Report Contents

2.0 Existing Building, Site and Ground Conditions

3.0 Observations

4.0 Proposed Works

5.0 Waterproofing and Below Ground Drainage

6.0 Party Wall Matters

7.0 Hydrogeological Statement

8.0 Construction Method Statement

9.0 Drawings

10.0 Calculations

11.0 Site Investigation

12.0 Summary

1.0 Introduction

1.1 This report has been completed by Martin Shortt for Harrison Shortt Structural Engineers Ltd.

Martin Shortt (MIStructE, CEng)

- 1.2 Harrison Shortt Structural Engineers Ltd. have been appointed by the owners of Frognal Rise House to complete the permanent and temporary works design for the construction of the proposed lower ground floor extension at the above address.
- 1.3 Access has been gained to all levels of the building and external areas of the property. A preliminary desk study has been completed to establish the ground conditions and history of the building.
- 1.4 A detailed survey of the site and existing building has been provided by Charlton Brown Architects, the project architects.
- 1.5 Opening up works have not been completed however we have managed to see elements of the structure.

2.0 Existing Building, Site and Ground Conditions

- 2.1 The existing building is a four storey detached house (including the loft and the basement) that appears to have been constructed in the early 1800s. The building has a single storey garage to the south.
- 2.2 The building is located on the corner of Lower Terrace and Frognal Rise.
- 2.3 The building shares boundaries with 14 Lower Terrace to the left and 22 Windmill Hill to the right when viewed from the front.
- 2.4 The building is constructed with solid brickwork external walls. The internal load bearing walls are brickwork at lower ground floor and timber stud above.
- 2.5 The lower ground floor is constructed with a concrete slab. The ground floor and above are constructed with timber floor joists.
- 2.6 The roof is a slate clad traditionally constructed hipped crown roof. The pitched roof joists are supported at mid span by timber purlins supported on timber trusses spanning between the external walls.

Structural Report 2025_04_03 Page 2 3096_Report01_D

- 2.7 The ground conditions on the site are Made Ground over Bagshot Formation (sand) over Claygate Member (clay with sand lenses) over London Clay. A site investigation has been completed by GEA and noted the fill depth varies between 1.1m and 1.6m deep.
- 2.8 The building is likely to be founded on corbelled brickwork foundations on Bagshot Formation (sand, sedimentary rock).
- 2.9 The overall stability of the building is provided by the cellular layout of the masonry walls.
- 2.10 The results of the desk study can be summarised as follows:
 - The site is not in the vicinity of any historic rivers.
 - The site has a very low risk of surface water flooding and very low risk of flooding from rivers and the sea.
 - The site is not within the vicinity of any London Underground Ltd. infrastructure.
 - There was no damage to the building from WWII.
- 2.11 The building is Grade II listed and is in the Hampstead Conservation Area.

3.0 Observations

- 3.1 he building appears to be in reasonable condition for its age and type. It appears to have been reasonably well built using good quality materials at the time of construction, however, the multiple phases of building has resulted in differential types of juxtaposed construction. This is particularly relevant in terms of foundation conditions where the original part of the building has little or no foundation structure where compounds with later phases, which are much deeper.
- 3.2 Frognal Rise House is significant as a house of early 19th-century origin, with early 20th-century additions by the well-known architectural practice of Parker and Unwin, which are interesting despite being radically at odds with the original character of the house. It was substantially altered in the 1930s and the survival of all its earlier phases is fragmentary both internally and externally. Changes from the late 1930s onwards have left the house with many detracting features.
- 3.3 As seen from the trial hole investigation, the foundations to the original building which were originally minimal have been previously undermined at lower ground floor level as highlighted below:

Structural Report 2025_04_03 Page 3 3096_Report01_D

3.4 These differential types of foundations and undermined original foundations should be improved as part of any considered scheme for the long term future of the building.

4.0 Proposed Works

- 4.1 The proposed works involve the localised remedial works in the existing building.
- 4.2 A new basement will be constructed to the southern garden side of the building extending to the garage.
- 4.3 The existing garage is to be extended to the party fence wall to 22 Windmill Hill.
- 4.4 The new basement will be constructed using contiguous piles around the perimeter to retain the ground. A reinforced concrete liner wall will be constructed inside the piles. The basement floor slab will be constructed with reinforced concrete. The roof of the basement will be constructed with reinforced concrete and will have a garden above.
- 4.5 A new single storey garden room will be constructed above the garage.
- 4.6 The original building will be underpinned with shallow mass concrete underpins to address the previous undermining. This will extend to all the existing foundations so the building does not experience differential movement associated with varying foundation depths.
- 4.7 The building will be underpinned with reinforced concrete where it adjoins the new basement.

5.0 Waterproofing and Below Ground Drainage

- 5.1 The waterproofing strategy is informed by the existing building and ground conditions.
- 5.2 Groundwater is not likely to be encountered during the excavation as the formation level for the new lower ground extension matches the existing garage level and sits within what is assumed to be made ground, largely above the level of the natural slope of the original ground.
- 5.3 The reinforced concrete liner walls and lower ground floor slab will provide Type B (structurally integral) protection. A drained cavity will be installed within the liner walls and on top of the slab provide Type C (drained) protection. Type B and C protection are outlined in BS8102:2009.
- 5.4 The strategy noted above will provide Grade 3 waterproofing protection to the lower ground floor extension as outlined in BS 8102:2009 Table 2.
- 5.5 The cavity drain system will include a cavity drain sump to collect any water which will then be pumped to the main private drainage system.
- As the basement extension is below the level of the existing drainage the effluent generated at lower ground floor level will need to be pumped up to the main private drainage system. This will prevent any flooding from public sewers in case of backup. It is intended that the existing internal gravity drainage system will be retained above ground floor level.

6.0 Party Wall Matters

- 6.1 The proposed works falls within the scope of the Party Wall etc. Act 1996.
- The procedures under the Act will be dealt with in full by the Employers Party Wall Surveyor. The Party Wall Surveyor will prepare and serve necessary Notices under the Act and agree the Party Wall Awards.

Structural Report 2025_04_03 Page 4 3096_Report01_D

- 6.3 The Contractor will be required to provide the Party Wall Surveyor with appropriate drawings, method statements and other relevant information covering the works that are notifiable under the Act.
- 6.4 The resolution of matters under the Act and provisions of the Party Wall Awards will protect the interest of all owners.
- 6.5 The proposed works will be developed so as not to inhibit any works on adjoining properties. This will be verified by the Surveyors as part of the process under the Act.

7.0 Hydrogeological Statement

7.1 From published data and our understanding of the site topography and underlying ground conditions gained from basement projects within the area groundwater is not likely to be encountered during the excavation. This has been confirmed by the site investigation.

Structural Report 2025_04_03 Page 5 3096_Report01_D

8.0 Construction Method Statement

8.1 General Issues

Some of the issues that affect the sequence of works on this project are:

- · The stability of the existing building,
- · The stability of the adjoining buildings,
- · The stability of the adjacent highways,
- Forming sensible access onto the site to minimise disruption to the neighbours,
- Providing a safe working environment.

The proposed works involve the extension of a basement and will involve excavations approximately 1.5 metres deep below garage level.

The undertaking of such projects to existing buildings is specialist work. We will be involved in the selection of an appropriate Contractor who will need the relevant expertise and experience for this type of project. The Contractor will be a member of the Considerate Constructors Scheme.

Once the works commence we will have an ongoing role on site to monitor that the works are being carried out generally in accordance with the design and specification. This role will typically involve fortnightly site visits at the beginning of the Contract with monthly visits thereafter.

8.2 Noise, Vibration and Dust

The Contactor shall undertake the works in such a way as to minimise noise, dust and vibration when working close to adjoining buildings in order to protect the amenities of the neighbours.

The breaking out of existing structure shall be carried out by saw cutting where possible to minimise vibration to the adjacent properties and associated construction noise. All demolition and excavation work will be undertaken in a carefully controlled sequence taking into account the requirement to minimise noise, vibration and dust.

The Contractor is to use suitable method of minimising the emission of dust and dirt during the construction works. This will include the use of protective plastic dust sheeting, enclosing conveyors and water spraying where suitable.

8.3 Working Hours

The site working hours will be in accordance with the London Borough of Camden regulations as noted below:

8.4 Permitted hours of noisy works

Monday to Friday
 Sam to 6pm
 Sam to 1pm
 Sunday
 Public Holidays
 No works.

8.5 Waste Management

The Contractor will provide a recycling and waste management scheme conforming to the current regulations prior to starting works on site. The Contractor should reuse / recycle where possible. Waste should be sorted on site and go to certified waste sites for reclamation.

Structural Report 2025_04_03 Page 6 3096_Report01_D

8.6 Stage 1 : Site Set-Up

Erect a fully enclosed painted plywood site hoarding around the perimeter of the site. It is likely that the footpath can remain in use during the works.

The services within the site and footpath should be identified and isolated as necessary.

8.7 Stage 2 : Demolition and Enabling Works

The existing garage is to be dismantled and replace as part of the works which will allow access to the site.

Given the scope of the works it is likely that conveyors will be used to move spoil around the site to a skip located in the existing garage location.

8.8 Stage 3: Installation of Piling Mat, Guide Walls and Piles

A piling mat should be installed to allow the piling to be completed.

The guide walls will be constructed to allow the piles to be installed.

The piling around the perimeter of the basement should be competed.

8.9 Stage 4: Underpin Existing Building

Complete the underpinning to the existing building. This will involve the remedial underpinning to address the existing undermined foundations.

8.10 Stage 5 : Installation of Temporary Works and Bulk Excavation

Once the piling has been completed the temporary works will be installed at top of the piles. These provide lateral restraint to allow the bulk excavation to be completed.

Complete the bulk excavation to basement formation level.

8.11 Stage 6: Installation of Below Ground Drainage and Basement Floor Slab

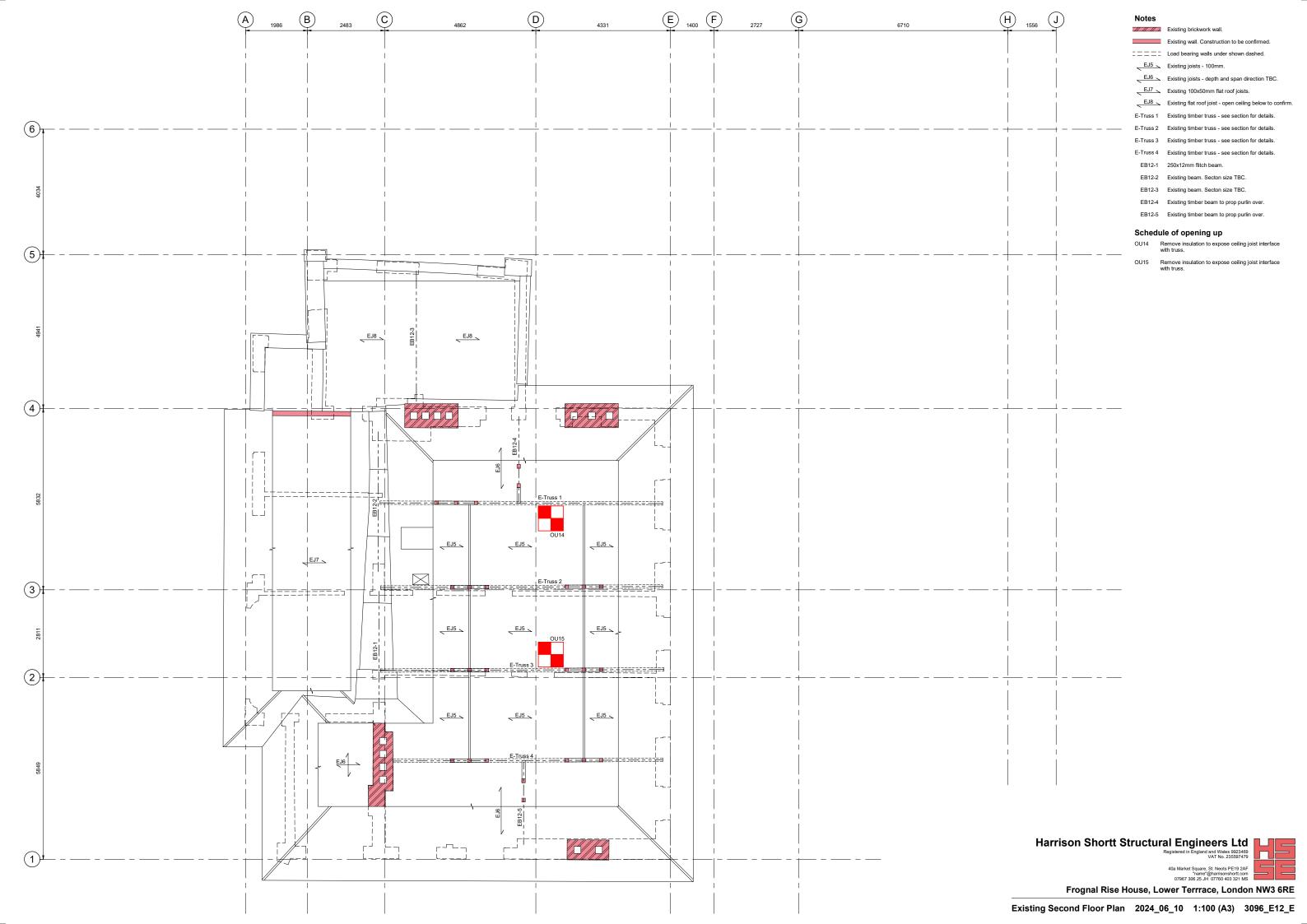
The below ground drainage should be installed and basement floor slab constructed.

