

PLANNING SUBMISSION OF ENERGY STATEMENT

FOR

ATHLONE HOUSE – HIGHGATE

October 2013

PREPARED BY:

SLENDER WINTER PARTNERSHIP LTD THE OLD SCHOOL LONDON ROAD WESTERHAM KENT TN16 1DN

ARCHITECT:

ADAM ARCHITECTURE
OLD HYDE HOUSE
75 HYDE STREET
WINCHESTER
HAMPSHIRE

DOCUMENT ISSUE RECORD

ISSUE	PREPARED BY			CHECKED BY				
	PREPARED	DATE	SIGNATURE	CHECKED	DATE	SIGNATURE		
01	R. Fernando	12.09.12		P.Dunk	12.09.12			
02	D.Vardill	20.05.13		P.Dunk	20.05.13			
03	D. Vardill	03.06.13		P.Dunk	03.06.13			
04	D. Vardill	13.06.13		P.Dunk	13.06.13			
05	D. Vardill	10.10.13		P.Dunk	10.10.13			

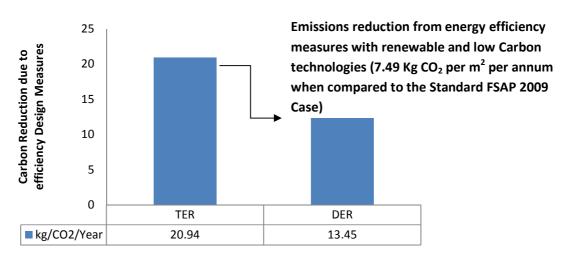
Issue 05

Contents

1.	EXE	CUTIVE SUMMARY	5
2.	INT	RODUCTION	6
	2.1.	BACKGROUND TO THE SCHEME	6
3.	POL	ICY GUIDANCE AND CONSTRAINTS	6
	3.1.	REGIONAL AND LOCAL POLICY FRAMEWORK	(
	3.2.	NATIONAL PLANNING GUIDANCE	7
	3.3.	RENEWABLE ENERGY POLICY IN THE UK – TARGETS	7
	3.4.	METHODOLOGY ADOPTED IN THE STRATEGY	7
4.	THE	PROPOSED DEVELOPMENT	8
	4.1.	BASE CASE ENERGY DEMAND AND CARBON EMISSIONS	8
5.	ENE	RGY EFFICIENT MEASURES APPLIED TO BASELINE DESIGN	<u>ç</u>
	5.1.	DESIGN	<u>S</u>
	5.2.	BUILDING PERFORMANCE	<u>S</u>
	5.3.	THERMAL ELEMENTS	<u>S</u>
	5.4.	HEATING	10
	5.5.	POOL VENTILATION PLANT	10
	5.6.	AIR PERMEABILITY	10
	5.7.	ARTIFICIAL LIGHTING	10
	5.8.	SUSTAINABILITY CONSIDERATIONS	11
6.	ON-	SITE RENEWABLE ENERGY ASSESSMENT	11
	6.1.	GROUND SOURCE HEAT PUMPS	12
	6.2.	AIR SOURCE HEAT PUMPS	13
	6.3.	SOLAR WATER HEATING	14
	6.4.	PHOTOVOLTAICS	15
	6.5.	WIND TURBINES	16
	6.6.	BIOMASS BOILERS	17
	6.7.	SUMMARY OF PROPOSED RENEWABLE ENERGY SYSTEMS	18
7.	CON	ICLUSION	19
	7.1.	REQUIREMENT FOR THE ON-SITE RENEWABLE ENERGY	19
	7.2.	ACHIEVABLE TOTAL EMISSIONS REDUCTION	20

ATHLONE HOUSE

APPENDIX A	21
SITE PLAN	21
APPENDIX B	22
PROPOSED ROOF PLANT	22
APPENDIX C	23
SAP WORKSHEET	23
METHODOLOGY BY SAP2009	23
APPENDIX D	34
PROPOSED BUILDING CO₂ EMISSIONS RATE ASSESSMENT METHODOLOGY	34
WITH ENERGY EFFICIENCY MEASURES , LOW CARBON TECHNOLOGY	34
AND RENEWABLE TECHNOLOGIES BY SAP 2009	34
APPENDIX E	44
SAP INPUT	44
APPENDIX F	48
SAP2009 COMPLIANCE REPORT	48
APPENDIX G	50
CODE FOR SUSTAINABLE HOMES	50
APPENDIX H	52
PREDICTED SAP	52


1. EXECUTIVE SUMMARY

This Energy Statement consists of an energy demand assessment showing how selected energy efficiency and renewable energy measures have been incorporated into the Athlone House development. The scheme is subject to the planning policies of the Camden council and the development must comply with London Plan Policy.

The SAP calculations have been prepared (See Appendix C) for a unique building whose areas, controls and building services allow for a single residence which will include the construction of an integrated Pool Room and a separate below ground Garage to the property. And this approach has predicted to achieve **34 tonnes CO₂** per annum related to the Part L: 2010 compliant base case of **54 tonnes CO₂** per annum. The proposed re-development at Highgate is at the cutting edge of sustainable design and expected to reduce its carbon emissions by approximately **36** % compared to the target emissions rate (TER) set by Building Regulations Part L1A 2010.

The key technologies proposed for the site are:

- It is proposed that the building thermal elements be specified to exceed minimum building regulations 2010 by 25%.
- It is proposed to install a ground source heat pump.
- It is proposed to install a total of 10m² solar thermal panels.
- It is proposed to install a total of 60m² Photovoltaic panels.

When building CO_2 emissions 20.94 & 13.45 (Kg/m²) are multiply by useful area of the building (2595.75 m²) is given by 54 & 34(tonnes) CO_2 per annum respectively.

2. INTRODUCTION

2.1. BACKGROUND TO THE SCHEME

The Statement describes the methodology used in assessing the proposed re-development and the assessment of the predicted energy target and renewable proposals to support the planning application for the re-development of the Athlone House project.

The existing dwelling is proposed to be demolished and replaced with a more contemporary dwelling arranged over four floors from basement to second floor and incorporating an internal swimming pool.

This Energy Statement has been prepared by Slender Winter Partnership Ltd on behalf of Adam Architecture in support of the full planning application for the proposed new building.

3. POLICY GUIDANCE AND CONSTRAINTS

3.1. REGIONAL AND LOCAL POLICY FRAMEWORK

The Proposed development has been influenced by the Camden Council planning guidance, which support the policies in the Local Development framework (LDF) and this guidance consistent with Core Strategy and the development policies which are supported by the Mayor of London's London Plan (including alterations from 2004) and Energy Strategy. In maximizing the sustainability aspects of the development, the Client is committed to delivering appropriate items. In particular:

- Code for Sustainable Homes Level 4 standard "at least 68 credits".
- Maximizing water conversation and recycling.
- Designing the building and services for minimum energy use.
- Offset on-site generated renewable energy sources where feasible "at least 20% of predicted energy requirements".

This new guidance will replace the Camden Planning Guidance 2006, updating advice where appropriate and providing new guidance on matters introduced or strengthened in the LDF.

This guidance provides information on ways to achieve carbon reductions and more sustainable developments. It also highlights the Council's requirements and guidelines which support the relevant Local Development Framework (LDF) policies:

CS13 - Tackling climate change through promoting higher environmental standards

DP22 - Promoting sustainable design and construction

DP23 - Water

ATHLONE HOUSE

3.2. NATIONAL PLANNING GUIDANCE

The UK government published its sustainable development strategy in 1999 and set out in following national planning guidance:

- Planning policy statement 1: "Creating Sustainable Communities" published in 2005.
- Planning policy statement 3: "Housing", published in June 2010.
- Planning policy statement 13: Transport, published in 2001.
- Planning policy statement 22: Renewable Energy.

3.3. RENEWABLE ENERGY POLICY IN THE UK - TARGETS

The UK's Climate Change Act passed into law in November 2008, placing a legal imperative on the government to cut emissions by 80% of their 1990 levels by 2050, with a mid-term target of 34% cuts by 2020.

Government has set targets of 10% electricity to come from renewable sources by 2010 and for this to increase to 20% by 2020.

The Government's Renewable Energy Policy sets the context for determination of planning applications and the statements reviewed within this section of the Planning Statement make it clear that considerable planning weight should be attributed to these policies. Indeed in every statement of government policy since in 1997 the importance which government attaches to an increasing rate of development of renewable sources has been substantial.

3.4. METHODOLOGY ADOPTED IN THE STRATEGY

The following energy hierarchy was used to identify and prioritise the most effective means of reducing carbon emissions where it is feasible and reasonable.

- 1. **Be Lean-** Energy Efficiency measures through design and use. (use less energy)
- 2. **Be Clean-** Optimise energy supply infrastructure for efficiency through "Low carbon" strategies. (Supply energy efficiently)
- 3. **Be Green-** Utilise renewable energy resources, where it is feasible and appropriate.

4. THE PROPOSED DEVELOPMENT

It is the intention of Adam Architecture to create a new house with the re development of building arranged over four floors from basement to second floor with total useful area of 2595.75 m². A proposed site plan is included in Appendix A. The proposed development consists of following habitable areas:

Floor	Useful Floor Area / (m²)
Basement Floor	560
Ground Floor	823
First Floor	811.75
Second Floor	401
TOTAL AREA	2595.75

4.1. BASE CASE ENERGY DEMAND AND CARBON EMISSIONS

The baseline energy demand for the proposal has been established using SAP calculations prepared for the building to arrive at an overall site energy demand. The appropriate base case against which to assess potential carbon savings is a new development designed to conform to 2010 PartL2A Building Regulations; effectively "do minimum" case. This base case represents a Part L 2010 compliant notional building of same size, shape and use as proposed building, where the electricity for the development is imported from the grid, the space heating and domestic hot water are provided by a standard individual gas – fired boilers and space cooling, where applicable, is provided by Direct Expansion (DX) cooling and HVAC ventilation.

The development has been modelled by approved energy assessment software (FSAP 2009 program, Version 1.5.0.37). The total heated area of the proposed dwelling is approximately 2596 m^2 . The baseline Carbon emissions for the site have been predicted 20.94 kg/m 2 CO $_2$ per annum and the results included in the Appendix C.

The baseline energy demand for the proposed development results in **231 MWhr** of Space heating and hot water (assumed to be Gas fuelled) **4.8 MWhr** of electrical energy usage annually. This equates to site emissions of **54 Tonnes CO₂ per annum.**

5. ENERGY EFFICIENT MEASURES APPLIED TO BASELINE DESIGN

5.1. DESIGN

The energy performance of the building is affected by the design, its construction and its use. Whilst occupant behaviour is beyond the remit of this statement, improved design and construction methods can significantly reduce the cycle emissions of a building and assist the occupant to reduce consumption. Sustainable design is not just incorporating renewable technologies and buildings should be designed at the outset, which provides suitable environmental conditions for the occupant's whist also consuming as little energy as practically achievable.

5.2. BUILDING PERFORMANCE

Buildings in Camden account for 88% of Camden's overall CO₂ emissions * and these emissions result from the energy used within buildings.

Substantial advances have been achieved in terms of reducing the heat demand in new homes in the last few years. The annual heat demand for an existing detached house, for example, is higher than 200 kW/m² p.a. By comparison, a new house built to high energy efficiency standards only requires approximately 70 kW/m² p.a.

The following energy measures are intended to be incorporated to provide an acceptable energy level usage building.

5.3. THERMAL ELEMENTS

It is proposed that the building's thermal elements be specified to exceed the minimum AD Part L standards by 20%.

Element	Building Reg. Part L1A (W/m2K)	Proposed (W/m2K)
External Walls	0.30	0.19
Roof	0.20	0.15
Floor	0.25	0.15
Windows	2.0	1.4

^{*}Camden Planning Guidance (CPG 3) - Sustainability

ATHLONE HOUSE

5.4. HEATING

The house will have ground source water loop heat pumps that reject all waste heat into the building piles at basement sub level during summer months therefore avoiding the requirement for roof mounted condenser units. Subject to how the space heating will be provided this will be sized to cover load, a provisional allowance for background heating in the region of **55 kW**. The areas within the building shall be suitably zoned for space heating provision.

5.5. POOL VENTILATION PLANT

The pool ventilation unit shall be a purpose built unit and shall incorporate heat recovery technology utilising external air for heating/cooling and dehumidification wherever possible. This unit will receive primary heat from the boiler system for air heating and reclaim dehumidification energy to heat the pool water. In addition the pool ventilation unit shall also be located in the basement plantroom.

5.6. AIR PERMEABILITY

Large amounts of heat are lost in winter through air leakage from a building often through poor sealing of joints and openings in the building.

Air tightness standards will be constructed at the development to the 'Accredited Construction Details' as compiled by the Local Government and this building will be designed to achieve an air permeability of lower than 8 m³/hr/m². This, along with the high thermal mass of the external walls and the terraced nature of the streetscape, will significantly reduce the energy demand for space heating. In order to achieve this low air permeability rate the use of a central ventilation system with heat recovery is proposed for the basement accommodation.

5.7. ARTIFICIAL LIGHTING

The provision of natural daylight is considered an important factor in the design in order to minimise the use of artificial light within the building. All habitable rooms have access to natural light with high specification glazing being used to maximise day lighting levels and minimise associated heat loss. High efficiency lamps will be considered in conjunction with the client's preferences and facilities for automatic switching and dimming via the Audio Visual system shall also be incorporated where possible. This will however be subject to the client's and interior designer's agreement.

5.8. SUSTAINABILITY CONSIDERATIONS

The Athlone House development incorporates the following measures to minimise water Consumption:

- Rainwater harvesting system sized to deliver proportion of the toilet flushing requirements and car washing.
- Water leak detection systems linked to central alarm system.
- Taps with automatic shut off or electronic sensors.

6. ON-SITE RENEWABLE ENERGY ASSESSMENT

The energy demand established above has been used to test the viability of various renewable and low carbon technologies as follows and this section determines the appropriateness of each renewable technology and considers the ability of each technology to comply with the planning requirements as set out above in section 1.2.

The Government Renewable Obligation defines renewable energy in the UK and the identified technologies are;

- Geothermal power (ground source and air source heat pumps)
- Solar Power (water or PV panels)
- Tidal and wave power
- Biomass
- Onshore and offshore wind.
- Small hydro-electric
- Landfill and sewage gas.

