one	nt: Camd	ler BC Elevation	: 56mOA		·······
pth	SUBS	Description	evation	Well Completion Details	British Geological Surv Remarks
49- British Geo 50- 51- 52-			Britist	Georgial Stryey	British Geological Survey
53 54 55 56 57 58 59 60		sh Geological Survey		Bittish Geological Bree	British Geological Surv
62 62 64 64 64 64 64 64 61 61		sh Geological Survey	Britist) Geotoffice Sulvery Oritish Geologics Sunt	British Geological Survey British Geological Surv
7 7 British Geol 7			Britist	n Geolog et Sun Sy	British Geological Survey
	orilled By: ogged by	N.:3nowball/L.Berry			Date acidized: 2 Nov 04 Date geophysically logged: n/a

	00/05/55	1	D/	1(-1)					-
	08/03/2005	3:00	1080	18	104.85	-48.75	16.1618		
	CTID/COL	5:00	1200	20	105.00	-48.90	17.9971	Dritich Contonical Survey	
	Guivey	7:00	1320	22	105.17	-49.07	19.6008		
		9:00	1440	24	105.22	-49.12	21.2826		-
		11:00	1560	26	105.40	-49.30	23.0942		-
		13:00	1680	28	105.55	-49.45	24,7759	-	
		15:00	1800	30	105.73	-49.63	26 3734		-
		17:00	1920	32	105.87	-49.77	28 0647		-
		19:00	2040	34	105.90	-49.80	29 7483		-
		21:00	2160	36	106.06	-49.96	31 4874		-
		23:00	2280	38	106.26	-50.16	33.0340	-	-
	09/03/2005	1:00	2400	40	106.39	-50.29	00.0040	Brit	sh Geologica
1.00		3:00	2520	42	106.50	-50.40	37 0109		-
		5:00	2640	44	106.63	-50.53	29.0796		-
		7:00	2760	46	106.62	-50.55 50.50	30.0700		-
		9.00	2880	40	106.60	-50.52	39.8///		_
1.0		11:00	2000	50	100.00	-50.50	41.4283		_
		11.00	3000	- 30	100.01	-50.51	43.0615	Recovery started	_
			3001	-	106.20	-50.10			_
			3002	-	105.97	-49.87			_
Geologica	Survey		3003		105.82	-49.72	-	British Geological Survey	_
		-	3004	-	105.60	-49.50			_
			3005	-	105.40	-49.30			
			3006		105.19	-49.09			
			3007		105.03	-48.93			
			3008		104.86	-48.76			
			3009		104.63	-48.53			
		_	3010		104.40	-48.30			
		-	3015	-	103.52	-47.42			
	British Coold	aisal Puper	3020		102.68	-46.58		Dia.	ale Goologing
	Billish Geolo	gical Survey	3025		101.95	-45.85			en debiogica
			3030		101.45	-45.35			
		_	3035		100.94	-44.84			
			3040		100.34	-44.24			7
		_	3045		100.00	-43.90			
	-		3050		99.63	-43.53			
1	-		3055	100	99.22	-43.12			-
		12:00	3060	51	98.90	-42.80			
			3070		98.33	-42.23		and the second	-
Geological	l Survey	1	3080		97.80	-41.70		British Sociegical Survey	-
[3090	1	97.39	-41.29			-
[1	3100		96,98	-40.88			-
[13:00	3120	52	96.42	-40.32			-
1			3150		95.70	-39 60			-
2 C		14:00	3180	53	95 17	-39.07			-
1			3210		94 75	-38.65			-
						00.00			
Г Г			CO	ATP	T DATE DUM	DING TEST DAT			7
·	CONTRAC	giegi Carroy		VOTA	NT HATE FUN	FING TEST DA	TA SHEET	Brit	si Geologica
19	CONTRAC	I No	4006				¹ Description of datum	point from which	
L	Pumping Test	t at	Swiss	Cottag	e Open Space		measurements were m	nade (eg ground	
1	NGR		TQ 268	843			level din tube)		
	Observations	From ¹	Top of D	in-Tube	(100mm above or	round loval)			
le			GL - FO	~^^	(above gi		2 hadabaab	1999 B	
4		The	GL = 56	HAUD			height above ground	level (m)	1
		1 10000 00	Elapse	d Time	Depth of water level	Depth of water level	Watermeter	Pumping rate	
	Date	Time			below datum (m)	below datum (mAOD)	reading (cu.m)		
(Date	TIME			Pumping woll	Pumping well			
Geologica	Date	Time	Minutes	Hours	Hritish Ganlanital en	Vev.		Equal Control Control	1
Geologica	Date I Survey		Minutes DAY	Hours (-3)	British Geological Su	vey			
Geologica	Date .		Minutes DAY DAY	Hours (-3) (-2)	British Geological Su	VEV			
Geologica	Date		Minutes DAY DAY DAY	Hours (-3) (-2) (-1)	British Geological St	wey]
Geologica	Date	15:00	Minutes DAY DAY DAY 3240	Hours (-3) (-2) (-1) 54	94.40	-38.30			
Geologica	Date	15:00 16:00	Minutes DAY DAY 3240 3300	Hours (-3) (-2) (-1) 54 55	94.40 93.90	-38.30 -37.80			
(Geologica	Date	15:00 16:00 17:00	Minutes DAY DAY 3240 3300 3360	Hours (-3) (-2) (-1) 54 55 56	94.40 93.90 93.57	-38.30 -37.80 -37.47			
Geologica	Date	15:00 16:00 17:00 18:00	Minutes DAY DAY 3240 3300 3360 3420	Hours (-3) (-2) (-1) 54 55 56 57 57	94.40 93.90 93.57 93.21	-38.30 -37.80 -37.47 -37.11			
Geologica	Date ISurvey 09/03/2005 10/02/2005	15:00 16:00 17:00 18:00 19:00 8:00	Minutes DAY DAY 3240 3300 3360 3420 3480	Hours (-3) (-2) (-1) 54 55 56 57 58 70	94.40 93.90 93.57 93.21 93.01	-38.30 -37.80 -37.47 -37.11 -36.91			
Geologica	Date I Survey 09/03/2005 10/03/2005	15:00 16:00 17:00 18:00 19:00 8:00	Minutes DAY DAY 3240 3300 3360 3420 3480 4200	Hours (-3) (-2) (-1) 54 55 56 57 58 70	94.40 93.90 93.57 93.21 93.01 89.98	-38.30 -37.80 -37.47 -37.11 -36.91 -33.88		Pump test	

Page 2

Client	t: Camden BC	Elevation: 56	6mOA[
pth	SUBSURFA	CE PROFILE	levation	/ell Completion Details	Bittish Geological Surve
74 74 ritish George 75 76 76 77			British	gral Survey	British Geological Survey
78 79 80 81 82 83	sritish Geologi	cal Survey		pprox 90m BGL	British Geological Surve
84 85 111sh (86 87 88 88	Sand a	SAND nd Gravel CLAY Clay	-28.50	Standing water level a	Brilish Geological Survey
90- 91- 92- 93- 94- 95-	tish Geologi	cal Survey		Sittish Geologica Gure	British Geological Surve
96 96 rish Geolog 98	Fine g	SAND reen sand -(Thane	-40.1 t	g-reuner	British Geological Survey
Dri	illed By: N End gged by: Eicilie	owball/L.Berry			Date acidized: 2 Nov 04 Date geophysically logged: n/a

	SUB	SURFACE PROFILE		INSTALLATION DETAILS	British Geological Surv
Depth	Legend	Description	Elevation	Well Completion Details	Remarks
99- ^{Britis} 100- 101-	ncal Survey	CHALK Chalk and flint	-44.50	Deputy I Styrey	British Geological Survey
103- 104- 105- 106- 107- 108- 109- 110- 110- 110- 110- 112- 113-		CLAY Grey clay tish Geological Survey CHALK Chalk and flint	-47.10 British -56.00	British Geologicki Sines	British Geological Survey
114 115 116 117 118 119 120 12		tish Geological Survey			British Geological Surv 113/103mm uPVC screen
12: British Geol 12:			British	Geplogical Surve	British Geological Survey
	orilled By	y: N.Snowball/L.Berry y: C.fller			Date acidized: 2 Nov 04 Date geophysically logged: n/a

	SUBS	URFACE PROFILE		INSTALLATION DETAILS	Brittsh Geological Sur		
Depth	Description		Elevation	Well Completion Details	Remarks		
124- antish Geoto 125- 126- 127-			British	Sool-gical St	British Geological Survey		
128- 129 130 131 132 133		Geological Survey		1 Survey	British Geological Surve		
134 135 1tish 136 137 138 139			Britist	Geological Surv	British Geological Survey		
14(14) 14) 14) 14) 14) 14		Geological Survey		purvey	British Geological Surve		
14 14 British Geole 14			British	Geologi al Surve	British Geological Survey		
	orilled By:	N.Snowball/L.Berry Driller			Date acidized: 2 Nov 04 Date geophysically logged: n/2		

Project: Swi Engineer: G Client: Cam	ss Cottage sifford & Prts NGR: TQ den BC Elevation	268 843 : 56mOA		County Durham, SR7 8SV Tel: 0191 527 3970 (Norther Tel: 01473 236611 (Souther
sue other	Description	evation	Well Completion Details	Brittah Geological Su Remarks
149 150 151 152 153		British	toto ical Sur	Lowar 14ª pump set at 130m on t flexible rising main.
154 P 155 P 156 P 157 P 158 P 158 P 159 -	h Geological Survey	-103.(Survey .	British Geological Su
160 en d161 162 163 164 164 165		British I	Seblogical Survey	British Geological Survey
166 167 168 169 169 170 170	h Geological Survey		Britteh Geological Survey	British Geological Su
172 ittsh Geologica Survey 173 Drilled By:	N Snowball/L.Berry	British (Sec ogical Survey	British Geological Survey Date acidized: 2 Nov 04
Logged by Date step	r: Eriller tested: 9-13 Nov 04			Date geophysically logged: n/a Sheet: 1 of 7

