top} = 18.101 \text{ kN/m} \end{split}$$

|                                       | Project                                                                                      | roject Job Ref.                       |                                                         |                                                                   |                                                       |                              |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------|------------------------------|--|--|
|                                       | 1E                                                                                           | LLERDALE ROA                          | D HAMPSTEAD                                             | D NW3                                                             | 12                                                    | .195                         |  |  |
|                                       | Section                                                                                      |                                       |                                                         |                                                                   | Sheet no./rev.                                        |                              |  |  |
| SUBREY, GUT 3HY                       |                                                                                              | PROPOSED N                            | EW BASEMEN                                              | т                                                                 |                                                       | 19                           |  |  |
| Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by                                                                                     | Date                                  | Chk'd by                                                | Date                                                              | App'd by                                              | Date                         |  |  |
| email: info@anddesigns.co.uk          | J                                                                                            | 31/10/2012                            |                                                         |                                                                   |                                                       |                              |  |  |
|                                       |                                                                                              | •                                     | •                                                       | •••                                                               |                                                       |                              |  |  |
| <b>RETAINING WALL DESIGN (B</b>       | S 8002:1994)                                                                                 |                                       |                                                         |                                                                   |                                                       |                              |  |  |
|                                       |                                                                                              |                                       |                                                         | т                                                                 | EDDS calculation                                      | version 1.2.01.06            |  |  |
| Ultimate limit state load factor      | 5                                                                                            |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Dead load factor                      |                                                                                              | γ <sub>f_d</sub> = 1.4                |                                                         |                                                                   |                                                       |                              |  |  |
| Live load factor                      |                                                                                              | γ <sub>f_1</sub> = 1.6                |                                                         |                                                                   |                                                       |                              |  |  |
| Earth and water pressure factor       |                                                                                              | γ <sub>f_e</sub> = <b>1.4</b>         |                                                         |                                                                   |                                                       |                              |  |  |
| Factored vertical forces on wa        | all                                                                                          |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Wall stem                             |                                                                                              | Warnit # = Vr.                        | x helom x tupil x 1                                     | www. = 28.9 kN/m                                                  |                                                       |                              |  |  |
| Wall base                             |                                                                                              |                                       | a v luce v ture v                                       | wan 20.0 kro/m                                                    | <b>m</b>                                              |                              |  |  |
| Applied vertical load                 |                                                                                              |                                       |                                                         | $r_{\text{mass}} = 10.0 \text{ km}$                               |                                                       |                              |  |  |
| Total vertical load                   |                                                                                              |                                       | v v dead v h <u>i</u> v v                               |                                                                   |                                                       |                              |  |  |
|                                       |                                                                                              | ₹ ₹{O/EI_1 ₹44                        | vali_t * **base_t * *                                   | VV_1 - 00.0 KIV/III                                               |                                                       |                              |  |  |
| Factored horizontal at-rest for       | ces on wall                                                                                  | _                                     |                                                         |                                                                   |                                                       |                              |  |  |
| Surcharge                             |                                                                                              | $\vdash_{sur_f} = \gamma_{f_1}$       | < Ko × Surcharge                                        | e × h <sub>eff</sub> = 26.4 kN                                    | /m                                                    |                              |  |  |
| Moist backfill above water table      |                                                                                              | $F_{m_a_f} = \gamma_{f_e}$            | $1 \times 0.5 \times K_0 \times \gamma_m$               | × (h <sub>eff</sub> - h <sub>water</sub> ) <sup>-</sup> =         | 12.6 kN/m                                             |                              |  |  |
| Moist backfill below water table      |                                                                                              | $F_{m\_b\_f} = \gamma_{f\_e}$         | $_{0} \times K_{0} \times \gamma_{m} \times (h_{eff})$  | r - h <sub>water</sub> ) × h <sub>water</sub> =                   | = 29 kN/m                                             |                              |  |  |
| Saturated backfill                    |                                                                                              | $F_{s_f} = \gamma_{f_e} \times$       | 0.5 × K <sub>0</sub> × (γ <sub>s</sub> - γ              | <sub>water</sub> ) × h <sub>water</sub> <sup>2</sup> = 1          | 0.4 kN/m                                              |                              |  |  |
| Water                                 |                                                                                              | $F_{water_f} = \gamma_f$              | <sub>.e</sub> × 0.5 × h <sub>water</sub> <sup>2</sup> : | × γ <sub>water</sub> = 15.5 kN                                    | √m                                                    |                              |  |  |
| Total horizontal load                 |                                                                                              | $F_{total_f} = F_{su}$                | <sub>r_f</sub> + F <sub>m_a_f</sub> + F <sub>m_</sub>   | <u>_b_f</u> + F <u>s_f</u> + F <sub>water</sub> _                 | <sub>f</sub> = 93.8 kN/m                              |                              |  |  |
| Calculate total propping force        |                                                                                              |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Passive resistance of soil in from    | t of wall                                                                                    | F <sub>p_f</sub> = γ <sub>f_θ</sub> × | $0.5 \times K_{p} \times \cos(\delta)$                  | $\delta_b$ ) × (d <sub>cover</sub> + t <sub>base</sub>            | + d <sub>ds</sub> - d <sub>exc</sub> ) <sup>2</sup> > | γ <sub>mb</sub> = <b>4.5</b> |  |  |
| kN/m                                  |                                                                                              |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Propping force                        |                                                                                              | F <sub>ptop_f</sub> = ma              | ix(F <sub>total_f</sub> - F <sub>P_f</sub> - (          | $W_{total_f} - \gamma_{f_l} \times W_{liv}$                       | <sub>/e</sub> ) × tan(δ <sub>b</sub> ), 0             | kN/m)                        |  |  |
|                                       |                                                                                              | F <sub>prop_f</sub> = 64.             | .9 kN/m                                                 |                                                                   |                                                       |                              |  |  |
| Factored overturning moment           | s                                                                                            |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Surcharge                             |                                                                                              | M <sub>sur_f</sub> = F <sub>sur</sub> | _f × (h <sub>eff</sub> - 2 × d <sub>c</sub>             | <sub>is</sub> ) / 2 = <b>37</b> kNm/r                             | n j                                                   |                              |  |  |
| Moist backfill above water table      |                                                                                              | M <sub>m_a_f</sub> = F <sub>m</sub>   | ∟ <sub>a_f</sub> × (h <sub>eff</sub> + 2 × I            | + 2 × h <sub>water</sub> - 3 × d <sub>ds</sub> ) / 3 = 24.3 kNm/m |                                                       |                              |  |  |
| Moist backfill below water table      |                                                                                              | $M_{m_b_f} = F_m$                     | f × (h <sub>water</sub> - 2 >                           | < d <sub>ds</sub> ) / 2 = 21.7 k                                  | 2 = <b>21.7</b> kNm/m                                 |                              |  |  |
| Saturated backfill                    |                                                                                              | $M_{s_f} = F_{s_f}$                   | × (h <sub>water</sub> - 3 × d <sub>ds</sub> )           | ) / 3 = <b>5.2</b> kNm/m                                          | 1                                                     |                              |  |  |
| Water                                 |                                                                                              | $M_{water_f} = F_v$                   | <sub>water_f</sub> × (h <sub>water</sub> - 3            | 3 × d <sub>ds</sub> ) / 3 = 7.7 k                                 | (Nm/m                                                 |                              |  |  |
| Total overturning moment              |                                                                                              | $M_{ol_f} = M_{sur}$                  | _f + M_m_a_f + M_m_                                     | _b_f + Ms_f + Mwate                                               | <u>r_</u> i = 96 kNm/m                                | 1                            |  |  |
| Restoring moments                     |                                                                                              |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Wall stem                             |                                                                                              | M <sub>wall f</sub> = W <sub>w</sub>  | ait f × (line + twait /                                 | 2) = <b>41.2</b> kNm/m                                            | 1                                                     |                              |  |  |
| Wall base                             |                                                                                              | $M_{\text{hase}} f = W_{\text{h}}$    | use f X lhese / 2 =                                     | 12.7 kNm/m                                                        |                                                       |                              |  |  |
| Design vertical load                  |                                                                                              | $M_{u,r} = W_{u,r}$                   | x liggt = 60.5 kNi                                      | m/m                                                               |                                                       |                              |  |  |
| Total restoring moment                |                                                                                              | Mrest f = Mw                          | $\frac{1}{2} + M_{\text{base}} + M$                     | l₀ , = 114.4 kNm/                                                 | m                                                     |                              |  |  |
| Eactored bearing pressure             |                                                                                              |                                       |                                                         | -2-                                                               |                                                       | 8<br>8<br>9                  |  |  |
| Total vertical reaction               |                                                                                              | $R_{i} = M_{i-1-1}$                   | = 88.8 kN/m                                             |                                                                   |                                                       |                              |  |  |
| Distance to reaction                  |                                                                                              |                                       | /2 = 800  mm                                            |                                                                   |                                                       |                              |  |  |
| Eccentricity of reaction              |                                                                                              | $e_r = abs(l_{r})$                    | $x_{\rm max} = 220  \text{mm}$                          | 0 mm                                                              |                                                       |                              |  |  |
|                                       |                                                                                              |                                       |                                                         | Reaction acts w                                                   | vithin middle :                                       | third of base                |  |  |
| Bearing pressure at toe               |                                                                                              | $p_{toe} = (R_t / R_t)$               | l <sub>base</sub> ) - (6 × R <sub>f</sub> ×             | $e_{f} / l_{base}^{2} = 55.5$                                     | kN/m <sup>2</sup>                                     |                              |  |  |
| Bearing pressure at heel              |                                                                                              | $p_{\text{heel f}} = (R_f)$           | / I <sub>base</sub> ) + (6 x Rr                         | $x e_f /  _{hase}^2 = 55.4$                                       | 5 kN/m <sup>2</sup>                                   |                              |  |  |
| Rate of change of base reaction       | Rate of change of base reaction $rate = (p_{toe f} - p_{heel} t) / l_{hase} = 0.00 kN/m^2/m$ |                                       |                                                         |                                                                   |                                                       |                              |  |  |
| Bearing pressure at stem / toe        |                                                                                              | Pstem toe f ≒                         | max(p <sub>ion f</sub> - (rate                          | $e \times I_{ioe}$ ), 0 kN/m <sup>2</sup> )                       | = 55.5 kN/m <sup>2</sup>                              |                              |  |  |
| - •                                   |                                                                                              |                                       |                                                         |                                                                   |                                                       |                              |  |  |

|                                       | Project         |                                     |                                                                                                          |                                                    | Job Ref.                       |                          |  |  |  |
|---------------------------------------|-----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------|--------------------------|--|--|--|
|                                       | 1 E             | LLERDALE ROA                        | AD HAMPST                                                                                                | EAD NW3                                            |                                | 12.195                   |  |  |  |
| 90 MEADROW, GODALMING                 | Section         |                                     |                                                                                                          |                                                    | Sheet no./rev.                 | •                        |  |  |  |
| SURREY, GU7 3HY                       |                 | PROPOSED N                          | IEW BASEN                                                                                                | 1ENT                                               | 20                             |                          |  |  |  |
| Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by        | Date                                | Chk'd by                                                                                                 | Date                                               | App'd by                       | Date                     |  |  |  |
| email: info@anddesigns.co.uk          | J               | 31/10/2012                          |                                                                                                          |                                                    |                                |                          |  |  |  |
| Bearing pressure at mid stem          |                 | Datam mid ( E                       | = max(n <sub>t-n</sub> t -                                                                               | (rate x (has + turn                                | / 2)) ① kN/m <sup>2</sup> ) :  | = 55 5 kN/m <sup>2</sup> |  |  |  |
| Bearing pressure at stem / heel       |                 | Dsiam beal f                        | = max(pibe_f                                                                                             | - (rate $\times$ (line + twall)                    | $(12,0), 0 \text{ km/m}^2 = 5$ | 5.5 kN/m <sup>2</sup>    |  |  |  |
| Calculate propping forces to t        | on and hase o   | of wall                             | ·······(F:00_i                                                                                           |                                                    | ,,, , •                        |                          |  |  |  |
| Propoing force to top of wall         |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
| · · · · · · · · · · · · · · · · · · · | Erron ton f = ( | Matr-Mastr+R                        | f X  hasa / 2 -                                                                                          | Formo (x these / 2) / 1                            | (hstern + these / 2)           | ) = 16.180 kN/n          |  |  |  |
| Propping force to base of wall        | · prop_top_i    | Fprop_base_f                        | = F <sub>prop_f</sub> - F <sub>pr</sub>                                                                  | op_top_f = <b>48.678</b> kl                        | N/m                            | ,                        |  |  |  |
| Design of reinforced concrete         | retaining wal   | l toe (BS 8002:1                    | 994)                                                                                                     |                                                    |                                |                          |  |  |  |
| Material properties                   |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
| Characteristic strength of concre     | te              | f <sub>cu</sub> = <b>40</b> N/i     | mm²                                                                                                      |                                                    |                                |                          |  |  |  |
| Characteristic strength of reinfor    | cement          | f <sub>y</sub> = 500 N/             | mm²                                                                                                      |                                                    |                                |                          |  |  |  |
| Base details                          |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
| Minimum area of reinforcement         |                 | k = 0.13 %                          | I                                                                                                        |                                                    |                                |                          |  |  |  |
| Cover to reinforcement in toe         |                 | c <sub>toe</sub> = 50 m             | im                                                                                                       |                                                    |                                |                          |  |  |  |
| Calculate shear for toe design        |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
| Shear from bearing pressure           |                 | $V_{toe\_bear} = 0$                 | p <sub>toe_f</sub> + p <sub>stem_</sub>                                                                  | _toe_f) × l <sub>toe</sub> / 2 = 69                | ).4 kN/m                       |                          |  |  |  |
| Shear from weight of base             |                 | V <sub>toe_wt_base</sub>            | $V_{toe_wt_base} = \gamma_{f_d} \times \gamma_{base} \times I_{toe} \times t_{base} = 12.4 \text{ kN/m}$ |                                                    |                                |                          |  |  |  |
| Total shear for toe design            |                 | $V_{toe} = V_{toe}$                 | beer - Vloe_wLt                                                                                          | <sub>base</sub> = 57 kN/m                          |                                |                          |  |  |  |
| Calculate moment for toe design       | gn              |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
| Moment from bearing pressure          |                 | M <sub>toe_bear</sub> =             | (2 × p <sub>be f</sub> + p                                                                               | $D_{stem_mid_f} \times (I_{toe} + I)$              | $t_{wall} / 2)^2 / 6 = 5$      | 6.3 kNm/m                |  |  |  |
| Moment from weight of base            |                 | –<br>M <sub>toe_wt_base</sub>       | $= (\gamma_{f_d} \times \gamma_{base})$                                                                  | $_{e} \times t_{base} \times (I_{loe} + t_{wase})$ | $(12)^2 / 2 = 10$              | .1 kNm/m                 |  |  |  |
| Total moment for toe design           | be              | M <sub>toe</sub> = M <sub>toe</sub> | _bear - Mtoe_wt                                                                                          | _ <sub>base</sub> = 46.3 kNm/n                     | n                              |                          |  |  |  |
|                                       |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
| T T                                   |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
|                                       |                 |                                     |                                                                                                          |                                                    |                                | χ.                       |  |  |  |
|                                       |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
|                                       |                 |                                     |                                                                                                          |                                                    |                                | •                        |  |  |  |
|                                       |                 | _                                   |                                                                                                          | -                                                  |                                | •                        |  |  |  |
|                                       |                 | -                                   | -                                                                                                        | -                                                  |                                |                          |  |  |  |
| <u> </u>                              |                 |                                     |                                                                                                          |                                                    |                                |                          |  |  |  |
|                                       | <b> ⊲</b> ——225 | j                                   |                                                                                                          |                                                    |                                |                          |  |  |  |
|                                       | 1               | - 1                                 |                                                                                                          |                                                    |                                |                          |  |  |  |
| Check toe in bending                  |                 | · · ·                               |                                                                                                          |                                                    |                                |                          |  |  |  |
| Width of toe                          | · · · ·         | b = 1000 m                          | ım/m                                                                                                     |                                                    |                                |                          |  |  |  |
| Depth of reinforcement                |                 | $d_{toe} = t_{base}$ -              | – C <sub>toe</sub> – (¢ <sub>toe</sub> /                                                                 | ′ 2) = <b>244.0</b> mm                             |                                |                          |  |  |  |
| Constant                              |                 | Ktos = Mtos                         | / (b x d <sub>m</sub> <sup>2</sup> x                                                                     | f <sub>ev</sub> ) = 0.019                          |                                |                          |  |  |  |

Lever arm

Area of tension reinforcement required Minimum area of tension reinforcement Area of tension reinforcement required Reinforcement provided Area of reinforcement provided . ...

$$\begin{split} z_{toe} &= min(0.5 + \sqrt{(0.25 - (min(K_{toe}, 0.225) / 0.9))}, 0.95) \times d_{toe} \\ z_{toe} &= 232 \text{ mm} \\ A_{s\_toe\_des} &= M_{toe} / (0.87 \times f_y \times z_{toe}) = 459 \text{ mm}^2/\text{m} \\ A_{s\_toe\_min} &= k \times b \times t_{base} = 390 \text{ mm}^2/\text{m} \\ A_{s\_toe\_req} &= Max(A_{s\_toe\_des}, A_{s\_toe\_min}) = 459 \text{ mm}^2/\text{m} \\ 12 \text{ mm dia.bars @ 225 mm centres} \\ A_{s\_toe\_prov} &= 503 \text{ mm}^2/\text{m} \\ PASS - Reinforcement provided at the retaining wall toe is adequate} \end{split}$$