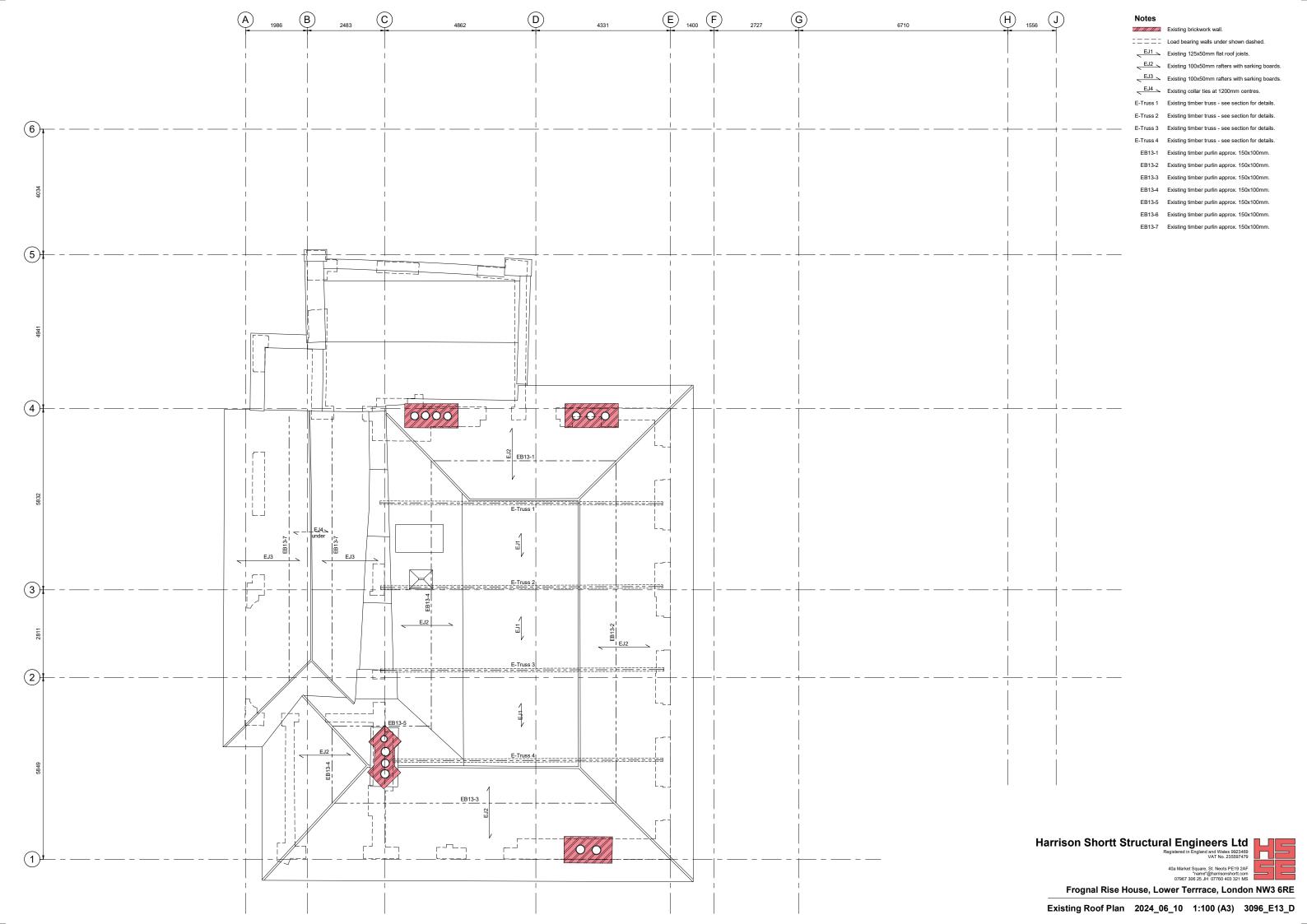
8.12 Stage 7 : Construction of Basement Columns and Basement Roof

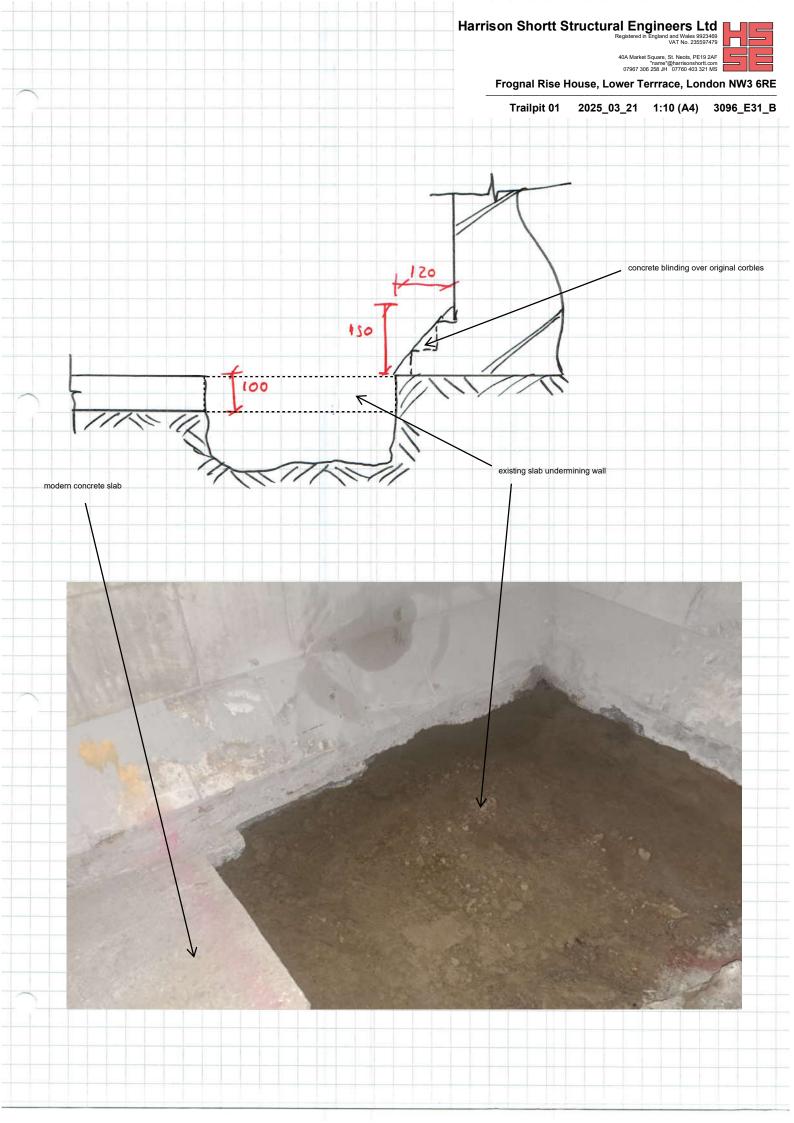

Construct the basement columns and slab over the basement.

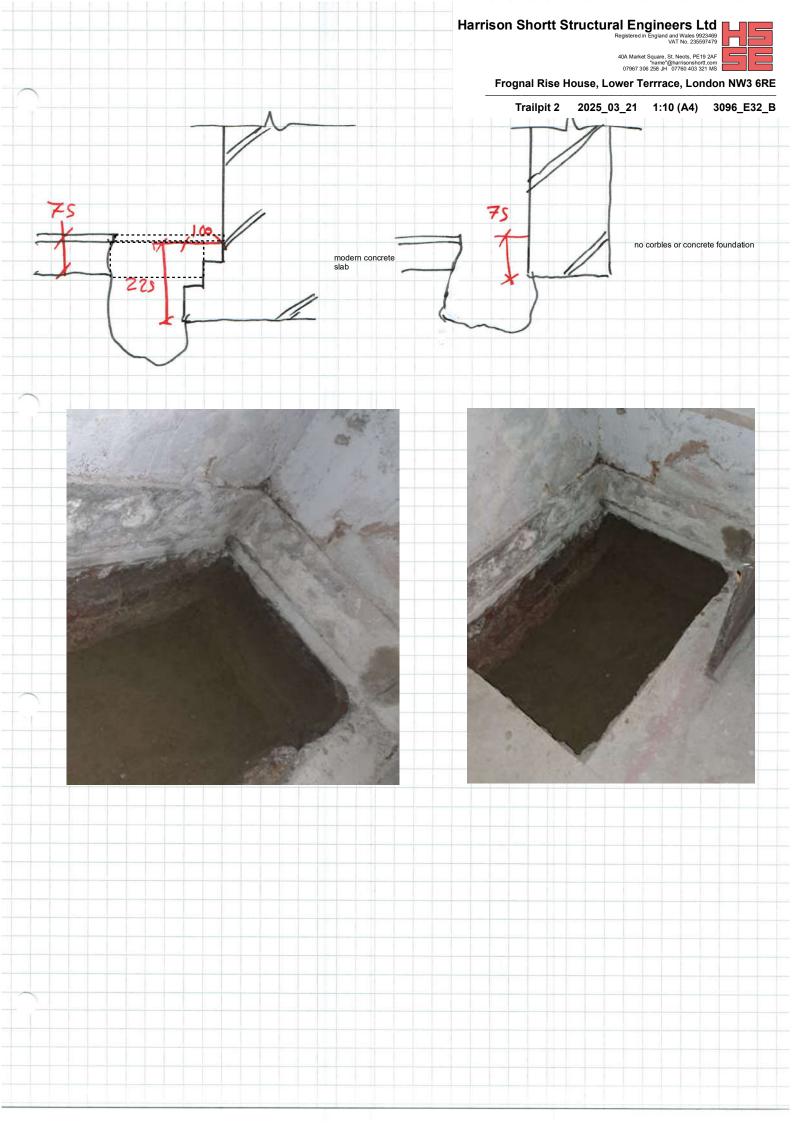
8.13 Stage 8: Extension of Garage and Construction of Garden Room over Garage

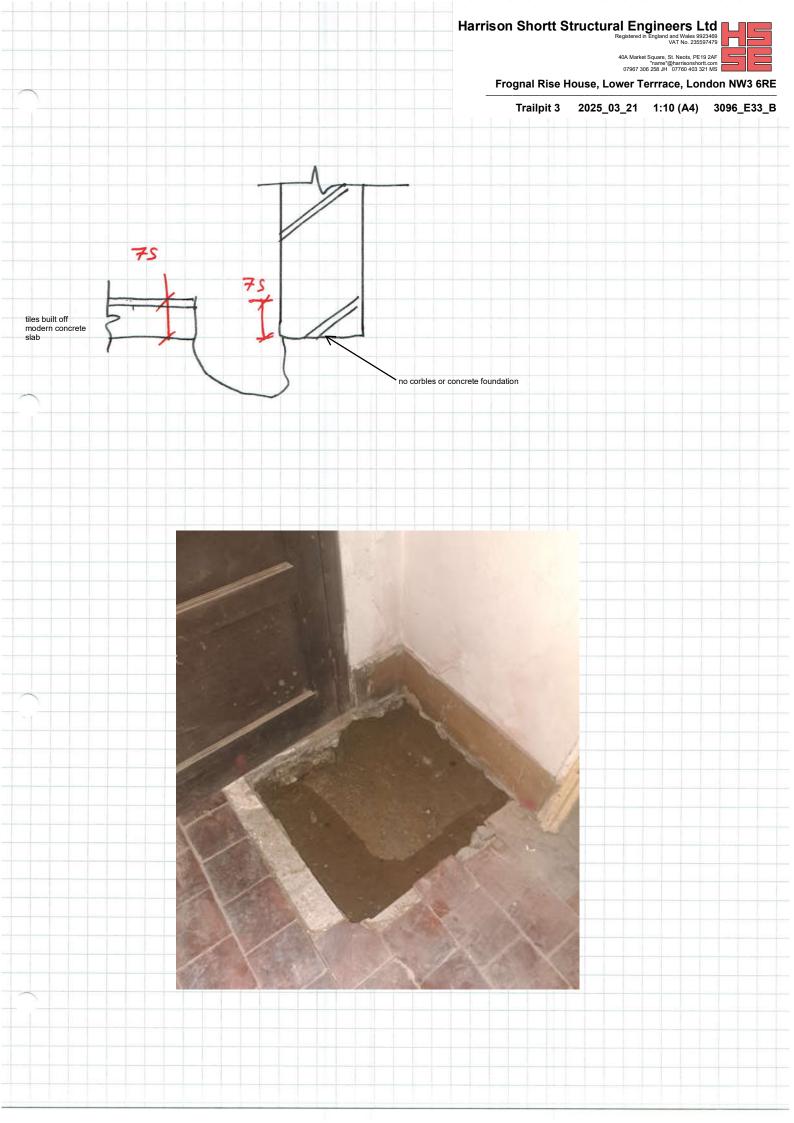

Extend the garage and construct the garden room over the garage.

