Environmental Noise Survey: PPG24

Report No - 9587-2 R1 Client - Linden Homes

Site – Former Reservoir, Gondar Gardens, Camden, London

1.0 Executive Summary.

A PPG24 survey has been carried out over a typical 24-hour period in order to assess the impact of road noise on the proposed development at the former reservoir, Gondar Gardens, Camden, London. It has been demonstrated that the internal design criteria from Table 5 Page 19 BS8233:1999 can be achieved so that the following will be the case in the occupied areas of the new development:

- 30dB L_{Aeq} during a 16-hour daytime period
- 30dB L_{Aeq} during an 8-hour night-time period

These represent the "Good" internal ambient noise levels inside a residential dwelling.

2.0 Table of Contents

1.0	Executive Summary	. 1
2.0	Table of Contents	
3.0	Site Description	
4.0	Assessment Criteria	
5.0	Survey	
6.0	Results	
7.0	Mitigation	
8.0	Conclusions	. 7

3.0 Site Description

3.1 Site

The existing site is a former reservoir off Gondar Gardens, Camden. A large proportion of the site is sunk below ground level where there are existing structures. The site is situated in a residential area.

3.2 Proposed Development

location of the development is shown in figure 3.1.

Figure 3.1 – Plan view of the proposed development.

3.3 Noise Climate

The noise climate was dominated by faint continuous noise from urban trunk roads and transient noise from local residential traffic. Noise from air traffic overhead was also audible.

4.0 Assessment Criteria

PPG24: Planning and Noise

The most relevant criteria to assess the impact of existing noise levels on proposed residential developments is the national planning policy guidelines PPG 24: Planning and Noise, September 1994. This document sets out a range of 'Noise Exposure Categories' (NEC's), defined by ranges in noise level, each of which indicates advice to consider during the planning stage of noise sensitive developments. The four categories defined for mixed noise sources are set out in figure 4.1 below, with the corresponding noise levels and advice on noise considerations.

Figure 4.1 – Extract from PPG24

PPG24 – NOISE LEVELS CORRESPONDING TO	THE NOISE EXPOSUR	E CATEGORIES F	OR NEW DWELL	INGS L _{Aeq,T} dB
NOISE SOURCE		NOISE EX	POSURE CATEGO	ORY
Road	А	В	С	D
0700-2300	<55	55-63	63-72	>72
2300-0700	<45	45-57	57-66	>66

BS8233:1999 Sound insulation and noise reduction for buildings – a code of practice

The British Standard BS8233:1999 recommends design criteria for internal noise levels within residential properties. This standard suggests reasonable resting/sleeping conditions and proposes noise limits that will normally satisfy these criteria for most people.

A summary of the noise guidelines that are to be applied to this development are given below.

Figure 4.2 – Performance criteria from BS8233:1999.

Area	Internal Level, dB(A)
Bedrooms ("Good")	30dB L _{Aeq, T}
Living Rooms ("Good")	30dB L _{Aeq, T}

5.0 Survey

5.1 Measurement Instrumentation

Equipment Description

Sound Level Meter

The measurement instrumentation used on the survey was as follows:

BS7445:2003
Part 1
Description
and
measurement
of
environmental
noise. Guide
to quantities

procedures can be found on the BSI website. 7658 Calibrator CEL 284/2 4/07022837

The equipment was calibrated to comply with Section 4.2 of BS7445:1 – 2003 before and after the

Equipment Details

Manufacturer and Type No.

CEL 490 SLM

The equipment was calibrated to comply with Section 4.2 of BS7445:1 – 2003 before and after the surveys. The calibration was as follows:

The calibration was	as follows:	
Meter	Before	After
CEL 490	114.1 dB	114.1 dB

There was no adverse deviation.

Serial No

078258

5.2 Measurements & Timescale

During the survey 1-minute measurements were made over full 24-hour periods between 10th November 2010 and 11th November 2010, these were subsequently analysed into longer periods.

The following measurements are reported:

$L_{Aeq,1min}$

The measurements and their interpretation shall be in accordance with BS 7445: Parts 1, and 2. All sound pressure levels are in dB (re $20\mu Pa$)

5.3 Position of Monitoring Equipment

The monitoring equipment was placed at the boundary of the site with Gondar Gardens. The meter was mounted free-field and 1.5m from the ground. A plan showing the location of the monitoring equipment is shown in Figure 5.1.

Figure 5.1 – An image illustrating location of the monitoring positions.

5.4 Meteorology

During the survey site visits weather information was noted:

Figure 5.2 – Weather conditions during the survey.

Date	General	Temp (°C)	Roads (Wet/Dry)
10 th November 2010		7	Dry
11 th November 2010	60	5	Dry

6.0 Results

6.1 Summary

All reported results are free field.

Figure 6.1 – Summary of results

PPG24 assessment data				
Measurement	Daytime	Period/Hour Ending	Night-time	Period/Hour Ending
Maximum dB L _{Aeq,1hr}	57	0900	51	0700
Minimum dB L _{Aeq,1hr}	49	2300	42	0200
dB L _{Aeq,16hr} /L _{Aeq,8hr}	53	0700-2300	46	2300-0700

PPG24 assessment data

The daytime hourly equivalent continuous sound pressure levels at the façade of the proposed development were between 49-57dB $L_{Aeq,1hr}$ with an average sound pressure level over the daytime period of 53dB $L_{Aeq,16hr}$.

The night time hourly equivalent continuous sound pressure levels at the façade of the proposed development were between 42-51dB $L_{Aeq,1hr}$ with an average sound pressure level over the night-time period of 46dB $L_{Aeq,8hr}$. The maximum measured $L_{AMAX,1min}$ was 79dB.

6.2 PPG24: Noise Exposure Categories (NECs)

The site will be categorised based on the levels at the facades of the properties that front the road and the railway. The site is therefore categorised as the following:

Figure 6.3 – NEC exposure categories for the site.

