				User D	etails:						
Assessor Name:	Jonatha	an Ponting			Strom	a Num	ber:		STRO	000148	
Software Name:		FSAP 200	9		Softwa	are Vei	rsion:		Versic	on: 1.5.0.63	
			Р	roperty .	Address	: 194a F	ordwych	Road			
Address :	194a Fo	rdwych Roa	d, Lond	lon , NV	/2 3NX						
1. Overall dwelling dim	ensions:										
•				Area	a(m²)	1	Ave He	eight(m)	-	Volume(m ³)	_
Ground floor				4	7.65	(1a) x	2	2.5	(2a) =	119.12	(3a)
First floor				3	8.38	(1b) x	2.	675	(2b) =	102.67	(3b)
Total floor area TFA = (*	1a)+(1b)+(1	c)+(1d)+(1e	e)+(1r	n) 8	6.03	(4)					
Dwelling volume						(3a)+(3b))+(3c)+(3d	l)+(3e)+	.(3n) =	221.79	(5)
2. Ventilation rate:											
	mair heati		econdai eating	ry	other		total			m ³ per hou	r
Number of chimneys			0	+	0	=	0	X 4	40 =	0	(6a)
Number of open flues) +	0	<u> </u> + [0	- - [0	x	20 =	0	(6b)
Number of intermittent fa	ans						4	x /	10 =	40	(7a)
Number of passive vent	S					Ē	0	x ′	10 =	0	(7b)
Number of flueless gas	fires					Ē	0	x 4	40 =	0	(7c)
						L					
									Air ch	anges per ho	ur
Infiltration due to chimne	eys, flues ar	nd fans = (6)	a)+(6b)+(7	′a)+(7b)+(7c) =	Г	40		÷ (5) =	0.18	(8)
If a pressurisation test has			ed, procee	d to (17), o	otherwise o	continue fr	om (9) to ((16)			_
Number of storeys in Additional infiltration	the dwelling	g (ns)						1(0)	41-0-4	0	(9)
Structural infiltration: (25 for stee	al or timber f	frame or	0 35 for	masonr	w constr	uction	[(9)	-1]x0.1 =	0	(10)
if both types of wall are							uction			0	(11)
deducting areas of open				Ū		·					_
If suspended wooden		,	ed) or 0.	.1 (seale	ed), else	enter 0				0	(12)
If no draught lobby, en										0	(13)
Percentage of window Window infiltration	vs and door	s draught st	nppea		0.25 - [0.2	× (14) ∸ 1	001 =			0	(14)
Infiltration rate					(8) + (10)			+ (15) =		0	(15)
Air permeability value	. a50. expre	essed in cub	ic metre						area	5	(17)
If based on air permeab				•	•	•				0.43	(18)
Air permeability value appli	ies if a pressur	isation test has	s been dor	ne or a deg	gree air pe	rmeability	is being us	sed			
Number of sides on whi	ch sheltered	t l								3	(19)
Shelter factor					(20) = 1 -		[9)] =			0.78	(20)
Infiltration rate incorpora	•				(21) = (18)) x (20) =				0.33	(21)
Infiltration rate modified	,	<u> </u>		11	۸	0.00	0.4	Next	Dee	1	
Jan Feb	Mar A		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind s	· · · · · · · · · · · · · · · · · · ·		2.0	0.7	0.7	4.0	AE	4.0	E 4	1	
(22)m= 5.4 5.1	5.1 4.5	5 4.1	3.9	3.7	3.7	4.2	4.5	4.8	5.1		

