Pell Frischmann		Page 2
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Mirro
Date 06/08/2021 14:10	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Diamage
Innovyze	Network 2020.1	•

Network Design Table for Storm

PN	Length (m)	Fall	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	32.000	0.547	58.5	0.420	5.00	0.0	0.600	0	450	Pipe/Conduit	a
S1.001	74.000	0.060	1233.3	0.420	0.00	0.0	0.600	0		Pipe/Conduit	ð
S1.002	54.000	0.130	415.4	0.420	0.00		0.600	0		Pipe/Conduit	ð
S2.000	88.000	0.440	200.0	0.420	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S2.001	36.000	0.030	1200.0	0.420	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
S2.002	20.000	0.030	666.7	0.420	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
S1.003	15.000	0.490	30.6	0.420	0.00	0.0	0.600	0	600	Pipe/Conduit	a
S1.004	38.000	0.200	190.0	0.420	0.00	0.0	0.600	0		Pipe/Conduit	0 0
S1.005	3.000	0.490	6.1	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	ð
s3.000	30.000	0.310	96.8	0.254	5.00	0.0	0.600	0	150	Pipe/Conduit	ð
S3.001	79.000	0.420	188.1	0.254	0.00	0.0	0.600	0	225	Pipe/Conduit	ā
S3.002	14.000	0.380	36.8	0.254	0.00	0.0	0.600	0	300	Pipe/Conduit	0 0
S4.000	45.000	0.920	48.9	0.254	5.00	0.0	0.600	0	225	Pipe/Conduit	0
S5.000	45.000	0.760	59.2	0.254	5.00	0.0	0.600	0	225	Pipe/Conduit	0
s3.003	23.000	0.070	328.6	0.254	0.00	0.0	0.600	0	375	Pipe/Conduit	ð
S3.004	5.000	1.500	3.3	0.254	0.00	0.0	0.600	0	375	Pipe/Conduit	ð

Network Results Table

PN	Rain (mm/hr)	T.C.	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (1/s)		Add Flow (1/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
S1.000	0.00	5.20	47.000	0.420	0.0	0.0	0.0	2.66	423.4	0.0
S1.001	0.00	7.16	46.450	0.840	0.0	0.0	0.0	0.63	136.2	0.0
S1.002	0.00	7.98	46.390	1.260	0.0	0.0	0.0	1.09	236.5	0.0
S2.000	0.00	6.15	46.760	0.420	0.0	0.0	0.0	1.28	141.1	0.0
S2.001	0.00	7.19	46.320	0.840	0.0	0.0	0.0	0.58	92.0	0.0
S2.002	0.00	7.61	46.290	1.260	0.0	0.0	0.0	0.78	124.0	0.0
S1.003	0.00	8.04	46.260	2.940	0.0	0.0	0.0	4.41	1247.5	0.0
S1.004	0.00	8.40	45.770	3.360	0.0	0.0	0.0	1.76	498.6	0.0
S1.005	0.00	8.41	45.570	3.360	0.0	0.0	0.0	9.88	2794.1	0.0
s3.000	0.00		48.070	0.254	0.0	0.0	0.0	1.02	18.1	0.0
S3.001	0.00	6.88	47.760	0.508	0.0	0.0	0.0	0.95	37.8	0.0
S3.002	0.00	6.97	47.340	0.762	0.0	0.0	0.0	2.60	183.7	0.0
\$4.000	0.00	5.40	47.880	0.254	0.0	0.0	0.0	1.87	74.5	0.0
S5.000	0.00	5.44	47.720	0.254	0.0	0.0	0.0	1.70	67.7	0.0
S3.003	0.00	7.35	46.960	1.524	0.0	0.0	0.0	0.99	109.8	0.0
S3.004	0.00	7.36	46.890	1.778	0.0	0.0	0.0	9.98	1102.5	0.0
				©1982-2	2020 Innov	vze				
				_	_	4				

Pell Frischmann	Page 3	
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Micro
Date 06/08/2021 14:10	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	niailiade
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Design

S1.006	2.000	0.004	500.0	0.000	0.00	0.0 0.600	0	600	Pipe/Conduit	€
S1.007	20.000	0.080	250.0	0.000	0.00	0.0 0.600	0	1500	Pipe/Conduit	- -

