Regulations Compliance Report

Approved Document L1A 2010 edition assessed by Stroma FSAP 2009 program, Version: 1.5.0.63

Printed on 28 January 2014 at 16:01:41

Project Information:

Assessed By: Gary Nicholls (STRO003305) Building Type: Detached House

Dwelling Details:

NEW DWELLING DESIGN STAGE

Site Reference: 31 Percy Street Plot Reference: 31 Percy Street

Address: 31 Percy Street, London, W1T 2DD

Client Details:

Name: GCC Design Ltd

Address:

This report covers items included within the SAP calculations.

It is not a complete report of regulations compliance.

	an		

Fuel for main heating system: Natural gas

Fuel factor: 1.00 (natural gas)

Target Carbon Dioxide Emission Rate (TER) 17.89 kg/m²

Dwelling Carbon Dioxide Emission Rate (DER) 17.72 kg/m² OK

_			_			
	1321	nri	\sim		∀Æ1 1	ues
	па	\mathbf{v}_{11}	•	_	v ca i	uco

Element	Average	Highest	
External wall	0.24 (max. 0.30)	0.25 (max. 0.70)	OK
Party wall	0.00 (max. 0.20)	-	OK
Floor	0.18 (max. 0.25)	0.18 (max. 0.70)	OK
Roof	0.18 (max. 0.20)	0.18 (max. 0.35)	OK
Openings	1.54 (max. 2.00)	1.80 (max. 3.30)	OK

3 Air permeability

Air permeability at 50 pascals 6.00
Maximum 10.0
OK

4 Heating efficiency

Main Heating system: Boiler system with radiators or underfloor - mains gas

Data from manufacturer

Combi boiler

Efficiency 89.0 % SEDBUK2009

Minimum 88.0 %

Secondary heating system: None

5 Cylinder insulation

Hot water Storage: No cylinder

6 Controls

Space heating controls

Hot water controls:

No cylinder

Boiler interlock:

Yes

Time and temperature zone control

No cylinder

OK

7 Low energy lights

Percentage of fixed lights with low-energy fittings 100.0%
Minimum 75.0%

OK

OK

Regulations Compliance Report

8 Mechanical ventilation

Not applicable

9 Summertime temperature

Overheating risk (Thames valley):

Based on:

Overshading:

Windows facing: South West Windows facing: South East

Ventilation rate: Blinds/curtains:

Not significant

Average or unknown

9.35m², Overhang twice as wide as window, ratio NaN 1.6m², Overhang twice as wide as window, ratio NaN

OK

8.00 None

shutter closed 0% of daylight hours

10 Key features

Floors U-value 0.18 W/m²K

SAP Input

Property Details: 31 Percy Street

Address: 31 Percy Street, London, W1T 2DD

Located in: England Region: Thames valley

UPRN: na

Date of assessment: 28 January 2014
Date of certificate: 28 January 2014

Assessment type: New dwelling design stage

Transaction type:

Tenure type:

Related party disclosure:

Thermal Mass Parameter:

New dwelling

Unknown

No related party

Indicative Value Medium

Dwelling designed to use less than 125 litres per Person per day: True

Property description:

Dwelling type: House
Detachment: Detached
Year Completed: 2014

Floor Location: Floor area: Storey height:

Floor 0 36.2 m^2 2.3 m Floor 1 34.19 m^2 2.5 m

Living area: 28.91 m² (fraction 0.411)

Front of dwelling faces: South West

Opening types:

Source: Glazing: Frame: Name: Type: Argon: Manufacturer Solid Wood front door Manufacturer Windows double-glazed Metal windows front Yes windows side Manufacturer Windows double-glazed Yes Metal

Name:	Gap:	Frame Fa	actor: g-value:	U-value:	Area:	No. of Openings:
front door	mm	0.7	0	1.8	1.68	1
windows front	16mm or more	0.8	0.76	1.5	9.35	1
windows side	16mm or more	0.8	0.76	1 5	1.6	1

Width: Name: Type-Name: Location: Orient: Height: front door wall to corridor South East 0 0 windows front external wall South West 0 0 0 windows side external wall South East 0

Overshading: Average or unknown

Opaque Elements:

Type:	Gross area:	Openings:	Net area:	U-value:	Ru value:	Curtain wall:	Карра:
External Element	<u>S</u>						
external wall	37.96	10.95	27.01	0.25	0	False	N/A
wall to corridor	10.08	1.68	8.4	0.25	0.82	False	N/A
flat roof	41.63	0	41.63	0.18	0		N/A
ground floor	36.2			0.18			N/A
Internal Element	<u>s</u>						
Party Elements							
party wall	87.87						N/A

Thermal bridges

Thermal bridges: User-defined (individual PSI-values) Y-Value = 0.0948

Length PSI-value

SAP Input

10.45	0.214	Other lintels (including other steel lintels)
7.6	0.019	Sill
19.6	0.02	Jamb
9.8	0.044	Ground floor
10.2	0	Intermediate floor within a dwelling
11.2	0.04	Flat roof
2.3	-0.09	Corner (inverted)
28.6	0.076	Party wall between dwellings
20.9	0.08	Ground floor
15.9	0	Intermediate floor within a dwelling
21.4	0.12	Roof (insulation at ceiling level)

Ventilation:

Pressure test: Yes (As designed)

Ventilation: Natural ventilation (extract fans)

Number of chimneys: 0
Number of open flues: 0
Number of fans: 3
Number of sides sheltered: 2
Pressure test: 6

Main heating system

Main heating system: Central heating systems with radiators or underfloor heating

Gas boilers and oil boilers

Fuel: mains gas

Info Source: Manufacturer Declaration

Manufacturer's data

Efficiency: 89.0% (SEDBUK2009)

Condensing combi with automatic ignition

Fuel Burning Type: Systems with radiators Pump in heat space: Yes

Delayed start

Main heating Control:

Main heating Control: Time and temperature zone control

Control code: 2110 Boiler interlock: Yes

Secondary heating system:

Secondary heating system: None

Water heating

Water heating: From main heating system

Water code: 901 Fuel :mains gas No hot water cylinder Solar panel: False

Others:

Electricity tariff: standard tariff
In Smoke Control Area: Unknown
Conservatory: No conservatory

Low energy lights: 100%

Terrain type: Low rise urban / suburban

EPC language: English
Wind turbine: No
Photovoltaics: None
Assess Zero Carbon Home: No

SAP WorkSheet: New dwelling design stage

			User I	Details:						
Assessor Name:	Gary Nich	olls		Strom	a Num	ber:		STRO	003305	
Software Name:	Stroma F				are Ve			Versio	n: 1.5.0.63	
			Property	Address	: 31 Per	cy Street				
Address :	31 Percy S	treet, London	, W1T 2DE)						
1. Overall dwelling dime	ensions:									
Ground floor			Are	a(m²)	14-2	Ave He			Volume(m ³	<u> </u>
				36.2	(1a) x	2.	3	(2a) =	83.26	(3a)
First floor				34.19	(1b) x	2.	5	(2b) =	85.48	(3b)
Total floor area TFA = (1	a)+(1b)+(1c)-	+(1d)+(1e)+	.(1n)	70.39	(4)					
Dwelling volume					(3a)+(3b)+(3c)+(3d)	+(3e)+	(3n) =	168.74	(5)
2. Ventilation rate:										
	main heating	Secon heatii		other		total			m³ per hou	ır
Number of chimneys	0	+ 0	+	0	=	0	X	40 =	0	(6a
Number of open flues	0	+ 0	+	0	=	0	x:	20 =	0	(6b)
Number of intermittent fa	ans					3	x	10 =	30	(7a
Number of passive vents	5				Ē	0	×	10 =	0	(7b)
Number of flueless gas f	ires				F	0	x -	40 =	0	(7c)
					L					
								Air ch	anges per ho	our
Infiltration due to chimne	•					30		÷ (5) =	0.18	(8)
If a pressurisation test has I Number of storeys in t			ceed to (17),	otherwise	continue fr	rom (9) to (1	(6)	ĺ		
Additional infiltration	rie aweiling (i	15)					[(9)	-1]x0.1 =	0	(9) (10
Structural infiltration: 0	.25 for steel o	or timber frame	e or 0.35 fo	r mason	ry consti	ruction	-	•	0	(11)
if both types of wall are p		•	ng to the grea	ter wall are	ea (after					_
deducting areas of openi If suspended wooden			or 0.1 (seal	ed). else	enter 0				0	(12
If no draught lobby, er		,	(,,					0	(13
Percentage of window	s and doors o	Iraught strippe	ed						0	(14
Window infiltration				0.25 - [0.2	2 x (14) ÷ 1	100] =			0	(15
Infiltration rate						12) + (13) +			0	(16
Air permeability value,					•	etre of er	rvelope	area	6	(17
If based on air permeabi Air permeability value applie	•					is beina us	ed		0.48	(18)
Number of sides on which			40.70 07 4 40	groo an po		10 2011.g 40	-		2	(19
Shelter factor				(20) = 1 -	[0.075 x (19)] =			0.85	(20
Infiltration rate incorpora	-			(21) = (18	3) x (20) =				0.41	(21
Infiltration rate modified		 				 		<u> </u>		
Jan Feb	Mar Apr	May Ju	ın Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp										