The use of landfill or sewage gas, offshore wind or any form of hydroelectric power is not suitable for the site due to its location. The remaining technologies are considered below;

6.1. GROUND SOURCE HEAT PUMPS

illustrative images only

Heat pumps use refrigerant gases and an electrical compressor to take heat from a source and deliver it to an output. In this way they can be used to supply heat to a building. The ground acts as a huge solar collector and thermal store, which dampens fluctuations in ground temperature. The fluctuations reduce with depth and stabilise at the annual mean by about 12m below the surface; for the UK this is in the range 9–12°C.

Ground source heat pumps make use of this heat stored in the ground and raise it to a more useful temperature of around 40-50°C. It should be noted that at these temperatures, the heat produced is only useful for low temperature applications such as under floor heating installations; otherwise, a degree of top-up by conventional means is required when used for generating domestic hot water for example.

To accommodate the need for low temperature water for underfloor heating purposes and also relatively medium temperature water for chilling of the underfloor heating mass a ground source heat pump utilising vertical bore hole piles is being considered below the basement car park level.

It is believed a total of 16 boreholes approximately 70m deep can be provided within this area with the correct spacing for maximum heat rejection/extraction, approximately **55 kW**.

With this system employed it is likely that an estimated total of **39,000 kWh/annum** may be produced from the system on an annual basis

6.2. AIR SOURCE HEAT PUMPS

illustrative images only

Air source heat pumps operate using same reverse refrigeration cycle as ground source heat pumps; however the initial heat energy is extracted from the external air rather than ground. These heat pumps can be reversed to provide cooling to an area although this reduces the coefficient of the performance of the pumps.

The heat pump connects a multiple inside unit with a single outside unit. The latter resembles an air conditioning condenser unit and care must be taken to locate the unit where any noise generation is not obtrusive and the location should ensure the unit is not visually obtrusive.

It is not proposed to install Air source heat pumps for heating but instead utilize split system DX units for cooling during peak periods.

6.3. SOLAR WATER HEATING

illustrative images only

There is space at roof level as indicated on the Architect's drawings to provide solar water heating panels that will serve the hot water service demand particularly during the summer months of the property as a whole. It may also be used to feed the swimming pool heating system depending on temperature arrangements and in conjunction with the correctly sized buffer vessel will store heat for maximum demand use in mornings and evenings if sized correctly.

It is anticipated that vacuum black tube units can be employed in an array that will feed a hot water storage buffer vessel within the basement plantroom. These units will be fitted to the rear of the main roof as indicated at a slight incline and will be south facing to absorb sun rays or bright sky where available.

The estimated annual output from a total of 10sq.m of solar panels will constitute approximately **2900 kWh** of solar water heating and this would result in achieving around **4** % of the annual buildings energy needs.

6.4. PHOTOVOLTAICS

illustrative images only

Photovoltaic panels (PV) provide clean silent electricity and they generate green electricity during most daylight conditions although they are most efficient when expose to direct sunlight or are orientated to face plus or minus 30 degrees of due south.

PV panels typically have an electrical warranty of 20 - 25 years and are eligible for the Government's Feed in Tariff (FITS) incentive scheme for the 25 years after the installation.

Firstly we need to discuss the likely location of solar arrays of this type. Investigating the Architect's plan of the roof construction it is unlikely that there is sufficient space at all at roof level owing to the complexity and sensitive nature of the site and the Architect's desire to duplicate the existing building as much as possible.

An array of photovoltaic panels could be arranged within the grounds of the house but obviously again this would affect the landscaping and current rural plan for the landscape garden and garden heritage.

Subject again to the advice of Planners, Client and the Design Team it is again unlikely a large array of photovoltaic panels can be provided for Athlone House to substantiate any major source of benefit to the 20% renewable energy requirement of this development.

It is important to note that the estimated annual output from **60sq.m** of photovoltaic panels is **7.5kW peak**¹; therefore PV panels will constitute **10%** of the overall renewable energy requirement making this a feasible option for the development

¹ Figures assume 8m² of PV per kilowatt of energy produced

6.5. WIND TURBINES

illustrative images only

The main issues applicable to the selection of wind turbines relate to local wind speeds, planning, and the potential miss-match between energy generation and demand profiles. Generally a minimum of six months worth of specific site weather data is required to provide results that are meaningful than just information obtained from existing data bases.

It is taken within this assessment although it has not been possible to carry out site wind measurements due to the time constraints. The Department of Trade and Industry's wind speed database gives computed wind speeds per sq. km of sites. From this database the average speed at Highgate are 4.8m/second at 10m above ground level.

Taking this information on board and utilising industry standard components for small wind turbines, the most efficient means of providing wind power at these levels can be given from manufacturers such as Proven Ltd, who provide units at 3.5m diameter turbines mounted 5m above roof access or ground level.

These units produce approximately 6kW of electricity at maximum output at the wind speed stipulated, a single unit of this size would generate approx **9,300 kwh/annum**. The practical issues here are obvious particularly relating to the site in question and this is a relatively sensitive site in terms of the overall global environment associated with the Athlone House Estate. It has a fundamentally a rural feel to the Estate at the rear of the property while the front of the property is open to direct public view and has neighbouring properties on both sides at the main Highgate entrance.

Any sitting of wind turbines would need to take on board any acoustic issues of adjoining properties as well as any health and safety issues of either mounting the wind turbines at roof level or at ground level somewhere towards the front access of the building.

Subject to further discussion with the Planning Department and the Client it is unlikely that wind turbines will be practical for this site. For this reason we have not investigated the application of wind turbines further.

6.6. BIOMASS BOILERS

illustrative images only

The biomass system can burn directly to provide heat within the building, although biomass boilers require storage frequent cleaning and a high level of maintenance. The size of the development dictates that a high level of maintenance throughout the services within the building must be available.

To this degree the Client is willing to consider this option as a means of achieving a substantial part of the renewable energy requirement. A secondary source of heating over and above the ground source heat pump option for underfloor heating will be provided in terms of a natural gas fired boiler system for top up and peak demand requirements. The maximum heating demand for the development at Athlone House is 150kW. It is believed that if a biomass boiler were utilised to provide part of the heating/hot water service load then this will be sized in the order of 95kW with a run time of approximately 950 hours.

This would require approximately 45 tonnes/year of wood pellets and an estimate fuel store in the realm of 53m³ (6 deliveries/year). Due to fuel storage and logistical issues Biomass has not been considered for this dwelling.

6.7. SUMMARY OF PROPOSED RENEWABLE ENERGY SYSTEMS

	System	Energy/Annum	% of Annual Energy
1)	Photovoltaics	5,766 kWh/year	8 %
2)	Solar Water Panels	2,900 kWh/year	4 %
3)	Ground Source heat pump	39,000 kWh/year	53 %
	low and zero carbon technology site energy usage.	47,666 kWh/year	65%

7. CONCLUSION

7.1. REQUIREMENT FOR THE ON-SITE RENEWABLE ENERGY

Estimated Building Energy demand based on SAP calculations prepared (Appendix C).

	Energy Demand	Total			
	kWh/Year				
Space Heating	59162.91				
Hot Water	937.78				
Cooling	342.99	73414.88 kWh/Year			
Pumps & Fans	9689.1				
Lighting	3282.1				

The SAP target energy (TER) demand is 235504.79 KWh with associated CO_2 emissions of 20.94 kg CO_2/m^2

- To meet the London plan policy (20%) the total required renewable energy output needs to reduce site CO₂ emissions by at least **4.188 kg/m²**
- The total estimated annual building energy usage including onsite energy produced is 67648.88 KWh with associated CO₂ emissions of 13.45 kg CO₂/m² which is a reduction of 7.49 kg/m²

7.2. ACHIEVABLE TOTAL EMISSIONS REDUCTION

By utilising energy efficiency measures and supplying a majority of the development's energy requirements with low carbon technology (ASHP), and renewable technologies (Solar Thermal Panels & PV panels) a total level of emissions of **34 tonnes CO₂** per annum is predicted by SAP2009 (Appendix C). This equates to a saving of **20 tonnes CO₂** per annum or **36** % over the target level (set within Part L 2010). With these design inclusions the property would also meet the Code for Sustainable Home level 4 target at this initial assessment (Appendix F) and complies with the building regulation 2010 (Appendix E).

Buiding regulation assessment

 kg/m²/year

 TER
 20.94

 DER
 13.45

The following code calculations are taken from the Code for Sustainable Homes Technical Guide (Nov 10)

Ene 1 Assessment - Dwelling Emission Rate

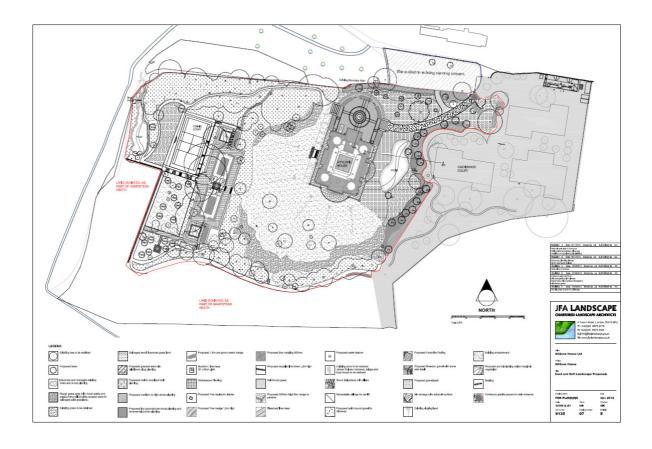
Total Energy Type CO2 Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		13.45	(ZC1)
TER		20.94	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		13.45	
% improvement DER/TER	35.8		

Total Energy Type CO2 Emissions for Codes Levels 6

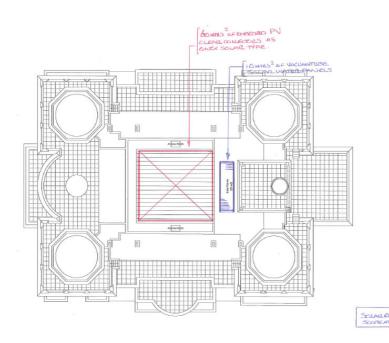
	kg/m²/year
DER accounting for SAP Section 16 allowances	13.45 (ZC1)
CO2 emissions from appliances, equation (L14)	3.95 (ZC2)
CO2 emissions from cooking, equation (L16)	0.1 (ZC3)
Net CO2 emissions	17.5 (ZC8)

Result:


Credits awarded for Ene 1 = 4

Code Level = 4

APPENDIX A SITE PLAN



APPENDIX B

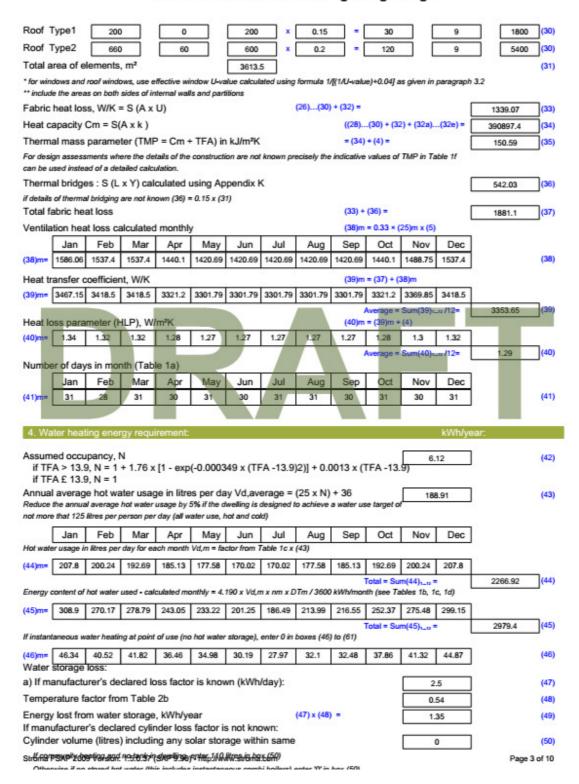
PROPOSED ROOF PLANT

The control of the co

APPENDIX C

SAP WORKSHEET

METHODOLOGY BY SAP2009

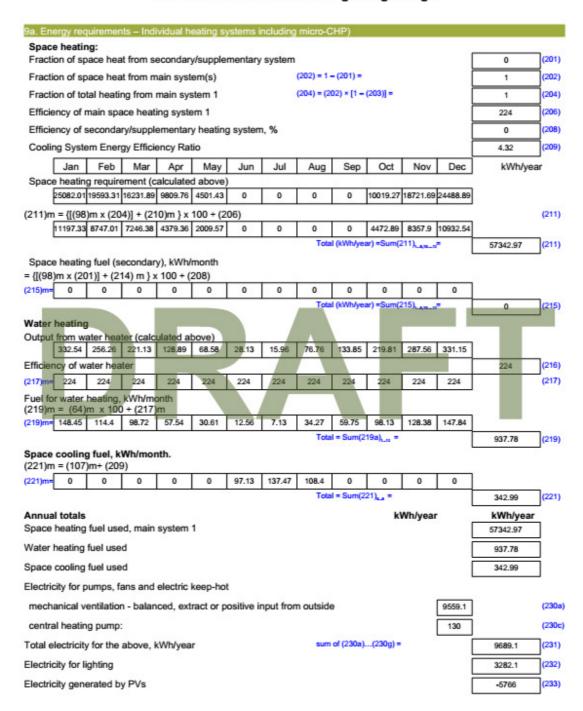


					User D	etails:						
Assessor Name: Software Name:									on: 1.5.0.37			
Address :	Athl	one Hou	ise Han			ONDON						
Overall dwelling dim			ioc, man	ipotoda	Luito, L	ONDON	, 140 410					
					Area	a(m²)		Ave He	ight(m)	1	Volume(m³)
Basement						560	(1a) x		3	(2a) =	1680	(3a)
Ground floor						823	(1b) x		4	(2b) =	3292	(3b)
First floor					8	11.75	(1c) x		3	(2c) =	2435.25	(3c)
Second floor						401	(1d) x		3	(2d) =	1203	(3d)
Total floor area TFA = (1	la)+(1b)+(1c)+(1d)+(1e)+(1r	1) 25	595.75	(4)			•		_
Dwelling volume						7	(3a)+(3t)+(3c)+(3d)+(3e)+	.(3n) =	8610.25	(5)
2. Ventilation rate:												
		nain eating		econdar eating	ry	other		total			m³ per hou	r
Number of chimneys	Ë	4] • [0	1 + [0] • [4	×4	40 =	160	(6a)
Number of open flues		0	1+	0	1 + [0	j - [0	×	20 =	0	(6b)
Number of intermittent fa	ans			0	7			0	×	10 =	0	(7a)
Number of passive vents	s				- /		l (0	×	10 =	0	(7b)
Number of flueless gas t	ires	Г	1		F			0	×4	40 =	o hanges per ho	(7c)
Infiltration due to chimne	evs. flue	es and fa	ans = (6:	a)+(6b)+(7	(a)+(7b)+(7c) =		160	<u> </u>	+ (5) =	0.02	(8)
If a pressurisation test has							continue fi			(-)	0.02	
Number of storeys in t	the dwe	elling (na	5)								0	(9)
Additional infiltration									[(9)	-1]x0.1 =	0	(10)
Structural infiltration: 0							•	ruction			0	(11)
if both types of wall are p deducting areas of open				ponding to	the great	er wall are	a (after					
If suspended wooden				ed) or 0	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, er	nter 0.0	5, else e	enter 0								0	(13)
Percentage of window	s and o	doors dr	aught st	ripped							0	(14)
Window infiltration						0.25 - [0.2	x (14)+	100] =			0	(15)
Infiltration rate						(8) + (10)	+(11)+(12) + (13) +	(15) =		0	(16)
Air permeability value,	, q50, e	xpresse	d in cub	ic metre	s per ho	our per s	quare m	etre of e	nvelope	area	5	(17)
If based on air permeab											0.27	(18)
Air permeability value appli			on test has	been dor	e or a deg	gree air pe	rmeability	is being us	ed			٦
Number of sides on white Shelter factor	on shelt	ered				(20) = 1 -	10 075 × /	1911 =			0.85	(19)
Infiltration rate incorpora	tine el	oltor for	tor			(21) = (18						۲.,
Infiltration rate incorpora	-					,2-,-(10	, ~ (=0) =				0.23	(21)
Jan Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	
						9	9-1				_	