	2	CAMDEN		icence No		Nat Grid Ref TQ 268 843					
Owner 2	- D	CONTOLIN		CS Def No		Statur	110 20	0 017			
Occupier		E.C.		JS REI INO	ft OD	Status	Lic				
	witish Geological S	Survey	mOD	British G	eelogical SufteOD	Aquifer	UPPER (HALK			
Level of well To	p	90	m bwt		ft bwt	Summary o	of Geological Section	Thickness	De		
(Data 02/11/0	4	10	m OD		ft OD	MADE 1	NOUND	1.5	.0		
Construction	25/06/0	4				TOP SHI	,	0.7	1		
	27/00/0	Linings (below	well top)			IUNDAN (IN U.T.					
Depth bwt	Diameter	From M	Том	Diameter	Type	N. R. F	3.	12.0	96		
British Geologiyal Sulve	160	0	117British Gi	ediogical Servey	SOLD STIEL	THANKE	CINDogical Surve	4.7	100		
9 - 1/7	200	0	157	112/102	IPVL	DUTY	LINK	11.6	112		
112-167	160		1.77	Inspice.	0,11	11PPm 1	HALK	47.0	159		
IIF IJF	1.30					VIICE	<u>Heck</u>		1.		
Abstraction Date			Type of Pump								
			Type of Fullip			1					
· · · ·	British Geological S	Survey	Chem/Bact An	British G	VES NO		В	liitish Geological Sur	vey		
g g If insufficient sp British Geological Surv	infish Geological S pd ace has been a	allowed, continu	Chem/Bact An Well Driller (are in 'Notes' ov British Gr	al British G DRILL (ORP erleaf sological Survey	YES NO	:	British Geological Surve	dish Geological Sur	v3y		
g g If insufficient sp British Geological Surve	nnish Geological S pd ace has been i	survey	Chem/Bact An Well Driller (ine in 'Notes' ov British G	al British G DRILL (ORP erleaf	YES NO		British Geological Surve	itish Geological Sur	∨эу		
g g If insufficient sp British Geological Surv	initish Géological S ph ace has been a	allowed, continu	Chem/Bact An Well Driller (te in 'Notes' ov British Go	al British G DRILL (ORP erleaf eological Survey	YES NO		Brilish Geological Surve	dish Geological Sur	vsy		
If insufficient sp	mush Géological S ph ace has been a	allowed, continu	Chem/Bact An Well Driller / ie in 'Notes' ov British Go	al British G DRILL (ORP erleaf	YES NO	:	British Geological Surve	itish Geological Sur	vsy		
g g If insufficient sp British Geological Surv	nnish Géological S ph ace has been a	allowed, continu	Chem/Bact An Well Driller / ae in 'Notes' ov British G	al British G DRILL (ORP erleaf	YES NO		Brilish Geological Surve	dish Geological Sur	vəy		
g g If insufficient sp British Geological Surv	nmish Géological S ph ace has been a	allowed, continu	Chem/Bact An Well Driller / te in 'Notes' ov Brittsh G	al British G DRILL (ORP erleaf eological Survey	YES NO		British Geological Surve	dish Geological Sur	v _š y		
g g If insufficient sp British Geological Surv	initish Geological S ph ace has been a ace has been a	allowed, continu	Chem/Bact An Well Driller (e in 'Notes' ov British G	al British G DRILL (ORP erleaf eological Survey	epingical Survey		British Geological Surve	ritish Geological Sur	vev		
If insufficient sp British Geological Surve	arnish Geological S pd ace has been a ay	allowed, continu	Chem/Bact An Well Driller / ae in 'Notes' ov British G	al British G	eological guivey		British Geological Surve	ittish Geological Sur	vey		
British Geological Surv	arnish Geological S	allowed, continu	Chem/Bact An Well Driller / te in 'Notes' ov Brittsh G	al British G DRILL (ORP erleaf eological Survey British G	eological Survey		Brilish Geological Surve	ntish Geological Sur	vey		
g g If insufficient sp British Geological Surv	armsh Geological S	allowed, continu	Chem/Bact An Well Driller (ae in 'Notes' ov British G	al British G DRILL (ORP erleaf eological Survey British G	eological grivea		British Geological Surve	ittish Geological Sur	vey		
g g If insufficient sp British Geological Surve	arman Geological S ph ace has been a ace has been a artish Geological S	allowed, continu	Chem/Bact An Well Driller (e in 'Notes' ov British G	al British G DRILL (ORP erleaf eological Survey British G	eological Survey		British Geological Surve	ritish Geological Sur	vey		
g g If insufficient sp British Geological Surv	arnish Geological S	allowed, continu	Chem/Bact An Well Driller / ae in 'Notes' ov British G	al British G DRILL (ORP erleaf eological Survey British G	eological Survey		British Geological Surve	ritish Geological Sur	vey		
g g If insufficient sp British Geological Surv British Geological Surv	armsh Geological s ph ace has been i armsh Geological s	allowed, continu	Chem/Bact An Well Driller / te in 'Notes' ov Brittsh G	al British G DRILL (ORP erleaf eological Survey	eological Survey		British Geological Surve	niish Geological Sur y miish Geological Sur	vey		
British Geological Surv	armsh Geological S ph ace has been a ace has been a armsh Geological S	allowed, continu	Chem/Bact An Well Driller (ar in 'Notes' ov British G	al British G DRILL (ORP erleaf eological Survey British G	eological Survey		British Geological Surve	ittsh Geological Sur y ittish Geological Sur	véy		
British Geological Surve	armsh Geological S ph ace has been a ace has been a aritish Geological S	allowed, continu	Chem/Bact An Well Driller (er in 'Notes' ov British G	al British G DRILL (DRP erleaf eological Survey	eological Survey		British Geological Surve	nish Geological Sur y ritish Geological Sur	vey		
British Geological Surv	armsh Geological S	allowed, continu	Chem/Bact An Well Driller / ae in 'Notes' ov British G	al British G DRILL (DRP erleaf eological Survey British G	eological Survey		British Geological Surve	ritish Geological Sur Y	vay		
g g If insufficient sp British Geological Surv British Geological Surv	initish Geological S ph ace has been i ace has been i aritish Geological S	allowed, continu Survey	Chem/Bact An Well Driller / ee in 'Notes' ov Brittsh G	al British G DRILL (ORP erleaf eological Survey eological Survey	eological Survey		British Geological Surve	niish Geological Sur y	vey		
Brittsh Geological Surv	armsh Geological S ph ace has been a ace has been a armsh Geological S	allowed, continu Survey	Chem/Bact An Well Driller / ee in 'Notes' ov British G	al Brittsh G DRILL (ORP erleaf eological Survey Brittsh G	eological Survey		British Geological Surve	Ittish Geological Sur Y Ittish Geological Sur Y N FROM	véy		
British Geological Surve	arttish Geological S ritish Geological S	allowed, continu Survey	Chem/Bact An Well Driller (e in 'Notes' ov British G	al British G DRILL (DRP erleaf edlogical Survey eological Survey	eological Survey		British Geological Surve	ritish Geological Sur y D FROM ritish Geological Sur	vey		
British Geological Surve	intesh Geological S ph ace has been i ace has been i aritish Geological S	allowed, continu Survey	Chem/Bact An Well Driller / ee in 'Notes' ov Brittsh G	al British G DRILL (DRP erleaf eological Survey eological Survey British G	eological Survey		British Geological Surve British Geological Surve British Geological Surve British Geological Surve British Geological Surve	Ittish Geological Sur y mittish Geological Sur y D FROM Intish Geological Sur L 2005	vey		

http://scans.bgs.ac.uk/sobi_scans/boreholes/15020820/images/17578757.html

10/08/2017

APPENDIX E

CGL Borehole Logs

CGL Borehole Log Symbols and Abbreviations

Strata — Superficial

0 C

Ω

Л

Made Ground/

Peat

Clay

Silt

Sand

Gravel

Cobbles &

Boulders

Silty Clay

Top Soil

Strata — Bedrock

Backfill Materials/Installations

Abbreviations

0,

Rotary Core		Sample Type	2	Insitu Testin	g
TCR	Total Core recovery	В	Bulk Sample	HSV	Hand Share Vane
SCR	Solid Core recovery	D	Disturbed Sample	CBR	California Bearing
RQD Rock Quality Index		С	Core Sample		Ratio
Eracturo Spa	cing Min/Mean/Max	U100/U70	Undisturbed Sample	PID	Photoionization
Flacture Spa		ES	Environmental Sample		Detector Reading
NI	Non-intact Core	W	Water Sample	CDT	Standard Donatration
NR	No Recovery	G	Gas Sample	361	
AZCL	Assessed Zone of				rest (in value)
	Core loss				