Wind F	actor (2	22a)m =	(22)m ÷	4										
(22a)m=	1.35	1.27	1.27	1.12	1.02	0.98	0.92	2 0.92	1.05	1.12	1.2	1.27		
Adjust	ed infiltra	ation rat	e (allow	ing for sł	nelter an	d wind s	peed)) = (21a) x	(22a)m					
	0.45	0.43	0.43	0.38	0.34	0.33	0.31	0.31	0.35	0.38	0.4	0.43		
		<i>ctive air</i> al ventila	-	rate for t	he appli	cable ca	se		-	-	-	 Г		(23a)
				endix N, (2	3b) = (23a	a) × Fmv (e	equation	n (N5)) , othe	rwise (23b	o) = (23a)		L	0	(23a) (23b)
			• • • •		, ,	, ,	•	rom Table 4h		, , ,		L T	0	(23c)
a) If	balance	d mech	anical ve	entilation	with he	at recove	ery (N	IVHR) (24a	a)m = (2	2b)m + (23b) × [L 1 – (23c)	-	
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0	-	(24a)
b) If	balance	d mech	anical ve	entilation	without	heat rec	covery	, (MV) (24t)m = (2	2b)m + (23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
,					•	•		ation from o						
	, <i>,</i>		· /·	1 <u>`</u>	, ``	,. I	r Ò	24c) = (22l	ŕ	ı	ŕ	· · · · · ·		
(24c)m=		0	0	0	0	0	0	0	0	0	0	0		(24c)
,								ation from = 0.5 + [(2		0.5]				
(24d)m=	0.6	0.59	0.59	0.57	0.56	0.55	0.55	6 0.55	0.56	0.57	0.58	0.59		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24k	o) or (24	c) or (24d) in bo	x (25)	-	-			
(25)m=	0.6	0.59	0.59	0.57	0.56	0.55	0.55	6 0.55	0.56	0.57	0.58	0.59		(25)
3. He	at losse	s and he	eat loss	paramet	er:									
ELEN		Gros area	SS	Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/		k-value kJ/m²·K		A X k kJ/K
Doors		area	()		•	2.02		x 1	=	2.02				(26)
Windo	ws Type	e 1				3.74		x1/[1/(1.4)+	0.04] =	4.96				(27)
	ws Type					1.01		x1/[1/(1.4)+	0.04] =	1.34				(27)
Windo	ws Type	e 3				0.47		x1/[1/(1.4)+	0.04] =	0.62				(27)
Windo	ws Type	e 4				0.39		x1/[1/(1.4)+	0.04] =	0.52				(27)
Windo	ws Type	e 5				7.25		x1/[1/(1.4)+	0.04] =	9.61				(27)
Windo	ws Type	e 6				3.24		x1/[1/(1.4)+	0.04] =	4.3				(27)
Windo	ws Type	e 7				1.53		x1/[1/(1.4)+	0.04] =	2.03				(27)
Windo	ws Type	8				0.77		x1/[1/(1.4)+	0.04] =	1.02				(27)
Windo	ws Type	9				1.32		x1/[1/(1.4)+	0.04] =	1.75				(27)
Floor						47.65		× 0.13		6.19				(28)
Walls		155.	81	23.5	3	132.2		× 0.18		23.81			╡┢	(29)
Roof		47.6		0		47.65		× 0.13		6.19			i H	(30)
	rea of e	lements				251.11					[L	(31)
						L								

* for windows and roof windows, use effective window U-value calculated using formula 1/[(1/U-value)+0.04] as given in paragraph 3.2

 ** include the areas on both sides of internal walls and partitions

Fabric heat loss, $W/K = S (A \times U)$

Heat capacity $Cm = S(A \times k)$

(26)...(30) + (32) =

((28)...(30) + (32) + (32a)...(32e) = 25

Indicative Value: Medium

	66.74	(33)
2e) =	25512.8007	(34)
	250	(35)

Thermal mass parameter (TMP = Cm \div TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

can be ι	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix l	<						6.17	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.15 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			72.9	(37)
Ventila	ation hea	at loss ca	alculated	I monthly	y				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	44.01	43.21	43.21	41.75	40.87	40.47	40.08	40.08	41.08	41.75	42.46	43.21		(38)
Heat tr	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	116.92	116.12	116.12	114.65	113.78	113.37	112.98	112.98	113.99	114.65	115.36	116.12		
Heat lo	oss para	Imeter (H	HLP), W/	′m²K						Average = = (39)m ÷		12 /12=	114.75	(39)
(40)m=	1.36	1.35	1.35	1.33	1.32	1.32	1.31	1.31	1.32	1.33	1.34	1.35		
		I	I			I				Average =	Sum(40)1.	₁₂ /12=	1.33	(40)
Numbe	er of day	/s in moi	nth (Tab	le 1a)			-							
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater hea	ting ene	rav reau	rement:								kWh/ye	ear:	
		Ŭ										,		
if TF				[1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.0	0013 x (⁻	TFA -13.		57		(42)
			ater usag	ge in litre	es per da	ay Vd,av	erage =	(25 x N)	+ 36		95	.18		(43)
		-				-	-	to achieve	a water us	se target o	f			
not more	e that 125	litres per j	berson pei	day (ali w	ater use, i	hot and co	ia)						I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres per	r day for ea	ach month	Vd,m = fa	ctor from 1	Table 1c x	(43)						
(44)m=	104.69	100.89	97.08	93.27	89.46	85.66	85.66	89.46	93.27	97.08	100.89	104.69		
Finance	contont of	botwater	used col	autotad ma	anthly 1	100 v Vd v		Tm / 2600		Total = Su	· · ·		1142.11	(44)
					-	1	1	0Tm / 3600					I	
(45)m=	155.63	136.11	140.46	122.45	117.5	101.39	93.95	107.81	109.1	127.15	138.79	150.72		
lf instan	taneous v	vater heati	na at point	of use (no	hot water	r storage).	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =		1501.06	(45)
	23.34	20.42	21.07	18.37	17.62	15.21	14.09	16.17	16.37	19.07	20.82	22.61		(46)
(46)m= Water	storage		21.07	10.37	17.02	15.21	14.09	10.17	10.37	19.07	20.82	22.01		(40)
	-		clared lo	oss facto	r is knov	vn (kWh	/day):					0		(47)
		actor fro				,	• •					0		(48)
-		m water			ear			(47) x (48)) =			0		(49)
	•		•			s not kno	own:							
Cylind	er volun	ne (litres) includii	ng any s	olar stor	age with	in same	!				0		(50)
If con	nmunity h	eating and	l no tank ir	dwelling,	enter 110	litres in bo	ox (50)							
Othe	rwise if no	stored ho	t water (th	is includes	instantan	eous coml	bi boilers)	enter '0' in	box (50)					
Hot wa	ater stor	age loss	factor fr	om Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
Volum	e factor	from Ta	ble 2a									0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energy	y lost fro	om water	storage	, kWh/ye	ear			((50) x (51) x (52) x	(53) =		0		(54)