	Daytime	Night-time
Position 1	NEC A	NEC B

Figure 6.4 – Extract from PPG24

NEC A: "Noise need not be considered as a determining factor in granting planning permission, although the noise level at the high end of the category should not be regarded as a desirable level."

NEC B: "Noise should be taken into account when determining the planning applications and, where appropriate, conditions imposed to ensure and adequate level of protection against noise."

7.0 Mitigation

The internal design criteria given in section 6 form the basis of the glazing design.

The mitigation for this project is based on a glazing specification performance requirement. The glazing configuration is selected based on the typical performance specifications detailed in the Pilkington Design Guide "Glass & Noise Control" – Technical Bulletin May 1997. This does not preclude selection of any other glazing specification providing it can be shown that it will in any event perform at the required level.

The maximum external levels are summarised in figure 7.1 below:

Figure 7.1 – External levels (with correction)

	Max Daytime L _{Aeq,16hr}	Night-time L _{Aeq,8hr}
Position 1	53dB	46dB

The sound pressure level spectrum of the prevailing ambient noise was dominated by road noise. The glazing performance selection will be based on the road traffic corrected sound reduction index (R_{TRA}).

Based on the measurement data the calculation method from BS8233:1999 is used to select the glazing. The assumptions for this are detailed in the Appendix, standard forms of construction are assumed such that the glazing is likely to be the lowest performing facade element.

The single figure glazing performance requirement in order to achieve the required internal design criteria is calculated in Table 2 in the Appendix and are summarised below:

Figure 7.2 – Minimum sound reduction qualities of the glazing

	Living Rooms	Bedrooms
Position 1	23dB R _{TRA}	16dB R _{TRA}

The glazing configurations which achieve the required performance from the Pilkington Design Guide performance tables are as follows:

Figure 7.3 – Minimum glazing specification.

	Living Rooms	Bedrooms
Position 1	4.12.4	4.12.4
1 03111011 1	7.12.7	7.12.7

Figures 8.2 and 8.3 indicate that there needs to be some consideration to meet the internal noise criteria of BS8233:1999. A glazing mark-up plan has been included in the appendix.

It should be noted that in order to achieve these internal levels the windows must remain closed in the affected areas.

8.0 Conclusions

The site has been surveyed in accordance with the requirement of PPG24 and reported in line with the recommendations in BS7445: 1 - 2003 and BS7445: 2 - 1991.

The site is categorised as NEC B. This indicates that some consideration will have to be given in order to achieve the internal design criteria for bedrooms and living areas within the dwellings.

The internal ambient levels have been selected from the guidance given in BS8233:1999. We have referred to the internal design criteria in Section 4 and have designed to the higher standard. The specific treatment to achieve internal ambient levels is detailed in the mitigation section above.

W.A.Whitfield BA, MSc, MIOA **Noise & Vibration Consultant**

9.0 Appendix

Appendix A: Survey Noise Levels

Table 1: Average Levels

Address: Former Reservoir, Gondar Gardens, Camden, Londoon

Survey Date: 10/11/2010-11/11/2010

All readings sound pressure levels

	Measured Levels		
Hour End	dB LAeq	Corrections (dB)	Free Field dB LAeq
00:00:00	45.0	0	45
01:00:00	44.5	0	45
02:00:00	41.9	0	42
03:00:00	43.2	0	43
04:00:00	42.2	0	42
05:00:00	42.6	0	43
06:00:00	48.0	0	48
07:00:00	51.1	0	51
08:00:00	55.0	0	55
09:00:00	56.7	0	57
10:00:00	53.2	0	53
11:00:00	54.0	0	54
12:00:00	52.1	0	52
13:00:00	52.5	0	53
14:00:00	51.2	0	51
15:00:00	51.4	0	51
16:00:00	53.4	0	53
17:00:00	53.4	0	53
18:00:00	52.6	0	53
19:00:00	54.0	0	54
20:00:00	52.5	0	52
21:00:00	49.8	0	50
22:00:00	52.1	0	52
23:00:00	49.1	0	49
Max Night Time Ho	urly dB LAeq		51.1
Max Day Time Hou	rly dB LAeq		56.7
Min Night Time Hou	urly dB LAeq		41.9
PPG 24 Road Nois	se NEC Calculation		
			NEC
Daytime	53		Α
Night time	46		В
Night ume	40		0

NOTE: hourly sound pressure levels have to be copied into correct cells to ensure daytime & night time periods a

Appendix B: Glazing Calculation

Table 2 - Internal Noise Criteria & Glazing Options
Address: Former Reservoir, Gondar Gardens, Camden, Londoon
Survey Date: 10/11/2010-11/11/2010

Assumptions

Night time 2300 - 0700hrs / Day 0700-2300hrs (worst case condition) Assume road noise dominant $\,$

BS8233: 1999
Bedroom Criteria LAeq, T -30dBA "Good" - 35dBA "Reasonable" 45dBLAmax
Living Rooms Criteria LAeq, T -30dBA "Good" - 40dBA "Reasonable"

R_{RAL} = R_{TRA} + 3 Pilkington Glass & Noise Control "Technical Bulletin": Design Guide p16

Double Glazing 4.12.4 6.12.6 6.12.6.4pvb 10.12.4 10.12.6 10.12.6.4pvb R_{TR}, 25 26 27 29 32 34 28 29 30 32 35 37 Secondary Glazing 6.100.4 Secondary 6.150.4 Secondary 10.200.6 Secondary

Type in Noise Levels Here Worst Case Noise Levels

Night LAeq 46 Day LAeq 53

0

Barrier Performance dB(A) From barrier Calc Sheet if Applicable

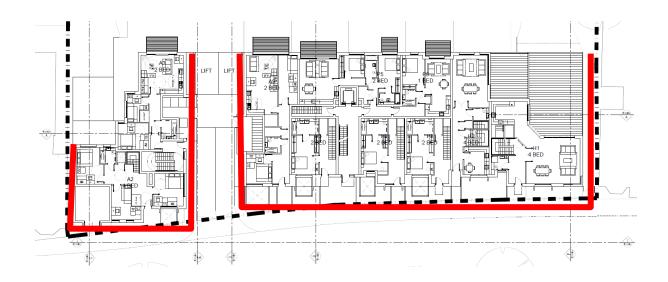
0

Internal Criteria: Calculation for Acoustic Glazing Noise Level at Property dB(A) Desired Internal Level Required Glazing Performance R_{TRA}