4.5

4.1

3.9

3.7

3.7

4.2

4.5

4.8

5.1

Wind Factor (2	22a)m =	(22)m ÷	4										
(22a)m= 1.35	1.27	1.27	1.12	1.02	0.98	0.92	0.92	1.05	1.12	1.2	1.27]	
Adjusted infiltr	ation rat	e (allowi	na for ek	nelter an	d wind s	need) –	(21a) v	(22a)m	•		•		
0.55	0.52	0.52	0.46	0.42	0.4	0.38	0.38	0.43	0.46	0.49	0.52]	
Calculate effe		_	rate for t	he appli	cable ca	ise			<u> </u>		1	J 	
If mechanic												0	(23a)
If exhaust air h		0		, ,	,	. ,	,, .	,) = (23a)			0	(23b)
If balanced with		-	-	_								0	(23c)
a) If balance	1		i			- 	- ^ `	ŕ	- 			· ÷ 100] 1	(04-)
(24a)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If balance	1		i				 	í `	 	- 	1 0	1	(24b)
(24b)m= 0	0	0	0	0		0	0	0	0	0	0		(24b)
c) If whole h if (22b)r		tract ven < (23b), t		•	•				.5 × (23b)		_	
(24c)m= 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If natural if (22b)r		on or wh en (24d)			•				0.51				
(24d)m= 0.65	0.63	0.63	0.6	0.59	0.58	0.57	0.57	0.59	0.6	0.62	0.63]	(24d)
Effective air	change	rate - er	ıter (24a	ı) or (24l	o) or (24	c) or (24	d) in box	(25)				J	
(25)m= 0.65	0.63	0.63	0.6	0.59	0.58	0.57	0.57	0.59	0.6	0.62	0.63]	(25)
3. Heat losse	se and he	ant lane v											
0. 1 leat 1033c	is and ne	eat ioss p	paramet	er:									
ELEMENT	Gros area	SS	oaramet Openin m	ıgs	Net Ar A ,r		U-valı W/m2		A X U (W/I	<)	k-value		A X k kJ/K
	Gros	SS	Openin	ıgs		m²				<) 			
ELEMENT	Gros area	SS	Openin	ıgs	A ,r	m ² x	W/m2	=	(W/I	<) 			kJ/K
ELEMENT Doors	Gros area e 1	SS	Openin	ıgs	A ,r	m² x	W/m2	eK = 0.04] =	(W/I 3.024	<) 			kJ/K (26)
ELEMENT Doors Windows Type	Gros area e 1	SS	Openin	ıgs	A ,r 1.68	m ² x x1 x1	W/m2 1.8 /[1/(1.5)+	eK = 0.04] =	(W/I 3.024 13.23	<) 			kJ/K (26) (27)
ELEMENT Doors Windows Type Windows Type	Gros area e 1	ss (m²)	Openin	gs 1 ²	A ,r 1.68 9.35	m ² x x ¹ x ¹ x	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+	0.04] = 0.04] =	(W/I 3.024 13.23 2.26	<) 			kJ/K (26) (27) (27)
Doors Windows Type Windows Type Floor	Gros area e 1 e 2	ss (m²)	Openin m	gs 1 ²	A ,r 1.68 9.35 1.6 36.2	m ² x x ¹ x ¹ x	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+	0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W/I 3.024 13.23 2.26 6.52	<)			kJ/K (26) (27) (27) (28) (29)
Doors Windows Type Windows Type Floor Walls Type1	Gros area e 1 e 2	96 08	Openin m	gs 1 ²	A ,r 1.68 9.35 1.6 36.2 27.0 8.4	m ²	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25	0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W/I 3.024 13.23 2.26 6.52 6.75 1.74	<>			kJ/K (26) (27) (27) (28) (29)
Doors Windows Type Windows Type Floor Walls Type1 Walls Type2	Gros area e 1 e 2 37.9 10.0 41.6	96 08	10.92 1.68	gs 1 ²	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63	m ²	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25	0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W/I 3.024 13.23 2.26 6.52 6.75	<)			kJ/K (26) (27) (27) (28) (29)
Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e	Gros area e 1 e 2 37.9 10.0 41.6	96 08	10.92 1.68	gs 1 ²	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8	m ²	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18	0.04] = 0.04] = = = = = = = = = = = = = = = = = = =	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49	<)			kJ/K (26) (27) (27) (28) (29) (29) (30) (31)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and	Gros area e 1 e 2 37.9 10.0 41.6 elements	96 98 93 98 98 98 99 99 99 99 99 99 99	10.99 1.68 0	indow U-va	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculum	m ²	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18	K	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49		kJ/m²-	K [kJ/K (26) (27) (27) (28) (29) (29) (30)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area	Gros area e 1 e 2 37.9 10.0 41.6 elements d roof wind as on both	06 08 08 08 08 08 08 08 08 08 08 08 08 08	10.9 1.68 0 offective winternal wall	indow U-va	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculum	m ²	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18	0.04] = 0.04] = 0.04] = = = = =	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49		kJ/m²-	K	kJ/K (26) (27) (27) (28) (29) (29) (30) (31) (32)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los	Gros area e 1 e 2 37.9 10.0 41.6 elements d roof winddas on both ss, W/K =	96 98 93 98 98 98 99 99 99 99 99 99 99	10.9 1.68 0 offective winternal wall	indow U-va	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculum	m ²	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18	K	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49	as given in	kJ/m²-	K	kJ/K (26) (27) (27) (28) (29) (30) (31) (32)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity	Gros area e 1 e 2 37.9 10.0 41.6 elements d roof winder as on both ss, W/K: Cm = S(96 98 98 98 98 98 98 98 98 98 98	10.99 1.68 0 output	gs 1 ² 5 3 3 indow U-va	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculatitions	x1 x1 x x1 x x x x x x x x x x x x x x	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18	K	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49 0	as given in (32a)	kJ/m²-	1 3.2 41.0 0	kJ/K (26) (27) (27) (28) (29) (30) (31) (32)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess	Gros area e 1 e 2 37.9 10.0 41.6 elements froof winder as on both as on both css, W/K: Cm = S(parame sments wh	ess (m²) 66 68 63 6, m² 6 ws, use est sides of interest (TMF) eter (TMF)	10.92 1.68 0 1.68 U) P = Cm = tails of the	indow U-valls and par	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculatitions	x1 x1 x1 x x x x x x x x x x x x x x x	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18 0 formula 1 (26)(30)	K	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49 0 ue)+0.04] a	as given in (2) + (32a)	kJ/m²-	K	kJ/K (26) (27) (27) (28) (29) (30) (31) (32)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess can be used inste	Gros area 1 1 2 2 37.9 10.0 41.6 elements 1 roof winder as on both as on both ss, W/K: Cm = S(a) parameter with a dof a decision area.	ows, use e sides of in e S (A x k) eter (TMF) ere the de tailed calcular.	10.92 1.68 0 1.68 U) P = Cm - tails of the culation.	indow U-valls and par	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculatitions	x1 x1 x1 x1 x x x x x x x x x x x x x x	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18 0 formula 1 (26)(30)	K	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49 0 ue)+0.04] a	as given in (2) + (32a)	kJ/m²-	13.2 11.0 0 25	kJ/K (26) (27) (27) (28) (29) (30) (31) (32) (32) (33) (34) (0) (35)
ELEMENT Doors Windows Type Windows Type Floor Walls Type1 Walls Type2 Roof Total area of e Party wall * for windows and ** include the area Fabric heat los Heat capacity Thermal mass For design assess	Gros area e 1 e 2 37.9 10.0 41.6 elements d roof winder as on both as, W/K: Cm = S(as parame sments whe ad of a de es: S (L	ows, use e sides of interest (TMF) eter (TMF) eter the de tailed calculator.	10.9 1.68 0 offective winternal wall U) P = Cm - tails of the culation. culated to	indow U-valls and part TFA) ir	A ,r 1.68 9.35 1.6 36.2 27.0 8.4 41.63 125.8 87.87 alue calculatitions	x1 x1 x1 x1 x x x x x x x x x x x x x x	W/m2 1.8 /[1/(1.5)+ /[1/(1.5)+ 0.18 0.25 0.21 0.18 0 formula 1 (26)(30)	K	(W/I 3.024 13.23 2.26 6.52 6.75 1.74 7.49 0 ue)+0.04] a	as given in (2) + (32a)	kJ/m²-	1 3.2 41.0 0	kJ/K (26) (27) (27) (28) (29) (30) (31) (32) (32) (33) (34) (0) (35)