Enter	(49) or (54) in (5	5)									0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m			1	
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylind	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Prima	ry circuit	loss (an	nual) fro	om Table	e 3							0		(58)
Prima	ry circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor fi	rom Tab	le H5 if t	here is s	olar wat	er heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	i loss ca	culated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m	-	-	-		_	
(61)m=	13.11	11.83	13.05	12.58	12.96	12.49	12.88	12.93	12.54	13.01	12.65	13.09		(61)
Total h	neat requ	uired for	water h	eating ca	alculated	for eacl	n month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	168.74	147.94	153.51	135.03	130.45	113.88	106.84	120.74	121.64	140.16	151.44	163.81		(62)
Solar D	HW input o	calculated	using App	endix G or	. Appendix	H (negativ	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix C	G)					
(63)m=	-27.94	-44.65	-68.07	-88.06	-108.91	-111.64	-111.06	-96.01	-74.89	-56.6	-33.28	-23.64		(63)
Outpu	t from w	ater hea	ter		_				_				_	
(64)m=	140.79	103.28	85.44	46.97	21.54	2.25	0	24.73	46.75	83.55	118.16	140.17		_
								Outp	out from wa	ater heate	r (annual)₁	12	813.63	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 x [0.85	× (45)m	n + (61)n	n] + 0.8 :	x [(46)m	+ (57)m	n + (59)m	1]	
(65)m=	55.02	48.21	49.96	43.86	42.31	36.84	34.46	39.08	39.41	45.53	49.31	53.39		(65)
inclu	ude (57)	m in calo	culation	of (65)m	only if c	ylinder is	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. In	ternal ga	ains (see	Table 5	5 and 5a):									
Metab	olic gain	s (Table	e 5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	154.04	154.04	154.04	154.04	154.04	154.04	154.04	154.04	154.04	154.04	154.04	154.04		(66)
Lightir	ng gains	(calcula	ted in A	pendix	L, equat	ion L9 oi	r L9a), a	lso see	Table 5			•	I	
(67)m=	51.61	45.84	37.28	28.22	21.1	17.81	19.25	25.02	33.58	42.64	49.76	53.05		(67)
Applia	nces ga	ins (calc	ulated ir	n Append	dix L, eq	uation L ²	13 or L1	3a), alsc	see Ta	ble 5			I	
(68)m=	345.64	349.23	340.19	320.95	296.66	273.83	258.58	255	264.03	283.28	307.56	330.39		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	e Table	5			I	
(69)m=	52.97	52.97	52.97	52.97	52.97	52.97	52.97	52.97	52.97	52.97	52.97	52.97		(69)
Pumps	s and fai	ns gains	(Table :	5a)									1	
(70)m=	10	10	10	, 10	10	10	10	10	10	10	10	10		(70)
Losse	s e.a. ev	aporatio	n (nega	tive valu	es) (Tab	Le 5)			I	I	I	Į	1	
(71)m=	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7	-102.7		(71)
Water	heating	gains (T	able 5)										1	
(72)m=	73.96	71.75	67.16	60.92	56.86	51.16	46.32	52.53	54.74	61.19	68.49	71.76		(72)
Total	internal	gains =	I	1		(66)	m + (67)m	ı + (68)m +	ı ⊦ (69)m + (l (70)m + (7	ı 1)m + (72))m	1	
(73)m=	585.53	581.14	558.95	524.41	488.94	457.13	438.47	446.86	466.67	501.43	540.13	569.52		(73)
6. <u>So</u>	lar gains	s:	1		1				1	1	1	1		

