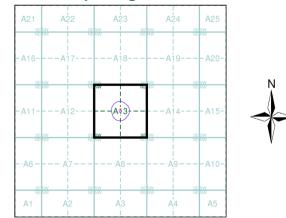

GEA

Ordnance Survey Plan Published 1970

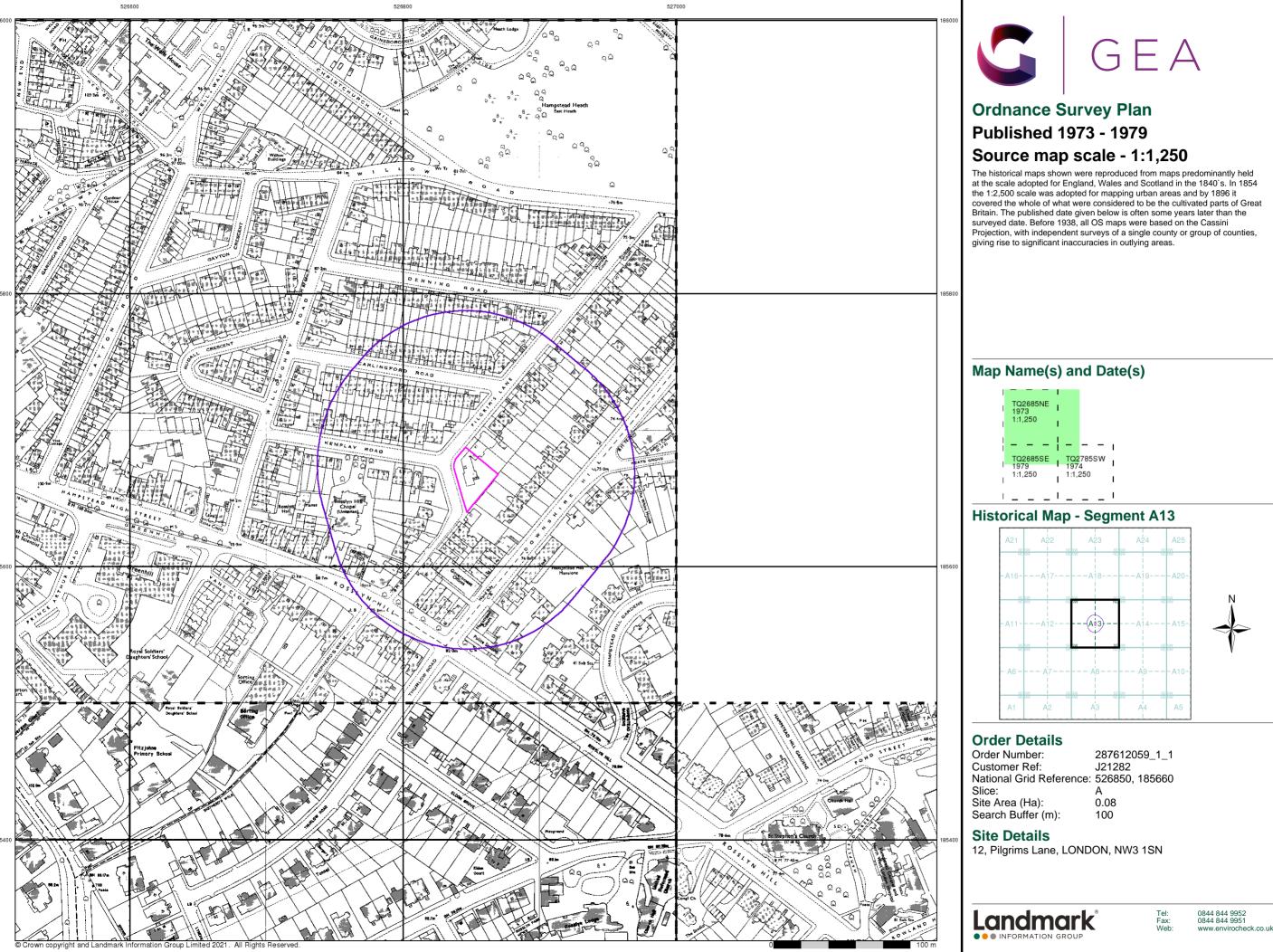

Source map scale - 1:2,500

The historical maps shown were reproduced from maps predominantly held at the scale adopted for England, Wales and Scotland in the 1840's. In 1854 the 1:2,500 scale was adopted for mapping urban areas and by 1896 it covered the whole of what were considered to be the cultivated parts of Great Britain. The published date given below is often some years later than the surveyed date. Before 1938, all OS maps were based on the Cassini Projection, with independent surveys of a single county or group of counties, giving rise to significant inaccuracies in outlying areas.

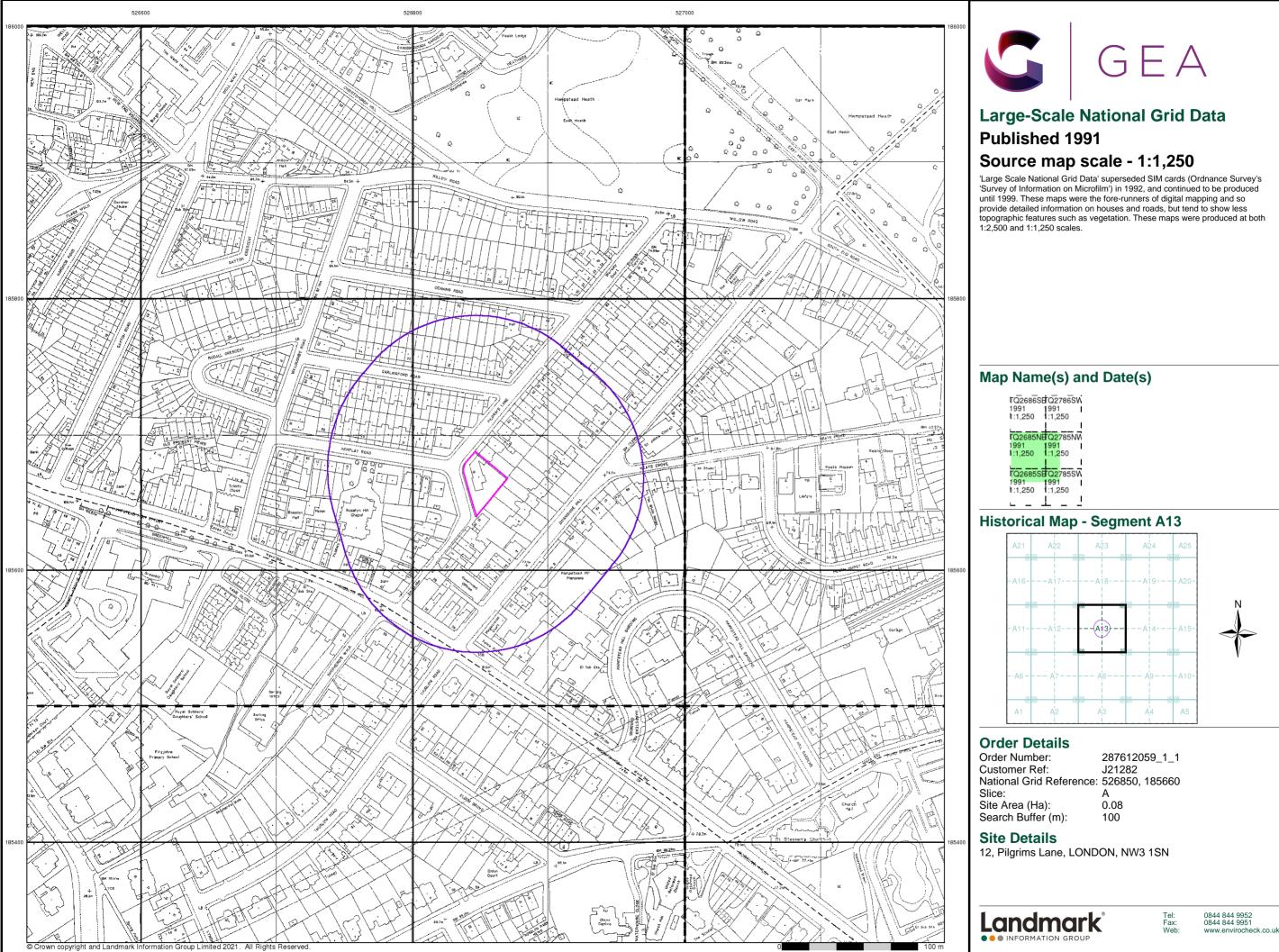
Map Name(s) and Date(s)