Ventila	ation hea	at loss ca	alculated	l monthl	V				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	36.21	35.31	35.31	33.65	32.67	32.21	31.77	31.77	32.9	33.65	34.45	35.31		(38)
Heat to	ransfer c	coefficier	nt, W/K		•	•	•	•	(39)m	= (37) + (37)	38)m	•		
(39)m=	89.17	88.26	88.26	86.61	85.62	85.16	84.73	84.73	85.86	86.61	87.41	88.26		
							!	!			Sum(39) ₁ .	12 /12=	86.73	(39)
	oss para				<u> </u>		ı	ı	- ` ´	= (39)m ÷	<u> </u>		l	
(40)m=	1.27	1.25	1.25	1.23	1.22	1.21	1.2	1.2	1.22	1.23	1.24	1.25	4.00	7(40)
Numbe	er of day	s in mor	nth (Tab	le 1a)					,	4verage =	Sum(40) _{1.}	12 /12=	1.23	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
						•	•	•			•	•		
4. Wa	ater heat	ing ener	rgy requi	rement:								kWh/ye	ear:	
Δeeum	ned occu	inancy I	N									26	1	(42)
if TF	A > 13.9	9, N = 1		[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (ΓFA -13.		26		(42)
	A £ 13.9	,						(O.F. NI)	. 00				l	
							erage = designed			se target o		7.77		(43)
not more	e that 125	litres per p	person per	day (all w	ater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage ii	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	96.55	93.04	89.52	86.01	82.5	78.99	78.99	82.5	86.01	89.52	93.04	96.55		
Energy	content of	hot water	used - cal	culated mi	anthly – 4	100 v Vd i	m x nm x D	Tm / 360(m(44) ₁₁₂ =		1053.23	(44)
				112.92		93.5	86.64		100.61			138.99		
(45)m=	143.52	125.52	129.53	112.92	108.35	93.5	00.04	99.42	<u> </u>	117.25	127.99 m(45) ₁₁₂ =	<u> </u>	1384.26	(45)
If instan	taneous w	ater heatii	ng at point	of use (no	hot water	r storage),	enter 0 in	boxes (46		rotar – Su	111(43)112 -		1304.20	(40)
(46)m=	21.53	18.83	19.43	16.94	16.25	14.03	13	14.91	15.09	17.59	19.2	20.85		(46)
	storage							•					•	
•	anufactu				r is knov	vn (kWh	/day):					0		(47)
•	erature fa											0		(48)
	y lost fro ufacture		-	-		s not kna		(47) x (48)) =			0		(49)
			-				in same	!				0		(50)
If con	nmunity he	eating and	no tank in	dwelling,	enter 110	litres in bo	ox (50)							
Othe	rwise if no	stored ho	t water (th	is includes	instantan	eous com	bi boilers)	enter '0' in	box (50)					
Hot wa	ater stora	age loss	factor fr	om Tab	e 2 (kW	h/litre/da	ay)					0		(51)
	e factor											0		(52)
Tempe	erature fa	actor fro	m Table	2b								0		(53)
٠.	y lost fro		_	, kWh/ye	ear			((50) x (51) x (52) x	(53) =		0		(54)
	(49) or (8	, ,	,					(/50)	EE) /:::			0	l	(55)
	storage					1	1	((56)m = (1	ı	I	:
(56)m=	0	0	0	0	0 (56)m	0	0	0) also (5)	0 7\m - (56)	0	0	0 m Append	iv L	(56)
-								· · ·	· · · ·			m Append	IX IT	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circuit loss (annual)	from Table 3			0	(58)
Primary circuit loss calculate	d for each month	(59) m = $(58) \div 3$	865 × (41)m		
(modified by factor from Ta	ble H5 if there is	solar water hea	ting and a cylinder t	thermostat)	
(59)m = 0 0 0	0 0	0 0	0 0	0 0	0 (59)
Combi loss calculated for ea	ch month (61)m =	= (60) ÷ 365 × (4	1)m		
(61)m= 49.2 42.82 45.62		38.96 40.25	42.04 42.42	45.62 45.88	49.2 (61)
Total heat required for water	heating calculate	ed for each mont	h (62)m = 0.85 × (4	5)m + (46)m + (5	7)m + (59)m + (61)m
(62)m= 192.72 168.34 175.15		132.46 126.9	1 1 1		88.19 (62)
Solar DHW input calculated using A	ppendix G or Append	ix H (negative quant	ity) (enter '0' if no solar o	contribution to water h	eating)
(add additional lines if FGHR					0 /
(63)m= 0 0 0	0 0	0 0		0 0	0 (63)
Output from water heater					
(64)m= 192.72 168.34 175.15	5 155.34 150.4	132.46 126.9	141.47 143.03	162.87 173.87 1	88.19
` '	. !		Output from water	er heater (annual) ₁₁₂	1910.73 (64)
Heat gains from water heating	a kWh/month 0	25 v [0 85 v (45)			
(65)m= 60.02 52.44 54.47	`	40.83 38.87		````	58.51 (65)
include (57)m in calculation					, ,
		Cylinder is in the	dwelling of flot war	ter is nom commi	unity neating
5. Internal gains (see Table	,				
Metabolic gains (Table 5), W		 			
Jan Feb Ma	+ 	+ + + -	Aug Sep	Oct Nov	Dec
(66)m= 135.33 135.33 135.3				135.33 135.33 1	35.33 (66)
Lighting gains (calculated in			1 1		
(67)m= 45.21 40.15 32.66	24.72 18.48	15.6 16.86	21.91 29.41	37.35 43.59 4	46.47 (67)
Appliances gains (calculated		` i		e 5	
(68)m= 295.83 298.9 291.1	6 274.69 253.91	234.37 221.32	218.25 225.98 3	242.45 263.24 2	82.78 (68)
Cooking gains (calculated in	Appendix L, equa	ation L15 or L15	a), also see Table 5	5	
(69)m= 50.79 50.79 50.79	50.79 50.79	50.79 50.79	50.79 50.79	50.79 50.79 5	50.79 (69)
Pumps and fans gains (Table	e 5a)				
(70)m= 10 10 10	10 10	10 10	10 10	10 10	10 (70)
Losses e.g. evaporation (neg	ative values) (Ta	ble 5)			
(71)m= -90.22 -90.22 -90.22	2 -90.22 -90.22	-90.22 -90.22	-90.22 -90.22	-90.22 -90.22 -	90.22 (71)
Water heating gains (Table 5	(1)	•			
(72)m= 80.67 78.04 73.22	66.88 62.55	56.71 52.25	58.56 61.19	67.73 75.04 7	78.65 (72)
Total internal gains =		(66)m + (67)	m + (68)m + (69)m + (70	0)m + (71)m + (72)m	
(73)m= 527.61 522.99 502.9	4 472.2 440.84	412.58 396.32	404.62 422.48	453.43 487.76 5	(73)
6. Solar gains:					
Solar gains are calculated using so	olar flux from Table 6	a and associated eq	uations to convert to the	applicable orientation	l.
Orientation: Access Factor	Area	Flux	g_	FF	Gains
Table 6d	m²	Table 6a	Table 6b	Table 6c	(W)
Southeast 0.9x 0.77	x 1.6	x 37.39	x 0.76	x 0.8	= 25.2 (77)
Southeast 0.9x 0.77	x 1.6	x 63.74	× 0.76	x 0.8	= 42.97 (77)
30utileast 0.9x 0.77	X 1.6	× 63.74	X 0.76	X 0.8	= 42.97 (77)