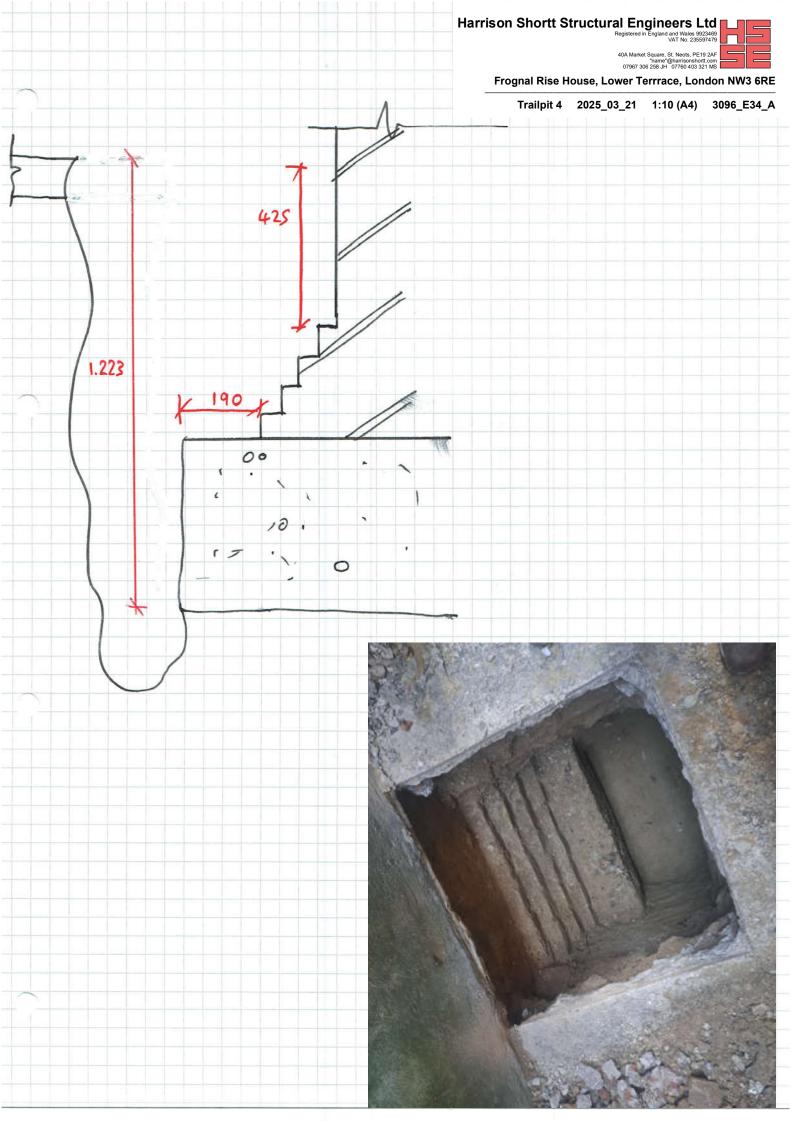

Structural Report 2025_04_03 Page 7 3096_Report01_D

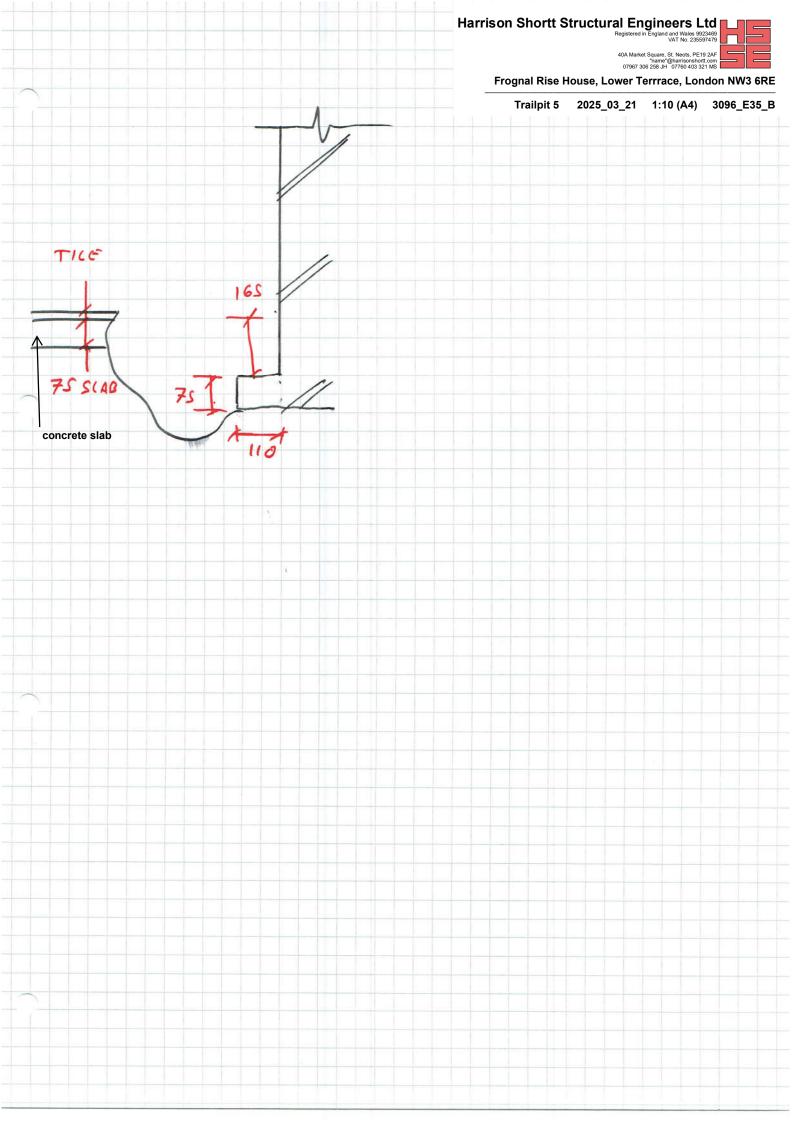

9.0 Drawings

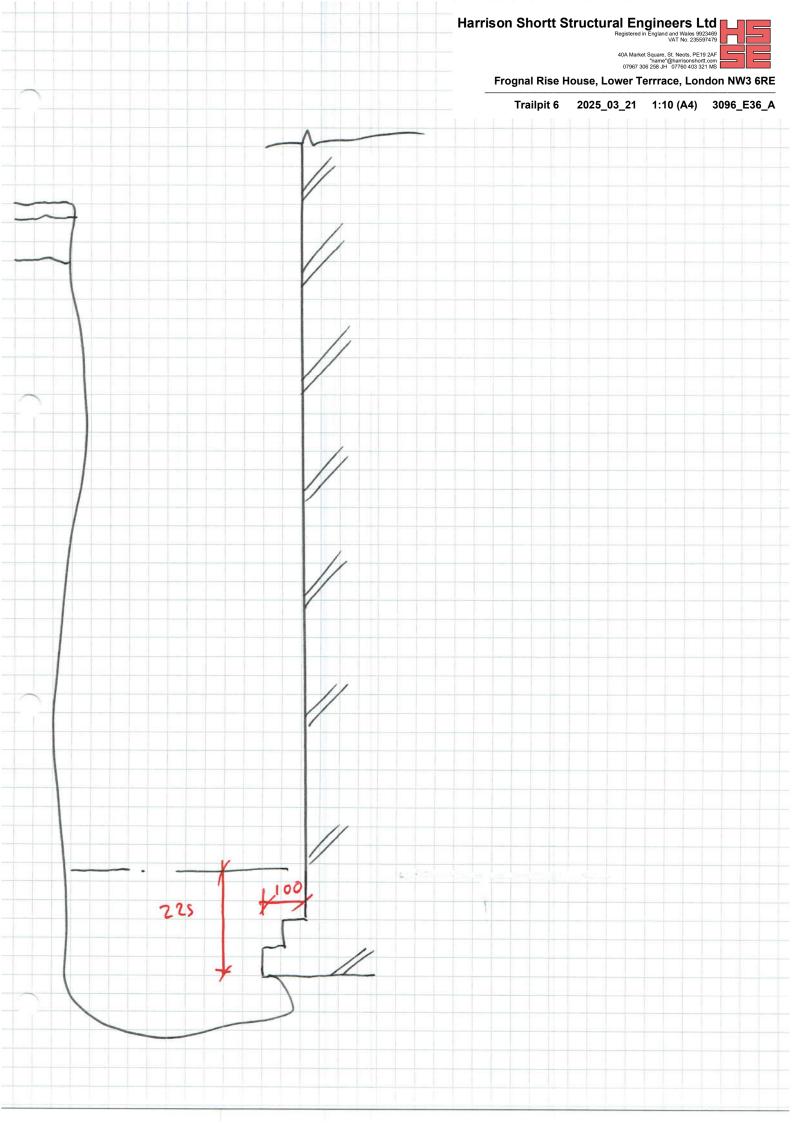


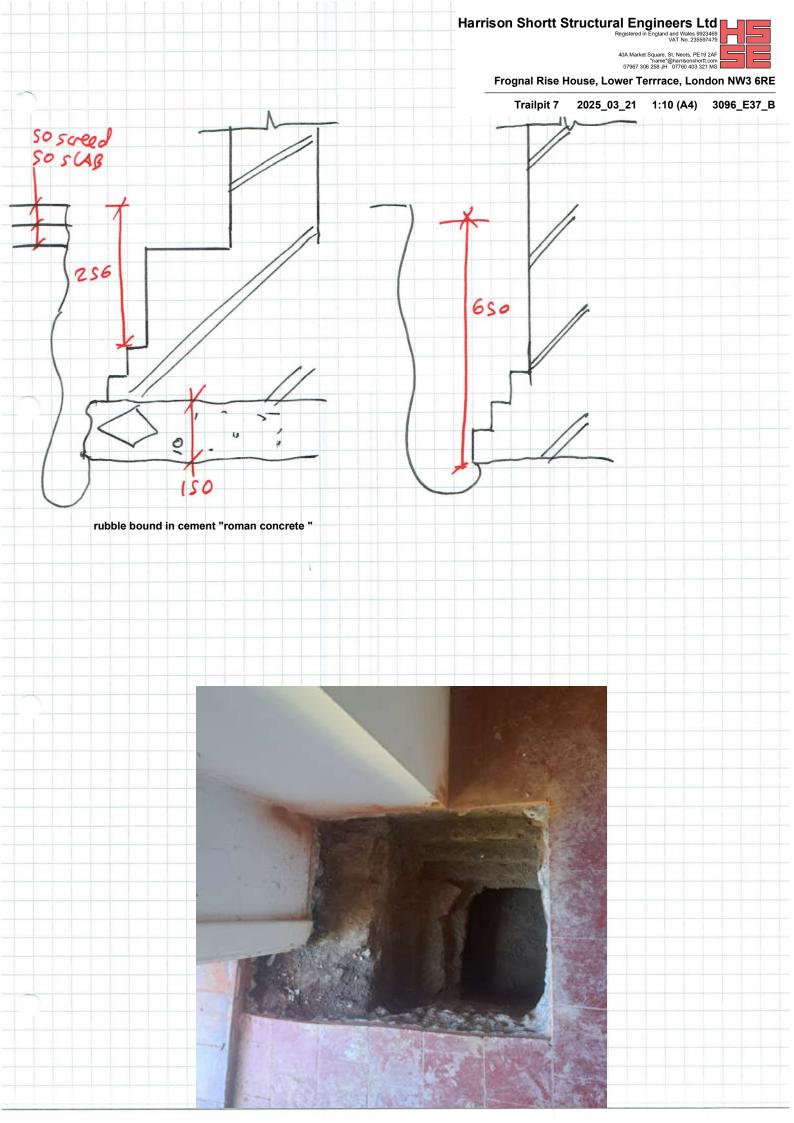


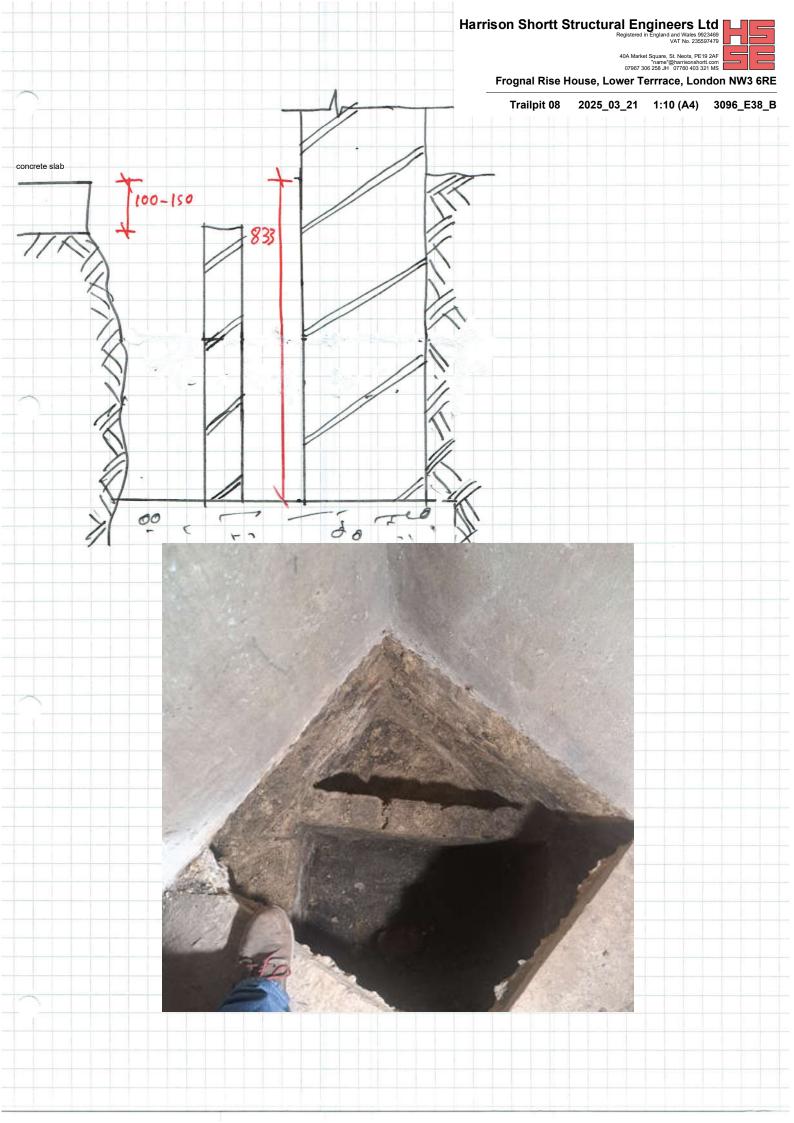


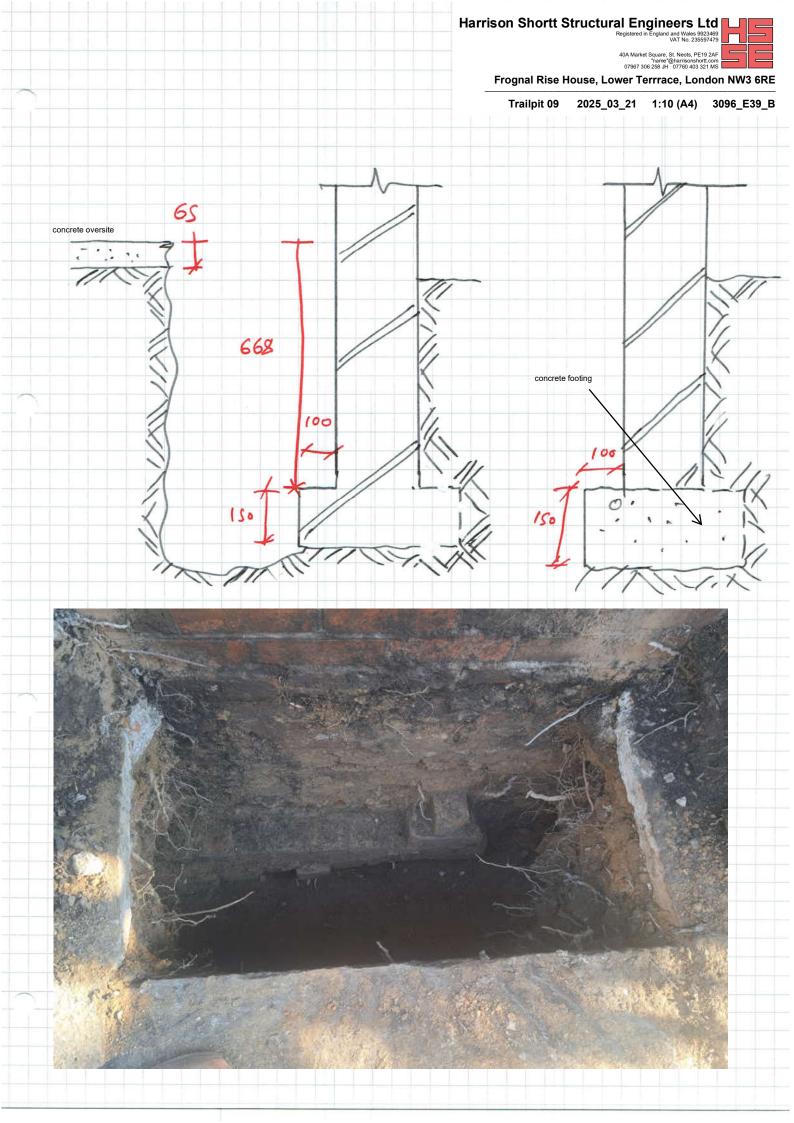


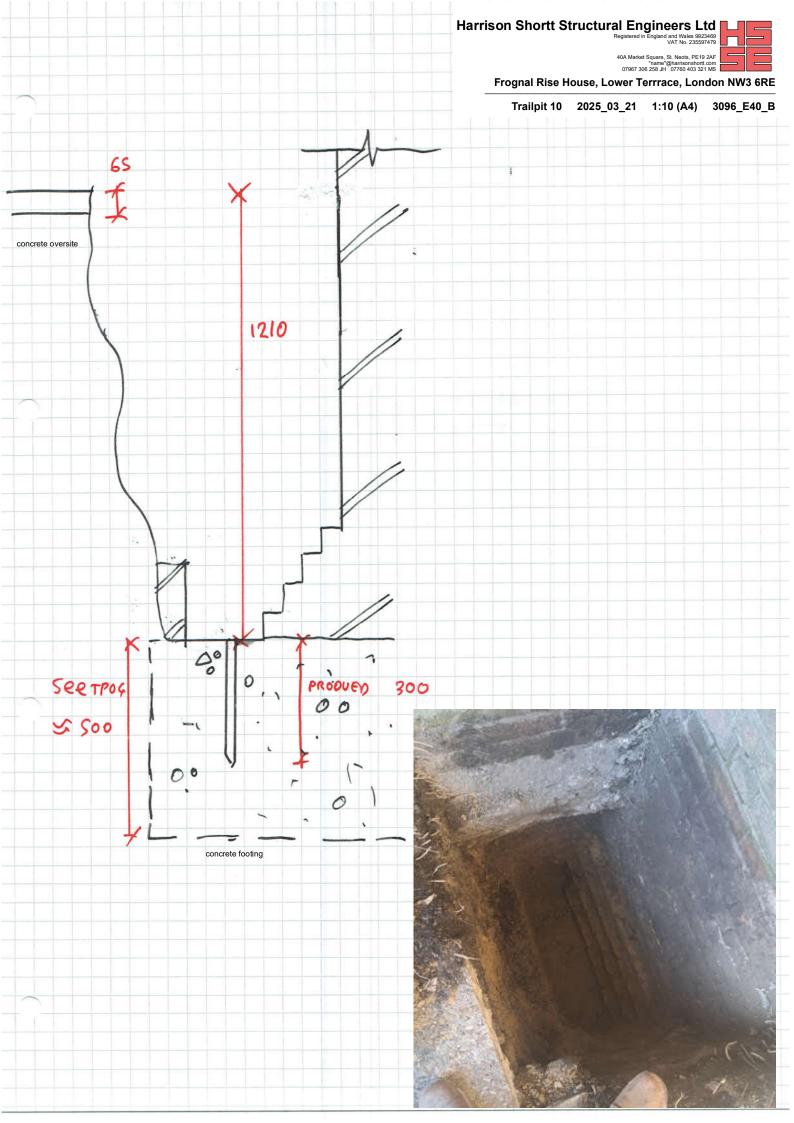