Compression reinforcement is not required

|                                        | Project                                                                                                                               |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Job Ref.                              |                  |  |  |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------|--|--|
|                                        | 1 EI                                                                                                                                  | LERDALE ROA                                                                                                                              | D HAMPSTEAD                                        | D NW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.                                   | 195              |  |  |
|                                        | Section                                                                                                                               |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sheet no./rev.                        |                  |  |  |
| SURREY, GUDALIMING                     |                                                                                                                                       | PROPOSED N                                                                                                                               | EW BASEMEN                                         | т                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       | 21               |  |  |
| Tel: 01483 418 140 Fax: 01483 421 304  | Calc. by                                                                                                                              | Date                                                                                                                                     | Chk'd by                                           | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | App'd by                              | Date             |  |  |
| email: info@anddesigns.co.uk           | L                                                                                                                                     | 31/10/2012                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Check check registrence at the         |                                                                                                                                       |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Check shear resistance at toe          |                                                                                                                                       |                                                                                                                                          |                                                    | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                  |  |  |
|                                        |                                                                                                                                       | $v_{toe} = v_{toe}$ /                                                                                                                    | $(D \times O_{toe}) = 0.23$                        | 33 N/mm <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                     | . 7              |  |  |
| Allowable snear stress                 |                                                                                                                                       |                                                                                                                                          | 0.8 × 1/(1 <sub>cu</sub> / 1 N                     | /mm <sup>-</sup> ), 5) × 1 N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1m <sup>-</sup> = 5.000 N             | /mm <sup>-</sup> |  |  |
| From B69110, Dow 1, 1007 To            |                                                                                                                                       | PASS                                                                                                                                     | Design snear                                       | stress is less th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | an maximum                            | snear stress     |  |  |
| Design concrete shear stress           | IDIE 3.0                                                                                                                              | v . = 0.4                                                                                                                                | 94 N/mm <sup>2</sup>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
|                                        |                                                                                                                                       | Vc_log - 0.4                                                                                                                             | 54 N/HUH                                           | < v No she                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ar minforcon                          | ont required     |  |  |
|                                        |                                                                                                                                       |                                                                                                                                          | ¥ 106                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ar remorcen                           | ientrequireu     |  |  |
| Design of reinforced concrete          | retaining wall                                                                                                                        | stem (BS 8002                                                                                                                            | <u>:1994)</u>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Material properties                    |                                                                                                                                       |                                                                                                                                          | ·                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Characteristic strength of concre      | ete                                                                                                                                   | f <sub>cu</sub> = <b>40</b> N/r                                                                                                          | nm²                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Characteristic strength of reinfor     | cement                                                                                                                                | f <sub>y</sub> = 500 N/                                                                                                                  | mm²                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Wall details                           |                                                                                                                                       |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Minimum area of reinforcement          |                                                                                                                                       | k = 0.13 %                                                                                                                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Cover to reinforcement in stem         |                                                                                                                                       | c <sub>stem</sub> = 50 r                                                                                                                 | nm .                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Cover to reinforcement in wall         |                                                                                                                                       | $c_{wall} = 50 \text{ m}$                                                                                                                | m                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Factored horizontal at-rest for        | ces on stem                                                                                                                           |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Surcharge                              |                                                                                                                                       | $F_{s sur f} = \gamma_f$                                                                                                                 | ı × K₀ × Surcha                                    | rge x (h <sub>eff</sub> - t <sub>base</sub> - i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | d <sub>ds</sub> ) = 23.6 kN/          | 'n               |  |  |
| Moist backfill above water table       |                                                                                                                                       | F <sub>5 m a f</sub> = 0                                                                                                                 | .5 × γ <sub>f =</sub> × K <sub>D</sub> × γ         | /m × (heff - thase - d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(h_{\rm s} - h_{\rm set})^2 = 12.1$  | 6 kN/m           |  |  |
| Moist backfill below water table       |                                                                                                                                       | $F_{smbf} = \gamma_{f}$                                                                                                                  |                                                    | heff - thasa - dris - hsa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $h_{sat} = 23.2$                      | kN/m             |  |  |
| Saturated backfill                     |                                                                                                                                       | $F_{s_s_f} = 0.5 \times \gamma_{f_e} \times K_0 \times (\gamma_{s} - \gamma_{water}) \times h_{sat}^2 = 6.7 \text{ kN/m}$                |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Water                                  |                                                                                                                                       | F <sub>s water f</sub> = (                                                                                                               | $0.5 \times \gamma_{fa} \times \gamma_{water}$     | $ \times h_{sat}^{2} = 9.9 \text{ kN/n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                     |                  |  |  |
| Calculate shear for stom desig         | 10                                                                                                                                    | - <b>--</b> -                                                                                                                            | , <u> </u>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Surcharge                              | ,,,                                                                                                                                   | V                                                                                                                                        | vE -/8=1                                           | 4.8 kN/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                       |                  |  |  |
| Moist backfill above water table       |                                                                                                                                       |                                                                                                                                          | ,                                                  | $(2) = (12)^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $^{3}$ ) = 5 9 kN/m                   |                  |  |  |
| Moist backfill below water table       |                                                                                                                                       |                                                                                                                                          | s_m_e_t × U) × ((U                                 | $(3 \times (4 - n)) / (3 \times (3 \times (4 - n))) / $                                                                                                                                            | ∟ ) = 3.5 KN/III<br>0.6 kN/m          |                  |  |  |
| Saturated backfill                     |                                                                                                                                       |                                                                                                                                          | $s_m b_1 \times (0^{-1} (1)^{-1})$                 | 5 x [ ) = 2) / (20 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 <sup>3</sup> \\\ - 6 2 LN           | Im               |  |  |
| Water                                  | ·                                                                                                                                     |                                                                                                                                          |                                                    | $\frac{3}{2} = \frac{2}{10} + \frac{2}{10} = \frac{2}{10} = \frac{2}{10} + \frac{2}{10} = \frac{2}{10} = \frac{2}{10} = \frac{2}{10} = \frac{2}{10} =$ | $(20 \times 1^{3})) = 0.3 \text{ KM}$ | 2 kN/m           |  |  |
| Total shear for stem design            |                                                                                                                                       | Vsion = Va                                                                                                                               | s_water_t > ( ) = ( e                              | ין א ((ט × ב) - אן) י<br>ע- – א י + ע י +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (20 × L ))) = 3<br>Ve weier (= 56 )   | R kN/m           |  |  |
|                                        | _ <b>+</b>                                                                                                                            | • stem • s_s                                                                                                                             | nc", , <b>e</b> ?w <sup>_</sup> a <sup>_</sup> i . | • 2 <u>~</u> m_o_i · • <u>8_8</u> _i ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | vs_water_1 = 00.                      | 5 KI WIII        |  |  |
| Calculate moment for stem de           | sign                                                                                                                                  |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Surcharge                              |                                                                                                                                       |                                                                                                                                          | sur_f × L / 8 = 7.8                                | 5 KINM/M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4 - 12                                |                  |  |  |
|                                        |                                                                                                                                       |                                                                                                                                          | _m_a_f × Di × ((5 :<br>                            | × L) - (3 × D <sub>l</sub> <sup>-</sup> )) / (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 × L⁻) = 4.7<br>,                   | KNM/M            |  |  |
|                                        |                                                                                                                                       |                                                                                                                                          | _m_b_f × al × (2 -                                 | $(1)^{2} / 8 = 8.7 \text{ kNm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       | 11               |  |  |
|                                        |                                                                                                                                       |                                                                                                                                          | f ×ai×((3×ai))-(1                                  | 5×a xL)+(20xL <sup>-</sup> ))/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $(50\times L^{-}) = 2 \text{ KN}$     | m/m              |  |  |
| Total memory for stom design           |                                                                                                                                       | IVIs_water ≕ ⊢<br>M — M                                                                                                                  | s_water_f ×2t×((3×                                 | a `)-(15×a ×L)+(2L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ×L"))/(6U×L") =<br>= 20.4 kN          | = 2.9 KNM/M      |  |  |
| Total moment for stem design           |                                                                                                                                       | Wistem - Wis_                                                                                                                            | sur T IVIs_m_a T.IVI                               | s_m_b + IVIs_s + IVIs_                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | water = 20.1 Kin                      | man              |  |  |
| Calculate moment for wall des          | ign                                                                                                                                   |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Surcharge                              |                                                                                                                                       | M <sub>w_sur</sub> = 9 ×                                                                                                                 | $F_{s_{sur_f}} \times L/12$                        | 8 = 4.4 kNm/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       |                  |  |  |
| Moist backfill above water table       | $M_{w_m_B} = F_s$                                                                                                                     | _m_a_f × 0.577×t                                                                                                                         | 0,×[(bi <sup>™</sup> +5×ai×L <sup>4</sup> )/(      | 5×L")-0.577*/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ] = 4 kNm/m                           |                  |  |  |
| Moist backfill below water table       | $M_{w_mb} = F_{s_mb_f} \times a_i \times [((8-n^2 \times (4-n))^2 / 16) - 4 + n \times (4-n)]/8 = 3.6 \text{ kNm/m}$                  |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| Saturated backfill                     | $M_{w_s} = F_{s_s} + [a_f \times x \times ((5 \times L) - a_i)/(20 \times L^3) - (x - b_i)^3 / (3 \times a_i^2)] = 0.6 \text{ kNm/m}$ |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
|                                        |                                                                                                                                       | $M_{w_water} = F_{s_water_f} \times [a_f^2 \times x \times ((5 \times L) - a_i)/(20 \times L^3) - (x - b_i)^3 / (3 \times a_i^2)] = 0.9$ |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |
| KINM/M<br>Total mamoat for well desire |                                                                                                                                       | M - M                                                                                                                                    |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | _ 40 5 1                              | l l              |  |  |
| rotar moment for wall design           |                                                                                                                                       | $ V _{wall} =  V _{w_s}$                                                                                                                 | <sub>or</sub> + W <sub>w_m_a</sub> + M             | w_m_b + Mw_s + Mw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _water = 13.5 Kl                      | NIN/M            |  |  |
|                                        |                                                                                                                                       |                                                                                                                                          |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                       |                  |  |  |







Project Job Ref. 1 ELLERDALE ROAD HAMPSTEAD NW3 12.195 Section Sheet no./rev. 90 MEADROW, GODALMING 25 PROPOSED BASEMENT SURREY, GU7 3HY Calc. by Date Chk'd by Date App'd by Daie Tel: 01483 418 140 Fax: 01483 421 304 email: info@anddesigns.co.uk J 30/10/2012 GRANNIS MAS CONTO. WE A 393 WELL TOP & BOTTOM OF 250 THU 12 GROWN SUAB. DEVICEN OF GROWIND BLAM SUM YOUR WANN from Suits = 15-3 (and) × 8×5/G = 79.5 UN/MB 53 ( low ui) Frishilm 01 σ 950 مر 3.5 6.1 υ 1200 d = 20 - 40-10-5 = 195mms = d.







#### Support conditions

Support A

Support B

#### Support C

Support D

Applied loading

Load combinations

Sup

Rotationally free Vertically restrained Rotationally free Vertically restrained Rotationally free Vertically restrained Rotationally free

Vertically restrained

Dead full UDL 53 kN/m

Support A

Span 1

Dead  $\times$  1.50 Imposed  $\times$  1.50 Dead  $\times$  1.50 Imposed  $\times$  1.50

|                                       | Project      |                                | DUANDOTE |         |                            | Job Ref.           | 40 405 |                                       |
|---------------------------------------|--------------|--------------------------------|----------|---------|----------------------------|--------------------|--------|---------------------------------------|
|                                       | Section      |                                | DHAMPSTE | AD NVV3 |                            | Sheet no (rea      | ,      | · · · · · · · · · · · · · · · · · · · |
| 90 MEADROW, GODALMING                 | 266001       |                                |          | 27      |                            |                    |        |                                       |
| Tel: 01483 418 140 Fax: 01483 421 304 | Calc. by     | Date                           | Chk'd by | Date    |                            | App'd by           | Date   |                                       |
| email: info@anddesigns.co.uk          | J            | 30/10/2012                     |          |         |                            |                    |        |                                       |
|                                       |              | Support B                      |          |         | Dead ×                     | 1.50               |        |                                       |
|                                       |              |                                |          |         | Imposed                    | l × 1.50           |        |                                       |
|                                       |              | Span 2                         |          |         | Dead × 1                   | 1.50               |        |                                       |
|                                       |              |                                |          |         | Imposed                    | × 1.50             |        |                                       |
|                                       |              | Support C                      |          |         | Dead × 1                   | 1.50               |        |                                       |
|                                       |              |                                |          |         | Imposed                    | × 1.50             |        |                                       |
|                                       |              | Span 3                         |          |         | Dead × 1                   | 1.40               |        |                                       |
|                                       |              |                                |          |         | Imposed                    | × 1.60             |        |                                       |
|                                       |              | Support D                      |          |         | Dead x                     | 1.40               |        |                                       |
|                                       |              |                                |          |         | Imposed                    | × 1.60             |        |                                       |
| Analysis results                      |              |                                |          |         |                            |                    |        |                                       |
| Maximum moment support A              |              | MA max = 0                     | kNm      |         | M <sub>A red</sub> =       | 0 kNm              |        |                                       |
| Maximum moment span 1 at 10           | 03 mm        | $M_{s1} max = 4$               | 0 kNm    |         | M <sub>s1 red</sub> =      | 40 kNm             |        |                                       |
| Maximum moment support B              |              | M <sub>B_max</sub> = -2        | .08 kNm  |         | M <sub>B_red</sub> =       | -208 kNm           |        |                                       |
| Maximum moment span 2 at su           | pport        | <br>M <sub>s2_max</sub> = 1    | 54 kNm   |         | -<br>M <sub>s2_red</sub> = | 154 kNm            |        |                                       |
| Maximum moment support C              |              | M <sub>C_max</sub> = -2        | 200 kNm  |         | M <sub>C_red</sub> =       | -200 kNm           |        |                                       |
| Maximum moment span 3 at 20           | 00 mm        | $M_{s3_max} = 0$               | kNm      |         | M <sub>s3_red</sub> =      | 0 kNm              |        | ÷                                     |
| Maximum moment support D              |              | $M_{D_max} = 0$                | kNm      |         | M <sub>D_red</sub> =       | 0 kNm              |        |                                       |
| Maximum shear support A               |              | V <sub>A_max</sub> = 80        | ) kN     |         | $V_{A_{red}} = 3$          | B0 kN              |        |                                       |
| Maximum shear support A span          | 1 at 182 mm  | V <sub>A_s1_max</sub> =        | 65 kN    |         | VA_s1_red                  | = 65 kN            |        |                                       |
| Maximum shear support B               |              | V <sub>B_max</sub> = 24        | 10 kN    |         | $V_{B_{red}} = 2$          | 240 kN             |        |                                       |
| Maximum shear support B span          | 1 at 3322 mm | V <sub>B_s1_max</sub> =        | -183 kN  |         | VB_s1_red                  | = -183 kN          |        |                                       |
| Maximum shear support B span          | 2 at 178 mm  | V <sub>B_s2_max</sub> =        | 224 kN   |         | VB_s2_red                  | = 224 kN           |        |                                       |
| Maximum shear support C               | ÷ .          | $V_{C_{max}} = -2$             | 37 KN    |         | $V_{C_{red}} = $           | -237 kN            |        |                                       |
| Maximum shear support C span          | 2 at 5823 mm | $V_{C_{s2}max} =$              | -221 KN  |         | VC_s2_red                  | = -221 KN          |        |                                       |
| Maximum shear support C span          | 3 at 178 mm  | VC_s3_max =                    | 159 KIN  |         | VC_s3_red                  | = 159 KN<br>EE LNI |        |                                       |
| Maximum shear support D               | 3 of 1818 mm |                                | 70 PN    |         | VD_red :                   |                    |        | -                                     |
| Maximum reaction at support A         | Saciolonini  | $VD_s3_max =$<br>$R_s = 80 kN$ | 40 KN    |         | VD_\$3_red                 | - 40 KIN           |        |                                       |
| Unfactored dead load reaction a       | t support A  | $R_A \text{ Dood} = 5$         | 3 kN     |         |                            |                    |        |                                       |
| Maximum reaction at support B         | Cappetti     | R <sub>B</sub> = <b>438</b> k  | N        |         |                            |                    |        |                                       |
| Unfactored dead load reaction a       | t support B  | RB Dead = 2                    | 92 kN    |         |                            |                    |        |                                       |
| Maximum reaction at support C         |              | R <sub>c</sub> = 411 k         | N        |         |                            |                    |        |                                       |
| Unfactored dead load reaction a       | t support C  | Rc_Deed ≂ 2                    | 78 kN    |         |                            |                    |        | · · · ·                               |
| Maximum reaction at support D         |              | R₀ <b>= -26</b> ki             | ٧        |         |                            |                    |        |                                       |
| Unfactored dead load reaction a       | t support D  | $R_{D_{Dead}} = -2$            | 14 kN    |         |                            |                    |        |                                       |
| Rectangular section details           |              |                                |          |         |                            |                    |        |                                       |
| Section width                         |              | b = 1200 m                     | Im       |         |                            |                    |        |                                       |
| Section depth                         |              | h = 250 mr                     | n        |         |                            |                    |        |                                       |
|                                       |              |                                |          |         |                            |                    |        |                                       |