ii ii 0 @biiai yer	iergy.co.t	ın														
Southeast 0.9x	0.77	x	1.	6	x	84	.22	X		0.76	×	0.8		=	56.77	(77)
Southeast 0.9x	0.77	x	1.	6	x	103	3.49	x		0.76	×	0.8		=	69.77	(77)
Southeast 0.9x	0.77	x	1.	6	x	113	3.34	x		0.76	×	0.8		=	76.41	(77)
Southeast 0.9x	0.77	x	1.	6	X	115	5.04	x		0.76	×	0.8		=	77.56	(77)
Southeast 0.9x	0.77	x	1.	6	X	112	2.79	x		0.76	×	0.8		=	76.04	(77)
Southeast 0.9x	0.77	X	1.	6	X	105	5.34	x		0.76	×	0.8		=	71.02	(77)
Southeast 0.9x	0.77	x	1.	6	X	92	2.9	x		0.76	×	0.8		=	62.63	(77)
Southeast 0.9x	0.77	x	1.	6	X	72	.36	x		0.76	×	0.8		=	48.78	(77)
Southeast 0.9x	0.77	x	1.	6	X	44	.83	x		0.76	×	0.8		=	30.22	(77)
Southeast 0.9x	0.77	x	1.	6	x	31	.95	X		0.76	×	0.8		=	21.54	(77)
Southwest _{0.9x}	0.77	x	9.3	35	x	37	.39]		0.76	×	0.8		=	147.29	(79)
Southwest _{0.9x}	0.77	x	9.3	35	x	63	.74]		0.76	×	0.8		=	251.09	(79)
Southwest _{0.9x}	0.77	x	9.3	35	x	84	.22]		0.76	×	0.8		=	331.77	(79)
Southwest _{0.9x}	0.77	X	9.3	35	x	103	3.49]		0.76	×	0.8		=	407.7	(79)
Southwest _{0.9x}	0.77	X	9.3	35	X	113	3.34]		0.76	x	0.8		=	446.5	(79)
Southwest _{0.9x}	0.77	Х	9.3	35	X	115	5.04]		0.76	×	0.8		=	453.22	(79)
Southwest _{0.9x}	0.77	X	9.3	35	X	112	2.79]		0.76	x	0.8		=	444.35	(79)
Southwest _{0.9x}	0.77	X	9.3	35	X	105	5.34			0.76	x	0.8		=	415	(79)
Southwest _{0.9x}	0.77	Х	9.3	35	X	92	2.9]		0.76	×	0.8		=	365.98	(79)
Southwest _{0.9x}	0.77	X	9.3	35	X	72	.36]		0.76	x	0.8		=	285.08	(79)
Southwest _{0.9x}	0.77	X	9.3	35	X	44	.83]		0.76	x	0.8		=	176.59	(79)
Southwest _{0.9x}	0.77	x	9.3	35	x	31	.95]		0.76	×	0.8		=	125.87	(79)
								_								_
Solar gains in	watts, ca	lculated	for eac	h month	1			(83)m	n = Sur	m(74)m .	(82)m				•	
(83)m= 172.5	294.06	388.55	477.47	522.9			520.39	486	5.01	428.6	333.8	6 206.81	147	.41		(83)
Total gains – i					_										1	
(84)m= 700.11	817.05	891.48	949.66	963.74	9	43.36	916.71	890).63	851.09	787.2	9 694.58	66′	1.2		(84)
7. Mean inte	rnal temp	erature	(heating	seasor	า)											
Temperature	during h	eating p	eriods ir	n the liv	ing	area fro	om Tal	ole 9	, Th1	(°C)					21	(85)
Utilisation fac	ctor for ga	ains for I	iving are	ea, h1,n	n (s	ee Tab	le 9a)					_		1	I	
Jan	Feb	Mar	Apr	May	_	Jun	Jul	 	ug	Sep	Oct	-	+	ес		
(86)m= 0.98	0.97	0.93	0.87	0.74		0.56	0.38	0.3	39	0.64	0.87	0.97	0.9	98		(86)
Mean_interna	al tempera	ature in	living ar	ea T1 (f	ollo	w step	s 3 to 7	7 in T	able	9c)					•	
(87)m= 19.98	20.18	20.45	20.69	20.89		20.98	21	2	1	20.96	20.74	20.28	19.	99		(87)
Temperature	during h	eating p	eriods ir	n rest of	dw	velling f	rom Ta	able 9	9, Th:	2 (°C)						
(88)m= 19.87	19.88	19.88	19.9	19.91	1	19.91	19.92	19.	.92	19.91	19.9	19.89	19.	88		(88)
Utilisation fac	ctor for ga	ains for i	rest of d	welling,	h2	,m (see	Table	9a)								
(89)m= 0.98	0.96	0.91	0.84	0.68	_	0.47	0.28	0.2	29	0.55	0.83	0.96	0.9	98		(89)
Mean interna	al temper:	ature in	the rest	of dwel	ina	T2 (fol	low ste	eps 3		in Tabl	e 9c)		•		•	
(90)m= 18.56	18.86	19.23	19.56	19.81	Ť	19.9	19.92	19.		19.88	19.63	3 19	18.	59		(90)
				I						l	LA = Li	ving area ÷ (<u>(4)</u> =		0.41	(91)
Mean interne	al tompor	atura /fo	r tha wh	ماه طبیر	منالد	ια) – fl	Δ ν Τ1	 /1	_ fl ^	\\ ▽ ▼2					1	
Mean interna (92)m= 19.14	19.4	19.73	20.02	20.26	_	$\frac{19}{20.34} = \frac{11}{2}$	20.36	+ (1 20.		20.32	20.09	19.53	19.	16		(92)
19.14	13.4	13.13	20.02	20.20	<u> </u>	_0.04	20.00	L 20.	.55	20.02	20.08	, 19.55	19.	10	1	(52)