Droisst										
Project	Swice	°0++-	a 0							HOLE NO
Job No CG/2	SWISS (ge ^{Date} 1 1	10-07-17	7 7	Ground Le	evel (m)	Co-Ordinates (m)		WS1
Client									Shee	et
Esse	ntial li	ving								1 of 1
SAMPL	ES & T	ESTS	- La		1			STRATA		nent
Depth (m)	Type No	Test Resu (N/kPa/p	t Ilt (pm)	Reduce Level	d Legenc	Depth (m) (Thick- ness)		DESCRIPTIO	N	Instrum
						(0.47) 0.47	Concrete 50 [MADE GRO	50 mix of concrete and flint JND]	gravel, no voids note	d. 60
0.60 0.60	ES1 PID1	0.6				┙┾╷┾╷┾╷┾╷┾	Firm to stiff selenite crys [WEATHERE 1.00 Becomi	brown silty CLAY with occasio tals. D LONDON CLAY FORMATION ng brown mottled dark grey.	onal fine gravel sized	tabular
2.60 2.60 3.00 3.00	ES2 PID2 ES3 PID3	0				4.53)	1.50 No long	er mottled. mple terminated at 5m)		
-										
Boring Pro	ogress	and Casir	Wate	er Obser	vation	Standing	General R	emarks		
Date	depth	dept		omment r	nme <u>measured</u>		1. All depths 2. Hole back 3. ES= Envirc 4. Hole term 5. Groundwa	are measured from ground I filled with airisings. nmental samples, PID= Phot ination due to reaching comp ter not encountered.	evel (m bgl). o Ionisation Detector oletion depth (5m bgl	.).
Method/							Field Crew		Logged By	Checked By

										CG
Project		c	_							HOLE No
100) Swiss	Cottag	e			Ground L	evel (m)	Co-Ordinates (m)		WS2
CG/2	28215		1 1	0-07-17 1-07-17	7 7	Ground E				
Client								1	Shee	et
Ess	ential li	ving		-						1 of 1
SAMPL	.ES & T	ESTS	er –			L		STRATA		ment
Depth (m)	Type No	l est Result _{(N/kPa/ppr}	Wat	Reduced Level	Legenc	Depth (m) I (Thick- ness)		DESCRIPTIO	N	Instrur /Rackf
						(0.40) 0.40	Concrete 50 [MADE GRO	50 mix of concrete and flint g JND]	gravel, no voids note	d. 60
					× ×		Firm brown [WEATHERE	mottled dark grey silty CLAY. D LONDON CLAY FORMATION	1]	
						× 	0.40 - 1.00 S	ample not recovered.	-	
						1- 7				
1.50	ES1	1 -					1.50 - 1.55 P	arting of yellow fine silty sand	d encountered.	
1.30		4.5			×× - × × -	1				
					× ×	a - -				
							2.30 Coarse	gravel sized fragment of pyrit	e noted.	
2.50 2.50	ES2 PID2	2.6				(4.60)				
						1				
						1				
3.50 3.50	ES3	0.8				1				
3.50	FIDS	0.8			× ×	1 7				
					× ×	+				le l
						1				
						5.00				
							(Window sa	mple terminated at 5m)		
						-				
						-				
						-				
						-				
						-				
						-				
						Ę				
						-				
						Ę				
Roring Dr	ngress	and M	/ato	r Ohser	vation	<u>ــــــ</u>	General R	emarks		
Date	Strike	Casing		mment	Time	Standing	1. All denths	are measured from pround le	evel (m bgl).	
	depth	depth		r	neasured	Depth	2. Hole back 3. ES= Enviro 4. Hole term	filled with airisings. nmental samples, PID= Photo ination due to reaching comp	o Ionisation Detector letion depth (5m bg).
							5. Groundwa	ter not encountered.		
Method/	T				ri a	1	Field Crew	deo Droth ero Lieste d	Logged By	Checked By
nant Used	Trac	ked win	Idow	sample	rıg		Bainbri	age Brothers Limited	TWF	HJG

							1	
100 Swiss Cot	tage							
Job No	Date 10	0-07-17	,	Ground Le	evel (m)	Co-Ordinates (m)		W53A
CG/28215	1	1-07-17	7					
Client							Shee	et
Essential livin	g							1 of 1
SAMPLES & TEST	S 5					STRATA		ll
Depth Type T (m) No (N/kl	est esult Pa/ppm)	Reducec Level	Legend	Depth (m) (Thick- ness)		DESCRIPTION	I	Instrum /Backfi
Boring Progress an Date Strike Ca depth d	d Water asing epth Cor	• Obser	vations	(0.90) (0.90)	Reinforced a noted. [MADE GRO (Window so So So So So So So So So So So So So So	concrete 50:50 mix of concrete UND] mple terminated at 0.9m) mple terminated at 0.9m s are measured from ground level filled with airisings. onmental samples. innation due to presence of reb ater not encountered.	and flint gravel, no	0.9m bgl/potential
Method/ Plant Used Tracked	window	sample	rig		Field Crew Bainbr	idge Brothers Limited	Logged By TWF	Checked By HJG

Project								HOLE No	
100 Swiss Cot	ttage							\//C2B	
Job No	Date 11	1-07-17	,	Ground Le	evel (m)	Co-Ordinates (m)		VV 33D	
CG/28215	11	1-07-17	'						
Client							She	et	
Essential livin	lg							1 of 1	
SAMPLES & TEST	۲S ہے					STRATA		nent	
Depth Type R (m) No (N/k	esult ^(Pa/ppm)	Reduced Level	Legend	Depth (m) (Thick- ness)		DESCRIPTION	I	Instrur	//Backf
Boring Progress an	d Water	Obser	vations	(0.90)	Reinforced of noted. [MADE GRO (Window so	concrete 50:50 mix of concrete PUND] Imple terminated at 0.9m)	e and flint gravel, n	o voids	
Date Strike C depth d	asing Cor	mment n	Time neasured	Standing Depth	1. All depths 2. Hole back 3. ES= Envir 4. Hole term pile cap. 5. Groundw	s are measured from ground le filled with airisings. onmental samples. nination due to presence of reb ater not encountered.	vel (m bgl). oar and concrete to	0.9m bgl/potenti	tial
Method/ Plant Used Tracked	windows	sample	rig		Field Crew Bainbr	idge Brothers Limited	Logged By TWF	Checked By HJG	

Project											HOLE No
100	Swiss	Cotta	age								W/\$2C
Job No CG/2	8215		Date	11· 11·	-07-17 -07-17	,	Ground Le	evel (m)	Co-Ordinates (m)		vv33C
Client						I			I	She	et
Esse	ential li	ving									1 of 1
SAMPL	ES & T	ESTS	;	<u>_</u>					STRATA		ient.
Depth (m)	Type No	Te Res (N/kPa)	st ult /ppm)	Wate	Reduced Level	Legend	Depth (m) (Thick- ness)		DESCRIPTION	J	Instrum
							(0.40)	Concrete 50: [MADE GRO	50 mix of concrete and flint g JND]	ravel, no voids note	d.
1.00 1.00 1.00	ES1 SPT	0 Ni) 6					Soft to firm t selenite crys [WEATHEREI	orown silty CLAY with occasior tals noted. D LONDON CLAY FORMATION	nal fine gravel sized]	tabular
2.00 2.00 2.00	ES2 SPT	0 N!	9				* - - - - - - - - - - - - - - - - - - -				
3.00 3.00 3.00	ES3 SPT	0 N1) L3				۲ - ۱	3.00 Parting	of orange fine silty sand enco	untered.	
4.00	SPT	N1	14				- - - - - - - - - - - - - - - - - - -	4.00 Single c 4.90 Parting (Window sa	oarse gravel sized fragment of of orange fine silty sand encom mple terminated at 5m)	f pyritised wood end untered.	countered.
Boring Pr	ogress	and	Wa	ter	Obser	vation	s	General R	emarks		
Date	Strike depth	Cas dep	ing oth	Com	iment n	Time neasured	Standing Depth	1. All depths 2. Installatio 3.0m bgl slot airisings. 3. ES= Envirc 4. Hole term 5. Groundwa	are measured from ground le n details; 0.0m to 1.0m plain p ted pipe backfilled with grave nmental samples, PID= Photo ination due to reaching compl ter not encountered.	vel (m bgl). bipe backfilled with l; 3.0m to 5.0m bgl lonisation Detector letion depth (5m bg	bentonite; 1.0m to backfilled with r, N= SPT 'N' value I).
Method/ Plant Used	Track	ked w	vindo	ow si	ample	rig	<u> </u>	Field Crew Bainbri	dge Brothers Limited	Logged By TWF	Checked By HJG

Project										HOLE No	
100	Swiss	Cottag	е							\ \ /\$4	
Job No CG/2	8215	Da	^{ate} 11 11	1-07-17 1-07-17	,	Ground Le	evel (m)	Co-Ordinates (m)			
Client									She	et	
Esse	ential li	ving								1 of 1	
SAMPL	ES & T	ESTS						ent			
Depth (m)	Type No	Test Result	Wate	Reducec Level	Legend	Depth (m) (Thick-		DESCRIPTION	N	nstrum	
						-	Concrete 50:	50 mix of concrete and flint g	ravel, no voids note	ed.	
						- (0.80)	[MADE GROU	IND]			
						-					
0.80	ES1				× ×	0.80	Firm brown s	ilty CLAY with occasional fine	gravel sized fragme	ents of	
0.80	PID1	1					selenite.		1		
1.00	571	119			×	+ *	1.00 - 2.00 P	por sample recovery approxin	nately 25%.		
						<u></u> }					
					×	<u>}</u>					
2 00	EC2				× *	* _	2 00 - 2 00 0	or sample recovery approvin	nately 80%		
2.00	PID2	0.8			× ×		2.00 - 3.00 P	on sample recovery approxim	nately 0070.		
2.00	SPT	N9				¥				i i i i i i i i i i i i i i i i i i i	
						*				188 188	
_						(4.20)					
3.00	SPT	N10			×	1 7	3.00 - 4.00 P	oor sample recovery approxin	nately 60%.		
					× ×	<u> </u>					
						+					
4.00	SPT	N16			×	1	4.00 - 5.00 P	oor sample recovery approxin	nately 50%.		
						1 7			,		
					××	<u></u> }					
						£					
-						5.00	(h.c				
						-	(Window sa	mple terminated at 5m)			
						-					
						-					
						-					
						-					
						-					
						[
						-					
Boring Pr	ogress	and W	/ater	Obser	vation	S	General R	emarks			
Date	Strike depth	Casing denth	Co	mment n	Time	Standing Depth	1. All depths	are measured from ground le	evel (m bgl).		
	мерин	Jopun			usureu		2. Hole back 3. ES= Enviro	tilled with airisings. nmental samples, PID= Photo	Ionisation Detecto	r, N= SPT 'N' value.	
							4. Hole term	nation due to reaching compl	letion depth (5m bg	l).	
							5. Groundwa	ter not encountered.			
 Method/						1	Field Crew		Logged Bv	Checked By	
Plant Used	Track	ked win	dow	sample	rig		Bainbri	dge Brothers Limited	TWF	HJG	
										1	

