

Lamorna, Dartmouth Park Road NW5 1SU

Drainage Strategy & Flood Risk Assessment

January 2025

Pitman Associates Ltd.

1 Beech Copse Exeter Devon EX2 7SZ

+44 (0)1392 824616	Telephone
admin@pitmanassociates.com	E-mail
www.pitmanassociates.com	Internet

Document title	Surface Water Drainage Strategy & Flood Risk Assessment
Status	Rev A – Initial issue
Date	Rev A – January 2025
Project name	Lamorna, Dartmouth Park Road, NW5 1SU
Project number	0775
Client	HGG London Limited

CONTENTS

1.	INTRODUCTION	1
2.	INFILTRATION	2
3.	EXISTING AND GREENFIELD RUNOFF RATES AND VOLUMES	2
4.	PROPOSED SURFACE WATER DRAINAGE	3
5.	MAINTENANCE	4
6.	EXCEEDANCE FLOWPATHS	6
7.	RESIDUAL FLOOD RISK	6
	APPENDIX A – DRAWINGS	
	APPENDIX B – CALCULATIONS	
	APPENDIX C – PERSONAL FLOOD PLAN TEMPLATE	
	APPENDIX D - CORRESPONDENCE WITH THAMES WATER	

1. INTRODUCTION

1.1 This document has been prepared in support of a planning application for development at Lamorna, Dartmouth Park Road, NW5 1SU. The location of the site is shown below.

Figure 1. Location Plan

- 1.2 The site is currently occupied by a two-storey single-family dwelling.
- 1.3 It is proposed to demolish the existing dwelling and construct a new five-storey plus basement residential building consisting of six self-contained flats. Drawings of the proposed development are included in Appendix A.
- 1.4 The surface water management strategy will adhere to the principles set out in DEFRA's Non-Statutory Technical Standards for Sustainable Drainage Systems.
- 1.5 Options for disposal of surface water are described in this report. The following table provides a summary.

Disposal Method	Comment
1.Capture rainwater for re-use.	Proposed.
2. Discharge to a water body that is capable of receiving the runoff without increasing flood risk elsewhere.	There are no such water bodies in the vicinity of the site.
3. Use infiltration techniques.	The combination of the proximity of the site to other buildings and likely unfavourable ground conditions (London Clay) means that infiltration is not considered feasible.
4. Attenuate rainwater in ponds or open surface water features.	Not feasible due to limited footprint of site.
5. Attenuate rainwater by storing in	A combined rainwater harvesting and
tanks for gradual release.	attenuation tank is proposed.
6. Discharge rainwater direct to a watercourse.	There are no suitable watercourses in the vicinity of the site.
7. Discharge rainwater to a surface water sewer.	The overflow from the harvesting/attenuation tank will discharge to the public combined water sewer.
8. Discharge to a highway drain.	Not required.
9. Discharge rainwater to a combined sewer.	Not required.

 Table 1.1 – Summary of the Drainage Hierarchy

2. INFILTRATION

2.1 A ground investigation has yet to be carried out. However, given the small footprint of the site and the requirement for soakaways to be located at least 5m from structures and 2.5m from boundaries it is reasonable to conclude that infiltration will not be feasible. In addition, the British Geological Society's 1:50,000 maps indicate that the site is likely underlain by London Clay (a very low permeability soil) with no superficial deposits.

3. EXISTING AND GREENFIELD RUNOFF RATES AND VOLUMES

3.1 The site extends to approximately 190m². The greenfield runoff rates from this area have been estimated using the HR Wallingford Greenfield Runoff Rate Estimator. The calculation is included in Appendix B and the results are summarised below.

Return Period (years)	Runoff Rate (I/s)
Qbar	0.08
1	0.07
30	0.19
100	0.26

Table 2.1 – Greenfield Runoff Rates

- 3.2 The volume of runoff from the greenfield site for the 100yr-6hr rainfall event has been estimated using the Flow software suite. From Calculation 2 in Appendix B it can be seen that the volume is approximately 8m³.
- 3.3 The existing site comprises a single dwelling with mainly paved/concreted spaces to the front and rear. From the topographic survey in Appendix A it can be seen that the total area of planted/permeable surfaces within the site is approximately 10m².

3.4 The runoff rates from the existing site have been estimated using a simple notional Flow hydraulic model (see Appendix B). The results are summarised below.

Return Period (years)	Runoff Rate (I/s)
2	2.6
30	8.0
100	10.6

Table 2.2 – Existing Runoff Rates

3.5 The volume of runoff from the existing site for the 100yr-6hr rainfall event has been estimated using the Flow software suite. From Calculation 3 in Appendix B it can be seen that the volume is approximately 14m³.

4. PROPOSED SURFACE WATER DRAINAGE

4.1 The existing drainage arrangements are yet to be confirmed. However, given the topography of the area it is considered likely that the existing discharge is to the public combined sewer at the location shown below.

Figure 2 – Proposed Point of Discharge

- 4.2 The drainage strategy has been developed in accordance with the drainage hierarchy shown in Section 1 above and will incorporate the following SuDS features:
 - Rainwater from roof areas will be captured for re-use.
 - Green roofs will be provided where practicable.
 - Geocellular attenuation tank.

- 4.3 The green roofs will provide water quality benefits, biodiversity benefits and amenity benefits by contributing to a reduction in the 'heat island effect'.
- 4.4 An indicative Flow hydraulic model has been used to estimate the rate of runoff from the proposed site. The model is included in Appendix B and the results are summarised in the following table.

Return Period (years)	Runoff Rate (I/s)	Reduction in Runoff Rate
2	1.3	50%
30	2.0	75%
100	2.0	81%
100+40%	2.0	-

Table 2.1 – Proposed Runoff Rates

- 4.5 Drawing DR-001 in Appendix A shows the proposed surface water strategy.
- 4.6 The MicroDrainage software suite has been used to estimate the size of combined rainwater harvesting/attenuation tank required. From Calculation 6 in Appendix B it can be seen that the tank will require a combined volume of approximately 6m³.
- 4.7 In addition to a rainwater harvesting tank 8m³ of geocellular storage has been provided to attenuate runoff to a maximum of 2l/s for all rainfall events up to the 100yr +40% cc storm event.
- 4.8 The Flow model printout in Calculation 4 of Appendix B confirms that there will be no flooding on the site for rainfall events up to the 1000yr return period or the 100yr plus a 40% allowance for the potential impact of climate change. It should be noted that this is based on a free discharge to the public sewer. The location and level of the proposed point of connection should be confirmed prior to construction to establish if a pumping station will be required. Thames Water has agreed in principal to the connection. Refer to appendix D for correspondence.
- 4.9 The flow model printouts in calculations 3 and 5 show there is no difference in discharged volumes between the existing and proposed 100 yr 6h hour events. The discharged volume is approx. 14m³

5. MAINTENANCE

- 5.1 A management company will be responsible for ensuring the surface water drainage system is properly maintained.
- 5.2 Maintenance schedules for the various components of the system are shown in the following tables.