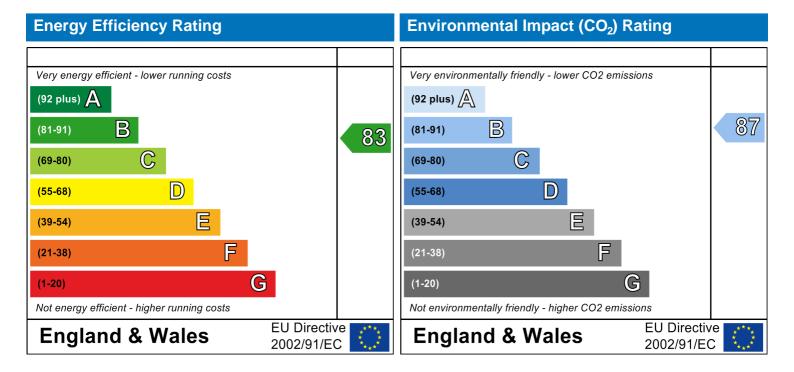
93)m= 18.99	tment to t	he mear	n interna	l temper	ature fro	m Table	4e, whe	ere appro	priate				
	19.25	19.58	19.87	20.11	20.19	20.21	20.21	20.17	19.94	19.38	19.01		(93)
8. Space he	eating requ	uirement											
Set Ti to the					ed at ste	ep 11 of	Table 9b	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fa	actor for g	ains, hm):										
94)m= 0.97	0.95	0.91	0.83	0.69	0.5	0.31	0.31	0.57	0.83	0.95	0.98		(94)
Useful gain:	s, hmGm	, W = (94	4)m x (8	4)m									
95)m= 681	775.71	807.46	792.1	664.88	467.47	279.97	279.87	486.68	652.38	661.36	644.87		(95)
Monthly ave	erage exte	rnal tem	perature	from Ta	able 8								
96)m= 4.5	5	6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
Heat loss ra	te for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m·	– (96)m	1				
97)m= 1292.	1	1127.73		719.76	476.35	280.6	280.58	504.22	791.47	1081.86	1245.77		(97)
Space heat	ina reauire	ement fo	r each n	nonth. k\	Mh/mont	th = 0.02	24 x [(97))m – (95)ml x (4	1)m			
98)m= 454.60	 	238.28	126.32	40.83	0	0	0	0	103.48	302.76	447.07		
,			l .				Tota	l per year	(kWh/vear) = Sum(9	8), 50 12 =	2037.55	(98)
				.,			7014	i poi youi	(RVVI# your) = Ga iii(G	C)15,912 —		╡
Space heat	ing require	ement in	kVVh/m²	/year								28.95	(99)
a. Energy re	equiremer	nts – Indi	ividual h	eating s	ystems i	ncluding	micro-C	HP)					
Space heat	ing:										_		
Fraction of	space hea	at from s	econdar	y/supple	mentary	system						0	(20
Fraction of	space hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =			Ī	1	(202
Fraction of	total heati	ng from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	(204
Efficiency o		_	-									89.8	(206
-	-		•		a avatam	. 0/					<u>[</u>		
Efficiency o	Seconda		ememai		II SVSIEH	I. 70						0	╡`
F	1	· · ·					i					0	(208
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	0 kWh/ye	(208
		Mar	Apr	May	Jun		Aug	Sep		Nov	Dec	-	(208
	ing require	Mar	Apr	May	Jun		Aug 0	Sep 0	Oct	Nov 302.76	Dec 447.07	-	(208
Space heat	ing require 3 324.15	Mar ement (c	Apr alculate	May d above	Jun) 0	Jul		•				-	(208 ear
Space heat	ing require 3 324.15 38)m x (20	Mar ement (c	Apr alculate	May d above	Jun) 0	Jul		•				-	(208 ear
Space heat 454.60 211)m = {[(9	ing require 3 324.15 38)m x (20	Mar ement (c 238.28 (4)] + (21	Apr calculated 126.32	May d above 40.83 100 ÷ (2	Jun) 0 (06)	Jul 0	0	0	103.48	302.76	447.07	-	(208
Space heat 454.66 211)m = {[(9 506.3	ing require 3 324.15 98)m x (20 360.97	Mar ement (c 238.28 (4)] + (21 265.34	Apr calculated 126.32 10)m } x 140.67	May d above 40.83 100 ÷ (2	Jun) 0 (06)	Jul 0	0	0	103.48	302.76	447.07	kWh/ye	(208 ear
Space heat 454.60 211)m = {[(9 506.3	ing require 324.15 8)m x (20 360.97 ing fuel (s	Mar ement (c 238.28 (4)] + (21 265.34	Apr calculated 126.32 10)m } x 140.67 y), kWh/	May d above 40.83 100 ÷ (2 45.47	Jun) 0 (06)	Jul 0	0	0	103.48	302.76	447.07	kWh/ye	(208) ear
Space heat 454.66 211)m = {[(96) 506.3 Space heat = {[(98)m x (20)	ing require 324.15 8)m x (20 360.97 ing fuel (s	Mar ement (c 238.28 (4)] + (21 265.34	Apr calculated 126.32 10)m } x 140.67 y), kWh/	May d above 40.83 100 ÷ (2 45.47	Jun) 0 (06)	Jul 0	0	0	103.48	302.76	447.07	kWh/ye	(208 ear
Space heat 454.66 211)m = {[(96) 506.3 Space heat = {[(98)m x (20)	ing require 3 324.15 8)m x (20 360.97 ing fuel (s	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x	Apr calculate 126.32 0)m } x 140.67 y), kWh/ c 100 ÷ (May d above 40.83 100 ÷ (2 45.47 month 208)	Jun 0 06)	Jul 0	0 Tota	0 0 I (kWh/yea	103.48 115.23 ar) =Sum(2	302.76 337.15 211) _{15,1012}	447.07	kWh/ye	(208)
Space heat 454.60 211)m = {[(9 506.3) Space heat = {[(98)m x (20215)m = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ing require 3 324.15 8 m x (20 360.97 ing fuel (s 201)] + (2	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x	Apr calculate 126.32 0)m } x 140.67 y), kWh/ c 100 ÷ (May d above 40.83 100 ÷ (2 45.47 month 208)	Jun 0 06)	Jul 0	0 Tota	0 0 I (kWh/yea	103.48 115.23 ar) =Sum(2	302.76 337.15 211) _{15,1012}	447.07	kWh/ye	(208)
Space heat 454.60 211)m = {[(9) 506.3} Space heat = {[(98)m x (2215)m= 0 Vater heating	ing require 324.15 8)m x (20 360.97 ing fuel (s 201)] + (2	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x	Apr calculated 126.32 10)m } x 140.67 y), kWh/ c 100 ÷ (May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 06)	Jul 0	0 Tota	0 0 I (kWh/yea	103.48 115.23 ar) =Sum(2	302.76 337.15 211) _{15,1012}	447.07	kWh/ye	(208)
Space heat 454.66 211)m = {[(9) 506.3 Space heat {[(98)m x (2) 215)m= 0 Vater heating Output from 19	ing require 324.15 8)m x (20 360.97 ing fuel (s 201)] + (2	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x	Apr calculated 126.32 10)m } x 140.67 y), kWh/ c 100 ÷ (0	May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 0 06) 0	0 0	0 Tota	0 I (kWh/yea	103.48 115.23 ar) =Sum(2 0 0 ar) =Sum(2	302.76 337.15 211) _{15,1012} 0	447.07	kWh/ye	(208)
Space heat 454.60 211)m = {[(9 506.3) Space heat = {[(98)m x (2215)m= 0 Vater heating Dutput from 192.72	ing require 3 324.15 8 m x (20 360.97 ing fuel (s 201)] + (2 0 ng water hea 168.34	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x 0	Apr calculated 126.32 10)m } x 140.67 y), kWh/ c 100 ÷ (May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 06)	Jul 0	0 Tota	0 0 I (kWh/yea	103.48 115.23 ar) =Sum(2	302.76 337.15 211) _{15,1012}	447.07	2268.99 0	(208) ear (211) (211)
Space heat 454.66 211)m = {[(9] 506.3 Space heat = {[(98)m x (2215)m= 0] Water heating Dutput from 192.72 Efficiency of	ing require 3 324.15 8)m x (20 360.97 ing fuel (s 201)] + (2 0 water hea 168.34 water hea	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x 0	Apr calculate 126.32 10)m } x 140.67 y), kWh/ c 100 ÷ (0	May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 06) 0 132.46	Jul 0 0 0 126.9	0 Tota 0 Tota 141.47	0 I (kWh/yea 0 I (kWh/yea 143.03	103.48 115.23 ar) =Sum(2 0 ar) =Sum(2	302.76 337.15 211) _{15,1012} 0 215) _{15,1012}	447.07 497.85 = 0 = 188.19	kWh/ye	(208) ear (211) (215)
Space heat 454.60 211)m = {[(9) 506.3} Space heat = {[(98)m x (2215)m= 0 Vater heating Dutput from 192.73 Efficiency of 217)m= 86.81	ing require 3 324.15 8)m x (20 360.97 ing fuel (s 201)] + (2 0 yeater heat 2 168.34 water heat 86.39	Mar ement (c 238.28 04)] + (21 265.34 econdar 14) m } x 0 ter (calc 175.15 ater	Apr calculated 126.32 10)m } x 140.67 y), kWh/ c 100 ÷ (0	May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 0 06) 0	0 0	0 Tota	0 I (kWh/yea	103.48 115.23 ar) =Sum(2 0 0 ar) =Sum(2	302.76 337.15 211) _{15,1012} 0	447.07	2268.99 0	(208) (208) (211) (211)
Space heat 454.60 211)m = {[(9) 506.3] Space heat {[(98)m x (2) 215)m= 0} Water heating Dutput from 192.72 Efficiency of 217)m= 86.81 Fuel for water	ing require 3 324.15 8 m x (20 360.97 ing fuel (s 201)] + (20 0 ng water head 168.34 water head 86.39 er heating,	Mar ement (c 238.28 04)] + (21 265.34 econdar 14) m } x 0 ter (calc 175.15 ater 85.61 kWh/mc	Apr calculated 126.32 10)m } x 140.67 y), kWh/c 100 ÷ (0 ulated at 155.34 84.42 onth	May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 06) 0 132.46	Jul 0 0 0 126.9	0 Tota 0 Tota 141.47	0 I (kWh/yea 0 I (kWh/yea 143.03	103.48 115.23 ar) =Sum(2 0 ar) =Sum(2	302.76 337.15 211) _{15,1012} 0 215) _{15,1012}	447.07 497.85 = 0 = 188.19	2268.99 0	(208) ear (211) (215)
Space heat 454.60 211)m = {[(9) 506.3] Space heat = {[(98)m x (2) 215)m= 0 Vater heatin Dutput from 192.72 Efficiency of 217)m= 86.81 Fuel for wate 219)m = (64)	ing require 3 324.15 8)m x (20 360.97 ing fuel (s 201)] + (2 0 year head 168.34 water head 86.39 er heating, 4)m x 100	Mar ement (c 238.28 (4)] + (21 265.34 econdar 14) m } x 0 ter (calc 175.15 ater 85.61 kWh/mo	Apr calculate 126.32 10)m } x 140.67 y), kWh/ c 100 ÷ (0 ulated a 155.34 84.42 onth	May d above 40.83 100 ÷ (2 45.47 (month 208) 0 bove) 150.4	Jun 0 06) 0 132.46	Jul 0 0 0 126.9 80.5	0 Tota 0 Tota 141.47	0 0 I (kWh/yea 0 I (kWh/yea 143.03	103.48 115.23 ar) = Sum(2 0 ar) = Sum(2 162.87	302.76 337.15 211) _{15,1012} 0 215) _{15,1012} 173.87	447.07 497.85 = 0 = 188.19 86.83	2268.99 0	(208
Space heat 454.60 211)m = {[(9) 506.3] Space heat {[(98)m x (2) 215)m= 0} Water heating Dutput from 192.72 Efficiency of 217)m= 86.81 Fuel for water	ing require 3 324.15 8)m x (20 360.97 ing fuel (s 201)] + (2 0 year head 168.34 water head 86.39 er heating, 4)m x 100	Mar ement (c 238.28 04)] + (21 265.34 econdar 14) m } x 0 ter (calc 175.15 ater 85.61 kWh/mc	Apr calculated 126.32 10)m } x 140.67 y), kWh/c 100 ÷ (0 ulated at 155.34 84.42 onth	May d above 40.83 100 ÷ (2 45.47 month 208) 0	Jun 0 06) 0 132.46	Jul 0 0 0 126.9	0 Tota 0 Tota 141.47 80.5	0 I (kWh/yea 0 I (kWh/yea 143.03	103.48 115.23 ar) =Sum(2 0 162.87 83.87	302.76 337.15 211) _{15,1012} 0 215) _{15,1012}	447.07 497.85 = 0 = 188.19	2268.99 0	(208) ear (211) (215)

