

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084.3

Depth (m) 0.85 0.15 0.30 Date Sampled 28/10/2020 28/10/2020 28/10/2020	TP12 None Supplied 0.60 28/10/2020 None Supplied
Depth (m) 28/19/2020 28/	0.60 28/10/2020
Depth (m)	28/10/2020
None Supplied None Supplied Suppli	
Analytical Parameter (Soil Analysis) Page 1 Page 2 Page 3 Page 4 Page 4	None Supplied
Analytical Parameter (Soil Analysis) Soil So	
VOCs	
Chloromethane	
Chloromethane	
Chloroethane	- 1.0
Bromomethane	< 1.0
Vinyl Chloride μg/kg 1 NONE < 1.0 - - Trichlorofluoromethane μg/kg 1 NONE < 1.0	< 1.0
Trichlorofluoromethane µg/kg 1 NONE < 1.0 - - 1,1-Dichloroethene µg/kg 1 NONE < 1.0	< 1.0
1,1-Dichloroethene µg/kg 1 NONE < 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	< 1.0
Cis-1,2-dichloroethene μg/kg 1 MCERTS < 1.0 - - MTBE (Methyl Tertiary Butyl Ether) μg/kg 1 MCERTS < 1.0 - - 1,1-Dichloroethane μg/kg 1 MCERTS < 1.0 - - 2,2-Dichloropropane μg/kg 1 MCERTS < 1.0 - - - Trichloromethane μg/kg 1 MCERTS < 1.0 - - - 1,1-Trichloroethane μg/kg 1 MCERTS < 1.0 - - - 1,2-Dichloroethane μg/kg 1 MCERTS < 1.0 - - - 1,1-Dichloroptopene μg/kg 1 MCERTS < 1.0 - - - 1,2-Dichloroptopene μg/kg 1 MCERTS < 1.0 - - - Benzene μg/kg 1 MCERTS < 1.0 - - - - 1,2-Dichloroptopane μg	< 1.0
MTBE (Methyl Tertiary Butyl Ether) μg/kg 1 MCERTS < 1.0 - - 1,1-Dichloroethane μg/kg 1 MCERTS < 1.0	< 1.0
1,1-Dichloroethane μg/kg 1 MCERTS < 1.0	< 1.0
2,2-Dichloropropane μg/kg 1 MCERTS < 1.0 - - Trichloromethane μg/kg 1 MCERTS < 1.0	< 1.0
Trichloromethane	< 1.0
1,1,1-Trichloroethane µg/kg 1 MCERTS < 1.0 - - 1,2-Dichloroethane µg/kg 1 MCERTS < 1.0	< 1.0
1,1,1-Trichloroethane µg/kg 1 MCERTS < 1.0	< 1.0
1,2-Dichloroethane µg/kg 1 MCERTS < 1.0 - <	< 1.0
1,1-Dichloropropene µg/kg 1 MCERTS < 1.0	< 1.0
Trans-1,2-dichloroethene μg/kg 1 NONE < 1.0 - - Benzene μg/kg 1 MCERTS < 1.0	< 1.0
Benzene μg/kg 1 MCERTS < 1.0 -	< 1.0
Tetrachloromethane μg/kg 1 MCERTS < 1.0 - - - 1,2-Dichloropropane μg/kg 1 MCERTS < 1.0 - <td>< 1.0</td>	< 1.0
1,2-Dichloropropane µg/kg 1 МСЕRTS < 1.0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
Toluene μg/kg 1 MCERTS < 1.0 - - 1,1,2-Trichloroethane μg/kg 1 MCERTS < 1.0	< 1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
Chlorobenzene μg/kg 1 MCERTS < 1.0 - -	< 1.0
	< 1.0
	< 1.0
13.5	< 1.0
Ethylbenzene $\mu g/kg$ 1 MCERTS < 1.0	< 1.0
p & m-Xylene	< 1.0
Styrene μg/kg 1 MCERTS < 1.0 - -	< 1.0
Tribromomethane $\mu g/kg$ 1 NONE < 1.0	< 1.0
'	< 1.0
1,1,2,2-Tetrachloroethane µg/kg 1 MCERTS < 1.0	< 1.0
Isopropylbenzene µg/kg 1 MCERTS < 1.0	< 1.0
Bromobenzene μg/kg 1 MCERTS < 1.0 - -	< 1.0
n-Propylbenzene μg/kg 1 ISO 17025 < 1.0	< 1.0
2-Chlorotoluene μg/kg 1 MCERTS < 1.0	< 1.0
4-Chlorotoluene μg/kg 1 MCERTS < 1.0	< 1.0
1,3,5-Trimethylbenzene µg/kg 1 ISO 17025 < 1.0	< 1.0
tert-Butylbenzene $\mu g/kg$ 1 MCERTS $<$ 1.0	< 1.0
1,2,4-Trimethylbenzene μg/kg 1 ISO 17025 < 1.0	< 1.0
sec-Butylbenzene $\mu g/kg$ 1 MCERTS < 1.0	< 1.0
1,3-Dichlorobenzene $\mu g/kg$ 1 ISO 17025 < 1.0	< 1.0
p-Isopropyltoluene	
1,2-Dichlorobenzene µg/kg 1 MCERTS < 1.0	< 1.0

1665374

< 0.3

< 0.2

< 0.2

< 0.05

< 0.3

< 0.2

< 0.3

< 0.05

< 0.05

< 0.3

< 0.2

1665372 TP12

1665371 TP3 1665373 TP12

Analytical Report Number: 20-38049

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084.3

Lab Sample Number

4-Chlorophenyl phenyl ether

Bromophenyl phenyl ether

Hexachlorobenzene

Diethyl phthalate

4-Nitroaniline

Fluorene

Azobenzene

Phenanthrene

Dibutyl phthalate

Anthracene

Carbazole

Lab Sample Number				16653/1	1665372	16653/3	1665374
Sample Reference	TP3	TP12	TP12	TP12			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)				0.85	0.15	0.30	0.60
Date Sampled	28/10/2020	28/10/2020	28/10/2020	28/10/2020			
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	-	< 1.0
SVOCs							
Aniline	mg/kg	0.1	NONE	< 0.1	-	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	-	-	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	-	-	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	-	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	-	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	-	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	-	-	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	-	-	< 0.2
4 Chlassach and all and athen			**** 4 TABE	. 0.2			

mg/kg

0.3

0.2

0.2

0.05

0.3

0.2

0.3

0.05

0.05

0.3

0.2

ISO 17025

MCERTS

< 0.3

< 0.2

< 0.2

< 0.05

< 0.3

< 0.2

< 0.3

< 0.05

< 0.05

< 0.3

< 0.2

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084.3

Lab Sample Number	1665371	1665372	1665373	1665374			
Sample Reference	TP3	TP12	TP12	TP12			
Sample Number	None Supplied	None Supplied	None Supplied	None Supplied			
Depth (m)	0.85	0.15	0.30	0.60			
Date Sampled				28/10/2020	28/10/2020	28/10/2020	28/10/2020
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	-	-	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	-	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	_	_	< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1665367	TP1	None Supplied	0.25	Brown clay and loam with gravel.
1665368	TP1	None Supplied	0.5	Brown sandy gravel.**
1665369	TP1	None Supplied	1	Brown sandy gravel.**
1665370	TP3	None Supplied	0.15	Brown clay and sand with gravel.
1665371	TP3	None Supplied	0.85	Brown gravelly sand.
1665372	TP12	None Supplied	0.15	Brown clay and sand with gravel.
1665373	TP12	None Supplied	0.3	Brown clay and sand with gravel.
1665374	TP12	None Supplied	0.6	Brown clay and sand with gravel.

**Non MCERTS matrix.

Analytical Report Number : 20-38049
Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

 $For method numbers \ ending \ in \ 'UK' \ analysis \ have \ been \ carried \ out \ in \ our \ laboratory \ in \ the \ United \ Kingdom.$

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number: 20-38793

Project / Site name: West Central Street and 1 Museum

Street, Holborn WC1A 1JP

Your job number: JJ2084

Your order number: P3094JJ2084.4

Report Issue Number: 1

Samples Analysed: 1 soil sample

Samples received on: 28/10/2020

Samples instructed on/

Analysis started on:

06/11/2020

30/10/2020

Analysis completed by:

Report issued on:

06/11/2020

Signed:

a Abdul Razzak Senior Quality Specialist

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Your Order No: P3094JJ2084.4

Lab Sample Number								
Sample Reference								
Sample Number				None Supplied				
Depth (m)				0.90				
Date Sampled				26/10/2020				
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1				
Moisture Content	%	0.01	NONE	8				
Total mass of sample received	kg	0.001	NONE	1.2				

General Inorganics

Asbestos in Soil

pH - Automated	pH Units	N/A	MCERTS	9.7
Total Cyanide	mg/kg	1	MCERTS	< 1
Total Sulphate as SO4	mg/kg	50	MCERTS	1100
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.13
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	132

Туре

N/A

ISO 17025

Not-detected

Heavy Metals / Metalloids

Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15
Boron (water soluble)	mg/kg	0.2	MCERTS	1.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	28
Copper (aqua regia extractable)	mg/kg	1	MCERTS	29
Lead (aqua regia extractable)	mg/kg	1	MCERTS	190
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.4
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	210

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1669641	TP6A	None Supplied	0.9	Brown sandy clay with gravel.

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	w	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Sample Deviation Report

Analytical Report Number: 20-38793

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Sample ID				Sample Deviation	Test Name	Test Ref	Test Deviation
TP6A	None Supplied	S	1669641	С	Total cyanide in soil	L080-PL	С

WE LISTEN, WE PLAN, WE DELIVER

Geotechnical Engineering and Environmental Services across the UK.

GROUND INVESTIGATION FACTUAL REPORT

1 MUSEUM STREET HOLBORN WC1A 1JP

Report Title: Ground Investigation Factual Report for 1 Museum Street, Holborn, WC1A 1JP

Report Status: Final v1.0

Job No: P3094J2084/JWT

Date: 02 August 2021

QUALITY CONTROL - REVISIONS

Version	Date	Issued By

Prepared by: JOMAS ASSOCIATES LTD For LABS SELKIRK HOUSE & SOLLIDON LTD

Prepared by Joshua Thomas BSc (Hons), FGS

Geo-Environmental Engineer

Reviewed and approved by James Field BSc (Hons), CGeol, FGS, RoGEP - Professional

Principal Engineer

Should you have any queries relating to this report, please contact

JOMAS ASSOCIATES LTD

www.jomasassociates.com

0843 289 2187

info@jomasassociates.com

Page

CONTENTS

1	INTRODUCTION
1.1	Terms of Reference
1.2	Proposed Development
1.3	Objectives
1.4	Scope of Works
1.5	Supplied Documentation
1.6	Limitations
1.0	LITIILATIONS
2	SITE SETTING
2.1	Site Information
2.2	Solid and Drift Geology
2.3	Desk Study (A-squared Studio Engineers Ltd, 2020)
2.4	Geo-Environmental Soil Sampling (Jomas, November 2020)
2.5	Concrete Probing (Jomas, 2020)
3	GROUND INVESTIGATION
3.1	Rationale for Ground Investigation
3.2	Scope of Ground Investigation
3.3	In-situ Geotechnical Testing
3.4	Sampling Rationale
3.5	Sampling Limitations
3.6	Laboratory Analysis
4	GROUND CONDITIONS
4.2	Ground Conditions
4.3	Hydrogeology1
4.4	Physical and Olfactory Evidence of Contamination1

5	CHEMICAL LABORATORY TEST RESULTS	
5.1		
5.2		
5.3		
	Waste Characterisation and Disposal	
7	GEOTECHNICAL TESTING RESULTS	21
7.1	Data Summary	2 1
7.2	Geotechnical Laboratory Testing Results	21
7.3	Standard Penetration Tests	22
8	REFERENCES	24

APPENDICES

APPENDIX 1 – FIGURES

APPENDIX 2 – EXPLORATORY HOLE RECORDS

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

APPENDIX 5 – HAZARDOUS WASTE ASSESSMENT

APPENDIX 6 – SOIL GAS AND GROUNDWATER MONITORING RECORD

1 INTRODUCTION

1.1 Terms of Reference

- 1.1.1 Labs Selkirk House & Sollidon Ltd ("The Client") has commissioned Jomas Associates Ltd, to undertake a ground investigation and factual reporting.
- 1.1.2 The scope of the investigation was specified by A-squared Studio Engineers Ltd within Ground Investigation Specification document (ref 1084-A2S-XX-XX-SP-Y-0001-00, dated October 2020).
- 1.1.3 The intrusive investigation was undertaken in accordance with Jomas proposal dated 03 November 2020 (ref 20203094/JWT/JF Rev4).
- 1.1.4 It should be noted that Jomas' proposal included works within the site referred to as West Central Street, which is undergoing redevelopment at the same time as 1 Museum Street (the subject site of this report), however due to programme and access issues, the West Central Street works are to be instructed at a later date, as detailed in Jomas' fee variation request document dated 04 March 2021 (ref P3094J2084/rs v2). This report relates solely to the ground investigation works undertaken at the site known as 1 Museum Street.
- 1.1.5 This work involves a summary of the ground conditions encountered along with factual geo-environmental and geotechnical data for interpretation by a third party.

1.2 Proposed Development

- 1.2.1 The proposed development for 1 Museum Street is understood to comprise a 'lifestyle' hotel with 425 to 460 rooms of up to 20m² alongside 1,500m² of public areas, a gym / spa and swimming pool, 1000m² to 2000m² of meeting and event space, and 8000m² of retail space on the ground floor. The scheme involves demolishing the existing tower and podium superstructures, and constructing a new tower of up to 21 storeys and a two- to four-storey podium in all other areas of the site. The existing basement and foundations will be reused with additional pile foundations installed in areas of the site where the existing raft is not present.
- 1.2.2 The proposed superstructure involves post-tensioned (PT) reinforced concrete for the slabs above ground and in-situ reinforced concrete for the vertical elements. In-situ reinforced concrete slabs are proposed for the ground floor and below ground.
- 1.2.3 Plans of the existing and proposed development are provided in Appendix 1.

1.3 Objectives

- 1.3.1 The objectives of Jomas' investigation were as follows:
 - To conduct an intrusive investigation;

- To obtain geotechnical parameters to inform preliminary foundation design;
- To factually report information relating to land contamination.

1.4 Scope of Works

- 1.4.1 The following tasks were undertaken to achieve the objectives listed above:
 - Intrusive ground investigation to determine shallow ground conditions;
 - Undertaking of laboratory chemical and geotechnical testing upon samples obtained;
 - The compilation of this report, which collects and discusses the above data, and presents an assessment of the site conditions, and geotechnical conclusions and recommendations.

1.5 Supplied Documentation

1.5.1 A report previously prepared by a third party was supplied to Jomas Associates at the commencement of this investigation. Table 1.1 details the documents supplied:

Table 1.1: Supplied Reports

Title	Author	Reference	Date
Geotechnical and Geo- environmental Desk Study Report for 1 Museum Street and West Central Street	A-squared Studio Engineers Ltd	1084-A2S-XX-XX-RP-Y- 0001-00	October 2019

1.6 Limitations

- 1.6.1 Jomas Associates Ltd has prepared this report for the sole use of Labs Selkirk House & Sollidon Ltd, in accordance with the generally accepted consulting practices and for the intended purposes as stated in the agreement under which this work was completed. This report may not be relied upon by any other party without the explicit written agreement of Jomas Associates Limited. No other third party warranty, expressed or implied, is made as to the professional advice included in this report. This report must be used in its entirety.
- The records search was limited to information available from public sources; this information is changing continually and frequently incomplete. Unless Jomas Associates Limited has actual knowledge to the contrary, information obtained from public sources or provided to Jomas Associates Limited by site personnel and other information sources, have been assumed to be correct. Jomas Associates Limited does not assume any liability for the misinterpretation of information or for items not visible, accessible or present on the subject property at the time of this study.

SECTION 1 INTRODUCTION

- 1.6.3 Whilst every effort has been made to ensure the accuracy of the data supplied, and any analysis derived from it, there may be conditions at the site that have not been disclosed by the investigation, and could not therefore be taken into account. As with any site, there may be differences in soil conditions between exploratory hole positions. Furthermore, it should be noted that groundwater conditions may vary due to seasonal and other effects and may at times be significantly different from those measured by the investigation. No liability can be accepted for any such variations in these conditions.
- 1.6.4 Any reports provided to Jomas Associates Limited have been reviewed in good faith.

 Jomas Associates Limited cannot be held liable for any errors or omissions in these reports, or for any incorrect interpretation contained within them.
- 1.6.5 This investigation and report has been carried out in accordance with the relevant standards and guidance in place at the time of the works. Future changes to these may require a re-assessment of the recommendations made within this report.
- 1.6.6 This report is not an engineering design and the figures and calculations contained in the report should be used by the Structural Engineer, taking note that variations may apply, depending on variations in design loading, in techniques used, and in site conditions. Our recommendations should therefore not supersede the Engineer's design.

2 SITE SETTING

2.1 Site Information

2.1.1 The site location plan is presented in Figure 1, Appendix 1.

Table 2.1: Site Information

Name of Site	-
Address of Site	1 Museum Street Holborn WC1A 1JP
Approx. National Grid Ref.	530184 , 181386
Site Area (Approx.)	0.3ha
Site Occupation	Former Travelodge and NCP car park; site is currently vacant

2.2 Solid and Drift Geology

- 2.2.1 With reference to British Geological Survey (BGS) mapping, the geology of the site was anticipated to comprise superficial geology of the Lynch Hill Gravel Member. This overlies solid geology of the London Clay Formation, underlain by the Lambeth Group, which in turn is underlain by the Thanet Formation.
- 2.2.2 Given that the site has been developed previously, a mantle of Made Ground could also be present overlying the natural soils.
- 2.2.3 BS5930:2015 defines **Made Ground** as anthropogenic ground in which the material has been placed without engineering control and/or manufactured by man in some way, such as through crushing or washing, or arising from an industrial process. Great variations in material type, thickness and degree of compaction invariably occur.
- 2.2.4 The **Lynch Hill Gravel Member** deposits have an average thickness 7m, with a range of 1m to 12m thickness, and are described as sand and gravel, locally with lenses of silt, clay or peat.
- 2.2.5 The **London Clay Formation** comprises a stiff grey fissured clay, weathering to brown near surface. Concretions of argillaceous limestone in nodular form (Claystones) occur throughout the formation. Crystals of gypsum (Selenite) are often found within the weathered part of the London Clay, and precautions against sulphate attack to concrete are sometimes required. The lowest part of the formation is a sandy bed with black rounded gravel and occasional layers of sandstone and is known as the Basement Beds. In the north London area, the upper part of the London Clay has been disturbed by glacial action and may contain pockets of sand and gravel.
- 2.2.6 The **Lambeth Group** comprises a mixture of stiff to hard red, blue/grey and brown mottled clays with basal beds of sand and gravel which vary greatly both laterally and

vertically. Locally, these sediments are cemented with calcium carbonate, iron oxides and silica to form materials with relatively high strength.

2.2.7 The **Thanet Formation** comprises glauconite-coated, nodular flint at base, overlain by pale yellow-brown, fine-grained sand that can be clayey and glauconitic. Rare calcareous or siliceous sandstones.

2.3 Desk Study (A-squared Studio Engineers Ltd, 2020)

2.3.1 A Desk Study report has been produced for the site and issued separately (A-Squared, 2020). Reference should be made to that document for details.

2.4 Geo-Environmental Soil Sampling (Jomas, November 2020)

- 2.4.1 Jomas Associates were commissioned to undertake geo-environmental soil sampling of soils exposed in exploratory trial pits undertaken by others in a previous phase of investigation at the site.
- 2.4.2 Jomas' scope of works comprised sampling of the exposed soils, scheduling of chemical laboratory analysis as specified by A-squared Studio Engineers Ltd, and factual reporting of the encountered ground conditions and results of laboratory analysis.
- 2.4.3 Reference should be made to Jomas' Geo-Environmental Soil Sampling Letter Report (ref P3094J2084/JWT v1.1, dated 11 November 2020) for detailed information.

2.5 Concrete Probing (Jomas, 2020)

- 2.5.1 On 2nd December 2020, a Jomas engineer and operatives attended the site with an operated Hilti drill and specialist diamond tipped drill bits to undertake proof drilling of the concrete floor slab.
- 2.5.2 The works were undertaken at 5No proposed exploratory positions (WS101, WS102, WS110, BH103, WS103) on the external access ramp to the basement carpark to assess the thickness of slab at these locations, and establish if a void was present beneath the slab.
- 2.5.3 The 5No. positions were completed along with probing of an additional 3No. positions (TP6, WS107, BH102), also to establish the slab thickness at these locations. The results of the works undertaken are summarised below in Table 2.2.

Table 2.2: Summary of Concrete Probing

Position	Concrete slab thickness (mm)	Underlain by void	Depth to base of void (mm)
WS101	>960	No	-
WS110	400	Yes	1900
WS102	320	Yes	940
WS103	400	Possible – loose material infill	1060
BH103	360	No	-
TP6	>900	No	-
BH102	>340	No	-
WS107	>550	No	-

2.5.4 The results of the probing exercise confirmed the presence of a void beneath exploratory positions WS102 and WS110, and that coring equipment would be required to mitigate the thickness of concrete and allow progression of the exploratory boreholes.

3 GROUND INVESTIGATION

3.1 Rationale for Ground Investigation

- 3.1.1 The site investigation has been undertaken generally in accordance with Contaminated Land Report 11, BS10175, NHBC Standards Chapter 4.1, and other associated Statutory Guidance.
- 3.1.2 The soil sampling rationale for the site investigation was developed with reference to EA guidance 'Secondary Model Procedure for the Development of Appropriate Soil Sampling Strategies for Land Contamination' (Technical Report P5-066/TR).
- 3.1.3 The sampling proposal was designed in order to gather data representative of the site conditions.

3.2 Scope of Ground Investigation

- 3.2.1 The ground investigation was undertaken on $6^{th} 9^{th}$ and $12^{th} 16^{th}$ April, and $11^{th} 13^{th}$, $18^{th} 21^{st}$ and $24^{th} 25^{th}$ May 2021.
- 3.2.2 The work was undertaken in accordance with BS5930 'Code of Practice for Site Investigation' and BS10175 'Investigation of Potentially Contaminated Sites'. All works were completed without incident.
- 3.2.3 A summary of the fieldwork carried out at the site is offered in Table 3.1 below.

Table 3.1: Scope of Intrusive Investigation

Investigation Type	Number of Exploratory Holes Achieved	Exploratory Hole Designation	Depth Achieved (m BGL)
Cable Percussive Boreholes	2	BH102A – BH103	BH102A – 20.0m bgl BH103 – 50.0m bgl
Windowless Sampler Boreholes	9	WS101 – WS105, WS107 – WS110	Up to 2.4m bgl
Monitoring Well Installations	9	BH102A – BH103, WS101 – WS105, WS107, WS108	Up to 7.0m bgl

- 3.2.4 Note that boreholes BH103, WS101 and WS110 were drilled from street level, boreholes WS102, WS103 and WS104 were drilled on the sloping external ramp to the basement, boreholes WS108 and WS109 were drilled from basement level one, WS105 and BH102 were drilled from basement level two, and WS107 was drilled from basement level three. All depths given as m bgl are relative to the ground level (i.e. street or basement) at which the borehole was drilled.
- 3.2.5 In all cases, all holes were logged in accordance with BS5930:2015.

- 3.2.6 The exploratory hole locations were specified by A-squared Studio Engineers Ltd, and marked onsite and cleared of utilities by a specialist utilities surveyor, as shown in the exploratory hole location plan presented in Figure 2, Appendix 1. The exploratory hole records are included in Appendix 2.
- 3.2.7 Where monitoring well installations were not installed, the exploratory holes were backfilled with the arisings (in the reverse order in which they were drilled) and the ground surface was reinstated so that no depression was left.

3.3 In-situ Geotechnical Testing

In-situ geotechnical testing included Standard Penetration Tests. The determined 'N' values have been used to determine the relative density of granular materials and have been used with standard correlations to infer various other derived geotechnical parameters including the undrained shear strength of the cohesive strata. The results of the individual tests are on the appropriate exploratory hole logs in Appendix 2.

3.4 Sampling Rationale

- 3.4.1 The exploratory holes were positioned as specified by A-squared Studio Engineers Ltd within Ground Investigation Specification document (ref 1084-A2S-XX-XX-SP-Y-0001-00, dated October 2020).
- 3.4.2 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs.
- 3.4.3 Jomas Associates Limited's engineers normally collect samples at appropriate depths based on field observations such as:
 - appearance, colour and odour of the strata and other materials, and changes in these;
 - the presence or otherwise of sub-surface features such as pipework, tanks, foundations and walls; and,
 - areas of obvious damage, e.g. to the building fabric.
- 3.4.4 Soil samples were taken from across the site at various depths as shown in the exploratory hole logs (copies of which are provided in Appendix 2). The methodology used and type of samples taken were chosen to allow the Sampling category to be A or B according to EN ISO 22475-1. This in turn allows suitable geotechnical testing to be carried out.
- 3.4.5 Groundwater strikes noted during drilling, are recorded within the exploratory hole records in Appendix 2.
- 3.4.6 Samples were stored in cool boxes (<4°C) and preserved in accordance with laboratory guidance.

3.5	Sampling Limitations
3.5.1	It should be noted that due to the necessity of a street works license, and anticipated thickness of concrete, exploratory positions BH101 and WS106 are to be undertaken by means of a subsequent phase of investigation, the findings of which will be reported separately.
3.5.2	Significant thicknesses of concrete were encountered at the internal exploratory positions located within the basement. Specialist coring equipment was utilised to mitigate the thickness.
3.5.3	At BH102, the concrete slab was proven at 2.40mbgl, however due to the presence of reinforcing bar it was not possible to retrieve the core and so the position was terminated and an alternate location (BH102A) undertaken approximately 2m northeast.
3.5.4	WS101 terminated at 1.10m bgl due to equipment refusal in very dense gravelly sand subbase-type material.
3.5.5	At WS102, a void was encountered directly beneath the floor slab (extending from $0.33m-0.80m$ bgl). The borehole terminated at $2.20m$ bgl due to equipment refusal on a concrete obstruction.
3.5.6	WS103 terminated at 2.00m bgl due to equipment refusal in very dense sandy gravel.
3.5.7	WS104 terminated at 1.00m bgl due to equipment refusal on a concrete obstruction.
3.5.8	Due to site constraints WS105, WS107 and WS108 were undertaken using hand-held windowless sampling equipment. These positions terminated at depths of 2.20m, 1.80m and 2.03m bgl due to equipment refusal in very stiff consistency clay (WS105) and on concrete obstructions (WS107 and WS108).
3.5.9	At WS110 a void was encountered directly beneath the floor slab (extending from $0.40m-2.02m$ bgl). The borehole terminated at $2.30m$ bgl due to equipment refusal in very dense sandy gravel.
3.5.10	BH103 was drilled in the proposed location, to the proposed depth.
3.6	Laboratory Analysis
3.6.1	A programme of chemical laboratory testing, scheduled by A-squared Studio Engineers Ltd, was carried out on selected samples of Made Ground and natural strata.
	Chemical Testing
3.6.2	Soil samples were submitted to i2 Analytical (a UKAS and MCerts accredited laboratory), for analysis.

3.6.3 The samples were analysed for a wide range of contaminants as shown in Table 3.2 below, as scheduled by A-squared Studio Engineers Ltd:

Table 3.2: Chemical Tests Scheduled

	No. of tests		
Test Suite	Made Ground / Topsoil	Natural	
Basic Suite	7	3	
TPHCWG (inc BTEX)	7	0	
VOC/SVOC	7	0	
Total Organic Carbon (TOC)	8	0	
Soil Organic Matter (SOM)	9	0	
BRE-SD1	3	14	
Asbestos Screen & ID	8	0	
Polychlorinated Biphenyls (PCBs)	1	0	

3.6.4 The determinands contained in the basic suite are as detailed in Table 3.3 below:

Table 3.3: Basic Suite of Determinands

DETERMINAND	LIMIT OF DETECTION (mg/kg)	UKAS ACCREDITATION	TECHNIQUE
Arsenic	1	Y (MCERTS)	ICPMS
Cadmium	0.2	Y (MCERTS)	ICPMS
Chromium	1	Y (MCERTS)	ICPMS
Chromium (Hexavalent)	4	Y (MCERTS)	Colorimetry
Lead	1	Y (MCERTS)	ICPMS
Mercury	0.3	Y (MCERTS)	ICPMS
Nickel	1	Y (MCERTS)	ICPMS
Selenium	1	Y (MCERTS)	ICPMS
Copper	1	Y (MCERTS)	ICPMS
Zinc	1	Y (MCERTS)	ICPMS
Boron (Water Soluble)	0.2	Y (MCERTS)	ICPMS
pH Value	0.1 units	Y (MCERTS)	Electrometric
Sulphate (Water Soluble)	0.0125g/l	Y (MCERTS)	Ion Chromatography
Total Cyanide	1	Y (MCERTS)	Colorimetry
Speciated/Total PAH	0.05/0.80	Y (MCERTS)	GCFID
Phenols	1	Y (MCERTS)	HPLC
Total Petroleum Hydrocarbons (banded)	-	N Y (MCERTS)	Gas Chromatography

3.6.5 Laboratory test results are summarised in Section 5, with raw laboratory data included in Appendix 3.

Geotechnical Laboratory Testing

- 3.6.6 Soil samples were obtained and submitted to the UKAS Accredited laboratory of i2 Analytical Ltd. for a series of analyses.
- 3.6.7 The following laboratory geotechnical testing was carried out, as scheduled by Asquared Studio Engineers Ltd:

Table 3.4 Laboratory Geotechnical Analysis

Methodology	Test Description	Number of tests
BS EN 17892	Moisture Content Determination	19
BS1377:1990	Liquid and Plastic Limit Determination (Atterberg Limits)	19
BS1377:1990	Particle Size Distribution - Sieving	10
BS1377:1990	Particle Size Distribution - Sedimentation	10
BS1377:1990	Determination of the one-dimensional consolidation properties by Oedometer	2
BS1377:1990	Determination of the undrained shear strength in triaxial compression with single stage loading and without measurement of pore pressure	11
BS1377:1990	Consolidated undrained triaxial compression with measurement of pore pressure	2

3.6.8 The results of the geotechnical laboratory testing are summarised in Section 7, with raw laboratory data included in Appendix 4.

4 GROUND CONDITIONS

- 4.1.1 A factual record of the conditions encountered during the physical investigation of the site is presented in the following section.
- 4.1.2 For further details of the ground conditions, reference should be made to the exploratory hole location plan presented in Appendix 1, exploratory hole logs presented in Appendix 2, the chemical testing results in Appendix 3 and the geotechnical testing results in Appendix 4.

4.2 Ground Conditions

4.2.1 The ground conditions encountered were broadly consistent with those anticipated and are summarised in Table 4.1 below.

Table 4.1: Ground Conditions Encountered

Stratum and Description	Encountered from (mbsl)	Encountered from (mOD)	Base of strata (mbsl)	Base of Strata (m AOD)	Thickness range (m)
Concrete / reinforced concrete / void over brown sandy gravel with low to moderate cobble content / dark brown gravelly sand / dark grey mottled brown clay. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-rounded brick, concrete, flint and sandstone. Cobbles consist of brick and concrete. (MADE GROUND) Encountered to base of BH102, WS101, WS102, WS104, WS108, WS109 and WS110.	0.0 – 4.7	+25.37 - +16.65	>1.0 ->2.3	+23.67 - +19.59	>1.0 - >2.3
Medium dense to very dense orange brown sandy GRAVEL / gravelly SAND. Sand is fine to coarse. Gravel consists of fine to coarse angular to rounded flint. (LYNCH HILL GRAVEL MEMBER) Encountered in BH103 and WS103 only, and to the base of WS103.	1.7 – 5.2	+23.67 - +20.10	>5.8 – 6.8	<+19.55 - +18.57	>0.55 – 5.1
Stiff to very stiff consistency grey brown silty slightly sandy CLAY. (LONDON CLAY FORMATION) Encountered in BH102A, BH103, WS105 and WS107 only, and to the base of BH102A, WS105 and WS107.	6.8 – 10.8	+18.57 - +14.55	>11.1 – 27.9	<+17.04 - <- 2.59	>0.3 – 16.8
Stiff to very stiff consistency* multi-coloured silty CLAY with off-white silty sandy layers. (LAMBETH GROUP) Encountered in BH103 only.	23.6	+1.77	41.5	-16.13	17.9
Very dense yellow-brown silty slightly gravelly SAND. Sand is fine to coarse. Gravel consists of fine flint. (THANET FORMATION) Encountered in BH103 only, to base of the position.	41.5	-16.13	>50.0 (base not proven)	<-24.63 (base not proven)	>8.5 (thickness not proven)

*Field description.

Note: mbsl = metres below street level

- 4.2.2 Coring carried out at basement level within boreholes BH102, BH102A, WS105, WS107, WS108 and WS109 encountered concrete to thicknesses ranging between 0.45m and 2.2m. We understand from email correspondence with the design engineers that there is a suspicion there could be 6m thickness of concrete at exploratory positions BH101 and WS106, as historic drawings indicate the sides of the retaining walls were backfilled with a mass concrete pour.
- 4.2.3 Please note that depths have been given as approximate metres below street level (m bsl) in order to provide a clearer summary when accounting for the boreholes drilled from the various basement levels. The spot height on the topographic survey in the vicinity of BH103 (+25.37mOD) has been utilised as the approximate street level datum.

4.3 Hydrogeology

4.3.1 Groundwater strikes and groundwater monitoring are summarised below.

Table 4.2: Groundwater Strikes During Drilling

Exploratory Hole ID	Depth Encountered (mbsl)	Depth Encountered (mOD)	Depth After 20mins (mbsl)	Depth After 20mins (mOD)	Stratum
BH102	9.71	+15.56	-	-	London Clay Formation
BH103	6.50	+18.87	5.90	+19.47	Lynch Hill Gravel Member
WS107	10.82	+14.55	-	-	London Clay Formation

4.3.2 7No return groundwater monitoring visits have been undertaken between 04/06/21 and 30/07/21.

Table 4.3: Groundwater Monitoring Records

Exploratory Hole ID	Depth Encountered (mbsl)	Depth Encountered (mOD)	Depth to Base of Well (mbsl)	Depth to Base of Well (mOD)	Strata targeted by response zone
BH102A	9.81 – 11.92	+13.45 - +15.56	12.82 – 12.85	+12.53 - +12.55	London Clay Formation
BH103	3.81 - 5.86	+19.51 - +21.56	6.74 – 6.75	+18.62 - +18.63	Lynch Hill Gravel Member
WS101	Dry	-	0.55	+24.9	Made Ground
WS102	Dry – 3.84	+21.49 - +21.51	3.86 – 3.88	+21.49 - +21.51	Made Ground
WS103	5.19 – 5.21	+20.16 - + 20.18	5.27 – 5.29	+20.08 - +20.10	Made Ground and Lynch Hill Gravel Member
WS104	5.71 – 5.72	+19.65 - +19.66	5.72 – 5.73	+19.64 - + 19.65	Made Ground
WS105	7.47 – 8.17	+17.20 - +17.90	8.50 - 8.51	+16.87 - +16.88	London Clay Formation
WS107	8.72 – 8.73	+16.04 - +16.65	10.58 – 10.61	+14.76 - +14.79	London Clay Formation
WS108	7.38 – 7.48	+17.89 - +17.99	8.59 – 8.60	+16.77 - +16.78	Made Ground

4.3.3 It should be noted that changes in groundwater levels can occur for a number of reasons including seasonal effects and variations in drainage. Such fluctuations may only be recorded by the measurement of the groundwater level within a standpipe or piezometer installed within appropriate response zones. Changes in groundwater level can have a direct effect on excavation stability and dewatering requirements, and cohesive soils can soften under rising or high groundwater levels.