Maintenance schedule	Required action	Typical frequency
	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
Regular inspections	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (ie year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
Regular maintenance	Post establishment, replace dead plants as required (where > 5% of coverage)	Annually (in autumn)
Negular maintenance	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting (if appropriate) as required – clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

Table 5.1 – Maintenance Schedule for Green Roofs © CIRIA

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Inspection of the tank for debris and sediment build- up, inlets/outlets/withdrawal devices, overflow areas, pumps, filters	Annually (and following poor performance)
	Cleaning of tank, inlets, outlets, gutters, withdrawal devices and roof drain filters of silts and other debris	Annually (and following poor performance)
Occasional maintenance	Cleaning and/or replacement of any filters	Three monthly (or as required)
	Repair of overflow erosion damage or damage to tank	As required
Remedial actions	Pump repairs	As required

Table 5.2 – Maintenance Schedule for Rainwater Harvesting System

6. EXCEEDANCE FLOWPATHS

- 6.1 In the event of a blockage or failure of the system runoff will pool in the terrace areas of the basement dwelling.
- 6.2 It is recommended that a pump be provided to convey exceedance flows to the public sewer.

7. RESIDUAL FLOOD RISK

7.1 The Camden Flood Risk Management Strategy (2022-2027) indicates that the site lies within the York Rise Local Flood Risk Zone. The following sections review the flood risk arising from various sources.

Watercourses

7.2 The extract of the EA's flood map shown in Figure 3 indicates that the site is at very low risk of flooding from watercourses.

Figure 3. Risk of Flooding from Watercourses (Source: www.gov.uk)

Surface Water Flooding

7.3 The extract from the EA's flood map shown in Figure 4 indicates that the site is not at risk of flooding from surface water runoff during the 100year return period rainfall event.

Figure 4. Risk of Flooding from Surface Water – Medium Risk Scenario (Source: www.gov.uk)

7.4 The extract from the EA's flood map shown in Figure 5 indicates that the area to the rear of the existing site is at risk of flooding to depths of up to 300mm from surface water runoff during the 1000 year return period rainfall event.

Figure 5. Risk of Flooding from Surface Water – Low Risk Scenario (Source: www.gov.uk)

<u>Groundwater</u>

7.5 The Gov.uk website indicates that flooding from groundwater is unlikely. This is confirmed in the Basement Impact Assessment Screening Report (Talon Consulting – September 2024).

<u>Sewers</u>

7.6 Figure 5a of The London Borough of Camden's SFRA indicates that the site does not lie within an area with a high frequency of flooding from sewers.

Artificial Sources

7.7 The Gov.uk website advises that "flooding from reservoirs is "unlikely in this area".

Summary of Flood Risk

- 7.8 The most significant source of flood risk arises from a failure of the proposed surface water drainage system. The following mitigation measures are recommended:
 - All parts of the drainage system are regularly inspected and maintained in accordance with the Schedules in Section 5 above.
 - A pumping station be provided for the management of exceedance flows. Subject to confirmation of the location and level of the point of discharge it is possible the pumping station will also be required to convey runoff from the drainage system to the public sewer.
 - A maintenance agreement is adopted for the management of the pumping station.
 - An uninterruptable power supply is provided for the pumps.
 - The development is constructed in accordance with the principles set out in the document Improving the Flood Performance of New Building, Flood Resilient Construction (DEFRA, May 2007).
 - Occupants of the lower ground floor dwelling should prepare a personal flood management plan in accordance with the template provided in Appendix C.

APPENDIX A DRAWINGS

Topographic Survey Roof Plan Ground Floor Plan Lower Ground Floor Plan DR-001 Surface Water Drainage Strategy

1. PROPOSED ROOF PLAN

* N

5

bureau d Ur 6 Hoxto N1 6NU	e change it 4 in Square , London
KEY PLAN:	
REVISION:	
NOTES:	
PRO 112_ DRAWIN PROPOSED A1 PURPOSE PLAN	JECT LAM NG TITLE ROOF PLAN 16 OF ISSUE NING
SCALE 1:100 @ A3 / 1:50 @ A1 DRAWN BY CO / EL	DATE JULY 2024 REVISION P1

1. PROPOSED GROUND FLOOR PLAN

5

bureau d Un 6 Hoxto N1 6NU,	e change it 4 n Square London
KEY PLAN:	
REVISION:	
NOTES:	
PROJ 112_1 DRAWIN PROPOSED GROU A1 PURPOSE PLAN SCALE 1:100 @ A3 / 1:50 @ A1	IECT LAM IG TITLE IND FLOOR PLAN III OF ISSUE NING DATE JULY 2024

1. PROPOSED LOWER GROUND FLOOR PLAN

5

bureau de chage Unit 4 6 Hoxton Square N1 6NU, London		
KEY PLAN:		
REVISION:		
NOTES:		
PROJECT 112_LAM DRAWING TITLE		
PROPOSED LOWER GROUND FLOOR PLAN		
PURPOSE OF ISSUE PLANNING		
SCALE DATE 1:100 @ A3 / 1:50 @ A1 JULY 2024 DRAWN BY REVISION CO / FL P1		

APPENDIX B CALCULATIONS

- 1. **Greenfield Runoff Rates**
- Flow Model for Existing System 2, 30, 100yr events Flow Model for Existing System 100yr 6hr event Flow Model for Proposed System Flow Model for Proposed System 100yr 6hr event 2.
- 3.
- 4.
- 5.
- Proposed Rainwater Harvesting/Attenuation Tank 6.

