

APPENDIX B STRUCTURAL CALCULATIONS

WE ARE SYMMETRYS

STRUCTURAL CALCULATION PACKAGE

70 LADY MARGARET ROAD

22276-SYM-XX-XX-RP-S-0001

MAY 2023

REV B

8	SYMMETRYS STRUCTURAL/CIVIL ENGINEERS	Job No.	Sheet No.	Revision
		22276	1	А
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Introduction	May-2023	KL	EB

INTRODUCTION

The structure comprises a four-storey retaining structure and proposed three-storey extension structure. It is proposed to demolish the existing extension, replace by excavting and forming a new one-storey basement with three-storey superstructure, with 2 No. of stair, one to rear garden and one to retaining structure.

CODES OF PRACTICE

The following codes and standards have been used within this document:

BS EN 1990 Eurocode: Basis of structural design BS EN 1991 Eurocode 1: Action on structures

EXECUTIVE SUMMARY

The proposed development involves the demolition of the existing extension structure. A new basement excavated 1-level underground. Above ground the proposed extension consists of ground plus 3 storeys attached to existing retained structure.

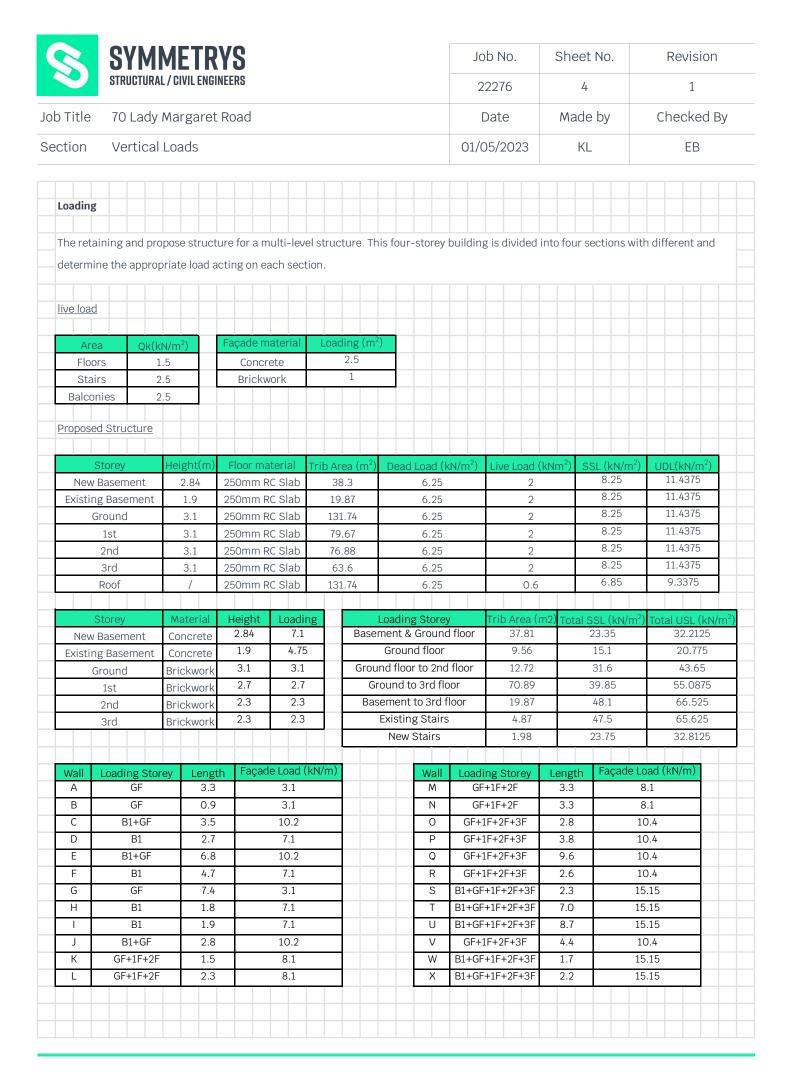
S	SYMMETRYS STRUCTURAL/CIVIL ENGINEERS	Job No.	Sheet No.	Revision
		22276	2	Α
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Introduction	May-2023	KL	EB

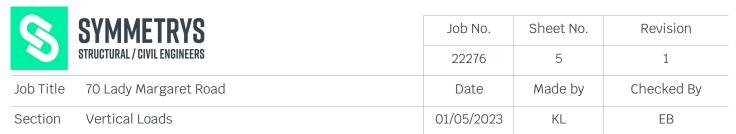
Prepared by:

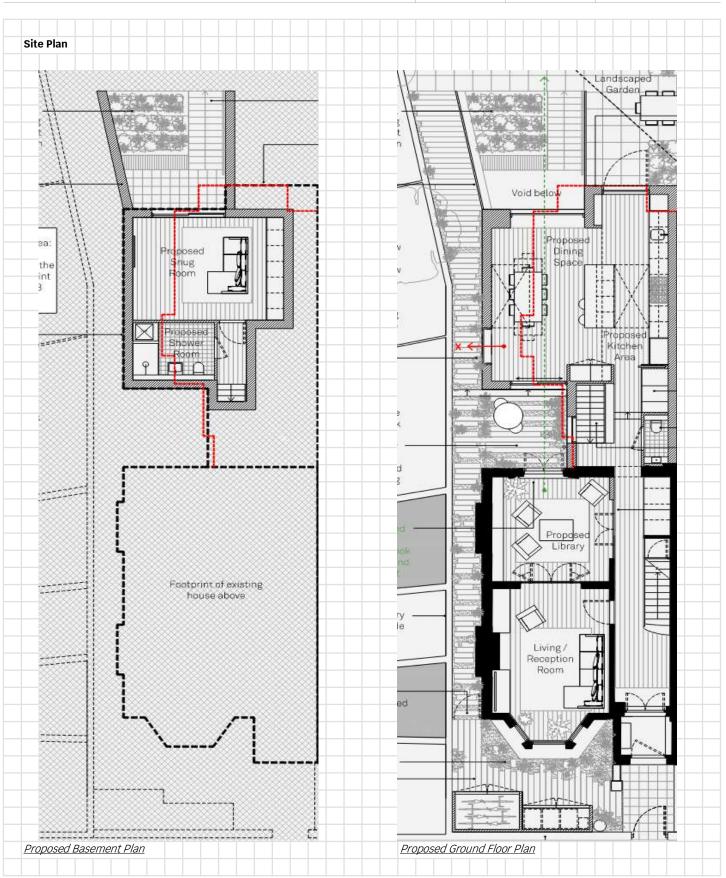
Ra Ka Lo
Beng(Hons), GIStructE
Graduate Structural Engineer at Symmetrys

Checked and Signed by:

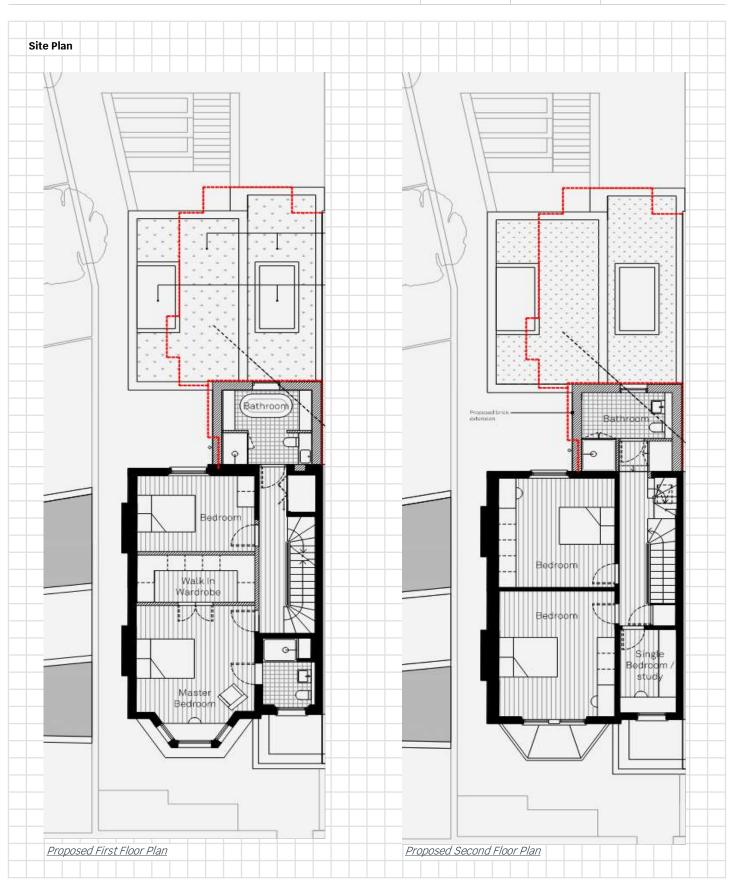
Ernest Bohm

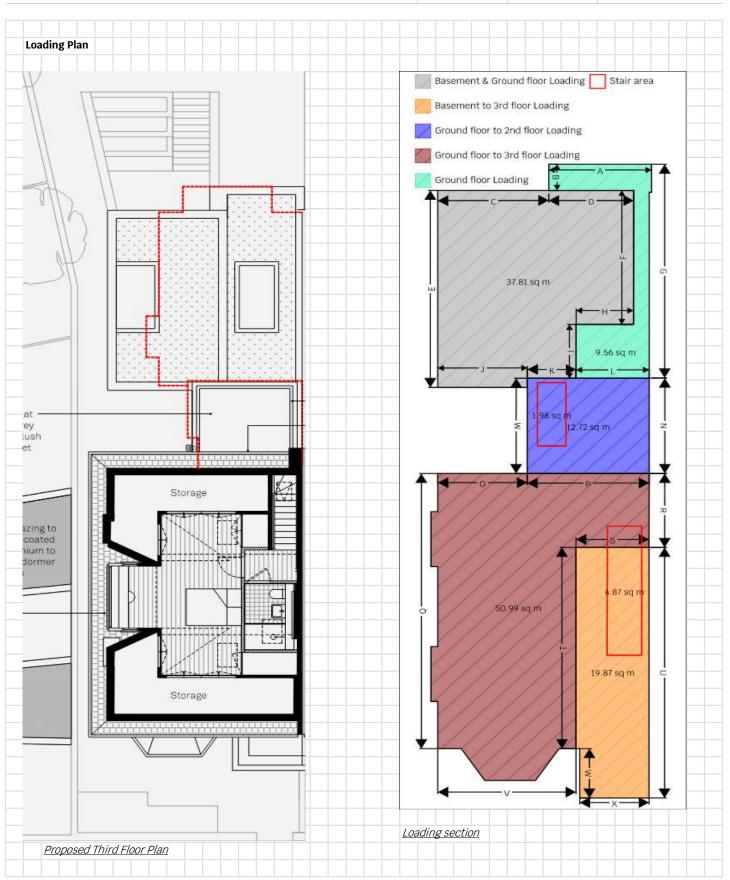

Ernest Bohm


BArch(Hons), MSc


Senior Structural Engineer at Symmetrys

S	SYMMETRYS STRUCTURAL/CIVIL ENGINEERS	Job No. 21286	Sheet No.	Revision A
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Vertical Loads	May-2023	KL	EB