----





|                                             | Project               |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Job Ref.                      |                           |
|---------------------------------------------|-----------------------|-------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------|
| AND                                         | 1 EL                  | LERDALE ROA                         |                                                  | D NW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                            | .195                      |
|                                             | Section               |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sheet no./rev.                |                           |
| 90 MEADROW, GODALMING                       |                       | PROPOSED                            | D BASEMENT                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | 30                        |
| Tel: 01483 418 140 Fax: 01483 421 304       | Calc. by              | Date                                | Chk'd by                                         | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | App'd by                      | Date                      |
| email: info@anddesigns.co.uk                | J                     | 30/10/2012                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
|                                             |                       | <b>1</b>                            |                                                  | 1<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               |                           |
| Span to depth ratio (cl. 3.4.6)             |                       |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Basic span to depth ratio (Table            | 3.9)                  | span_to_d                           | epth <sub>basic</sub> = 26.0                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                             |                           |
| Design service stress in tension            | reinforcement         | $f_s = (2 \times f_y)$              | $\times A_{s,req}$ / (3 $\times A_s$             | $prov \times \beta_b$ = 147.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/mm²                         |                           |
| Modification for tension reinforce          | ement                 |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2                             | 2                         |
|                                             | f <sub>tens</sub> ≕ i | min(2.0, 0.55 + (                   | (477N/mm <sup>+</sup> - f₅)                      | / (120 × (0.9N/mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m°+(M/(b×o                    | ±²))))) = 1.992           |
| Modification for compression rei            | nforcement            |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
|                                             | t <sub>comp</sub>     | = min(1.5, 1 + (1.5))               | 100 × A <sub>s2,prov</sub> / (l                  | 5 × d)) / (3 + (100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ×A <sub>s2,prov</sub> /(b>    | (d)))) = 1.155            |
| Modification for span length                |                       | t <sub>long</sub> = 1.000           | U<br>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | -                         |
| Allowable span to depth ratio               |                       | span_to_d                           | epth <sub>allow</sub> = span                     | $to_depth_{basic} \times f_{te}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ens × t <sub>comp</sub> = 59. | .8                        |
| Actual span to depth ratio                  |                       | span_to_de                          |                                                  | a = 19.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                               | V                         |
|                                             |                       | PASS                                | 5 - Actual span                                  | to depth ratio is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | s within the al               | iowabie limit             |
| <u>Support B</u>                            |                       |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
|                                             |                       |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| <u>↑</u>                                    |                       |                                     |                                                  | D OC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                           |
| 20-                                         |                       |                                     |                                                  | 8 x 25φ bars<br>2 x 10φ shear let                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | as at 125 c/c                 |                           |
|                                             | F                     |                                     |                                                  | 6 x 16 <sub>0</sub> bars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                             |                           |
| <u>↓</u> <b>1</b>                           |                       |                                     |                                                  | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                           |
| 4                                           |                       | 00                                  | ·····                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| 1-                                          |                       |                                     | - 1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Design moment resistance of                 | rectangular se        | ction (cl. 3.4.4)                   |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | ÷.,                       |
| Design bending moment                       |                       | M = abs(M)                          | <sub>B red</sub> ) = 208 kNn                     | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | 1                         |
| Depth to tension reinforcement              |                       | $d = h - c_{norm}$                  | <br>                                             | 178 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                           |
| Redistribution ratio                        | ÷                     | $\beta_{\rm b} = \min(1)$           | - m <sub>rB</sub> , 1) = 1.00                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               |                           |
|                                             |                       | K = M / (b)                         | $(d^2 \times f_{eu}) = 0.13$                     | 37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                           |
|                                             |                       | K' = 0.156                          | · · · · · · · · · · · · · · · · · ·              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
|                                             |                       |                                     | K'>K-I                                           | lo compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | reinforcemer                  | nt is required            |
| Lever arm                                   |                       | z = min(d ×                         | : (0.5 + (0.25 - k                               | ( / 0.9) <sup>0.5</sup> ), 0.95 ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | d) = 144 mm                   | •                         |
| Depth of neutral axis                       |                       | x = (d - z) /                       | 0.45 = 74 mm                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Area of tension reinforcement re            | auired                | $A_{s,mn} = M/$                     | (0.87 × f <sub>v</sub> × z) =                    | 3313 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                               |                           |
| Tension reinforcement provided              | ,                     | 8 × 25¢ bar                         | rs                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Area of tension reinforcement pr            | ovided                | A <sub>s.orov</sub> = 393           | <b>27</b> mm²                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Minimum area of reinforcement               |                       | $A_{s,min} = 0.0$                   | 013 × b × h = 3                                  | 90 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                           |
| Maximum area of reinforcement               |                       | $A_{s,max} = 0.0$                   | 4 × b × h = 120                                  | 00 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                               |                           |
|                                             | PASS - Area o         | f reinforcement                     | t provided is g                                  | reater than area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | of reinforcem                 | ent required              |
| Rectangular section in shear                |                       |                                     |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               | •                         |
| Design shear force span 1 at 33             | 22 mm                 | V = abs(mi                          |                                                  | (1.0) = 183  kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Design shear stress                         |                       | v = V / (b v)                       | $(VB_{51}_{max}, VB_{1})$                        | m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                               |                           |
| Design separate shear strass                |                       | v = 070 x                           | $min/2$ [100 $\times$ A                          | (/b.u.d)1 <sup>1/3</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | may/1 /400 /                  | -n 1/4                    |
| $(min(f - 40) / 25)^{1/3}$                  |                       | Vc - 0.79 x                         | mm(3,[100 × A                                    | ,provi (D x d)] ) x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | max(1, (4007                  | u) ) x                    |
| (mm(n <sub>αh</sub> +υ)/∠ο) /γ <sub>m</sub> |                       | v                                   | N/mm <sup>2</sup>                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
| Allowable decige chast stress               |                       | $v_c = 1.1111$                      | $0.9 \text{ N}/\text{mm}^2 \dots \text{f}$       | (1 N/mm <sup>2</sup> \0.5 E N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $1/mm^2 = 5.000$              | N/mm <sup>2</sup>         |
| Allowable design shear stress               |                       | v <sub>max</sub> = mi∩('            | u.o iv/inin × (ī <sub>d</sub><br>19 Doniger et a | $\frac{1}{2} = \frac{1}{2} = \frac{1}$ | nnn ) = 5.00L<br>than mexim   | r Willill<br>Im alloumhle |
| Volue of y from Table 2.7                   |                       | 0 5                                 | ອ - Design she                                   | ar su ess 15 1855<br><sup>2</sup> \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alali maximu                  | nn anowabie               |
|                                             |                       | $v_{\rm c} = v_{\rm c} < v_{\rm c}$ | $\sim (v_c + 0.4 \text{ N/m})^2$                 | $(0, 1) = 0.400 \text{ M}^{-2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |
|                                             | i<br>viela d          | $v_s = \max(V)$                     | - v <sub>ci</sub> U.4 IN/MM <sup>-</sup>         | - 4400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               |                           |
| Area or snear reinforcement requ            | niea                  | $A_{sv,req} = V_s$                  | × D / (U.87 × 1 <sub>yv</sub> )                  | = 1103 mm <sup>-</sup> /m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                               |                           |
| Shear reinforcement provided                |                       | 2 × 10¢ leg                         | s at 125 c/c                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                               |                           |

|                                        | Project          |                                      |                                        | · · · · · · · · · · · · · · · · · · ·         | Job Ref.                           |                          |
|----------------------------------------|------------------|--------------------------------------|----------------------------------------|-----------------------------------------------|------------------------------------|--------------------------|
|                                        | 1 El             |                                      |                                        |                                               | 1                                  | 2 105                    |
|                                        | Section          |                                      |                                        |                                               | Sheet no /rev                      |                          |
| 90 MEADROW, GODALMING                  | Geedon           | PPOPOSE                              |                                        |                                               | Grieer no. nev.                    | 21                       |
| SURREY, GU7 3HY                        | Cale by          |                                      |                                        | Data                                          | A cold by                          | Data                     |
| Tel: 01483 418 140 Fax: 01483 421 304  | Calc. by         | 20/10/2012                           |                                        | Date                                          | Appuloy                            | Lafe                     |
| email: intogranduesigns.co.uk          | J                | 30/10/2012                           | <u> </u>                               | .                                             |                                    |                          |
| Area of shear reinforcement pro-       | vided            | $A_{sy, proy} = 12$                  | 257 mm²/m                              |                                               |                                    |                          |
| •                                      | PA               | ASS - Area of s                      | hear reinforce                         | ement provided                                | exceeds min                        | imum required            |
| Maximum longitudinal spacing           |                  | $S_{vimax} = 0.7$                    | ′5 × d = <b>133</b> m                  | m                                             |                                    | •                        |
| ······································ | PASS - Lonai     | itudinal spacin                      | a of shear rei                         | nforcement pro                                | vided is less (                    | han maximum              |
| Design shear force span 2 at 17        | 8 mm             | V = max(V                            | B s2 max. VB s2 (                      | red) = 224 kN                                 |                                    |                          |
| Design shear stress                    |                  | $v = V / (b \times$                  | d) = 1.051 N/                          | mm²                                           |                                    |                          |
| Design concrete shear stress           |                  | $v_{\rm a} = 0.79  {\rm x}$          | min/3 [100 x /                         | A / (b. x. d)] <sup>1/3</sup>                 | ) x max(1_(40)                     | ) /d) <sup>1/4</sup> ) x |
| $(\min(f_{-1}, A_{0}) / 25)^{1/3} / 2$ |                  | 12 0.70 %                            | 1111(0,[100 × 7                        |                                               | /                                  | ,,,,,,,                  |
| (mm(ia), 40)/ 23) / m                  |                  | v = 1 111                            | N/mm <sup>2</sup>                      |                                               |                                    |                          |
| Allowable design shear stress          |                  | $v_c = 1.111$                        | n a N/mm <sup>2</sup> v /i             | f /1 N/mm <sup>2</sup> \ <sup>0.5</sup> F     | $N(mm^2) = 5.0$                    | 00 N/mm <sup>2</sup>     |
| Allowable design shear siless          |                  |                                      | S. Docian et                           |                                               | co than maxim                      | num allowable            |
| Volue of a from Toble 2.7              |                  | 65                                   | ia - Design Si                         | $\frac{1}{2}$                                 | ss uidii ilidxii                   | num anowabie             |
|                                        | J                | $0.5 \times V_c < V_c$               | $r < (v_c + 0.4 N)$                    | mm )<br>2) - 0 400 N/                         | 2                                  |                          |
| Design shear resistance required       | ]<br>            | v <sub>s</sub> = max(v               | - V <sub>c1</sub> U.4 N/mm             | 1 = 0.400  N/mm                               | 1                                  |                          |
| Area of shear reinforcement requ       | urea             | $A_{sv,req} = V_s$                   | × D / (U.8/ × 1 <sub>y</sub> ,         | ,) = 1103 mm7/m                               |                                    |                          |
| Shear reinforcement provided           |                  | 2 × 10¢ leg                          | s at 125 c/c                           |                                               |                                    |                          |
| Area of shear reinforcement prov       | /ided            | $A_{sv,prov} = 12$                   | 257 mm²/m                              |                                               |                                    |                          |
| · · · · · · · ·                        | PA               | ASS - Area of s                      | hear reinforce                         | ement provided                                | exceeds mini                       | mum required             |
| Maximum longitudinal spacing           |                  | S <sub>vł,max</sub> = 0.7            | ′5 × d = 133 m                         | m                                             |                                    |                          |
|                                        | PASS - Longi     | itudinal spacing                     | g of shear reil                        | nforcement pro                                | vided is less l                    | han maximum              |
| Spacing of reinforcement (cl 3         | . <b>12</b> .11) |                                      |                                        |                                               |                                    |                          |
| Actual distance between bars in        | tension          | s = (b - 2 ×                         | $(C_{\text{nom}_s} + \phi_v + \phi_v)$ | φ <sub>top</sub> /2)) /(N <sub>top</sub> - 1) | - φ <sub>lop</sub> = <b>126</b> mi | n                        |
| Minimum distance between ba            | rs in tension (  | cl 3.12.11.1)                        |                                        |                                               |                                    |                          |
| Minimum distance between bars          | in tension       | $s_{min} = h_{ano}$ -                | + 5 mm = <b>25</b> m                   | ากา                                           |                                    |                          |
|                                        |                  |                                      | PA                                     | SS - Satisfies th                             | e minimum s                        | pacing criteria          |
| Maximum distance between by            | are in tangion ( | (c) 3 12 11 2)                       |                                        |                                               |                                    | _                        |
| Design ponyice strong                  |                  | (or J. 12. 11.2)<br>f. = (2, y. f. s | · A - ` \ //3 · /                      | V v B. V <b>- 291</b>                         | $2 \mathrm{M/mm^2}$                |                          |
| Maximum distance between barr          | in toppion       | $i_{\rm S} = (2 \times i_{\rm S})$   | 47000 N/mm /                           | $r_{s,prov} \times p_{B} = 201$               | -2 19/1101                         |                          |
| Maximum distance between bars          |                  | Smax - mml                           | 71000 N/IIII17<br>DAG                  | $r_{s_1} = 00 \text{ mm} + 10$                | o maximum e                        | nacina critoria          |
|                                        |                  |                                      | · · ·                                  | 55 - Sausnes in                               | e maximum sj                       | pacing cinena            |
| <u>Mid span 2</u>                      |                  |                                      |                                        |                                               |                                    |                          |
|                                        |                  |                                      |                                        |                                               |                                    |                          |
| <u>↑</u> []                            |                  |                                      |                                        | Ex 16 L born                                  |                                    |                          |
| 20                                     |                  |                                      |                                        | 2 x 10 <sub>d</sub> shear                     | legs at 125 c/c                    |                          |
|                                        |                  |                                      |                                        | 8 x 25 $\phi$ bars                            |                                    |                          |
| <u>↓</u> 1                             |                  |                                      |                                        |                                               |                                    |                          |
|                                        | 120              |                                      |                                        |                                               |                                    |                          |
|                                        |                  |                                      |                                        |                                               |                                    |                          |
| Design moment resistance of (          | rectangular se   | ction (ci. 3.4.4)                    | - Positive mid                         | dspan moment                                  |                                    |                          |
| Design bending moment                  |                  | M = abs(M                            | <sub>2 red</sub> ) = 154 kN            | lm                                            |                                    |                          |
| Depth to tension reinforcement         |                  | d = h - c <sub>nom</sub>             | <u>ь-</u> фи-фын/2                     | = 178 mm                                      |                                    |                          |
| Redistribution ratio                   |                  | $B_{\rm b} = \min(1)$                | $-m_{m2} = 1) = 1.0$                   | 00                                            |                                    |                          |
|                                        |                  | K = M / / h                          | $d^2 x f_{} = 0.1$                     | 02                                            |                                    |                          |
|                                        |                  | K' = 0.156                           |                                        |                                               |                                    |                          |
|                                        |                  | N - 0.100                            | K' > K -                               | No compressio                                 | n reinforcem                       | ent is required          |
| l ever arm                             |                  | $z = min/d \sim$                     | (0.5 + /0.25 -                         | K/0 910.51 0 05                               | x d = 154 mm                       |                          |
| Depth of neutral axis                  |                  | 2 - mm(u x                           | 10.0 + 10.20                           | 1.1.0.07 7.0.80                               | ~~~~~~~~~~~                        | •                        |
|                                        |                  | λ = (u = ∡) /                        | 0.70 - 01 mm                           |                                               |                                    |                          |

|                                        | Project           |                                       |                                 |                                          | Job Ref.                                   |                            |
|----------------------------------------|-------------------|---------------------------------------|---------------------------------|------------------------------------------|--------------------------------------------|----------------------------|
|                                        | 1 EL              | LERDALE ROA                           |                                 | AD NW3                                   |                                            | 12,195                     |
| 90 MEADROW, GODALMING                  | Section           | PPOPOSEI                              |                                 | F                                        | Sneet no./rev.                             | วา                         |
| SURREY, GU7 3HY                        | Cala by           |                                       |                                 | Data                                     | App'd by                                   | Jata                       |
| 1ei; 01483 418 140 Fax; 01483 421 304  |                   | 30/10/2012                            |                                 | Date                                     | App ox                                     | Date                       |
| email, info@anddeaigna.co.uk           |                   | 30/10/2012                            |                                 |                                          |                                            |                            |
| Area of tension reinforcement re       | quired            | A <sub>s,req</sub> = M /              | ' (0.87 × f <sub>y</sub> × z)   | ) = <b>2294</b> mm <sup>2</sup>          |                                            |                            |
| Tension reinforcement provided         |                   | 8 × 25¢ ba                            | rs                              |                                          |                                            |                            |
| Area of tension reinforcement pr       | rovided           | A <sub>s,prov</sub> = 39              | 27 mm <sup>2</sup>              |                                          |                                            |                            |
| Minimum area of reinforcement          |                   | $A_{s,min} = 0.0$                     | 013 × b × h =                   | 390 mm <sup>2</sup>                      |                                            |                            |
| Maximum area of reinforcement          |                   | $A_{s,max} = 0.0$                     | $04 \times b \times h = 12$     | 2000 mm²                                 |                                            |                            |
|                                        | PASS - Area o     | f reinforcemen                        | t provided is                   | greater than                             | area of reinforce                          | ement required             |
| Rectangular section in shear           |                   |                                       |                                 |                                          |                                            |                            |
| Shear reinforcement provided           |                   | 2 x 10d leo                           | is at 125 c/c                   |                                          |                                            |                            |
| Area of shear reinforcement pro        | vided             | $A_{\text{even}} = 1$                 | 257 mm <sup>2</sup> /m          |                                          |                                            |                            |
| Minimum area of shear reinforce        | ement (Table 3.)  | 7) $A_{\text{structure}} = 0.$        | $4N/mm^2 \times b/1$            | (0.87 x f <sub>w</sub> ) = 1             | 103 mm²/m                                  |                            |
|                                        | P/                | ASS - Area of s                       | hear reinford                   | ement provio                             | led exceeds min                            | imum required              |
| Maximum longitudinal spacing (         | cl. 3.4.5.5)      | $S_{vlmax} = 0.7$                     | 75 x d = <b>133</b> п           | nm                                       |                                            |                            |
| ···-·································· | PASS - Lona       | itudinal spacin                       | a of shear re                   | inforcement c                            | provided is less                           | than maximum               |
| Design concrete shear stress           |                   | $v_{c} = 0.79N$                       | $/mm^2 \times min(3)$           | .[100 x As may /                         | $(b \times d)$ <sup>1/3</sup> ) x max      | x(1, (400mm                |
|                                        |                   | /d) <sup>1/4</sup> ) x (m             | in(f <sub>or</sub> , 40N/mn     | n <sup>2</sup> ) / 25N/mm <sup>2</sup> ) | $(1/3)^{1/3} / \gamma_m = 1.111 \text{ N}$ | /mm <sup>2</sup>           |
| Design shear resistance provide        | ed                | $V_{\rm S, prov} = A_{\rm S}$         |                                 | /b=0.456 M                               | N/mm <sup>2</sup>                          |                            |
| Design shear stress provided           | -                 |                                       | $v_{r} + v_{c} = 1.566$         | SN/mm <sup>2</sup>                       |                                            |                            |
| Design shear resistance                |                   | $V_{\text{array}} = V_{\text{array}}$ | (x (b x d) = 3)                 | 33.6 kN                                  |                                            |                            |
| Shear link                             | s provided vali   | id between 0 m                        | m and 6000 i                    | mm with tens                             | ion reinforceme                            | nt of 3927 mm <sup>2</sup> |
| Spacing of rainforcement (cl.)         |                   |                                       |                                 |                                          |                                            | -                          |
| Actual distance between bars in        | tension           | s = (h - 2x)                          | (c                              |                                          | . 1) - de-t = 126 m                        | m                          |
|                                        |                   | × 2 - 0) - 6                          | (Chom_s 'ΨV'                    |                                          | - ·) - φροι - · <b>ΙΣΟ</b> Π               |                            |
| Minimum distance between ba            | ars in tension (  | cl 3.12.11.1)                         |                                 |                                          |                                            |                            |
| Minimum distance between bars          | in tension        | S <sub>min</sub> = N <sub>agg</sub>   | + 5 mm = 25 i                   | mm<br>NGC Catlation                      | - 46                                       |                            |
|                                        | · · · ·           |                                       | PA                              | iso - sausnes                            | s the minimum s                            | pacing criteria            |
| Maximum distance between b             | ars in tension (  | (cl 3.12.11.2)                        |                                 |                                          | 2                                          |                            |
| Design service stress                  | ·                 | $f_s = (2 \times f_y)$                | × A <sub>s,req</sub> ) / (3 × . | $A_{s,prov} \times \beta_b$ ) = 1        | 194.7 N/mm²                                |                            |
| Maximum distance between bar           | s in tension      | s <sub>max</sub> = min(               | 47000 N/mm                      | / f₅, 300 mm) =                          | = 241 mm                                   |                            |
|                                        |                   |                                       | PA                              | SS - Satisfies                           | the maximum s                              | pacing criteria            |
| Span to depth ratio (cl. 3.4.6)        |                   |                                       |                                 |                                          |                                            |                            |
| Basic span to depth ratio (Table       | 3.9)              | span_to_d                             | epth <sub>basic</sub> = 26.0    | 0                                        |                                            |                            |
| Design service stress in tension       | reinforcement     | $f_s = (2 \times f_y)$                | × A <sub>s,req</sub> )/ (3 × A  | $A_{s,prov} \times \beta_b = 1$          | 94.7 N/mm <sup>2</sup>                     |                            |
| Modification for tension reinforce     | ement             |                                       |                                 |                                          |                                            |                            |
|                                        | $f_{tens} = r$    | nin(2.0, 0.55 + (                     | (477N/mm <sup>2</sup> - f       | s) / (120 × (0.9                         | N/mm <sup>2</sup> + (M / (b :              | × d²))))) = <b>1.023</b>   |
| Modification for compression rei       | nforcement        |                                       |                                 |                                          |                                            |                            |
|                                        | f <sub>comp</sub> | = min(1.5, 1 + (                      | 100 × A <sub>s2,prov</sub> /    | (b × d)) / (3 +                          | $(100 \times A_{s2,prov} / (t))$           | o × d)))) = <b>1.159</b>   |
| Modification for span length           |                   | $f_{long} = 1.000$                    | כ                               |                                          |                                            |                            |
| Allowable span to depth ratio          |                   | span_to_d                             | epth <sub>ellow</sub> = spa     | In_to_depth <sub>basi</sub>              | $c \times f_{tens} \times f_{comp} = 3$    | 30.8                       |
| Actual span to depth ratio             |                   | span_to_d                             | $epth_{actual} = L_{s2}$        | / d = 33.8                               |                                            |                            |
|                                        |                   | FAII                                  | - Actual spa                    | an to depth ra                           | tio exceeds the                            | allowable limit            |
| Support C                              |                   | S                                     | My-OK.                          |                                          |                                            |                            |
|                                        |                   |                                       |                                 |                                          |                                            |                            |
|                                        |                   |                                       |                                 |                                          |                                            |                            |
|                                        |                   |                                       |                                 |                                          |                                            |                            |