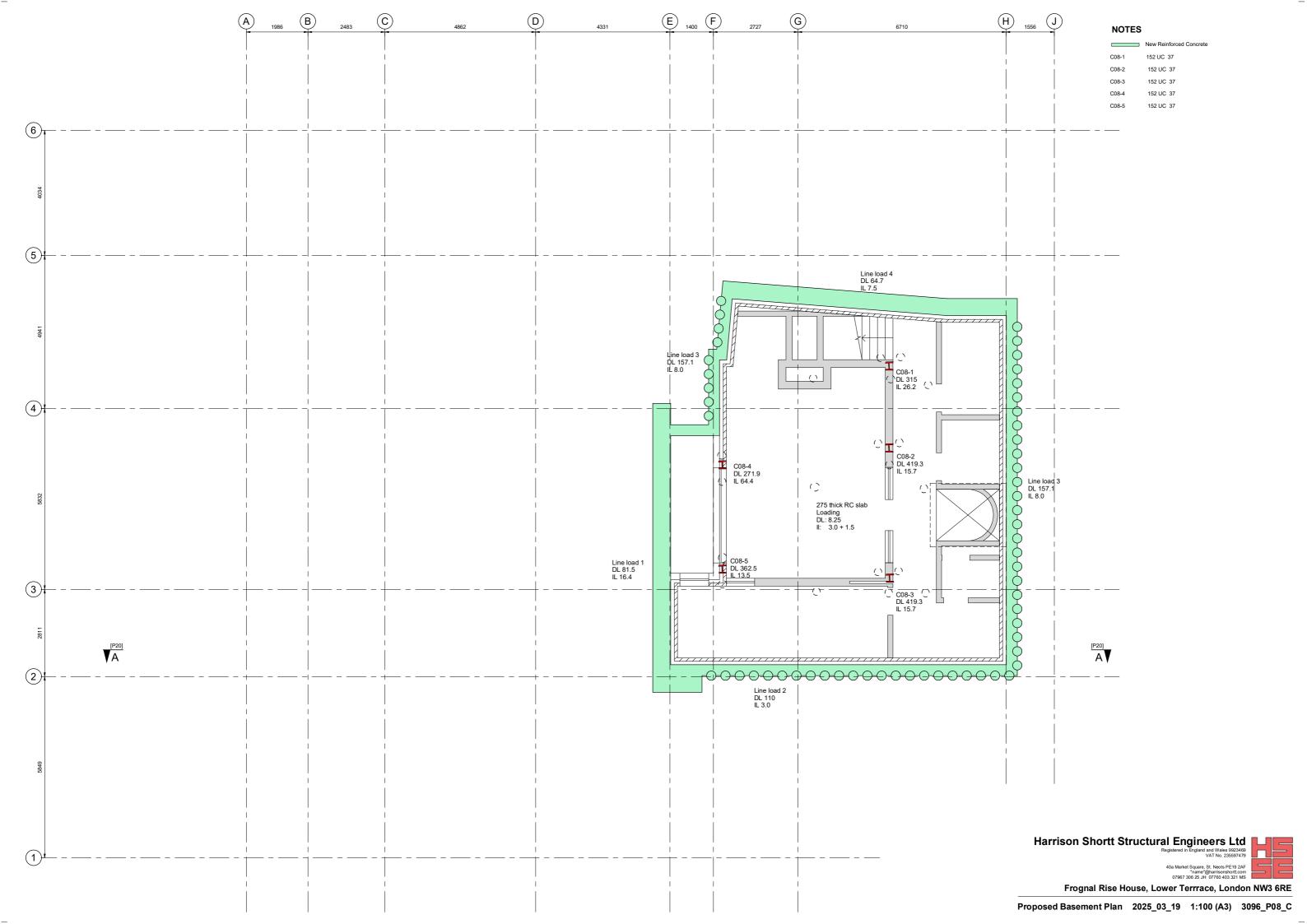


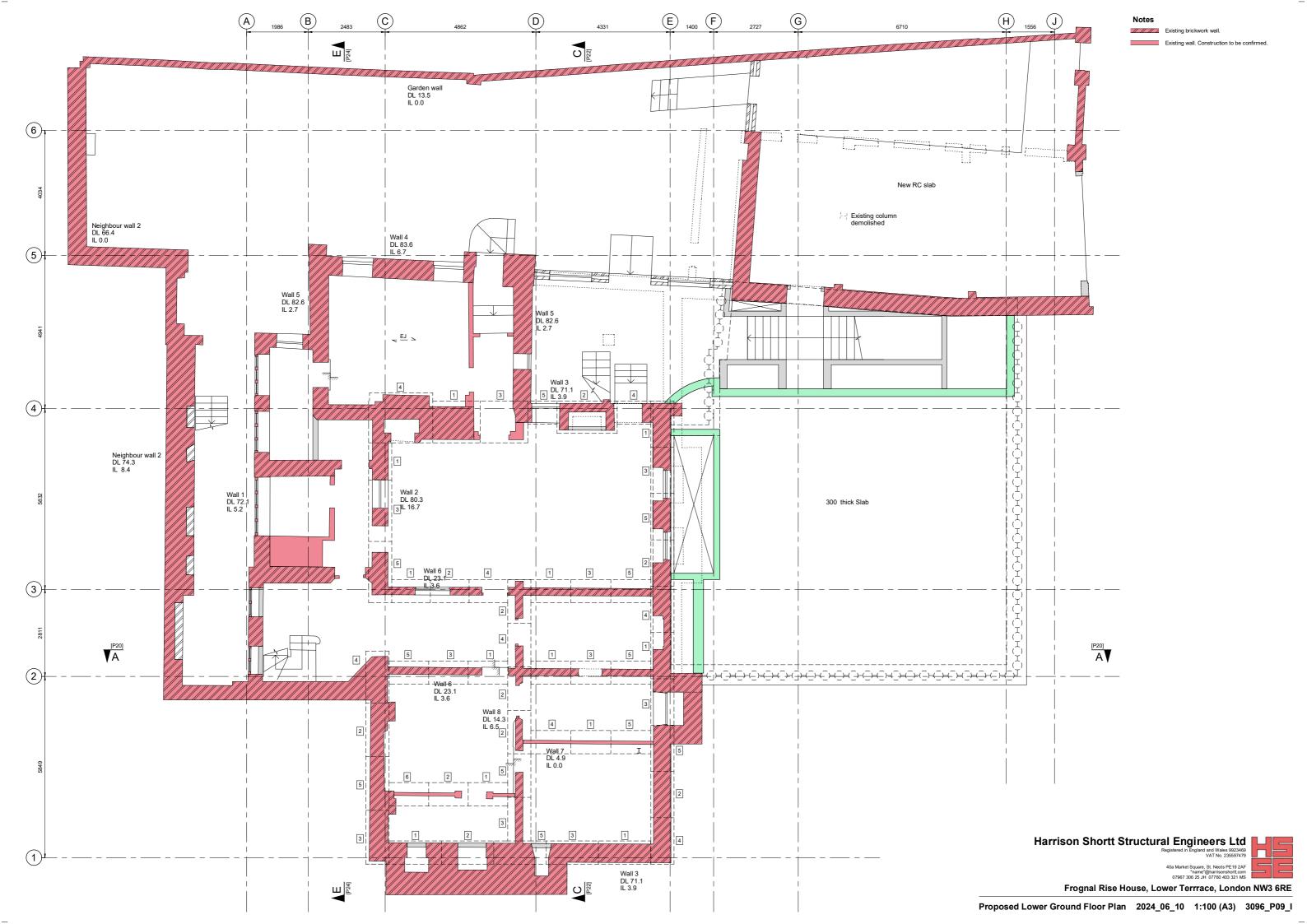


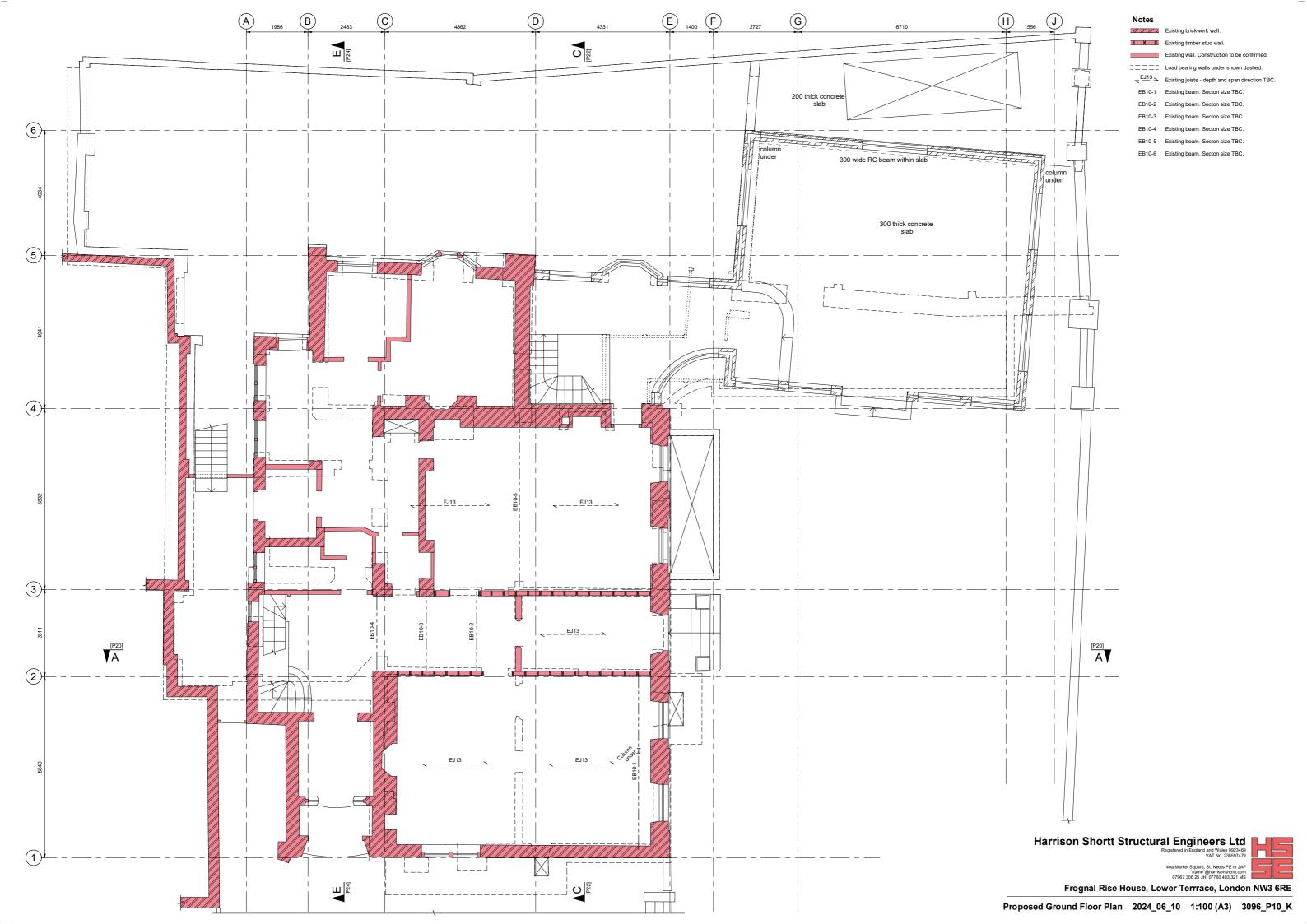


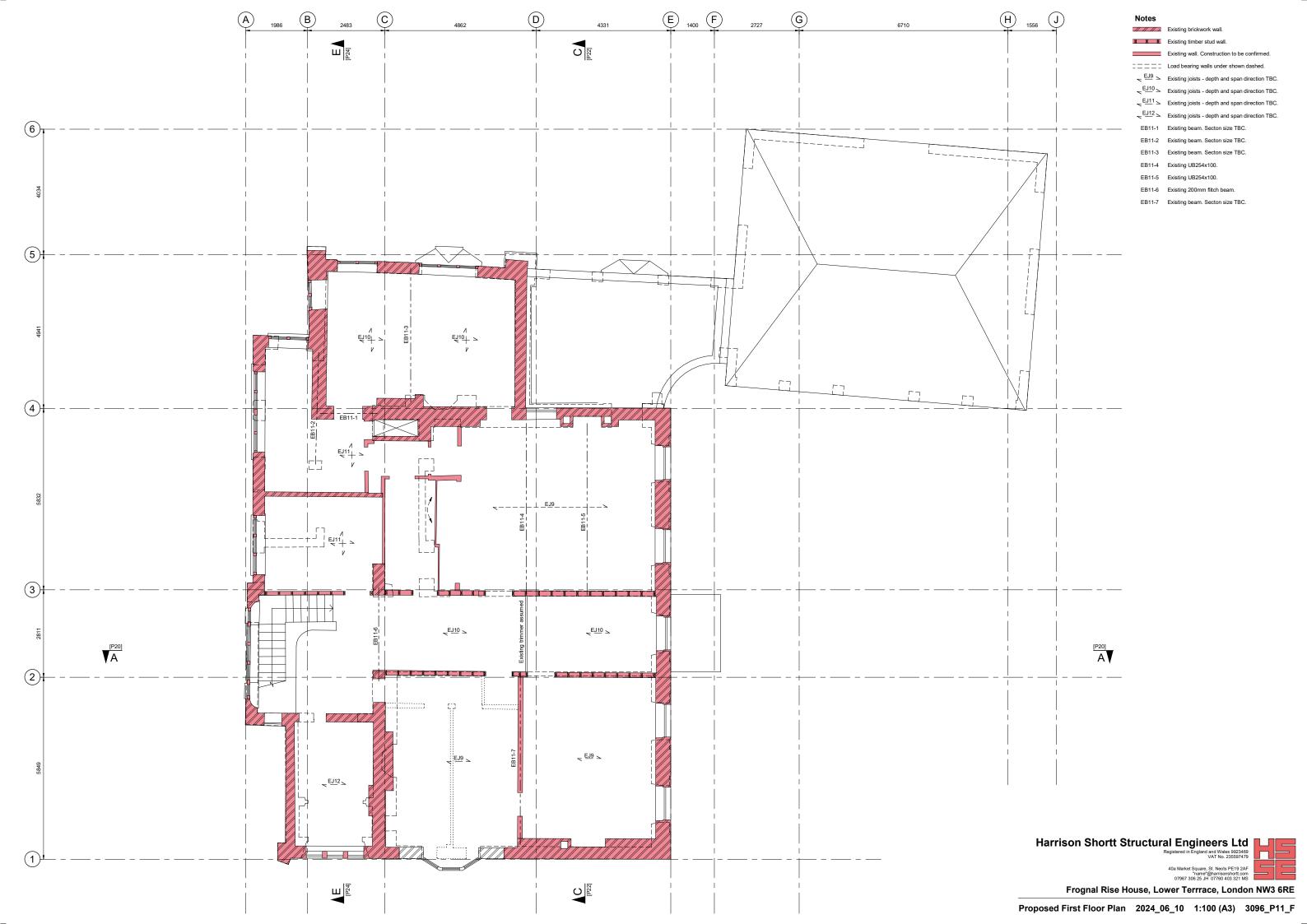


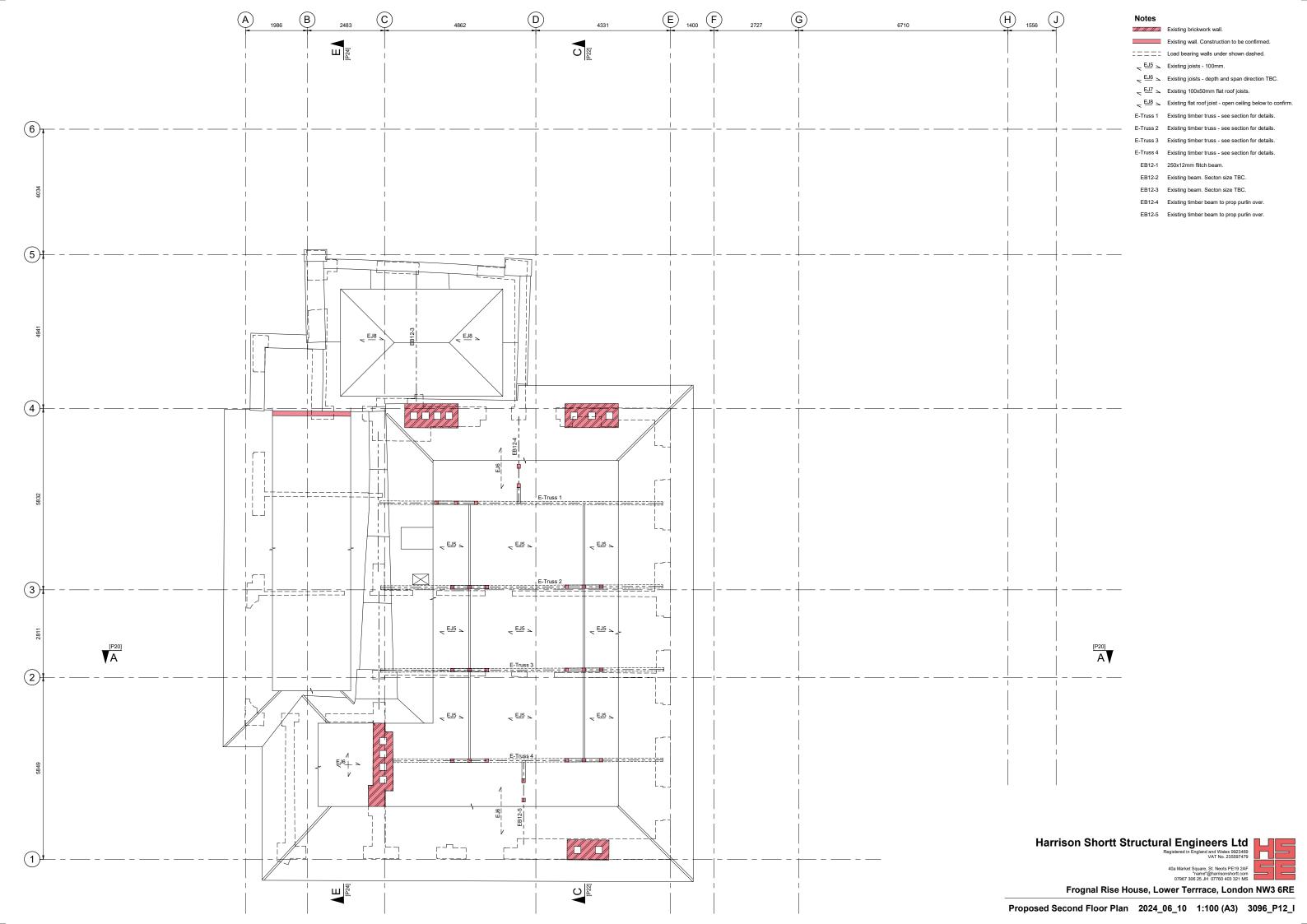


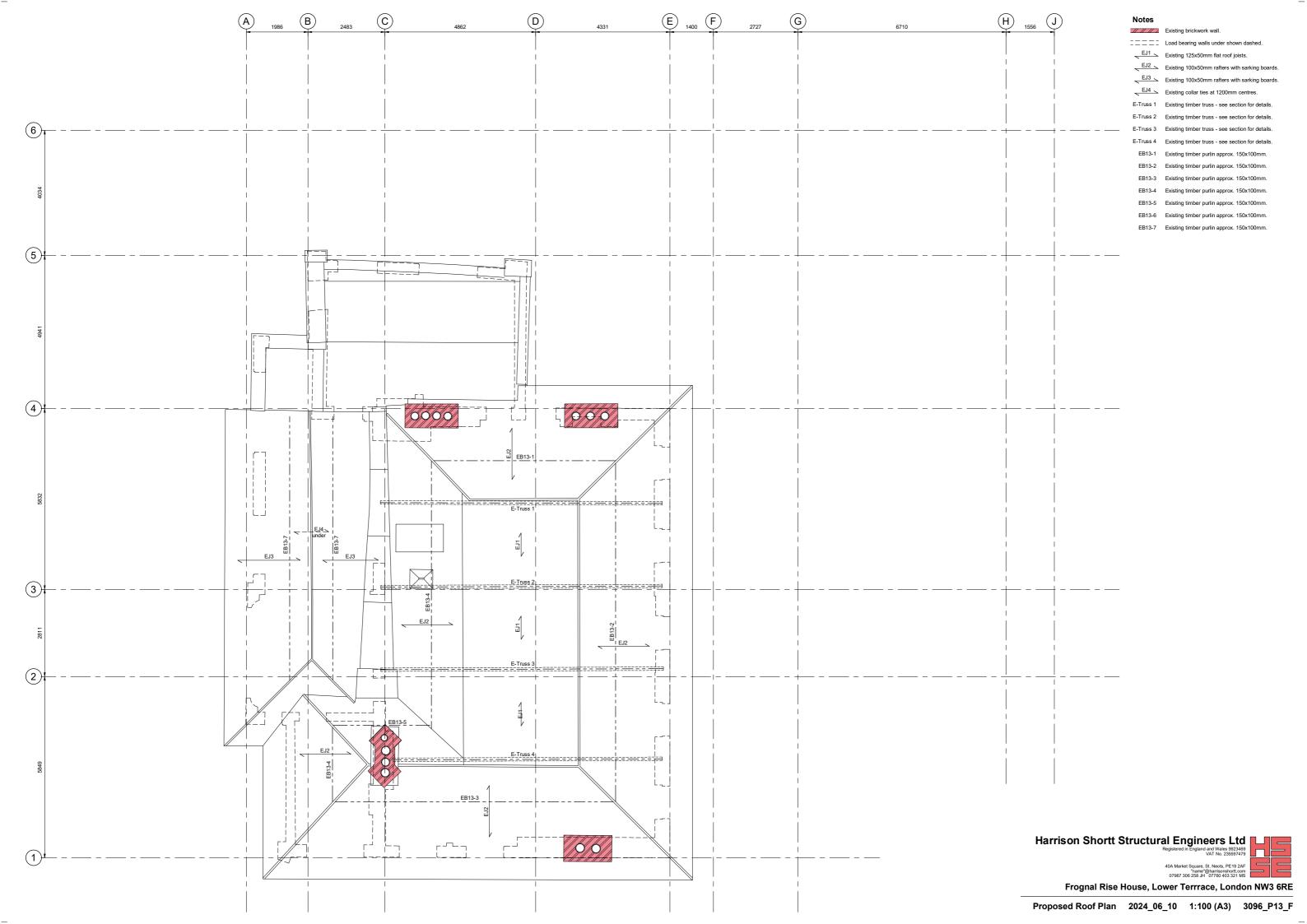


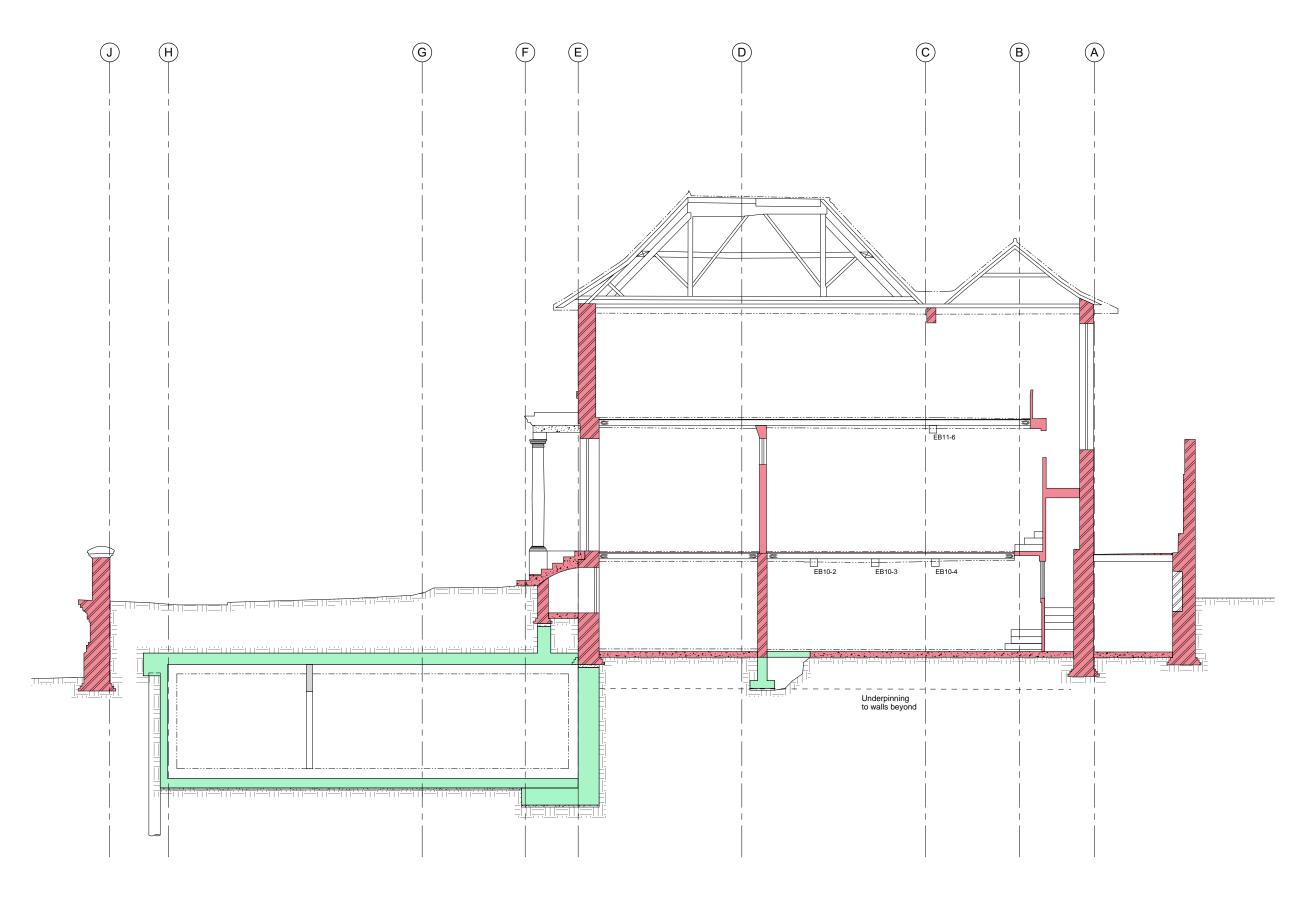












Notes

Existing brickwork wall.