Vertical Loads for 70 Lady Margaret Road



8	SYMMETRYS STRUCTURAL/CIVIL ENGINEERS	Job No.	Sheet No.	Revision
		21286	7	А
Job Title	70 Lady Margaret Road	Date	Made by	Checked By
Section	Structural Calculations	May-2023	KL	EB

Structural Calculations for 70 Lady Margaret Road

SYMI	METR	YS								Job No.	Sl	neet No.	R	Revisio	n
	L / CIVIL ENGI									22276		8		1	
Title 70 Lady	Margaret	Road								Date	٨	1ade by	Ch	ecked	Ву
ction Structur	al Calcul	ations							01	/05/2023		KL		EB	
Design of a basemen	t slab for h	eave													
Expected heave force	<u>s</u>														
Detailed analysis has	been unde	rtaken by	GEA												
Approximate conserv	ative heave	forces													
Excavation depth	=	2.8	m												
Hydroestatic pressure	e =	2.8	X	10	=	28	kN/m2								
Oberburden pressure	=	2.8	X	18	=	51	kN/m2								
Therefore expected h	eave =	28	+	0.5*(51.12	-28. =	40	kN/m2							
Basement Slab Selfw	eight														
Selfweight	=	0.3	X	25	=	6.3	kN/m2								
Screed	=	0.075	X	24	=	1.8	kN/m2								
		Total		=		8.1	kN/m2								
Uplift Design			H												+
							1.11/ -								
Overal Uplift	=	40	-	8.05	=	31.7	kN/m2								
Therefore - ULS	=	31.7	×	1.5	=	47.6	kN/m2								
The basement slab w	ill be desigr	ned to trar	nsmi	t force:	s to t	he reta	aining wa	ıll foun	dtatio	ons spanning	g betwe	een both side	es of the r	etainin	g wal
The distance between	n the fonda	tions is		= 3	3.2	m									
Therefore: Mmax	=	47.5	65X(3.2^2)		= (50.86kNr	n							
			8												
			-												

SYMI	METRY	S				Jol	b No.	Shee	t No.	R	evision
STRUCTURAL / CIVIL ENGINEERS			22	2276	9		1				
b Title 70 Lady Margaret Road				D	ate	Made	e by	Che	ecked By		
ction Structi	ural Calcul	ations				01/0	5/2023	KI	L		EB
Design of a baemer	nt slab for he	ave									
Slab Properties											
Design Moment, M	= 60.86	kNm	fcu	=	30	N/mm²	γc =	1.50			
ВЬ	= 1.00		fy	=	500	N/mm²	γσ=	1.15			
span	= 3200	mm	Steel Class	=	Α						
Slab thickness, h	= 250	mm									
Bar Ø	= 12										
cover	= 50 mi	m									
COVCI	_ 30 IIII	111									
Check											
d = 250 - 50 - 12/2 =	= 194.0 mm										
K' = 0.156 > K = 0.05	54 ok										
z = 194.0 [0.5 + (0.2	25 - 0.054 /0.	893)]^1/2 =	181.6 < 0.95d =	184.3 mm							
As = 60.86E6 /500 /	181.5 x 1.15 =	771 > min	As = 325 mm²/m								
PROVIDE H12 @ 150	= 754 mm²/n	n									
fs = 2/3 x 500 x 771	/754 /1.00 = 3	341.0 N/mr	n²								
Tens mod factor = 0) EE + (1,77 - 2	241 0) /120	//0.0 + 1.617) = 1	000							
				ELE		T DESIGN to	BS 8110:2	005	((mpa	•
Comp mod factor =	1 + 0.691/(3 -	+ 0.691) =	1.187			om RCC11.xls v4.0	© 2006 - 20	10 TCC		The	Concrete Ce
Permissible L/d = 20	0.0 x 1.000 x	1.187 = 23.	750	INP Des			Lady Marg 60.86 kNn 1.00	n/m f	NW5 2NP cu 30 4		$\gamma c = \frac{1.50}{1.16}$
Actual L/d = 3200 /1	94.0 = 16.495	5 ok				span :	3200 mm 250 mm	steel clas Sect	ss A ion locatio	n SIMPLY	$\gamma s = 1.15$ SUPPORTED S
Therefore:						Bar Ø cover		Compre to these bars		(deflection	n control only) WO WAY SL
Deflection is ok						70 Lady Ma d = 250 - 50	- 12/2 = 19	4.0 mm			
Maximum spacing i	s ok			(3.4.4	.4)	K' = 0.156 > z = 194.0 [0. As = 60.86E	.5 + (0.25 -	0.054 /0.89			
				(3.4.4 (Eqn :		$As = 60.86E$ $PROVIDE F$ $fs = 2/3 \times 50$	112 @ 150	= 754 mm²/	m.		iam/m
Minimum spacing is	s ok			(Equa	7) ation 9)	Tens mod fa Comp mod	actor = 0.55 factor = 1 +	+ (477 - 34 0.691/(3 +	·1.0) /120 / 0.691) = 1	(0.9 + 1.6 .187	17) = 1.000
				(3.4.6	.3)	Permissible	L/d = 20.0	x 1.000 x 1.	187 = 23.7	750	