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.006	0.00	8.44	45.080	5.138	0.0	0.0	0.0	1.08	306.0	0.0
S1.007	0.00	8.56	44.670	5.138	0.0	0.0	0.0	2.71	4786.2	0.0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model			FEH
Return Period (years)			2
FEH Rainfall Version			1999
Site Location	GB 526100	184450 TQ 2	6100 84450
C (1km)			-0.025
D1 (1km)			0.330
D2 (1km)			0.277
D3 (1km)			0.234
E (1km)			0.332
F (1km)			2.519
Summer Storms			Yes
Winter Storms			Yes
Cv (Summer)			0.750
Cv (Winter)			0.840
Storm Duration (mins)			30

©1982-2020 Innovyze

Pell Frischmann		Page 4
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Micro
Date 06/08/2021 14:10	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Diamage
Innovyze	Network 2020.1	

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	526100	184450	TQ	26100 84450
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.277
D3 (1km)					0.234
E (1km)					0.332
F (1km)					2.519
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 100 Climate Change (%)

PN	US/MH Name	\$	Storm		Climate Change		t (X) narge	First Flo	t (Y) ood	First (Z) Overflow	Overflow Act.
S1.000	S1	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S1.001	S2	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S1.002	s3	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S2.000	S4	30	Winter	100	+40%	100/15	Summer	100/15	Summer		
S2.001	S5	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S2.002	S6	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S1.003	S4	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S1.004	S5	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S1.005	S6	15	Summer	100	+40%	100/15	Summer				
s3.000	S10	60	Winter	100	+40%	100/15	Summer	100/15	Summer		
s3.001	S11	30	Winter	100	+40%	100/15	Summer	100/15	Summer		
s3.002	S12	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S4.000	S13	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
S5.000	S14	15	Winter	100	+40%	100/15	Summer	100/15	Summer		
					©1982-	2020 I	nnovyz	ze			

Pell Frischmann		Page 5
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Micro
Date 06/08/2021 14:10	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Dialilade
Innovyze	Network 2020.1	

PN	US/MH Name	Water Level (m)	-		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status
S1.000	S1	48.544	1.094	496.354	0.99			362.6	FLOOD
S1.001	S2	49.072	2.097	51.903	2.55			356.4	FLOOD
S1.002	s3	49.309	2.394	119.256	1.67			355.1	FLOOD
S2.000	S4	49.477	2.342	217.268	1.88			254.0	FLOOD
S2.001	S5	49.559	2.789	98.576	5.77			435.0	FLOOD
S2.002	S6	49.521	2.781	91.352	6.22			483.6	FLOOD
S1.003	S4	49.355	2.495	44.727	1.06			746.3	FLOOD
S1.004	S5	49.185	2.815	0.000	2.10			885.8	FLOOD RISK
S1.005	S6	48.383	2.213	0.000	1.26			885.9	SURCHARGED
s3.000	S10	49.423	1.203	122.559	2.13			36.9	FLOOD
s3.001	S11	49.365	1.380	104.744	2.04			75.0	FLOOD
s3.002	S12	49.281	1.641	112.650	1.43			218.2	FLOOD
S4.000	S13	49.520	1.415	79.530	1.36			97.0	FLOOD
S5.000	S14	49.434	1.489	84.132	1.46			94.5	FLOOD

	US/MH	Level
PN	Name	Exceeded
S1.000	S1	9
S1.001	S2	4
S1.002	s3	5
S2.000	S4	7
S2.001	S5	5
S2.002	S6	5
S1.003	S4	3
S1.004	S5	
S1.005	S6	
s3.000	S10	13
s3.001	S11	9
S3.002	S12	6
S4.000	S13	7
S5.000	S14	7

Pell Frischmann					
5 Manchester Square	Finchley Road				
London	Existing Surface Water				
W1U 3PD	Discharge Rates	Micco			
Date 06/08/2021 14:10	Designed by RH	Drainage			
File Existing Network.MDX	Checked by RH	Dialilade			
Innovyze	Network 2020.1				

	US/MH		Return	${\tt Climate}$	First (X)	First (Y)	First (Z)	Overflow
PN	Name	Storm	Period	Change	Surcharge	Flood	Overflow	Act.
~~ ^^	~10	45	100	. 400	100/15 ~	100/15 ~		
s3.003	S13	15 Winter	100	+40%	100/15 Summer	100/15 Summer		
S3.004	S14	15 Summer	100	+40%	100/15 Summer			
S1.006	s7	15 Summer	100	+40%	100/15 Summer			
S1.007	S8	15 Winter	100	+40%				