1. **Greenfield Runoff Rates** Greenfield runoff rate estimation for sites hrwallingford www.uksuds.com | Greenfield runoff tool Karl Pitman Calculated by: Site Details 51.55743° N Latitude: Lamorna Site name: 0.14594° W Longitude: NW5 1SU Site location: This is an estimation of the greenfield runoff rates that are used to meet normal best practice criteria in line with Environment Agency guidance Rainfall runoff management **Refer** for developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from **Date**: 433777058 Reference: Sep 11 2024 14:01 sites. IH124 Runoff estimation approach Site characteristics Notes Total site area (ha): 1 (1) Is Q_{BAR} < 2.0 I/s/ha? Methodology When QBAR is < 2.0 l/s/ha then limiting discharge Calculate from SPR and SAAR Q_{BAR} estimation method: rates are set at 2.0 l/s/ha. Calculate from SOIL type SPR estimation method: Soil characteristics Default Edited (2) Are flow rates < 5.0 l/s? 4 4 SOIL type: Where flow rates are less than 5.0 l/s consent N/A N/A HOST class: for discharge is usually set at 5.0 l/s if blockage from vegetation and other materials is possible. 0.47 0.47 SPR/SPRHOST: Lower consent flow rates may be set where the Hydrological blockage risk is addressed by using appropriate characteristics drainage elements. Default Edited 641 641 SAAR (mm): 6 6 Hydrological region: (3) Is SPR/SPRHOST ≤ 0.3? 0.85 0.85 Growth curve factor 1 year. Where groundwater levels are low enough the Growth curve factor 30 2.3 use of soakaways to avoid discharge offsite 2.3 years: would normally be preferred for disposal of Growth curve factor 100 3.19 3.19 surface water runoff. years: Growth curve factor 200 3.74 3.74 years:

Greenfield runoff rates	Default	Edited
Q _{BAR} (I/s):	4.36	4.36
1 in 1 year (l/s):	3.7	3.7
1 in 30 years (l/s):	10.02	10.02
1 in 100 year (l/s):	13.89	13.89
1 in 200 years (l/s):	16.29	16.29

Pro-rata for 190m² Qbar = 0.08l/s 1yr = 0.07/s 30yr = 0.19l/s 100yr = 0.26l/s

2. Flow Model for Existing System 2, 30, 100yr events

The following model is based on a notional single piped discharge from the existing site.

Causewa	Pitman Ass	ociates Ltd	File: Existing SW.pfd Network: Storm Network Karl Pitman 16/01/2025	Page 1
		<u>Design</u>	Settings	
Maximum Tim M	Rainfall Met Return Perio Additional Time of Ent e of Concentrational Iaximum Rainfall	hodology FEH-22 od (years) 100 Flow (%) 40 CV 0.750 cry (mins) 5.00 on (mins) 30.00 (mm/hr) 50.0	Minimum Velocity (r Connection T Minimum Backdrop Height Preferred Cover Depth Include Intermediate Gro Enforce best practice design r	m/s) 1.00 Type Level Soffits (m) 0.200 (m) 1.200 und √ ules √
		Adoptable N	lanhole Type	
N	/lax Width (mm) 374 499	Diameter (mm) 1200 1350 >900 Link	Max Width (mm) Diameter 749 900	(mm) 1500 1800
	Max Depth (m) 1.500	Diameter (mm) 1050	Max Depth (m) Diameter (n 99.999 1	וווה) 200
		No	des	
۲ 1 2	Name Area (ha) L 0.019	T of E Cover Di (mins) Level (m) 5.00 -2.900 -3.000	ameter Easting Northing D (mm) (m) (m) 1200 0.000 0.000 1 1200 -20.000 -20.000 1 hks	eepth (m) 1.350 1.726
Name US Node 1 1	DS Length Node (m) 2 28.284	ks (mm) / US IL n (m) 0.600 -4.250	DS IL Fall Slope Dia (m) (m) (1:X) (mm -4.726 0.476 59.4 150	T of C Rain (mins) (mm/hr) 5.36 50.0
Name 1	e Vel Cap (m/s) (l/s) 1.307 23.1	Flow US (I/s) Depth D (m) 3.6 1.200 1	DS Σ Area Σ Add Pro epth (ha) Inflow Depth (m) (l/s) (mm) .576 0.019 0.0 40	Pro Velocity (m/s) 0.955
		<u>Pipeline</u>	<u>Schedule</u>	
Link Length (m) 1 28.284 Link 1	Node (mm) 1 1200	Link US CL Type (m) Circular -2.900 Node MH Type Type Manhole Adoptat	US IL US Depth DS CL (m) (m) (m) -4.250 1.200 -3.000 - DS Dia Node Node (mm) Type DIe 2 1200 Manhole	DS IL DS Depth (m) (m) 4.726 1.576 MH Type Adoptable

			Pitman Ass	ociates Lto	1	File:	Existing SW.pf	d		Page 2			
Network: Storm Network													
	ausev	Nay				Karl	Pitman						
16/01/2025													
	Manhole Schedule												
	Node	Easting	Northing	CL	Depth	Dia	Connectio	ons	Link	IL ()	Dia		
	1	(m)	(m)	(m)	(m)	(mm)				(m)	(mm)		
	I	0.000	0.000	-2.900	1.550	1200							
							04		1	4 250	150		
	2	-20 000	-20.000	-3 000	1 726	1200		1	1	-4.250	150		
	2	20.000	20.000	5.000	1.720	1200		-	-	4.720	150		
					<u>Simulati</u>	on Setti	ings						
	Rainfall Met	thodolog	v FEH-22		Skip S	Steady S	state x			2 ve	ar (l/s)	0.1	
	Rain	fall Event	, s Singular	Dra	in Down	Time (n	nins) 240			30 ye	ar (l/s)	0.2	
	Su	ummer C	0.750	Addit	ional Sto	rage (m ⁱ	∛ha) 0.0			100 ye	ar (l/s)	0.3	
		Winter C	/ 0.840		Starti	ng Level	l (m)	Che	eck Dis	charge V	olume	\checkmark	
	Analy	ysis Spee	d Normal	Ch	eck Disch	arge Ra	te(s) √	100	year 3	60 minut	:e (m³)	8	
	Storm Durations												
	15	60	180	360	600	960	2160 4	1320	720	0 10	080		
	30	120	240	480	720	1440	2880 5	5760	864	0			
	Return Period Climate Change Additional Area Additional Flow												
			(years)	(CC	:%)		(A %)	(0	(%)	0			
			20 20		0		0			0			
			100		0		0			0			
				Pre-de	evelopme	ent Disc	harge Rate						
			Sit	e Makeup	Green	field	Growth Fac	ctor 30) year	2.40			
			Greenfiel	d Method	IH124		Growth Fact	or 100:) year	3.19			
		Positi	vely Drained	Area (ha)	0.019		Bett	termer	nt (%)	0			
			S/	AAR (mm)	641		~	· · · ·	QBar	0.1			
				SOII INDEX	4 0 // 7		Q	t z year 30 year	r (I/S) r (I/c)	U.I 0 2			
				Region	0.47 6		0.10	00 year	r (1/s)	0.2			
			Growth Fac	tor 2 year	0.88		41	ee yeu	. (., 5)	0.0			
				<u>Pre-dev</u>	elopmen	t Discha	arge Volume						
			Sit	e Makeup	Green	field	Return Peri	iod (ye	ars)	100			
			Greenfiel	d Method	FSR/FE	H	Climate C	hange	(%)	0			
		Positi	vely Drained	Area (ha)	0.019		Storm Durat	tion (m	nins)	360			
				Soil Index	4		Bette	erment	: (%) םם	U 0 464			
				255K	0.47 96 111		Runoff Va	lume /	РК (m ³)	0.404 8			
				C 1 1	50.444				(''')	0			