|                                                                   | Project      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | Job Ref.                          |                                    |  |
|-------------------------------------------------------------------|--------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------|------------------------------------|--|
| ANU                                                               | 1            | ELLERDALE ROA                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | 12.195                            |                                    |  |
|                                                                   | Section      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         | Sheet no./rev                     | ι.                                 |  |
| SURREY, GU7 3HY                                                   |              | PROPOSEI                             | BASEMEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Т                                                                       |                                   | 33                                 |  |
| Tel: 01483 418 140 Fax: 01483 421 304                             | Calc. by     | Date                                 | Chk'd by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date                                                                    | App'd by                          | Date                               |  |
| email: info@anddesigns.co.uk                                      | J            | 30/10/2012                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                   |                                    |  |
|                                                                   |              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                   | ••••••••                           |  |
|                                                                   | •••          | 0 0                                  | • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8 x 25 <sub>φ</sub> ban<br>2 x 10 <sub>4</sub> she                      | s<br>ar leos at 125 c/c           |                                    |  |
|                                                                   | •            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6 x 16φ ban                                                             | S                                 |                                    |  |
|                                                                   |              |                                      | Second et al. Markan et al. Second and an an analysis of the second and se |                                                                         |                                   |                                    |  |
| <b> </b>                                                          |              | 1200                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                   |                                    |  |
| Design moment registance of                                       | froctongular | section (cl. 3.4.4)                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                   |                                    |  |
| Design homent resistance o                                        | rectangular  | M = abs(M)                           | ر<br>م سر) = 200 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nm                                                                      |                                   |                                    |  |
| Depth to tension reinforcement                                    |              | $d = h - c_{out}$                    | <u>, t-</u> dv - dunn /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2 = 178 mm                                                              |                                   |                                    |  |
| Redistribution ratio                                              |              | $B_{\rm b} = \min(1)$                | - m <sub>rc</sub> , 1) = 1,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 000                                                                     |                                   |                                    |  |
|                                                                   |              | K = M / (b                           | $\times d^2 \times f_{cu}$ = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .132                                                                    |                                   |                                    |  |
|                                                                   |              | K' = 0.156                           | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                   |                                    |  |
|                                                                   |              |                                      | K' > K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - No compres                                                            | sion reinforcen                   | nent is required                   |  |
| Lever arm                                                         |              | z = min(d :                          | < (0.5 + (0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - K / 0.9) <sup>0.5</sup> ), 0.                                         | 95 × d) = <b>146</b> m            | m                                  |  |
| Depth of neutral axis                                             |              | x = (d - z) /                        | ′ 0.45 = 7 <b>0</b> m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m                                                                       |                                   |                                    |  |
| Area of tension reinforcement r                                   | equired      | $A_{s,req} = M A$                    | (0.87 × f <sub>y</sub> × z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | z) = 3149 mm²                                                           |                                   |                                    |  |
| Tension reinforcement provide                                     | ł            | 8 x 25¢ ba                           | rs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                   |                                    |  |
| Area of tension reinforcement p                                   | provided     | $A_{s,prov} = 39$                    | <b>2</b> 7 mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                       |                                   |                                    |  |
| Minimum area of reinforcement                                     | t            | $A_{s,min} = 0.0$                    | 013 x b x h =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 390 mm²                                                               |                                   |                                    |  |
| Maximum area of reinforcemen                                      | ıt           | $A_{s,max} = 0.0$                    | )4 × b × h = 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2000 mm²                                                                |                                   |                                    |  |
| · ·                                                               | PASS - Area  | of reinforcemen                      | t provided is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s greater than a                                                        | area of reinford                  | ement required                     |  |
| Rectangular section in shear                                      |              |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                         |                                   |                                    |  |
| Design shear force span 2 at 5                                    | 823 mm       | V = abs(m                            | in(Vc_s2_max, \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | / <sub>C_s2_red</sub> )) = 221                                          | kN                                |                                    |  |
| Design shear stress                                               |              | v = V / (b >                         | : d) = 1.039 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | l/mm <sup>e</sup>                                                       | .1/3.                             |                                    |  |
| Design concrete shear stress                                      |              | $v_{c} = 0.79 x$                     | min(3,[100 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(A_{s,prov} / (b \times d))$                                           | ["") × max(1, (40                 | x ('''(b/ 00                       |  |
| (min(f <sub>cu</sub> , 40) / 25) '' <sup>ω</sup> / γ <sub>m</sub> |              |                                      | NV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                   | :                                  |  |
|                                                                   |              | $V_c = 1.111$                        | N/MM<br>(0. 8. N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | /f /1 N/mm2\0.5                                                         | $5 \in \mathbb{N}/(mm^2) = E$     | 000 N/mm <sup>2</sup>              |  |
| Allowable design snear stress                                     |              | V <sub>max</sub> = min               | ,0.0 Millin ×<br>Ss - Design (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (lœ/ L N/IIIII )<br>shear stress is                                     | less than max                     | imum allowable                     |  |
| Value of v from Table 3.7                                         |              | 0.5 x V <sub>2</sub> < 1             | $i < (v_{\star} + 0.4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $M/mm^2$                                                                |                                   |                                    |  |
| Design shear resistance require                                   | ed           | $v_s = max(v_s)$                     | - v <sub>c</sub> . 0.4 N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m <sup>2</sup> ) = 0.400 N/r                                            | nm²                               |                                    |  |
| Area of shear reinforcement re                                    | auired       | A <sub>sv.rep</sub> = v <sub>s</sub> | x b / (0.87 x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | f <sub>vv</sub> ) = 1103 mm <sup>2</sup>                                | /m                                |                                    |  |
| Shear reinforcement provided                                      |              | 2 × 10¢ leg                          | s at 125 c/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                   |                                    |  |
| Area of shear reinforcement pro                                   | ovided       | $A_{sv,prov} = 1$                    | 257 mm²/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                         |                                   |                                    |  |
|                                                                   |              | PASS - Area of s                     | hear reinfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cement provid                                                           | ed exceeds mi                     | nimum required                     |  |
| Maximum longitudinal spacing                                      |              | S <sub>vt,max</sub> = 0.7            | 75 × d = 133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mm ·····                                                                |                                   |                                    |  |
|                                                                   | PASS - Loi   | ngitudinal spacin                    | g of shear re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | einforcement p                                                          | rovided is less                   | than maximum                       |  |
| Design shear force span 3 at 1                                    | 78 mm        | V = max(V                            | c_ <sub>53_max</sub> , Vc_s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3_red) = 159 kN                                                         |                                   |                                    |  |
| Design shear stress                                               |              | v = V / (b >                         | : d) = 0.7 <b>47</b> N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | l/mm²                                                                   |                                   |                                    |  |
| Design concrete shear stress                                      |              | $v_{c} = 0.79 \times$                | min(3,[100 >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (A <sub>s,prov</sub> / (b × d)                                          | <sup>1/3</sup> ) × max(1, (40     | )0 /d) <sup>1/4</sup> ) ×          |  |
| (min(f <sub>cu</sub> , 40) / 25) <sup>1/3</sup> / γ <sub>m</sub>  |              |                                      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                   |                                    |  |
|                                                                   |              | v <sub>c</sub> = 1.111               | N/mm <sup>4</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         | . – . –                           | 200 hl/ 2                          |  |
| Allowable design shear stress                                     |              | v <sub>max</sub> = min<br>PAS        | 0.8 N/mm* ×<br>SS - Design :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (t <sub>a</sub> /1 N/mm <sup>+</sup> ) <sup>0.</sup><br>shear stress is | 7, 5 N/mm²) = 5.<br>Iess than max | uuu n/mm*<br><i>imum allowable</i> |  |
| Value of v from Table 3.7                                         |              | 0.5 × V <sub>c</sub> < v             | / < (v <sub>c</sub> + 0.4 !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/mm²)                                                                  | 7                                 |                                    |  |
| Design shear resistance require                                   | ed           | v <sub>s</sub> = max(v               | - v <sub>c</sub> , 0.4 N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rm²) = 0.400 N/r                                                        | nmf                               |                                    |  |