Existing blockwork wall.

M M Existing timber stud wall.

Existing wall. Construction to be confirmed.

_____ Load bearing walls under shown dashed

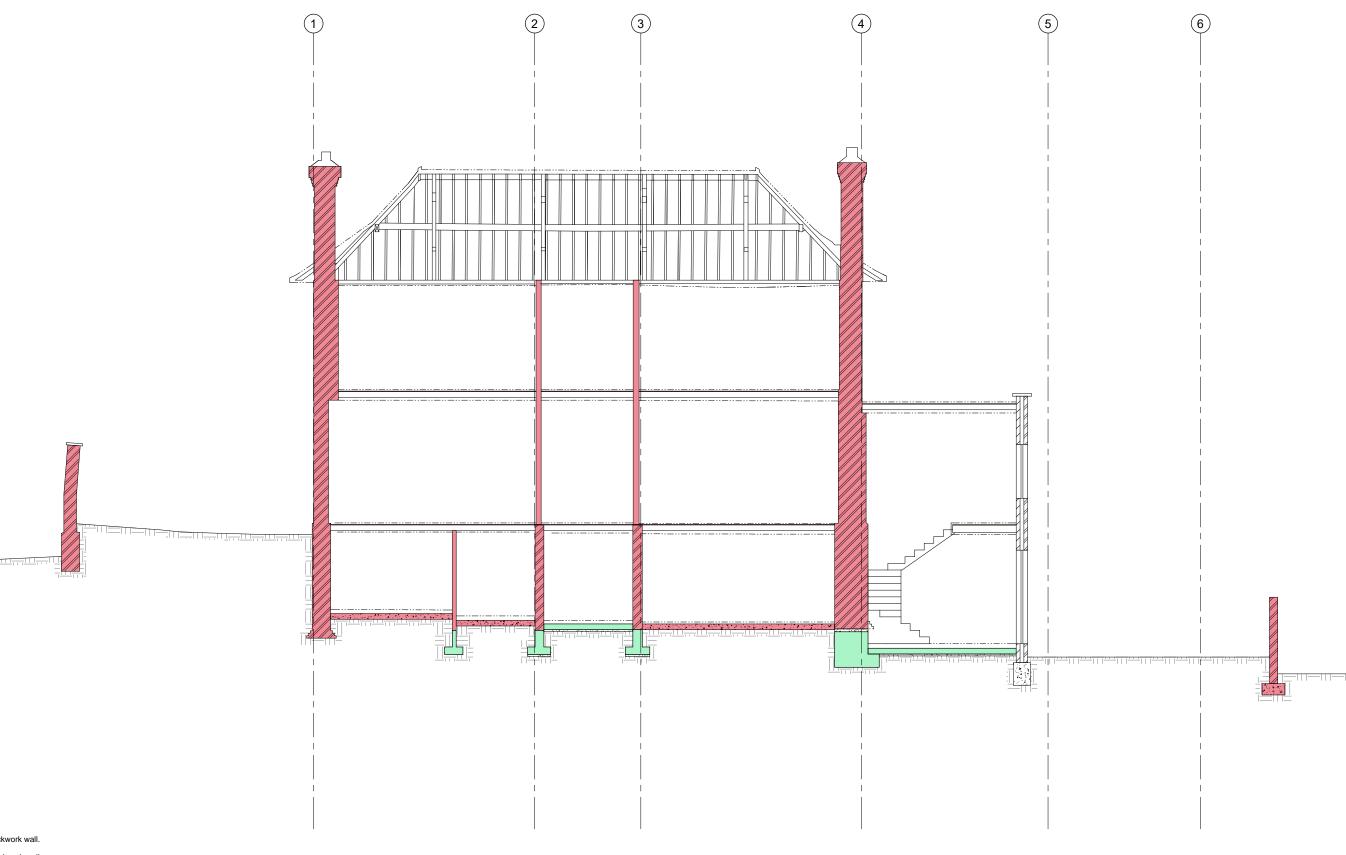
Existing walls demolished

New non-load bearing partition constructed with 95x47mm C24 timber studs at 400mm centres blocking at 1200mm centres.