Into @briaryenergy.co.uk			
Annual totals	kWh/year		kWh/year
Space heating fuel used, main system 1			2268.99
Water heating fuel used			2276.44
Electricity for pumps, fans and electric keep-hot			_
central heating pump:		130	(230c)
Total electricity for the above, kWh/year	sum of	(230a)(230g) =	130 (231)
Electricity for lighting			319.37 (232)
10a. Fuel costs - individual heating systems:			
	Fuel kWh/year	Fuel Price (Table 12)	Fuel Cost £/year
Space heating - main system 1	(211) x	3.1 x 0.01 =	70.3386 (240)
Space heating - main system 2	(213) x	0 x 0.01 =	0 (241)
Space heating - secondary	(215) x	0 x 0.01 =	0 (242)
Water heating cost (other fuel)	(219)	3.1 x 0.01 =	70.57 (247)
Pumps, fans and electric keep-hot	(231)	11.46 x 0.01 =	14.9 (249)
(if off-peak tariff, list each of (230a) to (230g) sepa Energy for lighting	arately as applicable and	d apply fuel price according to	
Additional standing charges (Table 12)			106 (251)
Appendix Q items: repeat lines (253) and (254) as Total energy cost (245)(247)	s needed 7) + (250)(254) =		298.4057 (255)
11a. SAP rating - individual heating systems			
Energy cost deflator (Table 12)			0.47 (256)
Energy cost factor (ECF) [(255) x (25	56)] ÷ [(4) + 45.0] =		1.2154 (257)
SAP rating (Section 12)			83.0445 (258)
12a. CO2 emissions – Individual heating system	s including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.198	449.26 (261)
Space heating (secondary)	(215) x	0 =	0 (263)
Water heating	(219) x	0.198 =	450.74 (264)
Space and water heating	(261) + (262) + (263) + (26	4) =	900 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517 =	67.21 (267)
Electricity for lighting	(232) x	0.517 =	165.11 (268)
Total CO2, kg/year		sum of (265)(271) =	1132.32 (272)
CO2 emissions per m²		(272) ÷ (4) =	16.09 (273)
El rating (section 14)			87 (274)