Unit 6, The Courtyard Lynton Road

Project				Job no.	
	70 Lady Ma	rgaret Road		222	276
Calcs for				Start page no./Re	vision
	Retainin	g Wall A			1
Calcs by KL	Calcs date 22/05/2023	Checked by EB	Checked date 13/03/2023	Approved by	Approved date

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.17

Retaining wall details

Stem type Cantilever h_{stem} = **3000** mm Stem height t_{stem} = **300** mm Stem thickness Angle to rear face of stem α = **90** deg $\gamma_{\text{stem}} = 25 \text{ kN/m}^3$ Stem density Toe length I_{toe} = **4000** mm t_{base} = **250** mm Base thickness $\gamma_{base} = 25 \text{ kN/m}^3$ Base density h_{ret} = **3000** mm Height of retained soil Angle of soil surface $\beta = 0 \deg$ Depth of cover $d_{cover} = 0 \text{ mm}$ Height of water hwater = 2000 mm Water density $y_w = 9.8 \text{ kN/m}^3$

Retained soil properties

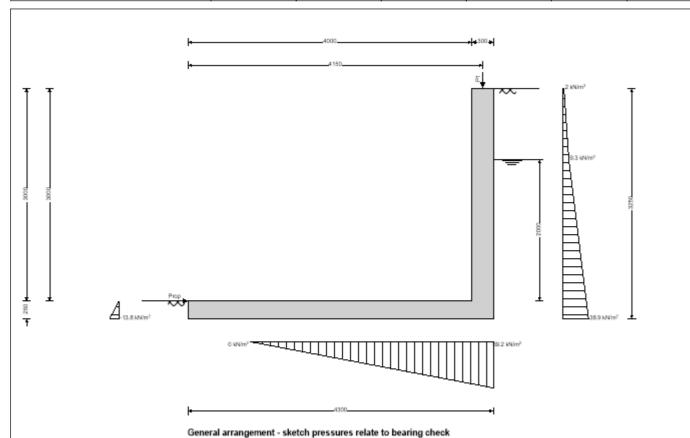
 $\begin{tabular}{lll} Soil type & Firm clay \\ Moist density & $\gamma_{mr} = 18 \ kN/m^3$ \\ Saturated density & $\gamma_{sr} = 18 \ kN/m^3$ \\ Characteristic effective shear resistance angle & $\phi'_{r,k} = 22 \ deg$ \\ Characteristic wall friction angle & $\delta_{r,k} = 11 \ deg$ \\ \end{tabular}$

Base soil properties

Soil type Stiff silty clay Soil density $\gamma_b = 19 \text{ kN/m}^3$ Characteristic effective shear resistance angle $\delta_{b,k} = 22 \text{ deg}$ Characteristic wall friction angle $\delta_{b,k} = 11 \text{ deg}$ Characteristic base friction angle $\delta_{bb,k} = 14.7 \text{ deg}$ Presumed bearing capacity $\rho_{bearing} = 150 \text{ kN/m}^2$

Loading details

Variable surcharge load Surcharge = 5 kN/m²


Vertical line load at 4150 mm P_{G1} = **60** kN/m

 $P_{Q1} = 9 kN/m$

Unit 6, The Courtyard Lynton Road

Project				Job no.	
	22276				
Calcs for				Start page no./Re	vision
		2			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
KL	22/05/2023	EB	13/03/2023		

Calculate retaining wall geometry

Base length

Saturated soil height

Moist soil height

Length of surcharge load

- Distance to vertical component

Effective height of wall

- Distance to horizontal component

Area of wall stem

- Distance to vertical component

Area of wall base

- Distance to vertical component

Using Coulomb theory

Active pressure coefficient

Passive pressure coefficient

Bearing pressure check

_ca....g p. ccca..c c...cc

Vertical forces on wall

Wall stem
Wall base

 $I_{\text{base}} = I_{\text{toe}} + t_{\text{stem}} = 4300 \text{ mm}$

h_{sat} = h_{water} + d_{cover} = **2000** mm

 $h_{\text{moist}} = h_{\text{ret}} - h_{\text{water}} = 1000 \text{ mm}$

 $I_{sur} = I_{heel} = 0 \text{ mm}$

 $x_{sur_v} = I_{base} - I_{heel} / 2 = 4300 \text{ mm}$

 $h_{eff} = h_{base} + d_{cover} + h_{ret} = 3250 \text{ mm}$

 $x_{sur h} = h_{eff} / 2 = 1625 mm$

 $A_{\text{stem}} = h_{\text{stem}} \times t_{\text{stem}} = 0.9 \text{ m}^2$

 $x_{stem} = I_{toe} + t_{stem} / 2 = 4150 \text{ mm}$

 $A_{base} = I_{base} \times t_{base} = 1.075 \text{ m}^2$

xbase = Ibase / 2 = 2150 mm

 $\mathsf{KA} = \sin(\alpha + \phi'_{\mathsf{r},\mathsf{k}})^2 / (\sin(\alpha)^2 \times \sin(\alpha - \delta_{\mathsf{r},\mathsf{k}}) \times [1 + \sqrt{\sin(\phi'_{\mathsf{r},\mathsf{k}} + \delta_{\mathsf{r},\mathsf{k}})} \times \sin(\phi'_{\mathsf{r},\mathsf{k}}) \times (-1 + \sqrt{\sin(\phi'_{\mathsf{r},\mathsf{k}} + \delta_{\mathsf{r},\mathsf{k}})}) \times (-1 + \sqrt{\sin(\phi'_{\mathsf{r},\mathsf{k}} +$