|                                       | Project         |                                              | DUANDOTE                                         |                                            | Job Ref.                                | 0 405           |
|---------------------------------------|-----------------|----------------------------------------------|--------------------------------------------------|--------------------------------------------|-----------------------------------------|-----------------|
|                                       | 1 EL            | LERDALE ROA                                  | DHAMPSIE                                         | AD NW3                                     | 1                                       | 2,195           |
| 90 MEADROW, GODALMING                 | Section         | PROPOSE                                      |                                                  |                                            | Sneet no./rev.                          | 24              |
| SURREY, GU7 3HY                       | 0-1- 1-1        |                                              |                                                  | Data                                       | Appid by                                | 04              |
| Tel: 01483 418 140 Fax: 01483 421 304 | Gaic. by        |                                              |                                                  | Date                                       | App o by                                | Date            |
| email: info@anddesigns.co.uk          | J               | 30/10/2012                                   |                                                  |                                            |                                         |                 |
| Area of shear reinforcement req       | uired           | $A_{sv,reg} = v_s$                           | × b / (0.87 × f <sub>v</sub>                     | <sub>v</sub> ) = 1103 mm                   | ²/m                                     |                 |
| Shear reinforcement provided          |                 | 2 × 10¢ leg                                  | s at 125 c/c                                     |                                            |                                         |                 |
| Area of shear reinforcement pro       | vided           | A <sub>sv,prov</sub> = 12                    | 2 <b>5</b> 7 mm²/m                               |                                            |                                         |                 |
|                                       | P               | ASS - Area of s                              | hear reinforc                                    | ement provid                               | led exceeds min                         | imum required   |
| Maximum longitudinal spacing          |                 | $s_{vl,max} = 0.7$                           | /5 × d = 133 m                                   | m                                          |                                         |                 |
|                                       | PASS - Long     | itudinal spacin                              | g of shear rei                                   | nforcement p                               | orovided is less t                      | han maximum     |
| Spacing of reinforcement (cl 3        | 1.12.11)        |                                              |                                                  |                                            |                                         |                 |
| Actual distance between bars in       | tension         | s = (b - 2 ×                                 | (C <sub>nom s</sub> + φ <sub>v</sub> +           | φ <sub>top</sub> /2)) /(N <sub>top</sub> - | - 1) - φ <sub>ίορ</sub> = <b>126</b> mi | m               |
| Minimum distance between b            | re in tension ( | (c) 3 12 11 1)                               |                                                  | 1                                          |                                         |                 |
| Minimum distance between bas          | in tension      | s_in = h                                     | + 5 mm = 25 n                                    | nm                                         |                                         |                 |
|                                       | in tension      |                                              | PA                                               | SS - Satisfie                              | s the minimum s                         | pacing criteria |
|                                       | : 4 :           | (-1.0.40.44.0)                               |                                                  |                                            |                                         | <b>-</b>        |
|                                       | ars in tension  | (CI 3.12.11.2)                               |                                                  | ۰                                          | $367.3 \mathrm{N/mm^2}$                 |                 |
| Design service stress                 | a in tanaian    | $f_s = (2 \times f_y)$                       | X A <sub>s,req</sub> ) / (3 X /<br>/47000 N/mm / | - (f. 200 mm)                              | - 176 mm                                |                 |
| Maximum distance between bar          | s in tension    |                                              | 47000 N/IIII17<br>DA1                            | SS = Satisfies                             | - monum<br>s the maximum s              | nacino criteria |
|                                       |                 |                                              |                                                  | JU - Ualisnes                              | s the maximum s                         | puong entenu    |
| <u>Mid span 3</u>                     |                 |                                              |                                                  |                                            |                                         | * .             |
|                                       |                 |                                              |                                                  |                                            |                                         |                 |
|                                       |                 |                                              | -                                                | 8 x 20 a ba                                | rs.                                     |                 |
| 550                                   |                 |                                              |                                                  | 2 x 10 <sub>0</sub> sh                     | ear legs at 125 c/c                     |                 |
|                                       | . je            |                                              |                                                  | 6 x 20 <sub>4</sub> ba                     | rs                                      |                 |
|                                       |                 |                                              |                                                  |                                            |                                         | •               |
|                                       | 12              | 00                                           |                                                  |                                            |                                         |                 |
|                                       |                 |                                              |                                                  |                                            |                                         |                 |
| Design moment resistance of           | rectangular se  | ection (cl. 3.4.4)                           | - Negative sp                                    | oan moment                                 |                                         |                 |
| Design bending moment                 |                 | M = abs(M                                    | <sub>s3_neg</sub> ) = 122 k                      | Nm                                         |                                         |                 |
| Depth to tension reinforcement        |                 | $\mathbf{d} = \mathbf{h} - \mathbf{c}_{non}$ | n_t - φ <sub>v</sub> - φ <sub>top</sub> / 2      | = <b>180</b> mm                            |                                         |                 |
| Redistribution ratio                  |                 | β <sub>b</sub> = min(1                       | - m <sub>rs3</sub> , 1) = <b>1.0</b>             | 000                                        |                                         |                 |
|                                       |                 | K = M / (b                                   | $\times d^2 \times f_{cu}$ = 0.0                 | 078                                        |                                         |                 |
|                                       |                 | K' = 0.156                                   |                                                  |                                            |                                         |                 |
|                                       |                 |                                              | K' > K -                                         | No compres                                 | ssion reinforcem                        | ent is required |
| Lever arm                             |                 | <b>z</b> = min(d >                           | < (0.5 + (0.25 -                                 | K / 0.9) <sup>0.5</sup> ), 0               | ).95 × d) = 163 mn                      | ו               |
| Depth of neutral axis                 |                 | x = (d - z) /                                | 0.45 = <b>39</b> mm                              | 1                                          |                                         |                 |
| Area of tension reinforcement re      | quired          | A <sub>s,req</sub> = M /                     | $(0.87 \times f_y \times z)$                     | $= 1724 \text{ mm}^2$                      |                                         |                 |
| Tension reinforcement provided        |                 | 8 × 20¢ ba                                   | rs                                               |                                            | · .                                     |                 |
| Area of tension reinforcement pr      | rovided         | A <sub>s,prov</sub> = 25                     | 13 mm²                                           |                                            |                                         |                 |
| Minimum area of reinforcement         |                 | $A_{s,min} = 0.0$                            | $013 \times b \times h =$                        | 390 mm²                                    |                                         |                 |
| Maximum area of reinforcement         |                 | $A_{s,max} = 0.0$                            | )4 × b × h = 12                                  | 2000 mm²                                   |                                         |                 |
|                                       | PASS - Area o   | of reinforcemen                              | t provided is                                    | greater than                               | area of reinforce                       | ement required  |
| Rectangular section in shear          |                 |                                              |                                                  |                                            |                                         |                 |
| Shear reinforcement provided          |                 | 2 × 10¢ leg                                  | js at 125 c/c                                    |                                            |                                         |                 |
| Area of shear reinforcement pro       | vided           | A <sub>sv,prov</sub> = 1;                    | 257 mm²/m                                        |                                            |                                         |                 |
| Minimum area of shear reinforce       | ement (Table 3. | 7) $A_{sv,min} = 0.4$                        | 4N/mm² × b / (                                   | 0.87 × f <sub>yv</sub> ) = 1               | 1103 mm²/m                              |                 |
|                                       | P.              | ASS - Area of s                              | hear reinforc                                    | ement provid                               | ded exceeds min                         | imum required   |
| Maximum longitudinal spacing (        | cl. 3.4.5.5)    | $s_{vl,max} = 0.7$                           | 75 × d = <b>135</b> m                            | m                                          |                                         |                 |
|                                       | PASS - Long     | itudinal spacin                              | g of shear rei                                   | nforcement                                 | provided is less                        | than maximum    |
|                                       |                 |                                              |                                                  |                                            |                                         |                 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project                                                                                                |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Job Ref.                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                             |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 EL                                                                                                   | LERDALE ROA                                                                                                                                                                                                              | D HAMPSTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AD NW3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                               | 12.195                                                                                                                                                                                                      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Section                                                                                                |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sheet no./rev                                                                                                                                                                                                                                                                                                 | 1.                                                                                                                                                                                                          |  |  |
| SURREY, GU7 3HY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | PROPOSEI                                                                                                                                                                                                                 | D BASEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               | 35                                                                                                                                                                                                          |  |  |
| Tel: 01483 418 140 Fax: 01483 421 304                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Calc. by                                                                                               | Date                                                                                                                                                                                                                     | Chk'd by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Арр'd Бу                                                                                                                                                                                                                                                                                                      | Date                                                                                                                                                                                                        |  |  |
| email: info@anddesigns.co.uk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | J                                                                                                      | 30/10/2012                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| Design concrete shear stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        | $v_{-} = 0.79N$                                                                                                                                                                                                          | $lmm^2 \times min(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [100 × A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\frac{1}{(h \times d)}$ x ma                                                                                                                                                                                                                                                                                 | x(1_(400mm                                                                                                                                                                                                  |  |  |
| Design concrete shear stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        | $V_{\rm E} = 0.731$                                                                                                                                                                                                      | in/f 40N/mr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n <sup>2</sup> ) / 25N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $(3 \times 0)^{1/3} / v_{-} = 0.949$                                                                                                                                                                                                                                                                          | 1/mm <sup>2</sup>                                                                                                                                                                                           |  |  |
| Design shear resistance provide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | h                                                                                                      | V= A                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | h = 0.456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                             |  |  |
| Design shear stress provided                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                        |                                                                                                                                                                                                                          | ov + Vc = <b>1.40</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| Design shear resistance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                        |                                                                                                                                                                                                                          | v × (b × d) = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 03.4 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| Shear link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | s provided val                                                                                         | id between 0 m                                                                                                                                                                                                           | m and 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mm with tens                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sion reinforceme                                                                                                                                                                                                                                                                                              | ent of 2513 mm <sup>2</sup>                                                                                                                                                                                 |  |  |
| Spacing of reinforcement (cl.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| Actual distance between bars in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tension                                                                                                | s = (h - 2 x                                                                                                                                                                                                             | (Coord a + du +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | - 1) - ժաղ = <b>131</b> ո                                                                                                                                                                                                                                                                                     | nm                                                                                                                                                                                                          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                                                                                                                                                                                                          | • (•1000 <u>-</u> 5 · 4* ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4/ob =// / (/ 10b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·/ 400 ····                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                             |  |  |
| Minimum distance between ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ars in tension (                                                                                       | ci 3.12.11.1)                                                                                                                                                                                                            | + 5 mm = 25 i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| winimum distance detween dars                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                        | s <sub>min</sub> — Nagg                                                                                                                                                                                                  | + 0 mm = <b>20</b> 1<br>₽4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | uill<br>ISS - Satiefie                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | s the minimum                                                                                                                                                                                                                                                                                                 | snacing criteria                                                                                                                                                                                            |  |  |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •_ 4 •                                                                                                 |                                                                                                                                                                                                                          | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~ 016 11111111111111                                                                                                                                                                                                                                                                                          | opuoning uniteria                                                                                                                                                                                           |  |  |
| Maximum distance between b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ars in tension                                                                                         | (CI 3.12.11.2)                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000 C N/2                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                             |  |  |
| Design service stress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                        | $f_6 = (2 \times f_y)$                                                                                                                                                                                                   | × A <sub>s,req</sub> ) / (3 ×<br>(47000 N/mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A_{s,prov} \times  \beta_b\rangle =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 228.6 N/MM <sup>-</sup>                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |  |  |
| Maximum distance between bar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | s in tension                                                                                           | $S_{max} = min$                                                                                                                                                                                                          | (47000 N/IIII)<br>מס                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7 15, 300 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 200 mm                                                                                                                                                                                                                                                                                                      | spacing criteria                                                                                                                                                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33 - 3ausne:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s uie maximum                                                                                                                                                                                                                                                                                                 | spacing cinena                                                                                                                                                                                              |  |  |
| Span to depth ratio (cl. 3.4.6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | 4                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| Basic span to depth ratio ( I able                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | span_to_o                                                                                              | span_to_depth <sub>basic</sub> = 26.0                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                             |  |  |
| Destas sendes stress in tersion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                        | £                                                                                                                                                                                                                        | A 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ^                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 220 6 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |  |  |
| Design service stress in tension                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | reinforcement                                                                                          | $f_s = (2 \times f_y)$                                                                                                                                                                                                   | $\times A_{s,req}$ )/ (3 × $i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A_{s,prov} \times \beta_b$ = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 228.6 N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                             |  |  |
| Design service stress in tension<br>Modification for tension reinforce                                                                                                                                                                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement                                                                                 | $f_s = (2 \times f_y)$                                                                                                                                                                                                   | × A <sub>s,req</sub> )/ (3 × /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $A_{s,prov} \times \beta_b$ = 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (h                                                                                                                                                                                                                                                       | $(\times d^2)))) = 1.063$                                                                                                                                                                                   |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei                                                                                                                                                                                                                                                                                                                                                                                                               | reinforcement<br>ement<br>f <sub>iens</sub> = 1<br>nforcement                                          | f <sub>s</sub> = (2 × f <sub>y</sub><br>min(2.0, 0.55 +                                                                                                                                                                  | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A <sub>s,prov</sub> × β <sub>b</sub> ) = 2<br>5 <sub>s</sub> ) / (120 × (0.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 228.6 N/mm²<br>9N/mm² + (M / (b                                                                                                                                                                                                                                                                               | × d²))))) = 1.063                                                                                                                                                                                           |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei                                                                                                                                                                                                                                                                                                                                                                                                               | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (                                                                                                                                                                      | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2.prov</sub> /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A <sub>s,prov</sub> × β <sub>b</sub> ) = 2<br>ξ <sub>s</sub> ) / (120 × (0.9<br>/ (b × d)) / (3 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2.prov</sub> / (                                                                                                                                                                                                                  | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225                                                                                                                                                        |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length                                                                                                                                                                                                                                                                                                                                                                               | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | $f_s = (2 \times f_y)$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>$f_{long} = 1.00$                                                                                                                                       | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> /<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A <sub>s.prov</sub> × β <sub>b</sub> ) = 2<br>5 <sub>s</sub> ) / (120 × (0.9<br>/ (b × d)) / (3 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 228.6 N/mm²<br>9N/mm² + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (                                                                                                                                                                                                                                          | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225                                                                                                                                                        |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio                                                                                                                                                                                                                                                                                                                                              | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f <sub>s</sub> = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d                                                                                                                 | × $A_{s,req}$ )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>(100 × $A_{s2,prov}$ )<br>0<br>lepth <sub>ellow</sub> = spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A <sub>s.prov</sub> × β <sub>b</sub> ) = 2<br>s) / (120 × (0.9<br>/ (b × d)) / (3 +<br>an_to_depth <sub>ba</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / f<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =                                                                                                                                                                 | (b × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9                                                                                                                                              |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio                                                                                                                                                                                                                                                                                                                | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d                                                                                                                | × $A_{s,req}$ )/ (3 × 4<br>(477N/mm <sup>2</sup> - 1<br>(100 × $A_{s2,prov}$ )<br>(100 × $A_{s2,prov}$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A <sub>s.prov</sub> × β <sub>b</sub> ) = 2<br>5 <sub>s</sub> ) / (120 × (0.9<br>/ (b × d)) / (3 +<br>an_to_depth <sub>bas</sub><br>b / d = <b>11.1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / f<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =                                                                                                                                                                 | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9                                                                                                                                                |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio                                                                                                                                                                                                                                                                                                                | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>s.prov</sub> × β <sub>b</sub> ) = 2<br>s) / (120 × (0.9<br>/ (b × d)) / (3 +<br>an_to_depth <sub>ba</sub><br>/ d = 11.1<br>an to depth r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the                                                                                                                                | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio                                                                                                                                                                                                                                                                                                                | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × A <sub>s,req</sub> )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>100 × A <sub>s2,prov</sub><br>0<br>lepth <sub>ellow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual sp</b> a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A <sub>s.prov</sub> × β <sub>b</sub> ) = 2<br>5) / (120 × (0.9<br>/ (b × d)) / (3 +<br>an_to_depth <sub>bas</sub><br>/ d = 11.1<br>an to depth re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the                                                                                                                                | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                           |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio                                                                                                                                                                                                                                                                                                                | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × A <sub>s,req</sub> )/ (3 × $(477 \text{N/mm}^2 - 1)$<br>(477 N/mm <sup>2</sup> - 1)<br>(100 × A <sub>s2,prov</sub> )<br>(0)<br>(epth <sub>allow</sub> = spatial<br>(epth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual sp</b> atial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A <sub>s.prov</sub> × β <sub>b</sub> ) = 2<br>s) / (120 × (0.9<br>/ (b × d)) / (3 +<br>an_to_depth <sub>ba</sub><br>, / d = 11.1<br>an to depth ra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the                                                                                                                                | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × A <sub>s,req</sub> )/ (3 × $(477 \text{N/mm}^2 - 1)$<br>(477 N/mm <sup>2</sup> - 1)<br>(100 × A <sub>s2,prov</sub> )<br>(100 × A <sub>s2,prov</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A <sub>s,prov</sub> × β <sub>b</sub> ) = 2<br>5 <sub>b</sub> / (120 × (0.9<br>/ (b × d)) / (3 +<br>an_to_depth <sub>bas</sub><br>/ d = 11.1<br>an to depth re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the                                                                                                                                | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                           |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × A <sub>s,req</sub> )/ (3 × $(477 \text{N/mm}^2 - 1)$<br>(477 N/mm <sup>2</sup> - 1)<br>(100 × A <sub>s2,prov</sub> )<br>(0)<br>lepth <sub>ellow</sub> = spatial<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spatial</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A_{s,prov} \times \beta_b) = 2$<br>$a_{s,prov} \times \beta_b = 2$<br>$a_{s,prov} \times \beta_{s,prov} \times \beta_{s,$ | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear leas at 125 c/c                                                                                                            | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × A <sub>s,req</sub> )/ (3 × $(477N/mm^2 - 1)$<br>(477N/mm <sup>2</sup> - 1)<br>(100 × A <sub>s2,prov</sub> )<br>(0)<br>(epth <sub>ellow</sub> = spation<br>(epth <sub>ellow</sub> = spation)<br>(epth <sub>ellow</sub> = L <sub>s</sub> :<br><b>S - Actual spation</b> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $A_{s,prov} \times \beta_b) = 2$<br>$F_{s} / (120 \times (0.5)) / (120 \times (0.5$                                                                                                                                                                                                                                                                                                                        | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear legs at 125 c/c<br>ars                                                                                          | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | $ \times A_{s,req})/(3 \times A_{c})/(3 \times A_{c})/(3$                                                                                                                                                                                                                                     | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.9)) / (3 + 4)$<br>$f_s(b \times d)) / (3 + 4)$<br>$f_s(b \times d) / (3 + 4$                                                                                                                                                                                                                                                                                                                                                                           | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear legs at 125 c/c<br>ars                                                                                                     | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × $A_{s,req}$ )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>(100 × $A_{s2,prov}$ )<br>(0<br>lepth <sub>ellow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spa</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $A_{s,prov} \times \beta_b) = 2$<br>$F_s) / (120 \times (0.9)) / (3 + 1)$<br>$A_{m_to_depth_{bas}}$<br>$A_{d} = 11.1$<br>$F_{an}$ to depth response to the term of the term of the term of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>hear legs at 125 c/c<br>ars                                                                                          | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>f <sub>long</sub> = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                | × $A_{s,req}$ )/ (3 × $A_{s,req}$ )/ (3 × $A_{s2,rreq}$ )/<br>(477N/mm <sup>2</sup> - 1<br>(100 × $A_{s2,rrev}$ )<br>(0)<br>(epth <sub>ellow</sub> = spatial<br>(epth <sub>ellow</sub> = spatial)<br>(epth <sub>ellow</sub> = spatial)<br>(ept | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.9)) / (3 + 4)$<br>$f_s(b \times d)) / (3 + 4)$<br>$f_s(b \times d) / (3 + 4$                                                                                                                                                                                                                                                                                                                                                                           | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear legs at 125 c/c<br>ars                                                                                                     | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D                                                                                                                                                                                                                                                                                                   | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub>                     | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>flong = 1.00<br>span_to_d<br>span_to_d<br><i>PAS</i> :                                                                                                            | × A <sub>s,req</sub> )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> )<br>0<br>lepth <sub>allow</sub> = spa<br>lepth <sub>allow</sub> = L <sub>s1</sub><br>S - Actual spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A_{s,prov} \times \beta_b) = 2$<br>$F_b / (120 \times (0.5)) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br><sub>sic</sub> × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear legs at 125 c/c<br>ars                                                                                          | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                           |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D<br>Rectangular section in shear<br>Design shear force span 3 at 18                                                                                                                                                                                                                                | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub><br>f<br>comp<br>124 | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>flong = 1.00<br>span_to_d<br>span_to_d<br>PAS:<br>00                                                                                                              | × $A_{s,req}$ )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>(100 × $A_{s2,prov}$<br>0<br>lepth <sub>ellow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spa</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.5)) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 + 100) / (3 +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear legs at 125 c/c<br>ars                                                                                                     | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D<br>Support D<br>Rectangular section in shear<br>Design shear force span 3 at 18<br>Design shear stress                                                                                                                                                                                            | reinforcement<br>ement<br>f <sub>lens</sub> = r<br>nforcement<br>f <sub>comp</sub><br>                 | f₅ = (2 × fy<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>flong = 1.00<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b >                                                                                 | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> )<br>0<br>lepth <sub>allow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s1</sub><br>S - <i>Actual spa</i><br>S - <i>Actual spa</i><br>(0_s3_max, VD_s3<br>< d) = 0.185 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $A_{s,prov} \times \beta_b) = 2$<br>$F_{s} / (120 \times (0.5)) / (120 \times (0.5$                                                                                                                                                                                                                                                                                                                        | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ear legs at 125 c/c<br>ars                                                                                                             | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                           |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D<br>Rectangular section in shear<br>Design shear force span 3 at 18<br>Design shear stress<br>Design concrete shear stress                                                                                                                                                                         | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub><br>120              | $f_s = (2 \times f_y)$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>$f_{long} = 1.00$<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b ><br>v_c = 0.79 >                                                  | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> /<br>0<br>lepth <sub>allow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spa</b><br><b>S - Actual spa</b><br>(D_s3_max, VD_s3<br>(d) = 0.185 N<br>(c min(3,[100 × ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.9)) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / f<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>hear legs at 125 c/c<br>ars                                                                                                     | × d <sup>2</sup> )))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br><b>Support D</b><br>I<br><b>Rectangular section in shear</b><br>Design shear force span 3 at 18<br>Design shear stress<br>Design concrete shear stress<br>(min(f <sub>cu</sub> , 40) / 25) <sup>1/3</sup> / $\gamma_m$                                                                                      | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub><br>12r<br>18 mm     | $f_s = (2 \times f_y)$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>$f_{long} = 1.00$<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b ><br>v_c = 0.79 >                                                  | × $A_{s,req}$ )/ (3 × $A_{s,req}$ )/ (3 × $A_{s2,req}$ )/<br>(477N/mm <sup>2</sup> - 1<br>(100 × $A_{s2,prov}$ )<br>(0)<br>(apth <sub>allow</sub> = spatial<br>(apth <sub>actual</sub> = L <sub>s</sub> :<br><b>S</b> - <b>Actual spatial</b><br><b>S</b> - <b>Actual spatial</b><br>( <b>b</b> - s3_max, VD_s3<br>( <b>c</b> - s3_max, VD_s3<br>( <b>c</b> - s3_max, VD_s3<br>( <b>c</b> - s3_max, VD_s3<br>( <b>c</b> - s3_max, VD_s3)<br>( <b>c</b> - s3_max, VD_s3)<br>( <b>c</b> - s3_max, VD_s3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.9)) / (3 + 4)$<br>$f_an_to_depth_{bas}$<br>$f_an_to_depth_bas$<br>$f_an_to_depth_rations (100) - 100 - 100 - 100 - 100) - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>lear legs at 125 c/c<br>ars                                                                                                     | x d <sup>2</sup> )))) = 1.063<br>(b x d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                            |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D<br>$\qquad \qquad $                                                                                                                                                        | reinforcement<br>ement<br>flens = r<br>nforcement<br>fcomp                                             | $f_s = (2 \times f_y)$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>$f_{long} = 1.00$<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b ><br>v_c = 0.738                                                   | × A <sub>s,req</sub> )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> )<br>(0)<br>lepth <sub>allow</sub> = spation<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spation</b><br>( <b>b</b> _s3_max, VD_s3<br>( <b>c</b> ) = <b>0.185</b> N<br>( <b>c</b> min(3,[100 × N/mm <sup>2</sup> ))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.9)) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × A <sub>s2,prov</sub> / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>hear legs at 125 c/c<br>ars                                                                                                     | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit                                                                                                                           |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I<br>I                                                                                                                                                                                                                                                 | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub><br>                 | $f_{s} = (2 \times f_{y})$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>flong = 1.00<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b<br>v_c = 0.79 ×<br>v_c = 0.738<br>v_{max} = min<br>PAS              | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> /<br>0<br>lepth <sub>allow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spa</b><br>( <u>b s3_max</u> , V <sub>D_s3</sub><br>( <u>d) = 0.185</u> N<br>( <u>min(3,[100 × N/mm<sup>2</sup>)</u><br>(0.8 N/mm <sup>2</sup> × SS - Design s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $A_{s,prov} \times β_b) = 2$<br>$f_s) / (120 × (0.9)) / (3 + 4)$<br>$f_an_to_depth_{bas}$<br>$f_b < 16 + 40$<br>$f_b = 11.1$<br>$f_{an}$ to depth radius<br>$f_c > 16 + 50$<br>$f_c > 16 + 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × $A_{s2,prov}$ / (<br>sic × fiens × fcomp =<br>atio is within the<br>hear legs at 125 c/c<br>hrs<br>()] <sup>1/3</sup> ) × max(1, (40<br>$a_{s}^{0.5}$ , 5 N/mm <sup>2</sup> ) = 5.<br>is less than max                                    | <ul> <li>× d<sup>2</sup>)))) = 1.063</li> <li>(b × d)))) = 1.225</li> <li>33.9</li> <li>a allowable limit</li> <li>D0 /d)<sup>1/4</sup>) ×</li> <li>000 N/mm<sup>2</sup></li> <li>imum allowable</li> </ul> |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br>Support D<br>$\qquad \qquad $                                                                                                                                                        | reinforcement<br>ement<br>flens = r<br>nforcement<br>fcomp                                             | $f_s = (2 \times f_y)$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>flong = 1.00<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b ><br>v_c = 0.79 ><br>v_c = 0.738<br>v_{max} = min<br>PAS:<br>v < 0.5v_c | × A <sub>s,req</sub> )/ (3 × $i$<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> )<br>(0)<br>lepth <sub>allow</sub> = spation<br>lepth <sub>actual</sub> = L <sub>s</sub> :<br><b>S - Actual spation</b><br>(0, s3_max, VD_s3<br>(d) = 0.185 N<br>(c) min(3,[100 × N/mm <sup>2</sup> )<br>(0.8 N/mm <sup>2</sup> × SS - Design states)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $A_{s,prov} \times \beta_b) = 2$<br>$f_s) / (120 \times (0.9)) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}) / (3 + 10^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × $A_{s2,prov}$ / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>ars<br>hear legs at 125 c/c<br>ars<br>())] <sup>1/3</sup> ) × max(1, (40<br>$a^{15}$ , 5 N/mm <sup>2</sup> ) = 5.<br>s less than max          | × d <sup>2</sup> ))))) = 1.063<br>(b × d)))) = 1.225<br>33.9<br>e allowable limit<br>co /d) <sup>1/4</sup> ) ×<br>000 N/mm <sup>2</sup><br>imum allowable                                                   |  |  |
| Design service stress in tension<br>Modification for tension reinforce<br>Modification for compression rei<br>Modification for span length<br>Allowable span to depth ratio<br>Actual span to depth ratio<br><b>Support D</b><br>Rectangular section in shear<br>Design shear force span 3 at 18<br>Design shear stress<br>Design concrete shear stress<br>(min(f <sub>cu</sub> , 40) / 25) <sup>1/3</sup> / $\gamma_m$<br>Allowable design shear stress<br>Value of v from Table 3.7<br>Design shear resistance require | reinforcement<br>ement<br>f <sub>tens</sub> = r<br>nforcement<br>f <sub>comp</sub><br>120<br>18 mm     | $f_s = (2 \times f_y)$<br>min(2.0, 0.55 +<br>= min(1.5, 1 + (<br>flong = 1.00<br>span_to_d<br>span_to_d<br>PAS:<br>00<br>V = max(V<br>v = V / (b ><br>v_c = 0.738<br>v_max = min<br>PAS:<br>v < 0.5vc<br>v_s = max(V     | × A <sub>s,req</sub> )/ (3 × /<br>(477N/mm <sup>2</sup> - 1<br>(100 × A <sub>s2,prov</sub> /<br>0<br>lepth <sub>ellow</sub> = spa<br>lepth <sub>actual</sub> = L <sub>s2</sub><br>S - Actual spa<br>><br>(D_s3_max, VD_s3<br>< d) = 0.185 N<br>< min(3,[100 ×<br>N/mm <sup>2</sup><br>(0.8 N/mm <sup>2</sup> ×<br>SS - Design s<br>< - v <sub>c</sub> , 0.4 N/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $A_{s,prov} \times β_b) = 2$<br>$f_s) / (120 × (0.9) / (3 + 4) / (6 × d)) / (3 + 4) / (3 + 4) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = 11.1) / (4 = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 228.6 N/mm <sup>2</sup><br>9N/mm <sup>2</sup> + (M / (b<br>+ (100 × $A_{s2,prov}$ / (<br>sic × f <sub>tens</sub> × f <sub>comp</sub> =<br>atio is within the<br>hear legs at 125 c/c<br>ars<br>(hm <sup>2</sup> )) <sup>1/3</sup> ) × max(1, (40<br>$a^{15}$ , 5 N/mm <sup>2</sup> ) = 5.<br>is less than max | <ul> <li>× d<sup>2</sup>)))) = 1.063</li> <li>(b × d)))) = 1.225</li> <li>33.9</li> <li>a allowable limit</li> <li>do /d)<sup>1/4</sup>) ×</li> <li>000 N/mm<sup>2</sup></li> <li>imum allowable</li> </ul> |  |  |