Glazing Selection Achieves Internal Criteria

Selected Glazing Performance dB R TRA

Specification of Glazing Bedrooms bearooms Living Rooms


Predicted Internal Levels with Glazing Selected

Calculation

Night LAeq 21 Day LAeq 28

note: windows must remain closed to ensure compliance with internal design criteria

Appendix B: Glazing mark-up plan

	Living Rooms	Bedrooms
Position 1	23dB R _{TRA}	16dB R _{TRA}
	Links Decrees	D = d = = = = =
	Living Rooms	Bedrooms

Appendix C: Pilkington design specifications

Tables 1-3 Sound Insulation Data for a Variety of Glazings

(No contribution from wall)

In addition to the full thirdoctaveband sound insulation spectra, corresponding octaveband equivalent values are given in adjacent columns. Pilkington AUDIOSCREEN is a special acoustic laminate.

Table 1 - Single Glazing

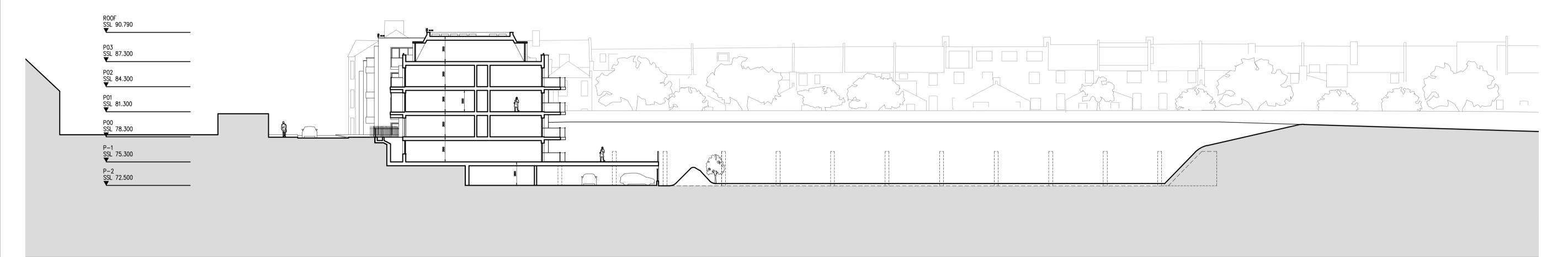
Thirdoctaveband Centre Frequency	Sound Insulation (dB) for Glass Thickness (mm)											
						Pilkington AUDIOSCREEN						
(Hz)	4	6	10	19	6.4 PVB	7	9	11	13	17		
100	17	18	24	25	18	23	25	26	27	26		
125	23 - 20	22 20	26 26	29 28	22 20	26 25	27 26	29 27	30 29	28 2		
160	22	22	28	31	22	25	27	29	30	32		
200	21	22	26	31	22	26	28	29 !	31	31		
250	21 22	26 24	28 27	32 . 32	26 24	27 27	29 29	31 31	33 32	33 33		
315	24	26	29 :	35	26	28	30	32	33	34		
400	26	29	32	36	29	30	32	34	35	37		
500	29 28	31 31	34 34	38 37	31 31	32 31	34 34	36 36	37 37	39 36		
630	30	33	36	36	33	33	36	38	38	41		
800	32	34	37	35	34	35	37	39	40	42		
1000	34 33	36 35	36 35	38 37	36 35	36 36	38 38	39 39	40 40	44 43		
1250	34	36	33	40	36	38	39	40	41	45		
1600	36	32	33	44	36	39	41	40	40	46		
2000	36 34	26 29	38 36	47 46	34 . 33	40 40	41:40	38 38	38 40	44 41		
2500	31	30	41	50	31	40	38	37	41	38		
3150	25	34	43	52 :	35	38	37	42	45	42		
4000	31 28	37 36	44 44	55 54	39 38	36 38	41 40	45 44	51 48	46 45		
R _v (dB)	27	29	33	37	30	32	34	35	36	38		
(dB)	30	32	36	40	3.3	36	37	38	39	41		
R _{IRA} (dBA)	25	28	32	35	29	31	33	34	36	36		

Table 2 - Pilkington Insulating Units

	Sound Insulation (dB) for Glass Thickness (mm)											
Thirdoctaveband Centre Frequency								Pilkington	AUDIOSCRI	EEN		
(Hz)	4/12/4	6/12/6	6/12/6.4 PVB	10/12/4	10/12/6	10/12/6.4 PVB	6/12/7	6/12/9	6/12/11	6/12/13	13/12/13	
001	25	17	19	23	27	27	26	24	26	27	29	
125	24 24	26 20	24 21	28 25	27 26	28 27	28 26	27 26	28 27	28 26	27 28	
160	23	22	21	26	24	26	26	25	26	24	29	
200	21.	18	19	19	24	26	23	24	24	25	33	
250	21.20	18 19	19 20	23 22	29 27	30 29	26 25	28 27	28 27	30 28	37 36	
315	19	24	24	26	31	32 -	28	30	31	32	39	
400	22	27	28	31.	33	34	30.	33	34	36	42	
500	25 25	29 29	32 31	33 33	34 34	36 36	34 33	37 36	38 37	40 38	45 45	
630	30	33	34	36	37	40	36	40	41	43	49	
800	33	37	38	39	39	41	41	43	44	45	52	
1000	36 35	39 38	40 39	41 40	41 40	42 41	43 43	45 45	45 45	46 46	52 52	
1250	38	39	40	41	41	41	45	46	46	46	52	
1600	40	39	39	41	30	41	45	45	44	-44	50	
2000	41 . 38	34 36	35 37	45 43	37 38	42 42	45 46	45 46	42 44	42 44	51 52	
2500	35	37	39	45	40	44	49	47	44:	46	55	
3150	31	42	44	42	43	49	55	50	51	52	60	
4000	40 35	47 45	49 47	44 44	47 46	53 52	57 57	55 53	56 54	57 56	65 63	
R _m (dB)	29	30	31	34	34	36	36	37	37	38	44	
R, (dB)	31	33	34	36	38	40	38	40	40	41	47	
R _{IK} , (dBA)	25	26	27	29	32	34	31	32	33	33	39	