- β) / (sin(α - δr.k) × sin(α + β))]]²) = **0.413**

 $K_P = \sin(90 - \phi'_{b.k})^2 / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(90 + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}) \times \sin(\phi'_{b.k})} / (\sin(\phi'_{b.k} + \delta_{b.k}) \times [1 - \sqrt{[\sin(\phi'_{b.k} + \delta_{b.k}] \times (\cos(\phi'_{b.k} + \delta_{b.k}) \times (\cos(\phi'_{b.k} + \delta_{b.k}))}]$

 $(\sin(90 + \delta_{b.k}))]]^2) = 2.958$

 $F_{stem} = A_{stem} \times \gamma_{stem} = 22.5 \text{ kN/m}$

 $F_{base} = A_{base} \times \gamma_{base} = 26.9 \text{ kN/m}$

Unit 6, The Courtyard Lynton Road

Project				Job no.	
	222	276			
Calcs for				Start page no./Re	vision
	;	3			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
KL	22/05/2023	EB	13/03/2023		

Line loads $F_{P_v} = P_{G1} + P_{Q1} = 69 \text{ kN/m}$

Total Ftotal v = Fstem + Fbase + FP v + Fwater v = 118.4 kN/m

Horizontal forces on wall

Surcharge load $F_{sur_h} = K_A \times cos(\delta_{r.k}) \times Surcharge_Q \times h_{eff} = 6.6 \text{ kN/m}$

Saturated retained soil $F_{\text{Sat_h}} = K_A \times \cos(\delta_{r.k}) \times (\gamma_{\text{sr}} - \gamma_{\text{w}}) \times (h_{\text{sat}} + h_{\text{base}})^2 / 2 = 8.4 \text{ kN/m}$

Water $F_{water_h} = \gamma_w \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 24.8 \text{ kN/m}$

Moist retained soil $F_{moist_h} = K_A \times \cos(\delta_{r.k}) \times \gamma_{mr} \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{eff} - h_{sat} - h_{base$

 $(h_{sat} + h_{base})) = 20.1 \text{ kN/m}$

Base soil $F_{pass_h} = -K_P \times cos(\delta_{b.k}) \times \gamma_b \times (d_{cover} + h_{base})^2 / 2 = -1.7 \text{ kN/m}$ Total $F_{total_h} = F_{sur_h} + F_{sat_h} + F_{water_h} + F_{moist_h} + F_{pass_h} = 58.2 \text{ kN/m}$

Moments on wall

Water $M_{water} = -F_{water_h} \times x_{water_h} = -18.6 \text{ kNm/m}$ Moist retained soil $M_{moist} = -F_{moist_h} \times x_{moist_h} = -27.9 \text{ kNm/m}$

Total Mtotal = Mstem + Mbase + Msur + Mp + Msat + Mwater + Mmoist = 374 kNm/m

Check bearing pressure

Propping force $F_{prop_base} = F_{total_h} = 58.2 \text{ kN/m}$ Distance to reaction $\overline{x} = M_{total} / F_{total_v} = 3159 \text{ mm}$ Eccentricity of reaction $e = \overline{x} - l_{base} / 2 = 1009 \text{ mm}$ Loaded length of base $l_{load} = 3 \times (l_{base} - \overline{x}) = 3423 \text{ mm}$

Bearing pressure at toe $q_{toe} = 0 \text{ kN/m}^2$

Bearing pressure at heel $q_{heel} = 2 \times F_{total_v} / I_{load} = 69.2 \text{ kN/m}^2$ Factor of safety $FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 2.169$

PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.17

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class C30/37

Characteristic compressive cylinder strength $f_{ck} = 30 \text{ N/mm}^2$ Characteristic compressive cube strength $f_{ck,cube} = 37 \text{ N/mm}^2$

Mean value of compressive cylinder strength $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$

Mean value of axial tensile strength $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$

5% fractile of axial tensile strength $f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$

Secant modulus of elasticity of concrete $E_{cm} = 22 \text{ kN/mm}^2 \times (f_{cm} / 10 \text{ N/mm}^2)^{0.3} = 32837 \text{ N/mm}^2$

Partial factor for concrete - Table 2.1N $\gamma c = 1.50$ Compressive strength coefficient - cl.3.1.6(1) $\alpha cc = 0.85$

Design compressive concrete strength - exp.3.15 $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_{c} = 17.0 \text{ N/mm}^2$

Maximum aggregate size $h_{agg} = 20 \text{ mm}$

Syr	nmetry's Limited
Uı	nit 6, The Courtyard
	Lvnton Road

Project				Job no.	
	222	276			
Calcs for				Start page no./Re	vision
		4			
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
KL	22/05/2023	EB	13/03/2023		