4.4 Physical and Olfactory Evidence of Contamination

4.4.1 Visual or olfactory evidence of contamination was not observed during the course of the investigation.

5 CHEMICAL LABORATORY TEST RESULTS

5.1 Soil Chemical Analysis Results

5.1.1 Laboratory analysis for soils are summarised in Tables 6.1 to 6.3. Raw laboratory data is included in Appendix 3.

Table 5.1: Soil Laboratory Analysis Results – Metals, Metalloids, Phenol, Cyanide

Determinand	Unit	No. samples tested	Min	Max
Arsenic	mg/kg	11	10	20
Cadmium	mg/kg	11	<0.2	<0.2
Chromium	mg/kg	11	<4.0	<4.0
Lead	mg/kg	11	14	740
Mercury	mg/kg	11	<0.3	2.9
Nickel	mg/kg	11	13	43
Copper	mg/kg	11	15	130
Zinc	mg/kg	11	33	180
Total Cyanide ^A	mg/kg	11	<1.0	<1.0
Selenium	mg/kg	11	<1.0	2.6
Boron Water Soluble	mg/kg	11	0.4	3.3
Phenols	mg/kg	11	<1.0	<1.0

Table 5.2: Soil Laboratory Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. Samples Tested	Min	Max
Naphthalene	mg/kg	11	<0.05	<0.05
Acenaphthylene	mg/kg	11	<0.05	<0.05
Acenaphthene	mg/kg	11	<0.05	<0.05
Fluorene	mg/kg	11	<0.05	<0.05
Phenanthrene	mg/kg	11	<0.05	0.55
Anthracene	mg/kg	11	<0.05	0.2
Fluoranthene	mg/kg	11	<0.05	1.1
Pyrene	mg/kg	11	<0.05	0.99
Benzo(a)anthracene	mg/kg	11	<0.05	0.43
Chrysene	mg/kg	11	<0.05	0.38
Benzo(b)fluoranthene	mg/kg	11	<0.05	0.35
Benzo(k)fluoranthene	mg/kg	11	<0.05	0.25
Benzo(a)pyrene	mg/kg	11	<0.05	0.28
Indeno(123-cd)pyrene	mg/kg	11	<0.05	<0.05

Determinand	Unit	No. Samples Tested	Min	Max
Dibenzo(ah)anthracene	mg/kg	11	<0.05	<0.05
Benzo(ghi)perylene	mg/kg	11	<0.05	<0.05
Total PAH	mg/kg	11	<0.80	4.23

Table 5.3: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPH)

TPH Band	Unit	No. Samples Tested	Min	Max
C ₈ -C ₁₀	mg/kg	4	<0.1	<0.1
>C ₁₀ -C ₁₂	mg/kg	4	<2.0	<2.0
>C ₁₂ -C ₁₆	mg/kg	4	<4.0	<4.0
>C ₁₆ -C ₂₁	mg/kg	4	<1.0	27
>C ₂₁ -C ₃₅	mg/kg	4	<10	77
Total TPH	mg/kg	4	<17.1	<128.1

Table 5.4: Soil Laboratory Analysis Results – Total Petroleum Hydrocarbons (TPHCWG)

TPH Band	Unit	No. Samples Tested	Min	Max
>C ₅ -C ₆ Aliphatic	mg/kg	10	<0.001	<0.001
>C ₆ -C ₈ Aliphatic	mg/kg	10	<0.001	<0.001
>C ₈ -C ₁₀ Aliphatic	mg/kg	10	<0.001	<0.001
>C ₁₀ -C ₁₂ Aliphatic	mg/kg	10	<1.0	5.7
>C ₁₂ -C ₁₆ Aliphatic	mg/kg	10	<2.0	3.4
>C ₁₆ -C ₂₁ Aliphatic	mg/kg	10	<8.0	12
>C ₂₁ -C ₃₅ Aliphatic	mg/kg	10	<8.0	78
>C ₅ -C ₇ Aromatic	mg/kg	10	<0.001	<0.001
>C ₇ -C ₈ Aromatic	mg/kg	10	<0.001	<0.001
>C ₈ -C ₁₀ Aromatic	mg/kg	10	<0.001	<0.001
>C ₁₀ -C ₁₂ Aromatic	mg/kg	10	<1.0	<1.0
>C ₁₂ -C ₁₆ Aromatic	mg/kg	10	<2.0	6.3
>C ₁₆ -C ₂₁ Aromatic	mg/kg	10	<10	42
>C ₂₁ -C ₃₅ Aromatic	mg/kg	10	<10	140
Total TPH (Ali/Aro)	mg/kg	10	<20	289

5.2 Volatile Organic Compounds and Semi-Volatile Organic Compounds

- 5.2.1 In addition to the suites outlined previously, 7No samples were tested for the presence of volatile organic compounds (VOCs), including BTEX compounds (benzene, toluene, ethylbenzene, xylene), and semi volatile organic compounds (SVOCs).
- 5.2.2 No VOCs were reported above the laboratory detection limit within any tested sample.
- 5.2.3 A number of SVOCs were detected within a single sample, however it should be noted that the only SVOCs above laboratory limit of detection are polycyclic aromatic hydrocarbons (PAHs). These concentrations are reported in Table 5.2 above.

5.3 Asbestos in Soil

5.3.1 8No samples of the Made Ground were screened in the laboratory for the presence of asbestos. The results of the analysis are summarised below in Table 5.4 below

Sample Comments **Quantification result** Screening result. (%) (m) BH103 - 0.40 None Detected N/A N/A Chrysotile - Loose Fibres BH103 - 1.10 < 0.001 Detected WS101 - 1.00 None Detected N/A N/A WS102 - 1.15 None Detected N/A N/A <0.001 WS103 - 1.00 Amosite - Loose Fibres Detected WS104 - 0.50 None Detected N/A N/A WS108 - 1.00 N/A Detected N/A <0.001 Chrysotile - Loose Fibres WS110 - 2.30 None Detected

Table 5.5: Asbestos Analysis – Summary

5.4 Groundwater Chemical Analysis Results

- 5.4.1 Samples of groundwater were obtained from the borehole installations installed within exploratory locations BH102A, BH103, WS105, WS107 and WS108. The other monitoring well installations were dry or had insufficient groundwater present to obtain a sample.
- 5.4.2 The samples were obtained using low-flow equipment.
- 5.4.3 The results of the laboratory testing are summarised in Tables 5.6 to 5.8 below, with the raw chemical testing data presented in Appendix 3.

Table 5.6: Groundwater Laboratory Analysis Results

Determinand	Unit	No. samples tested	Min	Max
Arsenic	μg/l	5	1.53	3.13
Cadmium	μg/l	5	<0.02	0.04
Chromium	μg/l	5	0.6	1.9
Lead	μg/l	5	<0.2	0.4

Determinand	Unit	No. samples tested	Min	Max
Nickel	μg/l	5	2.8	8.4
Copper	μg/l	5	2.3	31
Zinc	μg/l	5	2.3	7.4
Mercury	μg/l	5	<0.05	0.05
Selenium	μg/l	5	0.9	4.4
Boron	μg/l	5	37	480
Cyanide (Total)	μg/l	5	<1.0	7.2
Phenols (Total)	μg/l	5	<10	<10

Table 5.7: Groundwater Analysis Results – Polycyclic Aromatic Hydrocarbons (PAHs)

Determinand	Unit	No. samples tested	Min.	Max.
Naphthalene	μg/l	5	<0.01	<0.01
Acenaphthylene	μg/l	5	<0.01	<0.01
Acenaphthene	μg/l	5	<0.01	<0.01
Fluorene	μg/l	5	<0.01	<0.01
Phenanthrene	μg/l	5	<0.01	<0.01
Anthracene	μg/l	5	<0.01	<0.01
Fluoranthene	μg/l	5	<0.01	<0.01
Pyrene	μg/l	5	<0.01	<0.01
Benzo(a)anthracene	μg/l	5	<0.01	<0.01
Chrysene	μg/l	5	<0.01	<0.01
Sum of four Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(ghi)perylene Indeno(123-cd)pyrene	μg/l	5	<0.04	<0.04
Benzo(a)pyrene	μg/l	5	<0.01	<0.01
Dibenzo(ah)anthracene	μg/l	5	<0.01	<0.01
Dibenzo(ah)anthracene	μg/l	5	<0.01	<0.01

Table 5.8: Groundwater Analysis Results - TPHCWG

Determinand	Unit	No. Samples tested	Min.	Max.
>C5-C6 Aliphatic	μg/l	5	<1.0	<1.0
>C6-C8 Aliphatic	μg/l	5	<1.0	<1.0
>C8-C10 Aliphatic	μg/l	5	<1.0	<1.0
>C10-C12 Aliphatic	μg/l	5	<10	<10
>C12-C16 Aliphatic	μg/l	5	<10	<10

Determinand	Unit	No. Samples tested	Min.	Max.
>C16-C21 Aliphatic	μg/l	5	<10	<10
>C21-C35 Aliphatic	μg/l	5	<10	<10
>C5-C7 Aromatic	μg/l	5	<1.0	<1.0
>C7-C8 Aromatic	μg/l	5	<1.0	<1.0
>C8-C10 Aromatic	μg/l	5	<1.0	<1.0
>C10-C12 Aromatic	μg/l	5	<10	<10
>C12-C16 Aromatic	μg/l	5	<10	<10
>C16-C21 Aromatic	μg/l	5	<10	<10
>C21-C35 Aromatic	μg/l	3	<20	<20

- 5.4.4 In addition to the suite outlined above, the four water samples were also analysed for a suite of volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs). None of the compounds analysed for were reported above the laboratory method detection limit.
- 5.4.5 Similarly, for the BTEX (Benzene, Toluene, Ethylbenzene and Xylene) compounds, none of the results were reported above the laboratory method of detection.

5.5 Waste Characterisation and Disposal

- 5.5.1 The following comments are given as guidance and should be confirmed by the waste disposal facility accepting the waste. The waste disposal facility may have their own classification methodology and are under no obligation to honour the comments given below.
- 5.5.2 A hazardous waste assessment of the chemical soil analysis obtained from the Jomas ground investigation has been undertaken in accordance with WM3, the results of which are summarised in the table below.
- 5.5.3 A total of 11No samples have been assessed, all of which have been determined as "non-hazardous waste". The full Waste Classification Report is presented in Appendix 5.
- 5.5.4 In addition, 9No soil samples (BH103 0.40m, BH103 1.00m, BH103 1.75m, WS101 1.00m, WS103 1.95m, WS104 0.50m, WS107 2.40m, WS108 1.00m and WS110 2.30m) were submitted to a UKAS and MCERTS accredited laboratory for Waste Acceptance Criteria testing. The results of this analysis are presented in Appendix 3.

6 SOIL GAS MONITORING

6.1 Soil Gas Results

- 6.1.1 Six return monitoring visits have been undertaken, between 4th June and 30th July 2021, to monitor wells installed within boreholes at the site for soil gas concentrations and groundwater levels.
- During these visits atmospheric pressure ranged between 999mb and 1020mb. During these visits pressure trends observed were rising.
- 6.1.3 The results of the monitoring undertaken thus far are summarised in Table 6.1 below, with the monitoring records presented in Appendix 6.

Table 6.1: Summary of Gas Monitoring Data

Hole No.	CH ₄ (%)	CO ₂ (%)	O ₂ (%)	H₂S (ppm)	VOCs (ppm)	Steady Flow Rate (I/hr)	Peak Flow Rate (I/hr)	Depth to water (mbsl)	Depth of installation (mbsl)
BH102A	0.0 - 0.7	0.4 - 0.9	19.5 – 20.1	0	0.7 - 3.2	0.0 - +0.1	0.0 - +0.1	9.81 – 11.92	12.82 – 12.85
BH103	0.0 -0.7	0.3 - 0.4	16.9 – 18.2	0	1.5 – 2.0	0.0	0.0	3.81 - 5.86	6.74 – 6.75
WS101	0.1 – 0.7	0.0 - 0.1	20.6 - 21.3	0	0.4 – 15.0	0.00.7	0.00.7	Dry	0.55
WS102	0.0 - 0.7	0.0 - 0.1	20.3 - 21.3	0	0.3 – 5.7	-0.1 – +0.1	-0.1 - +0.1	Dry – 3.84	3.86 – 3.88
WS103	0.0 - 0.8	0.1	20.7 - 21.7	0	0.3 – 5.0	0.0	0.0	5.19 – 5.21	5.27 – 5.29
WS104	0.0 - 0.7	0.1 – 0.2	20.7 - 21.8	0	0.2 – 4.5	0.0 - +0.1	0.0 - +0.1	5.71 – 5.72	5.72 – 5.73
WS105	0.1 – 0.7	0.0 - 0.1	21.4 – 22.0	0	0.2 – 4.0	-0.3 - +0.1	-0.2 - +0.1	7.47 – 8.17	8.50 – 8.51
WS107	0.6	0.1	21.2	4	0.7	+0.1	+0.1	8.72 – 8.73	10.58 – 10.61
WS108	0.0 - 0.6	0.1 – 0.3	20.8 - 21.2	0	1.0 – 3.0	-0.11.5	-0.11.5	7.38 – 7.48	8.59 – 8.60

7 GEOTECHNICAL TESTING RESULTS

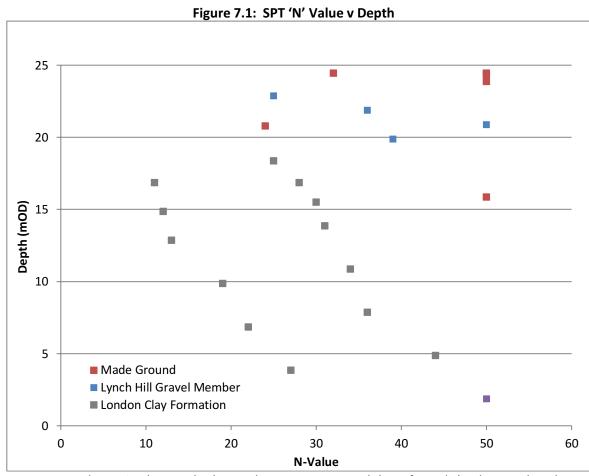
7.1 Data Summary

7.1.1 The results of the ground investigation revealed a ground profile comprising a variable thickness of Made Ground up to 2.3 metres below street level (mbsl), overlying medium dense to very dense orange brown sandy gravel / gravelly sand (Lynch Hill Gravel Member) encountered up to 6.8mbsl. This was overlying stiff to very stiff consistency grey brown silty slightly sandy clay (London Clay Formation) to depths of up to 27.9mbsl over stiff to very stiff consistency multi-coloured silty clay with off-white silty sandy layers (Lambeth Group) encountered up to 41.5mbsl, which in turn was underlain by very dense yellow-brown silty slightly gravelly sand (Thanet Formation) encountered up to 50.0mbsl.

7.2 Geotechnical Laboratory Testing Results

7.2.1 The results of the geotechnical laboratory testing reported to date are summarised in Table 7.1. Further geotechnical laboratory testing is ongoing at the time of writing and the results, together with our assessments and recommendations, will be provided in a subsequent issue of this report.

Table 7.1: Summary of Geotechnical Test Results


Parameter		Made Ground	Lynch Hill Gravel Member	London Clay Formation	Lambeth Group	Thanet Formation
Moisture Content (%)		30 - 35	-	25 - 38	19 - 25	-
Liquid Limit (%)		64 - 67	-	64 - 73	55 - 59	-
Plastic Limit (%)		24 – 28	-	23 - 31	25 - 27	-
Plasticity Index (%)		39 - 40	-	35 - 44	28 - 34	-
Measured Shear Strength (kPa)		-	-	69 - 315	171 - 418	-
	Very coarse (%)	69	0	-	-	0
	Gravel (%)	15	54 - 73	-	-	2 - 3
Particle Size	Sand (%)	13	26 - 35	-	-	50 - 72
Distribution	Fines <0.063mm (%)	4	2 - 11	-	-	26 - 47
	Silt (%)	-	5	-	-	14 - 21
	Clay (%)	-	6	-	-	12 - 26
pH		8.2 – 11.3	10.0 – 10.1	8.7 – 9.6	8.3 – 8.5	-
Water soluble	e sulphate (mg/l)	112 - 1520	33 - 395	220 - 511	520 - 640	-
SPT (N) values	s	11 - 50	25 - 50	11 - 43	44 - 50	50
Modulus of Volume Compressibility, mv (m2/MN)		-	-	0.039 - 0.23	-	-

7.2.2 It should be noted that Atterberg limit analysis scheduled on samples WS105 – 1.70m bgl and WS107 – 2.40m bgl, as well as particle size distribution on sample WS101 – 1.00m bgl, could not be undertaken due to insufficient sample remaining after the scheduled chemical analysis had been completed.

7.3 Standard Penetration Tests

- 7.3.1 Standard Penetration Tests were undertaken at regular intervals throughout the cable percussive boreholes and windowless sampler holes. The results of the SPTs are plotted against depth in Figure 7.1 below.
- 7.3.2 Due to the similarity of their measured geotechnical properties, despite observational differences, the strata have been grouped into "Made Ground", "Lynch Hill Gravel Member", "London Clay Formation" and "Lambeth Group".

- 7.3.3 As shown in the graph above, there is some variability of SPT 'N' values within the deposits of Made Ground and Lynch Hill Gravel Member. A progressive increase with depth is shown within the deposits of London Clay Formation and Lambeth Group.
- 7.3.4 SPT 'N' values of 50 were recorded from 26.5mbsl (+1.87mOD), including throughout the deposits of the Thanet Formation encountered from 41.5mbsl (-16.13mOD) to the

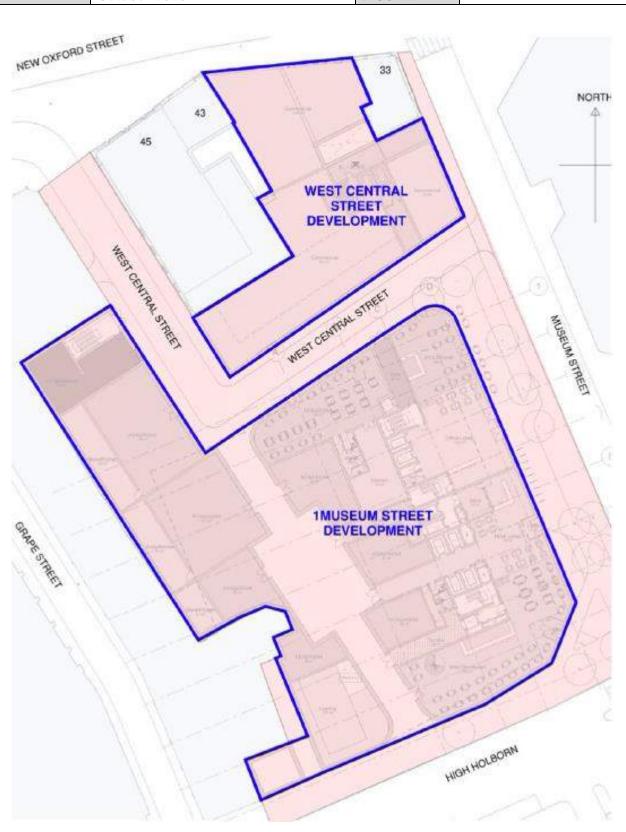
SECTION 7 GEOTECHNICAL RESULTS

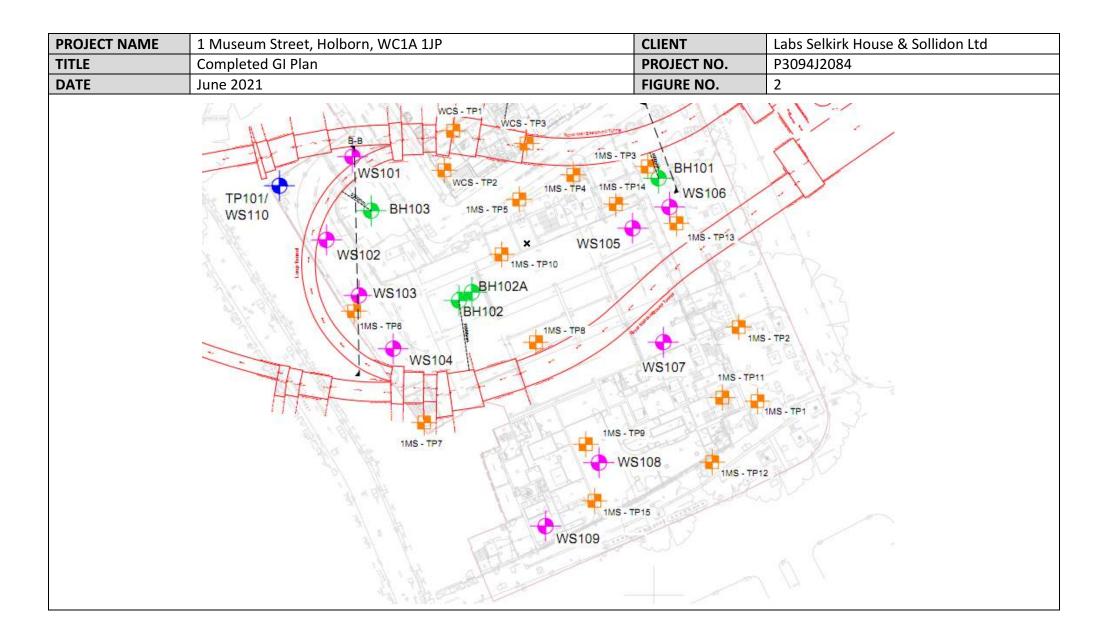
base of BH103 at 50.0mbsl (-24.63mOD). These results have been omitted from the graph above to provide better resolution to the other results.

8 REFERENCES

AGS Guidelines for Good Practice in Geotechnical Ground Investigation, 2016

British Standards Institution (2011) BS 10175:2011+A2:2017 Code of practice for the investigation of potentially contaminated sites. Milton Keynes: BSI


British Standards Institution BS 5930:2015+A1:2020 Code of practice for ground investigations. Milton Keynes: BSI


APPENDIX 1 – FIGURES

PROJECT NAME:	West Central Street and 1 Museum Street, Holborn, WC1A 1JP	CLIENT:	Labs Selkirk House & Sollidon Ltd
TITLE:	Site Location Plan	PROJECT NO.	P3094J2084
DATE:	October 2020	FIGURE:	1

APPENDIX 2 – EXPLORATORY HOLE RECORDS

		CABLE PERCUSSION BOREHOLE RECORD					
		Exploratory Hole No:			ВН102		
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP		Project No:			P3094J2084
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:			+17.86mOD
Logged By:	JH			Date Commenced:			06/04/2021
Checked By:	JT			Date Completed:		24/05/2021	
Type and diameter of equipment:	Standalone corer			Sheet No:			1 Of 1
Water levels recorded during bo	ring, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
Groundwater encountered direct	ly heneath slah						

- Sho days taken to core out position and attempting to retrieve core from base.
 Unable to retrieve core due to depth, and presence of rebar in the slab.

J	•	UI	ıa	υ

4:														
		Sampl	e or To	ests						Strata				
Туре	Depth (mbgl)				Resul					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
Туре	Depth (mbgl)	75	75	75	Resul 75	75	75	N N	0.00 - 0.50 - 0.	Legend	1.85 1.90 2.20		Reinforced concrete with several layers of rebar, diameter of rebar ranging 12mm-30mm. (MADE GROUND). Grey gravel. Gravel consists of fine to coarse sub-rounded to angular flint and concrete. (MADE GROUND - possible sub base / leaner mix concrete). Concrete. (MADE GROUND).	

		CABLE PERCUSSION BOREHOLE RECORD						
		1A5		Exploratory Hole No:			BH102A	
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:			+17.86mOD	
Logged By:	LH			Date Commenced:			11/05/2021	
Checked By:	JT			Date Completed:			13/05/2021	
Type and diameter of equipment:	Modular Dando 2000			Sheet No:			1 Of 5	
Water levels recorded during bo	ring, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins							•	

Remarks

- 1: No groundwater reported.
- 2: *Field observations
 3:

		Sample	e or T	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Legend (mbgl) (mbgl) Water Strikes (mbgl) (mbgl)		Strata Description	Installatio
	(IIIDGI)	75	75	75	75	75	75	N			(IIIDGI)	(mbgl)		
									0.00 —		0.45		Concrete. (MADE GROUND).	
ES	0.50	0ppm	voc						0.50 —		0.45		Soft consistency* brown silty CLAY. (LONDON CLAY FORMATION).	
SPT D	1.00	2	2	3	3	2	3	11	1.00 —		1.10		Soft to firm consistency* grey silty CLAY. (LONDON	
D ES	1.50	Oppm Oppm							1.50 —				CLAY FORMATION).	
U100	2.00 29 blows fo	r 0.45m	rocov	on					2.00 —					
	29 DIOWS 10	0.4511	recov	ery.					-					
D ES	2.50	0ppm	VOC						2.50 — - -					
SPT D	3.00	2	3	3	3	3	3	12	3.00 —					
D	3.50								3.50 —					
U100	4.00 39 blows fo	r 0.35m	recov	erv.					4.00 —					
D	4.50	0,001							- - 4.50 — - -					
SPT D	5.00	2	3	3	3	4	3	13	5.00 —				(U*) Non recovery of Sample	

		CABLE PERCUSSION BOREHOLE RECORD						
		Exploratory Hole No:			BH102A			
Site Address:	1 Museum Street, Holbor	rn, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:			+17.86mOD	
Logged By:	LH			Date Commenced:			11/05/2021	
Checked By:	JT			Date Completed:			13/05/2021	
Type and diameter of equipment:	Modular Dando 2000			Sheet No:			2 Of 5	
Water levels recorded during bor	ing, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								
Remarks								
1 · No groundwater reported								

- 2: *Field observations

- 3	
J	

Sample or Tests			Strata											
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
SPT	5.00	75 2	75 3	75 3	75 3	75 4	75 3	N 13	5.00 -			(29.)		
D	5.00	-	,			"	,	13	3.00				Soft to firm consistency* grey silty CLAY. (LONDON CLAY FORMATION).	
ES		0ppm	voc							<u> </u>			CEAT FORMATION).	
									5.50 -	+5-5-5-5				
										_=======				
										_======				
D	6.00								6.00 -					
									-					
									'	+=====				

U100	6.50								6.50 -		6.50			
	56 blows fo	r 0.30n	recov	ery.									Grey CLAYSTONE. (LONDON CLAY FORMATION).	
											6.75			
										+=====			Firm becoming stiff consistency* grey silty CLAY. (LONDON CLAY FORMATION).	
									7.00 -	<u> </u>				
									7.00					
									-					
_										+3-3-3-3-3				
D	7.50								7.50 -					

SPT	8.00	3	4	4	5	5	5	19	8.00 -					
D														
										_======				
									8.50 -					
									-					
									-	-2-2-2-2				
D	9.00								9.00 -					
									-					
										+=====				
U100	9.50								9.50 -	E-E-E-E-				
2100	69 blows fo	r 0.40m	recov	ery.					5.50					
									10.00-	†E:E:E:E:				

		CABLE PERCUSSION BOREHOLE RECORD					
		Exploratory Hole No:			BH102A		
Site Address:	1 Museum Street, Holbor	m, WC1A 1JP		Project No:			P3094J2084
Client:	Labs Selkirk House & Sol	lidon Ltd		Ground Level:			+17.86mOD
Logged By:	LH			Date Commenced:			11/05/2021
Checked By:	JT			Date Completed:		13/05/2021	
Type and diameter of equipment:	Modular Dando 2000			Sheet No:			3 Of 5
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
1: No groundwater reported.					"		

- 2: *Field observations
 3:

		Sampl	e or T	ests							Strata			
	Depth				Result						Depth	Water	Strata Description	Installatio
Туре	(mbgl)	75	75	75	75	75	75	N	l l	Legend	(mbgl)	Strikes (mbgl)	5.114.11 5.55.11. p .115.11	
									10.00				Firm becoming stiff consistency* grey silty CLAY.	*******
									+3				Firm becoming stiff consistency* grey silty CLAY. (LONDON CLAY FORMATION).	
									13					*********
D	10.50								10.50					- XXXXXX
									15					
									<u> </u>					********

SPT	11.00	4	4	5	5	5	7	22	11.00					
D									Ė					********
									+5					
									11.50					
									耳					********

_	12.00								12.00					
D	12.00								12.00					
									+3					*******

U100	12.50								12.50					********
0100	87 blows for	0.45m	recov	ery.					12.30					

									13.00					********
									+=					*********
									+3					
D	13.50								13.50					

										====				
SPT	14.00	4	5	5	7	7	8	27	14.00					********
D									+=					
									+=					********
									14.50					*******

		1	1						T-=-					××××××××××××××××××××××××××××××××××××××
														XXXXXXXXX
D	15.00								15.00					

		CABLE PERCUSSION BOREHOLE RECORD						
		Exploratory Hole No:			BH102A			
Site Address:	1 Museum Street, Holbor	n, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & Sol	lidon Ltd		Ground Level:			+17.86mOD	
Logged By:	LH			Date Commenced:			11/05/2021	
Checked By:	JT			Date Completed:		13/05/2021		
Type and diameter of equipment:	Modular Dando 2000			Sheet No:			4 Of 5	
Water levels recorded during bor	ing, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								
Remarks								
1: No groundwater reported.		•		•				

- 2: *Field observations

マ		
J	•	

4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
D	15.00	/5	/3	/3	/3	/3	/3	14	15.00				Firm becoming stiff consistency* grey silty CLAY	*******
SPT (cone) U100	15.50	5	8	8	9	11	11	39	15.50				Firm becoming stiff consistency* grey silty CLAY. (LONDON CLAY FORMATION).	
	100 blows fo	r no r	ecover	γ.					-					
D									16.00— - - - - -					
D	16.50 17.00								16.50— — — — — — —					
SPT	17.00	5	5	5	8	8	9	30	17.50					
D	18.00								18.00					
U100	18.50 100 blows fo	or 0 45	m reco	verv					18.50—					
D	19.50	γι υ. 43	in fect	vel y.					19.00— - - - 19.50— - -					
SPT	20.00	5	5	7	8	10	10	35	20.00—	-1-1-1				*******
D														

			CABLE PERCUSSION BOREHOLE RECORD					
		1A5		Exploratory Hole No:			BH102A	
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP		Project No:		P3094J2084		
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:			+17.86mOD	
Logged By:	LH			Date Commenced:			11/05/2021	
Checked By:	Τt			Date Completed:			13/05/2021	
Type and diameter of equipment:	Modular Dando 2000			Sheet No:			5 Of 5	
Water levels recorded during bor	ring, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								
Remarks								
1: No groundwater reported.								
2: *Field observations	·		·	·			·	
3:								

4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75		Result		75	L		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
SPT	20.00	75 5	75 5	75 7	75 8	75 10	75 10	N 35	20.00					
D	20.00			,					- - -		20.45		Firm becoming stiff consistency* grey silty CLAY. (LONDON CLAY FORMATION).	
									20.50					
									21.00					
									21.50— - - -					
									22.00					
									22.50					
									23.00—					
									23.50					
									24.00 - - -					
									24.50 - -					
									25.00—					

			CABLE PERCUSSION BOREHOLE RECORD					
		7.15		Exploratory Hole No:			BH103	
Site Address:	1 Museum Street, Holbon	rn, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:		+25.37mOD		
Logged By:	BD			Date Commenced:			12/04/2021	
Checked By:	JT			Date Completed:			14/04/2021	
Type and diameter of equipment:	Dando D175			Sheet No:			1 Of 10	
Water levels recorded during bor	ing, m							
Date:	12/04/2021							
Hole depth:	50.00							
Casing depth:	6.50							
Level water on strike:	6.5							
Water Level after 20mins:	5.9							
Remarks								

- 1: Water seeping in between 6.5-7.0mbgl.
- 2: *Field description.
 3:
 4:

4:														
		Sample	e or Te	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Result	t	75	N	_	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		/3	/3	/3	/5	/5	/5	IN	0.00 -				Concrete. (MADE GROUND).	
ES	0.40	0ppm	VOC						0.50 —		0.32		Medium brown sandy gravel. Sand is coarse. Gravel consists of fine to coarse sub-angular to sub-rounded flint, brick and concrete. (MADE	
									0.30 —		0.49		GROUND). Concrete. (MADE GROUND). Very dense dark brown sandy gravel with low	
B ES	1.00 1.10	0ppm	VOC						1.00 -				cobble content. Sand is fine to coarse. Gravel consists of fine to coarse angular to sub-rounded brick, concete, flint and sandstone. Cobbles consist of brick and concrete. (MADE GROUND).	
ES CPT	1.40 1.50	0ppm 7	11	15	20	15		50	1.50 -					
B	50 blows for	196m	m tota	pener	tration				1		1.70			
B _E S	1.75	0ppm	VOC						2.00 -				Medium dense to very dense orange-brown very gravelly SAND. Sand is medium to coarse. Gravel consists of fine to coarse sub-angular to rounded flints. (LYNCH HILL GRAVEL MEMBER).	
СРТ В	2.50	3	3	5	6	7	7	25	2.50 -					
	2.50		_						3.00 -					
В	3.50	4	5	7	9	9	11	36	3.50 -	6 0				
СРТ	4.50 50 blows for	8 <mark>r 238m</mark>	11	11	13	13	13	50	4.50 —	.d				
В									5.00 —					

			CABLE PERCUSSION BOREHOLE RECORD					
		1/15		Exploratory Hole No:			BH103	
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:			+25.37mOD	
Logged By:	BD			Date Commenced:			12/04/2021	
Checked By:	JT			Date Completed:		14/04/2021		
Type and diameter of equipment:	Dando D175			Sheet No:			2 Of 10	
Water levels recorded during bor	ing, m							
Date:	12/04/2021							
Hole depth:	50.00							
Casing depth:	6.50							
Level water on strike:	6.5							
Water Level after 20mins:	5.9							
Remarks								

- 1: Water seeping in between 6.5-7.0mbgl.
- 2: *Field description.

3:														
4:	:	Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	5.00 -			(5.7		
CPT B	5.50	7	10	10	10	9	10	39	5.50 —				Medium dense to very dense orange-brown very gravelly SAND. Sand is medium to coarse. Gravel consists of fine to coarse sub-angular to rounded flints. (LYNCH HILL GRAVEL MEMBER).	
SPT B	7.00	3	5	5	6	7	7	25	6.50 — - - - - 7.00 —		6.80		Firm to stiff consistency* light brown silty fissured CLAY. (LONDON CLAY FORMATION).	
SPT B	8.50	4	5	6	7	7	8	28	7.50 —	X X X X X X X X X X X X X X X X X X X	7.60		Stiff becoming very stiff consistency* grey silty CLAY. Becoming slightly sandy from 22mbgl. Occasional claystone encountered at 16.8m, 21.0m and 23.7mbgl. (LONDON CLAY FORMATION).	
U100	10.00 75 blows for	100%	recov	ery.					10.00	* -*-*-				

			CABLE PERCUSSION BOREHOLE RECORD				
		AA5		Exploratory Hole No:		BH103	
Site Address:	1 Museum Street, Holbo	orn, WC1A 1JP		Project No:		P3094J2084	
Client:	Labs Selkirk House & So	ollidon Ltd		Ground Level:		+25.37mOD	
Logged By:	BD			Date Commenced:		12/04/2021	
Checked By:	JT			Date Completed:		14/04/2021	
Type and diameter of equipment:	Dando D175			Sheet No:		3 Of 10	
Water levels recorded during bo	ring, m						
Date:	12/04/2021						
Hole depth:	50.00						
Casing depth:	6.50						
Level water on strike:	6.5						
Water Level after 20mins:	5.9						
Remarks							
1: Water seeping in between 6.5-7.	0mbgl.				•	·	
2: *Field description.					•	·	
3:							

3:														
4:		Sampl	e or T	acte							Strata			
		Sampi	еогі						-			Water	_	
Туре	Depth (mbgl)	75	75	75	Result 75	t 75	75	N	-	Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installatio
U100	10.00	1	,,,	1.5	,,,		,,,		10.00	- X - X -			Stiff becoming your stiff consistency arey silty	******
В	75 blows for 10.50	100%	recov	ery.					- - - 10.50				Stiff becoming very stiff consistency* grey silty CLAY. Becoming slightly sandy from 22mbgl. Occasional claystone encountered at 16.8m, 21.0m and 23.7mbgl. (LONDON CLAY FORMATION).	
									11.00-	X X X X X X X X X X X X X X X X X X X				
SPT B	11.50	4	6	6	7	9	9	31	- 11.50- - - -	X X X X X X X X X X X X X X X X X X X				
									12.00— 12.50—	X X X X X X X X X X X X X X X X X X X				
U100	13.00								13.00-	- * -*				
	80 blows for	100%	recov	ery.					-	-X-X-X				********
D	13.50								13.50— - - -	X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-				
S B	14.50	5	5	7	9	9	9	34	14.00— - - - - 14.50—	X - X - X - X - X - X - X - X - X - X -				
									- - 15.00	*				

			CABLE PERCUSSION BOREHOLE RECORD				
		1A5	Exploratory Hole No:			BH103	
Site Address:	1 Museum Street, Holbor	rn, WC1A 1JP	Project No:			P3094J2084	
Client:	Labs Selkirk House & Sol	llidon Ltd	Ground Level:			+25.37mOD	
Logged By:	BD		Date Commenced:			12/04/2021	
Checked By:	JT		Date Completed:		14/04/2021		
Type and diameter of equipment:	Dando D175		Sheet No:			4 Of 10	
Water levels recorded during bor	ing, m						
Date:	12/04/2021						
Hole depth:	50.00						
Casing depth:	6.50						
Level water on strike:	6.5						
Water Level after 20mins:	5.9						
Remarks							
1. Water seening in between 6 F 7 0) mala al						

- 1: Water seeping in between 6.5-7.0mbgl.
- 2: *Field description.