Table 3 - Double Windows (Secondary Sashes)


Thirdoctaveband	Sound Insulation (dB) for Glass Thickness (mm							
Centre Frequency (Hz)	6/100/4	6/150/4	10/200/6					
100	25	27	32					
125	27 26	30 29	37 35					
160	27	30	39					
200	33	34	45					
250	33 34	34 35	46 46					
315	37	39	46					
400	41 -	42	47					
500	46:44	46 45	45 46					
630	50	50	45					
800	54	54	44					
1000	57 56	57 56	45 46					
1250	59	58	50					
1600	58	58	53 ;					
2000	52 53	52 52	58 56					
2500	51	49	58					
3150	48	47	64					
4000	57 52	52 50	64 65					
R., (dB)	44	44	47					
$R_{\infty}(dB)$	46	47:	49					
R _{TRA} (dBA)	37	39	45					


Appendix D: Architects Plans

1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the

Copyright Rolfe Judd Ltd

- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

28/10/13 B Sections revised A Preliminary set 27/09/13

Rolfe Judd

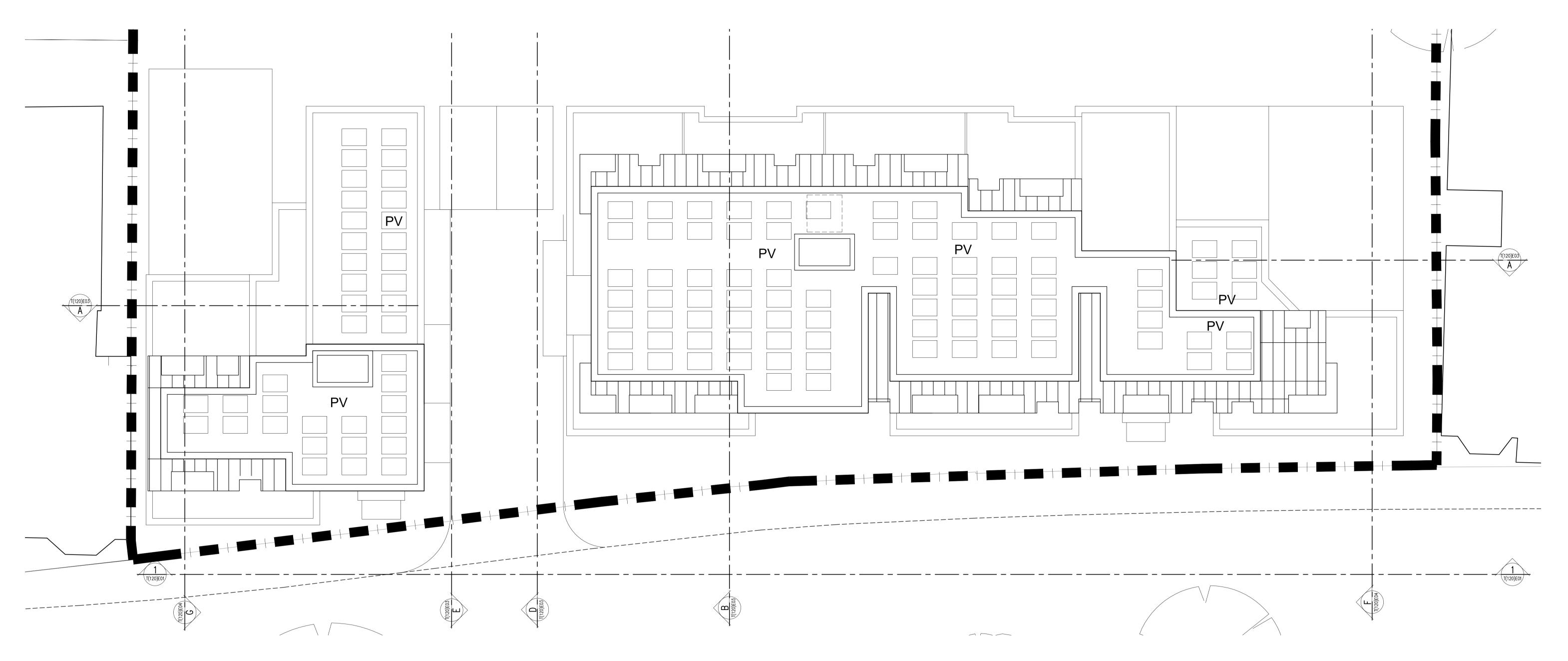
Old Church Court, Claylands Road, The Oval, London SW8 1NZ www.rolfe-judd.co.uk

LINDEN WATES

(WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing SECTIONS GONDAR GARDENS