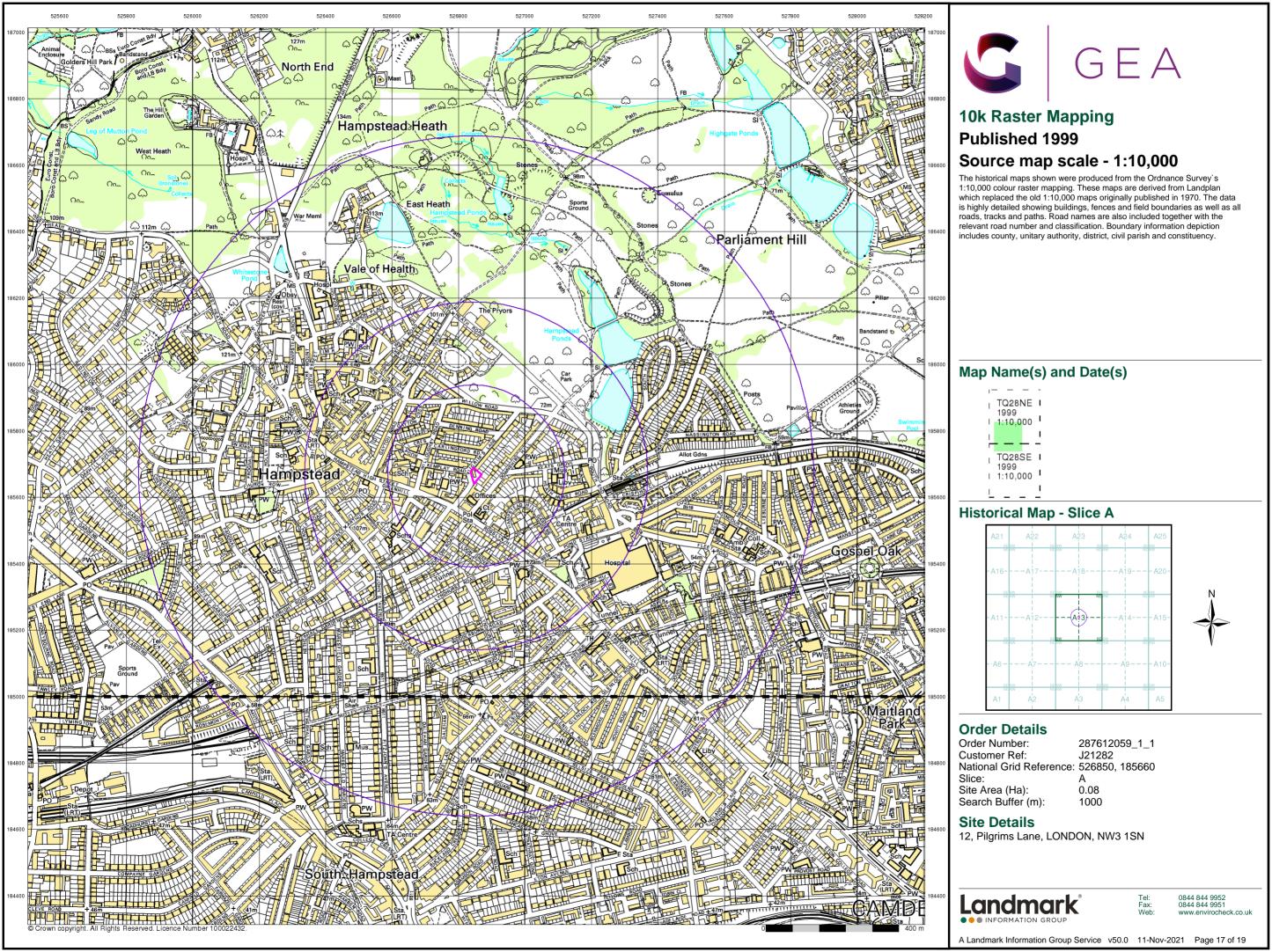
Historical Map - Segment A13

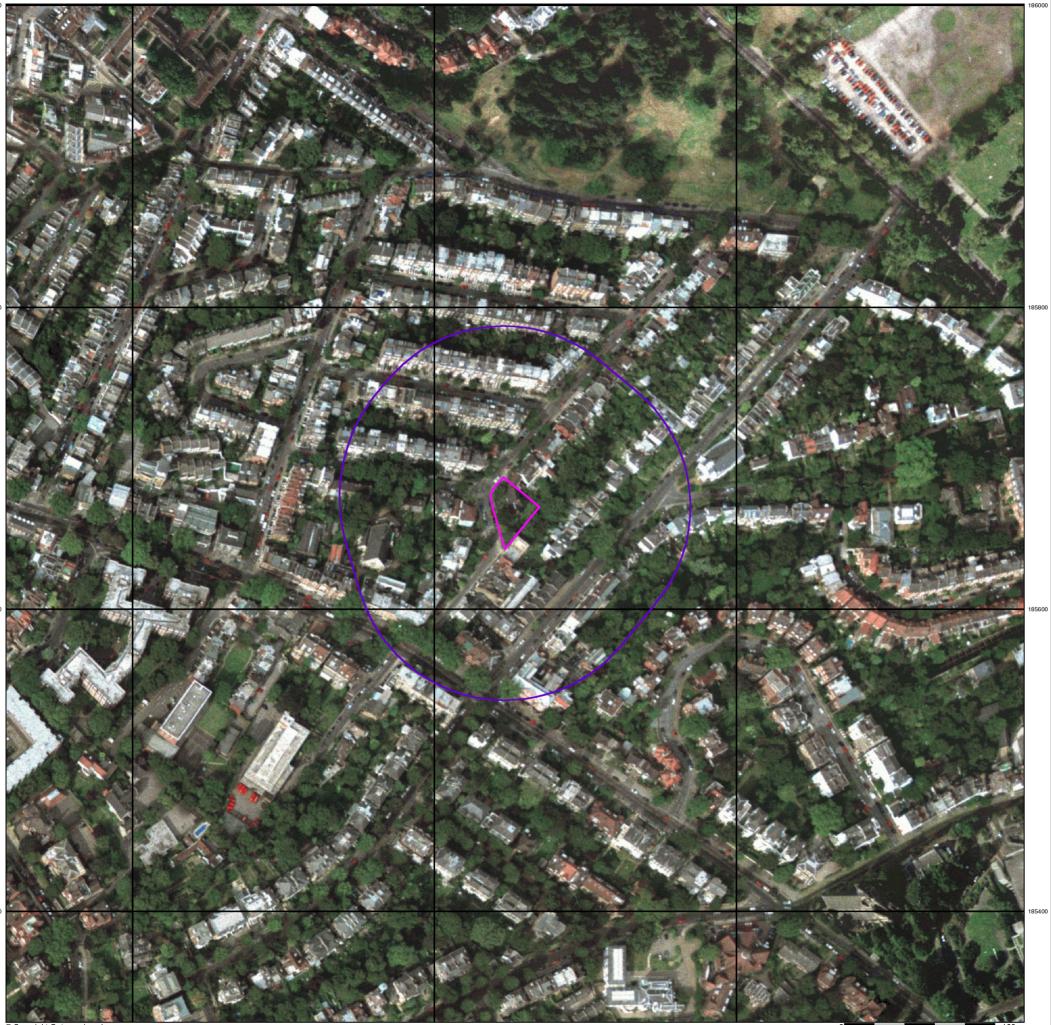
Order Details


Order Number:287612059_1_1Customer Ref:J21282National Grid Reference:526850, 185660Slice:ASite Area (Ha):0.08Search Buffer (m):100