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Southeast 0.9x	0.77	x	7.25	x	37.39	×	0.63	x	0.85	=	100.59	(77)
Southeast 0.9x	0.77	x	3.24	x	37.39	x	0.63	x	0.85	=	44.95	(77)
Southeast 0.9x	0.77	x	1.53	x	37.39	×	0.63	x	0.85	=	21.23	(77)
Southeast 0.9x	0.77	x	0.77	x	37.39	×	0.63	x	0.85	=	10.68	(77)
Southeast 0.9x	0.77	x	7.25	x	63.74	x	0.63	x	0.85	=	171.48	(77)
Southeast 0.9x	0.77	x	3.24	x	63.74	×	0.63	x	0.85	=	76.63	(77)
Southeast 0.9x	0.77	x	1.53	x	63.74	×	0.63	x	0.85	=	36.19	(77)
Southeast 0.9x	0.77	x	0.77	x	63.74	x	0.63	x	0.85	=	18.21	(77)
Southeast 0.9x	0.77	x	7.25	x	84.22	x	0.63	x	0.85	=	226.58	(77)
Southeast 0.9x	0.77	x	3.24	x	84.22	x	0.63	x	0.85] =	101.26	(77)
Southeast 0.9x	0.77	x	1.53	x	84.22	x	0.63	x	0.85] =	47.82	(77)
Southeast 0.9x	0.77	x	0.77	x	84.22	×	0.63	x	0.85] =	24.06	(77)
Southeast 0.9x	0.77	x	7.25	x	103.49	x	0.63	x	0.85	=	278.44	(77)
Southeast 0.9x	0.77	x	3.24	x	103.49	x	0.63	x	0.85	=	124.43	(77)
Southeast 0.9x	0.77	x	1.53	x	103.49	×	0.63	x	0.85	=	58.76	(77)
Southeast 0.9x	0.77	x	0.77	x	103.49	x	0.63	x	0.85	=	29.57	(77)
Southeast 0.9x	0.77	x	7.25	x	113.34	×	0.63	x	0.85] =	304.93	(77)
Southeast 0.9x	0.77	x	3.24	x	113.34	x	0.63	x	0.85	=	136.27	(77)
Southeast 0.9x	0.77	x	1.53	x	113.34	x	0.63	x	0.85	=	64.35	(77)
Southeast 0.9x	0.77	x	0.77	x	113.34	x	0.63	x	0.85	=	32.39	(77)
Southeast 0.9x	0.77	x	7.25	x	115.04	×	0.63	x	0.85	=	309.52	(77)
Southeast 0.9x	0.77	x	3.24	x	115.04	x	0.63	x	0.85	=	138.33	(77)
Southeast 0.9x	0.77	x	1.53	x	115.04	×	0.63	x	0.85] =	65.32	(77)
Southeast 0.9x	0.77	x	0.77	x	115.04	×	0.63	x	0.85] =	32.87	(77)
Southeast 0.9x	0.77	x	7.25	x	112.79	×	0.63	x	0.85	=	303.46	(77)
Southeast 0.9x	0.77	x	3.24	x	112.79	×	0.63	x	0.85	=	135.62	(77)
Southeast 0.9x	0.77	x	1.53	x	112.79	×	0.63	x	0.85	=	64.04	(77)
Southeast 0.9x	0.77	x	0.77	x	112.79	x	0.63	x	0.85	=	32.23	(77)
Southeast 0.9x	0.77	x	7.25	x	105.34	x	0.63	x	0.85	=	283.42	(77)
Southeast 0.9x	0.77	x	3.24	x	105.34	×	0.63	x	0.85	=	126.66	(77)
Southeast 0.9x	0.77	x	1.53	x	105.34	×	0.63	x	0.85	=	59.81	(77)
Southeast 0.9x	0.77	x	0.77	x	105.34	x	0.63	x	0.85	=	30.1	(77)
Southeast 0.9x	0.77	x	7.25	x	92.9	x	0.63	x	0.85	=	249.94	(77)
Southeast 0.9x	0.77	x	3.24	x	92.9	x	0.63	x	0.85	=	111.7	(77)
Southeast 0.9x	0.77	x	1.53	x	92.9	×	0.63	x	0.85	=	52.75	(77)
Southeast 0.9x		x	0.77	×	92.9	×	0.63	x	0.85	=	26.55	(77)
Southeast 0.9x	0.77	x	7.25	x	72.36	×	0.63	x	0.85	=	194.69	(77)
Southeast 0.9x		x	3.24	×	72.36	×	0.63	x	0.85	=	87.01	(77)
Southeast 0.9x	0.77	x	1.53	x	72.36	x	0.63	x	0.85	=	41.09	(77)