Sep 13 1:250(A1) Job Number Drawing Number T(20) E01

G:\5388\T_Series\T20\T20S01

1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the

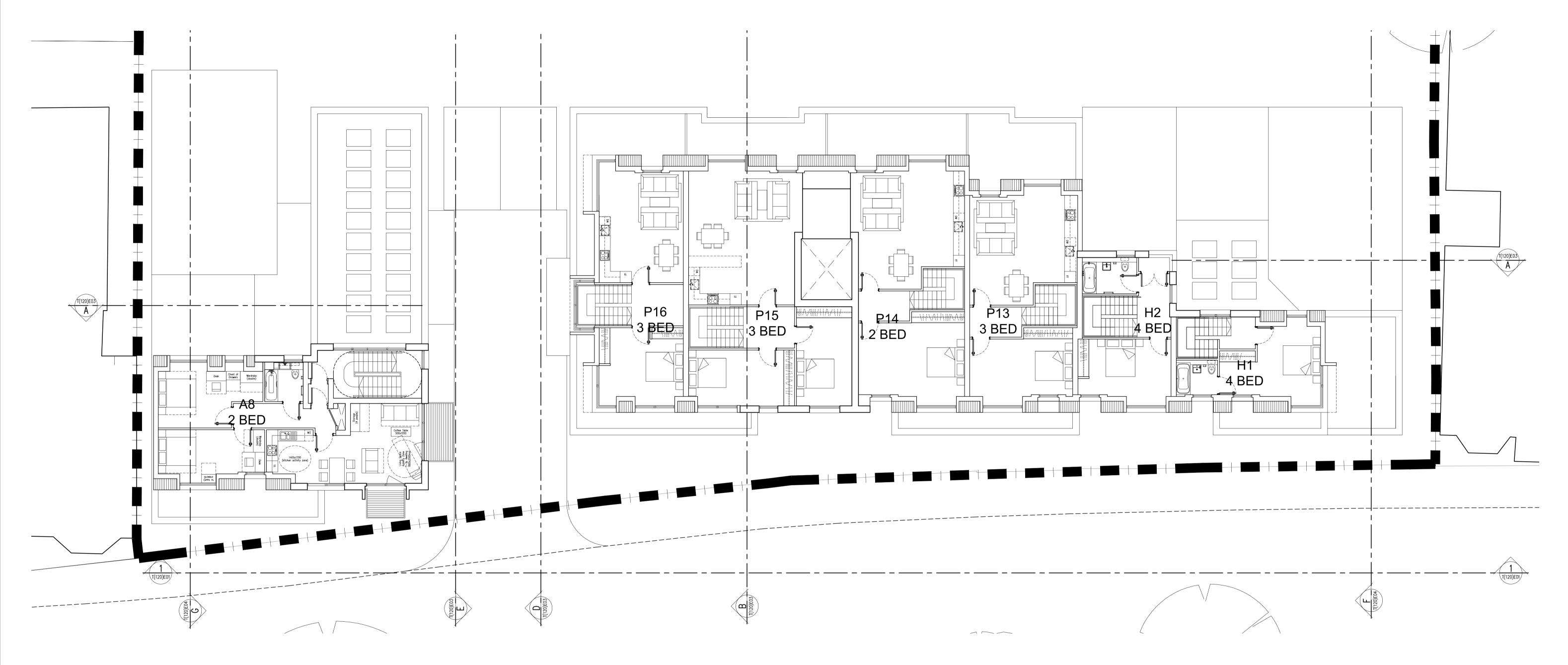
Copyright Rolfe Judd Ltd

- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

B Plan revised 28/10/13 A Preliminary set 27/09/13

Rolfe Judd

Old Church Court, Claylands Road, The Oval, London SW8 1NZ


LINDEN WATES (WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing PLAN **ROOF LEVEL**

1:100 (A1) Sep 13 Job Number Drawing Number T(20) P04

- 1 The Contractor must check and confirm all dimensions
- 2 All discrepancies must be reported and resolved by the Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

B Plan revised 28/10/13 A Preliminary set 27/09/13

Rolfe Judd

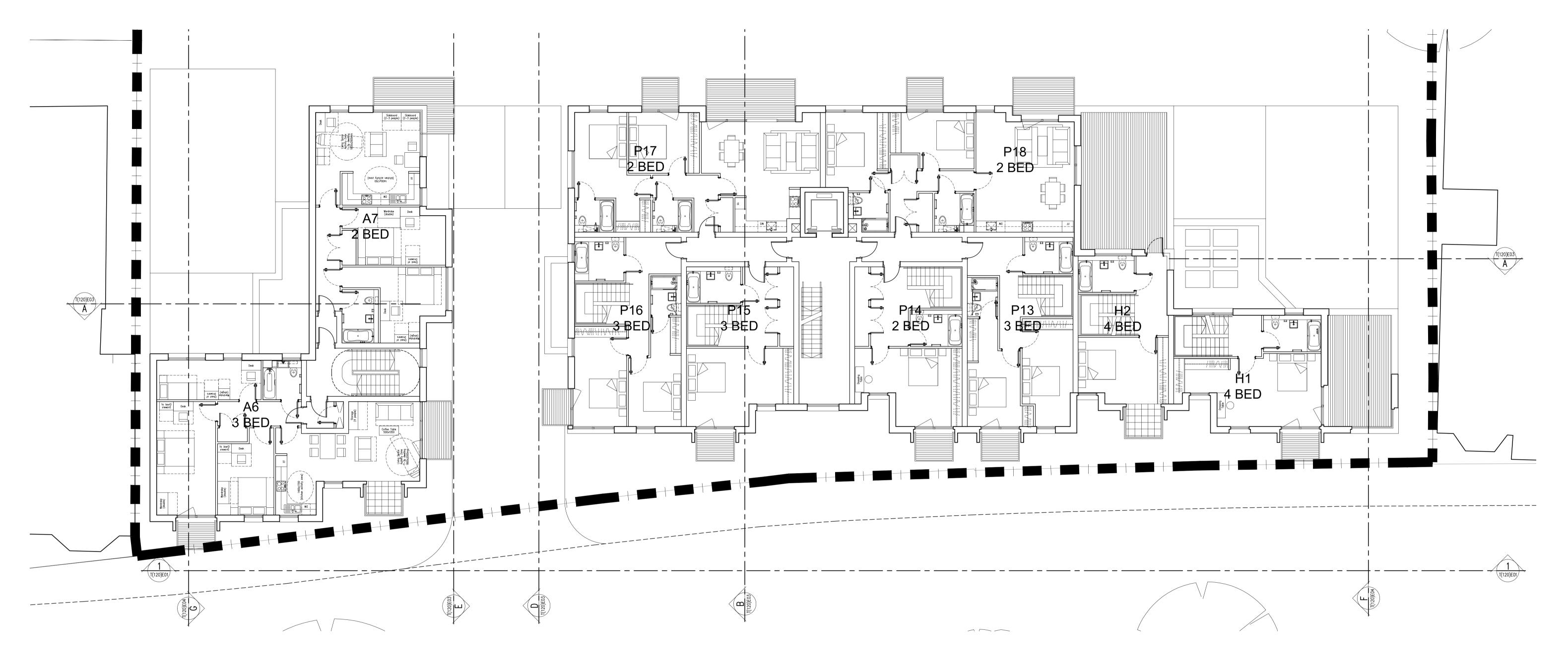
Old Church Court, Claylands Road, The Oval, London SW8 1NZ