3		
J	•	

4:														
	Sample or Tests										Strata			
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	15.00-			(59.)		
									15.50—	X X X X X X X X X X X X X X X X X X X			Stiff becoming very stiff consistency* grey silty CLAY. Becoming slightly sandy from 22mbgl. Occasional claystone encountered at 16.8m, 21.0m and 23.7mbgl. (LONDON CLAY FORMATION).	
U100	16.00								- - 16.00-	~ X - X - X - X - X - X - X - X - X - X -				
	80 blows for	100%	recov	ery.					-	_x				
D	16.50								16.50— — — — — — — — —	X X X X X X X X X X X X X X X X X X X				
SPT B	17.50	5	6	8	9	9	10	36	17.50—	X X X X X X X X X X X X X X X X X X X				
U100	19.00								18.50— ———————————————————————————————————					
	95 blows for	100%	recov	ery.					-	<u>x</u> <u>x</u>				
D	19.50								19.50—	* X X X X X X X X X X X X X X X X X X X				

			CABLE P	ERCUSSIO	N BOREHOLE	RECORD	
		MAS	Exploratory Hole No:			ВН103	
Site Address:	1 Museum Street, Holb	oorn, WC1A 1JP	Project No:			P3094J2084	
Client:	Labs Selkirk House & S	Sollidon Ltd	Ground Level:			+25.37mOD	
Logged By:	BD		Date Commenced:			12/04/2021	
Checked By:	JT		Date Completed:			14/04/2021	
Type and diameter of equipment:	Dando D175		Sheet No:			5 Of 10	
Water levels recorded during bo	ring, m						
Date:	12/04/2021						
Hole depth:	50.00						
Casing depth:	6.50						
Level water on strike:	6.5					-	
Mater Lavel ofter 20mins	E O						

Remarks

- 1: Water seeping in between 6.5-7.0mbgl.
- 2: *Field description.
 3:

1		

4:														
		Sampl	e or T	ests					-		Strata	14/-4	_	
Туре	Depth (mbgl)	75			Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
SPT B	20.50	75 6	6	9	10	75	13	N 43	20.00-	X-X-X- XX			Stiff becoming very stiff consistency* grey silty CLAY. Becoming slightly sandy from 22mbgl. Occasional claystone encountered at 16.8m, 21.0m and 23.7mbgl. (LONDON CLAY FORMATION).	
									21.00—					
U100	22.00 90 blows for	90%	recove	ry.					22.00-	-X-X-X- -X-X-X-				
D	22.50								22.50— - - - - - 23.00—	X X X X X X X X X X X X X X X X X X X				
SPT B	23.50	6	7	10	10	11	13	44	23.50—		23.60		Stiff to very stiff consistency* multicoloured silty CLAY. (LAMBETH GROUP).	_
U100	25.00 110 blows fo		ecover			Indictu			24.50 - - - - 25.00			W. Water	(U#) Non receivery of Sample	

			CABLE PERCUSSION BOREHOLE RECORD					
		1A5	Exploratory Hole No:			BH103		
Site Address:	1 Museum Street, Holbor	m, WC1A 1JP	Project No:			P3094J2084		
Client:	Labs Selkirk House & Sol	lidon Ltd	Ground Level:			+25.37mOD		
Logged By:	BD		Date Commenced:			12/04/2021		
Checked By:	JT		Date Completed:			14/04/2021		
Type and diameter of equipment:	Dando D175		Sheet No:			6 Of 10		
Water levels recorded during bor	ing, m							
Date:	12/04/2021							
Hole depth:	50.00							
Casing depth:	6.50							
Level water on strike:	6.5							
Water Level after 20mins:	5.9							
Remarks								
1: Water seeping in between 6.5-7.0)mbgl.		•					

- 2: *Field description.

3: 4:														
		Samp	le or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
U100	25.00	/3	/3	/3	/3	/3	/3	IN	25.00	√ X − X −			Stiff to very stiff consistency* multicoloured silty	******
	110 blows f	or no r	ecover	γ.					-				Stiff to very stiff consistency* multicoloured silty CLAY. (LAMBETH GROUP).	
В										-x-x-x-				
									25.50-	-7x7x				*********
									-					
									_	-X-X-X-				
									-					
									26.00-	X-X-X-				
									-	-XX-				
									_	- X - X - X -				
									-					*********
SPT	26.50	8	9	11	13	15	11	50	26.50					
В	50 blows fo	r 249n	ım tota	pene	tration	•			_	X-X-X-X				
									-	- x -x-x-				
									-	- X - X				
									27.00	X-X-X				
									-	-X-X-X-				
									-	*X_X_X_				
									27.50	-X-X-				
									27.50	-X-X-X				
									-	_ _ _				
									-	*-*-*-;				
U100	28.00								28.00-	-XX				
	100 blows f	or 90%	6 recov	ery.					-	- <u>*</u> - <u>*</u> <u>*</u> <u>*</u>				
									-	- x - x - x - x -				
										x-x-x-				
D	28.50								28.50-	- X - X X-				
									-					
									_	-x-x-x-				*********
									-	- x - x x -3				
									29.00-	-X-X-X-				
									-	- <u>*</u> - <u>*</u> - <u>*</u> <u>*</u> -				
										- x - x - x -				
									-					
SPT	29.50	9	11	11	14	16	9	50	29.50-	X_X_X_X_				
В	50 blows fo	r 271m	nm tota	pene	tration				-	X_XX_				
ь									-	- x -x-x-				
									-	XX				
									30.00					XXXXXXXX

			CABLE PERCUSSION BOREHOLE RECORD					
		1/A5	Exploratory Hole No:			ВН103		
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP	Project No:			P3094J2084		
Client:	Labs Selkirk House & So	llidon Ltd	Ground Level:			+25.37mOD		
Logged By:	BD		Date Commenced:			12/04/2021		
Checked By:	JT		Date Completed:			14/04/2021		
Type and diameter of equipment:	Dando D175		Sheet No:			7 Of 10		
Water levels recorded during bor	ing, m							
Date:	12/04/2021							
Hole depth:	50.00							
Casing depth:	6.50							
Level water on strike:	6.5							
Water Level after 20mins:	5.9							
Remarks								
1: Water seeping in between 6.5-7.0	Ombgl.							

- 2: *Field description.
 3:

4:														
	Sample or Tests									Strata				
Туре	Depth (mbgl)				Result					Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	20.00			(IIIDGI)		
									30.00	* * * * * * * * * * * * * * * * * * *			Stiff to very stiff consistency* multicoloured silty CLAY. (LAMBETH GROUP).	
									30.50—	XX-X-X- X-X-X-X- -X-X-X-				
U100	31.00	000/							31.00—	X-X-X- -X-X- -X-X- -X-X-X-				
	110 blows fo	or 90%	recov	ery.					_	ZX-X				
									31.50	X X X X X X X X X X X X X X X X X X X				
									32.00	Z-X-X- Z-X-X- -X-X-X- -X-X-X- X-X-X-				
									_	<u>*</u>				
									_	x x				
SPT	32.50 50 blows for	9 255m	11	13	17 tration	17	3	50	32.50—	X-X-XX				
В	30 DIOWS TO	25511	in tota	i pene	ration				-	* * * * * * * * * * * * * * * * * * *				
									33.00—	Z-X-X- -X-X -X-XX				
									-	* * * * * * * * * * * * * * * * * * *				
									33.50—	X-X-X X-X-X-X -X-X-X				
									- -	*-*-*- *-*-*- *-*-*-*				
U100	34.00								34.00—	_ ` _ ` _ ` _				
	120 blows fo	r 90%	recov	ery.					-					
									-	*-*-*- -*-*-*-*				
D	34.50								34.50	X-X-X-X -X-X- X-X-	34.60			_
									-	* * * * * * * * * * * * * * *			Stiff to very stiff consistency* mottled blue CLAY with offwhite silty sandy layers. (LAMBETH GROUP)	
									35.00—	- *· - V -				
		L	1				1		I			1	1	

			CABLE PERCUSSION BOREHOLE RECORD					
		1.15	Exploratory Hole No:			BH103		
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP	Project No:			P3094J2084		
Client:	Labs Selkirk House & So	llidon Ltd	Ground Level:			+25.37mOD		
Logged By:	BD		Date Commenced:			12/04/2021		
Checked By:	JT		Date Completed:			14/04/2021		
Type and diameter of equipment:	Dando D175		Sheet No:			8 Of 10		
Water levels recorded during bor	ing, m							
Date:	12/04/2021							
Hole depth:	50.00							
Casing depth:	6.50							
Level water on strike:	6.5							
Water Level after 20mins:	5.9							
Remarks								
1: Water seeping in between 6.5-7.0	Ombgl.			"	•			

- 2: *Field description.
 3:

4:	: Sample or Tests									Shorts				
		Sampl	e or T	ests							Strata	Water		
Туре	Depth (mbgl)	75	75	75	Result	75	75	N		Legend	Depth (mbgl)	Strikes (mbgl)	Strata Description	Installation
		73	73	73	73	73	73		35.00 - - -	X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-X-			Stiff to very stiff consistency* mottled blue CLAY with offwhite silty sandy layers. (LAMBETH GROUP).	
SPT	35.50 50 blows for	10 168m	10 m tota	15 pene	16 tration.	19		50	35.50— —	x-x-x-x -xx				
В									36.00— - 36.00— - - - 36.50—		36.50		Very stiff consistency* multicoloured silty CLAY. (LAMBETH GROUP).	_
U100	37.00 120 blows fo	<mark>or 90%</mark>	recov	ery.					37.00 - -	X X X X X X X X X X X X X X X X X X X				
D	37.50								37.50— - - - -	X X X X X X X X X X X X X X X X X X X				
B SPT	38.50 50 blows for	11 203m	12 <mark>m tota</mark>	16	17 <mark>tration.</mark>	17		50	38.00— - - - - 38.50— -	X-X- X-X-X- X-X-X- X-X-X- X-X-X- X-X-X- X-X-X-X-				
									39.00— - - - -	X X X X X X X X X X X X X X X X X X X				
U100	40.00								39.50— - - - - 40.00—	X X X X X X X X X X X X X X X X X X X				

			CABLE P	PERCUSSIO	N BOREHOLE	RECORD
		MAS	Exploratory Hole No:			BH103
Site Address:	1 Museum Street, Hol	born, WC1A 1JP	Project No:			P3094J2084
Client:	Labs Selkirk House &	Sollidon Ltd	Ground Level:			+25.37mOD
Logged By:	BD		Date Commenced:			12/04/2021
Checked By:	JT		Date Completed:			14/04/2021
Type and diameter of equipment:	Dando D175		Sheet No:			9 Of 10
Water levels recorded during bo	ring, m					
Date:	12/04/2021					
Hole depth:	50.00					
Casing depth:	6.50					
Level water on strike:	6.5					
Water Level after 20mins:	5.9					

Remarks

- 1: Water seeping in between 6.5-7.0mbgl.
- 2: *Field description.

3: 4:														
T.		Sampl	e or T	ests						Strata				
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
U100	40.00	/5	/5	/5	/5	/5	/5	IN	40.00-	-X-X-X			Very stiff consistency* multicoloured silty CLAY. (LAMBETH GROUP).	
									-	* * * * * * * * * * * * * * * * * * *				
									40.50	XXX XXX				
									-	* * * * * * * * * * * * * * * * * * *				
									41.00	X-X-X- -X-X-X-				
									-	X XX_				
									41.50	- X - X -	41.50		Very dense yellow-brown silty slightly gravelly	-
									-				SAND. Sand is fine to coarse. Gravel consists of fine flint. (THANET FORMATION).	
В	42.00								42.00	- -				
СРТ	50 blows fo	12 r 205m	13 m tota	19 pene	20 tration	. 11		50	-					
									-					
									42.50					
									-					
									43.00	- -				
									-	-				
									-					
B CPT	43.50	11	14	18	22	10		50	43.50-					
	50 blows fo	7 202m	m tota	pene	tration	•			-					
									44.00-					
									-					
									44.50	 				
									-	 				
_	45.00								-	7				
B CPT	45.00	10	15	19	23	8		50	45.00-					

			CABLE PERCUSSION BOREHOLE RECORD					
		1A5	Exploratory Hole No:			BH103		
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP	Project No:			P3094J2084		
Client:	Labs Selkirk House & So	llidon Ltd	Ground Level:			+25.37mOD		
Logged By:	BD		Date Commenced:		12/04/2021			
Checked By:	JT		Date Completed:			14/04/2021		
Type and diameter of equipment:	Dando D175		Sheet No:			10 Of 10		
Water levels recorded during bor	ing, m							
Date:	12/04/2021							
Hole depth:	50.00							
Casing depth:	6.50							
Level water on strike:	6.5							
Water Level after 20mins:	5.9							
Remarks								
4 14/4								

- 2: *Field description.
 3: 1: Water seeping in between 6.5-7.0mbgl.

J	•	

4:														
		Sampl	e or To	ests					Strata					
Туре	Depth (mbgl)				Result	:				Legend	Depth (mbgl)	Water Strikes	Strata Description	Installation
_		75	75	75	75	75	75	N			(29.)	(mbgl)		
B CPT	45.00	10	15	19	23	8		50	45.00				Very dense yellow-brown silty slightly gravelly	*********
CFT	50 blows for							50	-				SAND. Sand is fine to coarse. Gravel consists of fine flint. (THANET FORMATION).	
				·					-					
									-					
									45.50—					
									_					
									-					
									-					
									46.00					
									_					
									_					
		١							-					
CPT	46.50 50 blows for	11 173m	16	20 I nene	20	10		50	46.50—					
В	50 510115 101	270		реле					-					
									-					
									47.00					
									47.00					
									-					
									-					
									47.50—					
									-					
									-					
									-					
В	48.00								48.00					
CPT		13	12	23	21			44	_					
	50 blows for	156m	m tota	pene	tration.				-					
									48.50—					
									-					
									_					
									_					
									49.00—					
									-					
									-					
									-					
CPT	49.50	13	12	22	23	5		50	49.50—					
В	50 blows for	208m	m tota	pene	tration.				_					
									_					
									-		50.00			
									50.00—		30.00			XXXXXXXX

			WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD					
		Exploratory Hole No:	WS101					
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP		Project No:	P3094J2084			
Client:	Labs Selkirk House & Sc	ollidon Ltd		Ground Level:	+25.45mOD			
Logged By:	IKL			Date Commenced:	25/05/2021			
Checked By:	Τt			Date Completed:	25/05/2021			
Type and diameter of equipment:	Bolt-on corer & windowl	ess sampler		Sheet No:	1 Of 1			
Water levels recorded during box	ring, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								
Remarks								
1: No groundwater reported.								
2: Borehole terminated at 1.10mbgl	due to equipment refusa	on very dense/weakl	y cemented gravel.		<u> </u>			
3: Unable to core further due to gra	vel jamming core barrel.							
4:								

٦.	Ona	L

4:														
		Sampl	e or T	ests							Strata	Metan		
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		,3	,5	73		/3	,3		0.00 -				Concrete. (MADE GROUND).	
ES D	1.00	0ppm	voc						0.50 -		0.55 1.10		Very dense dark brown gravelly sand. Sand is coarse. Gravel consists of fine to medium sub-angular to sub-rounded flint. Appers to be weakly cemented with lean-mix concrete. (MADE GROUND - Subbase)	
CPT		25		50				50						
	50 blows for	50mm	total	peneti	ation.					_				
									1.50 -					
									2.00 -	_				
									2.50 -					
									3.50 —					
									4.00 -					
									4.50 -	- - - -				
									5.00 -					

				WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD					
		1/A5		Exploratory Hole No:			WS102		
Site Address:	1 Museum Street, Holbor	rn, WC1A 1JP		Project No:			P3094J2084		
Client:	Labs Selkirk House & Sol	lidon Ltd		Ground Level:			+23.50mOD		
Logged By:	IKL			Date Commenced:			09/04/2021		
Checked By:	JT			Date Completed:			09/04/2021		
Type and diameter of equipment:	Bolt-on corer & windowle	ess sampler		Sheet No:			1 Of 1		
Water levels recorded during bor	ing, m								
Date:									
Hole depth:									
Casing depth:									
Level water on strike:									
Water Level after 20mins:									
Remarks									
1: No groundwater reported.	·	·	·	· ·			•		

- 2: Position terminated at 2.20mbgl due to refusal on concrete.
 3:

3:														
4:		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)				Result		75	LN	-	Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	0.00 -				Concrete. (MADE GROUND).	
									0.50 -		0.33		Void.	
SPT	1.00	0	3	6	5	12	9	32	1.00 -		1.09		Concrete. (MADE GROUND).	
ES D	1.15	0ppm	voc						1.50 -				Dense to very dense brown-red silty sandy gravel with moderate cobble content. Sand is coarse. Gravel consists of fine to coarse sub-rounded to sub-angular flint, concrete, red brick and clinker. Cobbles consists of sub-rounded brick. (MADE GROUND).	
ES SIPT	1.90 2.00 50 blows fo	0ppm 6 r 200m	13	50 penet	tration.			50	2.00 -		2.20			
									2.50 - 3.00 - 3.50 - 4.00 - 4.50 -					

			WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD					
		Exploratory Hole No:			WS103			
Site Address:	1 Museum Street, Holbon	rn, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:			+22.00mOD	
Logged By:	IKL			Date Commenced:			08/04/2021	
Checked By:	JT			Date Completed:			08/04/2021	
Type and diameter of equipment:	Bolt-on corer & windowle	ess sampler		Sheet No:		1 Of 1		
Water levels recorded during bo	ring, m							
Date:								
Hole depth:								
Casing depth:								
Level water on strike:								
Water Level after 20mins:								
Remarks								
1: No groundwater reported.								
2: Position terminated at 2.45mbgl	due to equipment refusal i	in very dense gravel.			•			
3:		<u> </u>		<u> </u>				
4:								
Sample	or Tests		Strata					

		Sampl	e or Te	ests							Strata			
Туре	Depth (mbgl)				Result	t				Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installatio
		75	75	75	75	75	75	N	0.00		` ,	(IIIbgi)		
									0.00 -	***************************************	0.04		Concrete. (MADE GROUND).	
													Reinforced concrete. (MADE GROUND).	
										***************************************	0.40		Medium brown-red silty sandy gravel with moderate	
ES D	0.50	0ppm	VOC						0.50 -				cobble content. Sand is coarse. Gravel consists of fine to coarse sub-rounded to sub-angular flint,	
D													concrete, red brick and clinker. Cobbles consist of	
													sub-rounded brick. (MADE GROUND).	
									-					
ES	1.00	0ppm	VOC						1.00 -					
D SPT	1.20	1	1	2	3	4	15	24						
571	1.20	1	1		3	4	15	24		**********				
D	1.50								1.50 -					
										***************************************	1.90		Name days a dayle bearing a second a second of second	
ES SPT D	1.95 2.00	0ppm	voc	12	15	16	18	61	2.00 -				Very dense dark brown-orange sandy gravel. Sand is fine to coarse. Gravel consists of fine to coarse,	
U									-	.00			angular to rounded flint. (LYNCH HILL GRAVEL MEMBER).	
									'				TELISERY.	
										.00	2.45			
									2.50 -	^	2.45			
									-					
									-					
									3.00 -					
									3.00					
									3.50 -					
										_				
									4.00 -					
										_				
									4.50 -					
									-					
									5.00 -	4				
	1	1		1	1		1		1					

		WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD					
		1A5		Exploratory Hole No:			WS104
Site Address:	1 Museum Street, Holbor	n, WC1A 1JP		Project No:			P3094J2084
Client:	Labs Selkirk House & Sol	lidon Ltd		Ground Level:			+20.59mOD
Logged By:	IKL			Date Commenced:		08/04/2021	
Checked By:	JT			Date Completed:			08/04/2021
Type and diameter of equipment:	Bolt-on corer & windowle	ss sampler		Sheet No:			1 Of 1
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							
Remarks							
1: No groundwater reported.				•		•	

- Sorehole terminated at 1.00mbgl due to equipment refusal on concrete.
 3:

4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	7-			Resul			l		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
		75	75	75	75	75	75	N	0.00 -			,		
											0.04		Concrete. (MADE GROUND). Reinforced concrete. (MADE GROUND).	
									-		0.40			
ES D	0.50	0ppm	VOC						0.50 -				Very dense brown-red silty sandy gravel with moderate cobble content. Sand is coarse. Gravel consists of fine to coarse sub-rounded to sub-angular flint, concrete, red brick, glass and clinker. Cobbles consist of sub-rounded brick. (MADE GROUND).	
ES SPT	1.00	0ppm	voc	50				50	1.00 -		1.00			
31.1	50 blows for	no pe	netrati					30	-	_				
D									-	4				
									-	+				
									1.50 -					
									-	+				
									2.00 -					
									-					
									-					
									2.50					
									2.50 -					
									-	_				
									-	-				
									3.00	1				
									3.00 -					
									-					
									-	-				
									3.50 -					
									3.50 -					
									-	-				
									-	+				
									4.00 -	1				
									4.00					
										_				
									-	-				
									4.50 -	_				
									4.50					
									-	4				
									-	-				
									5.00 -	_				
									3.00 -					
			1				1			1	1			I

		WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD					
		1/45		Exploratory Hole No:			WS105
Site Address:	1 Museum Street, Holbon	rn, WC1A 1JP		Project No:		P3094J2084	
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:		+18.67mOD	
Logged By:	DB			Date Commenced:		15/04/2021	
Checked By:	JT			Date Completed:			21/05/2021
Type and diameter of equipment:	Bolt-on corer and hand h	neld windowless sampler		Sheet No:		1 Of 1	
Water levels recorded during bor	ing, m						
Date:							
Hole depth:							
Casing depth:							
Level water on strike:							
Water Level after 20mins:							

- 1: *Field description.
- No groundwater reported.
 Borehole terminated at 2.20mbgl due to equipment refusal in very stiff clay.

Type Depth (mbg) Type
To To To To To To To To
D 1.70 1.50
3.50 — 3.50 — 4.00 — — — — — — — — — — — — — — — — — —

		WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD						
		1A5		Exploratory Hole No:			WS107	
Site Address:	1 Museum Street, Holbor	n, WC1A 1JP		Project No:			P3094J2084	
Client:	Labs Selkirk House & Sol	lidon Ltd		Ground Level:		+16.65mOD		
Logged By:	DB			Date Commenced:		26/05/2021		
Checked By:	JT			Date Completed:			26/05/2021	
Type and diameter of equipment:	Standalone corer and ha	nd held windowless samp	ler	Sheet No:			1 Of 1	
Water levels recorded during bor	ing, m							
Date:	26/05/2021							
Hole depth:	2.40							
Casing depth:								
Level water on strike:	2.10							
Water Level after 20mins:								
Remarks								

- 1: *Field description.
- 2: Groundwater encountered at 2.10mbgl. 3:

4:														
		Sampl	e or T	ests							Strata			
Туре	Depth (mbgl)	75	75	75	Resul	t 75	75	N		Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
ES D	2.40								0.00 —		2.10		Reinforced concrete. (MADE GROUND). Very stiff consistency* grey slightly sandy CLAY. Sand is fine. (LONDON CLAY FORMATION).	

		WINDOW/WINDOWLESS	SAMPLING BOREHOLE RECORD							
	JOI	Exploratory Hole No:	WS108							
Site Address:	1 Museum Street, Holbori	n, WC1A 1JP		Project No:	P3094J2084					
Client:	Labs Selkirk House & Soll	idon Ltd		Ground Level:	+18.58mOD					
Logged By:	DB			Date Commenced:	12/04/2021					
Checked By:	JT			Date Completed:	25/05/2021					
Type and diameter of equipment:	Standalone corer and han	nd held windowless sample	er	Sheet No:	1 Of 1					
Water levels recorded during bo	ring, m									
Date:										
Hole depth:										
Casing depth:										
Level water on strike:										
Water Level after 20mins:	Water Level after 20mins:									
Remarks										
1: No groundwater reported.										
2: Borehole terminated at 1.80mbg	I due to equipment refusal of	on suspected concrete.								
3:										
4:										

	Sample or Tests							Strata							
Time	Depth				Resul	t				Lamand	Depth Strikes		Strata Description	Installation	
Туре	(mbgl)	75	75	75	75	75	75	N		Legend	(mbgl)	(mbgl)			
									0.00 —				Concrete. (MADE GROUND).		
									0.50 —	-	0.50		Soft consistency* dark grey mottled brown CLAY. Possibly reworked. (MADE GROUND).	-	
ES D	1.00	0ppm	VOC						1.00 —						
ES	1.80	0ppm	VOC						1.50 —		1.80				
D	2.00	орр							2.00 —	-					
									2.50 — -	-					
									3.00 —	- - - -					
									3.50 —	-					
									4.00 —	- - - -					
									4.50 —	-					
									5.00	-					

		WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD								
		Exploratory Hole No:		WS109						
Site Address:	1 Museum Street, Holbo	rn, WC1A 1JP		Project No:		P3094J2084				
Client:	Labs Selkirk House & So	llidon Ltd		Ground Level:		+18.54mOD				
Logged By:	BD			Date Commenced:		12/04/2021				
Checked By:	JT			Date Completed:		25/05/2021				
Type and diameter of equipment:	Standalone corer and me	odular windowless sampl	er	Sheet No:		1 Of 1				
Water levels recorded during boring, m										
Date:										
Hole depth:										
Casing depth:										
Level water on strike:										
Water Level after 20mins:										
Remarks										
1: No groundwater reported.										
2: Borehole terminated at 2.03mbg	I due to equipment refusal	on concrete.								
3:	·	·		·		·				
4.										

Type Depth (mbgl) 75 75 75 75 75 75 75 75 75 75 75 75 75
Type
SPT 2.00 12 50 50 2.00 Grey brown gravel. Gravel consist of fine to coarse angular to sub-angular concrete. (MADE GROUND - possible lean mix concrete)
3.50 — 4.00 — 4.50 — 4.50 — —

		WINDOW/WINDOWLESS SAMPLING BOREHOLE RECORD								
			Exploratory Hole No:	WS110						
Site Address:	1 Museum Street, Holbor	rn, WC1A 1JP		Project No:	P3094J2084					
Client:	Labs Selkirk House & Sol	llidon Ltd		Ground Level:	+24.67mOD					
Logged By:	BD			Date Commenced:	07/04/2021					
Checked By:	JT			Date Completed:	25/05/2021					
Type and diameter of equipment:	Standalone corer & wind	owless sampler		Sheet No:	1 Of 1					
Water levels recorded during boring, m										
Date:										
Hole depth:										
Casing depth:										
Level water on strike:										
Water Level after 20mins:										
Remarks										
1: No groundwater reported.	1: No groundwater reported.									
2: Borehole terminated at 2.30mbgl	due to equipment refusal	on brick obstruction/v	very dense sand and gravel.							
3:		•								
4:										

Sample or Tests							Strata							
Туре	Depth (mbgl)	Result								Legend	Depth (mbgl)	Water Strikes (mbgl)	Strata Description	Installation
	(),	75	75	75	75	75	75	N	0.00			(mbgi)		
									0.00 -				Concrete. (MADE GROUND).	
											0.40			
									0.50 -		0.10		Void. (MADE GROUND).	******
									0.50 -					
										->>>>				
										->>>>				
									4.00					
									1.00 -	_*****				
										-88888				
										-88888				
										-				
									1.50 -					
										_				
										-				
										-	2.02			
									2.00 -		2.02		Concrete. (MADE GROUND).	
											2.14		Very dense red brown sandy gravel. Sand is coarse. Gravel consists of fine to coarse brick and flint.	
SPT	2.30	21	32	40	13			53		XXXXXXXX	2.30		Gravel consists of fine to coarse brick and flint. (MADE GROUND).	*********
	53 blows for			penet	ration.					-				
ES D		0ppm	voc						2.50 -					
Ь										_				
										_				
										-				
									3.00 -	-				
]				
										_				
										-				
									3.50 -					
]				
										_				
										_				
									4.00 -	-				
										_				
										_				
									4.50 -	-				
										<u> </u>				
										_				
	1	1	l	1					5.00 -					1
									3.00					

APPENDIX 3 – CHEMICAL LABORATORY TEST RESULTS

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

e: Jomas Associates -

Analytical Report Number: 21-69414

Replaces Analytical Report Number: 21-69414, issue no. 1 Additional analysis undertaken.

Project / Site name: West Central Street and 1 Museum Samples received on: 19/04/2021

Street, Holborn WC1A 1JP

Your job number: JJ2084 Samples instructed on/ 19/04/2021

Analysis started on:

Your order number: P3094JJ2084.18 Analysis completed by: 12/05/2021

Report Issue Number: 2 Report issued on: 12/05/2021

Samples Analysed: 7 soil samples

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team)

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are: soils - 4 weeks from reporting leachates - 2 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 21-69414

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP Your Order No: P3094JJ2084.18

Lab Sample Number				1840719	1840720	1840721	1840722	1840723
Sample Reference				BH103	BH103	BH103	WS102	WS103
Sample Number				None Supplied				
Depth (m)				0.40	1.10	1.75	1.15	1.00
Date Sampled				15/04/2021	15/04/2021	15/04/2021	15/04/2021	15/04/2021
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	9.5	8.1	8.6	8.7	17
Total mass of sample received	kg	0.001	NONE	1.8	1.8	1.5	1.8	1.5
				1				
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	Chrysotile	-	-	Amosite
Asbestos in Soil	Type	N/A	ISO 17025	Not-detected	Detected	-	Not-detected	Detected
Asbestos Quantification (Stage 2)	%	0.001 0.001	ISO 17025	-	< 0.001	-	-	< 0.001
Asbestos Quantification Total	7/0	0.001	ISO 17025	-	< 0.001	-	-	< 0.001
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	-	10.3	10.1	10.9	9.7
Total Cyanide	mg/kg	1	MCERTS	_	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	-	4500	2400	5300	1500
Water Soluble SO4 16hr extraction (2:1 Leachate				_	0.59	0.40	0.25	
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	-	0.59	0.40	0.25	0.11
Equivalent)	mg/l	1.25	MCERTS	-	591	395	245	112
Organic Matter	%	0.1	MCERTS	0.4	1.9	-	0.3	1.3
Total Organic Carbon (TOC)	%	0.1	MCERTS	0.3	1.1	-	0.2	0.7
Total Phenois								
Total Phenols (monohydric)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	_	_	< 0.05	_	_
Acenaphthylene	mg/kg	0.05	MCERTS	-	_	< 0.05	<u> </u>	-
Acenaphthene	mg/kg	0.05	MCERTS	_	_	< 0.05		_
Fluorene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Phenanthrene	mg/kg	0.05	MCERTS	_	_	0.55	_	_
Anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Fluoranthene	mg/kg	0.05	MCERTS	-	-	0.71	-	-
Pyrene	mg/kg	0.05	MCERTS	-	-	0.57	-	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	-	0.28	-	-
Chrysene	mg/kg	0.05	MCERTS	-	-	0.20	-	-
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	-	0.35	-	-
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	-	0.08	-	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	-	0.26	-	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	-	< 0.05	-	-
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	_	_	3.00	-	_

Analytical Report Number: 21-69414

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP Your Order No: P3094JJ2084.18

Lab Sample Number				1840719	1840720	1840721	1840722	1840723
Sample Reference				BH103	BH103	BH103	WS102	WS103
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.40	1.10	1.75	1.15	1.00
Date Sampled				15/04/2021	15/04/2021	15/04/2021	15/04/2021	15/04/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		=		None Supplied	None Supplied	Horic Supplied	None Supplied	Hone Supplied
Analytical Parameter	Units	Limit of detectior	Accreditation Status					
(Soil Analysis)	ts	etection	tation us					
Heavy Metals / Metalloids	<u>-</u>		-					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	-	12	13	10	11
Boron (water soluble)	mg/kg	0.2	MCERTS	-	1.8	1.3	1.8	0.6
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	-	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	-	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	-	19	20	21	24
Copper (aqua regia extractable)	mg/kg	1	MCERTS	-	24	28	39	46
Lead (aqua regia extractable)	mg/kg	1	MCERTS	-	46	63	740	58
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	-	< 0.3	< 0.3	< 0.3	< 0.3
Nickel (agua regia extractable)	mg/kg	1	MCERTS	-	13	17	18	21
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	-	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	_	49	60	89	60
Monoaromatics & Oxygenates	ualka	1	MCERTS		-10		.10	. 1.0
Benzene	μg/kg	1	MCERTS		< 1.0		< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
p & m-xylene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
o-xylene	μg/kg μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	-91.19			-	< 1.0	-	< 1.0	< 1.0
Petroleum Hydrocarbons								
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	-	< 0.1	-	-
TRU CAIC Alimbatia CEC ECC	mg/kg	0.001	MCERTS	_	. 0.001	_	. 0.001	1 0 001
TPH-CWG - Aliphatic > EC5 - EC6		0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC6 - EC8	mg/kg mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
TPH-CWG - Aliphatic > EC10 - EC12	mg/kg	2	MCERTS	-	5.7	-	< 1.0	< 1.0
TPH-CWG - Aliphatic > EC12 - EC16	mg/kg	8	MCERTS	-	3.4	-	< 2.0	< 2.0
TPH-CWG - Aliphatic > EC16 - EC21		8	MCERTS	-	12	-	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg mg/kg	10	MCERTS	-	78	-	< 8.0	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	ilig/kg	10	PICERTS	-	99	-	< 10	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS		< 0.001		< 0.001	< 0.001
TPH-CWG - Aromatic >EC5 - EC7 TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	-	< 0.001	-	< 0.001	< 0.001
	mg/kg	0.001	MCERTS	-	< 0.001	-		< 0.001
TPH-CWG - Aromatic > EC10	mg/kg	1	MCERTS	-	< 0.001	-	< 0.001	< 1.0
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	2	MCERTS	-		-	< 1.0	
TPH-CWG - Aromatic >EC12 - EC16		10	MCERTS		6.3		< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	-	42	-	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg mg/kg	10	MCERTS		140		< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	PICERTS	-	190	-	< 10	< 10
TPH (C10 - C12)	mg/kg	2	MCERTS	-	-	< 2.0	-	-
	mg/kg	4	MCERTS	_	_	< 4.0	-	-
TPH (C12 - C16)	9/.19							
TPH (C12 - C16) TPH (C16 - C21)	mg/kg	1	MCERTS	-	-	27	-	-

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP Your Order No: P3094JJ2084.18

Lab Sample Number			1840719	1840720	1840721	1840722	1840723	
Sample Reference				BH103	BH103	BH103	WS102	WS103
Sample Number				None Supplied				
Depth (m)				0.40	1.10	1.75	1.15	1.00
Date Sampled				15/04/2021	15/04/2021	15/04/2021	15/04/2021	15/04/2021
Time Taken				None Supplied				
		E.	1	Hone Supplied	топе варриев	топе варрнеа	топе варыев	топе варриев
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
Chloromethane	μg/kg	1	ISO 17025	_	< 1.0	_	< 1.0	< 1.0
Chloroethane	μg/kg	1	NONE	_	< 1.0	-	< 1.0	< 1.0
Bromomethane	μg/kg	1	ISO 17025	_	< 1.0	-	< 1.0	< 1.0
Vinyl Chloride	μg/kg	1	NONE	_	< 1.0	_	< 1.0	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	_	< 1.0	_	< 1.0	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	_	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	_	< 1.0	_	< 1.0	< 1.0
Cis-1,2-dichloroethene	µg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
1,1-Dichloroethane	µg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
2.2-Dichloropropane	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
Trichloromethane	μg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	_	< 1.0	_	< 1.0	< 1.0
Benzene	µg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
Trichloroethene	µg/kg	1	MCERTS	_	< 1.0	_	< 1.0	< 1.0
Dibromomethane	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
Bromodichloromethane	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	_	< 1.0	-	< 1.0	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	_	< 1.0	-	< 1.0	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0	-	< 1.0	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	_	< 1.0	-	< 1.0	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0	_	< 1.0	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Styrene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Tribromomethane	μg/kg	1	NONE	-	< 1.0	-	< 1.0	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
tert-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
*	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,4-Dichlorobenzene								