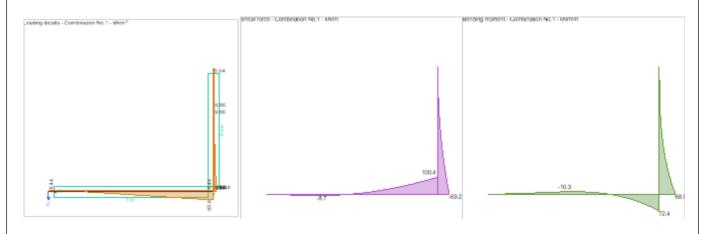
Ultimate strain - Table 3.1	$\epsilon_{\text{cu2}} = 0.0035$
Shortening strain - Table 3.1	_{Ecu3} = 0.0035
Effective compression zone height factor	$\lambda = 0.80$
Effective strength factor	η = 1.00
Bending coefficient k ₁	$K_1 = 0.40$

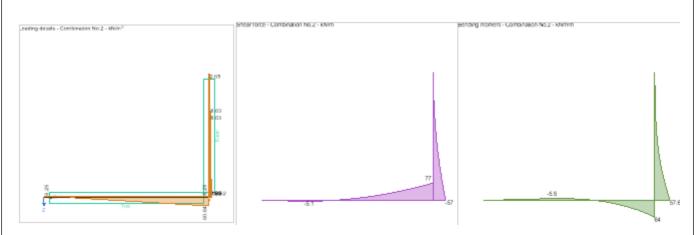
Bending coefficient k_2 $K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

Bending coefficient k_3 $K_3 = 0.40$

Bending coefficient k₄ $K_4 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$

Reinforcement details


 $\begin{array}{ll} \mbox{Characteristic yield strength of reinforcement} & \mbox{f_{yk} = $500 \ N/mm^2$} \\ \mbox{Modulus of elasticity of reinforcement} & \mbox{E_s = $200000 \ N/mm^2$} \\ \end{array}$


Partial factor for reinforcing steel - Table 2.1N $\gamma s = 1.15$

Design yield strength of reinforcement $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Cover to reinforcement

Front face of stem $c_{sf} = 40 \text{ mm}$ Rear face of stem $c_{sr} = 50 \text{ mm}$ Top face of base $c_{bt} = 50 \text{ mm}$ Bottom face of base $c_{bb} = 75 \text{ mm}$

Check stem design at base of stem

Depth of section h = **300** mm

Unit 6, The Courtyard Lynton Road

Project				Job no.	
	70 Lady Margaret Road			22276	
Calcs for				Start page no./Revision	
70 Lady M		g Wall A			5
,		Checked by EB	Checked date 13/03/2023	Approved by	Approved date

Rectangular section in flexure - Section 6.1

Design bending moment combination 1 M = **68.5** kNm/m

Depth to tension reinforcement $d = h - c_{sr} - \phi_{sr} / 2 = 242 \text{ mm}$

 $K = M / (d^2 \times f_{ck}) = 0.039$

 $\mathsf{K'} = (2 \times \eta \times \alpha \mathsf{cc}/\gamma \mathsf{c}) \times (1 - \lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2)) \times (\lambda \times (\delta - \mathsf{K}_1)/(2 \times \mathsf{K}_2))$

K' = 0.207

K' > K - No compression reinforcement is required

Lever arm $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha cc / \gamma c))^{0.5}, 0.95) \times d = 230 \text{ mm}$

Depth of neutral axis $x = 2.5 \times (d - z) = 30 \text{ mm}$

Area of tension reinforcement required $A_{sr.req} = M / (f_{yd} \times z) = 686 \text{ mm}^2/\text{m}$

Tension reinforcement provided 16 dia.bars @ 200 c/c

Area of tension reinforcement provided $A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 1005 \text{ mm}^2/\text{m}$

Minimum area of reinforcement - exp.9.1N $A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 364 \text{ mm}^2/\text{m}$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{sr.max} = 0.04 \times h = 12000 \text{ mm}^2/\text{m}$

 $max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.682$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4

Reference reinforcement ratio $\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} / 1000 = \textbf{0.005}$

Required tension reinforcement ratio $\rho = A_{sr.req} / d = 0.003$ Required compression reinforcement ratio $\rho' = A_{sr.2.req} / d_2 = 0.000$

Structural system factor - Table 7.4N $K_b = 0.4$

Reinforcement factor - exp.7.17 $K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.466$

Limiting span to depth ratio - exp.7.16.a $\min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 \text{ N/mm}^2)} \times \rho_0 / \rho)$

 N/mm^2) × (ρ_0 / ρ - 1)^{3/2}], 40 × K_b) = **16**

Actual span to depth ratio $h_{stem} / d = 12.4$

PASS - Span to depth ratio is less than deflection control limit

Crack control - Section 7.3

Limiting crack width $w_{max} = 0.3 \text{ mm}$

Variable load factor - EN1990 – Table A1.1 $\psi_2 = 0.6$

Serviceability bending moment M_{sls} = **46.1** kNm/m

Tensile stress in reinforcement $\sigma_s = M_{sls} / (A_{sr.prov} \times z) = 199.5 \text{ N/mm}^2$

Effective area of concrete in tension $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$

Ac.eff = **89917** mm²/m fct.eff = fctm = **2.9** N/mm²

Mean value of concrete tensile strength fct.eff =

Reinforcement ratio $\rho_{\text{p.eff}} = A_{\text{sr.prov}} \, / \, A_{\text{c.eff}} = \textbf{0.011}$

Modular ratio $\alpha_{\text{e}} = E_{\text{s}} / E_{\text{cm}} = \textbf{6.091}$

Bond property coefficient $k_1 = 0.8$ Strain distribution coefficient $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$