Vind Factor (22a)m = (22)m + 4	Monthly average wind speed from Table 7	
Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m O 31 0 29 0 29 0 28 0 23 0 22 0 21 0 21 0 24 0 28 0 27 0 29 Calculate effective air change rate for the applicable case if mechanical ventilation if the pump using Appendix N, (23e) = (23a) × Fmv (equation (N5)) , otherwise (23e) = (23a) If exhaust air heat pump using Appendix N, (23e) = (23a) × Fmv (equation (N5)) , otherwise (23e) = (23a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 - (23c) + 100] (24a) (24a)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(22)m= 5.4 5.1 5.1 4.5 4.1 3.9 3.7 3.7 4.2 4.5 4.8 5.1	
Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m Calculate effective air change rate for the applicable case (21a) x (22a)m Calculate effective air change rate for the applicable case (21a) x (22a)m Calculate effective air change rate for the applicable case (21a) x (22a)m (22b)m (22a) x (22a)m (22a) x (22a)	Wind Factor (22a)m = (22)m + 4	
0.31		
Calculate effective air change rate for the applicable case If mechanical ventilation: If exhaust air heat pump using Appendix N, (23e) = (23a) × Fmv (equation (N5)) , otherwise (23b) = (23a) If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 0	Adjusted infiltration rate (allowing for shelter and wind speed) = (21a) x (22a)m	
If mechanical ventilation: If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a) If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 0 (23c) a) If balanced mechanical ventilation with heat recovery (MVHR) (24a) m = (22b)m + (23b) × [1 - (23c) + 100] (24a)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.31 0.29 0.29 0.26 0.23 0.22 0.21 0.21 0.24 0.26 0.27 0.29	
If exhaust air heat pump using Appendix N, (23b) = (23a) × Fmv (equation (N5)), otherwise (23b) = (23a)		
If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) =		
a) If balanced mechanical ventilation with heat recovery (MVHR) (24a)m = (22b)m + (23b) × [1 - (23c) + 100] (24a)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
(24a)m=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
b) If balanced mechanical ventilation without heat recovery (MV) (24b)m = (22b)m + (23b) (24b)m 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
(24b)m=0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(2-2)
c) If whole house extract ventilation or positive input ventilation from outside if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 × (23b) (24c)m = 0.56 0.54 0.54 0.51 0.5 0.5 0.5 0.5 0.5 0.51 0.52 0.54 d) If natural ventilation or whole house positive input ventilation from loft if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0.5 + ((22b)m² × 0.5) (24d)m = 0 0 0 0 0 0 0		(24b)
if (22b)m < 0.5 × (23b), then (24c) = (23b); otherwise (24c) = (22b) m + 0.5 × (23b) (24c)m = 0.56		100
(24c)m= 0.56 0.54 0.54 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.54 d) If natural ventilation or whole house positive input ventilation from loft if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0,5 + [(22b)m² x 0.5] (24d)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
if (22b)m = 1, then (24d)m = (22b)m otherwise (24d)m = 0,5 + [(22b)m² x 0.5] Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m² 0.56 0.54 0.54 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.51 0.52 0.54 3. Heat losses and heat loss parameter: ELEMENT Gross area (m²)		(24c)
C24d) C24d C24d C24d C24d C24d C24d C24d C24d C24d C24d C24d C24d C24d C25d	d) If natural ventilation or whole house positive input ventilation from loft	
Effective air change rate - enter (24a) or (24b) or (24c) or (24d) in box (25) (25)m= 0.58		
Company Comp	(24d)m= 0 0 0 0 0 0 0 0 0 0 0 0	(24d)
3. Heat losses and heat loss parameter: ELEMENT Gross area (m²) Openings area (m²) Met Area A , m² U-value W/m²K AX U (W/K) kJ/m²-K kJ/K Doors Type 1 6 x 1.8 = 10.8 (26) Doors Type 2 4 x 1.8 = 7.2 (26) Windows Type 3 4 x 1.8 = 7.2 (26) Windows Type 1 122 x1/(1/(1.4) + 0.04) = 161.74 (27) Windows Type 2 122.36 x1/(1/(1.4) + 0.04) = 162.22 (27) Windows Type 3 121.32 x1/(1/(1.4) + 0.04) = 160.84 (27) Windows Type 4 122.36 x1/(1/(1.4) + 0.04) = 162.22 (27) Windows Type 5 122.36 x1/(1/(1.4) + 0.04) = 162.22 (27) Windows Type 4 122.36 x1/(1/(1.4) + 0.04) = 162.22 (27) Windows Type 4 122.36 x1/(1/(1.4) + 0.04) = 162.22 (27) Windows Type 5 1 x 0.15 = 82.65 110 60610 (28) Walls Type 1 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type 2 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type 3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)		
ELEMENT Gross area (m²) Openings m² Net Area A ,m² U-value W/m²K A X U (W/K) k-value kJ/m²-K A X k kJ/K Doors Type 1 6 x 1.8 = 10.8 (26) Doors Type 2 4 x 1.8 = 7.2 (26) Doors Type 3 4 x 1.8 = 7.2 (26) Windows Type 1 122 x1/[1/(1.4)+0.04] = 161.74 (27) Windows Type 2 122.36 x1/[1/(1.4)+0.04] = 162.22 (27) Windows Type 3 121.32 x1/[1/(1.4)+0.04] = 160.84 (27) Windows Type 4 122.36 x1/[1/(1.4)+0.04] = 162.22 (27) Rooflights 60 x 1/[1/(2)+0.04] = 120 (27b) Floor 551 x 0.15 = 82.65 110 60610 (28) Walls Type1 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	(25)mi= 0.56 0.54 0.54 0.51 0.5 0.5 0.5 0.5 0.5 0.5 0.54	(25)
area (m²) m² A ,m² W/m2K (W/K) kJ/m²-K kJ/K Doors Type 1	3. Heat losses and heat loss parameter:	
Doors Type 2	ELLINEITI	
Doors Type 3	Doors Type 1 6 x 1.8 = 10.8	(26)
Windows Type 1 122 x1/[1/(1.4) + 0.04] = 161.74 (27) Windows Type 2 122.36 x1/[1/(1.4) + 0.04] = 162.22 (27) Windows Type 3 121.32 x1/[1/(1.4) + 0.04] = 160.84 (27) Windows Type 4 122.36 x1/[1/(1.4) + 0.04] = 162.22 (27) Rooflights 60 x 1/[1/(2) + 0.04] = 120 (27b) Floor 551 x 0.15 = 82.65 110 60610 (28) Walls Type1 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Doors Type 2 4 x 1.8 = 7.2	(26)
Windows Type 2 122.36 121.32	Doors Type 3 4 x 1.8 = 7.2	(26)
Windows Type 3 121.32 x1/[1/(1.4)+0.04] = 160.84 (27) Windows Type 4 122.36 x1/[1/(1.4)+0.04] = 162.22 (27) Rooflights 60 x 1/[1/(2)+0.04] = 120 (27b) Floor 551 x 0.15 = 82.65 110 60610 (28) Walls Type 1 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type 2 501.14 0 501.14 x 0.19 = 96.22 190 95216.6 (29) Walls Type 3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Windows Type 1 122 x1/[1/(1.4)+ 0.04] = 161.74	(27)
Windows Type 4 122.36 x1/[1/(1.4) + 0.04] = 162.22 (27) Rooflights 60 x 1/[1/(2) + 0.04] = 120 (27b) Floor 551 x 0.15 = 82.65 110 60610 (28) Walls Type 1 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type 2 501.14 0 501.14 x 0.19 = 96.22 190 95216.6 (29) Walls Type 3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Windows Type 2 122.36 x1/[1/(1.4)+ 0.04] = 162.22	(27)
Rooflights 60 x 1/[1/(2) + 0.04] = 120 (27b) Floor 551 x 0.15 = 82.65 110 60610 (28) Walls Type1 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type2 501.14 0 501.14 x 0.19 = 96.22 190 95216.6 (29) Walls Type3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Windows Type 3 121.32 x1/[1/(1.4)+ 0.04] = 160.84	(27)
Floor	Windows Type 4 122.36 x1/[1/(1.4)+ 0.04] = 162.22	(27)
Walls Type1 501.14 0 501.14 x 0.19 = 95.22 190 95216.8 (29) Walls Type2 501.14 0 501.14 x 0.19 = 95.22 190 95216.8 (29) Walls Type3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Rooflights 60 x 1/[1/(2) + 0.04] = 120	(27b)
Walls Type2 501.14 0 501.14 x 0.19 = 95.22 190 95216.6 (29) Walls Type3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Floor 551 x 0.15 = 82.65 110	60610 (28)
Walls Type3 224.5 0 224.5 x 0.19 = 42.65 190 42655 (29)	Walls Type1 501 14 0 501 14 x 0 19 = 95 22 190	95216.6 (29)
	301.14	95218 8 (29)
Walls Tyne4 173.68 0 173.68 v 0.10 = 33 100 23000.3 (20)		50210.0 (20)
173.06 1 173.	Walls Type2 501.14 0 501.14 x 0.19 = 95.22 190	
Walls Type5 300 0 300 x 0.19 = 57 190 57000 (29)	Walls Type2 501.14 0 501.14 x 0.19 = 95.22 190	

Hot water storage loss factor	from Table 2 (kWh	h/litre/day)			0			(51)
Volume factor from Table 2a					0			(52)
Temperature factor from Tab	le 2b				0			(53)
Energy lost from water stora	ge, kWh/year		((50) x (51) x (52)	x (53) =	0			(54)
Enter (49) or (54) in (55)					1.3	35		(55)
Water storage loss calculate	d for each month		((56)m = (55) × (4	1)m	3			
(56)m= 41.85 37.8 41.85	40.5 41.85	40.5 41.85	41.85 40.5	41.85	40.5	41.85		(56)
If cylinder contains dedicated solar	storage, (57)m = (56)m	x [(50) = (H11)] + (5	60), else (57)m = (5	6)m where (i	111) is from	n Appendix	н	
(57)m= 41.85 37.8 41.86	40.5 41.85	40.5 41.85	41.85 40.5	41.85	40.5	41.85		(57)
Primary circuit loss (annual)	from Table 3	•			36			(58)
Primary circuit loss calculate		59)m = (58) + 3	65 × (41)m					
(modified by factor from Ta				er thermos	stat)			
(59)m= 30.58 27.62 28.74	20.71 13.76	13.02 13.45	14.68 22.49	28.74	29.59	30.58		(59)
Combi loss calculated for ea	ch month (61)m = ((60) + 365 × (41)m					
(61)m= 0 0 0	0 0	0 0	0 0	0	0	0		(61)
,,							FO) (O4)	
Total heat required for water				1			59)m + (61)m	
(62)m= 381.33 335.58 349.3		254.77 241.79	270.52 279.54		345.57	371.58		(62)
Solar DHW input calculated using A			Annual Control	lar contributi	on to water	heating)		
(add additional lines if FGHF				1				
(63)m= -48.79 -79.32 -128.2	5 -175.37 -220.25	-226.63 -225.82	-193.76 -145.69	9 -103.15	-58.01	-40.43	-	(63)
Output from water heater				-			-	
(64)m= 332.54 256.26 221.1	3 128.89 68.58	28.13 15.96	76.76 133.85	219.81	287.56	331.15		_
			Output from	water heater	(annual)	.12	2100.62	(64)
Heat gains from water heating	g, kWh/month 0.25	5 ' [0.85 × (45)n	n + (61)m] + 0.8	x [(46)m	+ (57)m ·	+ (59)m]		
(65)m= 160.65 142.16 149.1	7 129.79 122.03	109.73 106.25	116.37 122.39	140.39	147.67	157.41		(65)
include (57)m in calculatio	n of (65)m only if cy	ylinder is in the	dwelling or hot	water is fro	om comr	nunity he	ating	
5. Internal gains (see Table	5 and 5a):							
Metabolic gains (Table 5), W	atts							-
Jan Feb Ma		Jun Jul	Aug Ser	Oct	Nov	Dec		
(66)m= 366.98 366.98 366.9	8 366.98 366.98	366.98 366.98	366.98 366.98	366.98	366.98	366.98		(66)
Lighting gains (calculated in	Appendix L. equati	ion L9 or L9a). a	ilso see Table !	5				
(67)m= 464.62 412.67 335.6		160.34 173.25	225.2 302.27		447.95	477.53		(67)
Appliances gains (calculated								3.10
(68)m= 2593.21 2620.12 2552.3				3 2125.29	2307 52	2478.8		(68)
					2007.02	2410.0		
Cooking gains (calculated in		77.81 77.81	77.81 77.81		77.81	77.81		(69)
, , ,		77.61 77.61	77.81	77.01	77.61	77.61		(03)
Pumps and fans gains (Tabl			T	1				
(70)m= 10 10 10	10 10	10 10	10 10	10	10	10		(70)
Losses e.g. evaporation (neg	gative values) (Tabl	le 5)						
(71)m= -244.66 -244.66 -244.6	6 -244.66 -244.66	-244.66 -244.66	-244.66 -244.66	8 -244.66	-244.66	-244.66		(71)
Water heating gains (Table 5	5)		10					
(72)m= 215.93 211.55 200.5	180.26 164.02	152.4 142.81	156.42 169.99	188.69	205.09	211.57		(72)
Total internal gains =	10 10	(66)m + (67)n	m + (68)m + (69)m	+ (70)m + (7	1)m + (72)r	n		
(73)m= 3483.9 3454.49 3298.	66 3052.43 2789.81	2577.34 2466.24	2504.88 2663.3	3 2907.92	3170.71	3378.04		(73)
Stroma FSAP 2009 Version: 1.5.0.3	7 (SAP 9.90) • http://ww	vw.stroma.com					Page 4	of 10