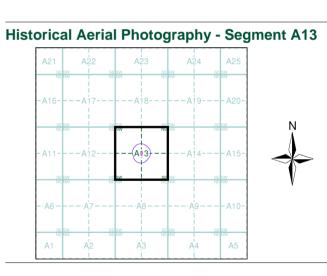
Site Details


12, Pilgrims Lane, LONDON, NW3 1SN




A Landmark Information Group Service v50.0 11-Nov-2021 Page 13 of 20

A Landmark Information Group Service v50.0 11-Nov-2021 Page 14 of 20

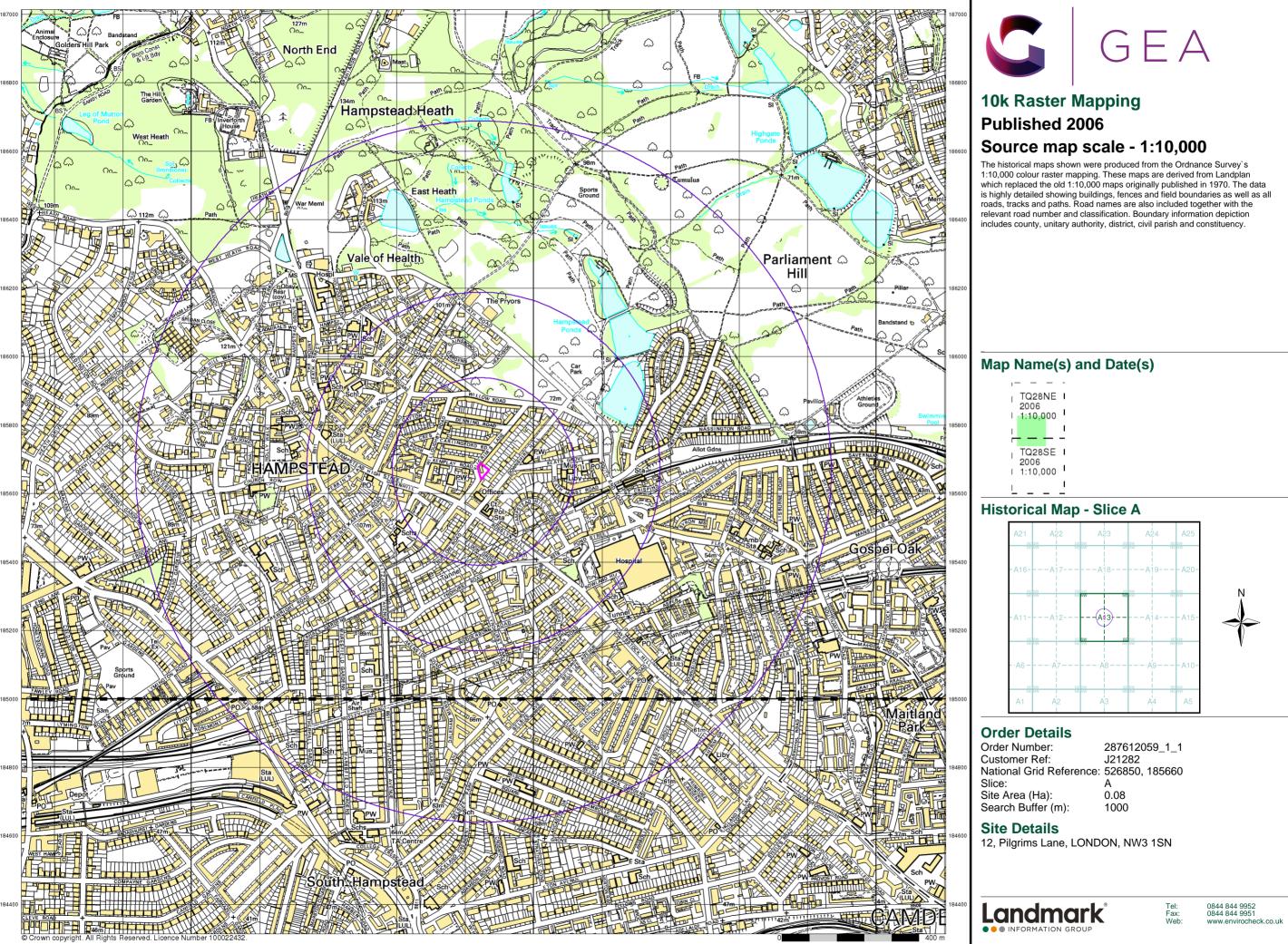

526800

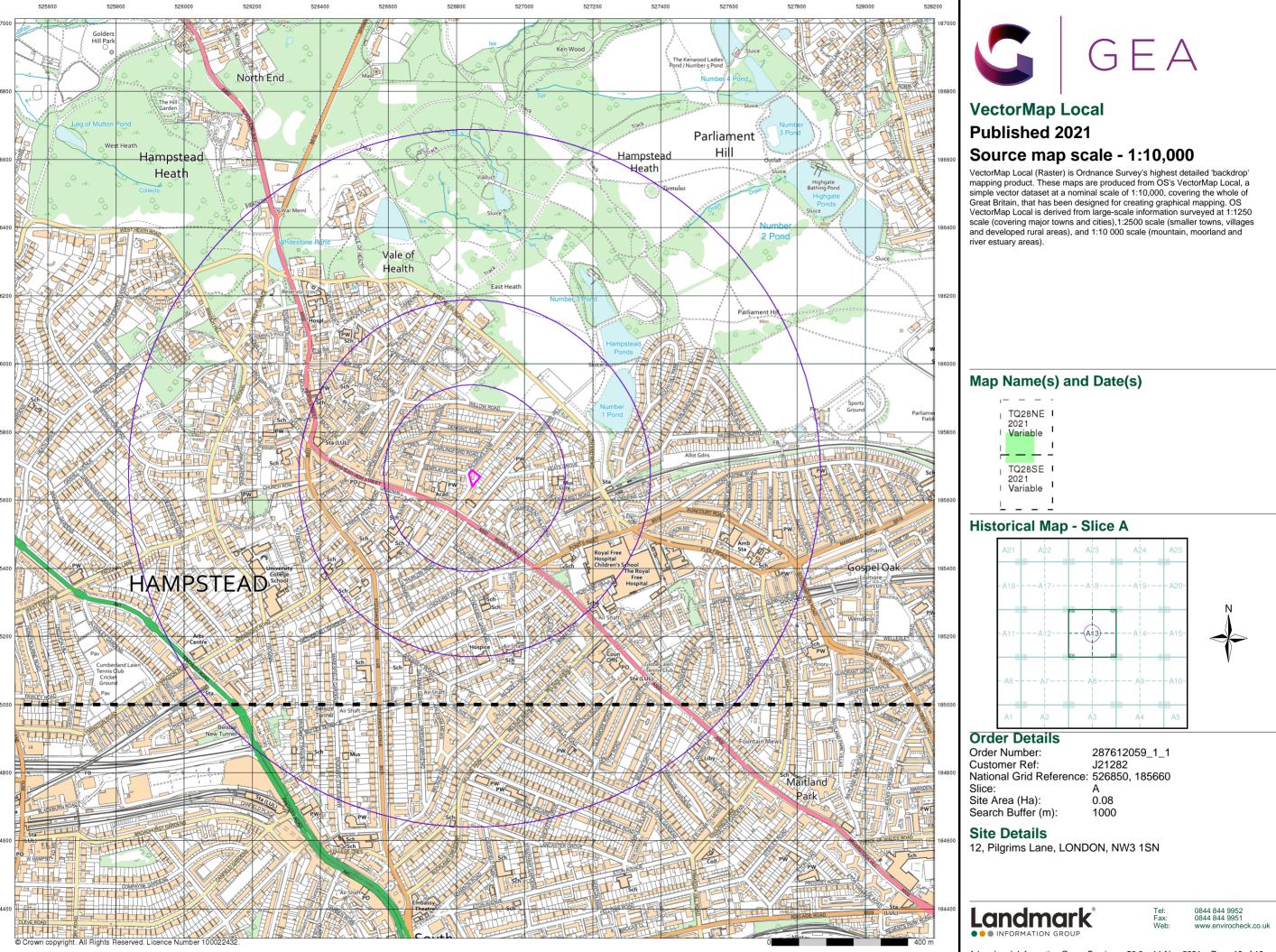
527000

Historical Aerial Photography Published 1999

This aerial photography was produced by Getmapping, these vertical aerial photographs provide a seamless, full colour survey of the whole of Great Britain

Order Details


Order Number:	287612059_1_1
Customer Ref:	J21282
National Grid Reference:	526850, 185660
Slice:	Α
Site Area (Ha):	0.08
Search Buffer (m):	100


Site Details 12, Pilgrims Lane, LONDON, NW3 1SN

A Landmark Information Group Service v50.0 11-Nov-2021 Page 20 of 20

A Landmark Information Group Service v50.0 11-Nov-2021 Page 19 of 19

Classification of Consequence

Classification	Definition		Examples
Severe	Short term (acute) risk to human health likely to result in "significant harm" as defined by the Environment Protection Act 1990, Part IIA. Short-term risk of pollution (note: Water Resources Act contains no scope for considering significance of pollution) of sensitive water resource. Catastrophic damage to buildings / property. A short-term risk to a particular	recreati	ncentrations of cyanide on the surface of an informal on area. pillage of contaminants from site into controlled water.
	ecosystem, or organism forming part of such ecosystem (note: the definitions of ecological systems within the Draft Circular on Contaminated Land, DETR, 2000).		on, causing building collapse (can also equate to short- man health risk if buildings are occupied).
	Chronic damage to Human Health ("significant harm" as defined in DETR, 2000). Pollution of sensitive water		trations of a contaminant from site exceed the generic, specific assessment criteria.
Medium	resources (note: Water Resources Act contains no scope for considering significance of pollution). A significant change in a particular ecosystem, or organism forming part of such ecosystem (note: the definitions of ecological systems within Draft Circular	aquifer	ng of contaminants from a site to a major or minor of a species within a designated nature reserve.
	on Contaminated Land, DETR, 2000).		
Mild	Pollution of non-sensitive water resources. Significant damage to crops, buildings, structures and services ("significant harm" as defined in the Draft Circular of	Pollutio	n of non-classified groundwater
MIIC	Contaminated Land, DETR, 2000). Damage to sensitive buildings / structures / services or the environment.	Ŭ	e to building rendering it unsafe to occupy (e.g. ion damage resulting in instability).
	Harm, although not necessarily significant harm, which may result in a financial loss, or expenditure to		esence of contaminants at such concentrations that ve equipment is required during site works.
