

Project Name:	Kabannas, St. Pancras Hostel, 79-81 Euston Road, London
Project No:	3091
Date:	14.02.25

<u>Kabannas, St. Pancras Hostel, London: Cooling Hierarchy Compliance</u> <u>Statement</u>

This statement has been prepared in support of proposals for the installation of a new HVRF Air Conditioning System at 79-81 Euston Road, London, NW1 2QE.

The HVRF system is being proposed as part of the refurbishment works involving the replacement of an existing Versatemp air conditioning units which is currently redundant. The acoustic and indoor air quality requirements for this property does not allow for natural/ passive ventilation in meeting the cooling demands for the building.

1. Cooling Hierarchy

The cooling hierarchy as described in the London Plan requirements are expressed in this section below

1.1 London Plan

Policy SI4 – Managing Heat Risk

Development proposals should minimise adverse impacts on the urban heat island through design, layout, orientation, materials and the incorporation of green infrastructure.

Major development proposals should demonstrate through an energy strategy how they will reduce the potential for internal overheating and reliance on air conditioning systems in accordance with the following hierarchy;

Reduce the amount of heat entering a building through orientation, shading, high albedo materials, fenestration, insulation and the provision of green infrastructure.

Minimise internal heat generation through energy efficient design.

- Manage the heat within the building through exposed internal thermal mass and high ceilings Provide passive ventilation.
- Provide mechanical ventilation.
- *Provide active cooling systems.*

The policy requires that passive ventilation should be prioritised, taking into account external noise and air quality in determining the most appropriate solution. The increased use of air conditioning systems is not desirable as these have significant

energy requirements and, under conventional operation, expel hot air, thereby adding to the urban heat island effect. If active cooling systems, such as air conditioning systems, are unavoidable, these should be designed to reuse the waste heat they produce.

Camden Council

The Local Plan states that:

- Active cooling (air conditioning) will only be permitted where its need is demonstrated and the steps in the cooling hierarchy are followed (Local Plan policy CC2).
- Development is expected to reduce overheating risk through following the steps in the cooling hierarchy. All new development should submit a statement demonstrating how the cooling hierarchy has been followed (Local Plan policy CC2).
- All developments should seek opportunities to make a positive contribution to green space provision or greening.

Cooling hierarchy

All developments should follow the cooling hierarchy outlined below, to reduce the risk of overheating and subsequent reliance on active cooling:

- 1.0 Minimise internal heat generation through energy efficient design, considering the following:
 - Layout and uses: locate any spaces that need to be kept cool or that generate heat on cooler sides of developments.
 - Reducing heat gains e.g. including low energy lighting.
 - Seal/ insulate heat generating processes.
 - Reduce the distance heat needs to travel and insulate pipework.
 - Design layouts to promote natural ventilation e.g. shallow floor plans and high floor to ceiling heights.
 - Consider evaporation cooling which cools air through the evaporation of water.
 - Consider 'free cooling' or 'night cooling', which uses the cooling capacity of ambient air to directly cool the space.

2.0 Reduce the amount of heat entering a building in summer

- Consider the angle of the sun and optimum daylight and solar gain balance
- Orientate and recess windows and openings to avoid excessive solar gain.
- Consider low g-values and the proportion, size and location of windows
- Make use of showing from other buildings
- Include adequate insulation
- Design in shading: e.g. include internal courtyards, large shade providing trees and vegetation, balconies, louvres internal or external blinds, and shutters
- Make use of the albedo effect (use of light coloured or reflective materials to reflect the sun's rays)
- Include green infrastructure e.g. green wall, green/ blue roofs and landscaping, to regulate temperature
- Reduce the amount of heat entering a building in summer

3.0 Manage the heat within the building through exposed internal thermal mass and high ceiling

4.0 Passive Ventilation

- Natural Ventilation, openable windows, the stack effect system
- Design Layouts to promote natural ventilation e.g. shallow floor plans and high floor to ceiling heights
- Consider evaporation cooling which cools air through the evaporation of water
- Consider free cooling or night cooling which uses the cooling capacity of the ambient air to directly cool the space
- 5.0 Mechanical Ventilation
 - Ensure the most efficient system is possible
 - Consider mechanical ventilation with heat recovery

6.0 Active cooling:

- Ensuring they are the lowest carbon options
- Ground Source Heat Pumps and Air Source Heat Pumps can be used in reverse to provide cooling to buildings
- Water based cooling system also reduce the need for air conditioning by running cold water through pipes in the floor and/ or ceiling to cool the air

79-81 Euston Road Design Compliance

The objective of this section is to demonstrate compliance with the proposed works for new plant equipment at Euston Road with the policies presented above. The work relates to the upgrade of the heating and cooling system via a HVRF Air Conditioning Solution.

The HVRF system consists of outdoor units located at roof level, which are connected by refrigeration pipes to a Hybrid Branch Controller (HBC). The indoor units are then connected to the HBC by water pipes. Heat exchange takes place between the water and refrigerant in the HBC, so that water can be used to heat and cool internal air as opposed to refrigerant. The system incorporates heat recovery during periods of simultaneous heating and cooling and smart control to facilitate high efficiencies through the use of variable water/ refrigerant temperatures

Improvements to the building fabric have also been carried out which have been detailed in the table below and will help to minimize the heat gain within the building.