6. Sola	ar gai	ns:											
		calculated using			a and		tions	to convert to the	applic				
Orienta	Orientation: Access Factor Table 6d			Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Marth											1	٦	
	0.9x	0.77	×	122	×	10.73	×	0.68	×	0.7	-	431.67	(74)
North	0.9x	0.77	x	122	×	20.36	×	0.68	×	0.7	-	819.32	(74)
North	0.9x	0.77	x	122	×	33.31	x	0.68	×	0.7	-	1340.47	(74)
North	0.9x	0.77	x	122	×	54.64	x	0.68	×	0.7	٠.	2198.91	(74)
North	0.9x	0.77	X	122	×	75.22	x	0.68	×	0.7		3026.98	(74)
North	0.9x	0.77	×	122	×	84.09	×	0.68	×	0.7	_	3384.07	(74)
North	0.9x	0.77	x	122	×	79.12	x	0.68	×	0.7	•	3184.08	(74)
North	0.9x	0.77	x	122	×	61.56	x	0.68	×	0.7	•	2477.61	(74)
North	0.9x	0.77	x	122	×	41.09	×	0.68	×	0.7	-	1653.43	(74)
North	0.9x	0.77	x	122	×	24.81	x	0.68	×	0.7] -	998.63	(74)
North	0.9x	0.77	x	122	×	13.22	×	0.68	×	0.7] =	531.94	(74)
North	0.9x	0.77	x	122	×	8.94	x	0.68	×	0.7] -	359.96	(74)
East	0.9x	1	X	122.36	×	19.87	×	0.68	×	0.7	1	802.11	(76)
East	0.9x	1	×	122.36	×	38.52	×	0.68	×	0.7	-	1554.72	(76)
East	0.9x	1	x	122.36	×	61.57	×	0.68	×	0.7] =	2484.94	(76)
East	0.9x	1	×	122.36	×	91.41	×	0.68	×	0.7	•	3689.54	(76)
East	0.9x	1	x	122.36	×	111.22	×	0.68	×	0.7	-	4489.12	(76)
East	0.9x	1	x	122.36	×	116.05	×	0.68	×	0.7	-	4684.17	(76)
East	0.9x	1	x	122.36	×	112.64	×	0.68	×	0.7] -	4546.52	(76)
East	0.9x	1	x	122.36	×	98.03	×	0.68	×	0.7		3956.93	(76)
East	0.9x	1	x	122.36	×	73.6	×	0.68	×	0.7		2970.84	(76)
East	0.9x	1	x	122.36	×	46.91	x	0.68	x	0.7		1893.35	(76)
East	0.9x	1	x	122.36	×	24.71	x	0.68	x	0.7	•	997.23	(76)
East	0.9x	1	x	122.36	×	16.39	x	0.68	x	0.7	•	661.66	(76)
South	0.9x	0.77	x	121.32	×	47.32	x	0.68	x	0.7	j -	1893.86	(78)
South	0.9x	0.77	x	121.32	×	77.18	×	0.68	×	0.7	j -	3088.84	(78)
South	0.9x	0.77	x	121.32	×	94.25	×	0.68	×	0.7	j -	3771.69	(78)
South	0.9x	0.77	x	121.32	×	105.11	×	0.68	×	0.7	j -	4206.63	(78)
South	0.9x	0.77	x	121.32	×	108.55	x	0.68	×	0.7	•	4344.12	(78)
South	0.9x	0.77	x	121.32	×	108.9	×	0.68	×	0.7	j -	4358.05	(78)
South	0.9x	0.77	x	121.32	×	107.14	x	0.68	x	0.7	j -	4287.59	(78)
South	0.9x	0.77	x	121.32	×	103.88	×	0.68	×	0.7	j -	4157.34	(78)
South	0.9x	0.77	x	121.32	×	99.99	×	0.68	×	0.7	j -	4001.6	(78)
South	0.9x	0.77	x	121.32	×	85.29	x	0.68	x	0.7	j -	3413.34	(78)
South	0.9x	0.77	x	121.32	×	56.07	×	0.68	×	0.7	1 -	2243.87	(78)
South	0.9x	0.77	x	121.32	×	40.89	×	0.68	×	0.7	1 -	1636.42	(78)
							1		1				

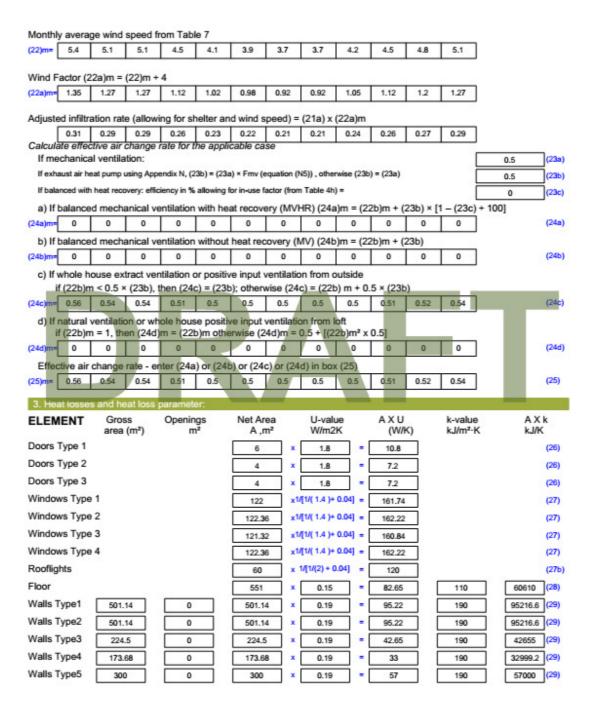


West ().9x	0.77	×	122.36		x 🗀	19.87	×	0.68	×	0.7		802.11	(80)
West	0.9x	0.77	x	122.36		к 🗀	38.52	x	0.68	×	0.7		1554.72	(80)
West ().9x	0.77	×	122.36		x 🗔	61.57	x	0.68	×	0.7	-	2484.94	(80)
West).9x	0.77	×	122.36		x 🔚	91.41	x	0.68	×	0.7	-	3689.54	(80)
West ().9x	0.77	×	122.36		x 🗔	111.22	x	0.68	×	0.7		4489.12	(80)
West).9x	0.77	×	122.36		x 🗀	116.05	x	0.68	×	0.7	_	4684.17	(80)
West (0.9x	0.77	×	122.36	\equiv	× 🗂	112.64	x	0.68	×	0.7	_	4546.52	(80)
West ().9x	0.77	×	122.36		× 🗀	98.03	×	0.68	×	0.7	_	3956.93	(80)
West	0.9x	0.77	×	122.36		× 🔚	73.6	×	0.68	×	0.7		2970.84	(80)
West).9x	0.77	×	122.36		x 🔽	46.91	×	0.68	×	0.7		1893.35	(80)
West).9x	0.77	×	122.36		x 🗀	24.71	×	0.68	×	0.7	_	997.23	(80)
West ().9x	0.77	ī×	122.36	<u> </u>	x 🔚	16.39	×	0.68	×	0.7		661.66	(80)
Rooflights ().9x	1	ī×	60		× 🗀	26	×	0.76	×	0.8	_	853.63	(82)
Rooflights ().9x	1	×	60	_	x 💳	54	x	0.76	×	0.8	_	1772.93	(82)
Rooflights).9x	1	ī×	60	₹.	×	94	×	0.76	×	0.8	╡.	3086.21	(82)
Rooflights).9x	1	ī ×	60		× 🗂	150	×	0.76	×	0.8	╡.	4924.8	(82)
Rooflights).9x	1	ī×	60	Ti.	x 🗀	190	×	0.76	×	0.8	╡.	6238.08	(82)
Rooflights	0.9x	1	ī x	60			201	×	0.76	×	0.8	_	6599.23	(82)
Rooflights).9x	1	ī x	60	=	x \	194	×	0.76	×	0.8	╡.	6369.41	(82)
Rooflights).9x	1	ĭ 🔻	60	=1	×	164	i x	0.76	×	0.8	_	5384.45	(82)
Rooflights).9x	1	ĭ 🖈	60		×	116	1 x	0.76	×	0.8		3808.51	(82)
Rooflights).9x	1	j ×	60			68	×	0.76	×	0.8	_	2232.58	(82)
Rooflights).9x	1	ī 🖈	60	7		33	×	0.76	×	0.8	╡.	1083.46	(82)
Rooflights).9x	1	ī 🖈	60		×	21	×	0.76	×	0.8	╡.	689.47	(82)
			_									_		
Solar gain	s in w	atts, calcu	lated	for each m	onth			(83)m	= Sum(74)m.	(82)m				
(83)m= 478	33.38	8790.52 131	88.24	18709.43 225	87.43	23709.	69 22934.11	1993	3.27 15405.22	10431.	25 5853.73	4009.1	7	(83)
Total gain	s – in	ternal and	solar	(84)m = (7	3)m +	(83)	m , watts						200	
(84)m= 826	7.28	12245 164	8.884	21761.85 253	77.24	26287.	03 25400.35	2243	8.15 18068.55	13339.	17 9024.44	7387.2	1	(84)
7. Mean	intern	al tempera	ture	(heating se	ason)									
Tempera	ture c	during heat	ing p	eriods in th	e livir	g are	a from Tal	ble 9	Th1 (°C)				21	(85)
Utilisation	n fact	or for gains	for I	iving area,	h1,m	(see	Table 9a)							
J	an	Feb 1	/lar	Apr	May	Jur	ı Jul	A	ug Sep	Oct	Nov	Dec		
(86)m=	1	0.99 0.	.98	0.93	0.83	0.67	0.5	0.5	55 0.83	0.97	1	1		(86)
Mean int	ernal	temperatur	e in l	iving area	T1 (fo	llow s	teps 3 to 7	7 in T	able 9c)				_	
	3.54		.36		0.51	20.82	-	20.		19.93	19.06	18.59		(87)
Tempera	ture c	luring heat	ina n	orinds in re	et of	twalli	na from Ta	ahla (9, Th2 (°C)		100		_	
_	0.82		.83		9.87	19.87		19.		19.86	19.85	19.83		(88)
Little attac						2 /	ana Tabla	0-1					_	
	n facti		97	est of dwel	ling, 1	0.59	_	9a) 0.4	12 0.77	0.96	0.99	1	7	(89)
									20 100		5.55		_	100)
								_	to 7 in Tabl	_	4=	455	7	(00)
(90)m= 16	3.51	16.98 17	.72	18.58 1	9.34	19.72	19.84	19.	84 19.53	18.56	17.29	16.6		(90)