HAND AUGER LOG

Project												
100	Swiss	Cottag	þ							HULE NO		
ob No	8215	Da	nte 1	1-07-17 1-07-17	,	Ground Le	evel (m)	Co-Ordinates (m)		HP1		
Client									Shee	et		
Ess	ential li	ving								1 of 1		
SAMPL	.ES & T	ESTS	- La			1		STRATA				
Depth (m)	Type No	Test Result (N/kPa/ppn	ر Wat	Reduced Level	Legend	Depth (m) (Thick -ness)	DESCRIPTION					
).50).50	ES1 PID1	0				(0.70)	Brown grav coarse of f [MADE GR	<i>relly medium SAND. Gravel is a</i> lint and concrete. OUND]	ngular to subrounde	d fine to		
						0.70	(Hole term	ninated at 0.7m)				
Boring Pr	ogress	and W	/ater	Obser	vation	S	General	Remarks				
Date	Strike depth	Casing depth	Co	mment n	Time neasured	Standing Depth	houng spth 1. All depths are measured from ground level (m bgl). 2. Hole back filled with airisings. 3. ES= Environmental samples, PID= Photo Ionisation Detector. 4. Terminated on concrete obstruction/basement roof. 5. Groundwater not encountered.					

HAND AUGER LOG

											CG
Project											HOLE No
100 Job No CG/2	Swiss	Cotta	age Date	11 11	-07-17 -07-17	,	Ground Le	evel (m)	Co-Ordinates (m)		HP2
Client										Shee	et
Esse	ential li	ving									1 of 1
SAIVIPL	Type	ESTS Tes	st i	ater	Reduced		Depth (m)		SIRATA		
Depth (m)	No	Resu (N/kPa/p	ppm)	≤ .	Level	Legend	(Thick -ness)		DESCRIPTION		Instr
0.10 0.10 0.10	ES1 PID1 ES2 PID2	0					- (0.20) 0.20 - -	International Content of the second of the s	and brown, slightly clayey slig and brown, slightly clayey slig r to subrounded fine to mediu UND]	htly gravelly fine SA	ND. Gravel
- 0.40 - -	FIDZ	0					- (0.80) - -				
							-	(Hole termin	nated at 1m)		
Boring Pr Date	Ogress Strike depth	and Casii dep	Wat	cer Com	Obser	vation Time heasured	S Standing Depth	General F 1. All depths 2. Installatio to 0.8m bgl airisings. 3. ES= Enviro 4. Terminate 5. Groundwa	Remarks are measured from ground le n details; 0.0. to 0.4m bgl plair slotted pipe backfilled with gra pomental samples, PID= Photo ed on concrete obstruction. ater not encountered.	vel (m bgl). n pipe backfilled wit vel; 0.8m to 1m bac Ionisation Detector	h bentonite; 0.4m kfilled with
Method/ Plant Used		Hand	d exc	ava	ated		<u> </u>	Field Crew Bainbri	idge Brothers Limited	Logged By TWF	Checked By HJG

HAND AUGER LOG

										CG	
Project										HOLE No	
100	Swiss (Cottage								HD3	
Job No CG/2	8215	Date	e 11 11	L-07-17 L-07-17	,	Ground Le	evel (m)	Co-Ordinates (m)		TIF J	
Client		·							Shee	et	
Esse	ntial li	ving								1 of 1	
SAMPL	ES & TI	ESTS	er					STRATA		ment	. ≡
Depth (m)	Type No	Result (N/kPa/ppm)	Wat	Reducec Level	Legend	Depth (m) (Thick -ness)		DESCRIPTION	I	Instru)/Backf
-					0	0.05	Vaving Slab.	JND]			S
-						0.20	Orange medi	ium SAND. JND]			28
-						-	Orange grave concrete. Fre [MADE GROU (Hole termin	elly medium SAND. Gravel is si quent cobbles of concrete en UND] ated at 0.2m)	ubangular fine to co countered.	arse of	
-						-					
-						-					
-						-					
-						-					
-						-					
-						-					
Poring Dr		and M/s	tor	Ohcor	Vation		Ganaral P	omarks			
Date	Strike depth	Casing depth	Cor	nment n	vation Time neasured	S Standing Depth	1. All depths 2. Hole back 3. ES= Enviro 4. Terminate 5. Groundwa	are measured from ground le filled with airisings. nmental samples. d on concrete obstruction. ter not encountered.	vel (m bgl).		
Method/ Plant Used		Hand ex	cav	ated			Field Crew Bainbri	dge Brothers Limited	Logged By TWF	Checked By HJG	

APPENDIX F

Monitoring Record

GAS MONITORING RECORD SHEET

JOB DETAILS	DB DETAILS												
Site:	100 Avenue R	oad, Swiss Cotta	ge			Job No:	CG/28215						
Date:	21/07/2017					Engineer:	CRG						
Time:	AM					Client	Essential Living						
METEOROLO	GICAL & SITE I	NFORMATION											
State of group	d:	Dry		Moist	Y	Wet							
State of ground	u.	Colm	v	Light	^	Moderate	Strong						
wind:		Califi	X	Light		Noderate		Strong					
Cloud cover:		None	X	Slight		Cloudy		Overcast					
Precipitation:		None	Х	Slight		Moderate		Heavy					
		10021-1001				Chara I		(80)	22				
Barometric pre	essure (mb):	1002 to 1001		Local press	ure system*:	steady	Air te	emperature (°C):	23				
		1			1	1	1						
	Time (c)	Flow (I/hr)		O ₂	CO ₂	CH ₄	PID	Depth to	Depth to Base (m)				
wen no.	Time (s)	Flow (I/III)	uA (PA)	(% vol. in air)	(% vol. in air)	(% vol. in air)	(ppm)	(mbgl)	Deptil to base (III)				
	0	< 0.1	0	20.1	<0.1	<0.1	11.3	**3.87	4.08				
	15	<0.1	0	18.1	4.5	<0.1							
	30	<0.1	0	17.8	4.6	<0.1							
	45	<0.1	0	17.7	4.6	<0.1							
	60	<0.1	0	17.7	4.7	<0.1							
WS3C	90	<0.1	0	17.6	4.7	<0.1							
	120	<0.1	0	17.6	4.7	<0.1							
	150	<0.1	0	17.6	4.7	<0.1							
	180	<0.1	0			<0.1							
	240	<0.1	0			<0.1							
	300	<0.1	0			<0.1							
	0	<0.1	0	10.0	<0.1	<0.1	4.0	DPV	0.00				
	15	<0.1	0	15.5	<0.1	<0.1	4.0	DKI	0.50				
	30	<0.1	0	14.7	5.5	<0.1							
	45	<0.1	0	14.7	5.5	<0.1							
	60	<0.1	0	14.6	5.5	<0.1							
HP2	90	< 0.1	0	14.5	5.6	<0.1							
	120	<0.1	0	14.6	5.6	<0.1							
	150	<0.1	0	14.5	5.6	<0.1							
	180	<0.1	0	14.4	5.6	<0.1							
	240	<0.1	0	14.4	5.7	<0.1							
	300	<0.1	0	14.4	5.7	<0.1							
	1		-	-			1	-					
		-											
L									l				
			-	-			1						
		<u> </u>											
		<u> </u>											
		1											
		1				1	1						
									L				
		1					1		1				
								<u> </u>					
		1				<u> </u>							
		1											
		ł					1		1				
		1											
I													

Notes: * With reference to the Weather Underground rolling weather archive for Swiss Cottage weather station. ** Small amount of sediment rich water in well base, insufficient amount to sample.