Maximum crack spacing - exp.7.11 $s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p.eff} = 413 \text{ mm}$

Maximum crack width - exp.7.8 $W_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$

w_k = **0.247** mm

Unit 6, The Courtyard Lynton Road

Project				Job no.	
70 Lady Margaret Road				22276	
Calcs for			Start page no./Revision		
Retaining Wall A				6	
Calcs by KL	Calcs date 22/05/2023	Checked by EB	Checked date 13/03/2023	Approved by	Approved date

 $W_k / W_{max} = 0.824$

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force V = 69.2 kN/m

 $C_{Rd,c} = 0.18 / \gamma_C = 0.120$

 $k = min(1 + \sqrt{200 \text{ mm} / d}), 2) = 1.909$

Longitudinal reinforcement ratio $\rho_l = min(A_{sr,prov} / d, 0.02) = 0.004$

 $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = \textbf{0.506 N}/\text{mm}^2$

Design shear resistance - exp.6.2a & 6.2b $V_{Rd.c} = \max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min}) \times d$

 $V_{Rd.c} = 128.5 \text{ kN/m}$ V / $V_{Rd.c} = 0.539$

PASS - Design shear resistance exceeds design shear force

Horizontal reinforcement parallel to face of stem - Section 9.6

Minimum area of reinforcement – cl.9.6.3(1) $A_{\text{sx.req}} = \max(0.25 \times A_{\text{sr.prov}}, 0.001 \times t_{\text{stem}}) = 300 \text{ mm}^2/\text{m}$

Maximum spacing of reinforcement – cl.9.6.3(2) $s_{sx_max} = 400 \text{ mm}$ Transverse reinforcement provided 10 dia.bars @ 200 c/c

Area of transverse reinforcement provided $A_{sx,prov} = \pi \times \phi_{sx^2} / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Check base design at toe

Depth of section h = **250** mm

Rectangular section in flexure - Section 6.1

Design bending moment combination 1 M = **72.4** kNm/m

Depth to tension reinforcement $d = h - c_{bb} - \phi_{bb} / 2 = 165 \text{ mm}$

 $K = M / (d^2 \times f_{ck}) = 0.089$

 $K' = (2 \times \eta \times \alpha cc/\gamma c) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$

K' = 0.207

K' > K - No compression reinforcement is required

Lever arm $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha cc / \gamma c))^{0.5}, 0.95) \times d = 151 \text{ mm}$

Depth of neutral axis $x = 2.5 \times (d - z) = 35 \text{ mm}$

Area of tension reinforcement required $A_{bb,req} = M / (f_{yd} \times z) = 1103 \text{ mm}^2/\text{m}$

Tension reinforcement provided 20 dia.bars @ 150 c/c

Area of tension reinforcement provided $A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 2094 \text{ mm}^2/\text{m}$

Minimum area of reinforcement - exp.9.1N $A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 249 \text{ mm}^2/\text{m}$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{bb.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$

max(Abb.req, Abb.min) / Abb.prov = 0.527

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Crack control - Section 7.3

Limiting crack width $w_{max} = 0.3 \text{ mm}$ Variable load factor - EN1990 – Table A1.1 $\psi_2 = 0.6$

Serviceability bending moment Msls = **52.6** kNm/m

Tensile stress in reinforcement $\sigma_s = M_{sls} / (A_{bb,prov} \times z) = 166.3 \text{ N/mm}^2$

Effective area of concrete in tension $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$

 $A_{c.eff} = 71574 \text{ mm}^2/\text{m}$

Unit 6, The Courtyard Lynton Road

Project				Job no.	
	70 Lady Ma	rgaret Road		22276	
Calcs for				Start page no./Re	evision
	Retainin	g Wall A			7
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
KL	22/05/2023	EB	13/03/2023		

Mean value of concrete tensile strength $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$

Reinforcement ratio $\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.029$

Modular ratio $\alpha_e = E_s / E_{cm} = 6.091$

Bond property coefficient $k_1 = 0.8$ Strain distribution coefficient $k_2 = 0.5$ $k_3 = 3.4$ $k_4 = 0.425$

Maximum crack spacing - exp.7.11 $s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} / \rho_{p.eff} = 371 \text{ mm}$

Maximum crack width - exp.7.8 $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$

 $w_k = 0.222 \text{ mm}$ $w_k / w_{max} = 0.74$

PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2

Design shear force V = 100.4 kN/m

 $C_{Rd,c} = 0.18 / \gamma_C = 0.120$

 $k = min(1 + \sqrt{200 \text{ mm} / d}), 2) = 2.000$

Longitudinal reinforcement ratio $\rho_{I} = min(A_{bb,prov} / d, 0.02) = 0.013$

 $v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = \textbf{0.542 N}/\text{mm}^2$

Design shear resistance - exp.6.2a & 6.2b $V_{Rd.c} = max(C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}, v_{min}) \times d$

 $V_{Rd.c}$ = **133.2** kN/m $V / V_{Rd.c}$ = **0.754**

PASS - Design shear resistance exceeds design shear force

Check base design at toe

Depth of section h = **250** mm

Rectangular section in flexure - Section 6.1

Design bending moment combination 1 M = **10.3** kNm/m

Depth to tension reinforcement $d = h - c_{bt} - \phi_{bt} / 2 = 195 \text{ mm}$

 $K = M / (d^2 \times f_{ck}) = 0.009$

 $\mathsf{K'} = (2 \times \eta \times \alpha \mathsf{ccc}/\gamma c) \times (1 - \lambda \times (\delta - \mathsf{K_1})/(2 \times \mathsf{K_2})) \times (\lambda \times (\delta - \mathsf{K_1})/(2 \times \mathsf{K_2}))$