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP Your Order No: P3094JJ2084.18

					_		Т	
Lab Sample Number				1840719	1840720	1840721	1840722	1840723
Sample Reference				BH103	BH103	BH103	WS102	WS103
Sample Number			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Depth (m)				0.40	1.10	1.75	1.15	1.00
Date Sampled				15/04/2021	15/04/2021	15/04/2021	15/04/2021	15/04/2021
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0	-	< 1.0	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0	-	< 1.0	< 1.0

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP Your Order No: P3094JJ2084.18

Lab Sample Number				1840719	1840720	1840721	1840722	1840723
Sample Reference				BH103	BH103	BH103	WS102	WS103
Sample Number				None Supplied				
Depth (m)				0.40	1.10	1.75	1.15	1.00
Date Sampled				15/04/2021	15/04/2021	15/04/2021	15/04/2021	15/04/2021
Time Taken				None Supplied				
Time runeii		_		None Supplied	None Supplied	None Supplied	тчопе заррпеа	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
SVOCs								
Aniline	mg/kg	0.1	NONE	_	< 0.1	_	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	_	< 0.2	-	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	_	< 0.1	-	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	_	< 0.2	-	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	_	< 0.2	-	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	_	< 0.1	-	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	_	< 0.2	-	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	_	< 0.3	-	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS		< 0.05	-	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	_	< 0.2	-	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	_	< 0.2	-	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	_	< 0.3	_	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	_	< 0.3	-	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	_	< 0.3	_	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	_	< 0.3	-	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	_	< 0.05	_	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	_	< 0.3	_	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	_	< 0.1	_	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	_	< 0.1	_	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	_	< 0.1	-	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	_	< 0.1	-	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	_	0.2	-	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	_	< 0.1	-	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	_	< 0.1	-	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	_	< 0.1	-	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	_	0.23	-	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	0.45	-	< 0.05	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	_	< 0.2	-	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	0.5	-	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	_	< 0.3	-	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	_	< 0.2	_	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	-	0.42	-	< 0.05	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3	-	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	7.1	-	< 0.05	< 0.05
Anthracene	mg/kg	0.05	MCERTS	-	1.8	-	< 0.05	< 0.05
Carbazole	mg/kg	0.3	MCERTS	-	0.6	-	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2	-	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	-	0.7	-	< 0.3	< 0.3
Fluoranthene	mg/kg	0.05	MCERTS	-	9.5	-	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	7.4	-	< 0.05	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3	-	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	3.6	-	< 0.05	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	2.8	-	< 0.05	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	3.8	-	< 0.05	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	1.4	-	< 0.05	< 0.05

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP Your Order No: P3094JJ2084.18

Lab Sample Number				1840719	1840720	1840721	1840722	1840723
Sample Reference				BH103	BH103	BH103	WS102	WS103
Sample Number				None Supplied				
Depth (m)				0.40	1.10	1.75	1.15	1.00
Date Sampled				15/04/2021	15/04/2021	15/04/2021	15/04/2021	15/04/2021
Time Taken			None Supplied	None Supplied	None Supplied	None Supplied	None Supplied	
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	1.4	-	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	0.46	-	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	1.5	-	< 0.05	< 0.05
PCBs by GC-MS								
PCB Congener 28	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
PCB Congener 180	mg/kg	0.001	MCERTS	-	-	-	-	< 0.001
Total PCBs by GC-MS								
Total PCBs	mg/kg	0.007	MCERTS	-	-	-	-	< 0.007

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1 Your Order No: P3094JJ2084.18

Lab Sample Number				1840724	1840725
Sample Reference				WS103	WS104
Sample Number				None Supplied	None Supplie
Depth (m)				1.95	0.50
Date Sampled				15/04/2021	15/04/2021
Time Taken				None Supplied	None Supplie
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	4.2	3.7
Total mass of sample received	kg	0.001	NONE	1.2	1.7
Asbestos in Soil Screen / Identification Name	Type	N/A	ISO 17025	-	-
Asbestos in Soil	Type	N/A	ISO 17025	-	Not-detected
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	1	-
Asbestos Quantification Total	%	0.001	ISO 17025	1	-
General Inorganics					
pH - Automated	pH Units	N/A	MCERTS	10.0	10.3
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1100	2200
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.11	0.50
Equivalent)	mg/l	1.25	MCERTS	111	501
Organic Matter	%	0.1	MCERTS	-	1.6
Total Organic Carbon (TOC)	%	0.1	MCERTS	-	0.9
Total Phenols Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0
Speciated PAHs					
Naphthalene	mg/kg	0.05			
		0.05	MCERTS	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS MCERTS	< 0.05 < 0.05	-
· ·	mg/kg mg/kg				-
Acenaphthene		0.05	MCERTS	< 0.05	
Acenaphthene Fluorene	mg/kg	0.05 0.05	MCERTS MCERTS	< 0.05 < 0.05	-
Acenaphthene Fluorene Phenanthrene	mg/kg mg/kg	0.05 0.05 0.05	MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05	-
Acenaphthene Fluorene Phenanthrene Anthracene	mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05	- - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene	mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05	- - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene	mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	- - - -
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthylene Acenaphthylene Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(b)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	
Acenaphthene Fluorene Phenanthrene Anthracene Fluoranthene Pyrene Benzo(a)anthracene Chrysene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene	mg/kg	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	MCERTS	< 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < 0.05	

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1 Your Order No: P3094JJ2084.18

Lab Sample Number	1840724	1840725			
Sample Reference				WS103	WS104
Sample Number				None Supplied	None Supplied
Depth (m)				1.95	0.50
Date Sampled				15/04/2021	15/04/2021
Time Taken				None Supplied	None Supplied
		<u> </u>			
Analytical Parameter (Soil Analysis)	Units	Limit of detectior	Accreditation Status		
(Son Analysis)	6	tection	ation IS		
Heavy Metals / Metalloids					
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	13
Boron (water soluble)	mg/kg	0.2	MCERTS	0.4	1.0
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	21	21
Copper (aqua regia extractable)	mg/kg	1	MCERTS	15	19
Lead (aqua regia extractable)	mg/kg	1	MCERTS	15	160
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	34	18
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	2.6	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	33	36
			•		
Monoaromatics & Oxygenates					
Benzene	μg/kg	1	MCERTS	-	< 1.0
Toluene	μg/kg	1	MCERTS	-	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0
p & m-xylene	μg/kg	1	MCERTS	-	< 1.0
o-xylene	μg/kg	1	MCERTS	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0
Petroleum Hydrocarbons					
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	< 0.1	-
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	-	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	-	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	-	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	_	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	-	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	_	< 10
		-			- 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	_	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	_	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS		< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS		< 1.0
TPH-CWG - Aromatic >EC12 - EC12 TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS		2.3
TPH-CWG - Aromatic >EC12 - EC16 TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS		< 10
TPH-CWG - Aromatic >EC16 - EC21 TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS		< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS		21
5.75 / Hollidde (265 2655)	5, 3				<u> </u>
TPH (C10 - C12)	mg/kg	2	MCERTS	< 2.0	_
TPH (C12 - C16)	mg/kg	4	MCERTS	< 4.0	
TPH (C12 - C16) TPH (C16 - C21)	mg/kg	1	MCERTS	< 1.0	
TPH (C21 - C40)	mg/kg	10	MCERTS	< 1.0	-
1111 (021 - 070)	91.19			< 10	-

Page 10 of 17

Analytical Report Number: 21-69414

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1 Your Order No: P3094JJ2084.18

Lab Sample Number				1840724	1840725
Sample Reference				WS103	WS104
Sample Number				None Supplied	None Supplied
Depth (m)				1.95	0.50
Date Sampled				15/04/2021	15/04/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
VOCs					
Chloromethane	μg/kg	1	ISO 17025	-	< 1.0
Chloroethane	μg/kg	1	NONE	-	< 1.0
Bromomethane	μg/kg	1	ISO 17025	-	< 1.0
Vinyl Chloride	μg/kg	1	NONE	-	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	-	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	-	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	-	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	-	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	-	< 1.0
1,1-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0
2,2-Dichloropropane	μg/kg	1	MCERTS	-	< 1.0
Trichloromethane	μg/kg	1	MCERTS	-	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	-	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	-	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	-	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE	-	< 1.0
Benzene	μg/kg	1	MCERTS	-	< 1.0
Tetrachloromethane	μg/kg	1	MCERTS	-	< 1.0
1,2-Dichloropropane	μg/kg	1	MCERTS MCERTS	-	< 1.0
Trichloroethene	μg/kg μg/kg	1	MCERTS	-	< 1.0
Dibromomethane	μg/kg μg/kg	1	MCERTS	-	< 1.0 < 1.0
Bromodichloromethane Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	-	< 1.0
Trans-1,3-dichloropropene	µg/kg	1	ISO 17025	-	< 1.0
Toluene	μg/kg	1	MCERTS	_	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	_	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	-	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	-	< 1.0
Tetrachloroethene	μg/kg	1	NONE	-	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	-	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	-	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	1	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	-	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	-	< 1.0
Styrene	μg/kg	1	MCERTS	-	< 1.0
Tribromomethane	μg/kg	1	NONE	-	< 1.0
o-Xylene	μg/kg	1	MCERTS	-	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	-	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	-	< 1.0
Bromobenzene	μg/kg	1	MCERTS	-	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	-	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0
4-Chlorotoluene	μg/kg	1	MCERTS	-	< 1.0
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025 MCERTS	=	< 1.0
tert-Butylbenzene	μg/kg	1	ISO 17025	-	< 1.0
1,2,4-Trimethylbenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0
sec-Butylbenzene 1,3-Dichlorobenzene	μg/kg μg/kg	1	ISO 17025	-	< 1.0
p-Isopropyltoluene	μg/kg μg/kg	1	ISO 17025	-	< 1.0 < 1.0
1,2-Dichlorobenzene	μg/kg μg/kg	1	MCERTS	-	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	-	< 1.0
2) . D.G., OF ODG (EGIC	-9/9		MCERTS	-	< 1.0

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1 Your Order No: P3094JJ2084.18

Lab Sample Number				1840724	1840725
Sample Reference		WS103	WS104		
Sample Number	None Supplied	None Supplied			
Depth (m)		1.95	0.50		
Date Sampled	15/04/2021	15/04/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	-	< 1.0
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	-	< 1.0
Hexachlorobutadiene	μg/kg	1	MCERTS	-	< 1.0
1,2,3-Trichlorobenzene	μg/kg	1	ISO 17025	-	< 1.0

Page 11 of 17

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1 Your Order No: P3094JJ2084.18

Lab Sample Number				1840724	1840725
Sample Reference				WS103	WS104
Sample Number				None Supplied	None Supplied
Depth (m)				1.95	0.50
Date Sampled				15/04/2021	15/04/2021
Time Taken				None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
SVOCs					
Aniline	mg/kg	0.1	NONE	-	< 0.1
Phenol	mg/kg	0.2	ISO 17025	1	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	-	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	-	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	-	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	-	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	-	< 0.1
2-Methylphenol	mg/kg mg/kg	0.3	MCERTS	-	< 0.3
Hexachloroethane	5. 5	0.05	MCERTS MCERTS	-	< 0.05
Nitrobenzene	mg/kg mg/kg	0.3	NONE	-	< 0.3 < 0.2
4-Methylphenol Isophorone	mg/kg	0.2	MCERTS	-	< 0.2
2-Nitrophenol	mg/kg	0.2	MCERTS	-	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	-	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	-	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	-	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	-	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	-	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	-	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	-	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	-	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	-	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE MCERTS	-	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	-	< 0.1
Dimethylphthalate	mg/kg mg/kg	0.1	MCERTS	-	< 0.1
2,6-Dinitrotoluene Acenaphthylene	mg/kg	0.05	MCERTS	-	< 0.1 < 0.05
Acenaphthene	mg/kg	0.05	MCERTS	-	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	-	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	-	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	-	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	-	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	-	< 0.2
Fluorene	mg/kg	0.05	MCERTS	1	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	-	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	-	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	-	< 0.05
Anthracene Carbarela	mg/kg mg/kg	0.05	MCERTS MCERTS	-	< 0.05
Carbazole Dibutyl phthalate	mg/kg	0.3	MCERTS	-	< 0.3 < 0.2
Dibutyl phthalate Anthraquinone	mg/kg	0.2	MCERTS	-	< 0.2
Fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	-	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Chrysene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	-	< 0.05

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1 Your Order No: P3094JJ2084.18

Lab Sample Number				1840724	1840725
Sample Reference	WS103	WS104			
Sample Number	None Supplied	None Supplied			
Depth (m)	1.95	0.50			
Date Sampled	15/04/2021	15/04/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	-	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	-	< 0.05

PCBs by GC-MS

PCB Congener 28	mg/kg	0.001	MCERTS	-	-
PCB Congener 52	mg/kg	0.001	MCERTS	-	-
PCB Congener 101	mg/kg	0.001	MCERTS	-	-
PCB Congener 118	mg/kg	0.001	MCERTS	-	-
PCB Congener 138	mg/kg	0.001	MCERTS	-	-
PCB Congener 153	mg/kg	0.001	MCERTS	-	-
PCB Congener 180	mg/kg	0.001	MCERTS	-	-

Total PCBs by GC-MS

Total PCBs	mg/kg	0.007	MCERTS	-	-

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Your Order No: P3094JJ2084.18

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1840720	BH103	1.10	101	Loose Fibres	Chrysotile	< 0.001	< 0.001
1840723	WS103	1.00	177	Loose Fibres	Amosite	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1840719	BH103	None Supplied	0.4	Brown sand with gravel.
1840720	BH103	None Supplied	1.1	Brown clay and sand with gravel.
1840721	BH103	None Supplied	1.75	Brown loam and sand with gravel.
1840722	WS102	None Supplied	1.15	Brown clay and sand with gravel.
1840723	WS103	None Supplied	1	Brown clay and sand with gravel.
1840724	WS103	None Supplied	1.95	Brown clay and sand with gravel.
1840725	WS104	None Supplied	0.5	Brown clay and sand with gravel.

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	ganic matter (Automated) in soil Determination of organic matter in soil by oxidising with In potassium dichromate followed by titration with iron (II) sulphate.		L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCI followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.		In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Total cyanide in soil Determination of total cyanide by distillation followed by colorimetry.		L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-78539

Replaces Analytical Report Number: 21-78539, issue no. 2 Additional analysis undertaken.

Project / Site name: West Central Street and 1 Museum

Street Holborn WC1A 1JP

Your job number: JJ2084

Your order number: P3094JJ2084 26

Report Issue Number: 3

Samples Analysed: 4 soil samples

Samples received on: 27/05/2021

Samples instructed on/ Analysis started on:

Analysis completed by: 24/06/2021

Report issued on:

24/06/2021

01/06/2021

Signed:

Karolina Marek PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Lab Sample Number				1889896	1889897	1889898	1890061
Sample Reference				WS101	WS107	WS110	WS105
Sample Number				ES	ES	ES	ES
Depth (m)				1.00	2.40	2.30	1.70
Date Sampled				25/05/2021	26/05/2021	25/05/2021	21/05/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		Заррже		теле варрива
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	5.8	16	16	18
Total mass of sample received	kg	0.001	NONE	1.7	0.80	0.90	1.2
Total mass of sample received		<u> </u>		1.7	0.00	0.50	1.2
Asbestos in Soil Screen / Identification Name	Туре	N/A	ISO 17025	-	-	Chrysotile	-
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	-	Detected	_
Asbestos Quantification (Stage 2)	%	0.001	ISO 17025	-	-	< 0.001	_
Asbestos Quantification (Stage 2) Asbestos Quantification Total	%	0.001	ISO 17025			< 0.001	
ASSESTED QUARTER CALLED TOTAL		<u> </u>		_	_	< 0.001	
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	11.3	8.7	8.9	9.6
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	2600	1200	11000	950
Water Soluble SO4 16hr extraction (2:1 Leachate	g/l	0.00125	MCERTS	0.14	0.46	1.5	0.51
Equivalent) Water Soluble SO4 16hr extraction (2:1 Leachate				145	457	1520	511
Equivalent)	mg/l	1.25 0.1	MCERTS				
Organic Matter	%	0.1	MCERTS MCERTS	0.1	-	0.6	1.3
Total Organic Carbon (TOC)	70	0.1	PICERTS	< 0.1	-	0.3	-
Total Phenols							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
	•						
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.56	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.92	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.74	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.60	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.52	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.77	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.26	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.64	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.35	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.43	< 0.05
Total PAH							
Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80	< 0.80	5.79	< 0.80
openaca rotar Ern 10 milis				\ ∪.0∪	\ ∪.0∪	J./7	< 0.00

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Lab Sample Number		1889896	1889897	1889898	1890061		
Sample Reference				WS101	WS107	WS110	WS105
Sample Number				ES	ES	ES	ES
Depth (m)				1.00	2.40	2.30	1.70
Date Sampled				25/05/2021	26/05/2021	25/05/2021	21/05/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Heavy Metals / Metalloids							
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	20	11	17	16
Boron (water soluble)	mg/kg	0.2	MCERTS	1.3	3.3	2.9	1.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	16	39	20	50
Copper (aqua regia extractable)	mg/kg	1	MCERTS	110	29	130	66
Lead (aqua regia extractable)	mg/kg	1	MCERTS	14	29	410	16
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	2.9	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	19	39	22	43
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	36	80	180	89
Ente (aqua regia extractable)				30	00	100	O3
Monoaromatics & Oxygenates							
Benzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
	µg/kg	1	MCERTS		-		-
Toluene	μg/kg	1	MCERTS	< 1.0 < 1.0	-	< 1.0 < 1.0	-
Ethylbenzene	μg/kg	1	MCERTS		-		-
p & m-xylene	μg/kg	1	MCERTS	< 1.0		< 1.0	
o-xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	pg/ kg		TICERTS	< 1.0	-	< 1.0	-
But also in the Land Land							
Petroleum Hydrocarbons	malka	0.1	MCERTS				
Petroleum Range Organics (C6 - C10)	mg/kg	0.1	MCERTS	-	< 0.1	-	< 0.1
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	-	< 8.0	-
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	-	35	-
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	42	-
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	=	< 0.001	-
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	=	< 0.001	-
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	-	< 0.001	-
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	-	< 1.0	-
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	-	< 2.0	-
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	-	12	-
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	-	37	-
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	-	49	-
,						-	
TPH (C10 - C12)	mg/kg	2	MCERTS	-	< 2.0	_	< 2.0
TPH (C10 - C12) TPH (C12 - C16)	mg/kg	4	MCERTS	-	< 4.0	-	< 4.0
TPH (C12 - C10) TPH (C16 - C21)	mg/kg	1	MCERTS	-	< 1.0	-	< 1.0
TPH (C16 - C21) TPH (C21 - C40)	mg/kg	10	MCERTS	-	< 10	-	< 1.0
1111 (021 - 070)	9			•	< 10	•	< 10

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Lab Sample Number				1889896	1889897	1889898	1890061
Sample Reference				WS101	WS107	WS110	WS105
Sample Number				ES	ES	ES	ES
Depth (m)				1.00	2.40	2.30	1.70
Date Sampled				25/05/2021	26/05/2021	25/05/2021	21/05/2021
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied
		<u> </u>					
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
VOCs							
Chloromethane	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	_
Chloroethane	μg/kg	1	NONE	< 1.0	_	< 1.0	_
Bromomethane	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	-
Vinyl Chloride	μg/kg	1	NONE	< 1.0	_	< 1.0	-
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0	_	< 1.0	-
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0	_	< 1.0	-
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1.1-Dichloroethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
2,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
Trichloromethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
Trans-1,2-dichloroethene	μg/kg	1	NONE	< 1.0	_	< 1.0	_
Benzene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
Tetrachloromethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
1,2-Dichloropropane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
Trichloroethene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
Dibromomethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	_
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	-
Toluene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	_
1,3-Dichloropropane	µg/kg	1	ISO 17025	< 1.0	_	< 1.0	-
Dibromochloromethane	µg/kg	1	ISO 17025	< 1.0	_	< 1.0	-
Tetrachloroethene	µg/kg	1	NONE	< 1.0	_	< 1.0	-
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	_
Chlorobenzene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
Ethylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
p & m-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Styrene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Tribromomethane	μg/kg	1	NONE	< 1.0	-	< 1.0	-
o-Xylene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1,1,2,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Bromobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
2-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
4-Chlorotoluene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1,3,5-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
tert-Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0	_	< 1.0	-
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
p 130propyttolucite	פיי ופיז		1, 023	× 1.0		× 1.0	

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Your Order No: P3094JJ2084 26

Lab Sample Number				1889896	1889897	1889898	1890061
Sample Reference				WS101	WS107	WS110	WS105
Sample Number				ES	ES 2.40	ES 2.30	ES 1.70
Depth (m)				1.00			
Date Sampled			25/05/2021	26/05/2021	25/05/2021	21/05/2021	
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Butylbenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1,2-Dibromo-3-chloropropane	μg/kg	1	ISO 17025	< 1.0	-	< 1.0	-
1,2,4-Trichlorobenzene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
Hexachlorobutadiene	μg/kg	1	MCERTS	< 1.0	-	< 1.0	-
1.2.3-Trichlorobenzene	μg/kg	1	ISO 17025	< 1.0	_	< 1.0	-

SVOCs

SVOCs							
Aniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	mg/kg	0.2	ISO 17025	< 0.2	< 0.2	< 0.2	< 0.2
2-Chlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Bis(2-chloroethyl)ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
1,3-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
1,2-Dichlorobenzene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
1,4-Dichlorobenzene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Bis(2-chloroisopropyl)ether	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2-Methylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Hexachloroethane	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
4-Methylphenol	mg/kg	0.2	NONE	< 0.2	< 0.2	< 0.2	< 0.2
Isophorone	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
2-Nitrophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
2,4-Dimethylphenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Bis(2-chloroethoxy)methane	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
1,2,4-Trichlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dichlorophenol	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
4-Chloroaniline	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Hexachlorobutadiene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
4-Chloro-3-methylphenol	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
2,4,6-Trichlorophenol	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2,4,5-Trichlorophenol	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
2-Methylnaphthalene	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
2-Chloronaphthalene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Dimethylphthalate	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
2,6-Dinitrotoluene	mg/kg	0.1	MCERTS	< 0.1	< 0.1	< 0.1	< 0.1
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dinitrotoluene	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Dibenzofuran	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
4-Chlorophenyl phenyl ether	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3	< 0.3
Diethyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
4-Nitroaniline	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Azobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Bromophenyl phenyl ether	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Hexachlorobenzene	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.56	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Carbazole	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3
Dibutyl phthalate	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2
Anthraquinone	mg/kg	0.3	MCERTS	< 0.3	< 0.3	< 0.3	< 0.3

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Your Order No: P3094JJ2084 26

Lab Sample Number				1889896	1889897	1889898	1890061
Sample Reference				WS101	WS107	WS110	WS105
Sample Number				ES	ES	ES	ES
Depth (m)				1.00	2.40	2.30	1.70
Date Sampled				25/05/2021	26/05/2021	25/05/2021	21/05/2021
Time Taken		None Supplied	None Supplied	None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.92	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.74	< 0.05
Butyl benzyl phthalate	mg/kg	0.3	ISO 17025	< 0.3	< 0.3	< 0.3	< 0.3
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.60	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.52	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.77	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.26	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.64	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.35	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	0.43	< 0.05

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Your Order No: P3094JJ2084 26

Certificate of Analysis - Asbestos Quantification

Methods:

Qualitative Analysis

The samples were analysed qualitatively for asbestos by polarising light and dispersion staining as described by the Health and Safety Executive in HSG 248.

Quantitative Analysis

The analysis was carried out using our documented in-house method A006-PL based on HSE Contract Research Report No: 83/1996: Development and Validation of an analytical method to determine the amount of asbestos in soils and loose aggregates (Davies et al, 1996) and HSG 248. Our method includes initial examination of the entire representative sample, then fractionation and detailed analysis of each fraction, with quantification by hand picking and weighing.

The limit of detection (reporting limit) of this method is 0.001 %.

The method has been validated using samples of at least 100 g, results for samples smaller than this should be interpreted with caution.

Both Qualitative and Quantitative Analyses are UKAS accredited.

Sample Number	Sample ID	Sample Depth (m)	Sample Weight (g)	Asbestos Containing Material Types Detected (ACM)	PLM Results	Asbestos by hand picking/weighing (%)	Total % Asbestos in Sample
1889898	WS110	2.30	133	Loose Fibres	Chrysotile	< 0.001	< 0.001

Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1889896	WS101	ES	1	Brown sandy gravel.**
1889897	WS107	ES	2.4	Grey clay.
1889898	WS110	ES	2.3	Grey sandy gravel.**
1890061	WS105	ES	1.7	Grey clay.

** Non MCERTS matrix

Analytical Report Number : 21-78539
Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
PRO (Soil)	Determination of hydrocarbons C6-C10 by headspace GC-MS.	In-house method based on USEPA8260	L088-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds in soil by extraction in dichloromethane and hexane followed by GC-MS.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
Asbestos Quantification - Gravimetric	Asbestos quantification by gravimetric method - in house method based on references.	HSE Report No: 83/1996, HSG 248, HSG 264 & SCA Blue Book (draft).	A006-PL	D	ISO 17025
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-78539

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS101	ES	S	1889896	С	Total cyanide in soil	L080-PL	С
WS105	ES	S	1890061	С	Total cyanide in soil	L080-PL	С
WS110	ES	S	1889898	С	Total cyanide in soil	L080-PL	С

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-78966

Replaces Analytical Report Number: 21-78966, issue no. 1 Client sampling date amended.

Project / Site name: West Central Street and I Museum

Street, Holborn, WC1A 1JP

Your job number: JJ2084

P3094112084 26

Report Issue Number: 2

Your order number:

Samples Analysed: 1 soil sample

Samples received on: 27/05/2021

Samples instructed on/ Analysis started on:

Analysis completed by: 22/06/2021

03/06/2021

Report issued on: 22/06/2021

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Application of uncertainty of measurement would provide a range within which the true result lies.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084 26

Lab Sample Number	1891727				
Sample Reference					WS108
Sample Number					ES
Depth (m)					1.00
Date Sampled					26/05/2021
Time Taken					None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status	
Stone Content		%	0.1	NONE	< 0.1
Moisture Content		%	0.01	NONE	22
Total mass of sample received		kg	0.001	NONE	1.0

Asbestos in Soil	Type	N/A	ISO 17025	Not-detected

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.2
Total Cyanide	mg/kg	1	MCERTS	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	1300
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.75
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	746
Organic Matter	%	0.1	MCERTS	1.6
Total Organic Carbon (TOC)	%	0.1	MCERTS	1.0

Total Phenols

Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0
rotal Friends (monoriyanc)	9/ 119	-		< 1.0

Speciated PAHs

•				
Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05
Chrysene	mg/kg	0.05	MCERTS	< 0.05
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	MCERTS	< 0.80

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084 26

TPH-CWG - Aromatic >EC12 - EC16

TPH-CWG - Aromatic >EC16 - EC21

TPH-CWG - Aromatic >EC21 - EC35

TPH-CWG - Aromatic (EC5 - EC35)

Your Order No: P3094JJ2084 26				
Lab Sample Number				1891727
Sample Reference	WS108			
Sample Number				ES
Depth (m)				1.00
Date Sampled				26/05/2021
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
Heavy Metals / Metalloids				
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14
Boron (water soluble)	mg/kg	0.2	MCERTS	2.2
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2
Chromium (hexavalent)	mg/kg	4	MCERTS	< 4.0
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	49
Copper (aqua regia extractable)	mg/kg	1	MCERTS	27
Lead (aqua regia extractable)	mg/kg	1	MCERTS	15
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	39
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	79
Monoaromatics & Oxygenates				
Benzene	μg/kg	1	MCERTS	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0
p & m-xylene	μg/kg	1	MCERTS	< 1.0
o-xylene	μg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0
Petroleum Hydrocarbons				
TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0

mg/kg

mg/kg

mg/kg

mg/kg

10

10

MCERTS

MCERTS

MCERTS

MCERTS

< 2.0

< 10

< 10

< 10

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Lab Sample Number				1891727
Sample Reference				WS108
Sample Number	ES			
Depth (m)				1.00
Date Sampled	26/05/2021			
Time Taken				None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
VOCs	•			
Chloromethane	μg/kg	1	ISO 17025	< 1.0
Chloroethane	μg/kg	1	NONE	< 1.0
Bromomethane	μg/kg	1	ISO 17025	< 1.0
Vinyl Chloride	μg/kg	1	NONE	< 1.0
Trichlorofluoromethane	μg/kg	1	NONE	< 1.0
1,1-Dichloroethene	μg/kg	1	NONE	< 1.0
1,1,2-Trichloro 1,2,2-Trifluoroethane	μg/kg	1	ISO 17025	< 1.0
Cis-1,2-dichloroethene	μg/kg	1	MCERTS	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	μg/kg	1	MCERTS	< 1.0
1,1-Dichloroethane	μg/kg 	1	MCERTS	< 1.0
2,2-Dichloropropane	μg/kg 	1	MCERTS	< 1.0
Trichloromethane	μg/kg	1	MCERTS	< 1.0
1,1,1-Trichloroethane	μg/kg	1	MCERTS	< 1.0
1,2-Dichloroethane	μg/kg	1	MCERTS	< 1.0
1,1-Dichloropropene	μg/kg	1	MCERTS	< 1.0
Trans-1,2-dichloroethene	μg/kg	1	NONE MCERTS	< 1.0
Benzene	μg/kg	1	MCERTS	< 1.0
Tetrachloromethane	μg/kg μg/kg	1	MCERTS	< 1.0
1,2-Dichloropropane Trichloroethene	μg/kg	1	MCERTS	< 1.0
Dibromomethane	μg/kg	1	MCERTS	< 1.0 < 1.0
Bromodichloromethane	μg/kg	1	MCERTS	< 1.0
Cis-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0
Trans-1,3-dichloropropene	μg/kg	1	ISO 17025	< 1.0
Toluene	μg/kg	1	MCERTS	< 1.0
1,1,2-Trichloroethane	μg/kg	1	MCERTS	< 1.0
1,3-Dichloropropane	μg/kg	1	ISO 17025	< 1.0
Dibromochloromethane	μg/kg	1	ISO 17025	< 1.0
Tetrachloroethene	μg/kg	1	NONE	< 1.0
1,2-Dibromoethane	μg/kg	1	ISO 17025	< 1.0
Chlorobenzene	μg/kg	1	MCERTS	< 1.0
1,1,1,2-Tetrachloroethane	μg/kg	1	MCERTS	< 1.0
Ethylbenzene	μg/kg	1	MCERTS	< 1.0
p & m-Xylene	μg/kg	1	MCERTS	< 1.0
Styrene	μg/kg	1	MCERTS	< 1.0
Tribromomethane	μg/kg	1	NONE	< 1.0
o-Xylene	μg/kg 	1	MCERTS	< 1.0
1,1,2,2-Tetrachloroethane	μg/kg 	1	MCERTS	< 1.0
Isopropylbenzene	μg/kg	1	MCERTS	< 1.0
Bromobenzene	μg/kg	1	MCERTS	< 1.0
n-Propylbenzene	μg/kg	1	ISO 17025	< 1.0
2-Chlorotoluene	μg/kg	1	MCERTS MCERTS	< 1.0
4-Chlorotoluene	μg/kg μg/kg	1	ISO 17025	< 1.0
1,3,5-Trimethylbenzene	μg/kg μg/kg	1	MCERTS	< 1.0
tert-Butylbenzene 1,2,4-Trimethylbenzene	μg/kg	1	ISO 17025	< 1.0 < 1.0
sec-Butylbenzene	μg/kg	1	MCERTS	< 1.0
1,3-Dichlorobenzene	μg/kg	1	ISO 17025	< 1.0
p-Isopropyltoluene	μg/kg	1	ISO 17025	< 1.0
1,2-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0
1,4-Dichlorobenzene	μg/kg	1	MCERTS	< 1.0
Butylbenzene	μg/kg	1	MCERTS	< 1.0
• •				-

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084 26

Lab Sample Number					1891727
Sample Reference					WS108
Sample Number					ES
Depth (m)					1.00
Date Sampled					26/05/2021
Time Taken					None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status	
1,2-Dibromo-3-chloropropane		µg/kg	1	ISO 17025	< 1.0
1,2,4-Trichlorobenzene		μg/kg	1	MCERTS	< 1.0
Hexachlorobutadiene		μg/kg	1	MCERTS	< 1.0
1,2,3-Trichlorobenzene		μg/kg	1	ISO 17025	< 1.0

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

	Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
ſ	1891727	WS108	ES	1	Brown clay.

Analytical Report Number : 21-78966 Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status MCERTS	
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D		
Metals in soil by ICP-OES	in soil by ICP-OES Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.		L038-PL	D	MCERTS	
Asbestos identification in soil	Asbestos Identification in soil Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques. In house method based on HSG 248 microscopy in conjunction with disperion staining techniques.		A001-PL	D	ISO 17025	
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water In-house method based on Second Site Properties extract followed by ICP-OES.		L038-PL	D	MCERTS	
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS	
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE	
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS	
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS	
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	MCERTS	
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS	
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE	
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS	
Total organic carbon (Automated) in soil Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.		In house method.	L009-PL	D	MCERTS	
Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS	
BTEX and MTBE in soil (Monoaromatics	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	w	MCERTS	
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L088/76-PL	W	MCERTS	

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-78966

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

S	ample ID	Other ID	Sample Type		Sample Deviation	Test Name	Test Ref	Test Deviation
	WS108	ES	S	1891727	С	Total cyanide in soil	L080-PL	С

Josephine Whitehead

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-83645

Project / Site name: West Central Street and 1 Museum

Street, Holborn, WC1A 1JP

Your job number: JJ2084

Your order number: P3094JJ2084.29

Report Issue Number: 1

Samples Analysed: 1 soil sample

Samples received on: 28/06/2021

Samples instructed on/

Analysis started on:

Analysis completed by: 06/07/2021

28/06/2021

Report issued on: 06/07/2021

Signed:

Karol na Marek PL Head of Reporting Team

For & on behalf of i2 Analytical Ltd.

- 4 weeks from reporting

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

leachates - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Your Order No: P3094JJ2084.29

Lab Sample Number	1918689				
Sample Reference	WS108				
Sample Number	None Supplied				
Depth (m)					2.80
Date Sampled				Deviating	
Time Taken					None Supplied
Analytical Parameter (Soil Analysis)		Units	Limit of detection	Accreditation Status	
Stone Content		%	0.1	NONE	< 0.1
Moisture Content		%	0.01	NONE	19
Total mass of sample received		kg	0.001	NONE	0.50

General Inorganics

General Inorganies				
pH - Automated	pH Units	N/A	MCERTS	8.5
Total Sulphate as SO4	%	0.005	MCERTS	0.179
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.66
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	664
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	9.1
Total Sulphur	%	0.005	MCERTS	0.424
Ammoniacal Nitrogen as NH4	mg/kg	0.5	MCERTS	< 0.5
Ammonium as NH4 (10:1 leachate equivalent)	mg/l	0.05	MCERTS	< 0.05
Water Soluble Nitrate (2:1) as NO3	mg/kg	2	NONE	2.5
Water Soluble Nitrate (2:1) as NO3 (leachate equivalent)	mg/l	5	NONE	< 5.0

Heavy Metals / Metalloids

Magnesium (water soluble)		5	NONE	33
Magnesium (leachate equivalent)	mg/l	2.5	NONE	16

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1918689	WS108	None Supplied	2.8	Brown loam and clay.