Fabric Set			Existing Building	Material Alteration
BUILDING FABRIC				
Air Perm. @50Pa		m3/h·m2	10	8
External Wall	IES		3002 External Wall (0.70)	3002 External Wall (0.30)
	U-value	W/m2·K	0.7	0.3
Flat Roof	IES		3002 Flat Roof (0.35)	3002 Flat Roof (0.18)
	U-value	W/m2·K	0.35	0.18
Floors	IES		3002 Ground Floor (0.70)	3002 Ground Floor (0.70)
	U-value	W/m2·K	0.7	0.7
External Window	IES		3002 External Window (1.60)	3002 External Window (1.60)
	U-value	W/m2·K	1.6	1.6
Door	IES		3002 Door (1.60)	3002 Door (1.60)
	U-value	W/m2·K	1.6	1.6

Cooling Hierarchy – Design Principles

The proposed works either adopts base build design principles or includes the proposed design that complies with the cooling hierarchy as summarised in the table below

Cooling Hierarchy	Base Build Design	Proposed Design
Energy Efficient Design	The base build design is	Low Energy LED lighting
	the conversion from a	will be used to reduce
	hotel into a hostel. This	heat gains in the space.
	has repurposed the space	
	and saved significant	Improved fabric U-values
	embodied carbon in	will be used to reduce
	comparison with a new	heat gains in the space.
	build, however, means	
	that there wasn't an	Rationalise routing of
	opportunity to alter	domestic hot water
	massing or form to suit	pipework to mitigate heat
	natural ventilation	gains in the space
Summer Overheating	Building geometry	Replacement windows
	provide self-shading to	specification to reduce
	reduce solar gains.	solar heat gains and
	E C	overheating risk within
		the building.
Thermal Mass	Building Construction in-	Exposing elements to
	situ reinforced concrete	thermal mass reduces
		peak cooling load and
		improves thermal comfort
Passive Ventilation	Building Location in	Passive ventilation not
	terms of noise and air	included in proposed
	quality means natural	design due to noise and
	ventilation has not been	air quality concerns
	included in the base build	
	design	
Mechanical Ventilation	The base build ventilation	Highly efficient air
	is provided with supply	handling unit with heat
	and extract Air Handling	recovery and low energy
	Unit with no heat	fans.
A stime Carli	recovery	Duran 1 1
Active Cooling	The existing building	Proposed design will use
	cooling system is	a highly efficient HVRF
	provided by Versatemp	Air Conditioning System
	A/C system. This system is currently redundant.	that incorporates heat
	is currently redundant.	recovery during periods
		of simultaneous heating
		and cooling and smart

control to facilitate high efficiencies through the
use of variable water/
refrigerant temperatures

Cooling Solution

As passive cooling wasn't found to be viable due to existing building form, acoustic and air quality concerns the proposed design is for cooling provided by a HVRF Air Conditioning system. The size of this system has been reduced due to the efficiency measure detailed in the cooling hierarchy response.

Energy Modelling

An energy model of the development was developed and used to analyse and optimise the base build design. The model has been developed to reflect the proposed layouts and M&E systems

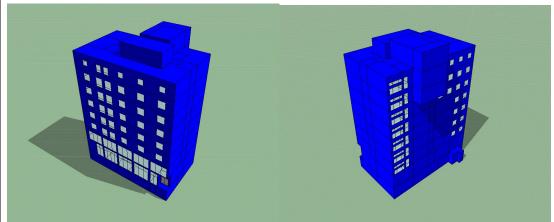


Figure 1: IES Model snapshot

The key energy modelling results are as follows;

- Existing Base Building System 56.87 kgCO2/m²/yr
- Proposed Building System 45.06 kgCO2/m²/yr

Measure			Existing Building	Proposed Building
CARBON				
CO2e	Elec	tCO2/yr	24.44	17.98
	Gas	tCO2/yr	115.12	92.60
	Biomass	tCO2/yr	0.00	0.00
	TOTAL	tCO2/yr	139.56	110.59
CO2e Saving	Elec	tCO2/yr	N/A	6.46
	Gas	tCO2/yr	NA	22.52
	Biomass	tCO2/yr	NA	0.00
	TOTAL	tCO2/yr	N/A	28.98
		%	N/A	20.76%
CARBON INTENSITY			_	
CO2e Intensity	Elec	kgCO2/m2/yr	9.96	7.33
	Gas	kgCO2/m2/yr	46.91	37.73
	Biomass	kgCO2/m2/yr	0.00	0.00
	TOTAL	kgCO2/m2/yr	56.87	45.06
CO2e Intensity Svg	Elec	kgCO2/m2/yr	N/A	2.63
	Gas	kgCO2/m2/yr	NA	9.18
	Biomass	kgCO2/m2/yr	NA	0.00
	TOTAL	kgCO2/m2/yr	N/A	11.81
		%	N/A	20.76%

Compared to the existing base gas boiler and Versatemp air conditioning system the proposed HVRF air conditioning system provide a significant reduction in the Buildings CO₂ emission rate as detailed above.

Conclusion

The Cooling Hierarchy has been fully considered and where feasible appropriate passive measure have been implemented to reduce the cooling demand before consideration has been given to energy efficient air conditioning.

Given the location of the building and in order to maintain adequate comfort levels, acoustics and indoor air quality, all the spaces within the building are intended to be comforted cooled via the proposed HVRF air conditioning system.