K' = 0.207

K' > K - No compression reinforcement is required

Lever arm $z = min(0.5 + 0.5 \times (1 - 2 \times K / (\eta \times \alpha cc / \gamma c))^{0.5}, 0.95) \times d = 185 \text{ mm}$

Depth of neutral axis $x = 2.5 \times (d - z) = 24 \text{ mm}$

Area of tension reinforcement required $A_{bt.req} = M / (f_{yd} \times z) = 128 \text{ mm}^2/\text{m}$

Tension reinforcement provided 10 dia.bars @ 150 c/c

Area of tension reinforcement provided $A_{bt,prov} = \pi \times \phi_{bt}^2 / (4 \times s_{bt}) = 524 \text{ mm}^2/\text{m}$

Minimum area of reinforcement - exp.9.1N $A_{bt.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 294 \text{ mm}^2/\text{m}$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{bt.max} = 0.04 \times h = 10000 \text{ mm}^2/\text{m}$

max(Abt.req, Abt.min) / Abt.prov = 0.561

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Crack control - Section 7.3

 $\label{eq:wmax} \begin{array}{ll} \text{Limiting crack width} & \text{$w_{\text{max}} = \textbf{0.3}$ mm} \\ \text{Variable load factor - EN1990} - \text{Table A1.1} & \psi_2 = \textbf{0.6} \\ \text{Serviceability bending moment} & \text{$M_{\text{sls}} = \textbf{0}$ kNm/m} \end{array}$

Tensile stress in reinforcement $\sigma_s = M_{sls} / (A_{bt,prov} \times z) = 0 \text{ N/mm}^2$

Unit 6, The Courtyard Lynton Road

Project				Job no.	
	70 Lady Ma	rgaret Road		222	276
Calcs for				Start page no./Re	vision
	Retainin	g Wall A			8
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
KL	22/05/2023	EB	13/03/2023		

Load duration Long term

Load duration factor $k_t = 0.4$

Effective area of concrete in tension $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$

 $A_{c.eff} = 75208 \text{ mm}^2/\text{m}$

Mean value of concrete tensile strength $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$

Reinforcement ratio $\rho_{p.eff} = A_{bt.prov} / A_{c.eff} = 0.007$

Modular ratio $\alpha_e = E_s / E_{cm} = 6.091$

Bond property coefficient $$k_1=0.8$$ Strain distribution coefficient $$k_2=0.5$$ $$k_3=3.4$$

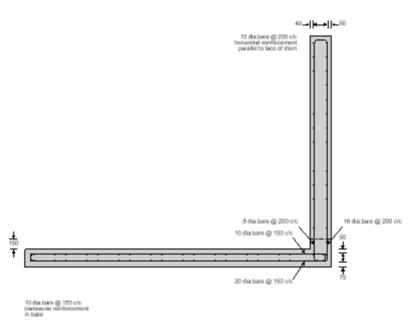
 $k_3 = 3.4$ $k_4 = 0.425$

Maximum crack spacing - exp.7.11 $s_{r.max} = k_3 \times c_{bt} + k_1 \times k_2 \times k_4 \times \phi_{bt} / \rho_{p.eff} = 414 \text{ mm}$

Maximum crack width - exp.7.8 $w_k = s_{r.max} \times max(\sigma_s - k_t \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_e \times \rho_{p.eff}), 0.6 \times \sigma_s) / E_s$

 $w_k = 0 \text{ mm}$ $w_k / w_{max} = 0$

PASS - Maximum crack width is less than limiting crack width


Secondary transverse reinforcement to base - Section 9.3

Minimum area of reinforcement – cl.9.3.1.1(2) $A_{bx,req} = 0.2 \times A_{bb,prov} = 419 \text{ mm}^2/\text{m}$

Maximum spacing of reinforcement – cl.9.3.1.1(3) $s_{bx_max} = 450 \text{ mm}$ Transverse reinforcement provided 10 dia.bars @ 150 c/c

Area of transverse reinforcement provided $A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 524 \text{ mm}^2/\text{m}$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Reinforcement details

Symmetry's Limited
Unit 6, The Courtyard
Lynton Road

	Project				Job no.	
		70 Lady Ma	22276			
Ī	Calcs for			Start page no./Revision		
	Retaining Wall A				!	9
Ī	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	KL	22/05/2023	EB	13/03/2023		

Lynton Road	KL	22/05/2023	EB	13/03/2023		
					•	

CONTINUE THE CONVERSATION

TO DISCUSS YOUR PROJECT WITH US PLEASE GET IN TOUCH ON 020 8340 4041 OR EMAIL US AT INFO@SYMMETRYS.COM

```
hillips . Hai
ineers . JAC
an Construct
ark Pinney . Ma
Pegasus Life . pH-
loda Studio . Spacelo
                                                                                                                          PS , Brick by Brick . Broadgate Estates . BUFA . Bureau De Change .
rsity of London . Club Peloton . Coffey Architects . Collado Collins
                                                                                                                                                           ~54 . Gardiner & Theobald . Geraghty Taylor . Get Turner . Gibso<sub>1</sub> . 
 ~over Green Retail . Heart of the City . HO+K . Hollis . Howard Do
```