| AND                                                                   | Project<br>1 E | LLERDALE RO              | AD HAMPSTE         | AD NW3        | Job Ref.            | 2.195      |  |
|-----------------------------------------------------------------------|----------------|--------------------------|--------------------|---------------|---------------------|------------|--|
| 90 MEADROW, GODALMING                                                 | Section        |                          | Sheet no./rev.     |               |                     |            |  |
| SURREY, GU7 3HY                                                       |                |                          |                    | Daia          | JO<br>App'd by Date |            |  |
| Tel: 01483 418 140 Fax: 01483 421 304<br>email: info@anddesigns.co.uk | J              | 30/10/2012               | Glika by           |               | App a py            | Date       |  |
| Shear reinforcement provided                                          |                | 2 × 10¢ le               | gs at 125 c/c      |               |                     |            |  |
| Area of shear reinforcement pro                                       | ovided         | A <sub>sv,prov</sub> = 1 | <b>257</b> mm²/m   |               |                     |            |  |
|                                                                       | I              | PASS - Area of s         | shear reinford     | ement provide | d exceeds min       | imum requi |  |
| Maximum longitudinal spacing                                          | D400 /         | $S_{vl,max} = 0.$        | 75 × d ≕ 137 ⊓<br> | nm<br>(       | autologi in Jana    | than maxim |  |
|                                                                       | PASS - LON     | gituainai spacir.        | ig of shear re     | imorcement pr | ovided is less      |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                | •                        |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     | · .        |  |
|                                                                       |                | м.<br>                   |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     | · · · ·    |  |
|                                                                       |                |                          | ·                  |               | · · · ·             |            |  |
|                                                                       | · · · · · ·    |                          |                    | · · ·         |                     |            |  |
|                                                                       | ÷              |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    | · · ·         |                     | i e e      |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                | ·                        |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                | ·                        | · .                |               |                     |            |  |
|                                                                       | ·. ·           |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    | ·             |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       | · · · · ·      |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |
|                                                                       |                |                          |                    |               |                     |            |  |



# **SPECIFICATION**

# FOR UNDERPINNING

# TO: 11 Ellerdale Road, Hampstead

Job No: 12.195





### RESPONSIBILITIES

- 1) The Contractor shall be completely responsible for the safety of the existing structure during the underpinning operations and he shall design, supply and erect all the temporary supports that may be required or prove necessary during the course of the work.
- 2) The details of such supports shall be agreed with the Engineer and other interested parties prior to their erection.

### SURVEY AND CONDITION OF BUILDING

1) Before commencing work the Contractor shall carry out an inspection and produce a Schedule of Conditions for the building to be underpinned. This shall be agreed with the Architects before commencing work. Where necessary repairs shall be effected to enable the underpinning to be carried out.

### PROGRAMME AND SEQUENCE

- 1) The contractor shall follow the method statement as listed below. Any variation from the method statement must be agreed with the Engineer and other interested parties prior to work commencing.
  - a) Excavate pits Mk 1 to below ground floor level.
  - b) Bearing to be approved by engineer / L.A. Inspector
  - c) Ram 4 no. 12 mm diameter MS dowel bars into excavation each side of pit leaving 400 mm projecting into excavation.
  - d) Clean underside of existing foundation with stiff brush.
  - e) Shutter face of pour to line through with wall above.
  - h) Pour lift of concrete to within 75 mm of underside of existing foundation.
  - i) Allow 24 hours for concrete to set.
  - j) Ram hand damp dry pack (1:3 cement: sharp sand) into 75 mm void to pin up tight with existing foundation.
  - k) Allow 24 hours for dry pack to set.
  - l) Excavate pits Mk 2 and follow above sequence for all remaining pit excavation.

#### PROTECTION

- 1) The Contractor shall protect the area in which the work is being carried out by the provision of suitable hoarding, fences etc.
- 2) Unless otherwise instructed by the Architect all work shall be carried out from within the site.



### **EXCAVATION**

- 1) The underpinning shall be carried out in sections not exceeding 1200 mm. The excavation and construction of the sections shall be carried out in a "hit and miss" pattern such that a maximum degree of support is offered to the wall at all times.
- 2) Unless otherwise stated on the drawings the underpinning shall be carried out for the whole width of the existing foundation.
- 3) Where excavations exceed 1000 mm in depth or wherever it is found necessary or called for on the drawings, all excavations shall be fully planked and strutted. Reference should be made to Specification "Earthworks", in this regard.
- 4) The material providing the support to the remote earth face below the foundations shall, if necessary, be left in position. It must not therefore be subject to deterioration. Any gaps between this support and the earth face shall be filled with cementatious grout. All timber planking and strutting shall be removed.
- 5) The underside of the exposed foundations shall be thoroughly cleaned of all soil and other loose material before the section of underpinning is constructed.
- 6) Excavations which are left open overnight shall be blinded with 50 mm of 1.8 concrete with sulphate resisting cement.
- 7) If water is stuck during excavation, excavation shall cease until a method of dewatering has been devised which will not be detrimental to the adjoining foundations and has been agreed with the Engineer.

#### **CONSTRUCTION OF UNDERPINNING**

- 1) It is recommended that the underpinning is carried out in concrete sections and this has been detailed on the drawings.
- 2) In the event that the Contractor requests that the work be carried out in brickwork then his alternative proposals will be considered by the Engineer.

For the concrete work:

- a) The concrete mix shall be grade 25 with sulphate resisting cement unless noted otherwise on the drawings.
- b) Where dowels are shown on the drawings they shall be so provided or toggle joints at 1/3rd positions as noted on the drawings.
- c) The concrete shall be brought to within 75 mm of the underside of the foundations.
- d) A period of 24 hours shall elapse between completion of the new concrete foundation and the commencement of the dry packing.



e) A period of 24 hours shall elapse between the dry packing operation and the commencement of excavations to the adjoining section of underpinning.

### PINNING UP

- 1) A semi-dry 1.3 mix with 10 mm aggregate shall be thoroughly rammed into position between the concrete stool and the underside of the existing foundation. A suitable tool shall be used to ensure that no voids are left in the dry pack zone.
- 2) A non-shrinking grout agent may be employed in the mix with the Engineers approval.

#### BACKFILL

- 1) After completion of underpinning and curing, backfill with lean mix 15N / mm<sup>2</sup> min or alternative material to be agreed with the Engineer. Under no circumstances shall the Contractor replace with existing excavated material without permission of the Engineer
- 2) The Contractor shall take into account all necessary carting away of existing material during the tender/pricing period.

### RECORDS

1) The contractor shall keep an accurate record of the progress of underpinning operations which shall be available for reference at any time.

1 I.

## **1 ELLERDALE ROAD, HAMPSTEAD**

# STRIP FOUNDATION / UNDERPINNING DETAILS




### **SPECIFICATION**

FOR

### STRUCTURAL WORKS

TO: 1 Ellerdale Road, Hampstead

JOB.NO: 12.195







### **GENERAL NOTES**

- 1. This drawing is to be read in conjunction with all relevant contract documentation.
- 2. Dimensions marked \* thus to be checked on site.
- 3. The contractor shall be responsible for the existing structure during the course of the works.
- 4. This drawing is not to be scaled, if in doubt ask.
- 5. All proprietary products to be installed in accordance with the Manufacturers Recommendations.
- 6. Underside of foundation to obtain a minimum bearing pressure of 100kN / m<sup>2</sup> to the satisfaction of the Building Control / Structural Engineer. Foundations to be a minimum of 1m below ground level unless noted otherwise.
- 7. Where no site investigation has taken place and where trees are adjacent to the site in clay soils the Contractor shall inform the Engineer / B.C.O. and allow for the foundations to be designed in accordance with NHBC Practice Note 4.2 recommendations.
- 8. Where service invert levels are below the formation level the footing must be increased to a minimum of 300mm below the invert of the pipe and 300mm surround to the pipe. The pipe must be sleeved with a minimum of 25mm clearance to any face of the pipework by either low-density polystyrene or UPVC sleeve.
- Ground bearing slabs to be as follows unless noted otherwise and in strict accordance with the soils investigation :
  150 mm thick with A142 mesh top (40mm cover)
  300-mm minimum laps on 1200 gauge visqueen, on sand / concrete blinding, on minimum 150 mm hardcore compacted free from impurities
- 10. All footings adjacent to existing footings shall have a dispersal angle of 45 degrees to the underside of the footing or at the same level as the existing on no account shall the footings surcharge the existing footings or drains where this occurs refer to the Engineer for further instructions.
- 11. Where temporary works are required the Contractor shall allow in his pricing. For a competent temporary works Engineer to design all necessary supports for the existing structure during the course of the works.
- 12. Fire casing to beams to be in accordance with Architect's details and drawings.
- 13. All propriety lintels are to be designed by the Manufacturers and in accordance with their recommendations. Where PC floors are supported on the proposed lintels, the correct type of lintels should be installed in accordance with the Manufacturers design.
- 14. All existing lintels are to be checked prior to installation of any steel work or timbers.



### SITE INVESTIGATION

A basic investigation of the site shall be carried out and recorded by a suitable person to the satisfaction of NHBC

Where the results of an initial assessment indicate that hazards are not suspected on the site, this should be substantiated by carrying out a **basic investigation** 

This approach is to provide assurance for all sites, regardless of how free of hazards they may appear.

Only suitable persons with the skills and knowledge should carry out the basic investigation.

The following provides a specification for the basic investigation for all sites.

Trial pits should be located so as to be representative of the site. (For more detailed information refer to BS 5930.)

The number and depth of trial pits needed depends upon:

- the proposed development
- how inconsistent the soil and geology is across the site
- the nature of the site.

The depth of the trial pits should not usually be less than 3m.

Items to be taken into account include:

### (a) geotechnical investigation

A basic geotechnical investigation should be carried out. This will include trial pits and, where they do not provide sufficient information, boreholes will be necessary.

Physical tests, such as plasticity index tests, should be carried out as appropriate to support the result of the initial assessment.

Trial pits should be located outside the likely foundation area. The distance from the edge of the foundation should not be less than the trial pit depth.

#### (b) contamination investigation

A basic contamination investigation should be carried out as part of the geotechnical investigation.

This should consist of sampling and testing of soil taken from trial pits during the geotechnical investigation, as found to be necessary from the outcome of the initial assessment.

During the excavation of the pits the use of sight and smell may help to identify certain contaminants.

Where there is any doubt about the condition of the ground a detailed investigation should be carried out



### SITE INVESTIGATION Continued

### Further Investigation

If the basic investigation reveals the presence of geotechnical and/or contamination hazards further assessment is required and a **detailed investigation** should be carried out



### STRUCTURAL STEELWORK

- 1. All materials and workmanship to be in accordance with BS5950. The structural use of steelwork in building.
- 2. Structural steelwork sections to be Grade S275 mild steel in accordance with BS 4360.
- 3. Bolts to be grade 8.8 unless noted otherwise.
- 4. Welds to be 6mm continuous fillet, unless noted otherwise.
- 5. Contractor must verify all dimensions on site before commencing any work or making shop drawings which are to be issued to the Engineer. No dimensions to be scaled from drawings. Discrepancies must be reported to the engineer prior to proceeding. 7 working days are required by the Engineer to check and comment on any working drawings prior to fabrication.
- 6. Contractor to design all connections for maximum moments and reactions indicated on drawings or calculations issued to the Contractor.
- 7. Steelwork which is not required to be encased in concrete to be blast cleaned / wire brushed\* free from mill scale, rust and other contamination and painted with two coats of approved primer as soon as practicable but not more than four hours after cleaning.
- 8. Uncased stanchions and beams located within an external wall to have a minimum gap of 40mm from face of external brickwork or alternately 25mm min impermeable insulation from face of steel to the external wall, unless galvanised or similar treatment.
- 9. All concrete encased steelwork to be unpainted.
- 10. All pockets formed in brickwork or blockwork for steel beams to be made good in Grade 35 concrete.
- 11. Bolted connections to have a minimum connection of 4 N°. M20 bolts per member, unless noted otherwise.
- 12. Minimum bearing of steels to be 100mm, unless noted otherwise.
- 13. External steelwork, and where indicated, are to be galvanised steel to a minimum of 140 microns thickness unless noted otherwise in accordance with BS 728.
- 14. Workmanship erection and tolerances to be in accordance with the National Structural Steelwork Specification for building construction.



### STRUCTURAL STEELWORK continued

- 15. HSFG Bolt connections are to be metal to metal and painted on site after the connection has been completed and load indicating washers are in their final position.
- 16. All beams bearing onto walls are to be built in with brickwork or alternatively encased around with concrete grade C35. The steelwork at roof level where beams cannot be built into brickwork are to have the top flange restrained by metal straps onto the timber plates / brickwork.

### CONCRETE NOTES

- 1. All materials and workmanship to be in accordance with BS 8110 Parts 1 & 2 The structural use of concrete.
- 2. Concrete quality to be 35N / mm<sup>2</sup> at 28 days unless noted otherwise, Max nominal aggregate to be 20mm.

Minimum cement content 330kg / m<sup>3</sup>. Maximum free water cement ratio 0.6

- 3. Reinforcement to be placed in accordance with BS 8110.
- 4. For details of relevant schedules refer to schedule Nº.....
- 5. Cement content not less than  $330 \text{kg} / \text{m}^3$ , Free water cement ratio not more than 0.5.
- 6. Concrete cubes to be taken at 7 & 28 days to obtain required crushing strengths (one cube to be taken as a spare cube.)
- Concrete qualities for Mass Concrete foundations to low rise structures in nonaggressive soils to be Gen 3. Minimum cement content not less than 220kg / m<sup>3</sup> (If normal prescribed mix is used will be acceptable) or FN4 sulphate resisting cement).
- 8. No reinforcement to be cut displaced or omitted without prior written agreement of the engineer.
- 9. Cover to reinforcement to be .....
- 10. The ground is to be blinded into 50 mm of lean mix prior to reinforcement being placed in position, blinded concrete mix to be 1:10 to all reinforcement bases etc except water resisting structures refer to Specification. Gen 1.
- 11. If no soil investigation has been instigated then sulphate-resisting cement should be used in the ground construction.



### TIMBER NOTES

- 1. All timber materials and workmanship to be in accordance with BS 5268: Part 2 -Structural Use of Timber.
- 2. Timber roof trusses and bracing to be designed and detailed by specialist subcontractor. Trusses to be designed and fabricated in accordance with BS 5268: Parts 2 and 3.
- 3. All timbers to be a minimum strength class C16 (unless noted otherwise) and have max. moisture content of 18%. All external timbers are to be of a durable grade i.e. oak or similar approved to the Architect/Engineers Approval
- 4. Multiple joists / trusses to be bolted together at 600 centres with 12mm dia. bolts and 50x50x3 washer plates.
- 5. No notches, holes or rebates etc. to be cut in any member without the written agreement of the Engineers.
- 6. All trusses to be connected to timber wall plate by means of approved truss clips.
- 7. Site storage, handling and erection procedures of trusses are to be in accordance with BS 5269: Part 3.
- 8. All structural timber and trusses to be adequately protected against adverse weather conditions during stacking and after erection.
- .9. All structural timber is to be treated by vacuum pressure impregnation of organic or water borne preservative, to a dry salt retention in accordance with the manufacturer's recommendations. Type of treatment may be:- 'Tanalith', 'Celcure', 'Protim', or other only with the prior approval of the Architect.
- 10. Finger joints are not acceptable.
- 11. All fixings in roof space (nails, screws, bolts, hangers etc.) are to be galvanised unless noted otherwise.
- 12. Any lateral support system necessary to prevent buckling of compression members in trusses is to be designed, specified, detailed and supplied by the truss designer / fabricator.
- 13.Joist span<br/>Up to 2.5Rows of Strutting<br/>None2.5 to 4.5<br/>Over 4.51 (located at mid-span)<br/>2 (located at third points)



### **TIMBER NOTES Continued**

Solid strutting should be used instead of herring-bone strutting where the distance between joists is greater than three times the depth of the joists. In all other instances the use of herring-bone strutting is recommended to reduce the risk of creaking floors due to shrinkage.

Timber for herringbone strutting should be at least 38 x 38 mm.

Solid strutting should be at least 38mm thick and at least three quarters of the joist depth.

- 14. Strutting should be blocked solidly to perimeter walls.
- 15. Strutting or blocking should not block the ventilation space in cold deck flat roofs.
- 16. Joist should have a minimum end bearing of 50mm.
- 17. Ends of joists built into cavity walls should not project into the cavity, and should be painted with two coats of bituminous primer.