	US/MH		Surcharged Depth			Overflow	Half Drain Time	Pipe Flow		
PN	Name	(m)	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	
s3.003	S13	49.316	1.981	15.870	3.93			369.7	FLOOD	
S3.004	S14	49.040	1.775	0.000	1.01			484.8	FLOOD RISK	
S1.006	s7	47.558	1.878	0.000	5.87			1367.3	SURCHARGED	
S1.007	S8	45.447	-0.723	0.000	0.52			1368.3	OK	

PN		Level Exceeded
s3.003	s13	2
S3.004	S14	
S1.006	S7	
S1.007	S8	

Pell Frischmann					
5 Manchester Square	Finchley Road				
London	Existing Surface Water				
W1U 3PD	Discharge Rates	Micro			
Date 06/08/2021 14:08	Designed by RH	Drainage			
File Existing Network.MDX	Checked by RH	Dialilade			
Innovyze	Network 2020.1	1			

STORM SEWER DESIGN by the Modified Rational Method

Design Criteria for Storm

Pipe Sizes STANDARD Manhole Sizes STANDARD

FEH Rainfall Model

	110 40 2
Return Period (years)	2
FEH Rainfall Version	1999
Site Location	GB 526100 184450 TQ 26100 84450
C (1km)	-0.025
D1 (1km)	0.330
D2 (1km)	0.277
D3 (1km)	0.234
E (1km)	0.332
F (1km)	2.519
Maximum Rainfall (mm/hr)	0
Maximum Time of Concentration (mins)	30
Foul Sewage (1/s/ha)	0.000
Volumetric Runoff Coeff.	0.750
PIMP (%)	100
Add Flow / Climate Change (%)	0
Minimum Backdrop Height (m)	0.000
Maximum Backdrop Height (m)	0.000
Min Design Depth for Optimisation (m)	0.000
Min Vel for Auto Design only (m/s)	1.00
Min Slope for Optimisation (1:X)	500
1 1	

Designed with Level Soffits

Time Area Diagram for Storm

Time	Area	Time	Area	Time	Area
(mins)	(ha)	(mins)	(ha)	Time (mins)	(ha)
0-4	2.877	4-8	2.198	8-12	0.063

Total Area Contributing (ha) = 5.138

Total Pipe Volume $(m^3) = 114.498$

Network Design Table for Storm

PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design

Network Results Table

PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s)

©1982-2020 Innovyze

Pell Frischmann		Page 2
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Mirro
Date 06/08/2021 14:08	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Diamage
Innovyze	Network 2020.1	•

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E.	Base Flow (1/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
S1.000	32.000	0.547	58.5	0.420	5.00	0.0	0.600	0	450	Pipe/Conduit	a
S1.001	74.000	0.060	1233.3	0.420	0.00	0.0	0.600	0	525	Pipe/Conduit	ð
S1.002	54.000	0.130	415.4	0.420	0.00	0.0	0.600	0	525	Pipe/Conduit	ð
s2.000	88.000	0.440	200.0	0.420	5.00	0.0	0.600	0	375	Pipe/Conduit	ð
S2.001	36.000	0.030	1200.0	0.420	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
S2.002	20.000	0.030	666.7	0.420	0.00	0.0	0.600	0	450	Pipe/Conduit	ð
S1.003	15.000		30.6	0.420	0.00		0.600	0		Pipe/Conduit	0 0
S1.004	38.000	0.200	190.0	0.420	0.00	0.0	0.600	0	600	Pipe/Conduit	ð
S1.005	3.000	0.490	6.1	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit	0
s3.000	30.000		96.8	0.254	5.00		0.600	0		Pipe/Conduit	ð
S3.001	79.000	0.420	188.1	0.254	0.00	0.0	0.600	0		Pipe/Conduit	ð
s3.002	14.000	0.380	36.8	0.254	0.00	0.0	0.600	0	300	Pipe/Conduit	0 0
S4.000	45.000	0.920	48.9	0.254	5.00	0.0	0.600	0	225	Pipe/Conduit	0
s5.000	45.000	0.760	59.2	0.254	5.00	0.0	0.600	0	225	Pipe/Conduit	0
s3.003	23.000	0.070	328.6	0.254	0.00	0.0	0.600	0	375	Pipe/Conduit	ð
s3.004	5.000	1.500	3.3	0.254	0.00	0.0	0.600	0	375	Pipe/Conduit	ð