Southeast 0.9x	0.77] x	0.77	×	72.36) ×	0.63	x	0.85	=	20.68	(77)
Southeast 0.9x	0.77) ^ x	7.25	x	44.83	^ x	0.63	x	0.85	=	120.6](**)](77)
Southeast 0.9x	0.77] ×	3.24	×	44.83	x	0.63	x	0.85	=	53.9	(77)
Southeast 0.9x	0.77	」 】 x	1.53	x	44.83	」 】 ×	0.63	x	0.85	=	25.45](77)
Southeast 0.9x	0.77	」 】 x	0.77	x	44.83	x	0.63	x	0.85	=	12.81](77)
Southeast 0.9x	0.77] x	7.25	x	31.95	x	0.63	x	0.85	=	85.96](77)
Southeast 0.9x	0.77] x	3.24	x	31.95	×	0.63	x	0.85	=	38.42	(77)
Southeast 0.9x	0.77	x	1.53	x	31.95	×	0.63	x	0.85	=	18.14	– (77)
Southeast 0.9x	0.77	x	0.77	x	31.95	×	0.63	x	0.85	=	9.13	(77)
Northwest 0.9x	0.77	x	3.74	x	11.51	x	0.63	x	0.85	=	15.97	(81)
Northwest 0.9x	0.77	x	1.01	x	11.51	×	0.63	x	0.85	=	4.31	(81)
Northwest 0.9x	0.77	x	0.47	x	11.51	x	0.63	x	0.85	=	4.02	(81)
Northwest 0.9x	0.77	x	0.39	x	11.51	x	0.63	x	0.85	=	1.67	(81)
Northwest 0.9x	0.77	x	1.32	x	11.51	x	0.63	x	0.85	=	11.28	(81)
Northwest 0.9x	0.77	x	3.74	×	23.55	×	0.63	x	0.85	=	32.69	(81)
Northwest 0.9x	0.77	x	1.01	×	23.55	×	0.63	x	0.85	=	8.83	(81)
Northwest 0.9x	0.77	x	0.47	x	23.55	x	0.63	x	0.85	=	8.22	(81)
Northwest 0.9x	0.77	x	0.39	x	23.55	×	0.63	x	0.85	=	3.41	(81)
Northwest 0.9x	0.77	x	1.32	x	23.55	x	0.63	x	0.85	=	23.08	(81)
Northwest 0.9x	0.77	x	3.74	x	41.13	x	0.63	x	0.85	=	57.08	(81)
Northwest 0.9x	0.77	x	1.01	x	41.13	x	0.63	x	0.85	=	15.41	(81)
Northwest 0.9x	0.77	x	0.47	x	41.13	x	0.63	x	0.85	=	14.35	(81)
Northwest 0.9x	0.77	x	0.39	x	41.13	x	0.63	x	0.85	=	5.95	(81)
Northwest 0.9x	0.77	x	1.32	x	41.13	×	0.63	x	0.85	=	40.29	(81)
Northwest 0.9x	0.77	x	3.74	x	67.8	x	0.63	x	0.85	=	94.1	(81)
Northwest 0.9x	0.77	x	1.01	x	67.8	×	0.63	x	0.85	=	25.41	(81)
Northwest 0.9x	0.77	x	0.47	x	67.8	×	0.63	x	0.85	=	23.65	(81)
Northwest 0.9x	0.77	x	0.39	x	67.8	×	0.63	x	0.85	=	9.81	(81)
Northwest 0.9x	0.77	x	1.32	x	67.8	×	0.63	x	0.85	=	66.42	(81)
Northwest 0.9x	0.77	x	3.74	x	89.77	x	0.63	x	0.85	=	124.59	(81)
Northwest 0.9x	0.77	x	1.01	x	89.77	x	0.63	x	0.85	=	33.65	(81)
Northwest 0.9x	0.77	x	0.47	×	89.77	x	0.63	x	0.85	=	31.31	(81)
Northwest 0.9x	0.77	x	0.39	×	89.77	x	0.63	x	0.85	=	12.99	(81)
Northwest 0.9x	0.77	x	1.32	x	89.77	x	0.63	x	0.85	=	87.94	(81)
Northwest 0.9x	0.77	x	3.74	×	97.5	x	0.63	x	0.85	=	135.32	(81)
Northwest 0.9x	0.77	x	1.01	x	97.5	x	0.63	x	0.85	=	36.54	(81)
Northwest 0.9x	0.77	x	0.47	×	97.5	×	0.63	x	0.85	=	34.01	(81)
Northwest 0.9x	0.77	x	0.39	×	97.5	×	0.63	x	0.85	=	14.11	(81)
Northwest 0.9x	0.77	×	1.32	×	97.5	×	0.63	x	0.85	=	95.52	(81)
Northwest 0.9x	0.77	×	3.74	×	92.98	×	0.63	x	0.85	=	129.05	(81)
Northwest 0.9x	0.77	×	1.01	X	92.98	×	0.63	x	0.85	=	34.85	(81)