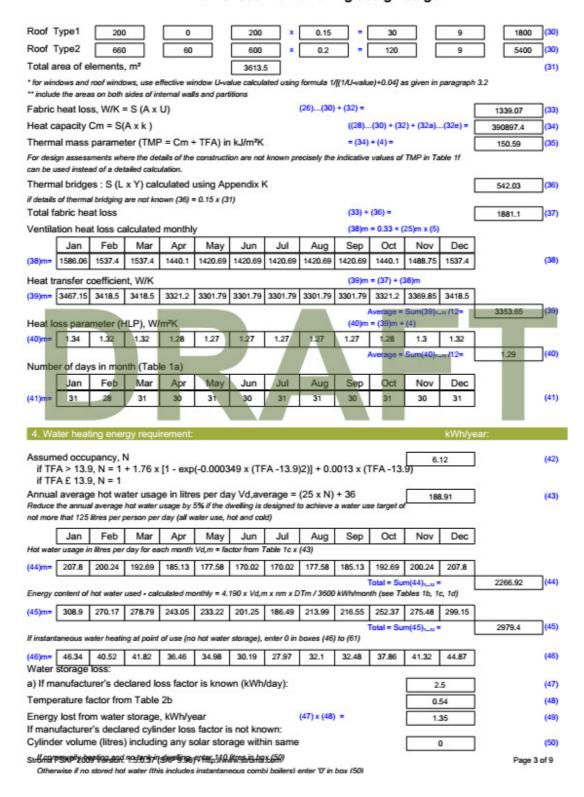
										LA = Livin	g area + (4	4) =	0.04	(91)
Moor	interna	l tomper	rature (fo	r the wh	olo dwo	lling) – fl	A v T1	+ /1 _ fl	A) × T2					_
(92)m=	16.6	17.05	17.78	18.63	19.38	19.77	19.89	19.88	19.57	18.62	17.37	16.68		(92)
											17.57	10.00		(32)
(93)m=	16.6	17.05	he mear	18.63	19.38	19.77	19.89	4e, whe	19.57	18.62	17.37	16.68		(93)
					19.36	19.77	19.09	19.00	19.57	10.02	11.31	10.06		(50)
			uirement	1/4				T						-
			ternal ter or gains	-		ned at ste	ap 11 of	l able 9t	o, so tha	t 11,m=(/6)m an	d re-calc	ulate	
uie u		Feb	Mar			lun	Jul	Aug	Sep	Oct	Nov	Dec		
I Isilia	Jan		ains, hm	Apr	May	Jun	Jui	Aug	Sep	OCI	INOV	Dec		
(94)m=	0.99	0.98	0.96	0.89	0.76	0.58	0.38	0.42	0.75	0.94	0.99	1		(94)
						0.56	0.36	0.42	0.75	0.54	0.55			(54)
		_	, W = (9			+500+05	0500.07	9430.36	12501 20	12508.21	8929.66	7356.68		(95)
			15734.59				9568.67	9430.36	13501.36	12508.21	8929.00	/300.08		(50)
	_		mal tem	· ·							-			(00)
(96)m=	4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
		_	an intern		_	_				<u> </u>				
(97)m=	41935.51	41204.54	37551.65	32993.56	25372.65	17062.55	9869.53	9841.09	17413.58	25974.98	34932.01	40271.86		(97)
			ement fo			Wh/mon	th = 0.02	4 x [(97)m – (95					
(98)m=	25082.01	19593.31	16231.89	9809.76	4501.43	0	0	0	0	10019.27	18721.69	24488.89		
-							- 4	Tota	per year	(kWh/year) = Sum(9	8)1.44.11 =	128448.26	(98)
Spac	e heatin	g requir	ement in	kWh/m²	/year		- 4			1			49.48	(99)
90 0		- 11	1000		ATTENDED TO		-	/ 18	_	-			100000000000000000000000000000000000000	
			- iromor											
	1000	- 40	Uiremer		San Tal	hin 10h								
	lated fo	r June,	July and	August.			hil	Δυα	Sen	Oct	Nov	Dec		
Calcu	Jan	Feb	July and Mar	August. Apr	May	Jun	Jul	Aug	Sep	Oct	Nov e from T	Dec		
Calcu	Jan loss rat	Feb e Lm (ca	July and Mar Iculated	August. Apr using 2	May 5°C inter	Jun nal temp	perature	and exte	ernal ter	nperatur	e from T	able 10)	ı	(100)
Calcu Heat (100)ma	Jan loss rati	Feb e Lm (ca	July and Mar Iculated	August. Apr	May	Jun nal temp		and exte	Statement and	200				(100)
Heat (100)m= Utilisa	Jan loss rate 0	Feb e Lm (ca o ctor for k	Mar Mar alculated 0 oss hm	August. Apr using 2:	May 5°C inter 0	Jun rnal temp 28395.37	perature 20471.09	and exte	o 0	o 0	e from T	able 10) 0	ı	
Heat (100)m= Utilisa (101)m=	Jan loss rate 0 ation fac	Feb e Lm (ca 0 ctor for lo	Mar Mar alculated 0 oss hm	August. Apr using 25 0	May 5°C inter 0	Jun mal temp 28395.37 0.79	perature	and exte	ernal ter	nperatur	e from T	able 10)	ı	(100) (101)
Heat (100)m= Utilisa (101)m= Usefu	Jan loss ration factors, here	Feb e Lm (ca 0 ctor for k	Mar liculated 0 oss hm 0 Vatts) = (August. Apr using 25 0 0 (100)m x	May 5°C inter 0 0	Jun nal temp 28395.37 0.79	0.88	and exte 20471.09 0.85	o 0	0 0	e from T 0	able 10) 0	ı	(101)
Calcu Heat (100)m= Utilisa (101)m= Usefu (102)m=	Jan loss rate 0 ation face 0 ul loss, h	Feb ctor for k	Mar alculated 0 oss hm 0 Vatts) = 0	August. Apr using 25 0 0 (100)m x	0 0 (101)m	Jun nal temp 28395.37 0.79	0.88 17972.9	and exter 20471.09 0.85	0 0	o 0	e from T	able 10) 0		
Heat (100)m= Utilisa (101)m= Useft (102)m= Gains	Jan loss rate 0 ation fac	Feb e Lm (ca 0 ctor for k 0 nmLm (V 0 gains ca	Mar alculated 0 oss hm 0 Vatts) = 0 lculated	August. Apr using 29 0 0 (100)m x for appli	May 5°C inter 0 (101)m 0 cable we	Jun nal temp 28395.37 0.79 22499.97 eather re	0.88 17972.9 egion, se	and exter 20471.09 0.85 17361.28 e Table	0 0 0 0	0 0	e from T 0 0	able 10) 0		(101) (102)
Calcu Heat (100)ms Utiliss (101)ms Usefu (102)ms Gains (103)ms	Jan loss ration factor of the loss of the	Feb c Lm (ca 0 0 ctor for kc 0 0 mmLm (V 0 gains ca 0 0	July and Mar liculated 0 oss hm 0 Vatts) = 0 liculated 0	Apr using 25 0 (100)m x 0 for appli	0 (101)m 0 cable we	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58	0.88 17972.9 egion, se 29451.7	20471.09 0.85 17361.28 e Table 26412.8	0 0 0 0 10)	0 0 0	0 0 0	able 10) 0		(101)
Calcu Heat (100)ma Utilisa (101)ma Usefu (102)ma Gains (103)ma Space	Jan loss ration factor of the loss of the	Feb e Lm (ca 0 0 ctor for k 0 ctor	July and Mar sliculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo	Apr using 29 0 (100)m x 0 for appli 0 r month,	May 5*C inter 0 0 (101)m 0 cable we 0 whole o	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58	0.88 17972.9 egion, se 29451.7	20471.09 0.85 17361.28 e Table 26412.8	0 0 0 0 10)	0 0 0	0 0 0	able 10) 0	c (41)m	(101) (102)
Calcu Heat (100)ma Utiliss (101)ma Usefu (102)ma (103)ma Space set (1	Jan loss rate 0 ation face 0 loss, h 0 s (solar to 0 octobre 0 oct	Feb e Lm (ca 0 0 ctor for k 0 0 mmLm (V 0 gains ca 0 g require o zero if (July and Mar sliculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo (104)m <	August. Apr using 29 0 (100)m x 0 for appli 0 r month, 3 x (98	May 5°C inter 0 0 (101)m 0 cable we 0 whole co	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continue	and exter 20471.09 0.85 17361.28 the Table 26412.8 ous (kW	0 0 10) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 24 x [(10	e from T 0 0 0 0 0 0 0 0 0 ()	able 10) 0 0 0 0 102)m] 3	c (41)m	(101) (102)
Calcu Heat (100)ma Utilisa (101)ma Usefu (102)ma Gains (103)ma Space	Jan loss ration factor of the loss of the	Feb e Lm (ca 0 0 ctor for k 0 ctor	July and Mar sliculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo	Apr using 29 0 (100)m x 0 for appli 0 r month,	May 5*C inter 0 0 (101)m 0 cable we 0 whole o	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58	0.88 17972.9 egion, se 29451.7	20471.09 0.85 17361.28 e Table 26412.8	0 0 10) 0 0 0 10) 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 24 x [(10 0	e from T 0 0 0 0 0 0 0 33)m - (able 10) 0	3) (A)	(101) (102) (103)
Calcument (100)ms Utiliss (101)ms Usefu (102)ms Gains (103)ms Space set (104)ms	lated for Jan loss rate 0 ation factor facto	Feb e Lm (ca 0 ctor for lc 0 0 mmLm (V 0 gains ca 0 o g require o zero if (July and Mar sliculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo (104)m <	August. Apr using 29 0 (100)m x 0 for appli 0 r month, 3 x (98	May 5°C inter 0 0 (101)m 0 cable we 0 whole co	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continue	and exter 20471.09 0.85 17361.28 the Table 26412.8 ous (kW	0 0 10) 0 0 Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	e from T 0 0 0 0 0 0 0 104)	able 10) 0 0 0 102)m]3	21308.6	(101) (102) (103)
Calculate (100)ms (100)ms (101)ms Usefu (102)ms (103)ms Space (104)ms Coolee	lated for Jan loss ration faction fact	Feb e Lm (ca 0 0 ctor for lc 0 0 mmLm (V 0 gains ca 0 0 g require 0 zero if (July and Mar Ilculated 0 oss hm 0 Vatts) = 0 Ilculated 0 ement fo (104)m <	August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98)	May 5°C inter 0 0 (101)m 0 cable we 0 whole co	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continue	and exter 20471.09 0.85 17361.28 the Table 26412.8 ous (kW	0 0 10) 0 0 Total	0 0 0 0 24 x [(10 0	e from T 0 0 0 0 0 0 0 104)	able 10) 0 0 0 102)m]3	3) (A)	(101) (102) (103)
Calculate (100)ms Utiliss (101)ms Usefu (102)ms Space set (104)ms Coolee Interm	lated for Jan loss ration factor fact	r June Feb e Lm (ca 0 ctor for k 0 nmLm (V 0 gains ca 0 zero if (0 n factor (Tale	July and Mar Ilculated 0 pss hm 0 Vatts) = (0 Ilculated 0 ement for (104)m < 0 able 10b	August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98) 0	May 5°C inter 0 (101)m 0 cable we 0 whole color	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04	0.88 17972.9 egion, se 29451.7 continuo 8540.23	and extra 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 10) 0 Tota	0 0 0 0 24 x [(10 0 1 = Sum(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 102)m];	21308.6	(101) (102) (103)
Calculate (100)ms (100)ms (101)ms Usefu (102)ms (103)ms Space (104)ms Coolee	lated for Jan loss ration factor fact	Feb e Lm (ca 0 0 ctor for lc 0 0 mmLm (V 0 gains ca 0 0 g require 0 zero if (July and Mar Ilculated 0 oss hm 0 Vatts) = 0 Ilculated 0 ement fo (104)m <	August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98)	May 5°C inter 0 0 (101)m 0 cable we 0 whole co	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continue	and exter 20471.09 0.85 17361.28 the Table 26412.8 ous (kW	0 0 10) 0 0 Total f C = 0	0 0 0 0 24 x [(10 0 = Sum(e from T 0 0 0 0 0 033)m - (0 104) area + (4	able 10) 0 0 0 102)m]; 0 = 1) =	21308.6 0.28	(101) (102) (103) (104) (105)
Calcument (100)ms Useful (102)ms (103)ms Space (104)ms Cooled Interm (106)ms	lated for Jan loss ration faction fact	r June Feb e Lm (ca 0 ctor for k 0 mmLm (V 0 gains ca 0 zero if (0 n factor (Ta	July and Mar liculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo (104)m < 0 able 10b	August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98 0	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04	0.88 17972.9 egion, se 29451.7 continue 8540.23	and extr 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 10) 0 0 Total f C = 0	0 0 0 0 24 x [(10 0 1 = Sum(e from T 0 0 0 0 0 033)m - (0 104) area + (4	able 10) 0 0 0 102)m];	21308.6	(101) (102) (103)
Calculate (100)ms Utiliss (101)ms Usefu (102)ms (103)ms Space (104)ms Cooled Interm (106)ms Space	lated for Jan loss ration faction fact	r June	July and Mar liculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo (104)m < 0 ment for	August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98 0) 0	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04 0.25 × (105)	0.88 17972.9 egion, se 29451.7 continue 8540.23 0.25 × (106)r	and extr 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 10) 0 Total f C = 0 Total	0 0 0 0 24 x [(10 0 1 = Sum(cooled :	e from T 0 0 0 0 0 0 33)m - (0 104) area + (4	able 10) 0 0 0 102)m]; 0 = 1) =	21308.6 0.28	(101) (102) (103) (104) (105)
Calcument (100)ms Useful (102)ms (103)ms Space (104)ms Cooled Interm (106)ms	lated for Jan loss ration faction fact	r June Feb e Lm (ca 0 ctor for k 0 mmLm (V 0 gains ca 0 zero if (0 n factor (Ta	July and Mar liculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo (104)m < 0 able 10b	August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98 0	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04	0.88 17972.9 egion, se 29451.7 continue 8540.23	and extr 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 0 10) 0 Total f C = 0 Total 0	0 0 0 0 24 x [(10 0 1 = Sum(cooled :	e from T 0 0 0 0 0 0 33)m - (0 104) area + (4 0 104)	able 10) 0 0 0 102)m] 3	21308.6 0.28	(101) (102) (103) (104) (105)
Calcument (100)ms Utiliss (101)ms Usefu (102)ms (103)ms Space (104)ms Cooled Interm (106)ms Space	lated for Jan loss ration faction fact	r June	July and Mar liculated 0 oss hm 0 Vatts) = 0 liculated 0 ement fo (104)m < 0 ment for	August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98 0) 0	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04 0.25 × (105)	0.88 17972.9 egion, se 29451.7 continue 8540.23 0.25 × (106)r	and extr 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 0 10) 0 Total f C = 0 Total 0	0 0 0 0 24 x [(10 0 1 = Sum(cooled :	e from T 0 0 0 0 0 0 33)m - (0 104) area + (4 0 104)	able 10) 0 0 0 102)m]; 0 = 1) =	21308.6 0.28	(101) (102) (103) (104) (105)

	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	11.46 × 0.01 =	
Space heating - main system 2	(213) x	0 × 0.01 =	
Space heating - secondary	(215) x	0 × 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	11.46 × 0.01 =	107.47 (247)
Space cooling	(221)	11.46 × 0.01 =	39.31 (248)
Pumps, fans and electric keep-hot	(231)	11.46 × 0.01 =	1110.37 (249)
(if off-peak tariff, list each of (230a) to (230g) sepa Energy for lighting	arately as applicable and app (232)	ply fuel price according to	
Additional standing charges (Table 12)			0 (251)
	one of (233) to (235) x)	11.46 × 0.01 =	-660.78 (252)
Appendix Q items: repeat lines (253) and (254) as	s needed		
	7) + (250)(254) =		7544 (255)
Energy cost deflator (Table 12) Energy cost factor (ECF) SAP rating (Section 12) 12a. CO2 emissions – Individual heating system	Energy	Emission factor	0.47 (258 1.34 (257 81.27 (258 Emissions
Space heating (main system 1)	kWh/year	kg CO2/kWh	kg CO2/year
Space heating (main system 1)	(215) x	0.517	29646.32 (261) 0 (263)
Water heating	(219) x	0.517	0 (263)
Space and water heating	(261) + (262) + (263) + (264) =	0.517	30131.15 (265)
Space cooling	(221) x	0.517	177.33 (266)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517	5009.26 (267)
Electricity for lighting	(232) x	0.517	1696.85 (268)
Energy saving/generation technologies		0.529	-3050.21 (269)
Item 1		0.025	
	sun	n of (265)(271) =	
Item 1 Total CO2, kg/year CO2 emissions per m²			33964.37 (272)
Total CO2, kg/year CO2 emissions per m²		n of (265)(271) =	33964.37 (272) 13.08 (273)
Total CO2, kg/year		n of (265)(271) =	33964.37 (272) 13.08 (273)
Total CO2, kg/year CO2 emissions per m² El rating (section 14)		n of (265)(271) =	33964.37 (272) 13.08 (273)