Minor	resolve. Non-permanent health effects to human health (easily prevented by means such as personal protective clothing etc). Easily repairable effects of	The los	s of plants in a landscaping scheme.
	damage to buildings, structures and services.	Discolo	uration of concrete.

		Classification of Frobability
Classification	Pro	obability
High likelihood	There is a pollution linkage and an event that eithe inevitable over the long term, or there is evidence	er appears very likely in the short term and almost at the receptor of harm or pollution.
Likely	probable that an event will occur.	re present and in the right place, which means that it is table, but possible in the short term and likely over the
Low likelihood	There is a pollution linkage and circumstances are However, it is by no means certain that even over less likely in the shorter term.	e possible under which an event could occur. a longer period such an event would take place, and is
Unlikely	There is a pollution linkage but circumstances are even in the very long term.	such that it is improbable that an event would occur

Γ

Classification of Probability

				Risk Assess	ment Matrix
			Conse	quence	
		Severe	Medium	Mild	Minor
	High likelihood	Very high risk	High risk	Moderate risk	Moderate / low risk
ity	Likely	High risk	Moderate risk	Moderate / low risk	Low risk
Probability	Low likelihood	Moderate risk	Moderate / low risk	Low risk	Very low risk
	Unlikely	Moderate / low risk	Low risk	Very low risk	Very low risk

	Description of the assessed risks and likely action required
	There is a high probability that severe harm could arise to a designated receptor from an identified hazard, OR, there is evidence that severe harm to a designated receptor is currently happening.
Very high risk	This risk, if realised, is likely to result in a substantial liability.
	Urgent investigation (if not undertaken already) and remediation are likely to be required.
	Harm is likely to arise to a designated receptor from an identified hazard.
High risk	Realisation of the risk is likely to present a substantial liability.
	Urgent investigation (if not undertaken already) is required and remedial works may be necessary in the short term and are likely over the longer term.
Moderate risk	It is possible that harm could arise to a designated receptor from an identified hazard. However, it is relatively unlikely that any such harm would be severe, or if any harm were to occur it is more likely that the harm would be relatively mild.
Wouldle lisk	Investigation (if not already undertaken) is normally required to clarify the risk and to determine the potential liability. Some remedial works may be required in the longer term.
Low risk	It is possible that harm could arise to a designated receptor from an identified hazard, but it is likely that this harm, if realised, would at worst normally be mild.
Very low risk	There is a low possibility that harm could arise to a receptor. In the event of such harm being realised it is not likely to be severe.