LINDEN WATES

(WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing PLAN


THIRD FLOOR LEVEL

1:100 (A1) Sep 13

Job Number Drawing Number T(20) P03

G:\5388\T_Series\T20\T20P03

- 1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the
- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

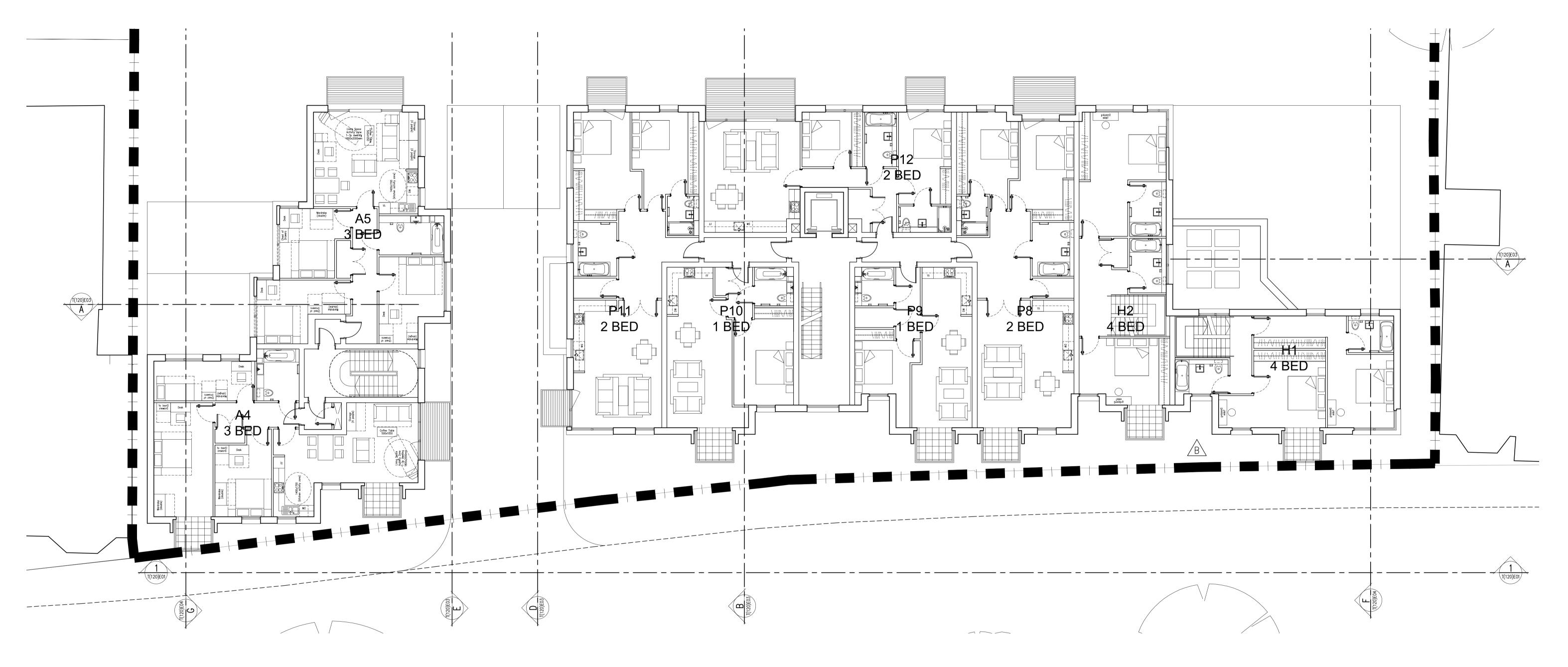
B Plan revised 28/10/13 27/09/13 A Preliminary set