_____New brickwork wall

New medium dense (min 14kN/m^3) blockwork wall and M12 mortar UNO.

New 100 x 50 Loadbearing timber stud wall with 1 face clad in 12mm plywood


New Reinforced Concrete

Harrison Shortt Structural Engineers Ltd
Registered in England and Wales 9923469
VAT No. 235597479

40a Market Square, St. Neots PE19 2AF
"name"@harrisonshortt.com
07967 306 25 JH 07760 403 321 MS

Frognal Rise House, Lower Terrrace, London NW3 6RE

Proposed Section A-A 2024_07_26 1:100 (A3) 3096_P20_K

Notes

Existing brickwork wall.

Existing blockwork wall.

M M Existing timber stud wall.

Existing wall. Construction to be confirmed.

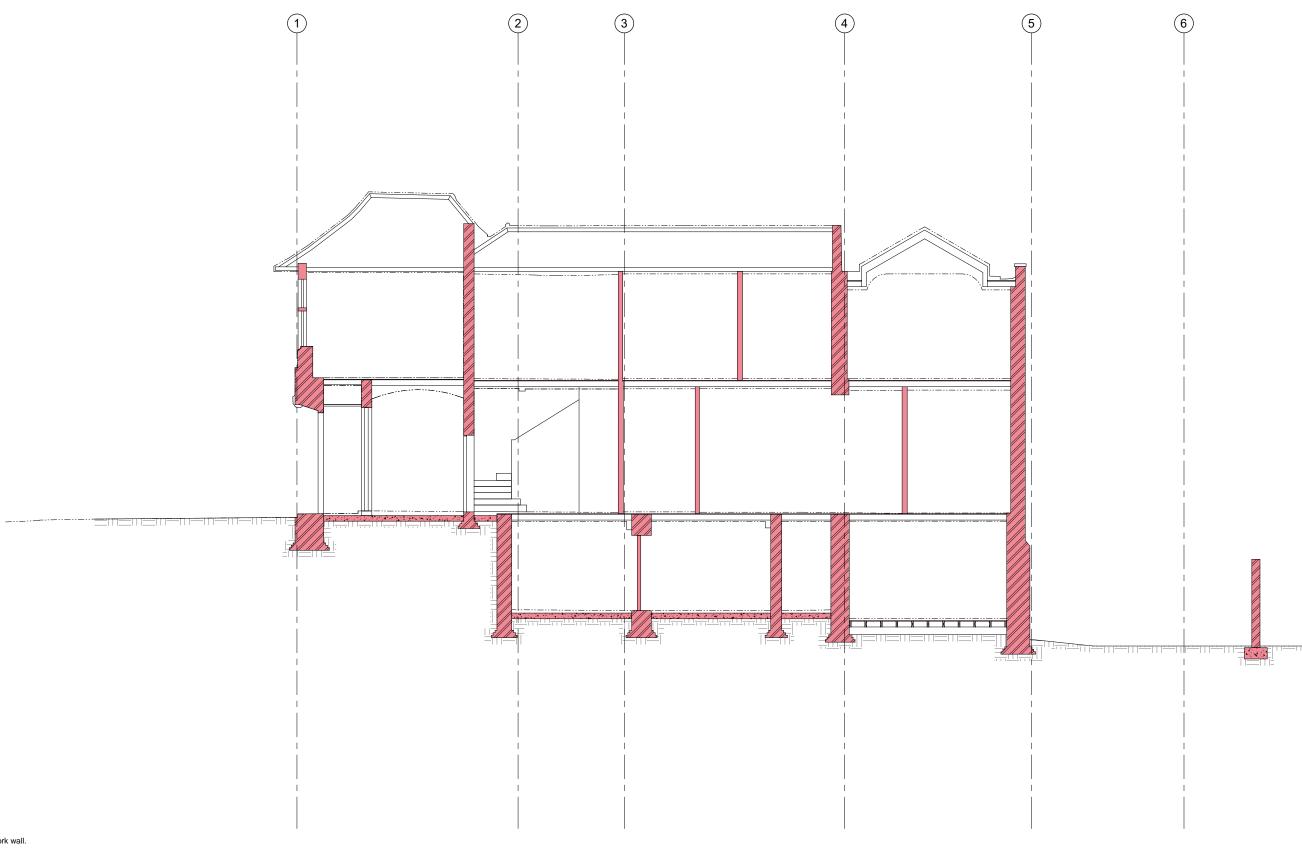
__ _ _ Load bearing walls under shown dashed

Existing walls demolished

New non-load bearing partition constructed with 95x47mm C24 timber studs at 400mm centres blocking at 1200mm centres.

New brickwork wall

New medium dense (min 14kN/m^3) blockwork wall and M12 mortar UNO.


New 100 x 50 Loadbearing timber stud wall with 1 face clad in 12mm plywood

New Reinforced Concrete

Harrison Shortt Structural Engineers Ltd
Registered in England and Wales 9923489

Frognal Rise House, Lower Terrrace, London NW3 6RE

Proposed Section C-C 2025_04_09 1:100 (A3) 3096_P22_A

Notes

Existing brickwork wall.

Existing blockwork wall.

Existing timber stud wall.

Existing wall. Construction to be confirmed.

Load bearing walls under shown dashed

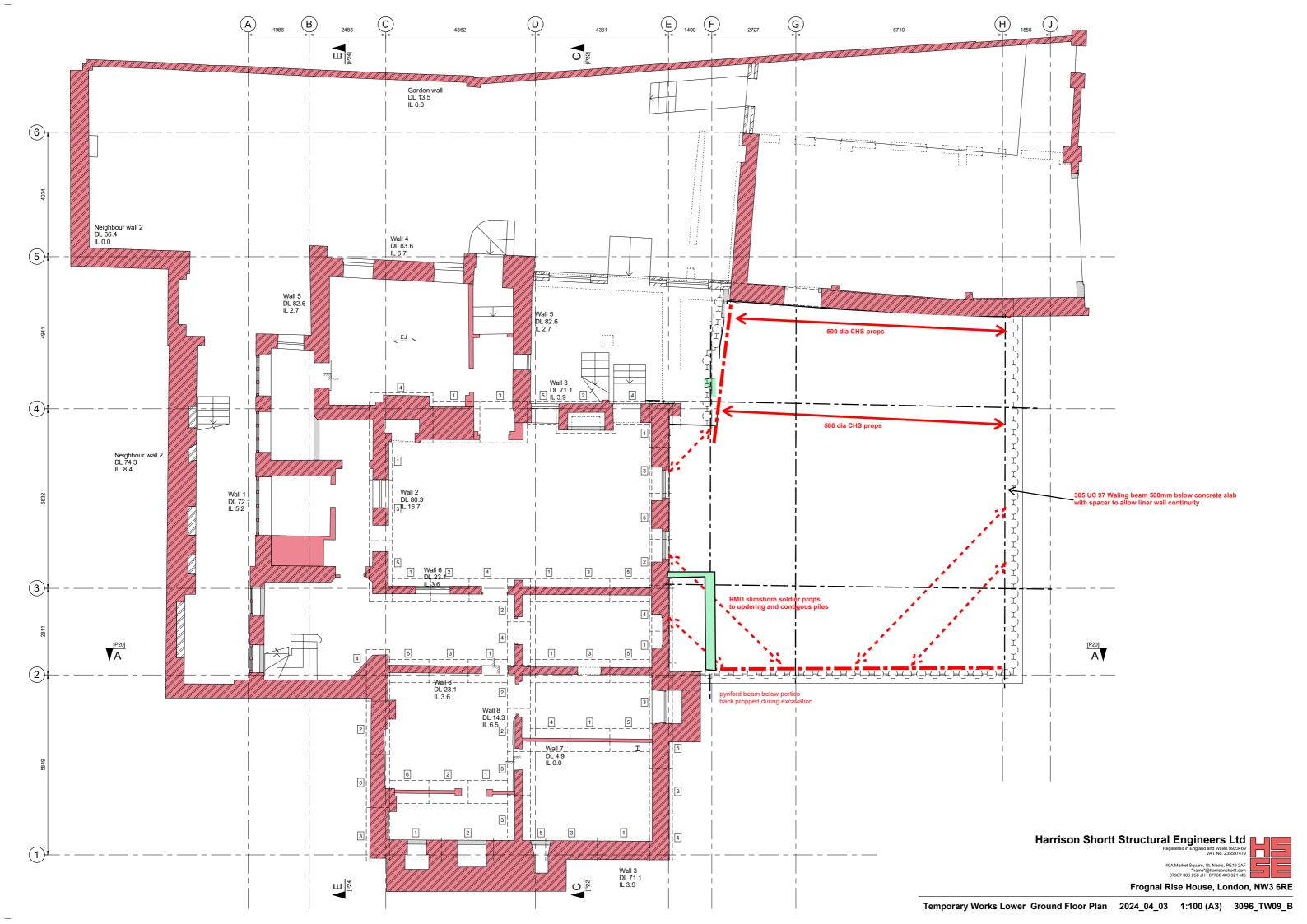
Existing walls demolished

New non-load bearing partition constructed with 95x47mm C24 timber studs at 400mm centres blocking at 1200mm centres.

New brickwork wall

New medium dense (min 14kN/m^3) blockwork wall and M12 mortar UNO.

New 100 x 50 Loadbearing timber stud wall with 1 face clad in 12mm plywood


New Reinforced Concrete

Harrison Shortt Structural Engineers Ltd
Registered in England and Wales 9223499
VAT No. 235597479

40a Market Square, St. Neots PE19 2AF "name"@harrisonshortt.com 07967 306 25 JH 07760 403 321 MS

Frognal Rise House, Lower Terrrace, London NW3 6RE

Proposed Section E-E 2025_04_09 1:100 (A3) 3096_P24_A

Harrison Shortt Structural Engineers Ltd
Registered in England and Wales 9923489
VAT No. 235597479

40A Market Square, St. Neots, PE19 2AF "name"@harrisonshortt.com 07967 306 258 JH 07760 403 321 MS

Frognal Rise House, Lower Terrace, London NW3 6RE

Structural Report 2025_04_03 Page 33 3096_Report01_D

10.0 Calculations

Structural Calculations 2025_04_03 Page 1 3096_Calculations 01_B

Calculations Contents

1.	0	Existing	Building	and Site

- 2.0 Proposed Works
- 3.0 Loadings

4.0 Calculations

- 4.1 Garden slab
- 4.2 Concrete boot lintel over basement window
- 4.3 C08-1
- 4.4 C08-2
- 4.5 C08-3
- 4.6 C08-4
- 4.7 C08-5
- 4.8 House line load Wall 1
- 4.10 House line load Wall 2
- 4.11 House line load Wall 3
- 4.12 House line load Wall 4
- 4.13 House line load Wall 5
- 4.14 House line load Wall 6
- 4.15 House line load Wall 7
- 4.16 House line load Wall 8
- 4.17 Neighbour Wall load 1
- 4.18 Neighbour Wall load 2
- 4.19 Garden Wall
- 4.20 Garden line load 2
- 4.21 Garden line load 3
- 4.22 Garage line load
- 4.23 Garden retaining wall
- 4.24 Dwarf retaining wall below garage
- 4.25 House retaining wall

1.0 Existing Building and Site

- 1.1 The existing building is a four storey detached house (including the loft and the basement) that appears to have been constructed in the early 1800s. The building has a single storey garage to the south.
- 1.2 The building is located on the corner of Lower Terrace and Frognal Rise.

The building shares boundaries with 14 Lower Terrace to the left and 22 Windmill Hill to the right when viewed from the front.

- 1.4 The building is constructed with solid brickwork external walls. The internal load bearing walls are brickwork at lower ground floor and timber stud above.
- 1.5 The lower ground floor is constructed with a concrete slab. The ground floor and above are constructed with timber floor joists.
- 1.6 The roof is a slate clad traditionally constructed hipped crown roof. The pitched roof joists are supported at mid span by timber purlins supported on timber trusses spanning between the external walls.
- 1.7 The building is likely to be founded on corbelled brickwork foundations on Bagshot Formation (sand, sedimentary rock).
- 1.8 The overall stability of the building is provided by the cellular layout of the masonry walls.

Structural Calculations 2025_04_03 Page 2 3096_Calculations 01_B

- 1.9 The results of the desk study can be summarised as follows:
 - The site is not in the vicinity of any historic rivers.
 - The site has a very low risk of surface water flooding and very low risk of flooding from rivers and the
 - The site is not within the vicinity of any London Underground Ltd. infrastructure.
 - There was no damage to the building from WWII.
- 1.10 The building is Grade II listed and is in the Hampstead Conservation Area.

2.0 **Proposed Works**

- 2.1 Construction of a new basement below the front garden formed in reinforced concrete within a retaining wall
- 2.2 The construction of single storey garden room above the garage on the site of a early twentieth century The proposed works will be designed to the following design codes:

BS 5268: Part 2: 2002 - Structural Use of Timber. Part 2: Code of Practice for Permissible Stress Design, Materials and Workmanship. BS 5628: Part 1: 2005 - Code of Practice for the Use of Masonry. Part 1: Structural Use of Unreinforced Masonry.

BS 5950: Part 1: 2009 - Code of Practice for the Ose of Masonity. Part 1: Structural Ose of Orlienhorce Masonity.

BS 5950: Part 1: 2009 - Structural Use of Steelwork. Part 1: Code of Practice for Rolled Sections and Welded Sections.

BS 6399: Part 1: 1996 - Loading for Buildings. Part 1: Code of Practice for Dead and Imposed Loads.

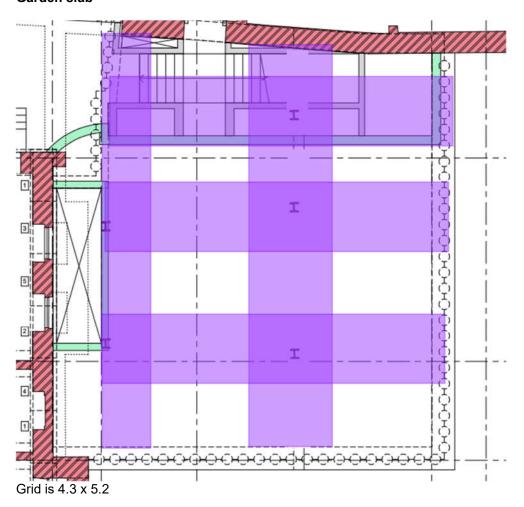
BS 8110: Part 1: 1997 - Structural Use of Concrete. Part 1: Code of Practice for Design and Construction.