NR= Not recorded

APPENDIX G

Chemical Laboratory Data

Table G1. Summary of testing

Location	Depth (mbgl)	Strata	PID (ppm)	Testing suite
CGL laboratory	y results			1
Soil				
WS1	2.6	London Clay Formation	-	Full suite
WS2	1.5	London Clay Formation	-	Full suite
WS3C	1	London Clay Formation	-	Full suite
WS4	0.8	Made Ground	-	Full suite
HP1	0.5	Made Ground	-	Full suite + asbestos screen and ID
כסם	0.1	Made Ground	-	Full suite + asbestos screen and ID
TIF Z	0.4	Made Ground	-	Full suite + asbestos screen and ID
Leachate				
-	-	-	-	-
Groundwater				
-	-	-	-	
Concept labora	atory results			
Soil				
BH101	0.5	London Clay Formation	-	Full suite except cyanide, total phenols and asbestos screen and ID
BH102	0.5	Made Ground	-	Full suite except cyanide, total phenols and asbestos screen and ID
BH105	0.5	Made Ground	-	Full suite except cyanide, total phenols and asbestos screen and ID
Leachate				
-	-	-	-	-
Groundwater				
-	-	-	-	-

Notes:

1. Full suite: metals, TPH, PAH, phenol, BTEX, cyanide, sulfate, pH

Tom Fairweather Card Geotechnics Ltd 4 Godalming Business Centre Woolsack Way Godalming Surrey GU7 1XW

t: 01483 310600 f: 01483 527285

e: tomf@cgl-uk.com

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

Analytical Report Number : 17-54261

Project / Site name:	100 Swiss Cottage	Samples received on:	12/07/2017
Your job number:	CG-28215	Samples instructed on:	12/07/2017
Your order number:	4429	Analysis completed by:	21/07/2017
Report Issue Number:	1	Report issued on:	21/07/2017
Samples Analysed:	7 soil samples		

Signed:

Dr Irma Doyle Senior Account Manager For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41 -711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Project / Site name: 100 Swiss Cottage

Your Order No: 4429

Lab Sample Number			781814	781815	781816	781817	781818	
Sample Reference				WS1	HP1	HP2	HP2	WS3C
Sample Number				ES2	ES1	ES1	ES2	ES1
Depth (m)				2.60	0.50	0.10	0.40	1.00
Date Sampled				11/07/2017	11/07/2017	11/07/2017	11/07/2017	11/07/2017
Time Taken				None Supplied				
			Þ					
		융규						
Analytical Parameter	Un	ite ini	red					
(Soil Analysis)	its	t t	tus					
		ă f	io					
			-					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	N/A	NONE	21	4.1	6.1	4.5	21
Total mass of sample received	kg	0.001	NONE	1.1	1.5	1.8	2.0	1.2
			·		·		i	
Asbestos in Soil	Туре	N/A	ISO 17025	-	Not-detected	Not-detected	Not-detected	-
General Inorganics								
pH - Automated	pH Units	N/A	MCERTS	6.8	7.6	7.2	7.4	7.6
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1	< 1	< 1	< 1
Total Sulphate as SO ₄	mg/kg	50	MCERTS	15000	690	300	370	9100
Organic Matter	%	0.1	MCERTS	0.6	1.9	4.4	2.1	0.5
Total Phenols								
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Speciated PAHs								
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthylene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Phenanthrene	ma/ka	0.05	MCERTS	< 0.05	0.18	< 0.05	< 0.05	< 0.05
Anthracene	ma/ka	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	mg/kg	0.05	MCEDTS	< 0.05	0.46	< 0.05	< 0.05	< 0.05
Pyrene	mg/kg	0.05	MCEDTS	< 0.05	0.10	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	mg/kg	0.05	MCEDTS	< 0.05	0.11	< 0.05	< 0.05	< 0.05
Chrycopo	mg/kg	0.05	MCEDTC	< 0.05	0.20	< 0.05	< 0.05	< 0.05
Ciliyselle Bonzo(h)fluoranthono	mg/kg	0.05	MCEDTC	< 0.05	0.31	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthono	mg/kg	0.05	MCEDTC	< 0.05	0.32	< 0.05	< 0.05	< 0.05
Benzo(a)nureno	mg/kg	0.05	MCEDIC	< 0.05	0.23	< 0.05	< 0.05	< 0.05
Delizo(d)pyrelie	mg/kg	0.05	MCERTS	< 0.05	0.32	< 0.05	< 0.05	< 0.05
Diference how the series	mg/kg	0.05	MOSPTO	< 0.05	0.20	< 0.05	< 0.05	< 0.05
Dibenz(a,n)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Benzo(gni)perviene	mg/kg	0.05	MCERTS	< 0.05	0.28	< 0.05	< 0.05	< 0.05
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Total PAH		0.05			2.0			
Total WAC-17 PAHs	mg/kg	0.85	NONE	< 0.9	3.0	< 0.9	< 0.9	< 0.9
Heavy Metals / Metalloids								
Antimony (aqua regia extractable)	mg/kg	1	ISO 17025	2.0	1.5	1.2	< 1.0	< 1.0
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	14	8.8	5.2	6.0	15
Barium (aqua regia extractable)	mg/kg	1	MCERTS	65	34	25	39	83
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	0.35	0.28	0.60	1.3
Boron (water soluble)	mg/kg	0.2	MCERTS	4.1	1.6	0.7	1.8	1.9
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.2	MCERTS	< 1.2	< 1.2	< 1.2	< 1.2	< 1.2
Chromium (III)	mg/kg	1	NONE	52	16	8.5	18	51
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	52	16	8.6	18	52
Copper (aqua regia extractable)	mg/kg	1	MCERTS	31	16	11	12	34
Lead (aqua regia extractable)	mg/kg	1	MCERTS	16	55	26	12	15
Mercury (aqua regia extractable)	mg/kq	0.3	MCERTS	< 0.3	< 0.3	< 0.3	0.5	< 0.3
Nickel (aqua regia extractable)	mg/kq	1	MCERTS	41	9.5	6.5	10	41
Selenium (aqua regia extractable)	mg/ka	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Vanadium (agua regia extractable)	ma/ka	1	MCERTS	78	29	22	31	72
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	84	61	43	41	81

Project / Site name: 100 Swiss Cottage Your Order No: 4429

Lab Sample Number				781814	781815	781816	781817	781818
Sample Reference				WS1	HP1	HP2	HP2	WS3C
Sample Number				ES2	ES1	ES1	ES2	ES1
Depth (m)				2.60	0.50	0.10	0.40	1.00
Date Sampled				11/07/2017	11/07/2017	11/07/2017	11/07/2017	11/07/2017
Time Taken	None Supplied	None Supplied	None Supplied	None Supplied	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Monoaromatics								
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0	< 8.0	< 8.0	< 8.0
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	10	< 8.0	< 8.0	14
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	10	< 10	< 10	18
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10	< 10	< 10	< 10
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	18	< 10	< 10	< 10
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	21	< 10	< 10	< 10

Project / Site name: 100 Swiss Cottage

Your Order No: 4429

Lab Sample Number				781819	781820		
Sample Reference	WS2	WS4					
Sample Number	ES1	ES1					
Depth (m)				1.50	0.80		
Date Sampled				11/07/2017	11/07/2017		
Time Taken				None Supplied	None Supplied		
			A				
Analytical Devenation	_	det	s				
Analytical Parameter	Jnit	ied mit	edit tat				
(Soli Analysis)	i.	õ e	us				
		-	9 N				
Stone Content	%	0.1	NONE	< 0.1	< 0.1		
Moisture Content	%	N/A	NONE	21	22		
Total mass of sample received	ka	0.001	NONE	1.3	1.4		
Asbestos in Soil	Type	N/A	ISO 17025	-	-		
	.//**						
General Inorganics							
pH - Automated	pH Units	N/A	MCERTS	7.7	8.1		
Total Cyanide	mg/kg	1	MCERTS	< 1	< 1		
Total Sulphate as SO ₄	mg/kg	50	MCERTS	14000	12000		
Organic Matter	%	0.1	MCERTS	0.3	0.4		
Total Phenois							
Total Phenols (monohydric)	mg/kg	1	MCERTS	< 1.0	< 1.0		
Speciated PAHs							
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Phenanthrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Chrysene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(b)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(k)fluoranthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(a)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05		
Coronene	mg/kg	0.05	NONE	< 0.05	< 0.05		
		0.05					
Total WAC-17 PAHS	mg/kg	0.85	NONE	< 0.9	< 0.9		
Hanna Matala / Matallaida							
Antimony (agua ragia aytrastabla)	ma/lia	1	100 17025	2.4	< 1.0		
Anumony (aqua regia extractable)	mg/kg	1	150 17025 MCEDTC	2.4	17		
Arsenic (aqua regia extractable)	mg/kg	1	MCEDITC	10	70		
Bonyllium (aqua regia extractable)	mg/kg	0.06	MCEDITC	1.2	12		
Boron (water soluble)	mg/kg	0.00	MCEDTS	2.8	1.5		
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2		
Chromium (hexavalent)	ma/ka	1.2	MCEDIC	< 1 7	< 1 7		
Chromium (III)	mg/kg	1	NONE	44	57		
Chromium (agua regia extractable)	mg/kg	1	MCERTS	45	57		
Copper (agua regia extractable)	ma/ka	1	MCFRTS	31	75		
Lead (agua regia extractable)	mg/kg	1	MCERTS	15	20		
Mercury (aqua regia extractable)	ma/ka	03	MCFRTS	< 0.3	< 0.3		
Nickel (agua regia extractable)	mg/kg	1	MCERTS	39	45		
Selenium (agua regia extractable)	mg/ka	1	MCERTS	< 1.0	< 1.0		
Vanadium (agua regia extractable)	mg/ka	1	MCERTS	66	73		
Zinc (aqua regia extractable)	mg/kq	1	MCERTS	81	93		
		-	-		-	-	

Project / Site name: 100 Swiss Cottage Your Order No: 4429

Lab Sample Number				781819	781820		
Sample Reference				WS2	WS4		
Sample Number				ES1	ES1		
Depth (m)				1.50	0.80		
Date Sampled			11/07/2017	11/07/2017			
Time Taken				None Supplied	None Supplied		
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status				
Monoaromatics							
Benzene	ug/kg	1	MCERTS	< 1.0	< 1.0		
Toluene	µg/kg	1	MCERTS	< 1.0	< 1.0		
Ethylbenzene	µg/kg	1	MCERTS	< 1.0	< 1.0		
p & m-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
o-xylene	µg/kg	1	MCERTS	< 1.0	< 1.0		
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	1	MCERTS	< 1.0	< 1.0		