Preliminary UXO Risk Assessment

1st Line Defence Limited Unit 3, Maple Park, Essex Road, Hoddesdon, Herts, EN11 0EX Tel: +44 (0)1992 245 020 E-mail: <u>info@1stlinedefence.co.uk</u> Company No: 7717863 VAT No: 128 8833 79

www.1stlinedefence.co.uk

Client	GEA Ltd
Project	12 Pilgrims Lane
Site Address	12 Pilgrims Lane, London, NW3 1SN
Report Reference	PA14246-00
Date	20/09/21
Originator	AT

Assessment Objective

This preliminary risk assessment is a qualitative screening exercise to assess the likely potential of encountering unexploded ordnance (UXO) at the 12 Pilgrims Lane site. The assessment involves the consideration of the basic factors that affect the potential for UXO to be present at a site as outlined in Stage One of the UXO risk management process.

Background

This assessment uses the sources of information available in-house to 1^{st} Line Defence Ltd to enable the placement of a development site in context with events that may have led to the presence of German air-delivered or Allied military UXO. The report will identify any immediate necessity for risk mitigation or additional research in the form of a Detailed UXO Risk Assessment. It makes use of 1^{st} Line Defence's extensive historical archives, library and unique geo-databases, as well as internet resources, and is researched and compiled by UXO specialists and graduate researchers.

The assessment directly follows CIRIA C681 guidelines "Unexploded Ordnance, a Guide for the Construction Industry". The document will therefore assess the following factors:

- Basic Site Data
- Previous Military Use
- Indicators of potential aerial delivered UXO threat
- Consideration of any Mitigating Factors
- Extent of Proposed Intrusive Works
- Any requirement for Further Work

It should be noted that the vast majority of construction sites in the UK will have a low or negligible risk of encountering UXO and should be able to be screened out at this preliminary stage. The report is meant as a common sense 'first step' in the UXO risk management process. The content of the report and conclusions drawn are based on basic, preliminary research using the information available to 1st Line Defence at the time this report was produced. It should be noted that the only way to entirely negate risk from UXO to a project would be to support the works proposed with appropriate UXO risk mitigation measures. It is rarely possible to state that there is absolutely 'no' risk from UXO to a project.

Г

Risk Assessment Considera	tions
Site location and description/current use	The site is located in the London Borough of Camden. It is currently occupied by the property of 12 Pilgrim's Lane and the site borders Pilgrim's Lane to the west. Residential properties and their associated gardens border the site in other directions. The site is approximately centred on the OS grid reference: TQ 26850 85668
Are there any indicators of current/historical military activity on/close to the site?	In-house records do not indicate that the site has had any current/former military use. In addition, 1 st Line Defence could find no evidence to suggest that items of ordnance have ever been produced, stored or disposed of within the site or its immediate vicinity.
What was the pre- and post- WWII history of the site?	OS mapping from 1936 mirrors the site's current description, comprising of a residential property and its rear garden. It is bordered to the west by Pilgrim's Lane. Post-war OS mapping from 1954 shows no structural changes to the site or its immediate surroundings.
Was the area subject to bombing during WWII?	During WWII, the site was located within the Metropolitan Borough of Hampstead. Home Office statistics indicate that Hampstead suffered from a very high density bombing campaign during WWII, with an average of 166 items recorded per 1,000 acres. This included 311 high explosive (HE) bombs, 6 parachute mines, 21 oil bombs, 5 phosphorus bombs, 10 V-1 pilotless aircraft and 3 V-2 long range rocket bombs. Although an incendiary bomb shower is recorded in the general site area, there are no bombs recorded directly on the site or within its immediate vicinity. There are several bombs recorded in the surrounding region, the closest being approximately 150m to the west. This is likely the same strike recorded in local bomb mapping for Hampstead, which records a bomb approximately 150m to the west.
Is there any evidence of bomb damage on/close to the site?	London County Council (LCC) bomb damage mapping does not attribute any damage to the property on site, or bordering properties. This is corroborated by post-WWI aerial photography, available in-house on this occasion, which does not show any signs of serious bomb damage on the site.
To what degree would the site have been subject to access?	As the site comprises a residential property which was unaffected by bombing or bomb damage, it is anticipated that access to the site would have been frequent. Frequent access would increase the likelihood of obvious signs of UXO being noticed and reported.
To what degree has the site been developed post-WWII?	The site has not experienced any significant development since WWII.
What is the nature and extent of the intrusive works proposed?	Works proposed at this stage are understood to comprise four open drive sampler boreholes.

ST LINE DEFENCE

Summary and Conclusions

During WWII, the site was located within the Metropolitan Borough of Hampstead. Hampstead suffered from a very high density bombing campaign during WWII, with an average of 166 items recorded per 1,000 acres. Despite this, , there are no bombs recorded directly on the site or within its immediate vicinity on London Bomb Census Mapping, although an incendiary bomb shower is recorded in the general site area. There are several bombs recorded in the surrounding region, the closest being approximately 150m to the west. This is likely the same strike recorded in local bomb mapping for Hampstead, which records a bomb approximately 150m to the west.

LCC bomb damage mapping attributes no damage to the site or surrounding properties. This is corroborated by WWIIera aerial photography, which does not show any signs of serious bomb damage on site. As such, the site would likely have been frequently accessed both during and after WWII. Frequent access would increase the likelihood of obvious signs of UXO being noticed and reported.

Recommendations

Given the findings of this preliminary report, the risk from UXO on site is not considered to be significantly elevated above the background level for the region. It is therefore recommended that no further research be undertaken for this site.

If the client has any anecdotal or empirical evidence of UXO risk on site, please contact 1st Line Defence.

It should be noted that although the risk from unexploded ordnance on this site has been assessed as low/minimal, this does not mean there is 'no' risk of encountering UXO. This preliminary report has been undertaken with due diligence, and all reasonable care has been taken to access and analyse relevant historical information. By necessity, when dealing with historical evidence, and when making assessments of UXO risk, various assumptions have to be made which we have discussed and justified within this report. Our reports take a common-sense and practical approach to the assessment of UXO risk, and we strive to be reasonable and pragmatic in our conclusions. As referenced, it would be possible to undertake further research into this site, but based on the evidence to hand, this is not deemed strictly necessary, and no reasonably justifiable requirement for proactive on-site mitigation has been identified.

It should however be stressed that if any suspect items are encountered during the proposed works, 1st Line Defence should be contacted for advice/assistance, and to re-assess the risk as necessary. Furthermore, we would recommend that ground personnel are always made aware of the potential for encountering UXO, what to look out for and what to do in the unlikely event that a suspect item is encountered, and that a UXO Risk Management Plan is put together for the proposed works. We would be happy to provide a template and guidance for this – contact us on 01992 245020. Should the scope of works change or additional works be proposed, 1st Line Defence should be contacted to re-evaluate the risk.