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Nitrate, water soluble, in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Ammonium as NH4 in soil	Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method, 10:1 water extraction.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L082-PL	W	MCERTS
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Water Soluble Nitrate (leachate equivalent)	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	D	NONE
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-83645

Project / Site name: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

93	Sample ID	Other III			Sample Deviation	Test Name	Test Ref	Test Deviation
	WS108	None Supplied	S	1918689	a	None Supplied	None Supplied	None Supplied

Josephine Whitehead

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

22/04/2021

22/04/2021

Analytical Report Number: 21-71080

Replaces Analytical Report Number: 21-71080, issue no. 1 Client sampling date amended.

Project / Site name: West Central Street and 1 Museum

Street , Holborn, WC1A 1JP

Your job number: JJ2084

.....

Your order number: P3094JJ2084.20

Report Issue Number: 2

Samples Analysed: 7 soil samples

Samples received on:

Samples instructed on/ Analysis started on:

Analysis completed by: 12/05/2021

Report issued on: 28/06/2021

Signed:

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and 1 Museum Street , Holborn, WC1A 1JP

Your Order No: P3094JJ2084.20

Lab Sample Number				1850053	1850054	1850055	1850056	1850057
Sample Reference				BH103	BH103	BH103	BH103	BH103
Sample Number				None Supplied				
Depth (m)	13.00-13.45	1.00	2.50	5.50	8.50			
Date Sampled		12/04/2021	12/04/2021	12/04/2021	12/04/2021	12/04/2021		
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	21	11	10	6.9	21
Total mass of sample received	kg	0.001	NONE	0.50	0.50	0.50	0.50	0.50

General Inorganics

pH - Automated		N/A	MCERTS	8.5	9.8	10.3	8.2	8.1
Total Sulphate as SO4		0.005	MCERTS	0.074	0.385	0.309	0.021	0.075
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.22	0.68	0.58	0.033	0.26
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	16	48	37	4.3	32
Total Sulphur	%	0.005	MCERTS	1.02	0.160	0.113	0.020	0.404
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	37	< 5.0	8.3	6.5	35
Magnesium (leachate equivalent)	mg/l	2.5	NONE	18	< 2.5	4.2	3.2	17

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \text{Insufficient Sample}$

Project / Site name: West Central Street and 1 Museum Street , Holborn, WC1A

Your Order No: P3094JJ2084.20

Lab Sample Number				1850058	1850059
Sample Reference				BH103	BH103
Sample Number	None Supplied	None Supplied			
Depth (m)	19.50	25.00			
Date Sampled	13/04/2021	13/04/2021			
Time Taken	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status		
Stone Content	%	0.1	NONE	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	20
Total mass of sample received	kg	0.001	NONE	0.50	0.50

General Inorganics

pH - Automated	pH Units	N/A	MCERTS	8.3	8.5
Total Sulphate as SO4	%	0.005	MCERTS	0.143	0.313
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.64	0.52
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	37	35
Total Sulphur	%	0.005	MCERTS	1.49	0.461
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	74	60
Magnesium (leachate equivalent)	mg/l	2.5	NONE	37	30

U/S = Unsuitable Sample I/S = Insufficient Sample

Project / Site name: West Central Street and 1 Museum Street , Holborn, WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1850053	BH103	None Supplied	13.00-13.45	Brown clay.
1850054	BH103	None Supplied	1	Brown loam and clay with gravel and vegetation.
1850055	BH103	None Supplied	2.5	Brown clay and loam with gravel and vegetation.
1850056	BH103	None Supplied	5.5	Brown sand with gravel.
1850057	BH103	None Supplied	8.5	Brown clay.
1850058	BH103	None Supplied	19.5	Brown clay.
1850059	BH103	None Supplied	25	Brown clay.

Project / Site name: West Central Street and 1 Museum Street , Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction.	L078-PL	w	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Josephine Whitehead

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park **UB11 1BD**

e: Jomas Associates -

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts. **WD18 8YS**

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-79225

Replaces Analytical Report Number: 21-79225, issue no. 1 Client references/information amended.

Project / Site name: West Central Street and 1 Museum St,

Holburn, WC1A 1JP

Your job number: JJ2084

Your order number: P3094JJ2084 25

Report Issue Number:

Samples Analysed: 4 soil samples Samples received on: 18/05/2021

28/05/2021

Samples instructed on/ Analysis started on:

Analysis completed by: 28/07/2021

Report issued on: 28/07/2021

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

- 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and 1 Museum St, Holburn, WC1A 1JP

Your Order No: P3094JJ2084 25

Lab Sample Number				1893083	1893084	1893085	1893086
Sample Reference				BH102A	BH102A	BH102A	BH102A
Sample Number		None Supplied	None Supplied	None Supplied	None Supplied		
Depth (m)		1.00	5.00	11.00	16.00		
Date Sampled	28/05/2021	28/05/2021	28/05/2021	28/05/2021			
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	20	18	19	19
Total mass of sample received	kg	0.001	NONE	1.0	1.0	1.0	1.0

General Inorganics

General Inorganies							
pH - Automated	pH Units	N/A	MCERTS	8.9	8.6	8.6	8.7
Total Sulphate as SO4	%	0.005	MCERTS	0.097	0.062	0.059	0.065
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.48	0.30	0.30	0.34
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	mg/l	1.25	MCERTS	481	300	303	336
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	25	23	28	22
Total Sulphur	%	0.005	MCERTS	0.315	0.274	0.339	0.359
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	< 2.0	< 2.0	< 2.0	< 2.0

Heavy Metals / Metalloids

Magnesium (water soluble)	mg/kg	5	NONE	19	39	40	43
Magnesium (leachate equivalent)	mg/l	2.5	NONE	9.7	19	20	22

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Project / Site name: West Central Street and 1 Museum St, Holburn, WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1893083	BH102A	None Supplied	1	Brown clay.
1893084	BH102A	None Supplied	5	Brown clay.
1893085	BH102A	None Supplied	11	Brown clay.
1893086	BH102A	None Supplied	16	Brown clay.

Project / Site name: West Central Street and 1 Museum St, Holburn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES.	In-house method based on TRL 447	L038-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total Sulphate in soil as %	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Total Sulphur in soil as %	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry.	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN-82/C-04579.08, 2:1 extraction.	L078-PL	w	NONE
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Sulphate, water soluble, in soil	Determination of water soluble sulphate by ICP-OES. Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).	In house method.	L038-PL	D	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Josephine Whitehead

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-69420

Project / Site name: West Central Street and 1 Museum Samples received on: 19/04/2021

Street. Holborn WC1A 1JP

Your job number: JJ2084 Samples instructed on/ 19/04/2021

Analysis started on:

Your order number: P3094JJ2084.19 Analysis completed by: 27/04/2021

Report Issue Number: 1 **Report issued on:** 27/04/2021

Samples Analysed: 5 10:1 WAC samples

eszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are : soils - 4 weeks from reporting

leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies.

An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-69420						
				Cliant	101454550	^		
				Client:	JOMASASSO	<u> </u>		
Location	West Central	Street and 1 Museum Stre	eet. Holborn WC1A 1JP					
Lab Reference (Sample Number)		1840755 / 1840756		Landfill	Waste Acceptant	e Criteria		
Sampling Date		15/04/2021)		Limits Stable Non-			
Sample ID		BH103			reactive			
Depth (m)		0.40		Inert Waste Landfill Waste in non-hazardous Landfill		Hazardous Waste Landfill		
Solid Waste Analysis								
ГОС (%)**	0.2			3%	5%	6%		
Loss on Ignition (%) **	1.3					10%		
BTEX (µg/kg) **	< 10			6000				
Sum of PCBs (mg/kg) **	< 0.007			1				
Mineral Oil (mg/kg)	< 10			500	-			
Total PAH (WAC-17) (mg/kg)	15.1			100				
pH (units)**	10.6				>6			
Acid Neutralisation Capacity (mol / kg)	60				To be evaluated	To be evaluated		
Eluate Analysis	10:1		10:1	Limit values for compliance leaching test				
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/k				
Arsenic *	0.0025		0.0240	0.5	2	25		
Barium *	0.0143		0.137	20	100	300		
Cadmium *	< 0.0001		< 0.0008	0.04	1	5		
Chromium *	0.0047		0.045	0.5	10	70		
Copper *	0.0072		0.069	2	50	100		
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2		
Molybdenum *	0.0040		0.0385	0.5	10	30		
Nickel *	0.0013		0.013	0.4	10	40		
Lead *	0.0020		0.019	0.5	10	50		
Antimony *	< 0.0017		< 0.017	0.06	0.7	5		
Selenium *	< 0.0040		< 0.040	0.1	0.5	7		
Zinc *	0.0052		0.050	4	50	200		
Chloride * Fluoride	2.5 0.13		24 1.2	800 10	15000 150	25000 500		
Sulphate *	44		420	1000	20000	50000		
TDS*	190		1800	4000	60000	100000		
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-		
DOC	4.39		42.0	500	800	1000		
Leach Test Information								
Stone Content (%)	< 0.1							
Sample Mass (kg)	1.8				 			
Dry Matter (%)	90				ļ			
Moisture (%)	10							
Results are expressed on a dry weight basis, after correction for mo	isture content whe	e applicable.		*= UKAS accredit	ed (liquid eluate ana	lysis only)		

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical		21-69420					
керогі но:		21-09420					
				Client:	JOMASASSO	C	
				Cilcita	JOHAJAJJO		
Location	West Central St	reet and 1 Museum Street. H	olborn WC1A 1JP				
				Landfill	Waste Acceptance	e Criteria	
Lab Reference (Sample Number)		1840757 / 1840758			Limits		
Sampling Date		15/04/2021			Stable Non-		
Sample ID		BH103			reactive		
Depth (m)		1.00		Inert Waste Landfill Waste in n hazardoi Landfill Landfil		Hazardous Waste Landfill	
Solid Waste Analysis							
TOC (%)**	1.6			3%	5%	6%	
Loss on Ignition (%) **	3.3					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	140			500			
Total PAH (WAC-17) (mg/kg)	16.4			100			
pH (units)**	10.3			1	>6		
Acid Neutralisation Capacity (mol / kg)	74				To be evaluated	To be evaluated	
Eluate Analysis	40.4		40.4	Limit value	es for compliance le	eaching test	
Eludic Allulysis	10:1		10:1				
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
procedure)	mg/l		mg/kg				
Arsenic *	0.0051		0.0497	0.5	2	25	
Barium *	0.0143		0.138	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0036		0.035	0.5	10	70	
Copper *	0.011		0.10	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	0.0053		0.0512	0.5	10	30	
Nickel *	0.0019		0.018	0.4	10	40	
Lead *	0.0033		0.032	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0055		0.053	4	50	200	
Chloride *	15		140	800	15000	25000	
Fluoride	0.27		2.6	10	150	500	
Sulphate *	170		1600	1000	20000	50000	
TDS*	300		2900	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	6.45		62.2	500	800	1000	
Leach Test Information			1				
Stone Content (%)	< 0.1		1				
Sample Mass (kg)	1.7						
Dry Matter (%)	90						
Moisture (%)	10						
·							
		+	1		1		
	l	l					

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical		21-69420					
керогі но:		21-09420					
				Client:	JOMASASSO	С	
Location	West Central S	reet and 1 Museum Street. H	olborn WC1A 1JP				
Lab Reference (Sample Number)				Landfill	Waste Acceptano	e Criteria	
		1840759 / 1840760			Limits		
Sampling Date		15/04/2021			Stable Non- reactive		
Sample ID		BH103		Inert Waste	HAZARDOUS	Hazardous	
Depth (m)		1.75	Landfill	waste in non- hazardous Landfill	Waste Landfill		
Solid Waste Analysis							
TOC (%)**	0.5			3%	5%	6%	
Loss on Ignition (%) **	1.8			1		10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	120			500			
Total PAH (WAC-17) (mg/kg)	6.38			100			
pH (units)**	10.8			-	>6		
Acid Neutralisation Capacity (mol / kg)	73				To be evaluated	To be evaluated	
Eluate Analysis	40.4		40.4	Limit value	es for compliance le	eaching test	
Eludic Allulysis	10:1		10:1				
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
procedure)	mg/l		mg/kg				
Arsenic *	0.0061		0.0549	0.5	2	25	
Barium *	0.0114		0.103	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0049		0.044	0.5	10	70	
Copper *	0.013		0.12	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	0.0073		0.0658	0.5	10	30	
Nickel *	0.0024		0.022	0.4	10	40	
Lead *	0.0035		0.032	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0056		0.051	4	50	200	
Chloride *	7.0		64	800	15000	25000	
Fluoride	0.21		1.9	10	150	500	
Sulphate *	63		570	1000	20000	50000	
TDS*	280		2500	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	5.47		49.6	500	800	1000	
Leach Test Information							
				_			
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.5						
Dry Matter (%)	91						
Moisture (%)	9.2						
					1		

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:		21-69420					
				Client:	JOMASASSO	·C	
				Cileiti	JUMASASSU		
Location	West Central S	treet and 1 Museum Street.	Holborn WC1A 1JP				
Lab Reference (Sample Number)		4040764 / 4040762		Landfill	Waste Acceptant	ce Criteria	
		1840761 / 1840762			Limits Stable Non-		
Sampling Date		15/04/2021 WS103			reactive		
Sample ID Depth (m)		1.95		Inert Waste HAZARDOUS waste in non-hazardous		Hazardous Waste Landfil	
Solid Waste Analysis					Landfill		
TOC (%)**	0.1			3%	5%	6%	
oss on Ignition (%) **	1.2					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	< 10			500			
Fotal PAH (WAC-17) (mg/kg)	< 0.85			100			
oH (units)**	9.1				>6		
Acid Neutralisation Capacity (mol / kg)	5.7				To be evaluated	To be evaluate	
luate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test	
•	10.1		10.1	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using 65 EN 12457-2 at L/5 10 J/kg (mg/kg			
Arsenic *	0.0038		0.0359	0.5	2	25	
Barium *	0.0197		0.187	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0009		0.0085	0.5	10	70	
Copper *	0.0031		0.030	2	50	100	
1 dercury *	< 0.0005		< 0.0050	0.01	0.2	2	
1olybdenum *	0.0049		0.0467	0.5	10	30	
Nickel *	0.0024		0.023	0.4	10	40	
ead *	< 0.0010		< 0.010	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5 7	
Selenium *	< 0.0040		< 0.040	0.1	0.5	200	
Zinc * Chloride *	0.0020 1.1		0.019	4 800	50 15000	25000	
Pluoride	0.13		1.3	10	15000	500	
Sulphate *	6.5		62	1000	20000	50000	
TDS*	58		550	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
poc	8.57		81.2	500	800	1000	
each Test Information							
Stone Content (%)	< 0.1				ļ		
ample Mass (kg)	1.2						
Ory Matter (%)	96						
Noisture (%)	3.6						
esults are expressed on a dry weight basis, after correction for mo	isture content wher	e applicable.		*= UKAS accredit	ed (liquid eluate ana	alysis only)	

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical	Results	21-69420					
керогі но:		21-09420					
				Client:	JOMASASSO	С	
Location	West Central	Street and 1 Museum Street.	Holborn WC1A 1JP				
Lab Reference (Sample Number)				Landfill	Waste Acceptano	e Criteria	
		1840763 / 1840764			Limits		
Sampling Date		15/04/2021			Stable Non- reactive		
Sample ID		WS104		Inert Waste	HAZARDOUS	Hazardous	
Depth (m)		0.50	Landfill	waste in non- hazardous Landfill	Waste Landfill		
Solid Waste Analysis							
FOC (%)**	0.4			3%	5%	6%	
Loss on Ignition (%) **	1.4					10%	
BTEX (µg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg)	< 0.85			100			
pH (units)**	8.7				>6		
Acid Neutralisation Capacity (mol / kg)	7.7				To be evaluated	To be evaluated	
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test	
•	10.1		10.1				
(BS EN 12457 - 2 preparation utilising end over end leaching	mg/l		mg/kg	using BS EN 12457-2 at L/S 10 l/kg (mg/kg)			
procedure)	ilig/i		mg/kg				
Arsenic *	0.0022		0.0209	0.5	2	25	
Barium *	0.0135		0.130	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0020		0.020	0.5	10	70	
Copper *	0.0059		0.057	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	0.0054		0.0521	0.5	10	30	
Nickel *	0.0026		0.025	0.4	10	40	
Lead *	0.0087		0.083	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0094		0.091	4	50	200	
Chloride *	5.1		49	800	15000	25000	
Fluoride	0.057		0.54	10	150	500	
Sulphate *	120		1200	1000	20000	50000	
TDS*	160		1500	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	7.17		69.0	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.7						
Dry Matter (%)	96						
Moisture (%)	3.7						
					L		
Results are expressed on a dry weight basis, after correction for mo	isture content when	e applicable.		*= UKAS accredit	ed (liquid eluate ana	ilysis only)	

Project / Site name: West Central Street and 1 Museum Street. Holborn WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1840755	BH103	None Supplied	0.4	Brown sand with gravel.
1840757	BH103	None Supplied	1	Brown clay and sand with gravel.
1840759	BH103	None Supplied	1.75	Brown clay and sand with gravel.
1840761	WS103	None Supplied	1.95	Brown clay and sand with gravel.
1840763	WS104	None Supplied	0.5	Brown clay and sand with gravel.

Project / Site name: West Central Street and 1 Museum Street. Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace.	In house method.	L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS.	In-house method based on USEPA 8082	L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: West Central Street and 1 Museum Street. Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

e: reception@i2analytical.com

Analytical Report Number: 21-78544

Project / Site name: West Central Street and 1 Museum

Street Holborn WC1A 1JP

Your job number: JJ2084

Analysis st:

Analysis started on:

Your order number: P3094JJ2084 26

Report Issue Number: 1

Samples Analysed: 3 10:1 WAC samples

Samples received on: 27/05/2021

Samples instructed on/ 01/06/2021

Analysis completed by: 08/06/2021

Report issued on: 08/06/2021

Joanna Wawrzeczko Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-78544					
				Client:	JOMASASSO	С	
	W	eet and 1 Museum Street H					
Location	West Central Str	eet and 1 Museum Street H	olborn WC1A 1JP	Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		1889913 / 1889914		Landfill	Limits	e Criteria	
Sampling Date		<u></u>			Stable Non-		
Sample ID		WS101 ES			reactive		
Depth (m)		1.00	Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfill		
Solid Waste Analysis							
TOC (%)**	< 0.1			3%	5%	6%	
Loss on Ignition (%) **	2.5					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	47			500			
Total PAH (WAC-17) (mg/kg)	< 0.85			100			
oH (units)**	11.8				>6		
Acid Neutralisation Capacity (mol / kg)	200				To be evaluated	To be evaluated	
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test	
BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l		mg/kg	using BS EN	EN 12457-2 at L/S 10 l/kg (mg/kg)		
*	-						
Arsenic *	< 0.0010		< 0.0100	0.5	2	25	
Barium *	0.0343		0.325	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1 10	5	
Chromium * Copper *	0.013 0.012		0.13 0.11	0.5 2	50	70 100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0003		< 0.0040	0.01	10	30	
Vickel *	0.0017		0.016	0.4	10	40	
Lead *	< 0.0010		< 0.010	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0038		0.036	4	50	200	
Chloride *	15		140	800	15000	25000	
Fluoride	0.14		1.3	10	150	500	
Sulphate *	13		120	1000	20000	50000	
TDS*	680		6400	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	3.85		36.4	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.7						
Ory Matter (%)	94						
Moisture (%)	5.8						
Results are expressed on a dry weight basis, after correction for n	oicture content where	applicable		*= TIKAS accredit	ed (liquid eluate an	alveis only)	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-78544					
				Client:	JOMASASSO	С	
Location	Wast Control Str	eet and 1 Museum Street H	olborn WC1A 13D				
Location	West Central Str	eet and 1 Museum Street no	DIDOMI WCIA IJP	Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		1889915 / 1889916		Lunum	Limits	e criteria	
Sampling Date					Stable Non-		
Sample ID		WS107 ES		Inert Waste	reactive HAZARDOUS	Hazardous	
Depth (m)		2.40	Landfill	waste in non- hazardous Landfill	Waste Landfill		
Solid Waste Analysis							
TOC (%)**	0.7			3%	5%	6%	
Loss on Ignition (%) **	4.1					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	< 10			500			
Total PAH (WAC-17) (mg/kg)	< 0.85			100			
pH (units)**	8.2				>6		
Acid Neutralisation Capacity (mol / kg)	2.1				To be evaluated	To be evaluated	
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN	12457-2 at L/S 10	l/kg (mg/kg)	
procedure)	mg/l		mg/kg				
Arsenic *	0.0020		0.0154	0.5	2	25	
Barium *	0.0274		0.214	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	< 0.0004		< 0.0040	0.5	10	70	
Copper *	0.0057		0.045	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	0.0093		0.0723	0.5	10	30	
Nickel *	0.0043		0.033	0.4	10	40	
Lead *	< 0.0010		< 0.010	0.5	10	50	
Antimony *	< 0.0017		< 0.017	0.06	0.7	5	
Selenium *	0.019		0.15	0.1	0.5	7	
Zinc *	0.013		0.099	4	50	200	
Chloride *	12		91	800	15000	25000	
Fluoride Sulphate *	0.52 74		4.1 580	10 1000	150 20000	500 50000	
TDS*	130		1000	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	6.70		52.3	500	800	1000	
	0.70		32.3	300	000	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.80						
Ory Matter (%)	84						
Moisture (%)	16			· ·			
			+				
				*= UKAS accredit	1	L	

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical Report No:		21-78544					
7							
				Client:	JOMASASSO	С	
Location	Woot Control St	reet and 1 Museum Street H	olborn WC1A 11D				
Location	west central s	reet and I Museum Street n	DIDOIN WCIA 13F	Landfill Waste Acceptance Criteria			
Lab Reference (Sample Number)		1889917 / 1889918			Limits		
Sampling Date					Stable Non-		
Sample ID		WS110 ES		Inert Waste	reactive HAZARDOUS	Hazardous	
Depth (m)		2.30		Landfill	waste in non- hazardous Landfill	Waste Landfill	
Solid Waste Analysis							
TOC (%)**	0.3			3%	5%	6%	
Loss on Ignition (%) **	1.9					10%	
BTEX (μg/kg) **	< 10			6000			
Sum of PCBs (mg/kg) **	< 0.007			1			
Mineral Oil (mg/kg)	40			500			
Total PAH (WAC-17) (mg/kg)	5.69		-	100			
pH (units)**	8.6				>6		
Acid Neutralisation Capacity (mol / kg)	15			-	To be evaluated	To be evaluated	
Eluate Analysis	10:1		10:1	Limit value	es for compliance le	eaching test	
(BS EN 12457 - 2 preparation utilising end over end leaching				using BS EN	12457-2 at L/S 10	l/kg (mg/kg)	
procedure)	mg/l		mg/kg				
Arsenic *	0.0046		0.0385	0.5	2	25	
Barium *	0.0300		0.252	20	100	300	
Cadmium *	< 0.0001		< 0.0008	0.04	1	5	
Chromium *	0.0043		0.036	0.5	10	70	
Copper *	0.0093		0.078	2	50	100	
Mercury *	< 0.0005		< 0.0050	0.01	0.2	2	
Molybdenum *	< 0.0004		< 0.0040	0.5	10	30	
Nickel *	0.0019		0.016	0.4	10	40	
Lead *	0.0018		0.016	0.5	10	50	
Antimony *	0.0057		0.048	0.06	0.7	5	
Selenium *	< 0.0040		< 0.040	0.1	0.5	7	
Zinc *	0.0048		0.041	4	50	200	
Chloride *	2.8		24	800	15000	25000	
Fluoride Sulphate *	0.17 770		1.4 6400	10 1000	150 20000	500 50000	
TDS*	610		5200	4000	60000	100000	
Phenol Index (Monohydric Phenols) *	< 0.010		< 0.10	1	-	-	
DOC	3.41		28.6	500	800	1000	
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	0.90						
Dry Matter (%)	84						
Moisture (%)	16						
-							
					ļ		
					1		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
1889913	WS101	ES	1	Brown sandy gravel.**
1889915	WS107	ES	2.4	Grey clay.
1889917	WS110	ES	2.3	Grey sandy gravel.**

^{**}Non MCERTS Matrix

Analytical Report Number : 21-78544

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.	In-house method based on BSEN12457-2.	L043-PL	W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	on ignition of soil @ 450oC Determination of loss on ignition in soil by gravimetrically In house method. with the sample being ignited in a muffle furnace.		L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID. In-house method with silica gel split/clean up.		L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270. MCERTS accredited except Coronene.	L064-PL	D	NONE
PCB's By GC-MS in soil	By GC-MS in soil Determination of PCB by extraction with acetone and hexane followed by GC-MS. In-hou		L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil"	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	W	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-78544

Project / Site name: West Central Street and 1 Museum Street Holborn WC1A 1JP

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
WS101	ES	L	1889914	a	None Supplied	None Supplied	None Supplied
WS101	ES	S	1889913	a	None Supplied	None Supplied	None Supplied
WS107	ES	L	1889916	a	None Supplied	None Supplied	None Supplied
WS107	ES	S	1889915	a	None Supplied	None Supplied	None Supplied
WS110	ES	L	1889918	a	None Supplied	None Supplied	None Supplied
WS110	ES	S	1889917	a	None Supplied	None Supplied	None Supplied

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park UB11 1BD

e: Jomas Associates -

i2 Analytical Ltd.
7 Woodshots Meadow,
Croxley Green
Business Park,
Watford,
Herts,
WD18 8YS

t: 01923 225404 **f:** 01923 237404

Samples received on:

Analysis completed by:

Report issued on:

e: reception@i2analytical.com

27/05/2021

03/06/2021

10/06/2021

10/06/2021

Analytical Report Number: 21-78968

Project / Site name: West Central Street and I Museum

Street, Holborn, WC1A 1JP

P3094112084 27

Your job number: JJ2084

Your order number:

084 Samples instructed on/ Analysis started on:

7 maryolo otartot

Report Issue Number: 1

Samples Analysed: 10:1 WAC sample

Signed:

Agnieszka Czerwińska Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

Application of uncertainty of measurement would provide a range within which the true result lies.

Excel copies of reports are only valid when accompanied by this PDF certificate.

soils - 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting

waters - 2 weeks from reporting asbestos - 6 months from reporting

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement.

An estimate of measurement uncertainty can be provided on request.

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Report No:	Results	21-78	968				
					Client:	JOMASASSO	C
Location	West Central Street and I Museum Street, Holborn, WC1A 1JP						
Lab Reference (Sample Number)		1891783 /	1891784		Landfill	Waste Acceptano Limits	e Criteria
Sampling Date						Stable Non-	
Sample ID		WS108	B ES		Inert Waste	reactive HAZARDOUS	Hazardous
Depth (m)	1.00				Landfill	waste in non- hazardous Landfill	Waste Landfill
Solid Waste Analysis							
TOC (%)**	1.0				3%	5%	6%
Loss on Ignition (%) **	5.9						10%
BTEX (µg/kg) **	< 10				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg)	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100	-	
pH (units)**	7.9					>6	
Acid Neutralisation Capacity (mol / kg)	2.4					To be evaluated	To be evaluated
Eluate Analysis	10:1			10:1		es for compliance le 1 12457-2 at L/S 10	
(BS EN 12457 - 2 preparation utilising end over end leaching procedure)	mg/l			mg/kg	using bs En	1 12457-2 dt L/5 10	ri/kg (ilig/kg)
Arsenic *	< 0.0010			< 0.0100	0.5	2	25
Barium *	0.0279			0.223	20	100	300
Cadmium *	< 0.0001			< 0.0008	0.04	1	5
Chromium *	0.0006			0.0045	0.5	10	70
Copper *	0.0035			0.028	2	50	100
Mercury *	< 0.0005			< 0.0050	0.01	0.2	2
Molybdenum *	0.0047			0.0374	0.5	10	30
Nickel *	0.0036			0.029	0.4	10	40
Lead *	< 0.0010			< 0.010	0.5	10	50
Antimony *	< 0.0017			< 0.017	0.06	0.7	5
Selenium *	0.012			0.099	0.1	0.5	7
Zinc *	0.0018			0.015	4	50	200
Chloride *	14			110	800	15000	25000
Fluoride	0.26			2.1	10	150	500
Sulphate *	98			780	1000	20000	50000
TDS*	170			1400	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	4.22			33.7	500	800	1000
Leach Test Information							
Stone Content (%)	< 0.1						
Sample Mass (kg)	1.0					<u> </u>	
Dry Matter (%)	78						
Moisture (%)	22						
. 7	-	İ	<u> </u>				
·							
					*= UKAS accredi		

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3.

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, day and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

	Sample umber	Sample Reference	Sample Number	Depth (m)	Sample Description *
18	891783	WS108	ES	1	Brown clay.

Analytical Report Number : 21-78968
Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
BS EN 12457-2 (10:1) Leachate Prep	10:1 (as recieved, moisture adjusted) end over end extraction with water for 24 hours. Eluate filtered prior to analysis.			W	NONE
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe.	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance"	L046-PL	W	NONE
Loss on ignition of soil @ 450oC	on ignition of soil @ 450oC Determination of loss on ignition in soil by gravimetrically In house method. with the sample being ignited in a muffle furnace.		L047-PL	D	MCERTS
Mineral Oil (Soil) C10 - C40	Determination of mineral oil fraction extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method with silica gel split/clean up.	L076-PL	D	NONE
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	W	NONE
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.		L064-PL	D	NONE
PCB's By GC-MS in soil	Determination of PCB by extraction with acetone and hexane followed by GC-MS. In-house		L027-PL	D	MCERTS
pH at 20oC in soil	Determination of pH in soil by addition of water followed by electrometric measurement.	In house method.	L005-PL	W	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
BTEX in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Total BTEX in soil (Poland)	Determination of BTEX in soil by headspace GC-MS.	In-house method based on USEPA8260	L073-PL	W	MCERTS
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil""	L039-PL	W	ISO 17025
Chloride 10:1 WAC	Determination of Chloride colorimetrically by discrete analyser.	In house based on MEWAM Method ISBN 0117516260.	L082-PL	W	ISO 17025
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode.	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination"	L033B-PL	w	ISO 17025
Sulphate 10:1 WAC	Determination of sulphate in leachate by ICP-OES	In-house method based on MEWAM 1986 Methods for the Determination of Metals in Soil""	L039-PL	w	ISO 17025
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by EC probe using a factor of 0.6.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L004-PL	W	ISO 17025

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080-PL	W	ISO 17025
Dissolved organic carbon 10:1 WAC	Determination of dissolved inorganic carbon in leachate by TOC/DOC NDIR Analyser.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037-PL	W	NONE

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-78968

Project / Site name: West Central Street and I Museum Street, Holborn, WC1A 1JP

Sample II	Other ID	Sample Type	•	Sample Deviation	Test Name	Toct Dof	Test Deviation
WS108	ES	L	1891784	a	None Supplied	None Supplied	None Supplied
WS108	ES	S	1891783	a	None Supplied	None Supplied	None Supplied

Accounts

Jomas Associates Ltd Lakeside House 1 Furzeground Way Stockley Park **UB11 1BD**

e: Jomas Associates -

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, **WD18 8YS**

t: 01923 225404 f: 01923 237404

e: reception@i2analytical.com

14/06/2021

14/06/2021

21/06/2021

Analytical Report Number: 21-80882

Project / Site name: West Central Street and 1 Museum

P3094112084.31

Street, Holborn WC1A 1JP

Your job number: JJ2084

Your order number:

Report Issue Number:

Samples instructed on/

Samples received on:

Analysis started on:

Report issued on:

Analysis completed by: 21/06/2021

Samples Analysed: 5 water samples

Dewradio

Signed:

Joanna Wawrzeczko

Technical Reviewer (Reporting Team) For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are:

- 4 weeks from reporting leachates - 2 weeks from reporting waters - 2 weeks from reporting asbestos - 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Sample Reference	Your Order No: P3094JJ2084.31								
None Supplied None Supplie	Lab Sample Number		1901959	1901960	1901961	1901962	1901963		
None Supplied None Supplie	Sample Reference		BH102	BH103	WS105	WS107	WS108		
11/06/2021 11/	Sample Number		None Supplied	None Supplied	None Supplied	None Supplied	None Supplied		
Date Sampled	Depth (m)	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
None Supplied None Supplie	Date Sampled	11/06/2021		11/06/2021		11/06/2021			
Analytical Parameter (Water Analysis) Fig. F									
PH PH Units N/A 150 17025 7.7 7.9 12.2 12.1 8.0	Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status	·				
Electrical Conductivity at 20 °C	General Inorganics								
Total Cyanide (Low Level 1 μg/l) μg/l 1 ISO 17025 1.2 7.2 < 1.0 1.2 < 1.0	рН	pH Units			7.7	7.9	12.2	12.1	8.0
Sulphate as SO4	Electrical Conductivity at 20 °C	μS/cm	10	ISO 17025	1200	920	3700	2100	1300
Armoniacal Nitrogen as NH4	Total Cyanide (Low Level 1 µg/l)	μg/l	1	ISO 17025	1.2	7.2	< 1.0	1.2	< 1.0
Hardness - Total 3/1 1 150 17025 474 404 683 487 459	Sulphate as SO4	μg/l	45	ISO 17025	219000	209000	20000	49200	330000
Total Phenois Total Phenoi	Ammoniacal Nitrogen as NH4	μg/l	15	ISO 17025	30	50	3000	1600	150
Total Phenois Total Phenoi	•								
Total Phenols (monohydric)	Hardness - Total		1	ISO 17025	474	404	683	487	459
Boron (dissolved)	Total Phenois Total Phenois (monohydric)	μg/l	10	ISO 17025	< 10	< 10	< 10	< 10	< 10
Calcium (dissolved) mg/l 0.012 ISO 17025 130 140 270 190 150 Magnesium (dissolved) mg/l 0.005 ISO 17025 34 12 0.020 0.018 23 Arsenic (dissolved) µg/l 0.15 ISO 17025 1.53 2.12 2.27 3.13 2.41 Cadmium (dissolved) µg/l 0.02 ISO 17025 0.02 0.04 0.02 0.02 0.02 0.02 Chromium (dissolved) µg/l 0.2 ISO 17025 1.1 1.0 1.9 1.0 0.6 Copper (dissolved) µg/l 0.5 ISO 17025 2.9 4.5 31 9.0 2.3 Lead (dissolved) µg/l 0.2 ISO 17025 0.4 0.2 0.4 0.4 0.4 0.2 Mercury (dissolved) µg/l 0.5 ISO 17025 0.4 0.05 0.05 0.05 0.05 Mickel (dissolved) µg/l 0.5 ISO 17025 0.05 0.05 0.05 0.05 0.05 Selenium (dissolved) µg/l 0.6 ISO 17025 2.2 4.2 3.2 4.4 0.9 Zinc (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.6 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 4.0 4.0 4.0 4.0 4.0 4.0 Selenium (dissolved) µg/l 0.5 ISO 17025 4.0 4.	Heavy Metals / Metalloids								
Magnesium (dissolved) mg/l 0.005 ISO 17025 34 12 0.020 0.018 23 Arsenic (dissolved) µg/l 0.15 ISO 17025 1.53 2.12 2.27 3.13 2.41 Cadmium (dissolved) µg/l 0.02 ISO 17025 < 0.02	Boron (dissolved)	μg/l	10	ISO 17025	480	120	38	37	220
Arsenic (dissolved) µg/l 0.15 ISO 17025 1.53 2.12 2.27 3.13 2.41 Cadmium (dissolved) µg/l 0.02 ISO 17025 0.02 0.04 0.02 0.02 0.02 Chromium (dissolved) µg/l 0.2 ISO 17025 1.1 1.0 1.9 1.0 0.6 Copper (dissolved) µg/l 0.5 ISO 17025 2.9 4.5 31 9.0 2.3 Lead (dissolved) µg/l 0.2 ISO 17025 0.4 0.4 0.4 0.4 0.2 Mercury (dissolved) µg/l 0.05 ISO 17025 0.4 0.05 0.05 0.05 0.05 Mickel (dissolved) µg/l 0.5 ISO 17025 0.40 0.4 0.4 0.4 0.0 Mickel (dissolved) µg/l 0.5 ISO 17025 0.05 0.05 0.05 0.05 0.05 Selenium (dissolved) µg/l 0.5 ISO 17025 0.2 4.0 8.4 3.5 2.8 5.7 Selenium (dissolved) µg/l 0.5 ISO 17025 2.2 4.2 3.2 4.4 0.9 Zinc (dissolved) µg/l 0.5 ISO 17025 4.3 7.4 2.3 2.7 4.6 Monoaromatics & Oxygenates Benzene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 Ethylbenzene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 P & m-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10 0.10 0.10 0.10 0.10 O-xylene µg/l 1 ISO 17025 0.10 0.10	Calcium (dissolved)	mg/l	0.012	ISO 17025	130	140	270	190	150
Cadmium (dissolved) µg/l 0.02	Magnesium (dissolved)	mg/l	0.005	ISO 17025	34	12	0.020	0.018	23
Cadmium (dissolved) µg/l 0.02						•			8
Cadmium (dissolved) µg/l 0.02 ISO 17025 < 0.02 0.04 < 0.02 < 0.02 < 0.02 Chromium (dissolved) µg/l 0.2 ISO 17025 1.1 1.0 1.9 1.0 0.6 Copper (dissolved) µg/l 0.5 ISO 17025 2.9 4.5 31 9.0 2.3 Lead (dissolved) µg/l 0.2 ISO 17025 0.4 < 0.2	Arsenic (dissolved)	μg/l	0.15	ISO 17025	1.53	2.12	2.27	3.13	2.41
Chromium (dissolved)	, ,		0.02	ISO 17025					
Lead (dissolved) Lead (disso	,								
Lead (dissolved)	,		0.5	ISO 17025					
Mercury (dissolved)	,, ,		0.2	ISO 17025					
Nickel (dissolved) Nickel	,		0.05	ISO 17025		4			
Selenium (dissolved) Jug/l 0.6 ISO 17025 2.2 4.2 3.2 4.4 0.9 Zinc (dissolved) Jug/l 0.5 ISO 17025 4.3 7.4 2.3 2.7 4.6 Monoaromatics & Oxygenates	, ,					4			
Monoaromatics & Oxygenates Mg/l 0.5 ISO 17025 4.3 7.4 2.3 2.7 4.6	,								
Monoaromatics & Oxygenates Benzene µg/l 1 ISO 17025 < 1.0	· ·					4			
Toluene	Monoaromatics & Oxygenates	13/			т.5	7.1	2.3	2.7	7.0
Ethylbenzene	Benzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 σ-xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Toluene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	Ethylbenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	,	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
		μg/l	1	ISO 17025				< 1.0	< 1.0
		μg/l	1	ISO 17025					