Space heating (secondary)	(215) x	0	-	0	(263)
Energy for water heating	(219) x	2.92	-	2738.31	(264)
Space and water heating	(261) + (262) + (263) + (264) =			170179.8	(265)
Space cooling	(221) x	2.92	-	1001.54	(266)
Electricity for pumps, fans and electric keep-hot	(231) x	2.92	-	28292.17	(267)
Electricity for lighting	(232) x	0	-	9583.73	(268)
Energy saving/generation technologies					
Item 1		2.92	-	- 16836.72	(269)
'Total Primary Energy	sun	n of (265)(271) =		192220.52	(272)
Primary energy kWh/m²/year	(27)	2) + (4) =		74.05	(273)


APPENDIX D

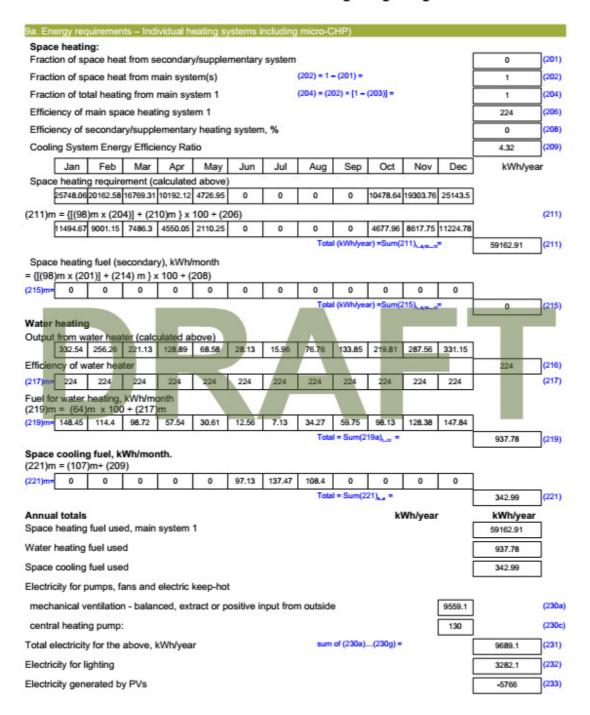
PROPOSED BUILDING ${ m CO_2}$ EMISSIONS RATE ASSESSMENT METHODOLOGY WITH ENERGY EFFICIENCY MEASURES , LOW CARBON TECHNOLOGY AND RENEWABLE TECHNOLOGIES BY SAP 2009



				User D	etails:						
Assessor Name: Software Name:	ware Name: Stroma FSAP 2009					Stroma Number: Software Version: Version					
					Address:		co.				
Address: 1. Overall dwelling dimer	Athlone Ho	use, Han	npstead	Lane, L	ONDON	, N6 4RI	J				
1. Overall dwelling dimer	ISIUIIS.			Aro	a(m²)		Ave He	iaht(m)		Volume(m³	
Basement						(1a) x		3	(2a) =	1680	(3a)
Ground floor				\vdash	823	(1b) x		4	(2b) =	3292	(3b)
First floor				8	11.75	(1c) x		3	(2c) =	2435.25	(3c)
Second floor					401	(1d) x		3	(2d) =	1203	(3d)
Total floor area TFA = (1a)+(1b)+(1c)+	(1d)+(1e)+(1r	1) 25	595.75	(4)					_
Dwelling volume						(3a)+(3b)	+(3c)+(3d))+(3e)+	.(3n) =	8610.25	(5)
2. Ventilation rate:	#1570500	10.00		2.50-	10000000						
	main heating		econda eating	гу	other		total			m³ per hou	r
Number of chimneys	4	+ [0	1 + [0] - [4	×	40 =	160	(6a)
Number of open flues	0	- [0	Ī • [0	j • [0	×	20 =	0	(6b)
Number of intermittent far	ns						0	×	10 =	0	(7a)
Number of passive vents				- //		N F	0	×	10 -	0	(7b)
Number of flueless gas fir	es	1				Ì	0	×	40 =	0	(7c)
									Air ch	nanges per ho	ur
Infiltration due to chimney							160	2.2	+ (5) =	0.02	(8)
If a pressurisation test has be Number of storeys in th			d, procee	d to (17), d	otherwise o	continue fro	om (9) to (1	16)		_	7.00
Additional infiltration	e aweiling (in	•)						1(9)	-1]x0.1 =	0	(9)
Structural infiltration: 0.3	25 for steel or	r timber f	frame or	0.35 fo	r masonr	y constr	uction	(1-)		0	(11)
if both types of wall are pre			ponding to	the great	er wall are	a (after					3.50
deducting areas of opening If suspended wooden file			ed) or 0	1 (seale	ad) else	enter 0				0	(12)
If no draught lobby, ent			00,0.0	. (5555	, 0.00					0	(13)
Percentage of windows			ripped							0	(14)
Window infiltration					0.25 - [0.2	x (14) + 1	00] =			0	(15)
Infiltration rate					(8) + (10)	+ (11) + (1	2) + (13) +	(15) =		0	(16)
Air permeability value, o	q50, expresse	ed in cub	ic metre	s per ho	our per s	quare m	etre of e	nvelope	area	5	(17)
If based on air permeabilit	ty value, then	(18) = [(1	7) + 20]+(B), otherwi	ise (18) = (16)				0.27	(18)
Air permeability value applies		on test has	been dor	e or a deg	gree air pe	rmeability i	is being us	ed			_
Number of sides on which Shelter factor	sheltered				(20) = 1 -	ID 075 v /1	911 =			2	(19)
Infiltration rate incorporati	na chollar for	tor			(21) = (18)		-11-			0.85	(20)
Infiltration rate incorporati	-				(2.)-(10	, ~ (20) -				0.23	(21)
	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	1	

	1112
Hot water storage loss factor from Table 2 (kWh/litre/day)	(51)
Volume factor from Table 2a 0	(52)
Temperature factor from Table 2b	(53)
Energy lost from water storage, kWh/year ((50) x (51) x (52) x (53) = 0	(54)
Enter (49) or (54) in (55)	(55)
Water storage loss calculated for each month ((56)m = (55) × (41)m	
(56)m= 41.85 37.8 41.85 40.5 41.85 40.5 41.85 40.5 41.85 40.5 41.85 40.5 41.85	(56)
If cylinder contains dedicated solar storage, (57)m = (56)m x [(50) = (H11)] + (50), else (57)m = (56)m where (H11) is from Appendix	Н
(57)m= 41.85 37.8 41.85 40.5 41.85 40.5 41.85 40.5 41.85 40.5 41.85 40.5 41.85	(57)
Primary circuit loss (annual) from Table 3	(58)
Primary circuit loss calculated for each month (59)m = (58) + 365 × (41)m	
(modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)	
(59)m= 30.58 27.62 28.74 20.71 13.76 13.02 13.45 14.68 22.49 28.74 29.59 30.58	(59)
Combi loss calculated for each month (61)m = (60) + 365 × (41)m	
(61)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(61)
Total heat required for water heating calculated for each month (62)m = 0.85 × (45)m + (46)m + (57)m + (50)m +	
(62)m= 381.33 335.58 349.38 304.27 288.82 254.77 241.79 270.52 279.54 322.96 345.57 371.58	(62)
Solar DHW input calculated using Appendix G or Appendix H (negative quantity) (enter '0' if no solar contribution to water heating)	
(add additional lines if FGHRS and/or WWHRS applies, see Appendix G)	
(63)m= -48.79 -79.32 -128.25 -175.37 -220.25 -226.63 -225.82 -193.76 -145.69 -103.15 -58.01 -40.43	(63)
Output from water heater	
(64)mi= 332.54 256.26 221.13 128.89 68.58 28.13 15.96 76.76 133.85 219.81 287.56 331.15	
Output from water heater (annual)1-19	2100.62 (64)
Heat gains from water heating, kWh/month 0.25 [0.85 × (45)m + (61)m] + 0.8 x [(46)m + (57)m + (59)m]	
Heat gains from water heating, kWh/month 0.25 * [0.85 × (45)m + (61)m] + 0.8 × [(46)m + (57)m + (59)m] (65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41	(65)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41	(65)
(65)me 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here.	(65)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a):	(65)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts	(65)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	(65) lating
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82	(65)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82	(65) rating (66)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.8	(65) lating
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 105.82 305.8	(65) rating (66)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.8	(65) rating (66)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.8	(65) sating (66) (67)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 105.82 305.8	(65) sating (66) (67)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 105.82 305.8	(65) sating (66) (67) (68)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.8	(65) sating (66) (67) (68)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 1281.79 185.85 165.07 134.24 101.63 75.97 64.14 69.3 90.08 120.91 153.52 179.18 191.01 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 1737.45 1755.48 1710.05 1613.33 1491.23 1376.48 1299.82 1281.79 1327.22 1423.95 1546.04 1660.79 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 53.58 53.58 53.58 53.58 53.58 53.58 53.58 53.58 53.58 53.58 Dumps and fans gains (Table 5a) (70)m= 10 10 10 10 10 10 10 10 10 10 10 10 10	(65) sating (66) (67) (68) (69)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 105.82 305.8	(65) eating (66) (67) (68) (69) (70)
(65)m= 160.65 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 305.82 1291ting gains (calculated in Appendix L, equation L9 or L9a), also see Table 5 (67)m= 185.85 165.07 134.24 101.63 75.97 64.14 69.3 90.08 120.91 153.52 179.18 191.01 Appliances gains (calculated in Appendix L, equation L13 or L13a), also see Table 5 (68)m= 1737.45 1755.48 1710.05 1613.33 1491.23 1376.48 1299.82 1281.79 1327.22 1423.95 1546.04 1660.79 Cooking gains (calculated in Appendix L, equation L15 or L15a), also see Table 5 (69)m= 53.58	(65) sating (66) (67) (68) (69)
(65)ml= 160.85 142.16 149.17 129.79 122.03 109.73 108.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)ml= 306.82 305	(65) sating (66) (67) (68) (69) (70) (71)
(65)ml= 160.85 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (See Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82	(65) eating (66) (67) (68) (69) (70)
(65)ml= 160.85 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82	(65) sating (66) (67) (68) (69) (70) (71)
(65)ml= 160.85 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82	(65) sating (66) (67) (68) (69) (70) (71)
(65)ml= 160.85 142.16 149.17 129.79 122.03 109.73 106.25 116.37 122.39 140.39 147.67 157.41 include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here include (57)m in calculation of (65)m only if cylinder is in the dwelling or hot water is from community here. 5. Internal gains (see Table 5 and 5a): Metabolic gains (Table 5), Watts Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (66)m= 305.82	(65) nating (66) (67) (68) (69) (70) (71)

6. Sola													
Solar ga	ins are	calculated using	solar	flux from Table 6	a and	associated equa	tions	to convert to the a	applic	able orientation.			
Orienta		Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
North	0.9x	0.77	x	122	x	10.73	×	0.68	x	0.7] -	431.67	(74)
North	0.9x	0.77	×	122	x	20.36	×	0.68	×	0.7	-	819.32	(74)
North	0.9x	0.77	x	122	×	33.31	×	0.68	×	0.7	-	1340.47	(74)
North	0.9x	0.77	x	122	×	54.64	×	0.68	×	0.7	-	2198.91	(74)
North	0.9x	0.77	x	122	×	75.22	×	0.68	×	0.7	-	3026.98	(74)
North	0.9x	0.77	×	122	×	84.09	×	0.68	×	0.7	•	3384.07	(74)
North	0.9x	0.77	x	122	×	79.12	×	0.68	×	0.7	•	3184.08	(74)
North	0.9x	0.77	x	122	×	61.56	×	0.68	×	0.7	•	2477.61	(74)
North	0.9x	0.77	x	122	×	41.09	×	0.68	×	0.7	-	1653.43	(74)
North	0.9x	0.77	x	122	×	24.81	×	0.68	×	0.7	-	998.63	(74)
North	0.9x	0.77	x	122	×	13.22	×	0.68	×	0.7	-	531.94	(74)
North	0.9x	0.77	x	122	×	8.94	×	0.68	×	0.7	-	359.96	(74)
East	0.9x	1	x	122.36	×	19.87	×	0.68	×	0.7	1	802.11	(76)
East	0.9x	1	x	122.36	×	38.52	ж	0.68	×	0.7	-	1554.72	(76)
East	0.9x	1	x	122.36	×	61.57	×	0.68	×	0.7	-	2484.94	(76)
East	0.9x	1	×	122.36	×	91.41	×	0.68	×	0.7	-	3689.54	(76)
East	0.9x	1	x	122.36	×	111.22	×	0.68	×	0.7	-	4489.12	(76)
East	0.9x	1	x	122.36	×	116.05	×	0.68	×	0.7	-	4684.17	(76)
East	0.9x	1	x	122.36	×	112.64	×	0.68	×	0.7	-	4546.52	(76)
East	0.9x	1	x	122.36	×	98.03	×	0.68	×	0.7	-	3956.93	(76)
East	0.9x	1	x	122.36	×	73.6	×	0.68	×	0.7	•	2970.84	(76)
East	0.9x	1	x	122.36	×	46.91	×	0.68	×	0.7	•	1893.35	(76)
East	0.9x	1	x	122.36	×	24.71	×	0.68	×	0.7	•	997.23	(76)
East	0.9x	1	x	122.36	×	16.39	×	0.68	×	0.7	-	661.66	(76)
South	0.9x	0.77	x	121.32	×	47.32	×	0.68	×	0.7	-	1893.86	(78)
South	0.9x	0.77	x	121.32	x	77.18	×	0.68	×	0.7	-	3088.84	(78)
South	0.9x	0.77	x	121.32	×	94.25	×	0.68	×	0.7	-	3771.69	(78)
South	0.9x	0.77	x	121.32	x	105.11	×	0.68	×	0.7	-	4206.63	(78)
South	0.9x	0.77	x	121.32	×	108.55	×	0.68	×	0.7	-	4344.12	(78)
South	0.9x	0.77	x	121.32	×	108.9	×	0.68	×	0.7	•	4358.05	(78)
South	0.9x	0.77	x	121.32	x	107.14	×	0.68	×	0.7] -	4287.59	(78)
South	0.9x	0.77	x	121.32	×	103.88	×	0.68	x	0.7] -	4157.34	(78)
South	0.9x	0.77	x	121.32	×	99.99	×	0.68	×	0.7] -	4001.6	(78)
South	0.9x	0.77	x	121.32	×	85.29	×	0.68	x	0.7] -	3413.34	(78)
South	0.9x	0.77	x	121.32	×	56.07	×	0.68	x	0.7	-	2243.87	(78)
South	0.9x	0.77	x	121.32	×	40.89	×	0.68	×	0.7	-	1636.42	(78)