Ground Movement Analysis

PDisp Analysis – Tabular input - Short Term Movements PDisp Analysis – Tabular input - Total Movements PDisp Analysis – Contour output - Short Term Movements PDisp Analysis – Contour output - Total Movements PDisp Analysis – Tabular output - Short Term Movements PDisp Analysis – Tabular output - Total Movements

XDisp Analysis – Tabular input - Installation XDisp Analysis – Tabular input - Installation and Excavation XDisp Analysis – Vertical movements - Installation XDisp Analysis – Horizontal movements - Installation XDisp Analysis – Vertical movements - Installation and Excavation XDisp Analysis – Horizontal movements - Installation and Excavation XDisp Analysis – Tabular output - Installation XDisp Analysis – Tabular output - Installation

Oasys ENVIRONMENTALASSOCIATES LTDJ21282 12 Pilgrims Lane Drg. Ref. Short term movements Made by Date Input data Date Checked Date	\bigcirc	GEOTECHNICAL AND	Job No.	ç	Sheet No.	Rev	v.
Short term movements Input data Made by Date Checked Date	Oasys		DJ21282	2			
Input data Made by Date Checked Date	-		Drg. Ref.				
			,	Date	Checked	Date	

Titles

Job No.: Job Title: Sub-title: Calculation Heading: Initials: Checker: Date Saved: Date Checked: Notes:	J21282 12 Pilgrims Lane Short term movements Input data AG
File Name:	PDISP.pdd
File Path:	C:\Users\alex.goodsell\Documents\GMA J21282\Dec 2024

History

Date	Time	Ву	Notes
24-Jun-2022	15:37	Alex.Goodsell	New
24-Jun-2022	17:21	Alex.Goodsell	
28-Jun-2022	11:43	Alex.Goodsell	
14-Sep-2022	17:16	Alex.Goodsell	
09-Dec-2024	17:06	Alex.Goodsell	
09-Dec-2024	18:04	Alex.Goodsell	
11-Dec-2024	17:48	Alex.Goodsell	Open

Analysis Options

General

Global Poisson's ratio: 0.20 Maximum allowable ratio between values of E: 1.5 Horizontal rigid boundary level: 0.00 [m OD] Displacements at load centroids: Yes GSA piled raft data : No

Elastic

Elastic : Yes

Consolidation

Consolidation : No

Soil ProfilesSoil Profile 1

Layer ref.	Name	Level at top	Number o intermedia displaceme levels	ate	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve	
		[mOD]			[kN/m²]	[kN/m²]			
1	MG	100.00		1	10000.	10000.	0.20000	None	
2	LC	99.000		104	15000.	189500.	0.50000	None	
Soil Z	ones Name	X min	X max Y	<i>č</i> min	Y max		Profile		
20116	Name	[m]	[m]	[m]	[m]	с <u>г</u>	rorre		
1	1	-45.000	30.000 -	-15.0	00 30.0	00 Soil	Profile 1		
Polyg Load ref.	Jonal L Name	Doad Data Position : Level	Position :	: Pol	ygon : Co		Position Polygon 1 : Rect.	No. of Rectangles	Value : Normal (local z)

GEOTECHNICAL AND Job No. Sheet No. ENVIRONMENTALASSOCIATES LTDJ21282

12 Pilgrims Lane Short term movements Input data

A.S

°S

Drg. Ref. Made by AG

Date

Checked Date

Rev.

		[m]		[m]		tolerance		[kN/m ²]
1	ex 1	[m] 96 50000	(-10.3,3.78		7 69)	[%] 10.000	1	
1	ex 1	90.00000	(-3.76,7.69 (-10.3,3.78) (-3.76		10.000	T	-20.900
2	ex 2	96.50000	(-18.5,2.68 (-15.3,6.8) (-10.3,7.69 (-18.5,2.68	(-15.3,) (-10.3	7.69)	10.000	2	-20.900
3	ex 3	96.50000	(-22.6,11.8 (-14.6,8.99 (-15.3,7.69 (-18.5,6.8)) (-18.6) (-14.6) (-15.3 (-18.5,	,7.69) ,6.8) 6.4)	10.000	10	-59.510
4	1	96.50000	(-19.1,6.4) (-10.3,7.69 (-3.76,6.59 (-10.3,7.69) (-3.76) (-10.3	7.69)	10.000	1	125.00
5	2	96.50000	(-3.76,6.59 (-4.86,4.88 (-3.76,6.59) (-3.76) (-4.86		10.000	1	125.00
6			(-3.76,3.78 (-10.3,4.88 (-3.76,3.78) (-3.76)	,4.88)	10.000	1	125.00
7		96.50000	(-18.5,2.68 (-10.3,3.78 (-18.5,2.68) (-18.5	· · ·	10.000	1	125.00
8	5	96.50000	(-18.5,3.78 (-17.4,5.7) (-18.5,3.78	(-17.4,		10.000	1	125.00
9	6	96.50000	(-18.5,6.8) (-15.3,7.69 (-10.3,6.59 (-14.2,5.7) (-18.5,6.8)) (-10.3) (-14.2	7.69) 6.59)	10.000	3	125.00
10	7	96.50000	(-10.3,4.88 (-11.4,3.78 (-10.3,4.88) (-11.4		10.000	1	125.00
11	8	96.50000	(-22.6,11.8 (-18,13.8) (-22.6,11.8) (-18.6 (-22,10.		10.000	1	125.00
12	9	96.50000	(-22,10.9) (-18.5,6.4) (-18.1,6.8) (-21.1,11.5	(-19.1,6 (-18.5, (-18.2,	5.8) 7.03)	10.000	10	125.00
13	10	96.50000	(-18,13.8) (-14.6,7.69 (-15.5,8.36 (-18,13.8)	(-14.6,8) (-15.3	.99) ,7.69)	10.000	6	125.00
			ectangles					
No.	Centre : x	Centre : Y	Angle of local x from global X	Width x	Depth y			
	[m]	[m]	[Degrees]	[m]	[m]			
Edge	. : ex 1 2 optima	,			_			
oad 2	-7.0450 : ex 2 2 optima		0.0	6.5700	3.9100			
1 2 oad 3	-16.8750 -12.8100 5 : ex 3 10 optim	0 4.74000 0 5.18500		3.1700 4.9600	4.1200 5.0100			
1 2	-18.8443 -17.4667 -17.4639	3 6.60000 7 7.24500	90.000	0.40000 0.89000 1.3000	0.76865 4.3535 5.7679			
4 5	-18.1496 -19.1030	8 9.69500 2 11.10500	90.000 90.000	1.4100	6.1397 6.0470			
6	-19.4817	1 12.09500	90.000	0.57000	5.4006			