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Your Order No: P3094JJ2084.31								
Lab Sample Number		1901959	1901960	1901961	1901962	1901963		
Sample Reference	Sample Reference					WS105	WS107	WS108
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				11/06/2021	11/06/2021	11/06/2021	11/06/2021	11/06/2021
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
Petroleum Hydrocarbons								
TPH-CWG - Aliphatic >C5 - C6	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C6 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aliphatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C5 - C7	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C7 - C8	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C8 - C10	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >C10 - C12	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C12 - C16	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C16 - C21	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >C21 - C35	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic (C5 - C35)	μg/l	10	NONE	< 10	< 10	< 10	< 10	< 10

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

1901950 1901	1901963 WS108 None Supplied None Supplied 11/06/2021 None Supplied
None Supplied None Supplie	None Supplied None Supplied 11/06/2021
Depth (m) None Supplied	None Supplied 11/06/2021
1,106/2021 1,	11/06/2021
None Supplied None Suppli	
Note	None Supplied
VOCs	
VOCs	
Chioromethane	
Chioroethane	< 1.0
Bromonethane	< 1.0
Vinyl Chloride	< 1.0
Trichlorofluoromethane	< 1.0
1,1-Dichloroethene	< 1.0
1,1,2-Trichloro-1,2,2-trifluoroethane	< 1.0
Cis-1,2-dichloroethene	
MTBE (Methyl Tertiary Butyl Ether) µg/h 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
1,1-Dichloroethane	< 1.0
2,2-Dichloropropane µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <td>< 1.0</td>	< 1.0
1 150 17025 1.0	< 1.0
1,1-1Trichloroethane	< 1.0
1,2-Dichloroethane	< 1.0
1,1-Dichloropropene	< 1.0
Page 1 150 17025 1.0	< 1.0
Part	< 1.0
Tetrachloromethane μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <td>< 1.0</td>	< 1.0
1,2-Dichloropropane µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 Trichloroethene µg/l 1 ISO 17025 < 1.0	< 1.0
Trichloroethene	< 1.0
Dibromomethane μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
Bromodichloromethane	< 1.0
Cis-1,3-dichloropropene	< 1.0
Trans-1,3-dichloropropene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 <	< 1.0
Toluene	< 1.0
1,1,2-Trichloroethane	< 1.0
1 1 1 1 1 1 1 1 1 1	< 1.0
Dibromochloromethane	< 1.0
Dibromochloromethane μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 </td <td>< 1.0</td>	< 1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	< 1.0
Chlorobenzene $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 1,1,1,2-Tetrachloroethane $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Ethylbenzene $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 p & m-Xylene $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Styrene $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Tribromomethane $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 o-Xylene $\mu g / l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	< 1.0
Ethylbenzene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 p & m-Xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Styrene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 Tribromomethane μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 ο-Xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
p & m-Xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 Styrene μg/l 1 ISO 17025 < 1.0	< 1.0
Styrene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 Tribromomethane μg/l 1 ISO 17025 < 1.0	< 1.0
Tribromomethane $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 o-Xylene $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
0-Xylene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
15	< 1.0
	< 1.0
7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	
25067-067/1501120110	< 1.0
5-51105-5115-51	< 1.0
n-Propylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
2-Chlorotoluene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
4-Chlorotoluene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
1,3,5-Trimethylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
tert-Butylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
1,2,4-Trimethylbenzene μg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
sec-Butylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
1,3-Dichlorobenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
p-Isopropyltoluene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
1,2-Dichlorobenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
$1,4$ -Dichlorobenzene $\mu g/l$ 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0
Butylbenzene µg/l 1 ISO 17025 < 1.0 < 1.0 < 1.0 < 1.0	< 1.0

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Your Order No: P3094JJ2084.31									
Lab Sample Number		1901959	1901960	1901961	1901962	1901963			
Sample Reference				BH102	BH103	WS105	WS107	WS108	
Sample Number				None Supplied					
Depth (m)				None Supplied					
Date Sampled				11/06/2021	11/06/2021	11/06/2021	11/06/2021	11/06/2021	
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
1,2-Dibromo-3-chloropropane	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2,4-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Hexachlorobutadiene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
1,2,3-Trichlorobenzene	μg/l	1	ISO 17025	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Your Order No: P3094JJ2084.31 Lab Sample Number		1901959	1901960	1901961	1901962	1901963		
Sample Reference		BH102	BH103	WS105	WS107	WS108		
Sample Number				None Supplied				
Depth (m)				None Supplied				
Date Sampled				11/06/2021	11/06/2021	11/06/2021	11/06/2021	11/06/2021
Time Taken				None Supplied				
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status					
		9						
SVOCs								
Aniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethyl)ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/l μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroisopropyl)ether 2-Methylphenol	μg/I μg/I	0.05	NONE	< 0.05 < 0.05				
Z-Metnyiphenoi Hexachloroethane	μg/I	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Nitrobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Isophorone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Nitrophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4-Dimethylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Bis(2-chloroethoxy)methane	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
1,2,4-Trichlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Naphthalene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloroaniline	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobutadiene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chloro-3-methylphenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,6-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,4,5-Trichlorophenol	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2-Chloronaphthalene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dimethylphthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
2,6-Dinitrotoluene	µg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Acenaphthene	μg/l 	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
2,4-Dinitrotoluene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibenzofuran	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Chlorophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Diethyl phthalate	μg/l	0.05	NONE NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
4-Nitroaniline	μg/l μg/l	0.05	ISO 17025	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene Azobenzene	μg/I	0.01	NONE	< 0.01 < 0.05				
Bromophenyl phenyl ether	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Hexachlorobenzene	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Carbazole	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Dibutyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Anthraquinone	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Butyl benzyl phthalate	μg/l	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Chrysene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(b)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(k)fluoranthene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Benzo(a)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Your Order No: P3094JJ2084.31

VIII - 0.14.4. 1.0.1. 303 133200 1332									
Lab Sample Number	b Sample Number						1901962	1901963	
Sample Reference	BH102	BH103	WS105	WS107	WS108				
Sample Number				None Supplied					
Depth (m)				None Supplied					
Date Sampled				11/06/2021	11/06/2021	11/06/2021	11/06/2021	11/06/2021	
Time Taken				None Supplied					
Analytical Parameter (Water Analysis)	Units	Limit of detection	Accreditation Status						
Indeno(1,2,3-cd)pyrene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Dibenz(a,h)anthracene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
Benzo(ghi)perylene	μg/l	0.01	ISO 17025	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	
3&4-Methylphenol	μg/l	0.1	NONE	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	

 $\label{eq:U/S} \text{U/S} = \text{Unsuitable Sample} \qquad \text{I/S} = \ \text{Insufficient Sample}$

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW)

Notes in water by ICP-MS (dissolved) Determination of medias in water by addification followed by ICP-MS. Accredited Ministers W, ICP-MS. Determination of brown in water by addification followed by ICP-MS. Determination of brown in water by addification followed by ICP-MS. Determination of brown in water by addification followed by ICP-MS. Medias in water by ICP-MS. Medias in water by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Medias in water by ICP-MS. Medias in water by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of medias in water by addification followed by ICP-MS. Determination of hardiness in water by addification followed by ICP-MS. Determination of hardiness in water by addification from column and magnesium. Accredited Metrices SW, OW, PW ICP-MS. Determination of hardiness in water by addification from column and magnesium. Accredited Metrices SW, OW, PW ICP-MS. Determination of plentols in water by addification from column and magnesium. Accredited Metrices SW, OW, PW ICP-MS. Determination of plentols in water by addification from column and magnesium. Accredited Metrices SW, OW, PW ICP-MS. Determination of plentols in water by addification from column and magnesium. Accredited Metrices SW, OW, PW ICP-MS. Determination of plentols in water by addification from column and magnesium. Accredited Metrices SW, OW, PW ICP-MS. Determination of plentols in water by addification followed by CC ICP-MS. Determination of plentols in	Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Metals in water by ICP-OES (dissolved) Determination of metals in water by acidification followed by ICP-OES. Accredited Metrices SW, GW, PW, PVW, [A]. QuiFeZ.P). Determination of metals in water by acidification followed by ICP-OES. Accredited Metrices SW, GW, PW, PVW, [A]. QuiFeZ.P). Determination of electrical conductivity in water by electrometric measurement. Accredited Metrices SW, GW, PW. Total Hardness of water Determination of herdness in waters by calculation from ealturn and magnesium. Accredited Metrices SW, GW, PW Menohydric phenols in water Determination of herdness in waters by calculation from ealturn and magnesium. Accredited Matrices SW, GW, PW Menohydric phenols in water Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW Sulphate in water Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW Semi-volatile organic compounds in water Determination of sulphate in water by acidification followed by GC-OES. Accredited matrices: SW PW GW, PW. Semi-volatile organic compounds in water Determination of sulphate in water by acidification followed by GC-OES. Accredited matrices: SW PW GW, PW. Semi-volatile organic compounds in water Determination of sulphate in water by acidification followed by GC-OES. Accredited matrices: SW PW GW, PW. TIPH-CWG (Waters) Determination of dichloromethane extractable hydrocorbons in water by GC-OES. Speciation by interpretation. Volatile organic compounds in water Determination of volatile organic compounds in water by acidification followed by GC-OES. Accredited matrices: SW PW GW Determination of volatile organic compounds in water by feedback on USEPA8260 Determination of Volatile organic compounds in water by feedback on USEPA8260 Determination of Part of PEES and MTIBE in water by headspace lin-house method based on USEPA8260 L0738-PL W ISO 17025 Remonium as NH4 in water Determination of prin water by determination of folds printing to printing the	Metals in water by ICP-MS (dissolved)	by ICP-MS. Accredited Matrices: SW, GW, PW except	200.8 "for the determination of trace elements in	L012-PL	w	ISO 17025
by ICP-OES. Accredited Matrices SW, GW, PW, PW, PW, (A), Methods for the Determination of Metals in Soil. Cur, Ex. 270. Determination of electrical conductivity in water by electrometric measurement. Accredited Matrices SW, GW, PW. Total Hardness of water Determination of hardness in waters by calculation from colcum and magnesium. Accredited Matrices SW, GW, PW. Determination of phenois in water by continuous flow analyses. Accredited matrices: SW PW GW. But have method based on Examination of Water analyses. Accredited matrices: SW PW GW. But have method based on Examination of Water analyses. Accredited matrices: SW PW GW. But have method based on Examination of Water analyses. Accredited matrices: SW PW GW. But have method based on Examination of Water analyses. Accredited matrices: SW PW GW. But have method based on Examination of Water analyses. Accredited matrices: SW PW GW. But have method based on MEWAM 2006. Determination of sulphate in water by accredited matrices: SW PW GW. But have method based on MEWAM 2006. Determination of sulphate in water by accredited matrices: SW PW GW. But have method based on USEPA 8270. L1039-PL. W. 150 17025. But have method based on USEPA 8270. L1028-PL. W. NONE. THEOWG (Waters) Determination of dichoromethane extractable hydrocarbons in water by certification in dichoromethane extractable hydrocarbons in water by certification in dichoromethane extractable hydrocarbons in water by CP-MS, speciation by interpretation. Determination of violatic organic compounds in water by the adspace of CP-MS. Accredited matrices: SW PW GW. BTEX and MTBE in water (Monoaromatics) Determination of MTBE in water by headspace. GP-MS. Accredited matrices SW PW GW. Determination of Material matrices SW, GW, PW. Determination of total cyanide by distillation followed by GP-MS accredited matrices SW PW GW. Determination of total cyanide by distillation followed by GP-MS accredited matrices SW PW GW. Determination of total cyanide by distillation followed by GP-MS accre	Boron in water		In-house method based on MEWAM	L039-PL	W	ISO 17025
electrometric measurement. Accredited Matrices SW, GW, PW Total Hardness of water Determination of hardness in waters by calculation from calcium and magnesium. Accredited Matrices SW, GW, Re action Monohydric phenols in water Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW Read of Swater SW Commission of Swater SW PW GW Sulphate in water Determination of Sulphate in water by addification followed by ICP-OES. Accredited matrices: SW PW GW, Methods for the Determination of Metals in Soil. PvW. Semi-volatile organic compounds in water Determination of Swater SW PW GW, Methods for the Determination of Metals in Soil. PvW. TPHCWG (Waters) Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation. TPHCWG (Waters) Determination of Volatile organic compounds in water by Commission in water by Commission of Metals organic compounds in water by Commission in water by Commission of Metals organic compounds in water by Commission in water by Commission of Metals organic compounds in water by Commission	Metals in water by ICP-OES (dissolved)	by ICP-OES. Accredited Matrices SW, GW, PW, PrW.(Al,		L039-PL	W	ISO 17025
calcium and magnesium. Accredited Metrices SW, GW, PW. Monohydric phenols in water Determination of phenols in water by continuous flow analyser. Accredited matrices: SW PW GW Sulphate in water Determination of sulphate in water by acidification followed by ICP-OES. Accredited matrices: SW PW GW, PW. Semi-volatile organic compounds in water Determination of semi-volatile organic compounds in water by extraction in dichloromethane carractable hydrocarbons in water by GC-MS, speciation by interpretation. TPHCWG (Waters) Determination of Volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of Volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of Volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of Volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of Volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of Volatile organic compounds in water by GC-MS, Accredited matrices: SW PW GW Determination of Volatile organic compounds in water by interpretation. Determination of SIEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW Determination of Ammonium as NH4 in water Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/pirtorpusside method. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of Data cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of pH in water by electrometric Determination of pH in water by electrometric In house method. Determination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) LOSO-PL W ISO 17025 Determination of pH in water by electrometric In house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	Electrical conductivity at 20oC of water	electrometric measurement. Accredited Matrices SW,	In-house method	L031-PL	w	ISO 17025
analyser. Accredited matrices: SW PW GW 8. Eaton (skalar) 8. Eaton	Total Hardness of water	calcium and magnesium. Accredited Matrices SW, GW,	and Wastewater 20th Edition: Clesceri, Greenberg	L045-PL	w	ISO 17025
followed by ICP-OES. Accredited matrices: SW PW GW, PW. Semi-volatile organic compounds in water Determination of semi-volatile organic compounds in leachate by extraction in dichloromethane followed by GC-MS. Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation. Determination of volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of volatile organic compounds in water by GC-MS, speciation by interpretation. Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW BTEX and MTBE in water (Monoaromatics) Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW Ammonium as NIH4 in water Determination of Ammonium/Ammonia/ Ammoniacal witroopen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW. Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Eaton (Skalar) Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Eaton (Skalar) Determination of PW ater and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Eaton (Skalar)	Monohydric phenols in water		and Wastewater 20th Edition: Clesceri, Greenberg	L080-PL	w	ISO 17025
leachate by extraction in dichloromethane followed by GC-MS. Determination of dichloromethane extractable hydrocarbons in water by GC-MS, speciation by interpretation. Volatile organic compounds in water Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW BTEX and MTBE in water (Monoaromatics) GC-MS. Accredited matrices: SW PW GW In-house method based on USEPA8260 L073B-PL W ISO 17025 In-house method based on USEPA8260 L073B-PL W ISO 17025 Ammonium as NH4 in water Determination of Ammonium/Ammonia/ Ammoniacal Mitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW. Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of PW GC-MS. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of PW GC-MS. Accredited matrices: SW PW GW Determination of PW GC-MS. Accredited matrices: SW PW GW Determination of PW GC-MS. Accredited matrices: SW PW GW Determination of PW GC-MS. Accredited matrices: SW PW GW Determination of PW GC-MS. Accredited matrices: SW PW GW In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) W ISO 17025	Sulphate in water	followed by ICP-OES. Accredited matrices: SW PW GW,		L039-PL	w	ISO 17025
hydrocarbons in water by GC-MS, speciation by interpretation. Volatile organic compounds in water Determination of volatile organic compounds in water by headspace GC-MS. Accredited matrices: SW PW GW BTEX and MTBE in water (Monoaromatics) Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW In-house method based on USEPA8260 L073B-PL W ISO 17025 In-house method based on USEPA8260 L073B-PL W ISO 17025 In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of PH in water by electrometric In house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton L080-PL W ISO 17025 In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton In-house method based on Examinat	Semi-volatile organic compounds in water	leachate by extraction in dichloromethane followed by GC		L102B-PL	W	NONE
headspace GC-MS. Accredited matrices: SW PW GW BTEX and MTBE in water (Monoaromatics) Determination of BTEX and MTBE in water by headspace GC-MS. Accredited matrices: SW PW GW In-house method based on USEPA8260 L073B-PL W ISO 17025 Ammonium as NH4 in water Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW. Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by Gallion: Clesceri, Greenberg & Eaton (Skalar) Determination of pH in water by electrometric In house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	TPHCWG (Waters)	hydrocarbons in water by GC-MS, speciation by	In-house method	L070-PL	W	NONE
Ammonium as NH4 in water Determination of Ammonium/Ammonia/ Ammoniacal Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW. Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation: Clesceri, Greenberg & Eaton (Skalar) Determination of pH in water by electrometric In house method. L082-PL W ISO 17025	Volatile organic compounds in water		In-house method based on USEPA8260	L073B-PL	W	ISO 17025
Nitrogen by the colorimetric salicylate/nitroprusside method. Accredited matrices SW, GW, PW. Low level total cyanide in water Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Determination of total cyanide by distillation followed by colorimetry. Accredited matrices: SW PW GW Eaton (Skalar) In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) W ISO 17025 In house method. L099-PL W ISO 17025	BTEX and MTBE in water (Monoaromatics)		In-house method based on USEPA8260	L073B-PL	w	ISO 17025
colorimetry. Accredited matrices: SW PW GW and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar) pH at 20oC in water (automated) Determination of pH in water by electrometric In house method. L099-PL W ISO 17025	Ammonium as NH4 in water	Nitrogen by the colorimetric salicylate/nitroprusside	and Wastewater 20th Edition: Clesceri, Greenberg	L082-PL	W	ISO 17025
	Low level total cyanide in water		and Wastewater 20th Edition: Clesceri, Greenberg	L080-PL	W	ISO 17025
	pH at 20oC in water (automated)		In house method.	L099-PL	W	ISO 17025

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom. For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Sample Deviation Report

Analytical Report Number: 21-80882

Project / Site name: West Central Street and 1 Museum Street, Holborn WC1A 1JP

Sample ID	Other ID	Sample Type	Lab Sample Number	Sample Deviation	Test Name	Test Ref	Test Deviation
BH102	None Supplied	W	1901959	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH102	None Supplied	W	1901959	С	Ammonium as NH4 in water	L082-PL	С
BH102	None Supplied	W	1901959	С	Electrical conductivity at 20oC of water	L031-PL	С
BH102	None Supplied	W	1901959	С	pH at 20oC in water (automated)	L099-PL	С
BH103	None Supplied	W	1901960	С	Ammoniacal Nitrogen as N in water	L082-PL	С
BH103	None Supplied	W	1901960	С	Ammonium as NH4 in water	L082-PL	С
BH103	None Supplied	W	1901960	С	Electrical conductivity at 20oC of water	L031-PL	С
BH103	None Supplied	W	1901960	С	pH at 20oC in water (automated)	L099-PL	С
WS105	None Supplied	W	1901961	С	Ammoniacal Nitrogen as N in water	L082-PL	С
WS105	None Supplied	W	1901961	С	Ammonium as NH4 in water	L082-PL	С
WS105	None Supplied	W	1901961	С	Electrical conductivity at 20oC of water	L031-PL	С
WS105	None Supplied	W	1901961	С	pH at 20oC in water (automated)	L099-PL	С
WS107	None Supplied	W	1901962	С	Ammoniacal Nitrogen as N in water	L082-PL	С
WS107	None Supplied	W	1901962	С	Ammonium as NH4 in water	L082-PL	С
WS107	None Supplied	W	1901962	С	Electrical conductivity at 20oC of water	L031-PL	С
WS107	None Supplied	W	1901962	С	pH at 20oC in water (automated)	L099-PL	С
WS108	None Supplied	W	1901963	С	Ammoniacal Nitrogen as N in water	L082-PL	С
WS108	None Supplied	W	1901963	С	Ammonium as NH4 in water	L082-PL	С
WS108	None Supplied	W	1901963	С	Electrical conductivity at 20oC of water	L031-PL	С
WS108	None Supplied	W	1901963	С	pH at 20oC in water (automated)	L099-PL	С

APPENDIX 4 – GEOTECHNICAL LABORATORY TEST RESULTS

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

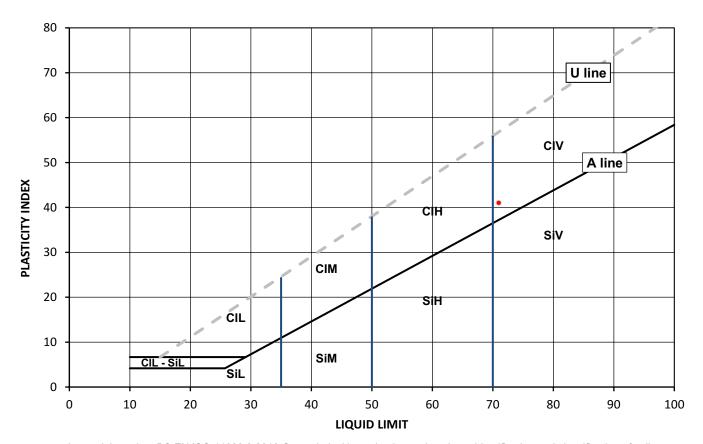
West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 1849953 BH103 Hole No.: Sample Reference: Not Given Soil Description: **Brown CLAY**

Sample Preparation: Tested in natural condition Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021


Date Tested: 04/05/2021 Sampled By: Client

Depth Top [m]: 10.00

Depth Base [m]: 10.45

Sample Type: U

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
27	71	30	41	

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed: Karika

Bursille

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 04/05/2021

Job Number: 21-71065

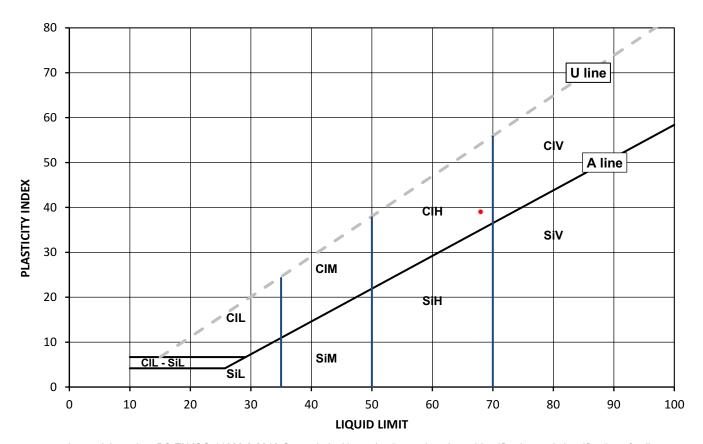
Sampled By: Client

Depth Top [m]: 22.00

Depth Base [m]: 22.45

Sample Type: U

Client Reference: JJ2084


Test Results:

Laboratory Reference: 1849957 BH103 Hole No.: Sample Reference: Not Given

Soil Description: **Brown CLAY**

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
30	68	29	39	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Karika

Bursille

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1 Date Reported: 01/06/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Jomas Associates Ltd Client:

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 04/05/2021

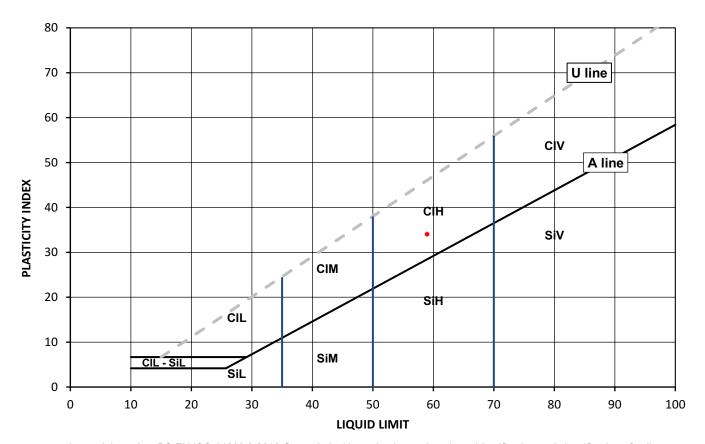
Sampled By: Client

Depth Top [m]: 28.00

Depth Base [m]: 28.45

Sample Type: U

Client Reference: JJ2084


Test Results:

Laboratory Reference: 1849958 BH103 Hole No.: Sample Reference: Not Given

Brown slightly sandy CLAY Soil Description:

Tested in natural condition Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
19	59	25	34	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Karika

Bursille

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Page 1 of 1 Date Reported: 01/06/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Jomas Associates Ltd Client:

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

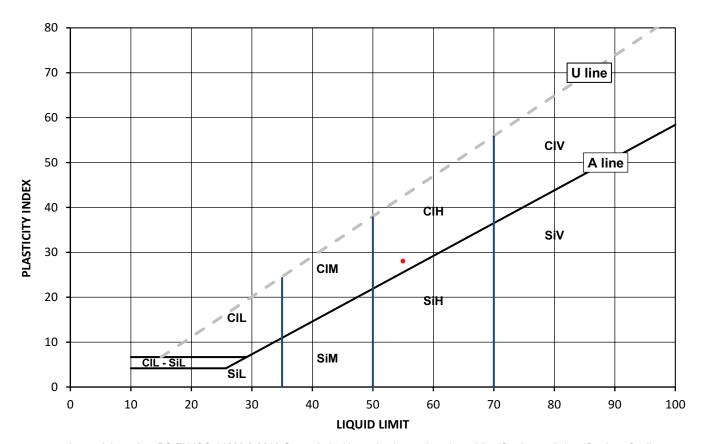
Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 05/05/2021

Sampled By: Client

Client Reference: JJ2084


Test Results:

Laboratory Reference: 1849960 Depth Top [m]: 34.00 BH103 Depth Base [m]: 34.45 Hole No.: Sample Reference: Not Given Sample Type: U

Soil Description: Dark grey slightly gravelly slightly sandy CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
25	55	27	28	91

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed: Karika

Bursille

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: JJ2084

Job Number: 21-71065

Date Sampled: Not Given

Date Received: 22/04/2021

Sampled By: Client

Date Tested: 24/05/2021

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

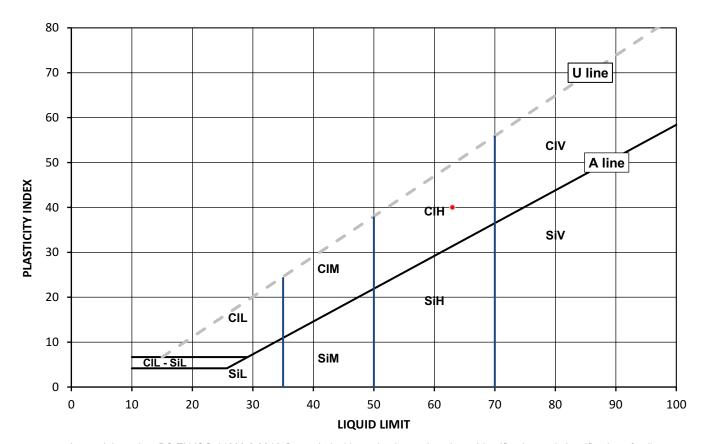
West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results: Laboratory Reference: 1849968

BH103 Hole No.: Sample Reference: Not Given

Soil Description:


Sample Preparation: Tested in natural condition

Dark brown CLAY

Depth Top [m]: 19.50 Depth Base [m]: Not Given

Sample Type: B

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
25	63	23	40	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Karika

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Bursille

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

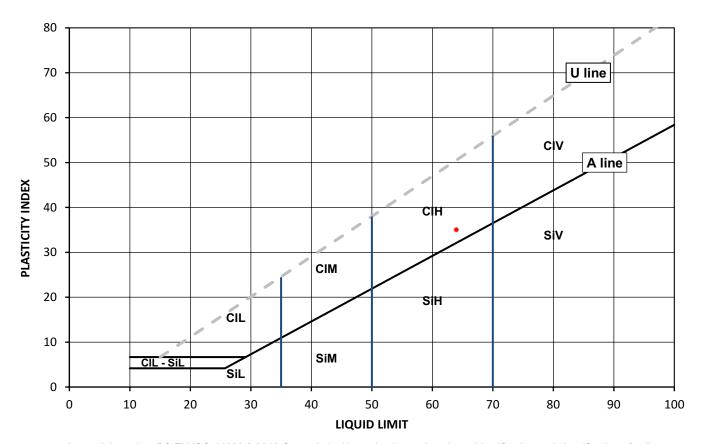
Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference: 1849969 BH103 Hole No.: Sample Reference: Not Given


Soil Description: Brown slightly gravelly CLAY

Tested after washing to remove >425um Sample Preparation:

Client Reference:	JJ2084
Job Number:	21-71065
Date Sampled:	Not Given
Date Received:	22/04/2021
Date Tested:	24/05/2021
Sampled By:	Client

Depth Top [m]: 7.00 Depth Base [m]: Not Given Sample Type: B

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
27	64	29	35	82

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Karika

Monika Janoszek PL Deputy Head of Geotechnical Section

Bursille Page 1 of 1 Date Reported: 01/06/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.4 and 5 Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD

Contact: Josephine Whitehead

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021

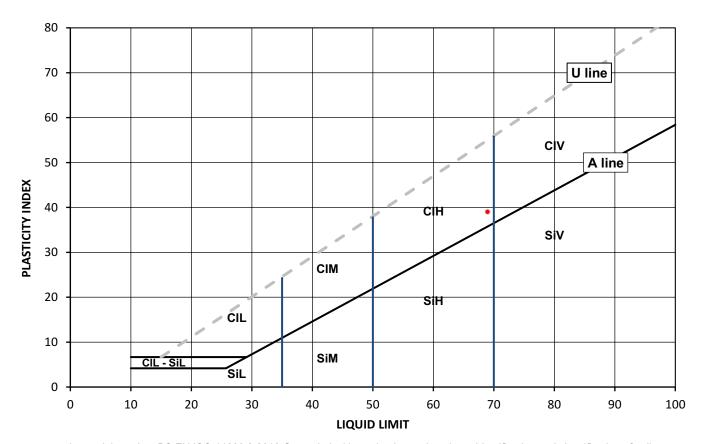
Date Tested: 25/05/2021

Sampled By: Client

Depth Top [m]: 13.50

Sample Type: B

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 1849970 BH103 Hole No.: Sample Reference: Not Given

Soil Description: **Brown CLAY**

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL]%	[Wp]%	[lp] %	BS Test Sieve
27	69	30	39	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed: Karika

Bursille

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Summary of Classification Test Results

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404 Client:

Client Address:

Jomas Associates Ltd

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: JJ2084 Job Number: 21-71065

Date Sampled: Not Given
Date Received: 22/04/2021

Date Tested: 04/05 - 25/05/2021

Sampled By: Client

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test results

			Sample	2				ntent	tent		Atte	rberg			Density		#	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	Moisture Content [W]	Water Conter [W]	% Passing 425um %	WL %	Wp %	lp %	bulk Mg/m3	dry Mg/m3	PD Mg/m3	Total % Porosity#	
1849969	BH103	Not Given	7.00	Not Given	В	Brown slightly gravelly CLAY	Atterberg 1 Point	27	,,	82	64	29	35	,8/5	,		,,	
1849953	BH103	Not Given	10.00	10.45	U	Brown CLAY	Atterberg 1 Point	27		100	71	30	41					
1849970	BH103	Not Given	13.50	Not Given	В	Brown CLAY	Atterberg 1 Point	27		100	69	30	39					
1849968	BH103	Not Given	19.50	Not Given	В	Dark brown CLAY	Atterberg 1 Point	25		100	63	23	40					
1849957	BH103	Not Given	22.00	22.45	U	Brown CLAY	Atterberg 1 Point	30		100	68	29	39					
1849958	BH103	Not Given	28.00	28.45	U	Brown slightly sandy CLAY	Atterberg 1 Point	19		100	59	25	34					
1849960	BH103	Not Given	34.00	34.45	U	Dark grey slightly gravelly slightly sandy CLAY	Atterberg 1 Point	25		91	55	27	28					
											·							_

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Marika Buosible Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Particle Size Distribution

Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client:

Client Address:

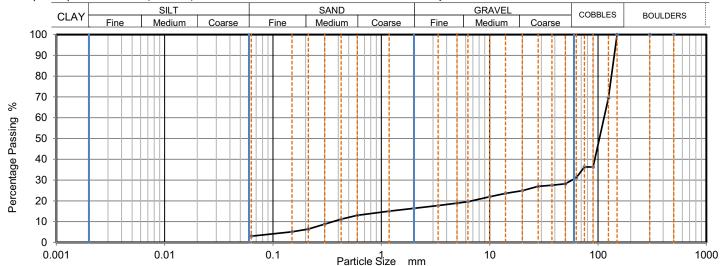
Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 25/05/2021

i2 Analytical Ltd Unit 8 Harrowden Road


Sampled By: Client

Test Results:

Laboratory Reference: 1849962 Depth Top [m]: 1.00 BH103 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly clayey sandy COBBLES with gravel

Sample was quartered, oven dried at 109.0 °C and broken down by hand. Sample Preparation:

Siev	ing	Sedime	ntation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100		
300	100		
150	100		
125	70		
90	36		
75	36		
63	31		
50	28		
37.5	28		
28	27		
20	25		
14	24		
10	22		
6.3	20		
5	19		
3.35	18		
2	16		
1.18	15		
0.6	13		
0.425	11	1	
0.3	9	1	
0.212	6	Î	
0.15	5	7	
0.063	4		

Sample Proportions	% dry mass
Very coarse	69
Gravel	15
Sand	13
Fines <0.063mm	4

Grading Analysis		
D100	mm	300
D60	mm	114
D30	mm	57.9
D10	mm	0.359
Uniformity Coefficient		320
Curvature Coefficient		82

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377: Part 2:1990, clause 9.2

The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3 Remarks:

> Signed: Harika

Bursille

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 01/06/2021

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

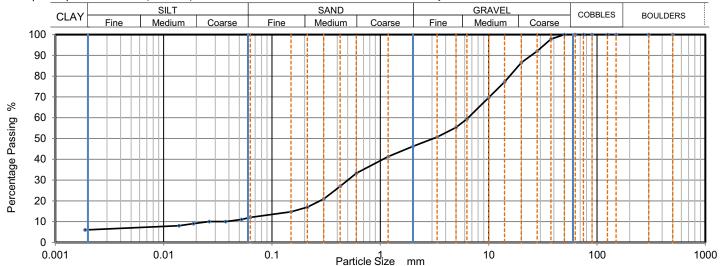
Tested in Accordance with: BS 1377-2: 1990 Jomas Associates Ltd Client:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 25/05/2021 Sampled By: Client


Test Results:

Client Address:

Laboratory Reference: 1849963 Depth Top [m]: 2.50 BH103 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly clayey slightly silty very sandy GRAVEL

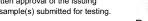
Sample was quartered, oven dried at 106.8 °C and broken down by hand. Sample Preparation:

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	12
300	100	0.0524	11
150	100	0.0372	10
125	100	0.0263	10
90	100	0.0188	9
75	100	0.0138	8
63	100	0.0019	6
50	100		
37.5	98		
28	92		
20	87		
14	77		
10	70		
6.3	59		
5	55		
3.35	51	Particle density	(assumed)
2	46	2.65	Mg/m3
1.18	41		
0.6	33	1	
0.425	27		
0.3	21	1	
0.212	17		
0.15	15	1	
0.063	12		

Sample Proportions	% dry mass			
Very coarse	0			
Gravel	54			
Sand	35			
Silt	5			
Clay	6			

Grading Analysis		
D100	mm	50
D60	mm	6.47
D30	mm	0.501
D10	mm	0.0249
Uniformity Coefficient		260
Curvature Coefficient		1.6

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013


Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed:

Monika Janoszek PL Deputy Head of Geotechnical Section

Karika for and on behalf of i2 Analytical Ltd Bursille Page 1 of 1 Date Reported: 01/06/2021

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Sampled By: Client

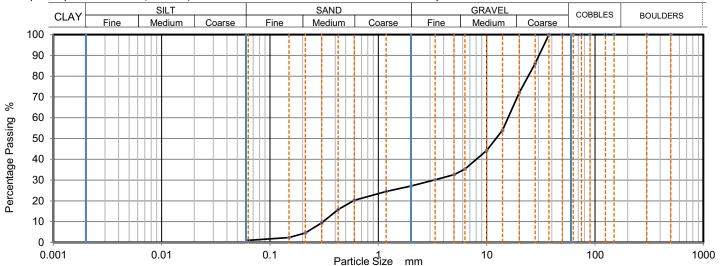
 Client:
 Jomas Associates Ltd
 Client Reference: JJ2084

 Client Address:
 Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD
 Job Number: 21-71065

 Date Sampled: Not Given Date Received: 22/04/2021

 Contact:
 Josephine Whitehead
 Date Tested: 24/05/2021

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP


Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Test Results:

Laboratory Reference:1849964Depth Top [m]: 5.50Hole No.:BH103Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Brown slightly clayey sandy GRAVEL

Sample Preparation: Sample was quartered, oven dried at 107.8 °C and broken down by hand.