Results for 2 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Nod	P le (m	eak nins)	Level (m)	Dep (m	th I	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winte	r 1		10	-4.216	0.0	34	2.6	0.0387	0.0000	ОК
15 minute winte	r 2		10	-4.692	0.0	34	2.6	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Nod	Outf e (l/	low s)	Velo (m	city /s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1	2		2.6	0.	859	0.111	0.0845	1.2

Node Event	US Nod	; P le (m	eak nins)	Level (m)	Dep (m	oth 1)	Inflow (I/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute winte	r 1		10	-4.187	0.0	63	8.1	0.0707	0.0000	ОК
15 minute winte	r 2		10	-4.665	0.0	61	8.0	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Nod	Outf e (l/	low s)	Velo (m	ocity n/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m ³)
15 minute winter	1	1	2		8.0	1	.174	0.347	0.1929	3.8

Results for 100	year Critical Storm Duration	on. Lowest mass balance: 1	L00.00%

Node Event	US Noc	6 P le (n	Peak nins)	Level (m)	Dep (m	oth 1)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
15 minute winte	r 1		10	-4.177	0.0	73	10.7	0.0831	0.0000	ОК
15 minute winte	r 2		10	-4.655	0.0	71	10.6	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Nod	Outi e (I/	flow 's)	Velo (m	ocity n/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1	2	:	10.6	1	.259	0.458	0.2374	4.9

3. Flow Model for Existing System 100yr 6hr event

The following model is based on a notional single piped discharge from the existing site.

Causewa	Pitman Ass	sociates Ltd	File: Existing SW.pfd Network: Storm Network Karl Pitman 17/01/2025	Page 1
		Design	<u>Settings</u>	
Maximum Tin	Rainfall Met Return Peri Additiona Time of En ne of Concentrati Maximum Rainfal	thodology FEH-22 od (years) 100 I Flow (%) 40 CV 0.750 try (mins) 5.00 on (mins) 30.00 I (mm/hr) 50.0	Minimum Velocity (r Connection T Minimum Backdrop Height Preferred Cover Depth Include Intermediate Gro Enforce best practice design r	m/s) 1.00 Type Level Soffits (m) 0.200 (m) 1.200 und √ ules √
		Adoptable N	<u>Ianhole Type</u>	
I	Max Width (mm) 374 499	Diameter (mm) 1200 1350 >900 Lini	Max Width (mm) Diameter 749 900	(mm) 1500 1800
	Max Depth (m) 1.500	Diameter (mm) 1050	Max Depth (m) Diameter (n 99.999 1	וווה) 200
		No	des	
	Name Area (ha) 1 0.019 2	T of E Cover Di (mins) Level (m) 5.00 -2.900 -3.000	ameter Easting Northing D (mm) (m) (m) 1200 0.000 0.000 1 1200 -20.000 -20.000 1 hks	eepth (m) 1.350 1.726
Name US Node 1 1	DSLengthNode(m)228.284	ks (mm) / US IL n (m) 0.600 -4.250	DS IL Fall Slope Dia (m) (m) (1:X) (mm) -4.726 0.476 59.4 150	T of C Rain (mins) (mm/hr) 5.36 50.0
Nam 1	ne Vel Cap (m/s) (l/s) 1.307 23.1	Flow US (I/s) Depth D (m) 3.6 1.200 1	DS ΣArea ΣAdd Pro epth (ha) Inflow Depth (m) (l/s) (mm) 576 0.019 0.0 40	Pro Velocity (m/s) 0.955
		<u>Pipeline</u>	<u>Schedule</u>	
Link Lengt (m) 1 28.28 Link 1	h Slope Dia (1:X) (mm 4 59.4 15 US Dia Node (mm) 1 1200	Link US CL) Type (m) O Circular -2.900 Node MH Type Type Manhole Adoptal	US IL US Depth DS CL (m) (m) (m) -4.250 1.200 -3.000 - DS Dia Node Node (mm) Type DIe 2 1200 Manhole	DS IL DS Depth (m) (m) 4.726 1.576 MH Type Adoptable