West 0.9x	0.77	×	122.36	×	19.87	×	0.68	×	0.7		802.11	(80)
West 0.9x	0.77	x	122.36	×	38.52	x	0.68	×	0.7		1554.72	(80)
West 0.9x	0.77	×	122.36	×	61.57	x	0.68	×	0.7		2484.94	(80)
West 0.9x	0.77	x	122.36	x	91.41	x	0.68	×	0.7	-	3689.54	(80)
West 0.9x	0.77	×	122.36	×	111.22	×	0.68	×	0.7		4489.12	(80)
West 0.9x	0.77	×	122.36	×	116.05	×	0.68	×	0.7		4684.17	(80)
West 0.9x	0.77	×	122.36	×	112.64	×	0.68	×	0.7	╡.	4546.52	(80)
West 0.9x	0.77	×	122.36	×	98.03	×	0.68	×	0.7		3956.93	(80)
West 0.9x	0.77	×	122.36	×	73.6	×	0.68	×	0.7	_	2970.84	(80)
West 0.9x	0.77	×	122.36	×	46.91	×	0.68	×	0.7		1893.35	(80)
West 0.9x	0.77	×	122.36	×	24.71	×	0.68	×	0.7	_	997.23	(80)
West 0.9x	0.77	×	122.36	×	16.39	×	0.68	×	0.7	╡.	661.66	(80)
Rooflights 0.9x	1	×	60	×	26	×	0.76	×	0.8	╡.	853.63	(82)
Rooflights 0.9x	1	×	60	×	54	×	0.76	×	0.8	╡.	1772.93	(82)
Rooflights 0.9x	1	×	60	٦×	94	×	0.76	×	0.8	╡.	3086.21	(82)
Rooflights 0.9x	1	×	60	٦×	150	×	0.76	×	0.8	╡.	4924.8	(82)
Rooflights 0.9x	1	×	60	×	190	×	0.76	×	0.8	╡-	6238.08	(82)
Rooflights 0.9x	1	×	60	×	201	×	0.76	×	0.8	=	6599.23	(82)
Rooflights 0.9x	1	×	60	×	194	×	0.76	×	0.8	₹.	6369.41	(82)
Rooflights 0.9x	1	×	60	×	164	x	0.76	×	0.8	╡-	5384.45	(82)
Rooflights 0.9x	1	×	60	×	116	×	0.76	×	0.8	-	3808.51	(82)
Rooflights 0.9x	1	×	60	×	68	×	0.76	×	0.8	┪.	2232.58	(82)
Rooflights 0.9x	1	x	60	×	33	x	0.76	×	0.8	╡.	1083.46	(82)
Rooflights 0.9x	1	×	60	×	21	×	0.76	×	0.8	╡.	689.47	(82)
	3.7			1000	Acr 815 0	6—868			1000		N N	
Solar gains in	n watts, cale	culated	for each mo	nth		(83)r	m = Sum(74)m	(82)n	1			
(83)m= 4783.3	8 8790.52 1	3168.24	18709.43 2258	7.43 23	3709.69 2293	4.11 1990	33.27 15405.22	10431	25 5853.73	4009.17]	(83)
Total gains -	internal an	d solar	(84)m = (73)m +	(83)m , wat	ts			_			
(84)m= 7047.3	6 11047.37 1	5337.78	20729.39 2444	3.4 25	427.46 2457	0.79 215	86.3 17148.09	12322	15 7908.79	6197.29		(84)
7. Mean inte	ernal tempe	rature ((heating sea	son)							-30	000
Temperatur	e during he	ating p	eriods in the	living	area from	Table 9	, Th1 (°C)				21	(85)
Utilisation fa	actor for gai	ins for l	iving area, h	1,m (s	see Table 9	(a)						
Jan	Feb	Mar	Apr M	ay	Jun Ju	ul A	lug Sep	Oc	t Nov	Dec]	
(86)m= 1	0.99	0.98	0.94 0.8	4	0.69 0.5	i1 0.	57 0.85	0.97	1	1]	(86)
Mean intern	al temperat	ture in I	iving area T	(follo	ow steps 3	to 7 in	Table 9c)					
(87)m= 18.48		19.31	19.91 20.		20.81 20.		.93 20.61	19.8	8 19.01	18.53	1	(87)
Temperatur	e during he	ating n	eriods in res	of di	velling from	Table 1	9 Th2 (°C)	_			•	
(88)m= 19.82		19.83	19.86 19.8		19.87 19.		.87 19.87	19.8	6 19.85	19.83	1	(88)
				_							1	Real
(89)m= 1	0.99	0.98	est of dwellin		0.6 0.3		43 0.79	0.96	1	1	1	(89)
				_							1	
			the rest of dv			_		_	17.04	10.54	1	(90)
(90)m= 16.42	16.89	17.64	18.52 19.3	31	19.71 19.	19	.83 19.5	18.5	17.21	16.51]	(90)

									1	LA = Livin	g area + (4	1) =	0.04	(91)
Mear	n interna	l temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=		16.97	17.71	18.58	19.35	19.76	19.89	19.88	19.55	18.56	17.29	16.59		(92)
Appl	y adjustr	nent to t	he mear	internal	temper	ature fro	m Table	4e, whe	re appro	priate				
(93)m=	_	16.97	17.71	18.58	19.35	19.76	19.89	19.88	19.55	18.56	17.29	16.59		(93)
8. Sp	ace hea	ting requ	uirement				100							
Set 1	i to the	mean int	ternal ter	mperatur	e obtain	ed at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(7	76)m and	d re-calc	ulate	
			or gains											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilis	ation fac	tor for g	ains, hm	1:										
(94)m=	1	0.99	0.96	0.9	0.77	0.59	0.39	0.43	0.77	0.95	0.99	1		(94)
Usef	ul gains,	hmGm	, W = (9	4)m x (84	4)m									
(95)m=	7023.04	10910.64	14757.07	18651.68	18919.82	15106.38	9535.23	9379.16	13123.03	11676.28	7850.41	6181.62		(95)
Mont	thly aver	age exte	ernal tem	perature	from Ta	able 8								
(96)m=	4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
Heat	loss rat	e for me	an intern	al tempe	erature,	Lm,W=	=[(39)m :	x [(93)m-	- (96)m]				
(97)m=	41630.65	40914.48	37296.46	32807.4	25273.26	17027.96	9862.69	9830.47	17320.88	25760.47	34661.18	39976.65		(97)
Spac	e heatin	g require	ement fo	r each n	nonth, k	Wh/mont	th = 0.02	4 x [(97)	m - (95)m] x (41	1)m			_
(98)m=	25748.06	20162.58	16769.31	10192.12	4726.95	0	0 /	0	0	10478.64	19303.76	25143.5		
	100	1						Tota	per year	(kWh/year) = Sum(9	B)1.44.12 =	132524.92	(98)
Spar	o hoatin	a roavir	ement in	k\A/b/m²	hone			7 10					51.05	(99)
Spac	e neaun	g require	ementin	KAAIMIII	луеан		_						51.05	(99)
9- 0	The same of the same of	adding a second												
OU.	pace co	olling rea	uiremer	10			4						-	7
	ulated fo	r June, .	July and	August.	100	100								8
Calc	Jan	Feb	July and Mar	August. Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		<u> </u>
Calc	Jan loss rate	Feb ELm (ca	July and Mar Iculated	August. Apr using 25	May 5°C inter	Jun mal temp	perature	and exte	ernal ten	nperatur	e from T	able 10)		
Calco Heat (100)m	Jan loss rati	Feb ELm (ca	July and Mar Iculated	August. Apr	May	Jun mal temp	The Part of the Pa	and exte	THE REAL PROPERTY.	The State of the S				(100)
Heat (100)m Utilis	Jan loss rate 0 ation fac	Feb ELm (ca 0	Mar liculated 0 oss hm	August. Apr using 25	May 5°C inter 0	Jun nal temp 28395.37	perature 20471.09	and exte 20471.09	o 0	o 0	e from T 0	able 10) 0		980000
Heat (100)m Utilis (101)m	Jan loss ratio ation fac	Feb E Lm (ca 0 ctor for lo	Mar liculated 0 oss hm	August. Apr using 25 0	May 5°C inter 0	Jun mal temp 28395.37 0.79	perature	and exte	ernal ten	nperatur	e from T	able 10)		(100)
Heat (100)m Utilis (101)m Usef	Jan loss ration factors, h	Feb e Lm (ca 0 ctor for lo 0 nmLm (V	Mar liculated 0 oss hm 0 Vatts) = (August. Apr using 25 0 0 (100)m x	May 5°C inter 0 0	Jun mai temp 28395.37 0.79	0.88	and exte 20471.09 0.85	o 0	o 0	e from T 0	able 10) 0		(101)
Calci Heat (100)m Utilis (101)m Usef (102)m	Jan loss rate 0 ation face 0 ul loss, h	Feb e Lm (ca o ctor for k	Mar occupance of the second occupance occupanc	August. Apr using 25 0 0 (100)m x	May 5°C inter 0 0 : (101)m	Jun nal temp 28395.37 0.79	0.88 17972.9	and exter 20471.09 0.85	o 0	o 0	e from T 0	able 10) 0		980000
Calci Heat (100)m Utilis (101)m Usef (102)m Gain	Jan loss ration face 0 ation face 0 ul loss, h	r June, s Feb Car Lm (ca Car	Mar alculated 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	August. Apr using 25 0 0 (100)m x for appli	May 5°C inter 0 (101)m 0 cable we	Jun mai temp 28395.37 0.79 22499.97 eather re	0.88 17972.9 egion, se	and exte 20471.09 0.85 17361.28 e Table	0 0 0	0 0 0	o o	able 10) 0 0		(101) (102)
Calci Heat (100)m Utilis (101)m Usef (102)m Gain (103)m	Jan loss ration face 0 ul loss, t 0 s (solar)	r June, v Feb a Lm (ca 0 ctor for lo 0 nmLm (V 0 gains ca	July and Mar Ilculated 0 oss hm 0 Vatts) = 0 lculated 0	Apr using 25 0 0 (100)m x 0 for appli	May 5°C inter 0 0 (101)m 0 cable we	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58	0.88 17972.9 egion, se 29451.7	and exte 20471.09 0.85 17361.28 e Table 26412.8	0 0 0 0 10)	o o o	0 0 0	able 10) 0 0		(101)
Calco Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Space	Jan loss ration face 0 ul loss, t 0 s (solar)	r June, s Feb a Lm (ca 0 ctor for lc 0 nmLm (V 0 gains ca 0 g require	July and Mar Ilculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo	August. Apr using 25 0 (100)m x 0 for appli 0 r month,	May 5°C inter 0 0 (101)m 0 cable we 0 whole o	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58	0.88 17972.9 egion, se 29451.7	and exte 20471.09 0.85 17361.28 e Table 26412.8	0 0 0 0 10)	o o o	0 0 0	able 10) 0 0	x (41)m	(101) (102)
Calco Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (loss ration face 0 utilises, in the cooling to the	r June, s Feb 2 Lm (ca 0 ctor for king 0 cm Lm (Ving 1 ca 1 c	July and Mar Ilculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo (104)m <	August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continuo	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW	0 0 10) 0 0 0 10) 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 24 x [(10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 0 102)m] 3	x (41)m	(101) (102)
Calco Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Space	loss ration face 0 utilises, in the cooling to the	r June, s Feb a Lm (ca 0 ctor for lc 0 nmLm (V 0 gains ca 0 g require	July and Mar Ilculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo	August. Apr using 25 0 (100)m x 0 for appli 0 r month,	May 5°C inter 0 0 (101)m 0 cable we 0 whole o	Jun rnal temp 28395.37 0.79 22499.97 eather re 30880.58	0.88 17972.9 egion, se 29451.7	and exte 20471.09 0.85 17361.28 e Table 26412.8	0 0 10) 0 0 0 10) 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 24 x [(10	e from T 0 0 0 0 0 33)m - (1	able 10) 0 0	0	(101) (102) (103)
Calco Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (*(104)m	ulated for Jan loss rate 0 ation face 0 ul loss, h = 0 s (solar secolin 104)m to 0	r June , Feb e Lm (ca o tor for lo o mLm (V o gains ca o g require zero if (July and Mar Ilculated 0 oss hm 0 Vatts) = 0 lculated 0 ement fo (104)m <	August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continuo	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW	0 0 10) 0 0 Total	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 102)m] 3	21308.6	(101) (102) (103)
Calco Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (' (104)m Coole	loss ration faction fa	r June , Feb e Lm (ca o ctor for lo o mLm (V o gains ca o zero if (o o n o o o o o o o o o o o o o o o o	July and Mar Ilculated 0 oss hm 0 Vatts) = (0 coment for (104)m < 0	August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continuo	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW	0 0 10) 0 0 Total	0 0 0 0 0 24 x [(10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 102)m] 3	0	(101) (102) (103)
Calci Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (' (104)m Coole Interm	loss ration faction fa	r June, Feb e Lm (ca 0 0 ctor for lo 0 0 mLm (V 0 gains ca 0 g require 2 zero if (0 0 n actor (Ta)	Mar Mar National M	August. Apr using 25 0 (100)m x 0 for appli 0 r month, 3 x (98) 0	May 5°C inter 0 0 (101)m 0 cable we 0 whole color	Jun mai temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04	0.88 17972.9 gjion, se 29451.7 continue 8540.23	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 0 10) 0 Total f C =	0 0 0 0 24 x [(10 0 = Sum()	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 0 102)m]; 0 = 1) =	21308.6	(101) (102) (103)
Calco Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (' (104)m Coole	loss ration faction fa	r June , Feb e Lm (ca o ctor for lo o mLm (V o gains ca o zero if (o o n o o o o o o o o o o o o o o o o	July and Mar Ilculated 0 oss hm 0 Vatts) = (0 coment for (104)m < 0	August. Apr using 25 0 0 (100)m x 0 for appli 0 r month, 3 x (98	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m	Jun 28395.37 0.79 22499.97 eather re 30880.58 fwelling,	0.88 17972.9 egion, se 29451.7 continuo	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW	0 0 10) 0 0 Total f C = 0	0 0 0 0 24 x [(10 0 = Sum(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 102)m]; 0 = 1) =	21308.6 0.28	(101) (102) (103) (104) (105)
Calci Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (' (104)m Coole Interm (106)m	ulated for Jan loss rate 0 ation face 0 ul loss, he 0 s (solar to be coolin 104)m to diffraction diffraction intency for 0	r June, s Feb e Lm (ca 0 ctor for lo 0 mLm (Vi 0 gains ca 0 g require c zero if (0 n cactor (Ta	Mar Mar National M	August. Apr using 25 0 100)m x 0 for appli 0 r month, 3 x (98 0	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun mal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04	0.88 17972.9 egion, se 29451.7 continue 8540.23	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 10) 0 0 Total f C = 0	0 0 0 0 24 x [(10 0 = Sum()	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 0 102)m]; 0 = 1) =	21308.6	(101) (102) (103)
Calci Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Spac set (' (104)m Coole Interm (106)m	ulated for Jan loss rate 0 ation face 0 ul loss, he 0 s (solar to be coolin 104)m to diffraction diffraction intency for 0	r June, s Feb e Lm (ca 0 ctor for lo 0 mLm (Vi 0 gains ca 0 g require c zero if (0 n cactor (Ta	July and Mar Ilculated 0 oss hm 0 Vatts) = (0 Ilculated 0 ement fo (104)m < 0 able 10b 0	August. Apr using 25 0 100)m x 0 for appli 0 r month, 3 x (98 0	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun mal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04	0.88 17972.9 egion, se 29451.7 continue 8540.23	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 10) 0 0 Total f C = 0	0 0 0 0 24 x [(10 0 = Sum(0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 102)m]; 0 = 1) =	21308.6 0.28	(101) (102) (103) (104) (105)
Calci Heat (100)m Utilis (101)m Usef (102)m Gain (103)m Space (104)m Coole Interm (106)m	ulaled for Jan loss ration loss, ration face 0 ul loss, ration face	r June , Feb e Lm (ca o ctor for lo o ctor for lo o gains ca o g require o zero if (o o cactor (Ta o o cactor	July and Mar Ilculated 0 oss hm 0 Vatts) = 0 Ilculated 0 ement fo (104)m < 0 ment for	August. Apr using 25 0 0 100)m x 0 for appli 0 r month,: 3 × (98 0 month =	May 5°C inter 0 0 (101)m 0 cable w 0 whole c)m 0	Jun mal temp 28395.37 0.79 22499.97 eather re 30880.58 fwelling, 6034.04 0.25 × (105)	0.88 17972.9 egion, se 29451.7 continue 8540.23 0.25 × (106)r	and exte 20471.09 0.85 17361.28 e Table 26412.8 ous (kW 6734.34	0 0 10) 0 Total f C = 0 Total 0	0 0 0 0 24 x [(10 0 = Sum(cooled a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	able 10) 0 0 0 0 102)m]; 0 = 1) = 0	21308.6 0.28	(101) (102) (103) (104) (105)