Siev	ing	Sedimentation					
Particle Size mm	% Passing	Particle Size mm	% Passing				
500	100						
300	100						
150	100						
125	100						
90	100						
75	100						
63	100						
50	100						
37.5	100						
28	86						
20	72						
14	54						
10	44						
6.3	35						
5	33						
3.35	30						
2	27						
1.18	25						
0.6	20						
0.425	16						
0.3	9						
0.212	5						
0.15	2						
0.063	2	1					

Sample Proportions	% dry mass
Very coarse	0
Gravel	73
Sand	26
Fines <0.063mm	2

Grading Analysis		
D100	mm	37.5
D60	mm	15.8
D30	mm	3.28
D10	mm	0.309
Uniformity Coefficient		51
Curvature Coefficient		2.2

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clause 9.2

Remarks: The material submitted - fails to meet the minimum mass requirements as stated in BS1377 Part 2 Table 3

Signed: Marika Junshile

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 01/06/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

GF 100.20

Particle Size Distribution

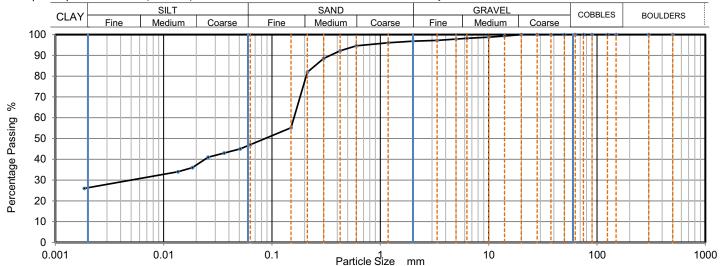
Tested in Accordance with: BS 1377-2: 1990

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd Client Reference: JJ2084
Client Address: Lakeside House, 1 Furzeground Way, Stockley Park, UB11 1BD Client Reference: JJ2084

Lakeside House, 1 Furzeground Way, Date Sampled: Not Given Date Received: 22/04/2021

Contact: Josephine Whitehead Date Tested: 24/05/2021
Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Sampled By: Client


Test Results:

Laboratory Reference:1849965Depth Top [m]: 42.00Hole No.:BH103Depth Base [m]: Not GivenSample Reference:Not GivenSample Type: B

Sample Description: Brown to grey slightly gravelly silty very clayey SAND

Sample Preparation: Sample was quartered, oven dried at 107.8 °C and broken down by hand.

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Siev	ing	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	47
300	100	0.0508	45
150	100	0.0361	43
125	100	0.0257	41
90	100	0.0184	36
75	100	0.0135	34
63	100	0.0018	26
50	100		
37.5	100		
28	100		
20	100		
14	99		
10	99		
6.3	98		
5	98		
3.35	97	Particle density	(assumed)
2	97	2.65	Mg/m3
1.18	96		
0.6	95]	
0.425	92]	
0.3	89	1	
0.212	82		
0.15	55		
0.063	47		

Sample Proportions	% dry mass
Very coarse	0
Gravel	3
Sand	50
Silt	21
Clay	26

Grading Analysis		
D100	mm	20
D60	mm	0.16
D30	mm	0.00511
D10	mm	
Uniformity Coefficient		> 86
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of it? Analytical Ltd.

Date Reported: 01/06/2021

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Bursille

for and on behalf of i2 Analytical Ltd

GF 100.20

Particle Size Distribution

Tested in Accordance with: BS 1377-2: 1990

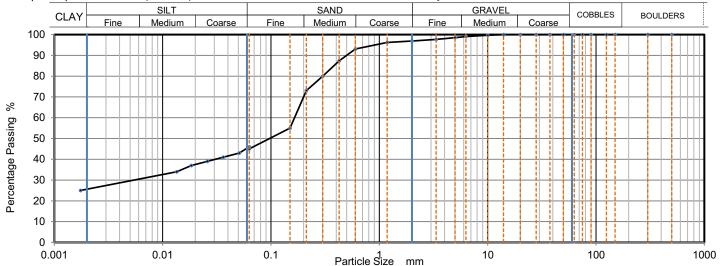
i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client Reference: JJ2084 Client: Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 24/05/2021 Sampled By: Client

Test Results:

Laboratory Reference: 1849966 Depth Top [m]: 45.00 BH103 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly gravelly silty very clayey SAND

Sample was quartered, oven dried at 107.8 °C and broken down by hand. Sample Preparation:

Siev	ring	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	46
300	100	0.0510	43
150	100	0.0363	41
125	100	0.0258	39
90	100	0.0184	37
75	100	0.0135	34
63	100	0.0017	25
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	99		
5	99		
3.35	98	Particle density	(assumed)
2	97	2.65	Mg/m3
1.18	96		
0.6	93]	
0.425	87		
0.3	80	1	
0.212	73		
0.15	55]	
0.063	46		

Sample Proportions	% dry mass
Very coarse	0
Gravel	3
Sand	51
Silt	20
Clay	26

Grading Analysis	3	
D100	mm	14
D60	mm	0.165
D30	mm	0.00518
D10	mm	
Uniformity Coefficient		> 95
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Remarks:

Signed: Karika

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Bursille

Date Reported: 01/06/2021

GF 100.20

Particle Size Distribution

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

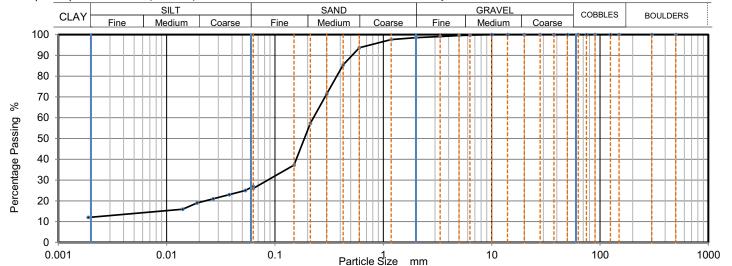
Stockley Park, UB11 1BD

Contact: Josephine Whitehead

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Site Address: Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021

Date Tested: 24/05/2021


Sampled By: Client

Test Results:

Laboratory Reference: 1849967 Depth Top [m]: 48.00 BH103 Depth Base [m]: Not Given Hole No.: Sample Reference: Not Given Sample Type: B

Sample Description: Brown slightly gravelly silty clayey SAND

Sample was quartered, oven dried at 107.8 °C and broken down by hand. Sample Preparation:

Siev	ving	Sedime	entation
Particle Size mm	% Passing	Particle Size mm	% Passing
500	100	0.0630	27
300	100	0.0531	25
150	100	0.0378	23
125	100	0.0269	21
90	100	0.0191	19
75	100	0.0140	16
63	100	0.0019	12
50	100		
37.5	100		
28	100		
20	100		
14	100		
10	100		
6.3	100		
5	100		
3.35	99	Particle density	(assumed)
2	99	2.65	Mg/m3
1.18	98		
0.6	94	1	
0.425	85	1	
0.3	71	1	
0.212	57		
0.15	37	1	
0.063	27		

Sample Proportions	% dry mass
Very coarse	0
Gravel	2
Sand	72
Silt	14
Clay	12

Grading Analysis		
D100	mm	10
D60	mm	0.227
D30	mm	0.0822
D10	mm	
Uniformity Coefficient		> 120
Curvature Coefficient		

Uniformity Coefficient and Coefficient of Curvature calculated in accordance with BS EN ISO 14688-2: 2004 + A1: 2013

Note: Tested in Accordance with BS1377:Part 2:1990, clauses 9.2 and 9.5

Remarks:

Signed: Karika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Bursille Page 1 of 1 Date Reported: 01/06/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 04/05/2021

Client Reference: JJ2084

Sampled By: Client

Depth Top [m]: 16.00

Depth Base [m]: 16.45

Sample Type: U

Test Results:

Laboratory Reference: 1849955 BH103 Hole No.: Sample Reference: Not Given

Sample Description:

Test Number Lenath Diameter

Bulk Density Moisture Content

Dry Density Membrane Correction

	_
1	
200.36	mm
102.93	mm
2.03	Mg/m3
27	%
	_

Brown CLAY

1.60 Mg/m3 0.42 kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness

2.00	%/min
320	kPa
5.1	%


kPa 218 kPa ½(σ1 - σ3)f

Brittle 0.30 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bursille

Date Reported: 01/06/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084
Job Number: 21-71065
Date Sampled: Not Given
Date Received: 22/04/2021
Date Tested: 04/05/2021
Sampled By: Client

Total godino do de de 127 mary node Emilio de, di. 1 Total o do 00, 41 7 7 7 7 7 7

Test Results:

Laboratory Reference: 1849956
Hole No.: BH103
Sample Reference: Not Given

Sample Description:

Test Number Length Diameter Bulk Density Moisture Content

Dry Density

Membrane Correction

1 mm 201.04 mm 103.40 mm 2.01 Mg/m3 23 % 1.63 Mg/m3

Brown CLAY

rane Correction 1.63 Mg/li

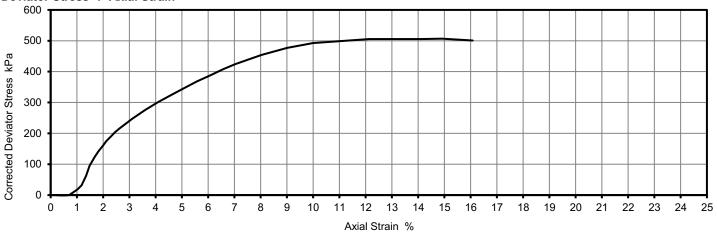
Rate of Strain
Cell Pressure

Axial Strain at failure Deviator Stress, (σ1 - σ3)f Undrained Shear Strength, cu

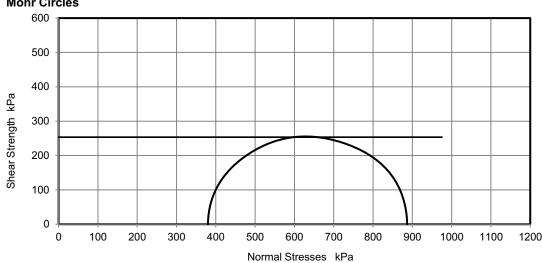
Mode of Failure Membrane thickness

1.99	%/min
380	kPa
14.9	%

14.9 % 507 kPa 253 kPa ½(σ1-σ3)f


Depth Top [m]: 19.00

Depth Base [m]: 19.45


Sample Type: U

Compound 0.28 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Note: Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bursitle

Date Reported: 01/06/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address: Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 04/05/2021

Client Reference: JJ2084

Sampled By: Client

Depth Top [m]: 22.00

Depth Base [m]: 22.45

Sample Type: U

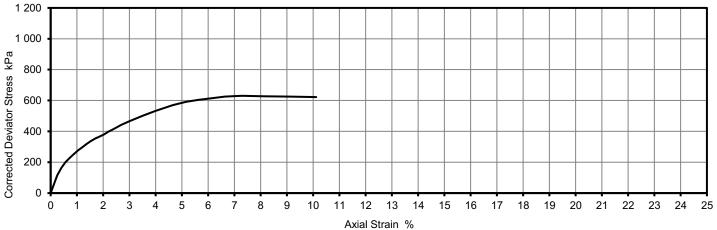
Test Results:

Laboratory Reference: 1849957 BH103 Hole No.:

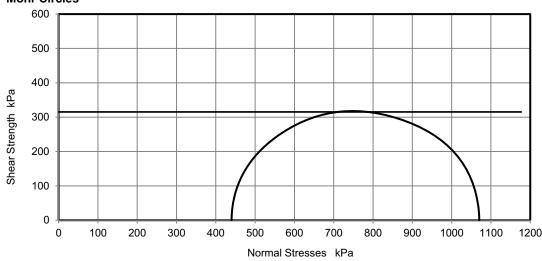
Sample Reference: Not Given Sample Description: **Brown CLAY**

Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density

199.41 mm 102.87 mm 2.07 Mg/m3 30 % 1.60 Mg/m3 0.50 Membrane Correction kPa


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness 2.00 %/min 440 kPa 7.3 % 630 kPa


> 315 kPa ½(σ1 - σ3)f

Brittle 0.29 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bursitle

Date Reported: 01/06/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address:

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 04/05/2021

Job Number: 21-71065

Client Reference: JJ2084

Sampled By: Client

Depth Top [m]: 28.00

Depth Base [m]: 28.45

Sample Type: U

Test Results:

Laboratory Reference: 1849958 BH103 Hole No.: Sample Reference: Not Given

Sample Description:

Test Number

Bulk Density

Dry Density

Moisture Content

Membrane Correction

Lenath

Diameter

Brown slightly sandy CLAY

mm

mm

%

kPa

Mg/m3

Mg/m3

139.11

70.07

2.07

19

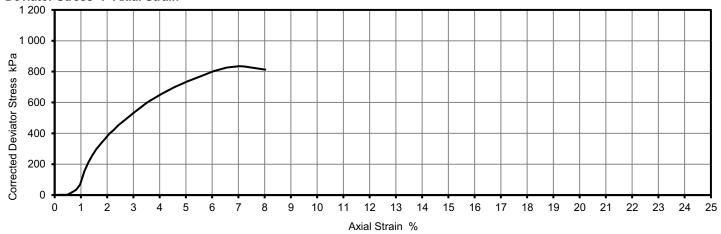
1.73

0.65

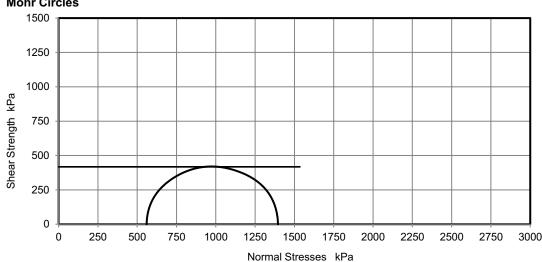
Rate of Strain

Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f

Undrained Shear Strength, cu


Mode of Failure Membrane thickness 2.00 %/min

560 kPa 7.0 % 835 kPa


418 kPa ½(σ1 - σ3)f

Compound 0.26 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bursitle

Date Reported: 01/06/2021

GF 184.11

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address:

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 05/05/2021

Sampled By: Client

Test Results:

Laboratory Reference: 1849961 BH103 Hole No.: Sample Reference: Not Given

Sample Description: Multicolour CLAY

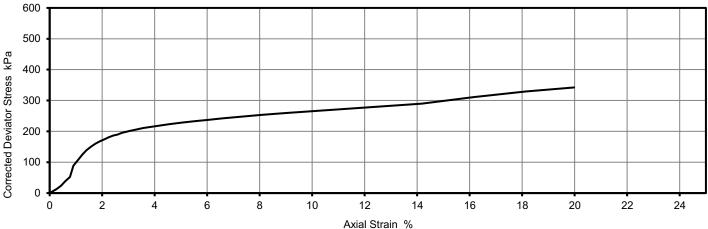
Depth Top [m]: 37.00 Depth Base [m]: 37.45

Sample Type: U

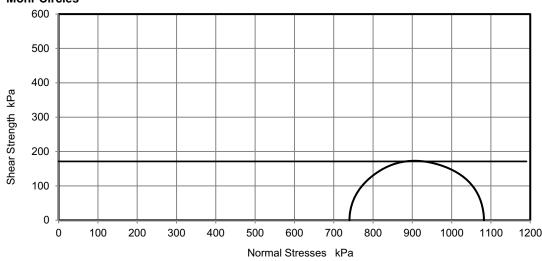
Test Number Lenath Diameter **Bulk Density** Moisture Content

Membrane Correction

Dry Density


99.66 mm 49.27 mm 2.10 Mg/m3 22 % 1.72 Mg/m3 1.87 kPa

Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness 2.00 %/min 740 kPa 20.0 % 342 kPa 171 kPa ½(σ1 - σ3)f

Compound 0.24 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bursitle

Date Reported: 01/06/2021

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address:

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland Date Tested: 04/05/2021

Sampled By: Client

Depth Top [m]: 31.00

Depth Base [m]: 31.45

Sample Type: U

Client Reference: JJ2084

Job Number: 21-71065

Date Sampled: Not Given

Date Received: 22/04/2021

Test Results:

Laboratory Reference: 1849959 BH103 Hole No.: Sample Reference: Not Given

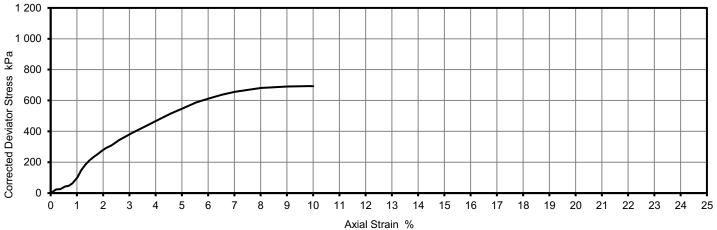
Sample Description:

Multicolour CLAY

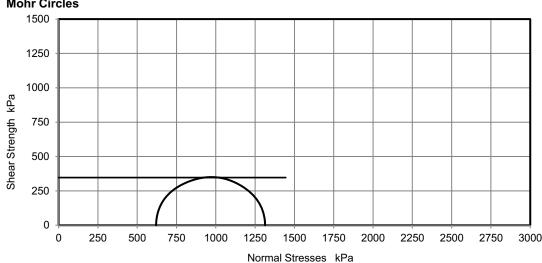
Test Number Lenath Diameter **Bulk Density** Moisture Content

Dry Density Membrane Correction 139.88 mm 69.61 mm 2.10 Mg/m3 16 % 1.81 Mg/m3

0.79 kPa Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu


Mode of Failure Membrane thickness 2.00 %/min 620 kPa

9.8 % 693 kPa


0.25

347 kPa ½(σ1 - σ3)f Compound mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks:

Signed: Marika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Bursitle

Date Reported: 01/06/2021

GF 184.11

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: JJ2084

Job Number: 21-71065

Date Sampled: Not Given

Date Received: 22/04/2021

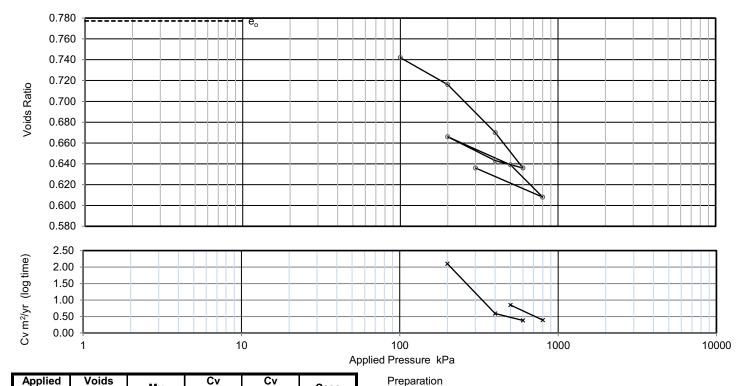
Tested in Accordance with: BS 1377-5: 1990: Clause 3

Client: Jomas Associates Ltd

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Josephine Whitehead Contact:


Site Address: Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Date Tested: 13/05/2021 West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Sampled By: Client

Test Results:

Laboratory Reference: 1849953 BH103 Hole No .: Not Given Sample Reference: Sample Description: Brown CLAY

Depth Top [m]: 10.00 Depth Base [m]: 10.45 Sample Type: U

Pressure	ratio		(t50, log)	(t90, root	
kPa		m2/MN	m2/yr	m2/yr	
0	0.777	-	-	-	-
100	0.742	0.2	N/A	N/A	N/A
200	0.716	0.15	2.1	12	0.00064
400	0.670	0.14	0.59	3.2	0.0019
600	0.636	0.1	0.38	0.3	0.0025
400	0.643	0.024			
200	0.666	0.068			
500	0.639	0.052	0.85	0.98	0.00062
800	0.608	0.064	0.39	0.44	0.0019
300	0.636	0.035			
	·				

Preparation

Csec

Index tests

Orientation of the sample Particle density Liquid limit Plastic limit

Specimen details
Diameter
Height
Moisture Content
Bulk density
Dry density
Voids Ratio
Saturation

Avg. temperature for test Swelling Pressure Settlement on saturation

Vertical		_
assumed	2.65	Mg/m3
N/A		%
N/A		%

Initial	Final	
50.00	-	mm
20.00	18.41	mm
30	28	%
1.94	2.07	Mg/m3
1.49	1.62	Mg/m3
0.777	0.636	
102	117	%
22	°C	
Not me	kPa	
		%

Note: Cv corrected to 20°C

Stage 1 - swelling Remarks:

> Signed: Houks

Monika Janoszek

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

Junstille

Date Reported: 01/06/2021

GF 172.15

Consolidated Undrained Triaxial Compression Test with Measurement of Pore Pressure

Tested in Accordance with: BS 1377-8: 1990: Clauses 1 to 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021

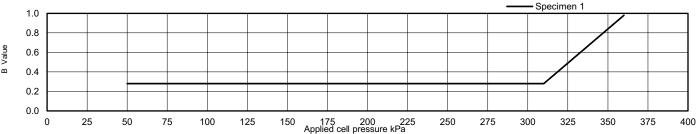
Sampled By: Client

Date Tested: 06/05/2021

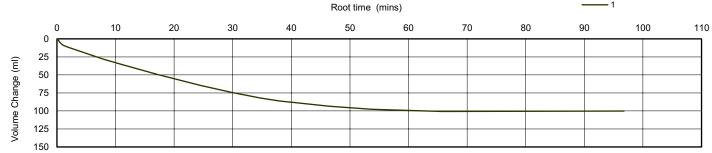
Test Results:

Laboratory Reference: 1849954 BH103 Hole No .: Not Given Sample Reference:

Greyish brown CLAY Sample Description:


Depth Top [m]: 13.00 Depth Base [m]: 13.45

Sample Type: U


l	Specimen Type/Preparation	UNDISTURBED As BS 1	377
ı	opconnen rype/r reparation	ONDIGITORDED AS DO I	311

Spec	cimen Details		1	
	Height	mm	205.4	
	Diameter	mm	102.6	
Initial	Bulk Density	Mg/m³	1.99	
ij	Water Content	%	25.7	
	Dry density	Mg/m³	1.58	
	Membrane thick	kr mm	0.22	
_	Bulk Density	Mg/m³	1.98	
Final	Water Content	%	25.8	
	Dry density	Mg/m³	1.57	

Saturation Details		1	
		Cell Pressure	
Method		and Back	
Wictilloa		Pressure	
		increased	
Cell pressure increments	kPa	50	
Differential Pressure	kPa	10	
Final Cell Pressure	kPa	360	
Final pore water pressure	kPa	349	
Final B Value		0.98	

	Specimen No.		1			
	Drainage Conditions		Radial+1 end			
	Cell Pressure applied	610			kPa	
Consolidation	Back Pressure applied	350			kPa	
Details	Effective Pressure	260			kPa	
	Pore pressure at start of consolidation		592			kPa
	Pore pressure at end of consolidation		351			kPa
	Pore pressure dissipation at end of consolidation		99			%
Consolidation parameters	Coefficient of Consolidation	Cvi	N/A	N/A	N/A	m2/year
(see note to BS1377: pt 8,	Coefficient of Compressibility	Mvi	0.23			m2/MN
clause 6.3.4)	Coefficient of Permeability (calculated)	kvi	N/A	N/A	N/A	m/s

Note: All symbols used above are defined in BS 1377

Deviator stresses corrected for area change, vertical side drains and up to 0.22 mm thick rubber membrane/ Remarks:

> Signed: Harika

Monika Janoszek PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 3

Bushile Date Reported: 01/06/2021

Consolidated Undrained Triaxial Compression Test with Measurement of Pore Pressure

Tested in Accordance with: BS 1377-8: 1990: Clauses 1 to 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

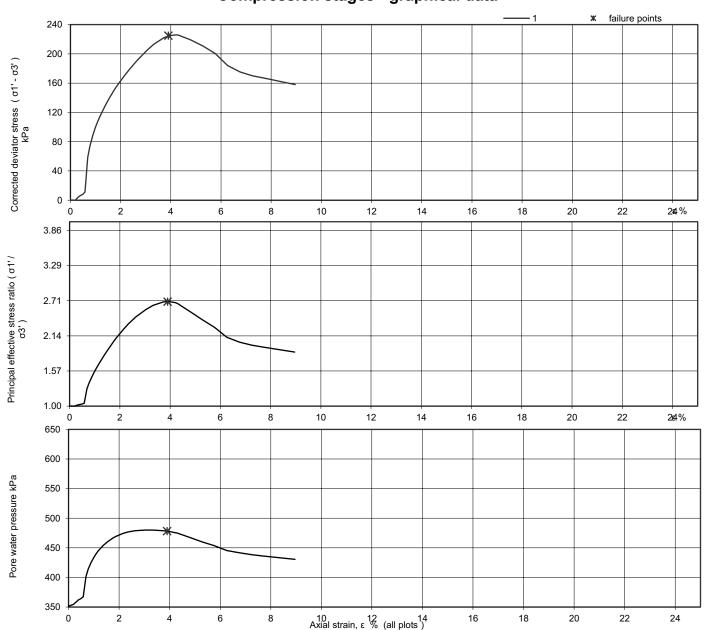
Site Address: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-71065 Date Sampled: Not Given Date Received: 22/04/2021 Date Tested: 06/05/2021

Sampled By: Client

Test Results:


Laboratory Reference: 1849954 Hole No.: BH103 Sample Reference: Not Given

Sample Description: Greyish brown CLAY

Depth Top [m]: 13.00 Depth Base [m]: 13.45

Sample Type: U

Compression stages - graphical data

Note: All symbols used above are defined in BS 1377

Remarks: Deviator stresses corrected for area change, vertical side drains and up to 0.22 mm thick rubber membrane/

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Page 2 of 3

Bushile

Date Reported: 01/06/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Consolidated Undrained Triaxial Compression Test with Measurement of Pore Pressure

Tested in Accordance with: BS 1377-8: 1990: Clauses 1 to 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josephine Whitehead

Site Address:

West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Depth Top [m]: 13.00

Depth Base [m]: 13.45

Sample Type: U

Client Reference: JJ2084 Job Number: 21-71065

Date Sampled: Not Given

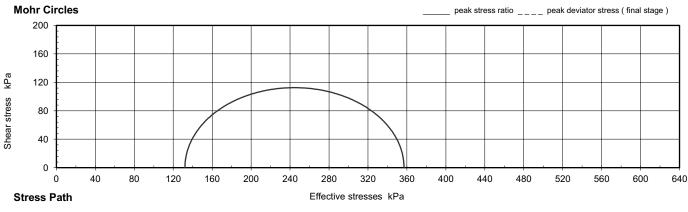
Date Received: 22/04/2021

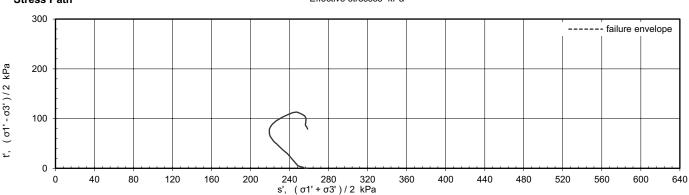
Sampled By: Client

Date Tested: 06/05/2021

Test Results:

Laboratory Reference: 1849954 Hole No.: BH103


Hole No.: BH103 Sample Reference: Not Given


Sample Description: Greyish brown CLAY

Compression stages - table of results and interpretation

Failure criterion : Maximum effective principal stress ratio

T dilaro orito	11011 .	111071111011110	mazimam enegative principal enegativate								
Specimen	Cell pressure	Initial pwp	Initial σ3'	Machine speed	Axial strain, εf	(σ1' / σ3') f	(σ1' - σ3') f	uf	σ3' f	σ1' f	Af
	kPa	kPa	kPa	mm/min	%		kPa	kPa	kPa	kPa	
1	610	351	260	0.00400	3.9	2.70	225	478	132	357	0.56

Shear Strength Parameters		Linear regression	Manual re-assessment
At Maximum effective principal s c'	kPa	not assessed	-
α'	dearees	not assessed	_

Specimen Remarks

Note: All symbols used above are defined in BS 1377

Remarks: Deviator stresses corrected for area change, vertical side drains and up to 0.22 mm thick rubber membrane/

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Page 3 of 3

ge 3 of 3 Date Reported: 01/06/2021

Geotechnical Test Amendment Form

i2 Project Reference: 21-71065 Client: Jomas Associates Ltd

Client Project Reference: West Central Street and 1 Museum Sreet, Holborn, WC1A 1JP

Please note the following sample/samples listed are unsuitable for the scheduled testing as indicated below.