Petroleum Hydrocarbons

TPH-CWG - Aliphatic >EC5 - EC6	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC6 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aliphatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aliphatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aliphatic >EC16 - EC21	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic >EC21 - EC35	mg/kg	8	MCERTS	< 8.0	< 8.0		
TPH-CWG - Aliphatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC5 - EC7	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC7 - EC8	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC8 - EC10	mg/kg	0.001	MCERTS	< 0.001	< 0.001		
TPH-CWG - Aromatic >EC10 - EC12	mg/kg	1	MCERTS	< 1.0	< 1.0		
TPH-CWG - Aromatic >EC12 - EC16	mg/kg	2	MCERTS	< 2.0	< 2.0		
TPH-CWG - Aromatic >EC16 - EC21	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic >EC21 - EC35	mg/kg	10	MCERTS	< 10	< 10		
TPH-CWG - Aromatic (EC5 - EC35)	mg/kg	10	MCERTS	< 10	< 10		

Project / Site name: 100 Swiss Cottage

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
781814	WS1	ES2	2.60	Brown clay.
781815	HP1	ES1	0.50	Light brown sand with gravel.
781816	HP2	ES1	0.10	Brown sandy loam.
781817	HP2	ES2	0.40	Light brown sand with gravel.
781818	WS3C	ES1	1.00	Brown clay.
781819	WS2	ES1	1.50	Brown clay.
781820	WS4	ES1	0.80	Brown clay.

Project / Site name: 100 Swiss Cottage

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Water (PrW)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with disperion staining techniques.	In house method based on HSG 248	A001-PL	D	ISO 17025
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES.	In-house method based on Second Site Properties version 3	L038-PL	D	MCERTS
BTEX and MTBE in soil (Monoaromatics)	Determination of BTEX in soil by headspace GC- MS.	In-house method based on USEPA8260	L073B-PL	W	MCERTS
Cr (III) in soil	In-house method by calculation from total Cr and Cr VI.	In-house method by calculation	L080-PL	W	NONE
Hexavalent chromium in soil (Lower Level)	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES.	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.	L038-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically.	In-house method based on BS1377 Part 2, 1990, Chemical and Electrochemical Tests	L019-UK/PL	W	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	W	MCERTS
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	BS1377 Part 3, 1990, Chemical and Electrochemical Tests""	L009-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L099-PL	D	MCERTS
Speciated WAC-17 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	W	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	L038-PL	D	MCERTS
TPHCWG (Soil)	Determination of hexane extractable hydrocarbons in soil by GC-MS/GC-FID.	In-house method	L088/76-PL	W	MCERTS

For method numbers ending in 'UK' analysis have been carried out in our laboratory in the United Kingdom.

For method numbers ending in 'PL' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

APPENDIX H

Human Health Assessment

ASSESSMENT CRITERIA

Table H1 below sets out CGL's rationale for generic assessment criteria (GAC) adoption in order to evaluate risks posed to potential receptors at Swiss Cottage, London from identified chemical contamination. Potential receptors have been identified with reference to the Part IIA regime and associated DEFRA guidance. As with the Part IIA regime, under the planning regime all receptors (humans, controlled waters, ecology, crops/livestock and buildings) have been considered if there is the potential for them to be adversely affected by exposure to contamination. The results of the assessment for Swiss Cottage are then presented in Tables H2 to H3 of this appendix.

Table H1. Rationale for Assessment Criteria Adoption

Source / Media	CGL's Approach & Rationale
Risks to Human	Health (long-term chronic risks)
Soil contaminants	 Laboratory test results have been compared against Generic Assessment Criteria (GACs) derived inhouse by CGL using the Contaminated Land Exposure Assessment (CLEA) model and version 1.06 of the CLEA software. Where Soil Guideline Values (SGVs) have been published previously by the Environment Agency, the CGL GACs have updated these based on current exposure parameters (e.g. updated inhalation rates). The GACs have been generated assuming a sandy loam soil type and a Soil Organic Material of 1% for the Made Ground and natural soils. In the event impacts are identified on a site above the GAC level for arsenic, cadmium, chromium VI, benzene or benzo(a)pyrene, the results have been compared to the applicable Category 4 Screening Level (CASL) published by DEFRA to further assess risks. The exception to the above relates to lead. The SGV for lead has been withdrawn and the C4SL for lead is used by CGL directly as a first tier of assessment. The CGL GACs represent conservative screening criteria (set at acceptable or minimal risk) and have generally been calculated using the default parameters for the standard land use scenarios set out in the CLEA technical report and toxicological inputs in line with the requirements of Science Report SC050021/SR2 and, in the case of petroleum hydrocarbons, Science Report P5-080/TR3. Where a CGL GAC has not been derived alternative assessment criteria will be sourced from current commercially-available sources (including international standards where no suitable UK assessment criteria exists). Concentrations of cyanide above the laboratory reporting limit are assessed against a Soil Screening Value (SSV) developed by Atkins. Atkins have based this assessment criteria on acute exposure to a 0 to 6 year old child. Where the dataset is of appropriate size, assessment against the applicable GAC or C4SL is carried out at the 95th percentile of the sample t-test has been applied to c
Dissolved	 Concentrations of organic constituents detected above the laboratory reporting limit in shallow groundwater or perched water have been assessed against groundwater vapour generic assessment criteria (GAC_{GWVap}) developed by the Society of Brownfield Remediation Risk Assessment (SoBRA). These
contaminants	assess chronic risks to human health via the indoor and outdoor air inhalation pathway only. The values assume a sand soil type, a soil organic matter of 1% and a depth below ground level of 650mm.
Ground gas	Concentrations and flow rates of carbon dioxide and methane in ground gas are converted to Gas Screening Values (GSVs) in accordance with CIRIA (2007). Potential risks associated with gas chemistry are evaluated in accordance with guidance presented in CIRIA (2007), NHBC (2007), BSI (2007).

Source / Media	CGL's Approach & Rationale
Radon	Risks from the radon content of soil gas are evaluated in accordance with BRE (2011).

Table 1 (continued). Rationale for Assessment Criteria Adoption

Risks to Control	led Waters
Soil contaminants	 Results from any eluted liquids have been directly compared to Environmental Quality Standards (EQS) and Drinking Water Values (DWV) as an initial screen of water quality. These are considered to be conservative screening criteria.
Dissolved contaminants	 Results have been directly compared to Environmental Quality Standards (EQS) and Drinking Water Values (DWV) as an initial screen of water quality. These are considered to be conservative screening criteria.
Risks to Building	gs & Structures
Water supply pipes	The evaluation of water supply pipe requirements at the site has been undertaken in general accordance with guidance and criteria produced by the UK Water Industry (2011).
Sulfate & pH conditions	The evaluation of risks to buried concrete has followed the guidance and criteria produced by BRE (2005).
Risks to Vegeta	tion & Plants
Soil contaminants	 Risks to plant growth (i.e. phytotoxicity) have been assessed for specific contaminants where the limits for phytotoxic effect proposed (e.g. by BS 3882) are significantly lower than the health GAC.

Table H2. Data assessment summary - potential soil risks to human health (residential land use without homegrown produce consumption)