Northwest (0.9x 0.77		x	0.47	` ,	(92.98	x	0.63	x	0.85	=	32.43	(81)
Northwest 0	0.9x 0.77		x	0.39	_ ,	(92.98	x	0.63	x	0.85	=	13.46	(81)
Northwest (0.9x 0.77		x	1.32	` ,	c 🗌	92.98	x	0.63	x	0.85	=	91.09	(81)
Northwest (0.9x 0.77		x	3.74	_ ,	(75.42	x	0.63	×	0.85	=	104.67	(81)
Northwest 0	0.9x 0.77		x	1.01	_ ,	(75.42	x	0.63	x	0.85	=	28.27	(81)
Northwest 0	0.9x 0.77		x	0.47) ,	(75.42	x	0.63	x	0.85	=	26.31	(81)
Northwest (0.9x 0.77		x	0.39	` ,	(75.42	x	0.63	x	0.85	=	10.92	(81)
Northwest 0	0.9x 0.77		x	1.32	_ ,	(75.42	x	0.63	x	0.85	=	73.89	(81)
Northwest 0	0.9x 0.77		x	3.74] >	(51.24	x	0.63	×	0.85	=	71.12	(81)
Northwest (0.9x 0.77		x	1.01	` ,	(51.24	x	0.63	x	0.85	=	19.21	(81)
Northwest 0	0.9x 0.77		x	0.47] >	<	51.24	x	0.63	×	0.85	=	17.88	(81)
Northwest 0	0.9x 0.77		x	0.39] >	(51.24	x	0.63	×	0.85	=	7.42	(81)
Northwest (0.9x 0.77		x	1.32	Ξ,	(51.24	x	0.63	×	0.85	=	50.2	(81)
Northwest 0	0.9x 0.77		x	3.74	- ,	(29.6	_ x	0.63	×	0.85	=	41.08	(81)
Northwest (0.9x 0.77		x	1.01	Ξ,	(29.6	x	0.63	×	0.85	=	11.09	(81)
Northwest 0	0.9x 0.77		x	0.47	Ī,	<u>ــــــــــــــــــــــــــــــــــــ</u>	29.6	x	0.63	×	0.85	=	10.33	(81)
Northwest 0	0.9x 0.77		x	0.39	ī,	(29.6	X	0.63	×	0.85	=	4.28	(81)
Northwest 0	0.9x 0.77		x	1.32	ī,	(29.6	x	0.63	×	0.85	=	29	(81)
Northwest 0	0.9x 0.77		x	3.74	ī,	(14.52] x	0.63	×	0.85	=	20.16	(81)
Northwest 0	0.9x 0.77		x	1.01	ī,	(14.52	x	0.63	×	0.85	=	5.44	(81)
Northwest 0	0.9x 0.77		x	0.47	- ,	(14.52	x	0.63	×	0.85	=	5.07	(81)
Northwest 0	0.9x 0.77		x	0.39	ī,	(14.52] x	0.63	×	0.85	=	2.1	(81)
Northwest 0	0.9x 0.77		x	1.32	ī,	(14.52	x	0.63	×	0.85	=	14.23	(81)
Northwest 0	0.9x 0.77		x	3.74	ī,	(9.36	x	0.63	×	0.85	=	12.99	(81)
Northwest 0	0.9x 0.77		x	1.01	Ī,	(9.36	x	0.63	×	0.85	=	3.51	(81)
Northwest 0	0.9x 0.77		x	0.47	ī,	(9.36	x	0.63	×	0.85	=	3.27	(81)
Northwest 0	0.9x 0.77		x	0.39	ī,	(9.36	x	0.63	×	0.85	=	1.35	(81)
Northwest 0	0.9x 0.77		x	1.32	ī,	(9.36] ×	0.63	×	0.85	=	9.17	(81)
								-						
Solar gain	s in watts, c	alculat	ed	for each moi	nth			(83)m	i = Sum(74)m .	(82)m				
(83)m= 21	4.7 378.73	532.8	1	710.59 828.	42	861.56	836.23	744	.04 606.75	439.2	4 259.76	181.94		(83)
Total gains	s – internal a	and so	ar	(84)m = (73)	m +	(83)n	n , watts				_		-	
(84)m= 800	0.24 959.88	1091.7	'6	1235 1317	.37	1318.6	9 1274.7	119	0.9 1073.42	940.6	7 799.9	751.46		(84)
7. Mean i	nternal tem	peratur	'е (heating seas	son)									
Tempera	ture during h	neating	i pe	eriods in the	livin	g area	from Tal	ble 9	Th1 (°C)				21	(85)
Utilisatior	n factor for g	ains fo	or liv	ving area, h1	l,m	(see T	able 9a)							
J	an Feb	Ма	r	Apr Ma	ay	Jun	Jul	A	ug Sep	Oct	Nov	Dec]	
(86)m= 0.	99 0.97	0.94		0.87 0.72	2	0.53	0.36	0.3	9 0.66	0.89	0.98	0.99		(86)
Mean inte	ernal temper	rature i	n li	ving area T1	(fol	low st	eps 3 to 7	7 in T	able 9c)				-	
	.04 20.21	20.45	-	20.67 20.8	<u> </u>	20.92	20.94	20.	í	20.68	20.28	20.05]	(87)
Tempera	ture during b	heating		eriods in rest	ofr	wellin	a from Ta	able () Th2 (°C)		I	•	4	
· · ·	9.8 19.81	19.81	÷.	19.82 19.8	1	19.83	19.83	19.		19.82	19.81	19.81]	(88)
		1						1	-				L	