Rolfe Judd

LINDEN WATES (WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing PLAN


SECOND FLOOR LEVEL

1:100 (A1) Sep 13

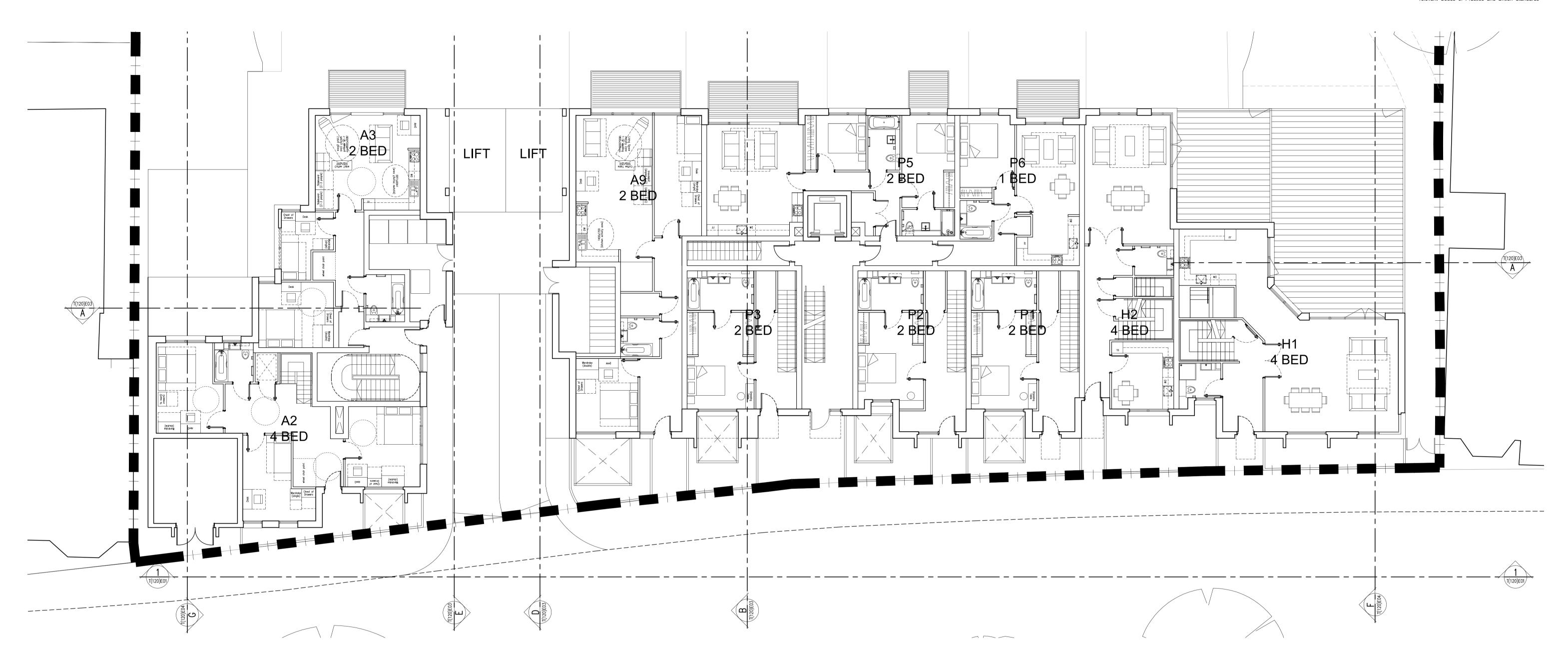
Job Number Drawing Number T(20) P02

G:\5388\T_Series\T20\T20P02

- 1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the
- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

B Plan revised 28/10/13 27/09/13 A Preliminary set

Rolfe Judd


LINDEN WATES (WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing PLAN FIRST FLOOR LEVEL

1:100 (A1) Sep 13

- 1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the
- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

28/10/13 B Plans revised 27/09/13 A Preliminary set

Rolfe Judd

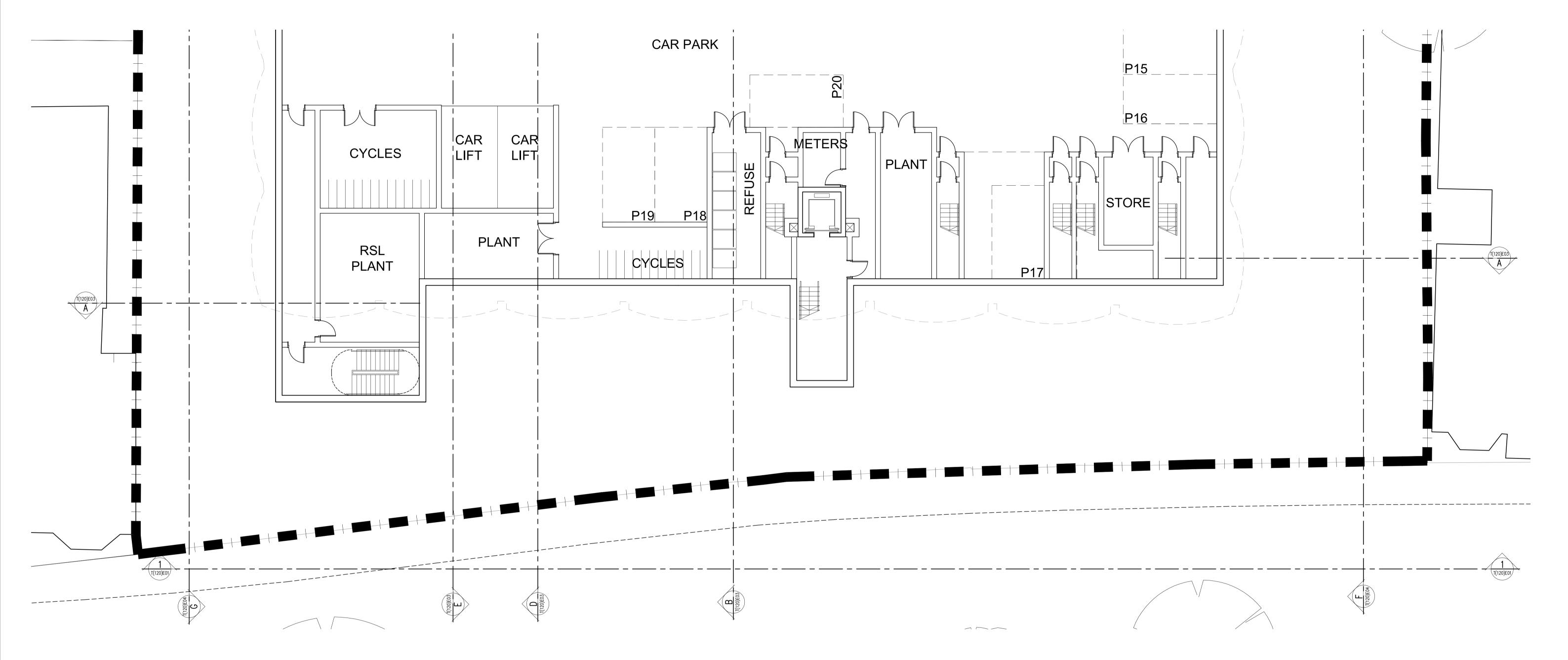
Old Church Court, Claylands Road, The Oval, London SW8 1NZ www.rolfe-judd.co.uk

LINDEN WATES (WEST HAMPSTEAD) LTD.