BH/TP No.	Samples ref.	Depth (m)	Depth Base (m)	Testing scheduled	Reason for unsuitability	Client response
BH103	1849960	34.00	34.45	Moisture Content, GEOPrep, Atterberg 1P, Triaxial Quick Undrained	TXL - Single Stage - Inappropriate material. Sample fell apart during preparation. We arent able to prepare sample for single Stage test.;	

QMF 028.1 DOI 15.12.16

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

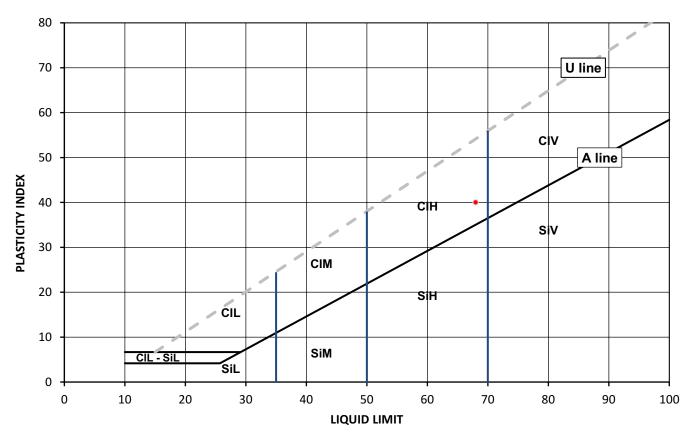
Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 09/06/2021

Sampled By: Client

Testing carried out at 12 Arranytical Elithited, dr. 1 Tornerow 39, 41-111 Ruda Slaska, 1 ola


Test Results:

Laboratory Reference:1893117Depth Top [m]: 1.50Hole No.:BH102ADepth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
30	68	28	40	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Inlitar for and on behalf of i2 Analytical Ltd

Date Reported: 28/07/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Jomas Associates Ltd Client:

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

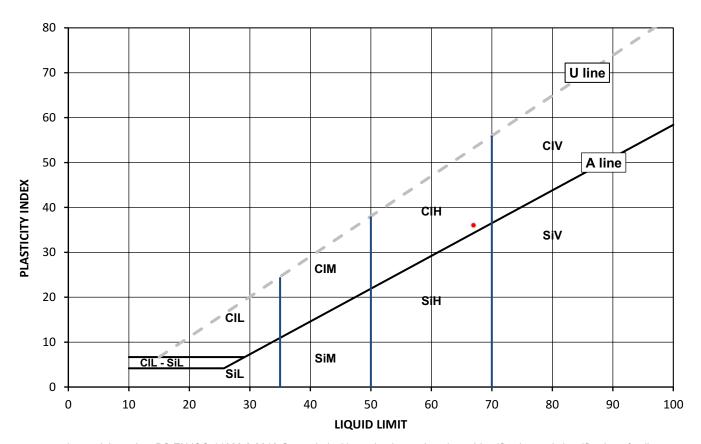
Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 09/06/2021

Sampled By: Client

Depth Base [m]: Not Given

Depth Top [m]: 4.50

Sample Type: D


Test Results:

Laboratory Reference: 1893124 BH102A Hole No.: Sample Reference: Not Given

Soil Description: Greyish brown slightly gravelly CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
31	67	31	36	98

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Re-issue 1: Hole ID amended. Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Date Reported: 28/07/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

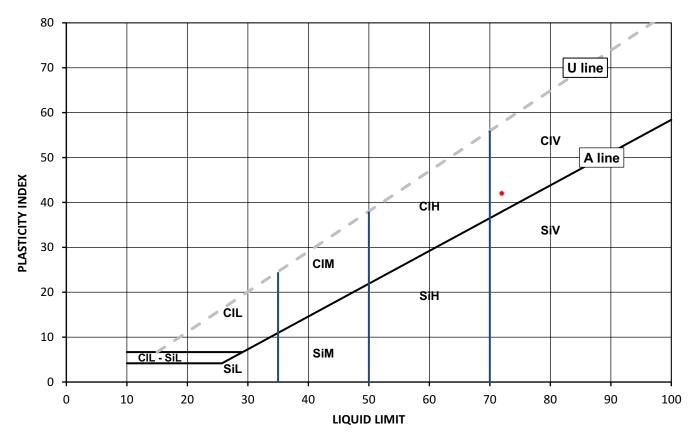
Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084
 Job Number: 21-79236
 Date Sampled: 28/05/2021
 Date Received: 19/05/2021
 Date Tested: 09/06/2021

Sampled By: Client

Testing carried out at 12 Arialytical Littileu, di. Pionierow 39, 41-711 Ruda Siaska, Polant


Test Results:

Laboratory Reference:1893125Depth Top [m]: 9.00Hole No.:BH102ADepth Base [m]: Not GivenSample Reference:Not GivenSample Type: D

Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
29	72	30	42	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks: Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Date Reported: 28/07/2021

for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Josh Thomas Contact:

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

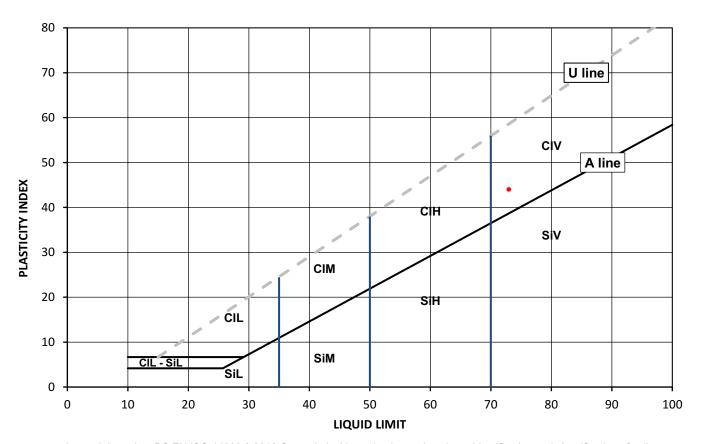
Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021

Test Results:

Laboratory Reference: 1893126 BH102A Hole No.: Sample Reference: Not Given

Soil Description: Greyish brown CLAY

Tested in natural condition Sample Preparation:


ate Received:	19/05/2021
Date Tested:	09/06/2021
Sampled By:	Client

Depth Top [m]: 13.50

Sample Type: D

Depth Base [m]: Not Given

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Re-issue 1: Hole ID amended. Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Plastic Limit

[Wp]%

29

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Liquid Limit

[WL]%

71

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 09/06/2021

Sampled By: Client

Depth Top [m]: 18.00

Sample Type: D

Plasti

42

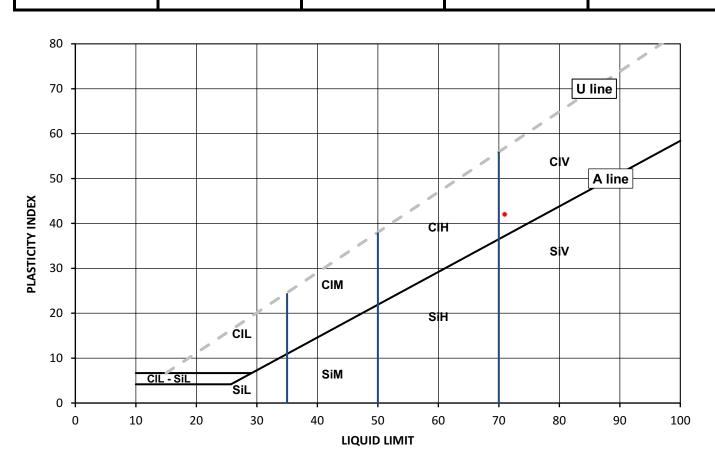
Depth Base [m]: Not Given

Test Results:

Laboratory Reference: 1893127 BH102A Hole No.: Sample Reference: Not Given

As Received Moisture

Content [W] %


36

Soil Description: Greyish brown CLAY

Tested in natural condition Sample Preparation:

sticity Index	% Passing 425μm
[lp]%	BS Test Sieve

100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing

Re-issue 1: Hole ID amended. Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Date Reported: 28/07/2021

for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

GF 236.10

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

Site Address: West Central St and 1 Museum St

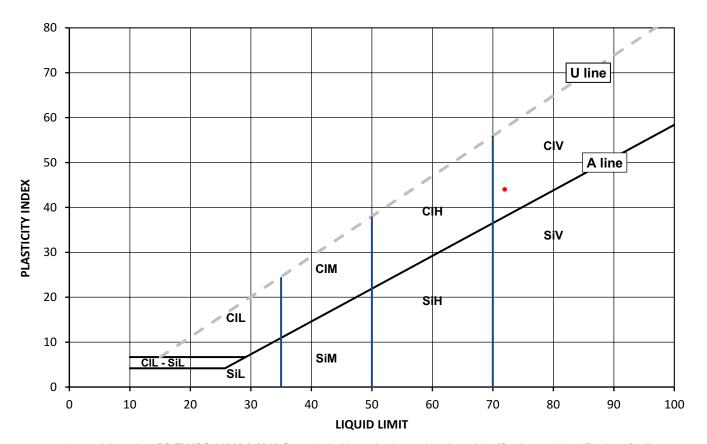
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 09/06/2021

Sampled By: Client

Test Results:

Laboratory Reference: 1893128 Hole No.: BH102A Sample Reference: Not Given


Soil Description: Greyish brown CLAY

Sample Preparation: Tested in natural condition

Depth Top [m]: 20.00
Depth Base [m]: Not Given

Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp] %	BS Test Sieve
38	72	28	44	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Medium 35 to 50 М Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing

Remarks: Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Date Reported: 28/07/2021

PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1

GF 236.10

Summary of Classification Test Results

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:

Client Address:

Jomas Associates Ltd

Stockley Park, UB11 1BD

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: JJ2084 Job Number: 21-79236

Date Sampled: 28/05/2021

Date Received: 19/05/2021 Date Tested: 09/06/2021

Sampled By: Client

Josh Thomas Contact:

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Lakeside House, 1 Furzeground Way,

Test results

			Sample	2			w] Content		Atterberg				Density			#		
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Co [W]	Water Coni [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
			m	m				%	%	%	%	%	%	Mg/m3	Mg/m3	Mg/m3	%	
1893117	BH102A	Not Given	1.50	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	30		100	68	28	40					
1893124	BH102A	Not Given	4.50	Not Given	D	Greyish brown slightly gravelly CLAY	Atterberg 4 Point	31		98	67	31	36					
1893125	BH102A	Not Given	9.00	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	29		100	72	30	42					
1893126	BH102A	Not Given	13.50	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	31		100	73	29	44					
1893127	BH102A	Not Given	18.00	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	36		100	71	29	42					
1893128	BH102A	Not Given	20.00	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	38		100	72	28	44					

Note: # Non accredited; NP - Non plastic

Re-issue 1: Hole ID amended. Comments:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

> GF 238.12 Page 1 of 1 **Date Reported: 28/07/2021**

One Dimensional Consolidation Test

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-5: 1990: Clause 3

Client: Jomas Associates Ltd

Client Address:

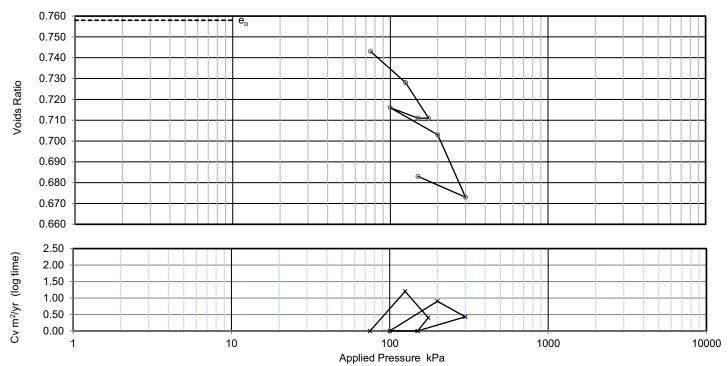
Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Josh Thomas Contact:

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland


Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 10/06/2021

Sampled By: Client

Test Results:

Laboratory Reference: 1893120 BH102A Hole No .: Not Given Sample Reference: Sample Description: Brown CLAY

Depth Top [m]: 6.50 Depth Base [m]: 6.95 Sample Type: U

			_	^	
Applied	Voids	M_{ν}	C _v	C _v	$C_{\rm sec}$
Pressure	ratio		(t _{50, log})	(t _{90, root})	- 300
kPa		m²/MN	m²/yr	m²/yr	
0	0.758	-	-	-	-
75	0.743	0.12	N/A	N/A	N/A
125	0.728	0.17	1.2	1.0	0.0013
175	0.711	0.20	0.40	0.47	0.0013
150	0.711	0.016			
100	0.716	0.060			
200	0.703	0.075	0.90	0.98	0.0013
300	0.673	0.18	0.43	0.44	0.0019
150	0.683	0.039			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Preparation

Index tests

Orientation of the sample Particle density Liquid limit Plastic limit

Specimen details
Diameter
Height
Moisture Content
Bulk density
Dry density
Voids Ratio
Saturation
Avg. temperature for test
Swelling Pressure
Settlement on saturation

Vertical		_
assumed	2.65	Mg/m ³
N/A		%
N/A		%

Initial	Final	
50.00	-	mm
19.97	19.12	mm
27	31	%
1.91	2.07	Mg/m ³
1.51	1.57	Mg/m ³
0.758	0.683]
94	122	%
2	°C	
Not me	kPa	
		%

Note: Cv corrected to 20°C

Re-issue 1: Hole ID amended. Remarks:

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section

Date Reported: 28/07/2021 GF 172.15

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josh Thomas

Site Address:

West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 14/06/2021 Sampled By: Client

Test Results:

Test Number

Bulk Density

Moisture Content

Lenath

Diameter

Laboratory Reference: 1893118 BH102A Hole No.:

Sample Reference: Sample Description:

Not Given

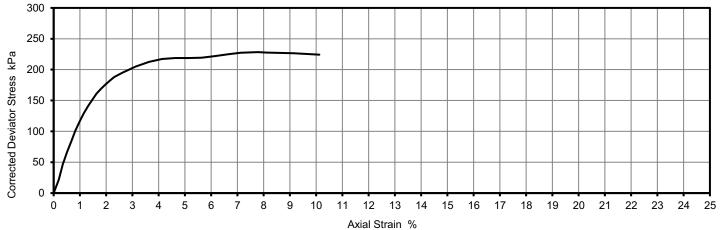
Greyish brown CLAY

200.75 mm 102.20 mm 2.01 Mg/m3 28 % 1.56 Mg/m3

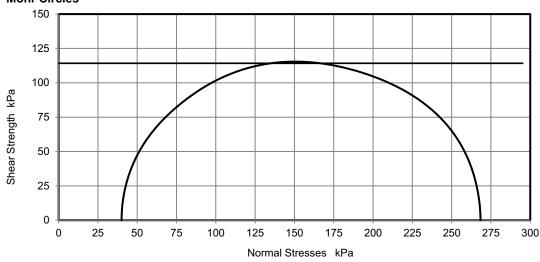
Dry Density 0.46 Membrane Correction kPa Rate of Strain 1.99 Cell Pressure 40 Axial Strain at failure 7.8 % Deviator Stress, (σ 1 - σ 3)f 228 Undrained Shear Strength, cu

Mode of Failure Membrane thickness %/min kPa kPa

Depth Top [m]: 2.00


Depth Base [m]: 2.45

Sample Type: U


114 kPa ½(σ1 - σ3)f Compound

0.25 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

GF 184.11

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks: Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 1

Date Reported: 28/07/2021

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josh Thomas

Site Address:

West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 14/06/2021 Sampled By: Client

Depth Top [m]: 9.50

Test Results:

Laboratory Reference: 1893121 BH102A Hole No.: Sample Reference: Not Given

Sample Description:

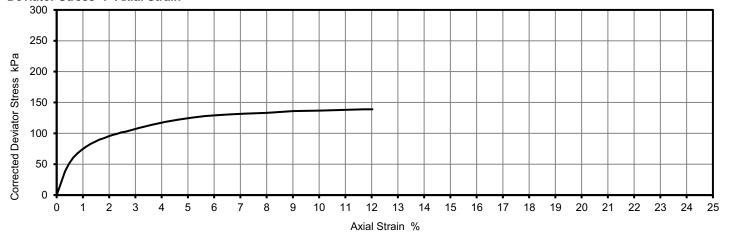
Greyish brown CLAY

Depth Base [m]: 9.95 Sample Type: U

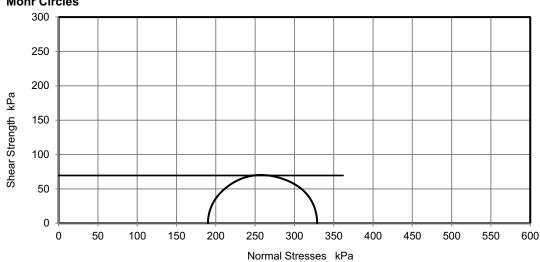
Test Number Lenath Diameter **Bulk Density** Moisture Content

Dry Density

197.53 mm 102.59 mm 1.99 Mg/m3 28 % 1.56 Mg/m3 0.58 Membrane Correction kPa


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu Mode of Failure

Membrane thickness


2.00 %/min 190 kPa 11.7 % 139 kPa 69 kPa

½(σ1 - σ3)f Brittle 0.24 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks: Re-issue 1: Hole ID amended.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 28/07/2021

Page 1 of 1

GF 184.11

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 14/06/2021 Sampled By: Client

Test Results:

Laboratory Reference: 1893122 BH102A Hole No.: Sample Reference: Not Given

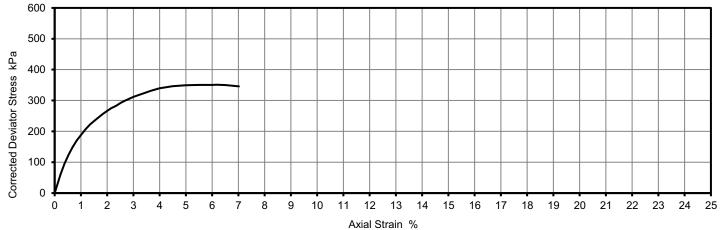
Sample Description: Greyish brown CLAY

Depth Top [m]: 12.50 Depth Base [m]: 12.95 Sample Type: U

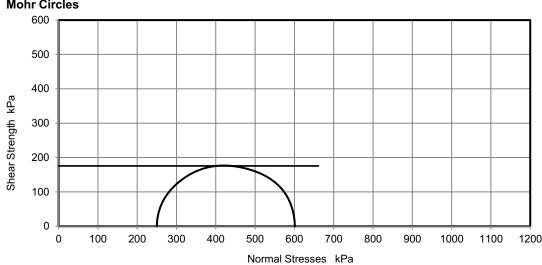
Test Number Lenath Diameter **Bulk Density** Moisture Content Dry Density

Membrane Correction

198.05 mm 102.91 mm 2.01 Mg/m3 27 % 1.59 Mg/m3 0.42 kPa


Rate of Strain Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


2.00	%/min
250	kPa
6.2	%
351	kPa
176	kPa ½(σ1 - σ3)f
Brittle	

0.27 mm

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks: Re-issue 1: Hole ID amended.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing. Page 1 of 1

Date Reported: 28/07/2021

GF 184.11

Triaxial Compression

Tested in Accordance with: BS 1377-7: 1990: Clause 8 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact:

Josh Thomas

Site Address: West Central St and 1 Museum St

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 22/06/2021 Sampled By: Client

Depth Top [m]: 18.50

Depth Base [m]: 18.95

Sample Type: U

Test Results:

Lenath

Diameter

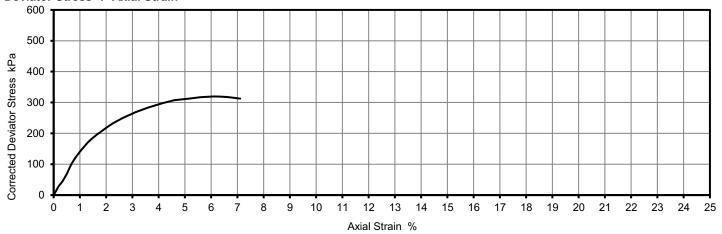
Laboratory Reference: 1893123 BH102A Hole No.: Sample Reference: Not Given

Sample Description: Greyish brown CLAY

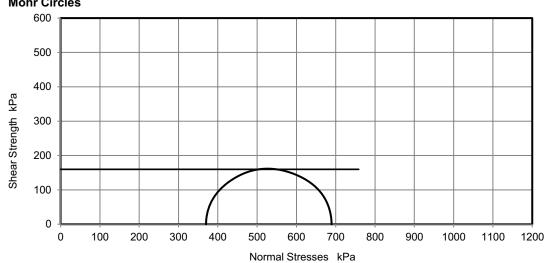
Test Number 200.85 mm 102.06 mm **Bulk Density** 2.01 Mg/m3 24 Moisture Content % 1.62 Dry Density Mg/m3 0.47 Membrane Correction kPa

Cell Pressure Axial Strain at failure Deviator Stress, (σ 1 - σ 3)f Undrained Shear Strength, cu

Mode of Failure Membrane thickness


Rate of Strain

1.99	%/min
370	kPa
6.1	%
319	kPa
100	- 1


kPa ½(σ1 - σ3)f Compound

0.30

Deviator Stress v Axial Strain

Mohr Circles

Position within sample

Deviator stress corrected for area change and membrane effects. Mohr circles and their interpretation is not covered by BS1377. This is provided for information only.

Remarks: Re-issue 1: Hole ID amended.

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Date Reported: 28/07/2021

Page 1 of 1

GF 184.11

Consolidated Undrained Triaxial Compression Test with Measurement of Pore Pressure

Tested in Accordance with: BS 1377-8: 1990: Clauses 1 to 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

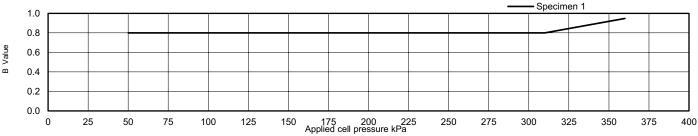
West Central St and 1 Museum St Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

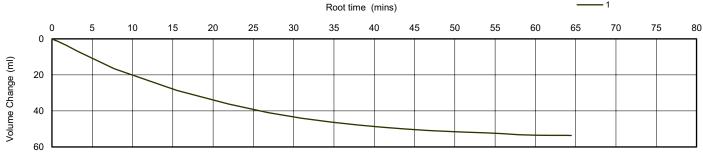
Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021

Date Tested: 16/06/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1893119 Depth Top [m]: 4.00 BH102A Depth Base [m]: 4.45 Hole No .: Not Given Sample Type: U Sample Reference:


Greyish brown CLAY Sample Description:

Spec	cimen Details		1	
	Height	mm	203.9	
	Diameter	mm	102.8	
Initial	Bulk Density	Mg/m³	1.95	
ī	Water Content	%	30.7	
	Dry density	Mg/m³	1.49	
	Membrane thick	kr mm	0.21	
_	Bulk Density	Mg/m³	1.92	
Final	Water Content	%	29.8	
	Dry density	Mg/m³	1.48	

Saturation Details		1	
Method		Cell Pressure and Back Pressure increased simultaneously	
Cell pressure increments	kPa	50	
Differential Pressure	kPa	10	
Final Cell Pressure	kPa	360	
Final pore water pressure	kPa	347	
Final B Value		0.95	

	Specimen No.	1				
	Drainage Conditions	Radial+1 end				
	Cell Pressure applied	530			kPa	
Consolidation	Back Pressure applied		450			kPa
Details	Effective Pressure	80			kPa	
	Pore pressure at start of consolidation	513			kPa	
	Pore pressure at end of consolidation		453			kPa
	Pore pressure dissipation at end of consolidation		96			%
Consolidation parameters	Coefficient of Consolidation	Cvi	N/A	N/A	N/A	m2/year
(see note to BS1377: pt 8,	Coefficient of Compressibility	M∨i	0.51			m2/MN
clause 6.3.4)	Coefficient of Permeability (calculated)	kvi	N/A	N/A	N/A	m/s

Note: All symbols used above are defined in BS 1377

Deviator stresses corrected for area change, vertical side drains and up to 0.21 mm thick rubber membrane Remarks:

Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 1 of 3 **Date Reported: 28/07/2021**

Consolidated Undrained Triaxial Compression Test with Measurement of Pore Pressure

Tested in Accordance with: BS 1377-8: 1990: Clauses 1 to 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address: Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

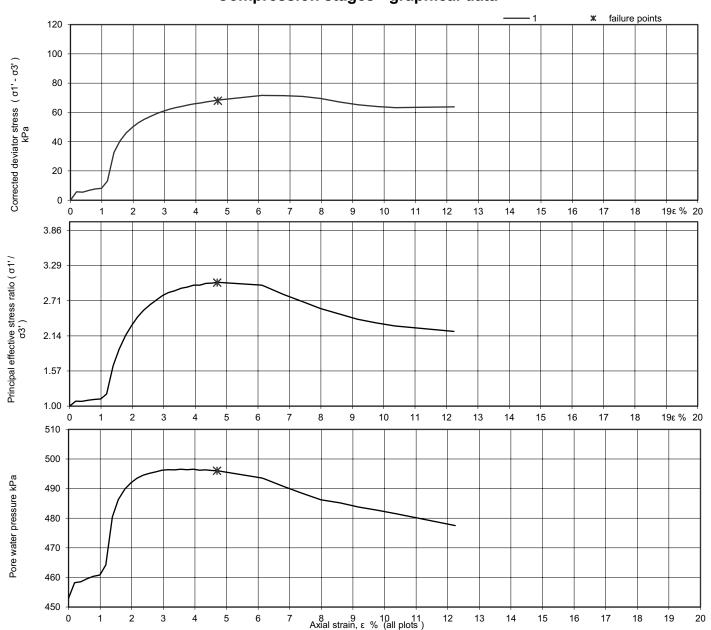
West Central St and 1 Museum St Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 16/06/2021

Sampled By: Client

Test Results:


Laboratory Reference: 1893119 BH102A Hole No .: Not Given Sample Reference:

Greyish brown CLAY Sample Description:

Depth Top [m]: 4.00 Depth Base [m]: 4.45

Sample Type: U

Compression stages - graphical data

Note: All symbols used above are defined in BS 1377

Deviator stresses corrected for area change, vertical side drains and up to 0.21 mm thick rubber membrane Remarks:

Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Page 2 of 3 **Date Reported: 28/07/2021**

GF 230.8

Consolidated Undrained Triaxial Compression Test with Measurement of Pore Pressure

Tested in Accordance with: BS 1377-8: 1990: Clauses 1 to 7

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josh Thomas

West Central St and 1 Museum St Site Address:

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

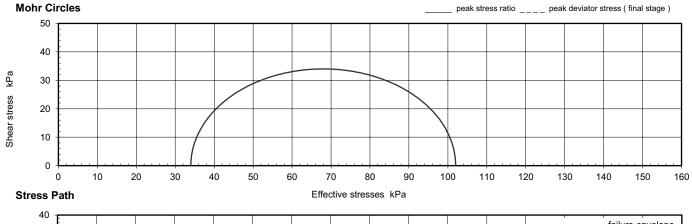
Client Reference: JJ2084 Job Number: 21-79236 Date Sampled: 28/05/2021 Date Received: 19/05/2021 Date Tested: 16/06/2021

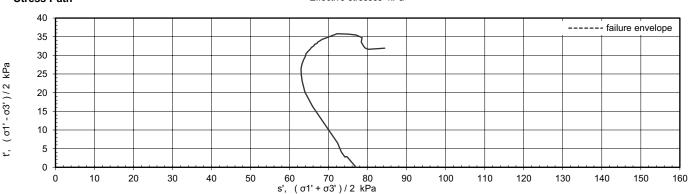
Sampled By: Client

Test Results:

Laboratory Reference: 1893119 BH102A Hole No.: Not Given Sample Reference:

Greyish brown CLAY Sample Description:


Depth Top [m]: 4.00 Depth Base [m]: 4.45


Sample Type: U

Compression stages - table of results and interpretation

Failure criterion : Maximum effective principal stress ratio

T dilate office		111071111011110	moon to print	o.pa. o. o	41.0						
Specimen	Cell pressure	Initial pwp	Initial σ3'	Machine speed	Axial strain, εf	(σ1' / σ3') f	(σ1' - σ3') f	uf	σ3' f	σ1' f	Af
	kPa	kPa	kPa	mm/min	%		kPa	kPa	kPa	kPa	
1	530	453	80	0.00600	4.7	3.01	68	496	34	102	0.63

Shear Strength Parameters		Linear regression	Manual re-assessment
		regression	re-assessment
At Maximum effective principal s c'	kPa	not assessed	-
Ø'	degrees	not assessed	_

Specimen Remarks

Remarks:

Note: All symbols used above are defined in BS 1377

Deviator stresses corrected for area change, vertical side drains and up to 0.21 mm thick rubber membrane

Re-issue 1: Hole ID amended.

Signed:

Szczepan Bielatowicz PL Deputy Head of Geotechnical Section for and on behalf of i2 Analytical Ltd

Date Reported: 28/07/2021

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

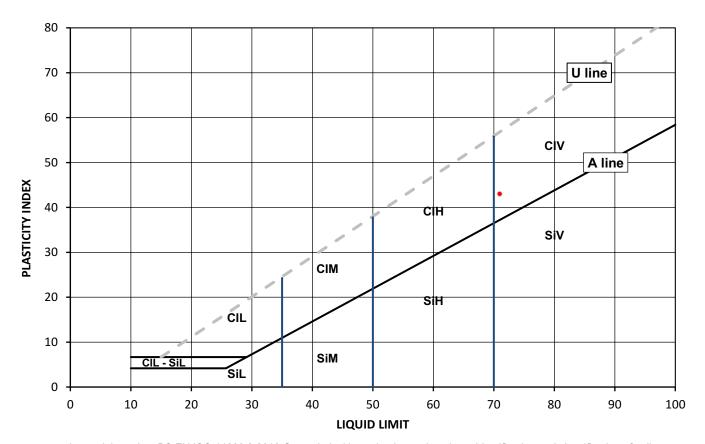
Client Reference: JJ2084 Job Number: 21-83642 Date Sampled: Not Given Date Received: 28/06/2021 Date Tested: 30/06/2021

Sampled By: Client

Depth Top [m]: 2.15

Sample Type: D

Depth Base [m]: Not Given


Test Results:

Laboratory Reference: 1918672 WS105 Hole No.: Sample Reference: Not Given

Soil Description: Greyish brown slightly gravelly CLAY

Tested after >425um removed by hand Sample Preparation:

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
29	71	28	43	89

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

> 0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed: Karika

Bursille

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Liquid and Plastic Limits

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Jomas Associates Ltd Client:

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

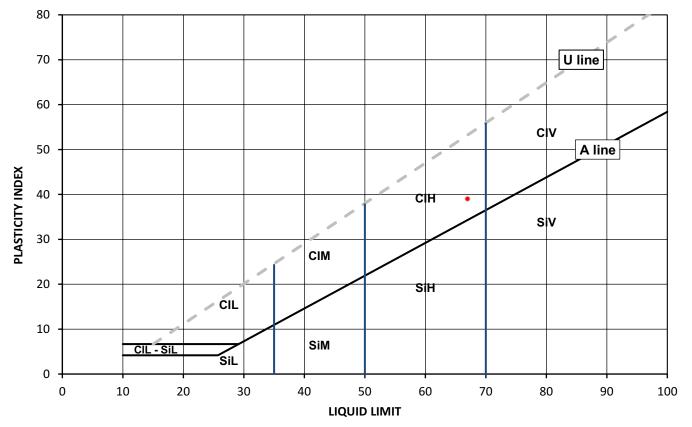
Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-83642 Date Sampled: Not Given Date Received: 28/06/2021

Test Results:

Laboratory Reference: 1918673 WS108 Hole No.: Sample Reference: Not Given **Brown CLAY**

Soil Description:


Sample Preparation:

Tested in natural condition

Date Tested: 08/07/2021 Sampled By: Client

Depth Top [m]: 1.00 Depth Base [m]: Not Given Sample Type: D

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425μm
Content [W] %	[WL] %	[Wp] %	[lp] %	BS Test Sieve
30	67	28	39	100

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

0 Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This

report may not be reproduced other than in full without the prior written approval of the issuing

Remarks:

Signed: Karika

Monika Janoszek PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

i2 Analytical Ltd
Unit 8 Harrowden Road
Brackmills Industrial Estate
Northampton NN4 7EB

Liquid and Plastic Limits

Tested in Accordance with: BS 1377-2: 1990: Clause 4.3 and 5

Client: Jomas Associates Ltd

Client Address:

Lakeside House, 1 Furzeground Way,

Stockley Park, UB11 1BD

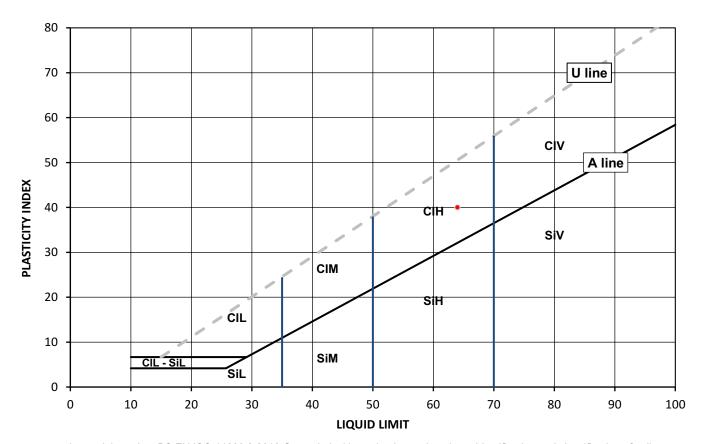
Contact: Josephine Whitehead

Site Address: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Client Reference: JJ2084 Job Number: 21-83642 Date Sampled: Not Given Date Received: 28/06/2021 Date Tested: 30/06/2021

Sampled By: Client


Test Results:

Laboratory Reference: 1918674 Depth Top [m]: 1.80
Hole No.: WS108 Depth Base [m]: Not Given
Sample Reference: Not Given Sample Type: D

Soil Description: Brown slightly gravelly CLAY

Sample Preparation: Tested after >425um removed by hand

As Received Moisture	Liquid Limit	Plastic Limit	Plasticity Index	% Passing 425µm
Content [W] %	[WL] %	[Wp]%	[lp]%	BS Test Sieve
35	64	24	40	96

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing – Identification and classification of soil

Plasticity Liquid Limit below 35 CI Clay L Low Si Silt Μ Medium 35 to 50 Н High 50 to 70 ٧ Very high exceeding 70

O Organic append to classification for organic material (eg CIHO)

Note: Moisture Content by BS 1377-2: 1990: Clause 3.2

Remarks:

Signed:

Monika Janoszek
PL Deputy Head of Geotechnical Section

for and on behalf of i2 Analytical Ltd

Bursille

Summary of Classification Test Results

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

404 Client:

Contact:

Jomas Associates Ltd

Moisture Content by BS 1377-2: 1990: Clause 3.2; Water Content by BS EN 17892-1: 2014; Atterberg by BS 1377-2: 1990: Clause 4.3 (4 Point Test), Clause 4.4 (1 Point Test) and 5; PD by BS 1377-2: 1990: Clause 8.2

Client Reference: JJ2084

Job Number: 21-83642
Date Sampled: Not Given
Date Received: 28/06/2021

Date Tested: 30/06 - 08/07/2021

Sampled By: Client

Client Address:

Josephine Whitehead

Stockley Park, UB11 1BD

Site Address: West Central Street and 1 Museum Street, Holborn, WC1A 1JP

Testing carried out at i2 Analytical Limited, ul. Pionierow 39, 41-711 Ruda Slaska, Poland

Lakeside House, 1 Furzeground Way,

Test results

			Sample	e				ntent	tent	Atterberg				Density			#	
Laboratory Reference	Hole No.	Reference	Depth Top	Depth Base	Туре	Description	Remarks	Moisture Content [W]	Water Content [W]	% Passing 425um	WL	Wp	lp	bulk	dry	PD	Total Porosity#	
1918672	WS105	Not Given	m 2.15	Not	D	Greyish brown slightly gravelly CLAY	Atterberg 4 Point	% 29	%	% 89	% 71	% 28	43	Mg/m3	Mg/m3	Mg/m3	%	
1918673	WS108	Not Given	1.00	Given Not Given	D	Brown CLAY	Atterberg 4 Point	30		100	67	28	39					
1918674	WS108	Not Given	1.80	Not Given	D	Brown slightly gravelly CLAY	Atterberg 4 Point	35		96	64	24	40					

Note: # Non accredited; NP - Non plastic

Comments:

Signed:

Marika

Monika Janoszek
PL Deputy Head of Geotechnical Section
for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Page 1 of 1 **Date Reported:** 09/07/2021

GF 238.12

APPENDIX 5 – HAZARDOUS WASTE ASSESSMENT

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)
- c) confirm that the list of determinands, results and sampling plan are fit for purpose
- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A) g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

Job name

P3094J2084 - Holborn

Description/Comments

Project Site

P3094J2084 - Holborn P3094J2084 - Holborn

Classified by

Name: Company:

Tom Elbourne **JOMAS Associates Ltd**

Date:

24 Jun 2021 13:14 GMT

Telephone:

HazWasteOnline™ provides a two day, hazardous waste classification course that covers the use of the software and both basic and advanced waste classification techniques. Certification has to be renewed every 3 years.

HazWasteOnline™ Certification:

Hazardous Waste Classification

Date

Job summary

#	Sample name	Depth [m]	Classification Result	Hazard properties	Page
1	BH10315042021-1.10		Non Hazardous		2
2	BH10315042021-1.75		Non Hazardous		8
3	WS10215042021-1.15		Non Hazardous		10
4	WS10315042021-1.00		Non Hazardous		15
5	WS10315042021-1.95		Non Hazardous		21
6	WS10415042021-0.50		Non Hazardous		23
7	WS108-ES-26052021-1.00		Non Hazardous		29
8	WS101 - 1.00		Non Hazardous		33
9	WS107 - 2.40		Non Hazardous		38
10	WS110 - 2.30		Non Hazardous		42
11	WS105 - 1.70		Non Hazardous		48

Related documents

# Name	Description
1 21-69414-2_HWOL_Results.hwol	.hwol file used to create the Job
2 21-78966_HWOL_Results.hwol	.hwol file used to create the Job
3 21-78539_HWOL_Results.hwol	.hwol file used to create the Job

Report

Created date: 24 Jun 2021 13:14 GMT Created by: Tom Elbourne

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	52
Appendix B: Rationale for selection of metal species	56
Appendix C: Version	57

17: Construction and Demolition Wastes (including excavated soil

Classification of sample: BH103--15042021-1.10

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

Sample details

LoW Code: Sample name:

BH103--15042021-1.10 Chapter: Moisture content:

from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 Entry: 8.1%

(wet weight correction)

Hazard properties

None identified

Determinands

Moisture content: 8.1% Wet Weight Moisture Correction applied (MC)

#		Determinand CLP index number	CLP Note	User entered d	ata	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	_	arsenic { arsenic trioxide } 033-003-00-0		12 m	ng/kg	1.32	14.561 mg/kg	0.00146 %	√	
2	_	boron { diboron trioxide; boric oxide } 005-008-00-8		1.8 m	ng/kg	3.22	5.326 mg/kg	0.000533 %	✓	
3	_	cadmium { cadmium oxide } 048-002-00-0		<0.2 m	ng/kg	1.142	<0.228 mg/kg	<0.0000228 %		<lod< td=""></lod<>
4	4	chromium in chromium(III) compounds { chromium(III) oxide (worst case) }		19 m	ng/kg	1.462	25.52 mg/kg	0.00255 %	√	
5	4	chromium in chromium(VI) compounds { chromium(VI) oxide }		<4 m	ng/kg	1.923	<7.692 mg/kg	<0.000769 %		<lod< td=""></lod<>
6	4	copper { copper sulphate pentahydrate } 029-023-00-4		24 m	ng/kg	3.929	86.659 mg/kg	0.00867 %	√	
7	4	lead { • lead compounds with the exception of those specified elsewhere in this Annex }	1	46 m	ng/kg		42.274 mg/kg	0.00423 %	√	
8	4	mercury { mercury dichloride } 080-010-00-X 231-299-8		<0.3 m	ng/kg	1.353	<0.406 mg/kg	<0.0000406 %		<lod< td=""></lod<>
9		nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		13 m	ng/kg	2.976	35.557 mg/kg	0.00356 %	√	
10		selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }		<1 m	ng/kg	1.405	<1.405 mg/kg	<0.000141 %		<lod< td=""></lod<>
11	æ\$	zinc { zinc oxide } 030-013-00-7		49 m	ng/kg	1.245	56.051 mg/kg	0.00561 %	√	
12	9	TPH (C6 to C40) petroleum group		289 m	ng/kg		265.591 mg/kg	0.0266 %	✓	
13		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001 m	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
14		benzene 601-020-00-8 200-753-7 71-43-2		<0.001 m	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		toluene 601-021-00-3 203-625-9 108-88-3		<0.001 m	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
16	0	ethylbenzene 601-023-00-4 202-849-4 100-41-4		<0.001 m	ng/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>