Ca	ausev	way	Pitman Asso	ciates Ltd		File: I Netw Karl F 17/0:	Existing SW.p ork: Storm N Pitman L/2025	fd etworl	Page 2			
					<u>Manhol</u>	e Sched	<u>ule</u>					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connectio	ons	Link	IL (m)	Dia (mm)	
	1	0.000	0.000	-2.900	1.350	1200						
							\sum					
					4 70 6	1000	0	0	1	-4.250	150	
	Ζ	-20.000	-20.000	-3.000	1.726	1200	()	1	L	-4.726	150	
					<u>Simulati</u>	on Setti	ngs					
R	Rainfall Met	thodology	/ FFH-22		Skin	Steady S	tate x			2 ve	ar (1/s)	0.1
	Raint	fall Events	Singular	Dra	in Down	Time (m	nins) 240			30 yea	ar (l/s)	0.2
	Su	ummer CV	0.750	Addit	ional Sto	rage (m ³	/ha) 0.0			100 yea	ar (l/s)	0.3
	Analy	Winter CV vsis Sneec	0.840 Detailed	Che	Starti eck Disch	ng Level Jarge Rat	(m) ∵e(s) √	Ch 100	eck Dis Vear 3	scharge V 860 minut	olume e (m³)	√ 8
	, and g	Job Spece	Detaneu	City				100	year a		e (m)	0
					Storm	Duratio	าร					
						360						
		Re	turn Period	Climate	Change	Additi	onal Area	Additio	onal Flo	ow		
			(years)	(CC	:%) 0	(A %)	(0	ር %)	0		
			100		0		0			0		
				<u>Pre-de</u>	evelopme	ent Disch	<u>arge Rate</u>					
			Site	Makeup	Green	field	Growth Fa	ctor 30) vear	2.40		
			Greenfield	Method	IH124		Growth Fac	tor 100) year	3.19		
		Positi	vely Drained	Area (ha)	0.019		Bet	terme	nt (%)	0		
			SA	AR (mm)	641				QBar	0.1		
			5	foil Index	4		() 2 yea	r (l/s)	0.1		
				SPR	0.47		Q 0 1	30 yea	ir (I/S) ar (I/c)	0.2		
			Growth Fact	or 2 year	0.88		QI	uu yea	11 (1/5)	0.5		
				,	0.00	I						
				<u>Pre-dev</u>	<u>elopmen</u>	t Discha	<u>rge Volume</u>					
			Site	Makeup	Green	field	Return Per	iod (ye	ears)	100		
			Greenfield	Method	FSR/FE	EH	Climate (Change	e (%)	0		
		Positi	vely Drained	Area (ha)	0.019		Storm Dura	tion (n	nins)	360		
					4		ветте	ermen	t (%)	0		
				CWI	0.47 96 <i>44</i> /	1	Runoff V	hume	(m ³)	0.404 8		
				C 1 1	50.444	r		June	(11.)	0		

Node Event	r	US Node	Pe (mi	ak ins)	Level (m)	Dej (n	pth n)	Inflov (I/s)	v Node Vol (m³)	Flood (m³)	Status
360 minute summe	er 1	L	-	184	-4.218	0.0)32	2.	2 0.0357	0.0000	ОК
360 minute summe	er 2	2	-	184	-4.695	0.0)31	2.	2 0.0000	0.0000	OK
Link Event (Upstream Depth)	US Nod	Li	nk	DS Node	Outf e (I/	low s)	Velo (m	ocity /s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
360 minute summer	1	1		2		2.2	0	.821	0.095	0.0754	12.1

4. Flow Model for Proposed System

The following model is based on a notional single piped discharge from the existing site. N.B. a precautionary approach has been adopted, and it has been assumed that the rainwater harvesting tank will be full at the time of each rainfall event.

Causeway	Pitman Associates Lt	d	File: Proposed SW.pfd Network: Storm Network Karl Pitman 16/01/2025	Page 1
		Design S	Settings	
Maximum Time of Maxin	Rainfall Methodology Return Period (years) Additional Flow (%) CV Time of Entry (mins) Concentration (mins) mum Rainfall (mm/hr)	FEH-22 100 40 0.750 5.00 30.00 50.0	Minimum Velocity (r Connection T Minimum Backdrop Height Preferred Cover Depth Include Intermediate Gro Enforce best practice design r	n/s) 1.00 ype Level Soffits (m) 0.200 (m) 1.200 und \checkmark ules \checkmark
	<u>A</u>	doptable M	anhole Type	
Max Ma	Width (mm) Diamet 374 499 ax Depth (m) Diamet	ter (mm) 1200 1350 >900 Link ter (mm)	Max Width (mm) Diameter 749 900 +900 mm Max Depth (m) Diameter (m	(mm) 1500 1800 Im)
	1.500	1050	99.999 12	200
		<u>Noc</u>	<u>des</u>	
Nam 1 2	ne Area T of E (ha) (mins) 0.019 5.00 -	Cover Dia Level (1 (m) -2.900 -3.000 Lin	Immeter Easting (m) Northing (m) D 1200 0.000 0.000 1 1200 -20.000 -20.000 1 ks	epth (m) 500 876
Name US DS Node Noo 1 1 2	5 Length ks (mm) de (m) n 28.284 0.60	/ US IL (m) 00 -4.400	DS IL Fall Slope Dia (m) (m) (1:X) (mm) -4.876 0.476 59.4 150	T of C Rain (mins) (mm/hr) 5.36 50.0
Name 1	Vel Cap Flow (m/s) (l/s) (l/s) 1.307 23.1 3.6	US I Depth De (m) (1.350 1	DS ΣArea ΣAdd Pro epth (ha) Inflow Depth m) (I/s) (mm) .726 0.019 0.0 40	Pro Velocity (m/s) 0.955
		<u>Pipeline S</u>	<u>Schedule</u>	
Link Length S (m) 1 28.284 Link U No 1 1	Glope Dia Link (1:X) (mm) Type 59.4 150 Circula S Dia Node de (mm) Type 1200 Manhole	US CL (m) or -2.900 MH Type Adoptab	US IL US Depth DS CL I (m) (m) (m) -4.400 1.350 -3.000 -4 DS Dia Node Node (mm) Type Ie 2 1200 Manhole 4	DS IL DS Depth (m) (m) 4.876 1.726 MH Type Adoptable