\cap			GEOTE	CHNICA			Job No.		Sheet No.	Rev.
\mathbf{O}	lSÝ	'S	ENVIRC	NMENT	TALASSO	CIATES LT	DJ2128	32		
12 Pilgrim							Drg. Ref.			
Short term nput data		ents					Made by AG	Date	Checked	Date
No. Ce	ntre : x	Centre : y	Angle of local x from global X	Width x	Depth y				·	
8 -1 9 -1	9.08984 8.89390	12.66500 13.23500 13.80500 14.37500	90.000 90.000 90.000	0.57000 0.57000 0.57000 0.57000	4.2004 3.0003 1.8002 0.60006					
	optimal) 7.04500	7.14000	-90.000	1.1000	6.5700					
1 - oad 6 :		5.73500	-180.00	1.1000	1.7100					
1 - Load 7 : Edge 1	7.04500	4.33000	90.000	1.1000	6.5700					
	optimal) 7.91000	4.74000	0.0	1.1000	1.9200					
Edge 2 1 -1 2 -1	optimal) 4.39500 6.32500	6.69500 6.14500 7.24500		0.21000 0.89000 0.89000	8.1300 4.2700 4.9600					
	optimal) 0.88000	4.33000	-180.00	1.1000	1.1000					
1 -2 oad 12		12.79089	35.268	4.8898	1.0841					
1 -2 2 -1 3 -1 4 -1	0.10000 8.73993 8.67772 8.61552	8.97000 6.58000 6.54000 6.50000 6.46000	-57.258 -57.258 -57.258	5.3188 0.067289 0.067289 0.067289 0.067289	1.0977 0.66562 0.51770 0.36979 0.22187					
6 -1 7 -1 8 -1 9 -1	8.49110 8.28423 8.22016	6.42000 6.88087 6.85777 6.83466 6.81155	-57.258 -57.258 -57.258 -57.258	0.067289 0.054085 0.054085 0.054085 0.054085	0.073957 0.29906 0.21361 0.12817					
Load 13 (Edge 2 1 -1 2 -1	: 10 optimal) 6.41913 6.74332	10.93090 10.47260	-145.01 -145.01	0.70372 0.35309	6.4141 6.7932					
4 -1 5 -1	5.26219 5.27331	7.98313 7.89938 7.81562 7.73188	-145.01 -145.01	0.057141 0.057141 0.057141 0.057141	0.51115 0.30669					

Displacement Lines

Name	X1	¥1	Z1	x 2	¥2	Z2	Intervals	Calculate	Detailed Results
	[m]	[m]	[m]	[m]	[m]	[m]	[No.]		
14 A	-31.01000	6.12000	99.30000	-26.15000	9.60000	99.30000	6	Yes	Yes
14 B	-26.16000	9.60000	99.30000	-22.89000	11.94000	99.30000	4	Yes	Yes
14 C	-32.41000	8.08000	99.30000	-27.55000	11.56000	99.30000	6	Yes	Yes
14 D	-27.56000	11.56000	99.30000	-24.29000	13.90000	99.30000	4	Yes	Yes
14 E	-22.90000	11.94000	99.30000	-29.03000	19.83000	99.30000	10	Yes	Yes
14 F	-31.02000	6.12000	99.30000	-37.15000	14.01000	99.30000	10	Yes	Yes
14 G	-26.17000	9.60000	99.30000	-32.29000	17.49000	99.30000	10	Yes	Yes
16 A	-37.16000	14.01000	99.30000	-32.30000	17.49000	99.30000	6	Yes	Yes
16 B	-32.31000	17.49000	99.30000	-29.04000	19.83000	99.30000	4	Yes	Yes
16 C	-43.29000	21.90000	99.30000	-38.43000	25.38000	99.30000	6	Yes	Yes
16 D	-38.44000	25.38000	99.30000	-35.17000	27.72000	99.30000	4	Yes	Yes
16 E	-29.05000	19.83000	99.30000	-35.16000	27.72000	99.30000	10	Yes	Yes
16 F	-32.31000	17.49000	99.30000	-38.45000	25.38000	99.30000	10	Yes	Yes

	sys		OTECHI VIRONM			IATES				Sheet N	0.	Rev.
1 2 Pilgrim Short term nput data	s Lane movements						Drg. Made I AG		Date		Checked	Date
Name	X1	¥1	Z1	X 2	¥2	Z2	Inter	vals Cal	culate	Detail Result		
	[m]	[m]	[m]	[m]	[m]	[m]	[No	.]				
16 G	-37.17000	14.01000		-43.29000		0 99.3000		10 Yes		Yes		
10 A 10 B	8.00000 15.48000	0.17000 6.32000		15.47000 25.36000		0 97.1000 0 97.1000		10 Yes 17 Yes		Yes Yes		
10 Б 10 С	25.37000	-7.51000		17.90000				10 Yes		Yes		
10 D		-13.66000		8.01000		0 97.1000		17 Yes		Yes		
Displace	nent Grids											
Name Detailed	Extrusion:	X1	Yl	Z1	x 2	¥2	Z2	Interva	ls Ext	rusion:	Extrusion:	Calculate
Results	Direction							Along	r Di	stance	Intervals	
RESULTS								Line			Along	
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]		[m]	[No.]	
PDISP Yes	Global X	-45.00000	-15.00000	99.30000	- 3	0.00000 9	9.30000		45 7	5.00000	75	Yes

GEOTECHNICAL AND	Job No.	Sheet	No.	Rev.
Oasys environmental associates l	DJ21282			
12 Pilgrims Lane Long term (total) movements	Drg. Ref.			
Input data	Made by AG	Date	Checked Dat	te

Titles

Job No.: Job Title: Sub-title: Calculation Heading: Initials: Checker: Date Saved: Date Checked: Notes:	J21282 12 Pilgrims Lane Long term (total) movements Input data AG
File Name:	PDISP LT.pdd
File Path:	C:\Users\alex.goodsell\Documents\GMA J21282\Dec 2024

History

Date	Time	Ву	Notes
24-Jun-2022	15:37	Alex.Goodsell	New
24-Jun-2022	17:43	Alex.Goodsell	
28-Jun-2022	11:50	Alex.Goodsell	
14-Sep-2022	17:19	Alex.Goodsell	
09-Dec-2024	16:46	Alex.Goodsell	
09-Dec-2024	17:58	Alex.Goodsell	
09-Dec-2024	18:14	Alex.Goodsell	
11-Dec-2024	17:53	Alex.Goodsell	Open

Analysis Options

General

```
Global Poisson's ratio: 0.20
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: 46.50 [m OD]
Displacements at load centroids: Yes
GSA piled raft data : No
```

Elastic

Elastic : Yes

Consolidation

Consolidation : No

Soil ProfilesSoil Profile 1

Layer ref.	Name	Level at top	Number intermed displace level	iate ment		Youngs Modulus : Btm.	Poissons ratio	Non-linear curve	
		[mOD]			[kN/m²]	[kN/m²]			
1	MG	100.00		1	10000.	10000.	. 0.20000	None	
2	LC	99.000		104	9000.0	113700.	0.50000	None	
Soil Z	ones								
Zone	Name	X min [m]	X max [m]	Y mir [m]	n Yma: [m]	к I	Profile		
1	-	-45.000	30.000	-15.0	000 30.0	000 Soil	Profile 1		
		oad Data							
Load ref.	Name	Position : Level	Position	: Pol	.ygon : Co			No. of Rectangles	Value Norma

Oasys GEOTECHNICAL AND ENVIRONMENTALASSOCIATES LTDJ21282 Job No. Sheet No. Rev. 12 Pilgrims Lane Drg. Ref.