12a. CO2 emissions – Individual heating systems including micro-CHP								
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year					
Space heating (main system 1)	(211) x	0.517	30587.23 (261)					
Space heating (secondary)	(215) x	0 =	0 (263)					
Water heating	(219) x	0.517	484.83 (264)					
Space and water heating	(261) + (262) + (263) + (264) =		31072.06 (265)					
Space cooling	(221) x	0.517	177.33 (266)					
Electricity for pumps, fans and electric keep-hot	(231) x	0.517	5009.26 (267)					
Electricity for lighting	(232) x	0.517	1696.85 (268)					
Energy saving/generation technologies Item 1		0.529	-3050.21 (269)					
Total CO2, kg/year	sur	m of (265)(271) =	34905.28 (272)					
Dwelling CO2 Emission Rate	(27	72) + (4) =	13.45 (273)					
El rating (section 14)			82 (274)					

APPENDIX E

SAP INPUT

SAP Input

Property Details: Athlone House

Address: Athlone House, Hampstead Lane, LONDON, N6 4RU

 Located in:
 England

 Region:
 Thames valley

 UPRN:
 7404741078

 Date of assessment:
 19 November 2012

 Date of certificate:
 29 May 2013

Assessment type: New dwelling design stage

Transaction type: New dwelling
Tenure type: Unknown
Related party disclosure: No related party
Thermal Mass Parameter: Calculated 150.5913

Dwelling designed to use less than 125 litres per Person per day: False

Dwelling type: House Detached Detachment: 2012 Year Completed: Floor Location: Floor area: Storey height: 560 m² Basement floor 3 m 823 m² Floor 1 4 m Floor 2 811.75 m² 3 m Floor 3 401 m² 3 m Living area: Front of dwelling faces: 106.43 m² (fraction 0.041) North

Name:	Gap:	Frame Facto	or: g-value:	U-value:	Area:	No. of Openings:
Atrium Rooflight	Manufacturer	Roof Windows	double-glazed		Yes	Metal, thermal break
W/window	Manufacturer	Windows	low-E, $En = 0$.1, soft coat	Yes	
S/window	Manufacturer	Windows	low-E, $En = 0$.1, soft coat	Yes	
E/window	Manufacturer	Windows	low-E, $En = 0$.1, soft coat	Yes	
N/window	Manufacturer	Windows	double-glazed	100	Yes	
E/door	Manufacturer	Half glazed	low-E, $En = 0$.1, soft coat	Yes	Wood
W/door	Manufacturer	Half glazed	low-E, En = 0.	.1, soft coat	Yes	Wood
N/door	Manufacturer	Half glazed	low-E, En = 0	.1, soft coat	Yes	Wood
realite.	Source.	Type.	Giazing.	100	Argon.	riame.

Name:	Gap:	Frame F	actor: g-value:	U-value:	Area:	No. of Op	
N/door	6mm mm	0.7	0.68	1.8	6	1	
W/door	6mm mm	0.7	0.68	1.8	4	1	
E/door	6mm mm	0.7	0.68	1.8	4	1	
N/window	6mm	0.7	0.68	1.4	122	1	
E/window	6mm	0.7	0.68	1.4	122.36	1	
S/window	6mm	0.7	0.68	1.4	121.32	1	
W/window	6mm	0.7	0.68	1.4	122.36	1	
Atrium Rooflight	12mm	0.8	0.76	2	60	1	

Name:	Type-Name:	Location:	Orient:	Width:	Height:
N/door	N 1 T T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Wall	North	0	0
W/door		Wall	West	0	0
E/door		Wall	West	0	0
N/window		Wall	North	0	0
E/window		Wall	East	0	0
S/window		Wall	South	0	0
W/window		Wall	West	0	0
Atrium Rooflight		Roof 2	Horizontal	0	0

SAP Input

Overshading:		Average	or unknown				
Opaque Elements	ii.						
Туре:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element E/Wall	<u>s</u> 501.14	0	501.14	0.19	0	False	190
W/Wall	501.14	0	501.14	0.19	0	False	190
N/Wall	224.5	0	224.5	0.19	0	False	190
S/Wall	173.68	0	173.68	0.19	0	False	190
Basement Wall	300	0	300	0.19	0	False	190
Roof	200	0	200	0.15	0		9
Roof 2 BF	660	60	600	0.2	0		9
Internal Element Party Elements	551 S			0.15			110
Thermal bridges:							
Thermal bridges:	:	No info	rmation on therm	al bridging (y=0.	15) (y =0.15)		
Ventilation:							
Pressure test:			designed)				
Ventilation:			sed whole house of wet rooms: K				
			rk: , Rigid	itchen + 10			
	_		ed Installation Sci	heme: True			
Number of chimr	neys:		: 4, secondary: 0			_	
Number of open	flues:	0				_	
Number of fans:		0				_	
Number of sides Pressure test:	sneitered:	2 5				_	
-	-	-			_		
Main heating syst							
Main heating sys	tem:			with radiators or	underfloor heating	1	
		Heat pu	ectricity				
			urce: SAP Tables				
			ole: 201				
		Ground	to-water heat pu	ımp (electric)			
					insulated timber f	loor	
		Pump ir	heat space: Yes	i			
Main heating Con	trol:						
Main heating Cor	ntrol:		nd temperature zo	one control			
		Control	code: 2207				
		Boiler in	iterlock: Yes				
Secondary heatin	g system:						
Secondary heatir		None					
Space cooling sys	item:						
Space cooling sy	stem:		ultiple systems				
			label class: A				
					e speed compresso	ors	
Water heating:		Cooled	area: 722 (fractio	JII U.2/8)			
		_					
Water heating:			ain heating syste ode: 901	m			
			ectricity				
		1 001 .61	contry				

SAP Input

Hot water cylinder Cylinder volume: 280 litres

Cylinder insulation: Measured loss, 2.5kWh/day

Primary pipework insulation: True

Cylinderstat: True

Cylinder in heated space: True Solar panel: True

aperture area: 10 Evacuated tube default values: True

collector zero-loss efficiency: 0.6 collector heat loss coefficient: 3 orientation: South, 30° pitch overshading: Modest (20% - 60%)

dedicated solar store volume: 250 litres (seperate store)

solar powered pump: True

Electricity tariff: standard tariff In Smoke Control Area: Conservatory: No conservatory Low energy lights: 80% Terrain type: Dense urban EPC language: English Wind turbine: No

Photovoltaics:

Photovoltaic 1
Installed Peak power: 7.5
Tilt of collector: Horizontal
Overshading: None or very little
Collector Orientation: South

Assess Zero Carbon Home:

APPENDIX F

SAP2009 COMPLIANCE REPORT

Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.0.37 Printed on 29 May 2013 at 13:03:04

Assessed By: **Building Type:** Detached House 0 Dwelling Details: **NEW DWELLING DESIGN STAGE** Site Reference: Athlone House Plot Reference: Athlone House, Hampstead Lane, LONDON, N6 4RU Address: Client Details: Name: Address: This report covers items included within the SAP calculations. It is not a complete report of regulations compliance. 1 TER and DER Fuel for main heating system: Electricity Fuel factor: 1.14 x 1.47 (electricity) Target Carbon Dioxide Emission Rate (TER) 20.94 kg/m² Dwelling Carbon Dioxide Emission Rate (DER) 13.45 kg/m² OK Average 0.19 (max. 0.30) 0.15 (max. 0.25) 0.19 (max. 0.20) 1.47 (max. 2.00) Highes 0.19 (max. 0.70 Floor 0.15 (max. 0.70) OK 0.20 (max. 0.35) OK Roof 2.00 (max. 3.30) OK Openings Air permeability at 50 pasca 5.00 10.0 OK Main Heating system: Heat pumps with radiators or underfloor - electric Ground-to-water heat pump (electric) Efficiency 320 % Minimum 320 % Secondary heating system: None 5 Cylinder insulation Hot water Storage: Nominal cylinder loss: 2.50 kWh/day Permitted by DBSCG: 2.74 kWh/day Primary pipework insulated: OK Solar water heating Dedicated solar storage volume: 250 litres Minimum: 151 litres OK Space heating controls Time and temperature zone control OK Hot water controls: Cylinderstat OK Independent timer for DHW OK

APPENDIX G

CODE FOR SUSTAINABLE HOMES

Code for Sustainable Homes Report

Assessor Number:

Assessor and House Details

Assessor Name:

Property Address: Athlone House

Hampstead Lane LONDON N6 4RU

Buiding regulation assessment

kg/m²/year 20.94 DER 13.45

The following code calculations are taken from the Code for Sustainable Homes Technical Guide (Nov 10)

Ene 1 Assessment - Dwelling Emission Rate

Total Energy Type CO2 Emissions for Codes Levels 1 - 5

	%	kg/m²/year	
DER from SAP 2009 DER Worksheet		13.45	(ZC1)
TER		20.94	
Residual CO2 emissions offset from biofuel CHP		0	(ZC5)
CO2 emissions offset from additional allowable electricty generation		0	(ZC7)
Total CO2 emissions offset from SAP Section 16 allowances		0	
DER accounting for SAP Section 16 allowances		13.45	
% improvement DER/TER	35.8		

Total Energy Type CO2 Emissions for Codes Levels 6

			kg/m-/year	
DER accounting for SAP Secti	on 16 allowances		13.45	(ZC1)
CO2 emissions from appliance	es, equation (L14)		3.95	(ZC2)
CO2 emissions from cooking,	equation (L16)		0.1	(ZC3)
Net CO2 emissions			17.5	(ZC8)

Credits awarded for Ene 1 = 4

Code Level = 4

Ene 2 - Fabric energy Efficiency

Fabric energy Efficiency: 58.77 Credits awarded for Ene 2 = 3.2

Ene 7 - Low or Zero Carbon (LZC) Technologies

Reduction in CO2 Emissions

	%	kg/m²/year	1
Standard Case CO2 emissions		19.53	
Standard DER		15.48	
Actual Case CO2 emissions		17.5	
Actual DER		13.45	

Reduction in CO2 emissions 10.39

Credits awarded for Ene 7 = 1

European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC.

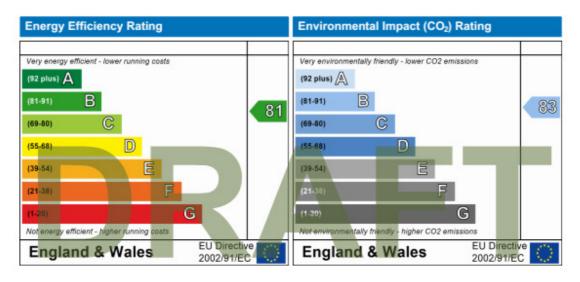
The following requirements must also be met:

- Where not provided by accredited external renewables there must be a direct supply of energy produced to the dwelling under
 Where covered by the Microgeneration Certification Scheme (MCS), technologies under 50kWe or 300kWth must be certified.
 Combined Heat and Power (CHP) schemes above 50kWe must be certified under the CHPQA standard.

All technologies must be accounted for by SAP.
 CHP schemes fuelled by mains gas are eligible to contribute to performance against this issue. Where these schemes are above 50kWe they must be certified under the CHPQA.
 It is the responsibly of the Accredited OCDEA and Code Assessor to ensure all technologies use in the calculation are appropriate before awarding credits.

APPENDIX H

PREDICTED SAP



Predicted Energy Assessment

Athlone House Hampstead Lane LONDON N6 4RU Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 19 November 2012 Stroma Certification 2595.75 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.