Utilisa	ation fac	tor for g	ains for i	rest of d	welling,	h2,m (se	e Table	9a)						
(89)m=	0.98	0.97	0.92	0.83	0.65	0.44	0.26	0.28	0.56	0.85	0.97	0.99		(89)
Mear	interna	l temper	ature in	the rest	of dwell	ing T2 (fe	ollow ste	eps 3 to 7	7 in Tabl	le 9c)				
(90)m=	18.55	18.8	19.13	19.44	19.66	19.73	19.74	19.74	19.71	, 19.46	18.91	18.57		(90)
		1				1			f	fLA = Livin	g area ÷ (4	4) =	0.52	(91)
Mean	interna	l temper	ature (fo	r the wh	ole dwe	llina) – fl	Δ 🗙 Τ1	+ (1 – fL	Δ) v T2			L		1
(92)m=	19.32	19.53	19.81	20.08	20.28	20.35	20.36	20.36	20.32	20.09	19.62	19.34		(92)
	/ adjustr	nent to t	he mean	internal	temper	i ature fro	n Table	4e, whe	ere appro	opriate				
(93)m=	, 19.17	19.38	19.66	19.93	20.13	20.2	20.21	20.21	20.17	19.94	19.47	19.19		(93)
8. Sp	ace hea	iting requ	uirement											
				•		ned at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the ut	r	factor fo	-											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
		tor for g			0.07			0.04	0.50	0.00	0.07			(04)
(94)m=	0.98	0.96	0.92	0.83	0.67	0.47	0.29	0.31	0.59	0.86	0.97	0.98		(94)
(95)m=	li gains, 785.17	hmGm 922.92	vv = (94 1002.14	, <u>,</u>	4)m 883.31	622.35	373.32	372.94	636.82	807.68	772.76	738.98		(95)
		age exte					575.52	372.94	030.02	007.00	112.10	730.90		(00)
(96)m=	4.5		6.8	8.7	11.7	14.6	16.9	16.9	14.3	10.8	7	4.9		(96)
		_						x [(93)m						(/
		1669.74		1287.3	959.01	634.71	374.36	374.3	669.44	1048.24	1438.49	1658.97		(97)
				r each n	ı nonth, k'	I Wh/moni	h = 0.02	1 24 x [(97]	ı)m – (95)m] x (4′	1)m			
(98)m=	692.23	501.86	365.65	185.4	56.32	0	0	0	0	178.98	, 479.33	684.47		
		1				1		Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	3144.24	(98)
Spac	e heatin	g require	ement in	kWh/m ²	/year							[36.55	(99)
		• •			•	vetome i	ncluding	micro-C	, НD/			L		
-	e heatii			Vicual II	eating s	ysterns i	nciuaing	micro-c	, , , , , , , , , , , , , , , , , , , ,					
-		-	t from se	econdar	y/supple	mentary	system]	0	(201)
	-	bace hea					-	(202) = 1 -	- (201) =			Ĺ	1	(202)
		tal heati		-				(204) = (2	02) × [1 –	(203)] =		l	1	(204)
		main spa	-	-					, .			l	92.9	(206)
				• •		a ovetem	. 0/					l		
EIIICI	, 					g system							0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	ear
Spac		g require				<u>í</u>				170.00	(70.00	004.47		
	692.23	501.86	365.65	185.4	56.32	0	0	0	0	178.98	479.33	684.47		
(211)n	า = {[(98	s)m x (20	4)] + (21	0)m } x		<u> </u>		1						(211)
· · ·							0	0	0	192.66	515.96	736.78		
()	745.13	540.22	393.6	199.56	60.62	0	0		-					- /
	745.13	1				0	0		-	ar) =Sum(2			3384.54	(211)
Spac	745.13 e heatin	g fuel (s	econdar	y), kWh/	month	0	0		-				3384.54	(211)
Spac = {[(98	745.13 e heatin)m x (20	g fuel (s)1)] + (2 ⁻	econdar 14) m } x	y), kWh/ : 100 ÷ (:	month 208)	I	I	Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	=	3384.54	(211)
Spac	745.13 e heatin)m x (20	g fuel (s	econdar	y), kWh/	month	0	0	Tota 0	I (kWh/yea		211) _{15,1012}	- 0	3384.54	(211)