SAP WorkSheet: New dwelling design stage

13a. Primary Energy

	Energy kWh/year	Primary factor	P. Energy kWh/year
Space heating (main system 1)	(211) x	1.02 =	2314.37 (261)
Space heating (secondary)	(215) x	0 =	0 (263)
Energy for water heating	(219) x	1.02	2321.97 (264)
Space and water heating	(261) + (262) + (263) + (264) =		4636.34 (265)
Electricity for pumps, fans and electric keep-hot	(231) x	2.92	379.6 (267)
Electricity for lighting	(232) x	0 =	932.55 (268)
'Total Primary Energy	sun	n of (265)(271) =	5948.49 (272)
Primary energy kWh/m²/year	(27)	2) ÷ (4) =	84.51 (273)


Predicted Energy Assessment

31 Percy Street London W1T 2DD Dwelling type: Date of assessment: Produced by: Total floor area: Detached House 28 January 2014 Gary Nicholls 70.39 m²

This is a Predicted Energy Assessment for a property which is not yet complete. It includes a predicted energy rating which might not represent the final energy rating of the property on completion. Once the property is completed, an Energy Performance Certificate is required providing information about the energy performance of the completed property.

Energy performance has been assessed using the SAP 2009 methodology and is rated in terms of the energy use per square metre of floor area, energy efficiency based on fuel costs and environmental impact based on carbon dioxide (CO2) emissions.

The energy efficiency rating is a measure of the overall efficiency of a home. The higher the rating the more energy efficient the home is and the lower the fuel bills are likely to be.

The environmental impact rating is a measure of a home's impact on the environment in terms of carbonn dioxide (CO2) emissions. The higher the rating the less impact it has on the environment.