Steel Construction Institute - Blue Book - Steelwork Design Guide to BS 5950-1: 2001, Volume 1 Section Properties Member Capacities 7th Edition.

Loadings 3.0

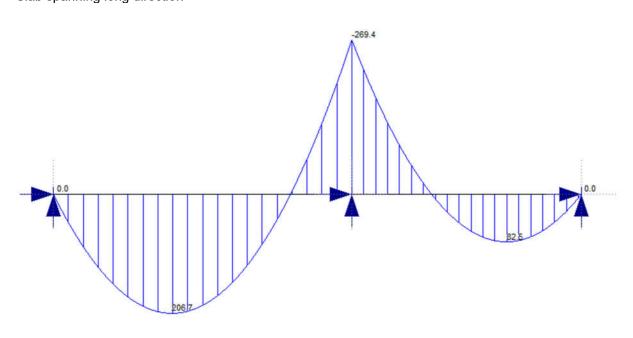
Loadings		Dead Load	Imposed Load	SLS	(ULS)
A Pitched Roof (boarded and clay tiles) (slate roof lighter)	Rafters Battens Boards Tiles At 30 degrees Imposed Load	0.2 0.1 0.2 0.32 (load/cos30)	0.60 0.60	1.6 kN/m²	(2.3) kN/m²
B Flat Roof (general)	Waterproofing membrane Insulation 18mm plywood sheeting 225x50mm timber floor joists at 400mm c/c 12.5mm plasterboard ceiling Finish (decking or similar) Imposed Load	0.10 0.02 0.11 0.17 0.11 0.30	0.75		
	•	0.81	0.75	1.6kN/m ²	(2.3) kN/m ²
C Internal Floor (typical)	20mm timber floor finishes 225x50mm timber floor joists at 360mm c/c 19mm lath and plaster ceiling Insulation Imposed Load	0.11 0.19 0.38 0.02	1.5		
	imposed Load	0.7	1.5	2.2 kN/m ²	(3.4) kN/m ²
D Loft Floor Storage	19mm chip board 100x50mm timber floor joists at #360mm c/c Lathe and plaster ceiling	0.1 0.1 0.38	0.6		
	Imposed Load	0.58	0.6	1.2 kN/m ²	(1.8) kN/m²
E 9" Brick Wall	19mm plaster 9" (228.6mm) brickwork	0.38 4.11 4.5		4.5 kN/m²	(6.3) kN/m²
F 13 1/2" Brick Wall	19mm plaster 9" (342.9mm) brickwork	0.38 6.20 6.6		6.6 kN/m	(9.2) kN/m
G 4" Timber Stud Wall	19mm lath and plaster 100x50mm timber studs at 360mm c/c 100x50mm timber blocking at 1200mm c/c 19mm lath and plaster	0.38 0.08 0.03 0.38 0.87		0.9 kN/m	(1.2) kN/m
H 4" Brick Nogged Timber Stud Wall	19mm lath and plaster 100x50mm timber studs at 360mm c/c Brick Noggins 225 @ 360 c/c 19mm lath and plaster	0.38 0.08 1.13 0.38 1.97		1.97 kN/m	(2.8) kN/m
J 4" Slate Clad Mansard Wall	6mm slate cladding lapped 25x40mm battens at 150mm c/c 18mm plywood sheeting 100x50mm timber studs at 400mm c/c 100x50mm timber blocking at 1200mm c/c 12.5mm plasterboard and Skim	0.375 0.04 0.2 0.08 0.03 0.28			
		1.01		1.0 kN/m ²	(1.4) kN/m

		Structural Cal	culations	2025_04_03	Page 3	3096_Calculations 01_B	
к	4" (101.6mm) brickwork	1.83					
Brick / Block Cavity	100mm Insulation	0.10					
Wall	100mm dense concrete blocks	2.40					
	19mm plaster	0.38					
		4.71		4.7 k	N/m²	(6.6) kN/m ²	
L	3 Layers 10mm glass	0.87					
Flat Roof Light	2mm interlayer	0.01					
	Imposed Load	0.00	0.6	4.51	N1/2	(0.0) 1-11/2	
		0.88	0.6	1.5 K	N/m²	(2.2) kN/m ²	
M	3 Layers 10mm glass	0.87					
Glass Doors	2mm interlayer	0.01					
	Framing	0.2			•		
		1.08		1.1 k	N/m ²	(1.5) kN/m ²	
N	Metal deck	0.09					
Concrete Multideck	Concrete 130	2.28					
floor	100mm screed and finish	2.2					
	Partitions		1.0				
	Live load		1.5				
		4.57	2.5	7.07	kN/m²	(10.4) kN/m²	
Garden slab	1000mm soil	20					
0	150mm insulation	0.20					
	300mm insitu reinforced concrete slab	7.2					
	2 x 12.5mm plasterboard ceiling	0.18					
	2.5mm skim	0.05					
	Services	0.5					
	Planting or Live load	28.1	3.0 3.0	24.4.1	kN/m²	(4.4.4) I-N/2	
		20.1	3.0	31.11	KN/III	(44.1) kN/m ²	
Basement Slab	300 RC slab	7.2					
P	100mm screed and finish	2.2					
	Partitions		1.0				
	Live load (gym)		3.0		2		
		9.4	4.5	13.9	kN/m²	(20.4) kN/m ²	
Existing Jack arching	Average thickness 750mm brickwork	12					
- 5	45mm asphalt	0.99					
	Imposed loading		1.50			•	
		13.0	1.50	14.5	kN/m²	(20.6) kN/m ²	
	A 1 11 00 1 N/3			0 1 0 00 5	3 (0.00 1)	0)	
Assumed Densities	Asphalt : 22 kN/m ³ Brickwork : 18 kN/m ³		Lead	 Code 6 : 29.5 kN/r nsulation : 60 kg/m³ 	n~ (0.30 kN/m)	2)	
	Clay Tiles: 18 kN/m ³			nsulation : 60 kg/m² er : 20 kN/m³			
	Concrete: 24 kN/m ³			/ Cement Render : 2	2 kN/m ³		
	Concrete Blockwork (Dense) : 24 kN/m ³			/ Cement Screed :			
	Concrete Block (Medium Density): 14 kN/m ³			: 25 kN/m ³			
	Glass: 25 kN/m ³				Stone: 25 kN/m ³		

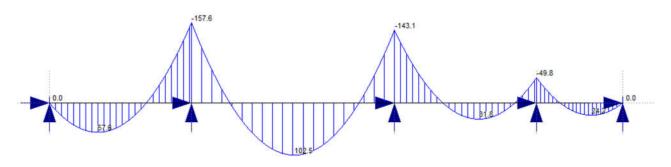

Glass: 25 kN/m³ Lath and Plaster : 20 kN/m³ Lead – Code 5 : 25.4 kN/m² (0.25 kN/m2)

Stone: 25 kN/m³ Timber: 6 kN/m³

Structural Calculations 2025_04_03 Page 4 3096_Calculations 01_B


4.0 Calculations

4.1 Garden slab


Middle strip = 4.3x0.5 = 2.15 m wide

Slab spanning long direction

Structural Calculations 2025_04_03 Page 5 3096_Calculations 01_B

Slab spanning short direction

Beam strip checking hoggin moment 75 % hogging = 0.75 x 269.4 = 118.2 within column strip

	Total Moment		Column Strip		Middle strip	
	Hogging	Sagging	Hogging	Sagging	Hogging	Sagging
			0.75	0.55	0.25	0.45
Long span	269.4	206.7	202.1	113.7	67.4	93.0
Short span	157.6	102.5	118.2	56.3	39.4	46.1

Simple beam check				
span	5200	mm		
width	2150	mm		
depth	300	mm		
cover	50	mm		
bar depth	10	mm		
extra	5	mm		
deff	240	mm		
concrete grade	40	N/mm^2		
steel grade	500	N/mm^2		
span/ depth ratio	21.66667			
Moment	202.1	kNm		
k-M/bd^2fcu	0.040799			
z/d=(0.5-(0.25-k/0.9)^0	0.952403			
but not less 0.95				
Z	0.228			
As=M/0.87 fy z	0.002038			
	2037.709	2038	mm^2	
Use bars	16		Area	201.0619
Spacing	200	OR	Number	0
Area steel	2161.416			

Structural Calculations 2025_04_03 Page 6 3096_Calculations 01_B

4.2 Concrete boot lintel over basement window

UDL		28.1	3	sis		uls										
supported width		2.65	2.65					∞	~~~	$\overset{\mathtt{w}}{\sim}$	∞	∞	2			
								ಱ					A			
UDL		0.00	0.00													
supported width		0.00	0.00								DL+	P43	IL		SLS	ULS
		0.00									OL.	10	-		OLO	OLO
w		74.47	7.95	1	32.42	116.97	kN/m			R		115.4		12.3	127.7	181.3
Span		3.1														
M v	/h2/8		140.5	kNm												
span		3100	mm													
width			mm													
depth		1300														
cover			mm													
bar depth			mm													
extra			mm													
deff		1260	mm N/mm^	2												
concrete grade				_												
steel grade		500	N/mm^	2												
anan/ donth rat	in	2.460317							nimala			20				
span/ depth rat Moment	10	and the second second second second	kNm						simple			7				
moment		140.5	KINIII						continous			27				
k-M/bd^2fcu		0.011062							Continous			21				
z/d=(0.5-(0.25-	L/0 0)A0	0.011062														
but not less 0.9		0.507554														
Z	3	1.197														
As=M/0.87 fy z		0.00027														
AS-MIO.OF TY 2				270		•										
		269.8317		2/0	mm^	2										
Use bars		16			Area	3			201.0619)						
Spacing			OR		Num				landa de la constanta de la co	3						
Area steel		603.1858														
					SHE	AR										
100 As / by d		0.047872														
(400 / d) ^0.25		0.750624														
			WARN	ING	CHE	CK IF SH	EAR RE	EINFOC	EMENT PR	OVIDE	D					
Gamma m		1.25														
Concrete grade	factor															
Vc		0.201468	N/mm^	2												
Applied Shear		181.3								-						
Applied Sileal		101.3														
v max = V/b/d		0.697308			SHE	AR REIN	FORCE	MENT F	REQUIRED							
0		261														
Spacing sv		200														
As		18.23778														
Link Diamter		10					78 530	981634								
Enin Didilitor		10					10.000									

Structural Calculations 2025_04_03 Page 7 3096_Calculations 01_B

4.3 C08-1

JUU-1										
Height of	Column		3				Factor of safety	DL	1.4	
								IL	1.6	
Primary s	ize column		0.15							
Secondar	y size Colur	mn	0.15							
									Overturning	Restoring
Loading							Excentricity distance	e		0.9
		DL	IL	SLS	ULS		Centroid to Face	Off face	ULS x distance	DL x favourable
Pxx	Left	66.74		73.865	104.836		0.075	0.1	18,3463	10.51155
	Right	133,48	14.25	147.73	209,672		0.075	0.1	36.6926	21.0231
Pyy	left	0	0	0	0		0.075	0.1	0	0
	Right	0	0	0	0		0.075	0.1	0	0
							36.6926			
Load fron	n above	0	0	0	0			,	xx	Per
									en)	Pxx (right)
Total Loa	d	200.22	21.375	221.595	314.508			-		_
Р		Mxx		Myy	<	1		3		>
Pc		Mbs		PyZy					Pov	
314.51		26.18		0.00	"="	0.963			- -	
565		64.4		25.2						
USE	152 UC 37	100000		00200000						

4.4 C08-2

C08-2 Height of	Column		3				Factor of safety	DL	1.4	
								IL	1.6	
Primary s	size column		0.15							
Seconda	ry size Colu	mn	0.15							
									Overturning	Restoring
Loading							Excentricity distance	•		0.9
		DL	IL	SLS	ULS		Centroid to Face	Off face	ULS x distance	DL x favourable
Pxx	Left	133.48	14.25	147.73	209.672		0.075	0.1	36.6926	21.0231
	Right	133.48	14.25	147.73	209.672		0.075	0.1	36.6926	21.0231
Pyy	left	0	0	0	0		0.075	0.1	0	0
	Right	0	0	0	0		0.075	0.1	0	0
							36.6926			
Load from	m above	0	0	0	0				·	Pex
									eft)	(right)
Total Loa	ad	266.96	28.5	295.46	419.344			-		-
Р		Max		Myy	<	1		>		>
Pc		Mbs		PyZy					Pyy	
419.34	1	15.67		0.00	"="	0.986			. .	
565	5	64.4		25.2						
USE	152 UC 37								LM	-

4.5 C08-3 See C09-2 load and length similar

4.6 C08-4

Height of	Column		3				Factor of safety	DL	1.4	
								IL	1.6	
Primary si	ze column		0.15							
Secondar	y size Colur	mn	0.15							
									Overturning	Restoring
Loading							Excentricity distance	•		0.9
		DL	IL	SLS	ULS		Centroid to Face	Off face	ULS x distance	DL x favourable
Pxx	Left	57.7	6.15	63.85	90.62		0.075	0.1	15.8585	9.08775
	Right	115.4	12.3	127.7	181.24		0.075	0.1	31.717	18.1755
Pyy	left	0	0	0	0		0.075	0.1	0	0
	Right	0	0	0	0		0.075	0.1	0	0
							31.717			
Load from	above	0	0	0	0				xx eft)	Pxx (right)
Total Loa	d	173.1	18.45	191.55	271.86			-		1
Р		Max	•	Mgg	<	1		3		1
Po		Mbs		PyZy					Pyy	
271.86		22.63		0.00	"="	0.833			. .	•
565		64.4		25.2						
USE	152 UC 37									

Structural Calculations 2025_04_03 Page 8 3096_Calculations 01_B

4.7 C08-5

JUU-J										
Height of	Column		3				Factor of safety	DL	1.4	
								IL	1.6	
Primary si	ize column		0.15							
Secondar	y size Colu	mn	0.15							
									Overturning	Restoring
Loading							Excentricity distance	9		0.9
		DL	IL	SLS	ULS		Centroid to Face	Off face	ULS x distance	DL x favourable
Pxx	Left	115.4	12.3	127.7	181.24		0.075	0.1	31.717	18,1755
	Right	115.4	12.3	127.7	181.24		0.075	0.1	31.717	18.1755
Pyy	left	0	0	0	0		0.075	0.1	0	0
	Right	0		0			0.075		0	
							31.717			
Load from	n above	0	0	0	0					
									eft)	Pxx (right)
Total Loa	d	230.8	24.6	255.4	362.48			-		\vdash
Р		Mxx		Mgg	<	1		>		>
Pc		Mbs		PyZy				-	Por	
362.48		13.54		0.00		0.852				1 ,
565		64.4		25.2		0.002				
USE	152 UC 37			20.2					In	

4.8 House line load Wall 1

	DL	IL	Thickness	height	density
	0	0	100		The state of the s
	0	0	250	0	18
	39.06	0	350	6.2	18
	28.755	0	450	3.55	
	0	0	575	0	
	0	0	brick Nogged Stud Wall	0	1.97
	0		Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	1.7575	1.11		0.95	0.6
Loft	1.11	1.11	1.85	0.6	0.6
First	0.7	1.5	1	0.7	1.5
Ground	0.7	1.5	1	0.7	1.5
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	72.0825	5.22	77.3025	109.2675	1