Cause Cause	way	Pitman Asso	ciates Ltd		File: Netw Karl F 16/0	Proposed SW.pfd York: Storm Networ Pitman 1/2025	k	Page 2		
				<u>Manhol</u>	e Sched	<u>ule</u>				
Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connections	Link	IL (m)	Dia (mm)	
1	0.000	0.000	-2.900	1.500	1200	Q				
2	-20.000	-20.000	-3.000	1.876	1200		1	-4.400 -4.876	<u>150</u> 150	
				<u>Simulati</u>	ion Setti	ngs	I			
Rainfall Me Rain Sı Anal	thodolog fall Event ummer C\ Winter C\ ysis Speed	y FEH-22 s Singular / 0.750 / 0.840 d Normal	Dra Additi Che	Skip S in Down ional Sto Starti eck Disch	Steady S Time (m rage (m ³ ng Level arge Rat	tate x hins) 240 /ha) 0.0 (m) Ch re(s) √ 100	ieck Dis) year 3	2 yea 30 yea 100 yea charge Vo 60 minut	ar (I/s) ar (I/s) ar (I/s) olume re (m ³)	0.1 0.2 0.3 √ 8
				Storm	Duratio	ns				
		15 6 30 12	0 18 20 24	0 36 0 48	50 6 30 7	00 960 2 20 1440 2	2160 2880			
	Re	turn Period	Climate	Change	Additi	onal Area Additi	onal Flo	w		
		(years)	(CC	:%)	(A%) ((Q %)	0		
		2 30		0		0		0		
		100		0		0		0		
		100		40		0		0		
		1000		0		U		0		
			<u>Pre-de</u>	velopme	ent Disch	narge Rate				
		Site	Makeup	Green	field	Growth Factor 3	0 year	2.40		
		Greenfield	Method	IH124		Growth Factor 10	0 year	3.19		
	Positi	vely Drained . SA	Area (ha)	0.019 641		Betterme	nt (%) OBar	0		
			Soil Index	4		Q 2 yea	ar (l/s)	0.1		
			SPR	0.47		Q 30 yea	ar (l/s)	0.2		
		Crowth Fact	Region	6		Q 100 yea	ar (l/s)	0.3		
		GIUWLII FACL	or z year	0.00						
			Pre-dev	elopmen	it Discha	rge Volume				
		Site	Makeup	Green	field	Return Period (y	ears)	100		
		Greenfield	l Method	FSR/FE	EH	Climate Change	e (%)	0		
	Positi	vely Drained	Area (ha)	0.019		Storm Duration (r	nins)	360		
		2	SPR	4 0.47		Bettermen	ι(≫) PR	0 0.464		
			CWI	96.444	1	Runoff Volume	(m³)	8		

		16/0	1/2025			
	<u>Node</u>	1 Online Hydrosl	ide Con	<u>trol</u>		
Flap Valve	x	Design Depth (r	n) 1.3	50 Diam	neter (m)	0.100
Replaces Downstream Link	x	Design Flow (I/	′s) 2.0	Max I	Head (m)	1.350
Invert Level (m)	-4.400	Mod	el CT	VS Min Node I	Dia (mm)	1200
	<u>Node 1</u>	Depth/Area Stora	age Stru	<u>cture</u>		
Base Inf Coefficient (m/hr)	0.00000	Safety Factor	2.0	Invert I	Level (m)	-4.400
Side Inf Coefficient (m/hr)	0.00000	Porosity	0.95	Time to half emp	ty (mins)	23

 coemicie		11) 0.00000	0	101031	.y 0.55	Time to i		pry (mins)	2
Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)	Depth (m)	Area (m²)	Inf Area (m²)	
0.000	7.0	0.0	1.200	7.0	0.0	1.201	0.0	0.0	

Results for 2	year Critical Storm Duration.	Lowest mass	balance: 100.00%

Node Event	US Nod	P le (m	eak nins)	Level (m)	Dep (m	oth 1)	Inflow (I/s)	v Node Vol (m³)	Flood (m³)	Status
15 minute winte	r 1		13	-4.313	0.0	87	2.6	0.6736	0.0000	ОК
15 minute winte	r 2		14	-4.852	0.0	24	1.3	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Nod	Outi e (I/	flow 's)	Vel (n	ocity n/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute winter	1	1	2		1.3	().699	0.054	0.0509	1.2

Results for 30 year Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak	Leve	Depth	Inflow	Node	Flood	Status
	Noue	(111115)	(111)	(111)	(1/3)	voi (iii)	(111)	
30 minute winter	1	25	-4.06	7 0.333	6.2	2.5885	0.0000	SURCHARGED
15 minute summer	2	13	-4.84	6 0.030	2.0	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m ⁱ	Discharge ³) Vol (m ³)
				(., .,	(, .,			7
30 minute winter	1	1.	2	2.0	0.800	0.087	0.070	/ 4.8

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

16/01/2025

Node Event	US Node	Peak (mins)	Leve (m)	l Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	1	26	-3.90	6 0.494	8.1	3.8420	0.0000	SURCHARGED
15 minute summer	2	12	-4.84	6 0.030	2.0	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m ⁱ	Discharge ³) Vol (m ³)
30 minute winter	1	1	2	2.0	0.800	0.087	0.070	7 6.3

🎲 Causeway

30 minute winter

1

1

2

8.9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 100.00%

Node Event	US Node	Peak (mins)	Leve (m)	el Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	1	29	-3.62	2 0.778	11.4	6.0574	0.0000	SURCHARGED
15 minute summer	2	11	-4.84	6 0.030	2.0	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m	Discharge 1 ³) Vol (m ³)

2.0

0.800

0.087

0.0707

🏠 Causeway

Node Event	US Node	Peak (mins)	Leve (m)	l Depth (m)	Inflow (I/s)	Node Vol (m³)	Flood (m³)	Status
30 minute winter	1	30	-3.49	3 0.907	12.8	7.0606	0.0000	SURCHARGED
15 minute summer	2	11	-4.84	6 0.030	2.0	0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m ³	Discharge ³) Vol (m ³)
30 minute winter	1	1 2	2	2.0	0.800	0.087	0.070	7 10.0

5. Flow Model for Proposed System – 100yr 6hr event

The following model is based on a notional single piped discharge from the existing site. N.B. a precautionary approach has been adopted, and it has been assumed that the rainwater harvesting tank will be full at the time of each rainfall event.

Causeway	Pitman Associates Lt	d	File: Proposed SW.pfd Network: Storm Network Karl Pitman 17/01/2025	Page 1
		<u>Design S</u>	Settings	
Maximum Time of Maxin	Rainfall Methodology Return Period (years) Additional Flow (%) CV Time of Entry (mins) Concentration (mins) mum Rainfall (mm/hr)	FEH-22 100 40 0.750 5.00 30.00 50.0	Minimum Velocity (r Connection T Minimum Backdrop Height Preferred Cover Depth Include Intermediate Gro Enforce best practice design r	n/s) 1.00 Type Level Soffits (m) 0.200 (m) 1.200 und √ ules √
	A	doptable M	anhole Type	
Max	Width (mm) Diame 374 499	ter (mm) 1200 1350 >900 Link	Max Width (mm) Diameter 749 900 +900 mm Max Donth (m) Diamotor (m	(mm) 1500 1800
IVIA	1.500	1050	99.999 12	200
		Noc	des	
Nam 1 2	e Area T of E (ha) (mins) 0.019 5.00	Cover Dia Level (1 (m) -2.900 -3.000 <u>Lin</u>	Immeter Easting (m) Northing (m) D mm) (m) (m) 1 1200 0.000 0.000 1 1200 -20.000 -20.000 1 ks Image: state sta	epth (m) 1.500 1.876
Name US DS Node Nod 1 1 2	5 Length ks (mm) de (m) n 28.284 0.60) / US IL (m) 00 -4.400	DS IL Fall Slope Dia (m) (m) (1:X) (mm) -4.876 0.476 59.4 150	T of C Rain (mins) (mm/hr) 5.36 50.0
Name	Vel Cap Flow (m/s) (l/s) (l/s) 1.307 23.1 3.6	US I Depth De (m) (1.350 1	DS ΣArea ΣAdd Pro epth (ha) Inflow Depth m) (l/s) (mm) .726 0.019 0.0 40	Pro Velocity (m/s) 0.955
		<u>Pipeline </u>	<u>Schedule</u>	
Link Length S (m) (1 28.284 Link U No 1 1	Slope Dia Link (1:X) (mm) Type 59.4 150 Circula S Dia Node de (mm) Type 1200 Manhole	US CL (m) ar -2.900 MH Type Adoptab	US IL US Depth DS CL I (m) (m) (m) -4.400 1.350 -3.000 -4 DS Dia Node Node (mm) Type le 2 1200 Manhole 4	DS IL DS Depth (m) (m) 4.876 1.726 MH Type Adoptable