Long term (total) movements Input data

Made by AG

Date

Checl

Checked Date

(local z)		: Rect. tolerance			
[kN/m²]		[%]	[m]	[m]	
1 -20.900	1	10.000	(-10.3,3.78) (-10.3,7.69)	96.50000	1 ex 1
			(-3.76,7.69) (-3.76,3.78) (-10.3,3.78)		
2 -20.900	2	10.000	(-18.5,2.68) (-18.5,6.8) (-15.3,6.8) (-15.3,7.69) (-10.3,7.69) (-10.3,2.68) (-18.5,2.68)	96.50000	2 ex 2
10 -59.510	10	10.000	(-22.6,11.8) (-18.6,14.7)	96.50000	3 ex 3
10 001010	10	101000	(-14.6, 8.99) $(-14.6, 7.69)(-15.3, 7.69)$ $(-15.3, 6.8)(-18.5, 6.8)$ $(-18.5, 6.4)(-19.1, 6.4)$ $(-22.6, 11.8)$	2000000	0 011 0
1 125.00	1	10.000	(-10.3,7.69) $(-3.76,7.69)(-3.76,6.59)$ $(-10.3,6.59)(-10.3,7.69)$	96.50000	4 1
1 125.00	1	10.000	(-3.76, 6.59) (-3.76, 4.88)	96.50000	52
			(-4.86,4.88) (-4.86,6.59) (-3.76,6.59)		
1 125.00	1	10.000	(-3.76,3.78) (-10.3,3.78) (-10.3,4.88) (-3.76,4.88) (-3.76,3.78)	96.50000	63
1 125.00	1	10.000	(-18.5,2.68) (-10.3,2.68)	96.50000	74
	_		(-10.3,3.78) (-18.5,3.78) (-18.5,2.68)		
1 125.00	1	10.000	(-18.5,3.78) (-18.5,5.7) (-17.4,5.7) (-17.4,3.78) (-18.5,3.78)	96.50000	8 5
3 125.00	3	10.000	(-18.5, 6.8) $(-15.3, 6.8)(-15.3, 7.69)$ $(-10.3, 7.69)(-10.3, 6.59)$ $(-14.2, 6.59)(-14.2, 5.7)$ $(-18.5, 5.7)(-18.5, 6.8)$	96.50000	96
1 125.00	1	10.000	(-10.3,4.88) (-10.3,3.78) (-11.4,3.78) (-11.4,4.88) (-10.3,4.88)	96.50000	10 7
1 125.00	1	10.000	(-22.6,11.8) (-18.6,14.7) (-18,13.8) (-22,10.9) (-22.6,11.8)	96.50000	11 8
10 125.00	10	10.000	(-22,10.9) (-19.1,6.4) (-18.5,6.4) (-18.5,6.8) (-18.1,6.8) (-18.2,7.03) (-21.1,11.5) (-22,10.9)	96.50000	12 9
6 125.00	6	10.000	(-18,13.8) (-14.6,8.99) (-14.6,7.69) (-15.3,7.69) (-15.5,8.36) (-18.9,13.1) (-18,13.8)	96.50000	13 10

No. Centre : x	Centre : Y	Angle of local x from global X	Width x	Depth y
[m]	[m]	[Degrees]	[m]	[m]
Load $1 : ex 1$				
(Edge 2 optimal))			
1 -7.04500	5.73500	0.0	6.5700	3.9100
Load $2 : ex 2$				
(Edge 2 optimal))			
1 -16.87500	4.74000	0.0	3.1700	4.1200
2 -12.81000	5.18500	0.0	4.9600	5.0100
Load 3 : ex 3				
(Edge 10 optimal	1)			
1 -18.84433	6.60000	90.000	0.40000	0.76865
2 -17.46677	7.24500	90.000	0.89000	4.3535
3 -17.46396	8.34000	90.000	1.3000	5.7679
4 -18.14968	9.69500	90.000	1.4100	6.1397
5 -19.10302	11.10500	90.000	1.4100	6.0470

$\overline{\frown}$			GEOTE	CHNIC/	AL AND			Job No.		Sheet No.	F
U	asý	'S	ENVIRC	NMEN	ALASS		ATES L'		32		
•	rims Lane	ovemente						Drg. Ref.			
nput da	rm (total) m ata	overnerits						Made by AG	Date	Che	cked Date
No.	Centre : x	Centre : Y	Angle of local x from	Width x	Depth y						
			global X								
	-19.48171		90.000	0.57000	5.4006						
	-19.28578		90.000 90.000	0.57000	4.2004 3.0003						
	-18.89390				1.8002						
	-18.69797		90.000	0.57000	0.60006						
	1:1										
	2 optimal										
l oad 5	-7.04500	7.14000	-90.000	1.1000	6.5700						
	2 optimal)									
	-4.31000		-180.00	1.1000	1.7100						
oad 6											
	2 optimal										
	-7.04500	4.33000	90.000	1.1000	6.5700						
Load 7 (Edge	1 optimal)									
	-14.39500		0.0	8.1300	1.1000						
oad 8	3:5										
	2 optimal		0.0	1 1000	1 0000						
⊥ Load 9	-17.91000	4./4000	0.0	1.1000	1.9200						
	2 optimal)									
	-14.39500		-90.000	0.21000	8.1300						
	-16.32500			0.89000	4.2700						
	-12.81000	7.24500	-90.000	0.89000	4.9600						
	1 0 : 7 2 optimal)									
	-10.88000		-180.00	1.1000	1.1000						
	1 : 8										
	1 optimal		35.268	4.8898	1.0841						
	20.27510	12.75005	55.200	4.0000	1.0041						
(Edge	1 optimal)									
	-20.10000	8.97000		5.3188	1.0977						
	-18.73993	6.58000 6.54000		0.067289	0.66562						
	-18.61552	6.50000		0.067289	0.36979						
		6.46000			0.22187						
	-18.49110			0.067289							
	-18.28423			0.054085							
	-18.15610			0.054085							
	-18.09203			0.054085							
	.3 : 10										
	2 optimal		145 01	0 70272	C 1111						
	-16.41913			0.70372	6.4141 6.7932						
	-15.25106			0.057141							
	-15.26219			0.057141							
	-15.27331			0.057141							
0	10.20111	1.15100	110.01	0.03/141	0.10225						
Displa	cement Lin	ies									
Name	a X1	¥1	Z1	x 2	Y2	2	Z2	Intervals	Calculate	Detailed Results	
	[m]	[m] [m]	[m]	[I	m]	[m]	[No.]			
4 A	-31.01	000 6.1	2000 99.300	000 -26.15	5000 9.0	60000	99.30000	6	Yes	Yes	
14 B	-26.16		0000 99.300				99.30000		Yes	Yes	
14 C 14 D	-32.41		8000 99.300 6000 99.300				99.30000 99.30000		Yes Yes	Yes Yes	
14 D 14 E	-22.90		4000 99.300				99.30000		Yes	Yes	
14 F	-31.02	000 6.1	2000 99.300	000 -37.15	5000 14.0	01000	99.30000	10	Yes	Yes	
14 G	-26.17		0000 99.300				99.30000		Yes	Yes	
16 A 16 B	-37.16		1000 99.300 9000 99.300				99.30000 99.30000		Yes Yes	Yes Yes	
16 C	-43.29		0000 99.300				99.30000		Yes	Yes	
16 D	-38.44	000 25.3	8000 99.300	000 -35.17	7000 27.7	72000	99.30000	4	Yes	Yes	
16 E	-29.05	000 19.8	3000 99.300)00 -35.10	5000 27.7	72000	99.30000	10	Yes	Yes	