4.9 House line load Wall 2

	DL	IL	Thickness	height	density
	0		100	0	18
	0		250	0	18
	39.06	6	350	6.2	18
	28.755	(450	3.55	18
	0		575	0	18
	0	(brick Nogged Stud Wall	0	1.97
	0	(Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	4.465	2.82	4.7	0.95	0.6
Loft	2.82	2.82	2. 4.7	0.6	0.6
First	2.59	5.5	3.7	0.7	1.5
Ground	2.59	5.5	3.7	0.7	1.5
	0	(0	0	0
	0		0	0	0
	0	(0	0	0
	DL	IL	SLS	ULS	
Total	80.28	16.74	97.02	139.176	

Structural Calculations 2025_04_03 Page 9 3096_Calculations 01_B

4.10 House line load Wall 3

	DL	IL	Thickness	height	density
	0	0	100	0	18
	0	0	250	0	18
	39.06	0	350	6.2	18
	28.755	0	450	3.55	18
	0	0	575	0	18
	0	0	brick Nogged Stud Wall	0	1.97
	0	0	Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	1.425	0.9	1.5	0.95	0.6
Loft	0.9	0.9	1.5	0.6	0.6
First	0.7	1.5	1	0.7	1.5
Ground	0.28	0.6	0.4	0.7	1.5
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	71.12	3.9	75.02	105.808	

4.11 House line load Wall 4

	DL	IL	Thickness	height	density
	0	0	100	0	18
	0	0	250	0	18
	40.32	0	350	6.4	18
	0	0	450	0	18
	39.33	0	575	3.8	18
	0	0	brick Nogged Stud Wall	0	1.97
	0		Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	1.14	0.72		0.95	0.6
Loft	0	0	0	0	0
First	1.4	3	2	0.7	1.5
Ground	1.4	3	2	0.7	1.5
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	83.59	6.72	90.31	127.778	

4.12 House line load Wall 5

	DL	IL	Thickness	height	density
	0	0	100	0	18
	0	0	250	0	18
	40.32	0	350	6.4	18
	0	0	450	0	18
	39.33	0	575	3.8	18
	0	0	brick Nogged Stud Wall	0	1.97
	0	0	Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	2.375	1.5	2.5	0.95	0.6
Loft	0	0	0	0	0
First	0.28	0.6	0.4	0.7	1.5
Ground	0.28	0.6	0.4	0.7	1.5
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	82.585	2.7	85.285	119.939	

Structural Calculations 2025_04_03 Page 10 3096_Calculations 01_B

4.13 House line load Wall 6

~	DL	IL	Thickness	height	density	
	0	0	100		18	
	16.2	0	250	3.6		
	0	0	350	0	18	
	0	0	450	0	18	
	0	0	575	0	18	
	0	0	brick Nogged Stud Wall	0	1.97	
	5.22		Timber Stud wall	6	0.87	
Floors			supported width	DL	IL	
Roof	0	0	0	0	0	
Loft	0	0	0	0	0	
First	1.4	3	2	0.7	1.5	
Ground	0.28	0.6	0.4	0.7	1.5	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	DL	IL	SLS	ULS		
Total	23.1	3.6	26.7	38.1		

4.14 House line load Wall 7

	DL	IL		Thickness	height	density	
	4.	4.86		100		18	
		0	0	250	0	18	
		0	0	350	0	18	
		0	0	450	0	18	
		0	0	575	0	18	
		0	0	brick Nogged Stud Wall	0	1.97	
	0			Timber Stud wall	0	0.87	
Floors				supported width	DL	IL	
Roof		0	0	0	0	0	
Loft		0	0	0	0	0	
First		0	0	0	0	0	
Ground		0	0	0	0	0	
		0	0	0	0	0	
		0	0	0	0	0	
		0	0	0	0	0	
	DL	IL		SLS	ULS	1	
Total	4.	86	0	4.86	6.804	!	

4.15 Wall 8

waii 8					
	DL	IL	Thickness	height	density
	0	0	100	0	18
	11.25	0	250	2.5	18
	0	0	350	0	18
	0	0	450	0	18
	0	0	675	0	18
	0	0	brick Nogged Stud Wall	0	1.97
	0	0	Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Ground	3.045	6.525		0.7	1.5
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	14.295	6.525	20.82	30.453	1

Structural Calculations 2025_04_03 Page 11 3096_Calculations 01_B

4.16 Neighbour Wall load 1

	DL	IL	Thickness	height	density
	0	0	100		18
	8.1	0	250	1.8	18
	0	0	350	0	18
	0	0	450	0	18
	58.32	0	675	4.8	18
	0	0	brick Nogged Stud Wall	0	1.97
	0		Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	3.9	1.2		1.95	0.6
Loft	1.2	1.2	2	0.6	0.6
First	1.4	3	2	0.7	1.5
Ground	1.4	3	2	0.7	1.5
	0	0		0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	74.32	8.4	82.72	117.488	

4.17 Neighbour Wall load 2

	DL	IL	Thickness	height	density
	0	0	100		18
	8.1	0	250	1.8	
	0	0	350	0	18
	0	0	450	0	18
	58.32	0	675	4.8	18
	0	0	brick Nogged Stud Wall	0	1.97
	0		Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	0	0	0	0	0
Loft	0	0	0	0	0
First	0	0	2	0	0
Ground	0	0	0.4	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	66.42	0	66.42	92.988	

4.18 Garden Wall

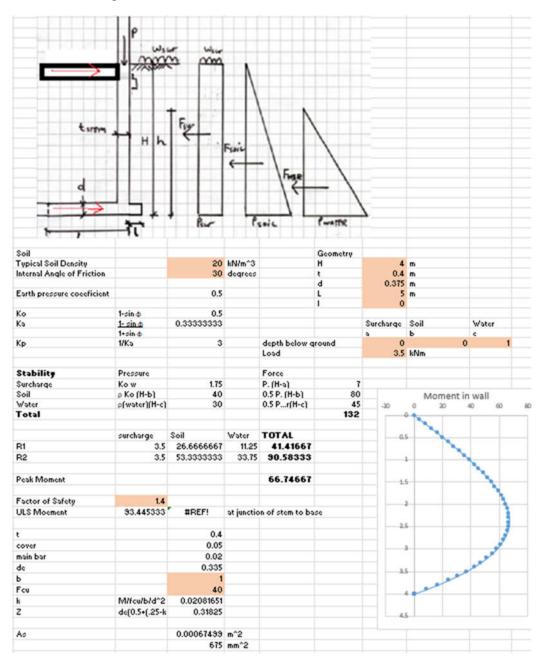
	DL	IL Thickness he		height	density
	0	0	100		18
	13.5	0	250	3	18
	0	0	350	0	18
	0	0	450	0	18
	0	0	575	0	18
	0	0	brick Nogged Stud Wall	0	1.97
	0	0	Timber Stud wall	0	0.87
Floors			supported width	DL	IL
Roof	0	0	0	0	0
Loft	0	0	0	0	0
First	0	0	0	0	0
Ground	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	0	0	0	0	0
	DL	IL	SLS	ULS	
Total	13.5	0	13.5	18.9	

Structural Calculations 2025_04_03 Page 12 3096_Calculations 01_B

4.19 Garden line load 2

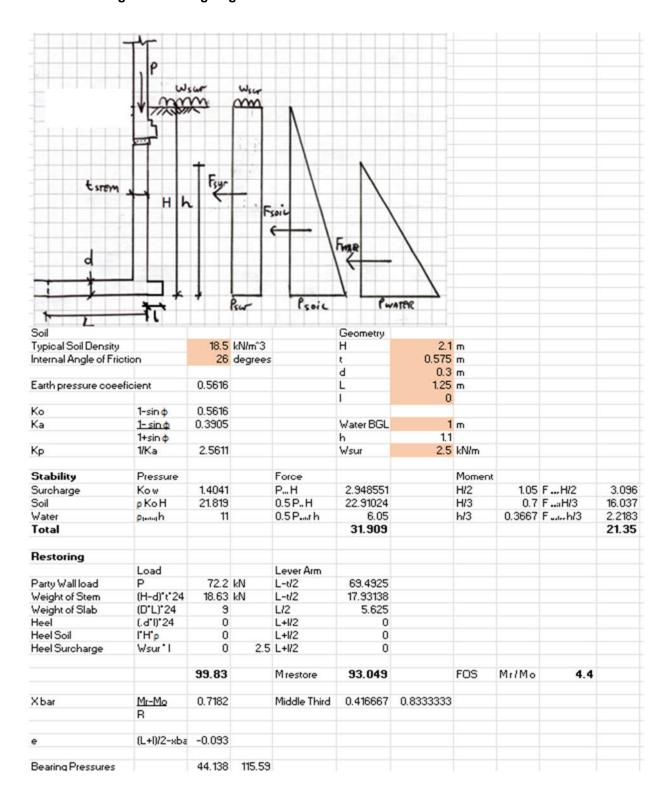
Floors			supported width	DL	IL		
Slab	28.1		1	28.1	3		
Wall	41.28	0	3.2	12.9	0		
	0	0	0	0	0		
	0	0	0	0	0		
	0	0	0	0	0		
	0	0	0	0	0		
	0	0	0	0	0		
	DL	IL	SLS	ULS	FOS	DL	1.4
Total	110.78	3	113.78	159.892		IL	1.6

4.20 Garden line load 3


Floors			supported width	DL	IL		
Slab	74.465			28.1	3		
Wall	41.28	0	3.2	12.9	0		
	0	0	0	0	0		
	0	0	0	0	0		
	0	0	0	0	0		
	0	0	0	0	0		
	0	0	0	0	0		
	DL	IL	SLS	ULS	FOS	DL	1.4
Total	157.145					IL	1.6

4.21 Garage line load

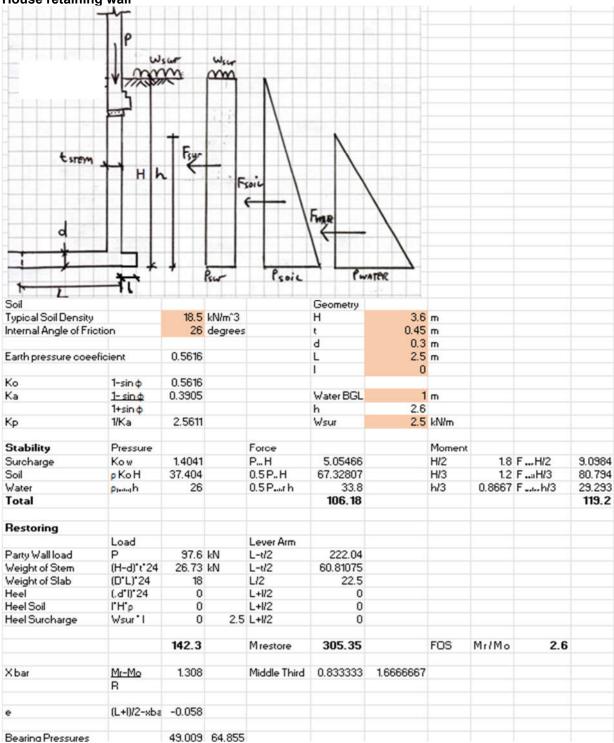
	DL	IL	Thickness	height	density	
	0	0	100		18	
	0	0	250	0	18	
	0	0	350	0	18	
	0	0	450	0	18	
	41.4	0	575	4	18	
	0	0	brick Nogged Stud Wall	0	1.97	
	0	0	Timber Stud wall	0	0.87	
Floors			supported width	DL	IL	
roof	2.47	1.56	2.6	0.95	0.6	
	20.28	6.5	2.6	7.8	2.5	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	0	0	0	0	0	
	DL	IL	SLS	ULS	FOS	
Total	64.15	8.06	72.21	102.706		


Structural Calculations 2025_04_03 Page 13 3096_Calculations 01_B

4.22 Garden retaining wall

Structural Calculations 2025_04_03 Page 14 3096_Calculations 01_B

4.23 Dwarf retaining wall below garage



Structural Calculations 2025_04_03 Page 15 3096_Calculations 01_B

Concrete Design									
Cantilever length		1.8							
Stability	Pressure			Force		Moment			
Surcharge	Kow	1.4041		PH	2.52733	H/2	0.9	FH/2	2.2746
Soil	ρKoH	18.702		0.5 P H	16.83202	H/3		FH/3	10.099
Water	Opening (H-h)	8		0.5 P. of (H-h)	3.2	(H-h)/3		F (H-h)/3	
Total					22.559				13.23
Factor of Safety	1.4								
ULS Moement (18.518								
t		0.575							
cover		0.05							
main bar		0.025							
de		0.5075							
Ь		1							
Fou		40							
k	M/foulb/d*2	0.0018							
Z	de(0.5+(.2!	0.4821							
As		9E-05	m^2						
		88	mm^2						
Concrete Design									
Cantilever length		1.8							
Stability	Pressure			Force		Moment			
Surcharge	Kow	1.4041		PH	2.52733	H/2	0.9	FH/2	2.2746
Soil	øКоН	18.702		0.5 P H	16.83202	H/3		FH/3	10.099
Water	p _{[1-1} (H-h)	8		0.5 P.ur (H-h)		(H-h)/3		F (H-h)/	
Total	P1	-			22.559				13.23
Factor of Safety	1.4								
ULS Moement	18.518								
·		0.575							
cover		0.05							
main bar		0.025							
de		0.5075							
Ь		1	_						
Fou		40							
k	Mlfculbld*2								
ž	de(0.5+(.2!								
As		9E-05	m ²						

Structural Calculations 2025_04_03 Page 16 3096_Calculations 01_B

4.24 House retaining wall

Structural Report 2025_04_03 Page 50 3096_Report01_D

11.0 Site Investigation

- Refer to stand alone site investigation report by GEA.

Structural Report 2025_04_03 Page 51 3096_Report01_D

12.0 Summary

- 12.0 The existing building is a four storey detached house (including the loft and the basement) that appears to have been constructed in the early 1800s. The building has a single storey garage to the south.
- 12.1 The building is Grade II listed and is in the Hampstead Conservation Area.
- 12.2 The proposed works involve the refurbishment of the house and construction of a basement to the southern side garden
- 12.3 The new basement will be constructed using contiguous piles around the perimeter to retain the ground. A reinforced concrete liner wall will be constructed inside the piles. The basement slab will be constructed with reinforced concrete. The roof over basement will be constructed with reinforced concrete and will have a garden above.
- 12.4 The proposed drainage scheme for the new basement involves a foul pumping station and cavity drain sump. The proposals are relatively straightforward and have been used successfully on many similar projects in London.
- 12.5 The impact of the new basement on the existing groundwater regime has been assessed. Groundwater is not likely to be encountered and no noticeable effects on the hydrogeological environment in the area are expected.
- 12.6 The undertaking of such projects to existing buildings is specialist work. We will be involved in the selection of an appropriate Contractor who will need the relevant expertise and experience for this type of project.
- 12.7 Once the works commence we will have an ongoing role on site to monitor that the works are being carried out generally in accordance with the design and specification. This role will typically involve fortnightly site visits at the beginning of the Contract with monthly visits thereafter.
- 12.8 If properly undertaken by a suitably experienced Contractor the proposed basement construction can be completed with no significant affect on the structural stability of the adjoining building.