Determinend	GAC	C4SL	Note on SSI ²	Measured range	US ₉₅	US ₉₅ > Assessment
Determinand	SOM = 1%	(based on 6% SOM) ¹	Note on SSL ²	(mg/kg)	(mg/kg)	#- outlier detected
Antimony	*	*	-	<1 to 1.5	1.45	*
Arsenic	35	40	-	5.2 to 17	14.4	N
Barium	*	*	-	25 to 79	72.3	*
Beryllium	88	*	-	0.28 to 1.3	1.18	N
Boron (water soluble)	*	*	-	0.7 to 2.2	1.97	*
Cadmium	87	150	-	<0.2	0.2	N
Chromium (III)	3,300	*	-	8.5 to 57	50.52	N
Chromium (VI)	6.3	21	-	<1.2	1.2	N
Copper	9,400	*	-	11 to 75	69.65	N#
Lead ³	310	310	-	12 to 55	41.96	N
Mercury (inorganic)	250	*	-	<0.3 to 0.5	0.47	N#
Nickel	190	*	-	6.5 to 45	57.59	N
Selenium	600	*	-	<1	1	N
Vanadium	1,100	*	-	22 to 73	65.99	N#
Zinc	20,000	*	-	41 to 110	91.95	N
Benzene	0.88	3.3	-	<0.001	1.25	Ν
Toluene	870	*	(C)	<0.001	1	N
Ethyl benzene	520	*	(C)	<0.001	1	N
m-xylene ⁴	220	*	-	<0.001	1	N
o-xylene	230	*	-	<0.001	1	N
p-xylene	210	*	-	<0.001	1	N
Phenol⁵	2,000	*	-	<1	1	N
Cyanide ⁶	34	*	-	<1	1	N
TPH aliphatic EC5-6	80	*	-	<0.001 to <0.1	0.001	N
TPH aliphatic EC>6-8	160	*	-	<0.001 to <0.1	0.001	Ν
TPH aliphatic EC>8-10	34	*	-	<0.001 to <0.1	0.001	N
TPH aliphatic EC>10-12	5,800	*	(b)	<1	1	N
TPH aliphatic EC>12-16	6,400	*	(b)	<2	2	N
TPH aliphatic EC>16-35	130,000 [8.6]	*	(a)	<18 to 10	9.78	N#
TPH aromatic EC5-7	0.88	*	-	<0.001 to <0.1	0.12	N
TPH aromatic EC>7-8	870	*	-	<0.001 to <0.1	0.12	N
TPH aromatic EC>8-10	55	*	-	<0.001 to <0.1	0.12	N
TPH aromatic EC>10-12	290	*	-	<1	1	N
TPH aromatic EC>12-16	2,500	*	(b)	<2	2	N
TPH aromatic EC>16-21	1,900 [60]	*	(a)	<10	10	N
TPH aromatic EC>21-35	1,900 [4.8]	*	(a)	<10 to 18	17.14	N
Naphthalene	6.3	*	-	<0.05	0.05	N
Acenaphthylene	5,800	*	(c)	<0.05 to <0.1	-	N
Acenaphthene	2,500	*	(b)	<0.05 to <0.1	0.11	N
Fluorene	3,000	*	(b)	<0.05 to <0.1	0.11	N#
Phenanthrene	1,300 [17]	*	(a)	<0.05 to 0.18	-	N
Anthracene	32,000	*	(b)	<0.05 to <0.1	0.11	N
Fluoranthene	4,900 [19]	*	(a)	<0.05 to 0.46	0.42	N
Pyrene	3,700 [2.2]	*	(a)	<0.05 to 0.41	0.37	N#
Benzo(a)anthracene	18 [1.7]	*	(a)	<0.05 to 0.28	0.26	N#
Chrysene	220 [0.4]	*	(a)	<0.05 to 0.31	0.28	N#
Benzo(b)fluoranthene	23 [1.2]	*	(a)	<0.05 to 0.32	0.29	N#
Benzo(k)fluoranthene	23 [0.7]	*	(a)	<0.05 to 0.23	0.22	N
Benzo(a)pyrene	3.6 [0.9]	5.3	(C)	<0.05 to 0.32	0.29	N#
Indeno(1,2,3-c,d)pyrene	26 [0.06]	*	(a)	<0.05 to 0.2	0.19	N
Dibenzo(a,h)anthracene	2.2 [0.004]	*	(a)	<0.05 to <0.1	0.11	N
Benzo(g,h,i)perylene	230 [0.02]	*	(a)	<0.05 to 0.28	0.25	N#

1 *= No value currently defined.

² -= green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with CLEA Software Handbook; (c) = GAC limited to SSL.

³ Published C4SL.

⁴ Concentrations for total xylenes should be compared against m-xylene for fresh spills and to o-xylene for all other cases.
 ⁵ GAC relates to phenol (C₆H₅OH) only.

⁶ Assessment criteria for cyanide derived by Atkins based on acute exposure for a 0-6 year old child.

Determinand	GAC SOM = 1%	C4SL (based on 6% SOM) ¹	Note on SSL ²	Measured range (mg/kg)	US ₉₅ (mg/kg)	US ₉₅ > Assessment Criteria? (Y/N) #- outlier detected
Coronene	*	*	-	<0.05		*

Table H3. Data assessment summary - potential soil risks to human health (residential land use without homegrown produce consumption)

Determinand	GAC	C4SL (based on 6%	Note on SSI ²	Measured range	US ₉₅	Result > Assessment
Determinand	SOM = 1%	SOM) ¹	NOTE ON 33L	(mg/kg)	(mg/kg)	#- outlier detected
Antimony	*	*	-	<1 to 2.4	-	-
Arsenic	35	40	-	14 to 17	-	N
Barium	*	*	-	65 to 83	-	-
Beryllium	88	*	-	1.2 to 1.4	-	N
Boron (water soluble)	*	*	-	1.8 to 4.1	-	-
Cadmium	87	150	-	<0.2	-	N
Chromium (III)	3,300	*	-	44 to 52	-	N
Chromium (VI)	6.3	21	-	<1.2	-	N
Copper	9,400	*	-	31 to 70	-	N #
Lead ³	310	310	-	15 to 19	-	N #
Mercury (inorganic)	250	*	-	<0.3	-	N
Nickel	190	*	-	39 to 44	-	N
Selenium	600	*	-	<1	-	N
Vanadium	1,100	*	-	66 to 78	-	N
Zinc	20,000	*	-	81 to 87	-	N
Benzene	0.88	3.3	-	<0.001	-	N
Toluene	870	*	(C)	<0.001	-	N
Ethyl benzene	520	*	(c)	< 0.001	-	N
m-xylene ⁴	220	*	-	<0.001	-	N
o-xylene	230	*	-	<0.001	-	N
p-xylene	210	*	-	<0.001	-	N
Phenol ⁵	2,000	*	-	<1	-	N
Cyanide ⁶	34	*	-	<1	-	N
TPH aliphatic EC5-6	80	*	-	<0.001 to <0.1	-	N
TPH aliphatic EC>6-8	160	*	-	<0.001 to <0.1	-	N
TPH aliphatic EC>8-10	34	*	-	<0.001 to <0.1	-	N
TPH aliphatic EC>10-12	5,800	*	(b)	<1	-	N
TPH aliphatic EC>12-16	6,400	*	(b)	<2	-	N
TPH aliphatic EC>16-35	130,000 [8.6]	*	(a)	<8 to 14	-	N
TPH aromatic EC5-7	0.88	*	-	<0.001 to <0.1	-	N
TPH aromatic EC>7-8	870	*	-	<0.001 to <0.1	-	N
TPH aromatic EC>8-10	55	*	-	<0.001 to <0.1	-	N
TPH aromatic EC>10-12	290	*	-	<1	-	N
TPH aromatic EC>12-16	2,500	*	(b)	<2	-	N
TPH aromatic EC>16-21	1,900 [60]	*	(a)	<10	-	N
TPH aromatic EC>21-35	1,900 [4.8]	*	(a)	<10	-	N
Naphthalene	6.3	*	-	< 0.05	-	N
Acenaphthylene	5,800	*	(c)	<0.05 to <0.1	-	N
Acenaphthene	2,500	*	(b)	<0.05 to <0.1	-	N
Fluorene	3.000	*	(b)	<0.05 to <0.1	-	N
Phenanthrene	1,300 [17]	*	(a)	<0.05 to 0.18	-	N
Anthracene	32.000	*	(b)	<0.05 to <0.1	-	N
Fluoranthene	4,900 [19]	*	(a)	<0.05 to <0.1	-	N
Pyrene	3,700 [2,2]	*	(a)	<0.05 to <0.1	-	N
Benzo(a)anthracene	18 [1,7]	*	(a)	<0.05 to <0.1	-	N
Chrysene	220 [0 4]	*	(a)	<0.05	-	N
Benzo(b)fluoranthene	22 [0:1]	*	(a)	<0.05 to <0.1	-	N
Benzo(k)fluoranthene	23 [0 7]	*	(a)	<0.05 to <0.1	-	N
Benzo(a)nvrene	3 6 [0 9]	5 3	(c)	<0.05 to <0.1	-	N
Indeno(1 2 3-c d)ovrene	26 [0.06]	*	(a)	<0.05 to <0.1	-	N
Dihenzo(a h)anthracana	2 2 [0.00]	*	(a)	<0.05 to <0.1	-	N
Bonzo(a hi)porvlopo	2.2 [0.004]	*	(a)		_	N
венго(у,п,прегутепе	230 [0.02]		(a)	<0.00	-	iN

1 *= No value currently defined.

² -= green; (a) = amber i.e. GAC set to model output, [SSL provided in square brackets]; (b) = red i.e. SSL exceeded & considered to affect interpretation. GAC calculated in accordance with CLEA Software Handbook; (c) = GAC limited to SSL.

³ Published C4SL.

⁴ Concentrations for total xylenes should be compared against m-xylene for fresh spills and to o-xylene for all other cases.
 ⁵ GAC relates to phenol (C₆H₅OH) only.

⁶ Assessment criteria for cyanide derived by Atkins based on acute exposure for a 0-6 year old child.

Determinand	GAC SOM = 1%	C4SL (based on 6% SOM)1	Note on SSL ²	Measured range (mg/kg)	US ₉₅ (mg/kg)	Result > Assessment Criteria? (Y/N) #- outlier detected
Coronene	*	*	-	<0.05		

Table H4. Standard Water Supply Pipe Assessment

Test Group ¹	Testing Required?	PE threshold (mg/kg)	Metal Pipes / Barrier Pipe	Laboratory Detection Limit (mg/kg)	Testing UKAS accredited Y/N	Maximum concentration at proposed pipeline depth ² (mg/kg)	Maximum site concentration ³ (mg/kg)	Locations and depths where concentrations exceed proposed pipeline threshold.
Total VOCs	Where Preliminary Risk Assessment (PRA) has identified land potentially affected by contamination	0.5	-	-	-	-	-	-
Total BTEX & MTBE		0.1	Pass	0.001	Y	-	<0.001	-
Total SVOCs		2	Pass	-	-	-	-	-
EC5–EC10 aliphatic and aromatic hydrocarbons		2	Pass	0.01 to 0.1	Y	-	<0.001 to <0.1	-
EC10-EC16 aliphatic and aromatic hydrocarbons		10	Pass	1 to 2	Y	-	<1 to 5.3	-
EC16-EC40 aliphatic and aromatic hydrocarbons		500	Pass	8 to 10	Y	-	<8 to 18	-
Phenols		2	Pass	<1	Y	-	<1	-
Creosols and chlorinated phenols		2	-	-	-	-	-	-
Ethers		0.5	-	-	-	-	-	-
Nitrobenzene	Only where identified	0.5	-	-	-	-	-	-
Ketones		0.5	-	-	-	-	-	-
Aldehydes		0.5	-	-	-	-	-	-
Amines		Fail	-	-	-	-	-	-
Corrosive	Conductivity Redox pH	Pass	Note ⁴	-	-	-	-	-

¹ Tests Groups as per Appendix G of UKWIR Guidance.