### BRICKWORK AND BLOCKWORK

- 1. All materials and workmanship to be in accordance with BS 5628 Code of Practice for the Structural Use of Brickwork.
- 2. Brickwork to have average crushing strength of 20.5 N / mm<sup>2</sup> bricks (Class 3 min) unless noted otherwise.
- 3. Blockwork above ground to be 3.5N / mm<sup>2</sup> minimum, Blockwork below ground to be 7.0N / mm<sup>2</sup> minimum unless otherwise noted.
- 4. Mortar designations above ground to be 1:1:6 Cement / Lime / Sand.
- 5. Mortar designation below ground to be 1:3 Cement / Sand unless noted otherwise.
- 6. 'Hyload' DPC or similar approved to all walls.
- 7. Wall ties to be stainless steel vertical twist type ties to comply with BS 1243. Max spacing to be 900mm horizontally, 450mm vertically and with a 50mm embedment in the mortar joint of each leaf, unless noted otherwise. Wall ties to be placed in walls where cavities exceed 90mm to have wall ties placed at 450c/c vertically, 450c/c horizontally. Additional ties are to be provided at the sides of all openings so that there is at least one tie at 300c/c maximum.
- 8. Blockwork indicated thus.
- 9. Brickwork restraints to be in accordance with BS 5628 Part 1 at 1200mm c/c restraints to brickwork and 1200mm c/c for vertical straps.
- 10. For position and details of joints in masonry walls see drg: \_...
- 11. At brick / block junctions, brickwork is to be blockbonded into blockwork unless noted otherwise.
- 12. Wall ties shall not slope inwards.
- 13. All brickwork is to be laid with frogs, if any, uppermost.
- 14. Where blocks are laid flat they are to be solid and no shell bedding shall be allowed.
- 15. Lintel Bearings to be in accordance with the Manufacturers recommendations or Engineers Comments.
- 16. Movement joints unless otherwise stated on the drawings are to be at a maximum of 6m centres in accordance with the Architects details and the manufacturers recommendations. Where this compromises the design of the blockwork / brickwork panels the contractor shall inform the Engineer prior to construction.
- 17. The contractor shall put forward his proposals for cold weather laying, no laying of bricks below 5 degrees Celsius.



#### SIZES OF STRUCTURAL ELEMENTS

#### Lateral support at roof level



#### Interruption of lateral support

2C37 Where an opening in a floor or roof for a stairway or the like adjoins a supported wall and interrupts the continuity of lateral support, the following conditions should be satisfied for the purposes of Section 2C:

a. the maximum permitted length of the opening is to be 3m, measured parallel to the supported wall, and

b. where a connection is provided by means other than by anchor, this should be provided throughout the length of each portion of the wall situated on each side of the opening, and

c. where connection is provided by mild steel anchors, these should be spaced closer than 2m on each side of the opening to provide the same number of anchors as if there were no opening, and

d. there should be no other interruption of lateral support.

### Small single-storey nonresidential buildings and annexe.

2C38 Size and proportion

#### (i) General

The guidance given applies in the following circumstances:-

a. The floor area of the building or annexe does not exceed 36m<sup>2</sup>

b. The walls are solidly constructed in brickwork or blockwork using materials which comply with paragraphs 2C19 to 2C22.

c. Where the floor area of the building or annexe exceeds 10m<sup>2</sup> the walls have a mass of not less than 130 kg/m<sup>2</sup>.

Note: There is no surface mass limitation recommended for floor areas of 10m<sup>2</sup> or less.

d. Access to the roof is only for the purposes of maintenance and repair.

e. The only lateral loads are wind loads.



#### SIZES OF STRUCTURAL ELEMENTS

#### Lateral support by floors



specifications including material references 1 or 3 (austenitic stainless steel). The declared tensile strength of tension straps should not be less than 8 kN.

Tension straps need not be provided:

a. in the longitudinal direction of joists in houses of not more than 2 storeys, if the joists are at not more than 1.2m centres and have at least 90mm bearing on the supported walls or 75mm bearing on a timber wall-plate at each end, and

b. In the longitudinal direction of joists in houses of not more than 2 storeys, if the joists are carried on the supported wall by joist hangers in accordance with BS EN 845-1 of the restraint type described in BS 5628: Part 1 and shown in Diagram 16(c), and are incorporated at not more than 2m centres, and

 when a concrete floor has at least 90mm bearing on the supported wall (see Diagram 16(d)), and

d. where floors are at or about the same level on each side of a supported wall, and

contact between the floors and wall is either continuous or at intervals not exceeding 2m. Where contact is intermittent, the points of contact should be in line or nearly in line on plan. (see Diagram 16(e))

2C36 Gable walls should be strapped to roofs as shown in Diagram 17(a) and (b) by tension straps as described in 2C35.

Vertical strapping at least 1m in length should in be provided at eaves level at Intervals not exceeding 2m as shown in Diagram 17 (c) and (d). Vertical strapping may be omitted if the roof:

a. has a pitch of 15° or more, and

b. is tiled or slated, and

c. is of a type known by local experience to i be resistant to wind gusts, and

d. has main timber members spanning onto the supported wall at not more than 1.2m centres.



### PARTY WALL EIC ACT 1990



### *(EFFECTIVE 6/4/97)* THE ACT REQUIRES STRICT OBSERVANCE PARTY WALL NOTICES REQUIRED FOR

- RAISING OR REBUILDING PARTY WALL
- INCREASED LOADING AND BEAMS
- DAMP PROOF INJECTION
- UNDERFINNING
- CHASING WALLS
- REMOVAL OF CHIMNEY BREASTS AND RAISE CHIMNEY STACK ANY OTHER WORKS WHICH AFFECT PARTY WALLS
- THE ACT PROVIDES FOR

#### PARTY WALL AWARDS

COVERING:

- PROPOSED WORKS & RESTRICTION ON WORKS. PROTECTION & SECURITY MAKING GOOD DAMAGE RECORDING CONDITION BEFORE WORKS START INSURANCE: DISPUTES PROCEDURE
  - ADDITIONAL WORKS

### ADJOINING EXCAVATIONS

NOTICES REQUIRED FOR FOUNDATIONS WITHIN 3 METRES & 6 METRES OF ADJOINING PROPERTY.





## TABLE OF SPACING OF SPACERS AND CHAIRS TO BS 7973:2001

| Size of bar reinforcement (mm) | Spacing of spacers and chairs not to exceed 50 d<br>where d is the size of the bar reinforcement in mm<br>which is supported by the spacer or chair.<br>50d = |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8                              | 400                                                                                                                                                           |
| 10                             | 500                                                                                                                                                           |
| 12                             | 600                                                                                                                                                           |
| 16                             | 800                                                                                                                                                           |
| 20                             | 1000                                                                                                                                                          |
| 25                             | 1250                                                                                                                                                          |
| 32                             | 1600                                                                                                                                                          |

.

| Welded steel fabric to BS 4483 | Spacing of spacers and chairs<br>supporting the fabric:- |
|--------------------------------|----------------------------------------------------------|
| Square Fabric                  |                                                          |
| A393                           | Not to exceed 500mm in each direction                    |
| A252                           | Not to exceed 500mm in each direction                    |
| A193                           | Not to exceed 500mm in each direction                    |
| A142                           | Not to exceed 500mm in each direction                    |
| Structural Fabric              |                                                          |
| B1131                          | Not to exceed 500mm in each direction                    |
| B785                           | Not to exceed 500mm in each direction                    |
| B503                           | Not to exceed 500mm in each direction                    |
| B385                           | Not to exceed 500mm in each direction                    |
| B283                           | Not to exceed 500mm in each direction                    |
| Long Fabric                    |                                                          |
| C785                           | Not to exceed 500mm in each direction                    |
| C636                           | Not to exceed 500mm in each direction                    |
| C503                           | Not to exceed 500mm in each direction                    |
| C385                           | Not to exceed 500mm in each direction                    |

### APPENDIX E

Soil Borehole Records

| Specifications & Reports/F. BIA | Baro          | Job No.   |  |  |
|---------------------------------|---------------|-----------|--|--|
| Nov                             | November 2012 | 4555/2.3F |  |  |

### **REPORT ON A SITE INVESTIGATION**

at

### 1 ELLERDALE ROAD, HAMPSTEAD, LONDON, NW3

for

### **MR G GALBERG**

### **CONSULTING ENGINEERS: GTA**

Report No 12/9705/KJC



October, 2012

ALBURY S.I. LTD

Miltons Yard Petworth Road Witley Godalming Surrey GU8 5LH

Telephone: 01428 684836 Facsimile: 01428 685261 info@alburysi.co.uk www.alburysi.co.uk

### CONTENTS

### Foreword

| 1.0   | Synop  | osis       |          |                |
|-------|--------|------------|----------|----------------|
| 2.0   | Introd | luction    |          |                |
| 3.0   | Fieldy | works      |          |                |
| 4.0   | Geolo  | gy and S   | trata Co | onditions      |
| 5.0   | Labor  | ratory Tes | sting    |                |
|       | 5.1    | Particle   | Size Di  | istribution    |
|       | 5.2    | Index P    | ropertie | S              |
|       | 5.3    | Triaxial   | l Compr  | ression        |
|       | 5.4    | Consoli    | dation   |                |
|       | 5.5    | Chemic     | al Anal  | ysis           |
| 6.0   | Discu  | ssion of   | Ground   | Conditions     |
| 7.0   | Effect | t of Sulpł | nates    |                |
|       |        |            |          |                |
| APPEN | NDIX   | 1          | -        | Order          |
| APPEN | NDIX   | 2          | -        | Site Plan      |
| APPEN | NDIX   | 3          | -        | Boring Records |

APPENDIX 4 -

Laboratory Test Results

#### FOREWORD

The following notes should be read in conjunction with the report. Any variations on the general procedures outlined below are indicated in the text.

#### COPYRIGHT

Copyright of this report subsists with the Client. Prior written permission must be obtained to reproduce, store in a retrieval system, or transmit, in any form, or by any means whatsoever, all or part of this report. Furthermore, copies may be obtained, with the Client's written permission, from Albury S.I. Ltd, with whom the master copy of the entire document resides.

#### General

The recommendations made and opinions expressed in the report are based on the strata conditions revealed by the fieldworks as indicated on the boring and trialpit records, together with an assessment of the data from insitu and laboratory tests. No responsibility can be accepted for conditions, which have not been revealed by the fieldworks, for example, between borehole and/or trialpit positions. While the report may offer opinions on the possible configuration of strata, both between the excavations and below the maximum depth achieved by the investigation, these comments are for guidance only and no liability can be accepted for their accuracy. For investigations, which include environmental issues, the data obtained relate to the conditions which are relevant at the time of the investigation.

#### Boring Techniques

Unless otherwise stated, the light cable percussion technique of soft ground boring has been used. This method generally enables the maximum information to be obtained in respect of strata conditions, but a degree of mixing if some layered soils, for example, thin bands of coarse and fine granular soils, is inevitable. Specific attention is drawn to this occurrence where evidence of such a condition is available.

The penetration resistances quoted on the boring records have been determined generally in accordance with the procedure given in BS1377 : 1990. The suffix '+' donates that the results has been extrapolated from less than 0.3m penetration into undisturbed soil.

#### Routine Sampling

During construction of boreholes, sampling and insitu testing will be completed in general accordance with Eurocode EN 1997-2 : 2007 and BS5930 : 1999. Variations to this code of practice will only occur where the strata conditions preclude implementation or the contract specifies alternatives.

Samples which are required for environmental testing will be stored in suitable glass containers in accordance with current guidelines.

#### Groundwater

The groundwater observations entered on boring and trialpit records are those noted at the time of the investigation. The normal rate of progress does not usually permit the recording of any equilibrium water level for any one water strike. Moreover, groundwater levels are prone to seasonal variation and to changes in local drainage conditions. The table on each boring record shows the groundwater level at the quoted borehole and casing depths usually at the start and finish of a day's work. The word 'none' indicates that groundwater was sealed off by the borehole casing, or that no water was observed in the borehole.

#### Trialpits

The method of construction employed to form the trialpits is entered in their records. In general, it is not possible to extend machine excavated trialpits to depths significantly below the water table, especially in predominantly granular soils. Except for manually excavated pits, and unless otherwise stated, the trialpits have not been provided with temporary side support during their construction, hence personnel have not entered them and examined the insitu exposed strata.

#### Window Sampling

Window sampling comprises driving a probe into the ground. On extraction of the probe the strata encountered are logged and representative disturbed samples recovered. In general, window sampling cannot be completed in granular soils, or below the water table.

#### Laboratory Testing

Unless stated in the tests, all laboratory tests have been performed in accordance with the requirements detailed in BS1377 (1990) : Parts 1-9, or other standards or specifications that may by appropriate.

### **REPORT ON A SITE INVESTIGATION**

at

### 1 ELLERDALE ROAD, HAMPSTEAD, LONDON, NW3

for

### MR G GALBERG

### **CONSULTING ENGINEERS: GTA**

Report No 12/9705/KJC

October, 2012

Prepared by

K J Clark BSc Hons Senior Geotechnical Engineer

### 1.0 SYNOPSIS

This investigation has demonstrated that made ground overlies soils thought to be associated with the Bagshot Beds of late Eocene age. The groundwater observations noted at the time of the fieldworks indicate that this phenomenon should not constitute a significant engineering problem at this site.

It is understood that it is proposed to construct a new garden house within the rear garden of the existing property. The proposal will result in excavation of up 2m depth in order to accommodate the new structure. Made ground has been revealed at the location of the borehole to 2.9m depth. Hence, the foundations to the structure should be located at depths of the order of 3m. It is recommended that foundations placed in the Bagshot Beds are designed to accept a maximum increase in load of 100kPa. The structure should be designed and constructed as a water tight element.

### 2.0 INTRODUCTION

It is understood that it is proposed to construct a new garden house within the rear garden of the existing property at 1 Ellerdale Road, Hampstead. Consequently, a site investigation has been undertaken in order to ascertain the nature and engineering properties of the soils underlying this site, and to obtain data which will assist in the formulation of a safe and economical foundation solution.

The programme of this investigation comprised the construction of a light cable percussive or shell and auger borehole. Due to limited access to the area of the proposed development a demountable boring unit was utilised. During this work, samples were recovered for further examination and laboratory testing. This report describes the work undertaken, presents the information obtained and discusses the ground conditions with respect to foundation design and construction. A copy of the order for these works is presented as Appendix 1. This report is for the benefit of the Client alone and cannot be assigned to a third party without the consent of Albury SI Ltd.

### 3.0 FIELDWORKS

The borehole was constructed on  $3^{rd}$  October, 2012, at a position as shown on the site plan, drawing no 12/9705/1, which is presented in Appendix 2 to this report. The salient details of this drawing have been extracted from a site layout plan supplied by the Client's representative.

The depths and descriptions of the strata encountered in the borehole are given on the record in Appendix 3 to this report. This records note the depths at which samples were taken, the results of standard penetration test and any groundwater observations noted at the time of the fieldworks.

### 4.0 GEOLOGY AND STRATA CONDITIONS

An examination of the 1:50,000 British Geological Survey map of the area, together with the relevant Handbook of Regional Geology, suggests that the site is underlain by Bagshot Beds of late Eocene age. This deposit consists of fine grained soils. A study of the borehole record indicates that made ground, varying in composition from gravel/sand and brick to brown/grey very sandy clay with gravel and brick fragments was noted at the investigatory location. This fill material was proved to 2.9m depth.

Brown clayey sand with very occasional gravel or very sandy clay were encountered beneath the made ground and were proved to a depth of 6m. Brown very sandy clay with partings of sand was exposed below the clayey sand/very sandy clay and was shown to extend to the concluding depth of the borehole at 9m. It is suggested that these soils are associated with the Bagshot Beds.

No groundwater strikes were noted during the siteworks completed at this site. Temporary casing was installed to 6m depth. On completion of the borehole the casing was withdrawn. The borehole was allowed to remain open for a period of time on its completion. The borehole was noted to be dry at this time.

### 5.0 LABORATORY TESTING

A programme of laboratory testing has been undertaken and the results are presented as Appendix 4 to this report. Each type of test is summarised below, and the results obtained have been used to assist in the formulation of the discussion of ground conditions.

### 5.1 <u>Particle Size Distribution</u>

Samples of the soils encountered have been subjected to sieve and sedimentation analysis in order to ascertain the soils particle distribution and establish the soils clay fraction. The results of this work are presented in the form of grading curves.

### 5.2 Index Properties

The liquid and plastic limits of a sample of the soils have been determined. This work indicates that the soil sample tested is of intermediate plasticity. The plasticity index result has been corrected for the percentage of granular soil that is retained on the  $425\mu m$  sieve. The percentage retained was 55%. Hence, the

corrected plasticity index indicates that the soil analysed can be regarded as being of a non-shrinkable nature.

### 5.3 Triaxial Compression

The undrained shear strength characteristics of a sample of the soils encountered have been determined by testing specimens in the triaxial compression apparatus. A cohesion of 80kPa has been established which is indicative of a stiff condition insitu for a purely cohesive soil.

### 5.4 <u>Oedometer- Consolidation - Heave</u>

The one dimensional settlement heave characteristics of a sample of the soils underlying this site has been determined by testing a specimen in the Terzaghi Oedometer or Consolidation apparatus. The test was made by preparing the specimen in the oedometer cell and applying an initial load which corresponds to the approximate existing overburden pressure. Two cycles of consolidation loading were then applied followed by two unloading cycles taking the final load back to the initial overburden pressure. The results of this unloading cycles have been used to calculate the coefficient of volume increase which is quoted in the test results. The results obtained suggest that low magnitudes of heave may be expected. The results also indicates that movements would occur in a short period of time.

### 5.5 Chemical Analyses - Soluble Sulphates & pH Values

Samples of the soils encountered at this site have been subjected to chemical analyses in order to determine their soluble sulphate content and pH values. Under the conditions of this work low to moderate concentrations of soluble sulphate contents have been recorded in association with near neutral pH values.

### 6.0 DISCUSSION OF GROUND CONDITIONS

It is understood that it is proposed to redevelop the site by the construction of a new single storey garden house. At the time of the preparation of this report, no precise

information was available with regard to the likely structural loadings generated by the proposed construction. It is further understood that the structure will be set in to the garden by up to 2m depth. Moreover, it is possible that a swimming pool may also be incorporated in the development.

It cannot be recommended that major structural foundations be located within the made ground revealed by this investigation. Soils of this origin are frequently present in a weak and variable condition, such that unacceptable settlement could occur even under the action of light loading intensities. The above precaution need not necessarily be applied to light ancillary structures, which will be formed structurally discrete from the main development and in which a greater degree of settlement can be tolerated.

Made ground has been noted to be present at the borehole location. Hence, it is likely that the foundations to the proposed structure will be constructed at depths of the order of 3m in order to locate footings within naturally occurring soils thought to be associated with the Bagshot Beds. It is recommended that new foundations within these soils can be designed to apply a maximum increase in load of 100kPa. At this loading intensity a factor of safety of 3 against general shear failure will be operative. Moreover, control will provided over settlements. The nature of the soils encountered suggests that these movements should be sensibly complete in the short-term as opposed to an extended period of time.

The groundwater observations noted at the time of the fieldworks suggest that this phenomenon should not constitute a significant engineering problem at this site. Nevertheless, should slight seepages be encountered or surface water run off drain into excavations, then these minor amounts should be removed expeditiously by the construction of sumps from which water can be pumped. It will be prudent to design and construct any structures below ground level as water tight units.