GONDAR GARDENS

FRONTAGE SCHEME

Drawing PLAN


GROUND LEVEL

Job Number Drawing Number 5388 T(20) P00

1:100 (A1) Sep 13

G:\5388\T_Series\T20\T20P00

- 2 All discrepancies must be reported and resolved by the Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

A Preliminary set

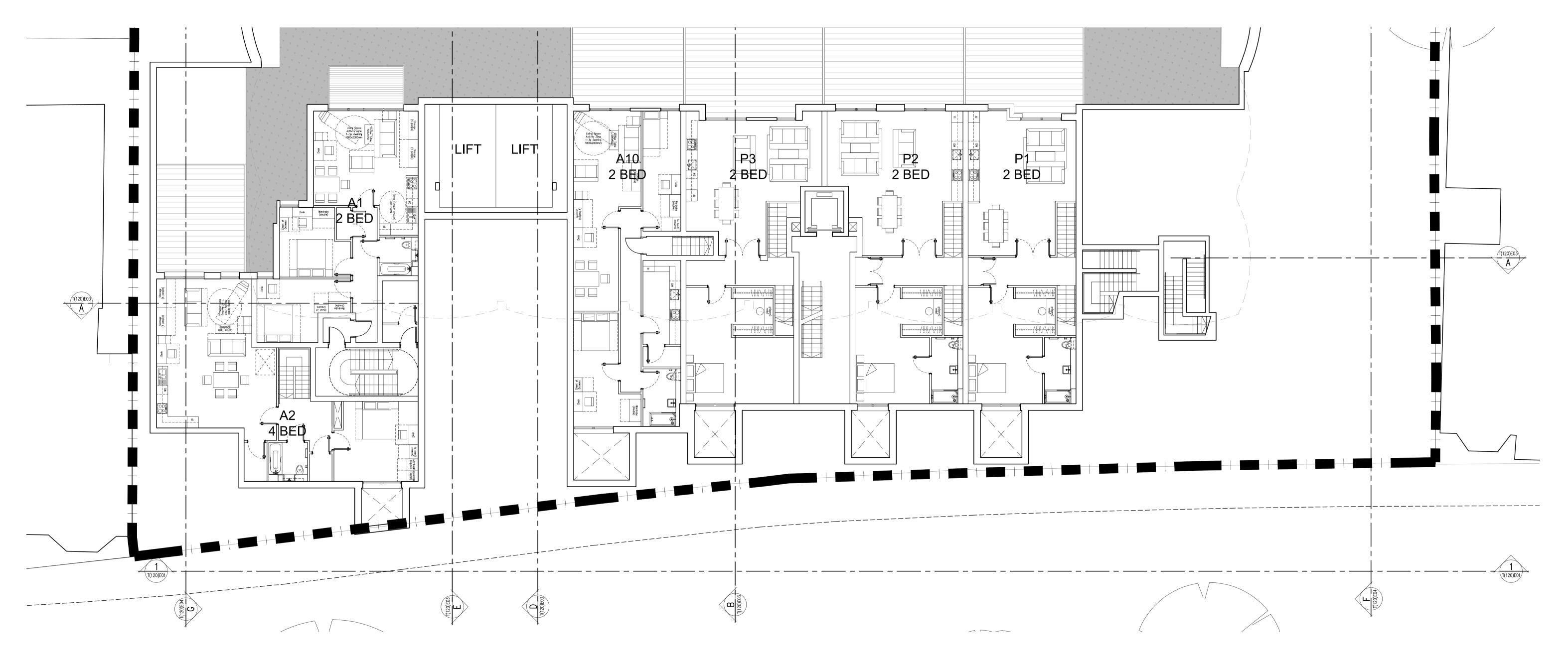
Rolfe Judd

Old Church Court, Claylands Road, The Oval, London SW8 1NZ

LINDEN WATES

(WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME


Drawing PLAN

BASEMENT LEVEL

Job Number Drawing Number T(20) P0-2

G:\5388\T_Series\T20\T20P0-2

1:100 (A1) Sep 13

A Preliminary set

Rolfe Judd

Old Church Court, Claylands Road, The Oval, London SW8 1NZ

LINDEN WATES (WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing PLAN LOWER GROUND LEVEL

1:100 (A1) Sep 13 Job Number Drawing Number

5388 T(20) P0-1

G:\5388\T_Series\T20\T20P0-1

1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the

Copyright Rolfe Judd Ltd

- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

2 GONDAR GARDENS REAR ELEVATION - SCALE: 1: 250 (A1)

Rolfe Judd

Old Church Court, Claylands Road, The Oval, London SW8 1NZ www.rolfe-judd.co.uk

LINDEN WATES (WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing ELEVATION REAR

1:100/1:250(A1) Sep 13

Job Number Drawing Number T(20) E03

G:\5388\T_Series\T20\T20E03

1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the

Copyright Rolfe Judd Ltd

- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

2 GONDAR GARDENS REAR ELEVATION - SCALE: 1: 250 (A1)

Rolfe Judd

Old Church Court, Claylands Road, The Oval, London SW8 1NZ

www.rolfe-judd.co.uk

LINDEN WATES (WEST HAMPSTEAD) LTD.

Project
GONDAR GARDENS FRONTAGE SCHEME

Drawing
ELEVATION
REAR

Scale Date 1:100/1:250(A1) Sep 13

Job Number Drawing Number T(20) E02

G:\5388\T_Series\T20\T20E02

Copyright Rolfe Judd Ltd

- 1 The Contractor must check and confirm all dimensions 2 All discrepancies must be reported and resolved by the
- Architect before works commence
- 3 This drawing is not to be scaled
- 4 All work and materials to be in accordance with current applicable Statutory Legislation and to comply with all relevant Codes of Practice and British Standards

2 GONDAR GARDENS STREET ELEVATION - SCALE: 1: 250 (A1)

Rolfe Judd

Old Church Court, Claylands Road, The Oval, London SW8 1NZ www.rolfe-judd.co.uk

LINDEN WATES

(WEST HAMPSTEAD) LTD.

GONDAR GARDENS FRONTAGE SCHEME

Drawing ELEVATION GONDAR GARDENS

1:100/1:250(A1) Sep 13

Job Number Drawing Number T(20) E01

G:\5388\T_Series\T20\T20E01