² Water pipes are normally laid 0.75-1.35 metres below finished ground level.

³ State if liquid free product is present in soil or groundwater.

⁴ Threshold: For wrapped steel, corrosive if pH<7 and conductivity >400 µs/cm. For wrapped ductile iron corrosive if pH<5, Eh not neutral and conductivity >400 µs/cm. For copper, corrosive if pH<5 or>8 and Eh positive.

APPENDIX I

Verification Plan

100 AVENUE ROAD, SWISS COTTAGE. LONDON, NW3 3HF

Preliminary Site verification plan

Reference	Principal requirements	Remediation or	Site visit required by qualified geoenvironmental engineer	Supporting documentation
		related		
1.0 General principles	 It is proposed to develop the site for a residential end use. It is understood that buildings are to be between 5 and 24 storeys in height with retail and community use and roof terraces. The existing basement is to be deepened by approximately 1m and extended further southeast. The site remediation requirements are as follows: Asbestos survey and removal; Removal of existing tanks/substation and buried obstructions and 	Construction	 YES As detailed below 	Details of construction programme to be provided by client/contractor. - Method statements -As built records and photographs
	 borehole decommissioning, if necessary; Visual inspection of soils beneath the tanks and substation during deepening of the basement to confirm no visual evidence of contamination; Appropriate management/disposal of basement excavation arisings; Provision of growth medium in tree planters; The use of appropriate water supply pipe material and correct design of concrete; Watching brief and discovery strategy; and, Verification reporting. 	Construction		
2.0 Compliance with leglisation	The construction and remediation activities on the site will be undertaken in accordance with all current health and safety and environmental legislation.	Remediation & construction	-	-
3.0 Health and Safety requirements	This verification plan does not specifically cover health and safety requirements. This will be addressed in the Contractor's Health and Safety Plan.	Remediation & construction	-	-
4.0 Asbestos survey and	An asbestos survey and removal should be undertaken by a specialist	Construction	-	-

100 AVENUE ROAD, SWISS COTTAGE. LONDON, NW3 3HF

Preliminary Site verification plan

Reference	Principal requirements	Remediation or construction related	Site visit required by qualified geoenvironmental engineer	Supporting documentation
removal	contractor prior to demolition of the existing buildings on site.			
5.0 Removal of tanks	Visual inspection of the underlying soils should be undertaken	Remediation &	YES – should indicators of	Site visit records including
and buried obstructions	following decommissioning of the above ground storage tanks. Visual	construction	contamination be identified.	photographs
and borenole	or offactory indicators of contamination should be dealt with under			
decommissioning.	the Discovery Strategy.			Chemical test results
6.0 Waste disposal and materials management	It is understood that the existing basement is to be deepened by approximately 1m and extended further southeast. Waste is likely to be generated, although primarily natural soils. Re-use of excavated and treated Made Ground, superficial soils or crushed concrete at the site could be accomplished through waste exemptions, environmental permits, WRAP Protocol or through the Development Industry Code of Practice, depending on the material in question and quantity of material. However, any material bound for disposal to landfill will require characterisation in accordance with the Hazardous Waste Regulations 2005 and disposal in accordance with the requirements of the Landfill Regulations (2002, as amended) and the Environmental Protection (Duty of Care) Regulations, 1991. See Sections 8 and 10.5 of report for preliminary waste classification. As an alternative to landfilling, surplus soils could be sent to a soil treatment facility where impacted with hydrocarbons. Natural uncontaminated gravels and clays would be deemed to be suitable for disposal to an inert facility as listed inert wastes (EWC-17	Remediation & construction	 YES To observe remedial works and take validation samples To sample groundwater monitoring points 	Cut and fill records Duty of care records for disposal of waste, pumped groundwater and free product. Evidence of material management procedures in place for reuse of materials (i.e. permit, MMP and declaration by QP, exemption etc.) Laboratory test results
	05 04).			
7.0 Growth Medium	Clean imported topsoil/subsoil to be used within the proposed tree	Construction	No	Source certificates and pre-delivery
	planters should be from a known and reputable source and meet the			test data (to be provided by

100 AVENUE ROAD, SWISS COTTAGE. LONDON, NW3 3HF

Preliminary Site verification plan

Reference	Principal requirements	Remediation	Site visit required by qualified	Supporting documentation
		or	geoenvironmental engineer	
		construction		
		related		
	specification to be set by the landscape architect. This is anticipated to			Contractor) and on site validation
	be in accordance with BS3882, including applicable human health			testing.
	assessment criteria, which is to be demonstrated by provision of			
	source data and pre-import laboratory data of imported soil. All			Site visit records including
	imported soils should be validated on site though chemical testing.			photographs
				Layout drawings showing location of
				areas of gardens and soft
				landscaping
8.0 Services	The water supply company should be provided with copies of the	Construction	-	Confirmation of pipework material
	ground investigation report so that they can make the necessary			and acceptance of material choice
	provisions to safe guard their installations.			by water supply company.
				Installation photographs

5416-RBG-XX-XX-DN-GE-00001

Appendix C

Regeneration and Planning Development Management London Borough of Camden Town Hall Judd Street London WC1H 9JE

Tel 020 7974 4444

planning@camden.gov.uk www.camden.gov.uk/planning

Application Ref: **2017/5859/P** Please ask for: **Jonathan McClue** Telephone: 020 7974 **4908**

12 December 2017

Dear Sir/Madam

Mr Richard Evans

11th Floor 1 Angel Court

WYG

EC2R 7HJ

DECISION

Town and Country Planning Act 1990 (as amended)

London

Approval of Details Granted

Address: 100 Avenue Road London NW3 3HF

Proposal: Details of a Geoenvironmental Interpretative Report and Laboratory results calculations to discharge condition 14 (1) (land contamination survey and lab results) of planning permission 2014/1617/P dated 18/02/2016 for Demolition of existing building and redevelopment for a 24 storey building and a part 7 part 5 storey building comprising a total of 184 residential units (Class C3) and up to 1,041 sqm of flexible retail/financial or professional or café/restaurant floorspace (Classes A1/A2/A3) inclusive of part sui generis floorspace for potential new London Underground station access fronting Avenue Road and up to 1,350 sqm for community use(Class D1) with associated works including enlargement of existing basement level to contain disabled car parking spaces and cycle parking, landscaping and access improvements.

Drawing Nos: Geoenvironmental Interpretative Report - Revision 2 dated December 2017

The Council has considered your application and decided to grant approval of details.

Informatives:

1 Reasons for approving the details.

Condition 14 requires details of an intrusive land contamination survey with written laboratory results (part 1) and a remediation scheme (part 2). This submission has submitted the requirements of part 1, with the remediation scheme to be reserved for future submission (at the relevant time).

The submitted report has undertaken a data review and completed a supplementary investigation to the preliminary risk assessment and site investigation undertaken as part of the original planning submission. The supplementary investigation comprised of six window sampler boreholes and three hand dug pits to target identified potential sources of contamination and to provide additional site coverage.

The findings of the investigations indicate that measured concentrations of contaminants are below relevant screening criteria. Asbestos was not encountered. Based on the gas monitoring undertaken, one elevated concentration of carbon dioxide was recorded; however, the gas risk assessment has concluded that the concentrations recorded in this borehole are not representative of typical maximum concentrations beneath the site. Therefore, gas protection measures are not required.

Based on investigations to date, remediation/mitigation measures include removal of existing tanks and substation, asbestos survey and appropriate mitigation works by a specialist contractor, the correct design of concrete, provision of a growth medium in tree planters, and a watching brief and discovery strategy.

The Council's Contamination Officer has reviewed the submitted details, and confirms that the condition wording has been fully satisfied and that the condition 14(1) can therefore be discharged. Condition 14 (2) cannot be discharged until the verification report has been submitted.

One objection was received prior to making this decision and was duly considered. No material matters were raised in relation to the details being considered. The site's planning history and relevant appeal decisions were taken into account when coming to this decision.

The original permission was granted when the Local Development Framework was the relevant local policy document. Therefore, the details need to be assessed in accordance with policy CS5 of the London Borough of Camden Local Development Framework Core Strategy and policy DP26 of the London Borough of Camden Local Development Framework Development Policies. It is considered that the proposed details are in accordance with policies CS5 and DP26. The Camden Local Plan was adopted on 03/07/2017 with policy A1 being the relevant policy under the new plan. The details also conform to this replacement policy. As such, the proposed details are in general accordance with the relevant policies and can be formally discharged.

2 The applicant is advised that conditions 3, 5, 6, 9, 14 (2), 15 (partial for eastern boundary mitigation only), 16, 17, 18, 19, 22, 23, 25, 26, 29, and 30 of planning permission 2014/1617/P dated 18/02/2016 remain outstanding and must be

2017/5859/P

approved before the relevant stage of the development.

In dealing with the application, the Council has sought to work with the applicant in a positive and proactive way in accordance with paragraphs 186 and 187 of the National Planning Policy Framework.

You can find advice about your rights of appeal at:

http://www.planningportal.gov.uk/planning/appeals/guidance/guidancecontent

Yours faithfully

favid T. Joyce

David Joyce Director of Regeneration and Planning