With regard to the construction works, it is evident that it is unlikely that it will be possible to construct any sort of strutted cofferdam in order to provide clear access for construction works in view of the limited working space/access and presence of adjacent existing buildings. Therefore, it is assumed that the basement will have to be excavated and the retaining walls constructed using manual techniques in panels. It should be

possible to construct the necessary excavation in panels of convenient width and depth. This work will be completed by constructing new foundations and include underpinning of the existing structures where necessary. Evidently, where appropriate support to excavation sides should be provided

In the design of the retaining walls account should be taken of the earth pressures and any surcharge loadings that will be applied to the walls. In the design of such a structure, it is normally necessary to employ the use of effective stress parameters such that the long term stability of the structure can be assured. Bearing this in mind it is recommended that the following design parameters are employed in the calculations.

| Soil Parameter | Effective<br>Cohesion | Effective Angle of<br>Friction | Soil Density |
|----------------|-----------------------|--------------------------------|--------------|
| Made ground    | 0                     | 15                             | 1850         |
| Bagshot Beds   | 2                     | 25                             | 1900         |

Table 1 – Retaining Wall Design.

In view of the presence of made ground to approximately 3m, it is evident recommended that a fully suspended floor slab is adopted in the design of the proposed redevelopment.

The excavation of soil will result in a reduction in the overburden load to the underlying strata of approximately 20kPa. The suspended floor slab will ensure that any heave of the soils underlying the site will not represent an engineering problem. However, this figure is likely approach 40kPa should a swimming pool be incorporated at the new floor level - assuming a 2m deep construction. Evidently, it is likely that the pool slab can be constructed on the naturally occurring soils. This increased excavation may result in the development of elastic movement together with the potential for long-term heave under the revised stress conditions when the development is completed.

The magnitude of long-term uplift forces that may be applied to the swimming pool is difficult to predict. Computer programmes are available which attempt to model the problem. However, the complex nature of the proposed structure and difficulties in assuming the soil parameters would limit the validity of the calculations.

It should be appreciated that the magnitude of heave is dependent upon the loads and stiffness of the structure and performance of the underlying strata. The soils at this site are thought to comprise Bagshot Beds, the upper levels of which generally comprise brown/grey clayey sand. The results of laboratory analysis completed on the upper levels of the Barton Beds suggest that the soils are of non- shrinkable potential which implies that the soil does not contain a significant amount of active clay minerals. Hence, it is considered that the completed structure is likely to experience nominal heave/uplift force derived from the clayey sand which underlies this site.

### 7.0 EFFECT OF SULPHATES

The information obtained from this investigation has been compared with the criteria proposed in BRE Special Digest 1; 2005, Edition, Concrete in Aggressive Ground. Using the information in Table C1 (natural ground) of this publication the Aggressive Chemical Environment for Concrete Classification is AC-1s, which coincides with a Design Sulphate Class DS-1. This Design Sulphate Class can be used to establish the design mix for buried concrete in accordance with Part D of the Digest.

### APPENDIX 2

Site Plan



### APPENDIX 3

**Boring Records** 

| Ası                  | Albury S<br>Petworth Road,           | S.I. L<br>Witley, ( | 2 <b>td</b><br>Godalming | g, St               | urrey, GU     | 8 5LH                                       |                                |                 | Borehole       | No            | 1              |
|----------------------|--------------------------------------|---------------------|--------------------------|---------------------|---------------|---------------------------------------------|--------------------------------|-----------------|----------------|---------------|----------------|
| Contra               | act                                  | Ellerd              | ale Road,                | ale Road, Hampstead |               |                                             |                                |                 |                | 12/9          | 705/KJC        |
| Client               |                                      | Mr G                | Galberg                  |                     |               |                                             |                                | Ground Le       | evel           | mOD           |                |
| Site A               | ddress                               | 1 Elle              | rdale Roa                | d, H                | ampstead      | , London, NW                                | /3                             | Boring Co       | mmenced        | 03/10/12      |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 | Boring Co      | mpleted       | 03/10/12       |
| Type and             | d diameter of boring                 | g: Light            | cable perc               | cussi               | ion (shell    | and auger): 1                               | 50mm diamet                    | ter             |                |               |                |
| Water St             | rikes, m                             |                     |                          |                     | Wate          | er levels recor                             | ded during b                   | oring, m        |                | 1             | T              |
| 1.                   | none                                 | Date<br>Hole I      | Denth                    |                     | 03/10<br>9.00 | 03/10                                       |                                |                 |                |               |                |
| 2.<br>3.             |                                      | Casing              | g Depth                  |                     | 9.00<br>6.00  | none                                        |                                |                 |                |               |                |
| 4.                   |                                      | Water               | Level                    |                     | none          | none                                        |                                |                 |                |               |                |
| <i>Rema</i><br>Excav | <i>rks</i><br>ation of starter pit t | to clear se         | ervices.                 |                     |               |                                             |                                |                 |                |               |                |
| Sai                  | mples or tests                       | SPT                 |                          |                     |               |                                             |                                | Strata De       | escription     |               |                |
| Type                 | Depth, m                             | N                   | Depth                    |                     | Legend        | Made grou                                   | nd (gravel/sa                  | nd, gravel and  | d brick)       |               |                |
| D                    | 0.20                                 |                     | 0.40                     |                     |               | Wade ground (graver/sand, graver and oriek) |                                |                 |                |               |                |
| В                    | 0.50                                 |                     |                          |                     |               | Made grou                                   | ind (brown/gi                  | rey very sand   | y clay with gr | avel and occ  | casional brick |
|                      |                                      |                     |                          |                     |               | particles)                                  |                                |                 |                |               |                |
| D                    | 1.00-1.50                            | 8                   |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 1.75                                 |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 2.00-2.50                            | 8                   | 2.00                     |                     |               | N 1                                         | 1.4                            | 1               | 1              | 1 ( )         | 1 1            |
|                      |                                      |                     |                          |                     |               | Made grou                                   | nd (brown/gi<br>brick particle | rey clayey san  | d with gravel  | , pockets of  | clay and very  |
| _                    |                                      |                     |                          |                     |               | occasional                                  | oriek partiek                  | (3)             |                |               |                |
| D                    | 2.75                                 |                     | 2 90                     |                     |               |                                             |                                |                 |                |               |                |
| D                    | 3.00-3.50                            | 11                  | 2.90                     |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               | Medium d                                    | ense brown/g                   | rey clayey silt | ty sand with v | very occasion | nal gravel     |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 4.00                                 |                     | 4.00                     |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               | Brown ver                                   | y sandy clay                   | with partings   | of sand        |               |                |
| U                    | 4.50-5.00                            |                     | 4.50                     |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               | Brown/gre                                   | y clayey sand                  | l/very sandy c  | lay with grav  | el            |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 5.50                                 |                     | 5.50                     |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               | Brown cla                                   | yey sand                       |                 |                |               |                |
| D                    | 6.00-6.50                            | 16                  | 6.00                     |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               | Stiff brown                                 | n very sandy                   | clay with part  | ings of sand   |               |                |
| U                    | 6.50-7.00                            |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 7.00                                 |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 7.50                                 |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
| D                    | 8.50-9.00                            | 19                  |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     |                          |                     |               |                                             |                                |                 |                |               |                |
|                      |                                      |                     | 9.00                     |                     |               |                                             |                                |                 |                |               |                |

### APPENDIX 4

Laboratory Test Results

Albury S. I. Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH





Albury S. I. Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH





Albury S. I. Ltd Miltons Yard Petworth Road Witley Surrey GU8 5LH





# **RESULTS OF CONSOLIDATION TESTS**

### **Contract:** Ellerdale Road, Hampstead Report No: 12/9705/KJC

| BH<br>no | Depth of Sample<br>m | Description of Sample                                                                                             | R<br>Liquid<br>Limit<br>% | NDEX PI<br>Plastic<br>Limit<br>% | ROPERTIES<br>Plasticity<br>Index<br>% | S<br>Soil<br>Classif-<br>cation | Code          | Lateral<br>Pressure<br>kPa | TRIAXI<br>Com-<br>pressive<br>Strength<br>kPa | AL COMPI<br>Cohesion<br>kPa | RESSION<br>Angle of<br>Friction<br>(degrees) | Bulk<br>Density<br>kg/m <sup>3</sup> | Water<br>Content<br>(% dry<br>wt) | C<br>Pressure<br>Range<br>kPa            | ONSOLIDATI<br>Coefficient<br>of Volume<br>Decrease<br>mm <sup>2</sup> /kN | ON<br>Coefficient<br>of<br>Consolidation<br>m <sup>2</sup> /year | REMARKS                                |
|----------|----------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------|----------------------------------|---------------------------------------|---------------------------------|---------------|----------------------------|-----------------------------------------------|-----------------------------|----------------------------------------------|--------------------------------------|-----------------------------------|------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------|
| 1        | 4.50-5.00            | Brown/grey clayey sand/very sandy clay<br>with gravel<br>(55% retained on 425 $\mu$ m sieve Corrected PI<br>= 9%) | 37                        | 17                               | 20                                    | CI                              | 38U           | 150<br>300<br>450          |                                               |                             |                                              |                                      | 10.1                              |                                          |                                                                           |                                                                  | Specimens failed<br>during preparation |
|          | 6.50-7.00            | Brown very sandy clay with partings of sand                                                                       |                           |                                  |                                       |                                 | 38U           | 150<br>300<br>450          | 155<br>175<br>150                             | 80                          | 0                                            | 1925<br>1925<br>1960                 | 28.5<br>28.3<br>27.8              | 150-300<br>300-600<br>600-300<br>300-150 | 175<br>135<br>-25<br>-80                                                  | 1.24<br>0.83<br>-2.90<br>-0.70                                   |                                        |
|          |                      |                                                                                                                   |                           |                                  |                                       |                                 |               |                            |                                               |                             |                                              |                                      |                                   |                                          |                                                                           |                                                                  |                                        |
|          |                      |                                                                                                                   |                           |                                  |                                       |                                 |               |                            |                                               |                             |                                              |                                      |                                   |                                          |                                                                           |                                                                  |                                        |
|          |                      |                                                                                                                   |                           |                                  |                                       |                                 |               |                            |                                               |                             |                                              |                                      |                                   |                                          |                                                                           |                                                                  |                                        |
|          |                      |                                                                                                                   |                           |                                  |                                       |                                 |               |                            |                                               |                             |                                              |                                      |                                   |                                          |                                                                           |                                                                  |                                        |
|          |                      |                                                                                                                   |                           |                                  |                                       |                                 |               |                            |                                               |                             |                                              |                                      |                                   |                                          |                                                                           |                                                                  |                                        |
|          |                      |                                                                                                                   |                           |                                  |                                       |                                 |               |                            |                                               |                             |                                              |                                      |                                   |                                          |                                                                           |                                                                  |                                        |
| Sheet N  | o 1 of 1<br>TRIA     | AXIAL COMPRESSION TEST CODE:<br>P-Pore water pro                                                                  | 38-38<br>essure mea       | omm dia s                        | specimen<br>t                         | 100-1                           | 00mm d<br>M-1 | ia specime<br>Multistage   | n U-U<br>F·                                   | Undrained<br>Functional     | C<br>I R-Re                                  | D-Consol<br>moulded                  | idated Dra<br>LV-Labo             | ined (<br>ratory Vane                    | CU-Consolida<br>Fest                                                      | ted Undrained                                                    |                                        |

Albury S. I. Ltd Miltons Yard Petworth Road Witley Surrey GU8

### **RESULTS OF CHEMICAL ANALYSES**

Determination of Sulphate Content and pH value

**Contract:** Ellerdale Road, Hampstead

**Report No:** 12/9705/KJC

|          |                       |                 | Conc                               | centrations of Sulpha<br>expressed as SO <sub>4</sub> | tes                        |             |
|----------|-----------------------|-----------------|------------------------------------|-------------------------------------------------------|----------------------------|-------------|
| BH<br>No | Depth of<br>sample, m | Description     | In<br>Total SO <sub>4</sub><br>(%) | soil<br>2:1 water:soil<br>extract<br>g/l              | In ground-<br>Water<br>g/l | pH<br>value |
| 1        | 1.75                  | Made ground     |                                    | <0.25                                                 |                            | 7.4         |
|          | 3.00-3.50             | Clayey sand     |                                    | <0.25                                                 |                            | 7.3         |
|          | 6.50-7.00             | Very sandy clay |                                    | <0.25                                                 |                            | 5.8         |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |
|          |                       |                 |                                    |                                                       |                            |             |



### APPENDIX F

Planning Decision Notice

| Specifications & Reports/F. BIA November 2012 4555/2.3F | W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3 | Date          | Job No.   |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------|---------------|-----------|--|--|
|                                                         | Specifications & Reports/F. BIA                                                  | November 2012 | 4555/2.3F |  |  |

Camden

Development Control Planning Services London Borough of Camden Town Hall Argyle Street London WC1H 8ND

Tel 020 7974 4444 Fax 020 7974 1680 Textlink 020 7974 6866

env.devcon@camden.gov.uk www.camden.gov.uk/planning

Application Ref: 2011/4005/P Please ask for: Elaine Quigley Telephone: 020 7974 5101

2 November 2011

Dear Sir/Madam

Mr Andrew de Carteret Burrell Foley Fischer LLP

**Carlow House** 

Carlow Street London

NW17LH

#### DECISION

Town and Country Planning Acts 1990 (as amended) Town and Country Planning (General Development Procedure) Order 1995 Town and Country Planning (Applications) Regulations 1988

Variation or Removal of Condition(s) Granted Subject to a Section 106 Legal Agreement

Address: The Garden House 1 Ellerdale Road London NW3 6BA

Proposal:

Amendments to amended planning permission granted 24/05/2011 (ref: 2010/5841/P) for the erection of a new dwelling house on land to the rear 81 Fitzjohn's Avenue to include increase in site area for enlarged garden, increase in built footprint of house and rebuild of boundary walls.

Drawing Nos: Site location plan; BFF/777 AL(0)100.P4, 200.P6, 210.P5, 300.P4, 301.P3, 400.P3, 401.P3, 402.P3, 410.P2, 002.P1, and 950.P1.

The Council has considered your application and decided to grant permission subject to the following condition(s):

Condition(s) and Reason(s):

1 The development hereby permitted shall be carried out in accordance with the



Page 1 of 3

Director of Culture & Environment Rachel Stopard
following approved plans Site location plan; BFF/777 AL(0)100.P4, 200.P6, 210.P5, 300.P4, 301.P3, 400.P3, 401.P3, 402.P3, 002.P1, 901.P4, 950.P1, 410.P2;

## Reason:

2

×

For the avoidance of doubt and in the interest of proper planning.

Prior to the commencement of development, details of the design of building foundations and new wall footings and the layout, with dimensions and levels, of service trenches and other excavations on site in so far as these items may affect trees on or adjoining the site, shall be submitted to and approved in writing by the Council as the local planning authority. The relevant part of the works shall not be carried out otherwise than in accordance with the details thus approved.

Reason: To ensure that the Council may be satisfied that the development will not have an adverse effect on existing trees and in order to maintain the character and amenities of the area in accordance with the requirements of policy CS15 of the London Borough of Camden Local Development Framework Core Strategy.

## Informative(s):

1 Reasons for granting permission.

The proposed development is in general accordance with the London Borough of Camden Local Development Framework Core Strategy, with particular regard to policies CS5 (Managing the impact of growth and development), CS14 (Promoting high quality places and conserving our heritage), CS15 (Protecting and improving our parks and open spaces & encouraging biodiversity) and CS17 (Dealing with our waste and encouraging recycling); and the London Borough of Camden Local Development Framework Development Policies, with particular regard to policies DP19 (Managing the impact of parking), DP24 (Securing high quality design), DP25 (Conserving Camden's heritage), DP26 (Managing the impact of development on occupiers and neighbours), DP27 (Basements and lightwells) and DP29 (Improving access). For a more detailed understanding of the reasons for the granting of this planning permission, please refer to the officers report.

- 2 Your proposals may be subject to control under the Party Wall etc Act 1996 which covers party wall matters, boundary walls and excavations near neighbouring buildings. You are advised to consult a suitably qualified and experienced Building Engineer.
- 3 Your proposals may be subject to control under the Building Regulations and/or the London Buildings Acts which cover aspects including fire and emergency escape, access and facilities for people with disabilities and sound insulation between dwellings. You are advised to consult the Council's Building Control Service, Camden Town Hall, Argyle Street WC1H 8EQ, (tel: 020-7974 2363).
- 4 Noise from demolition and construction works is subject to control under the Control of Pollution Act 1974. You must carry out any building works that can be

heard at the boundary of the site only between 08.00 and 18.00 hours Monday to Friday and 08.00 to 13.00 on Saturday and not at all on Sundays and Public Holidays. You are advised to consult the Council's Compliance and Enforcement team [Regulatory Services], Camden Town Hall, Argyle Street, WC1H 8EQ (Tel. No. 020 7974 4444 or on the website

http://www.camden.gov.uk/ccm/content/contacts/council-

contacts/environment/contact-the-environmental-health-team.en or seek prior approval under Section 61 of the Act if you anticipate any difficulty in carrying out construction other than within the hours stated above.

5 Your attention is drawn to the fact that there is a separate legal agreement with the Council which relates to the development for which this permission is granted. Information/drawings relating to the discharge of matters covered by the Heads of Terms of the legal agreement should be marked for the attention of the Planning Obligations Officer, Sites Team, Camden Town Hall, Argyle Street, WC1H 8EQ

6 You are reminded of the need to comply with the conditions attached to the original planning permission dated <u>28/05/2010 (ref. 2010/0861/P)</u>. You are also advised to take note of the informatives attached to that original decision notice.

Your attention is drawn to the notes attached to this notice which tell you about your Rights of Appeal and other information.

Yours faithfully

Rachel Stopard Director of Culture & Environment

It's easy to make, pay for, track and comment on planning applications on line. Just go to <u>www.camden.gov.uk/planning</u>.

## APPENDIX G

Figures from the Camden Geological, Hydrogeological and Hydrological Study



Enlarged Excerpt from Figure 11: 'Watercourses' Map

This shows that the nearest watercourse is over 200m from the site

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3<br>Specifications & Reports\F. BIA | Date          | Job No.   |
|---------------------------------------------------------------------------------------------------------------------|---------------|-----------|
|                                                                                                                     | November 2012 | 4555/2.3F |



Enlarged Excerpt from Figure 15: 'Flooding' Map

This shows that the site is removed from all the recorded incidents of flooding and the areas liable to suffer from surface water flooding

| W:\Projects\4555 BIA, Burrell Foley Fisher, 1 Ellerdale Road, London NW3 6BA\2.3<br>Specifications & Reports\F. BIA | Date          | Job No.   |
|---------------------------------------------------------------------------------------------------------------------|---------------|-----------|
|                                                                                                                     | November 2012 | 4555/2.3F |