Water heating

		e rgy /h/year				2/kWh		kg CO2/yea	
					Emiss	ion fac	tor	Emissions	
12a. CO2 emissions – Individual heating syst	tems <u>incl</u>	uding mi	icro- <u>CH</u> F					L	
SAP rating (Section 12)								84.5063	(258)
	x (256)] ÷ [((4) + 45.0]	=					1.1107	(257)
Energy cost deflator (Table 12)								0.47	(256)
11a. SAP rating - individual heating systems									_
Appendix Q items: repeat lines (253) and (254 Total energy cost (245)	•) as need .(247) + (25		=					309.6376	(255)
Additional standing charges (Table 12)								106	(251)
Energy for lighting	(23				11.4		x 0.01 =	41.78	(250)
(if off-peak tariff, list each of (230a) to (230g) s			licable a	nd apply	•		rdina to ⁻		ц````)
Pumps, fans and electric keep-hot	(23	1)			11.4		x 0.01 =	28.65](249)
Water heating cost (other fuel)	(21	9)			3.1		x 0.01 =	28.28](247)
Space heating - secondary	(21	5) x					x 0.01 =	0	(242)
Space heating - main system 2	(21	3) x					x 0.01 =	0	(241)
Space heating - main system 1		1) x			、 3. ⁻		x 0.01 =	104.9207	(240)
	Fu kW	el /h/year			Fuel P (Table			Fuel Cost £/year	
10a. Fuel costs - individual heating systems:									
Electricity for lighting								364.61	(232)
Total electricity for the above, kWh/year			sum	of (230a)	(230g) =	:		250	(231)
pump for solar water heating							75	j	(230g)
boiler with a fan-assisted flue							45	j	(230e)
central heating pump:							130]	(230c)
Electricity for pumps, fans and electric keep-he	ot								-
Water heating fuel used								912.35	ī
Space heating fuel used, main system 1					N.	vvii/yea		3384.54	1
Annual totals			Tota	al = Sum(2		Wh/yea	-	912.35 kWh/year	(219)
(219)m= 157.4 115.47 95.57 52.56 24.16	2.57	0	28.33	53.55	93.82	132.21	156.7		-
Fuel for water heating, kWh/month (219)m = $(64)m \times 100 \div (217)m$									
(217)m= 89.45 89.45 89.4 89.36 89.17	87.3	0	87.3	87.3	89.06	89.37	89.45	J	(217)
Efficiency of water heater								87.3	(216)
140.79 103.28 85.44 46.97 21.54	2.25	0	24.73	46.75	83.55	118.16	140.17]	
Output from water heater (calculated above)									

Space heating (main system 1)	(211) x	0.198	=	670.14	(261)
Space heating (secondary)	(215) x	0	=	0	(263)
Water heating	(219) x	0.198	=	180.64	(264)
Space and water heating	(261) + (262) + (263) + (26	4) =		850.78	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.517	=	129.25	(267)
Electricity for lighting	(232) x	0.517	=	188.5	(268)
Total CO2, kg/year		sum of (265)(271) =		1168.54	(272)
CO2 emissions per m ²		(272) ÷ (4) =		13.58	(273)
El rating (section 14)				88	(274)
13a. Primary Energy					
roa. I finary Energy					
Tod. T findry Energy	Energy kWh/year	Primary factor		P. Energy kWh/year	
Space heating (main system 1)		•	=	•••	(261)
	kWh/year	factor	=	kWh/year)(261))(263)
Space heating (main system 1)	kWh/year (211) x	factor		kWh/year 3452.23	
Space heating (main system 1) Space heating (secondary)	kWh/year (211) x (215) x	factor 1.02 0 1.02	=	kWh/year 3452.23 0	(263)
Space heating (main system 1) Space heating (secondary) Energy for water heating	kWh/year (211) x (215) x (219) x	factor 1.02 0 1.02	=	kWh/year 3452.23 0 930.59	(263) (264)
Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating	kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (26	factor 1.02 0 1.02 4) =	=	kWh/year 3452.23 0 930.59 4382.82	(263) (264) (265)
Space heating (main system 1) Space heating (secondary) Energy for water heating Space and water heating Electricity for pumps, fans and electric keep-hot	kWh/year (211) x (215) x (219) x (261) + (262) + (263) + (26 (231) x	factor 1.02 0 1.02 4) = 2.92	=	kWh/year 3452.23 0 930.59 4382.82 730	(263) (264) (265) (267)