Causeway						File: F Netw Karl P 17/01	Proposed SW ork: Storm N itman /2025	/.pfd letwork		Page 2		
					Manhole	e Schedi	<u>ile</u>					
	Node	Easting (m)	Northing (m)	CL (m)	Depth (m)	Dia (mm)	Connecti	ons	Link	IL (m)	Dia (mm)	
	1	0.000	0.000	-2.900	1.500	1200	\bigcirc					
							o K	0	1	-4.400	150	
	2	-20.000	-20.000	-3.000	1.876	1200	\checkmark	1	1	-4.876	150	
							\bigcirc					
					Simulatio	on Settii	<u>ıgs</u>	I				
Pain	fall Mat	hadalaay			Chin C	toody St	ato v			2 100	or (1/c)	0.1
Kaln	Rainf	fall Events	Singular	Drai	окір S n Down ⁻	Time (m	ate x ins) 240			2 yea 30 yea	ar (1/s) ar (1/s)	0.1
	Su	ımmer CV	0.750	Additi	onal Stor	age (m³∕	'ha) 0.0			100 yea	ar (l/s)	0.3
	\ مامعان	Winter CV	0.840	Cha	Startir	ng Level	(m)	Che	eck Di	scharge V	olume	\checkmark
	Analy	sis speed	Normai	Che	CK DISCH	arge Rat	e(s) √	100	year :	seo minut	e (m ⁻)	8
					Storm I	Duratio r	IS					
		Ret	turn Period	Climate	Change	Additi	onal Area	Additio	nal Fl	ow		
			(years) 100	(CC	%)	(/	4 %) 0	(Q	(%)	0		
			100	Pre-de	velopme	nt Disch	arge Rate			Ū		
			Sito	Makoup	Groonf	iold	Growth Fr	octor 20	woor	2 40		
			Greenfield	Method	IH124	ieiu	Growth Fac	tor 100	year	3.19		
		Positiv	ely Drained	Area (ha)	0.019		Bet	ttermen	nt (%)	0		
			SA	AR (mm)	641			0.0	QBar	0.1		
			5	SPR	4 0 47		0	Q 2 year 30 year	r (I/S) r (I/s)	0.1		
				Region	6		Q 1	LOO year	r (l/s)	0.3		
			Growth Fact	or 2 year	0.88							
				Pre-deve	elopment	t Discha	rge Volume					
			Site	Makeup	Greenf	ield	Return Pe	riod (ye	ars)	100		
		D- ···	Greenfield	Method	FSR/FE	н	Climate	Change	(%)	0		
		Positiv	vely Drained	Area (ha) Soil Index	0.019 4		Storm Dura	ition (m erment	ins) (%)	360 0		
				SPR	0.47		Dett	ernent	PR	0.464		
				CWI	96.444		Runoff V	olume (m³)	8		
				<u>Node 1</u>	Online H	lydrosli	<u>de Control</u>					
		Fl	ap Valve x		Design D	epth (m) 1.350		Dia	meter (m) 0.10	00
Re	eplaces	Downstre	eam Link x	1 400	Design	Flow (I/s	5) 2.0		Max	(Head (m) 1.35	50 0
		Invert L	.evel (m) -4	1.400		Mode	el CTLVS	Min	Node	e Dia (mm) 120	U

	Pitman Associates Ltd	File: Proposed SW.pfd	Page 3
		Network: Storm Network	
XXX Causeway		Karl Pitman	
		17/01/2025	

Node 1 Depth/Area Storage Structure

Base Inf Coeff	icient (m/	'hr) 0.0000	0 Safe	ety Facto	or 2.0	Time to	Invert	Level (m)	-4.400
Side Inf Coeff	icient (m/	'hr) 0.0000	0	Porosi	ty 0.95		half em	pty (mins)	0
Dept	h Area	Inf Area	Depth	Area	Inf Area	Depth	Area	Inf Area	
(m)	(m²)	(m²)	(m)	(m²)	(m²)	(m)	(m²)	(m²)	
0.00	0 7.0	0.0	1.200	7.0	0.0	1.201	0.0	0.0	

Results for 100 year Critical Storm Duration. Lowest mass balance: 100.00%

Karl Pitman 17/01/2025

Node Event	N	US ode	Peak (mins)	Level (m)	De (r	pth n)	Inflov (I/s)	v Node Vol (m³)	Flood (m³)	Status
360 minute summ	er 1		192	-4.271	0.1	129	2.	2 1.0076	0.0000	ОК
360 minute summ	er 2		192	-4.846	0.0	030	2.	0 0.0000	0.0000	ОК
Link Event (Upstream Depth)	US Node	Lir	nk DS Nod	Outf e (I/	low s)	Velo (m	ocity /s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
360 minute summer	1	1	2		2.0	0	.799	0.086	0.0705	12.1

6. Proposed Rainwater Harvesting/Attenuation Tank

The following calculation assumes runoff from approximately $110m^2$ of roof area will be captured in a harvesting tank, which will also be used for surface water attenuation. It shows that a combined volume of $6m^3$ is required.

Pitman Associates Ltd			Page 1
South Lodge			
Exminster			
Devon EX6 8AT			Micco
Date 12/09/2024 11:05	Designed by Karl		
File	Checked by		Urainage
XP Solutions	Source Control 2020	1	
		-	
Rai	nwater Harvesting		
	Annual Demand		
Daily requ	irement per person (1) 50 Number of persons	0.0 11	
	Annual Yield		
	Collection area (m ²) 11 Bunoff Coefficient 0 6	10	
	AAR (mm) 6	41	
Hydraul	Lic Filter Efficiency 0.9	90	
Dep	pression Storage (mm) 4	.0	
Number of	Rainiali Events/Year 13	50	
	Feasibility		
Annual non-pot Annu	cable water demand (1) 200 Dal rainfall yield (1) 2	0750.0 2435.4	
Demand exceeds rainfall yield, rainwater ha BS8515:2009+A1:2013 detailed design approac	rvesting is feasible for s h.	storm water control u	nder
	Volume		
Return	Period (years)	100	
	Region England a	und Wales	
	M5-60 (mm)	21.000	
	Ratio R	0.439	
Storm Normal rainwater	Duration (mins)	360 5 0	
	narvesering (0)	3.0	
	Results		
	Total Rainfall Depth	n (mm) 57	
		CS 1.000	
Additiona. Effective pu	L Rainfall Depth Allowance	e (Ad) 0.548	
available for increa	asing tank size from 1m3	(CP50)	
Rainfall depth	for 1m ³ of storage tank	(sP50) 9.091	
±	Total Storage Volume	e (m³) 6.282	
Ausilable Stormust	ter Control Storage Volum	(m^3) 5 968	
Available Storiuwa	Jer control storage vorume	e (m) 5.900	

APPENDIX C PERSONAL FLOOD PLAN TEMPLATE

Personal flood plan

Name

Are you signed up to receive flood warnings? If not call Floodline on 0345 988 1188 to see if your area receives free flood warnings. Let us know when you've completed your flood plan by calling Floodline on **0345 988 1188**. This will help us learn more about how people are preparing for flooding.

General contact list	Company name	Contact name	Telephone
Floodline	Environment Agency		0345 988 1188
Electricity provider			
Gas provider			
Water company			
Telephone provider			
Insurance company and policy number			
Local council			
Local radio station			
Travel/weather info			

Key locations

Service cut-off	Description of location
Electricity	
Gas	
Water	

Who can help/who can you help?

Relationship	Name	Contact details	How can they/you help?
Relative			
Friend or neighbour			

Be prepared for flooding. Act now

Personal flood plan	What can I do NOW?		Environment Agency
Put important documents out of flood risk and protect in polythene Check your insurance covers you for flooding What can you do if a flood is expected in	Look at the best way of stopping floodwater entering your property Make a flood plan and prepare a flood kit your area?	Find out where you can get sandbags Identify who can help you/ who you can help	Identify what you would need to take with you if you had to leave your home Understand the flood warning codes
Actions		Location	
Home			
Move furniture and electrical items to s	afety		
 Put flood boards, polythene and sands 	bags in place		
• Make a list now of what you can move	away from the risk		
• Turn off electricity, water and gas supp	lies		
 Roll up carpets and rugs 			
 Unless you have time to remove them 	nang curtains over rods		
 Move sentimental items to safety 			
• Put important documents in polythene	bags and move to safety		
Garden and outside			
• Move your car out of the flood risk area	1		
 Move any large or loose items or weigh 	them down		
Business			
• Move important documents, computer	s and stock		
 Alert staff and request their help 			
• Farmers move animals and livestock to	safety		
Evacuation - Prepare a flood kit in advand	ce de la constante de la consta		
• Inform your family or friends that you n	nay need to leave your home		
• Get your flood kit together and include water, food, medication, toys for childre	a torch, warm and waterproof clothing, en and pets, rubber gloves and wellingtons		

There are a range of flood protection products on the market to help you protect your property from flood damage. A directory of these is available from the **National Flood Forum** at **www.bluepages.org.uk**

Be prepared for flooding. Act now

16/10/2024

5

~

APPENDIX D CORRESPONDENCE WITH THAMES WATER

RE: Lamorna, NW5 1SU - Pre-Capacity enquiry

DEVELOPER.SERVICES@THAMESWATER.CO.U <DEVELOPER.SERVICES@

To Okp@pitmanassociates.com

i) You replied to this message on 16/10/2024 15:42.

Dear Karl,

Site Address: Lamorna, Dartmouth Park Road, London, NW5 1SU Wastewater Pre-Planning Ref: DS6126619

Our asset planners have assed your application and have advised we have capacity concerns with your current proposal, we would need to see your proposed discharge rate reduced from 6.2 1/s to 2 1/s which are the SW greenfield run of rates for the size of your development.

Please can you confirm a reduction to 2 1/s is viable and I can re-consult with the asset planners, failing this you will then need to follow the SW hierarchy below and aim for soakaways or discharge into controlled waters or a ditch.

Surface Water

In accordance with the Building Act 2000 Clause H3.3, positive connection of surface water to a public sewer will only be consented when it can be demonstrated that the hierarchy of disposal methods have been examined and proven to be impracticable. Before we can consider your surface water needs, you'll need written approval from the lead local flood authority that you have followed the sequential approach to the disposal of surface water and considered all practical means.

When developing a site, policy SI 13 of the London Plan states "Development proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage <u>hierarchy:Development</u> proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage <u>hierarchy:Development</u> proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage <u>hierarchy:Development</u> proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage <u>hierarchy:Development</u> proposals should aim to achieve greenfield run-off rates and ensure that surface water run-off is managed as close to its source as possible. There should also be a preference for green over grey features, in line with the following drainage hierarchy:"

The disposal hierarchy being:

- 1) rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
- 2) rainwater infiltration to ground at or close to source
- 3) rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
- 4) rainwater discharge direct to a watercourse (unless not appropriate)
- 5) controlled rainwater discharge to a surface water sewer or drain
- 6) controlled rainwater discharge to a combined sewer.

Where connection to the public sewerage network is required to manage surface water flows we will accept these flows at a discharge rate in line with CIRIA's best practice guide on SuDS or that stated within the sites planning approval.

If you've any further questions, please do not hesitate to contact me.

Kind Regards

Abdul Afzal

Adoptions & Waste Pre-Planning Engineer

Adoption Team - Developer Services

Thames Water - Developer Services - Ground Floor West - Clearwater Court - Vastern Road