Network Results Table

PN	Rain	T.C.	•	Σ I.Area	Σ Base		Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.000	0.00	5.20	47.000	0.420	0.0	0.0	0.0	2.66	423.4	0.0
S1.001	0.00	7.16	46.450	0.840	0.0	0.0	0.0	0.63	136.2	0.0
S1.002	0.00	7.98	46.390	1.260	0.0	0.0	0.0	1.09	236.5	0.0
S2.000	0.00	6.15	46.760	0.420	0.0	0.0	0.0	1.28	141.1	0.0
S2.001	0.00	7.19	46.320	0.840	0.0	0.0	0.0	0.58	92.0	0.0
S2.002	0.00	7.61	46.290	1.260	0.0	0.0	0.0	0.78	124.0	0.0
s1.003	0.00	8.04	46.260	2.940	0.0	0.0	0.0	4.41	1247.5	0.0
S1.004	0.00	8.40	45.770	3.360	0.0	0.0	0.0	1.76	498.6	0.0
S1.005	0.00	8.41	45.570	3.360	0.0	0.0	0.0	9.88	2794.1	0.0
s3.000	0.00	5.49	48.070	0.254	0.0	0.0	0.0	1.02	18.1	0.0
S3.001	0.00	6.88	47.760	0.508	0.0	0.0	0.0	0.95	37.8	0.0
S3.002	0.00	6.97	47.340	0.762	0.0	0.0	0.0	2.60	183.7	0.0
S4.000	0.00	5.40	47.880	0.254	0.0	0.0	0.0	1.87	74.5	0.0
S5.000	0.00	5.44	47.720	0.254	0.0	0.0	0.0	1.70	67.7	0.0
s3.003	0.00	7.35	46.960	1.524	0.0	0.0	0.0	0.99	109.8	0.0
S3.004	0.00	7.36	46.890	1.778	0.0	0.0	0.0	9.98	1102.5	0.0
				©1982-2	2020 Innov	yze				

Pell Frischmann	Page 3	
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Micro
Date 06/08/2021 14:08	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	niamade
Innovyze	Network 2020.1	

Network Design Table for Storm

PN	Length	Fall	Slope	I.Area	T.E.	Base	k	HYD	DIA	Section	Type	Auto
	(m)	(m)	(1:X)	(ha)	(mins)	Flow (1/s)	(mm)	SECT	(mm)			Design

S1.006	2.000	0.004	500.0	0.000	0.00	0.0	0.600	0	600	Pipe/Conduit
S1.007	20.000	0.080	250.0	0.000	0.00	0.0	0.600	0	1500	Pipe/Conduit

Network Results Table

PN	Rain	T.C.	US/IL	Σ I.Area	Σ Base	Foul	Add Flow	Vel	Cap	Flow
	(mm/hr)	(mins)	(m)	(ha)	Flow (1/s)	(1/s)	(1/s)	(m/s)	(1/s)	(1/s)
S1.006	0.00	8.44	45.080	5.138	0.0	0.0	0.0	1.08	306.0	0.0
S1.007	0.00	8.56	44.670	5.138	0.0	0.0	0.0	2.71	4786.2	0.0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coefficient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (1/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (1/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model		FEH
Return Period (years)		2
FEH Rainfall Version		1999
Site Location	GB 52610	00 184450 TQ 26100 84450
C (1km)		-0.025
D1 (1km)		0.330
D2 (1km)		0.277
D3 (1km)		0.234
E (1km)		0.332
F (1km)		2.519
Summer Storms		Yes
Winter Storms		Yes
Cv (Summer)		0.750
Cv (Winter)		0.840
Storm Duration (mins)		30

Pell Frischmann		Page 4
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Micro
Date 06/08/2021 14:08	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Diamage
Innovyze	Network 2020.1	<u> </u>

Simulation Criteria

Areal Reduction Factor 1.000 Additional Flow - % of Total Flow 0.000 Hot Start (mins) 0 MADD Factor * $10m^3$ /ha Storage 2.000 Hot Start Level (mm) 0 Inlet Coefficient 0.800 Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (l/per/day) 0.000 Foul Sewage per hectare (l/s) 0.000

Number of Input Hydrographs 0 Number of Storage Structures 0 Number of Online Controls 0 Number of Time/Area Diagrams 0 Number of Offline Controls 0 Number of Real Time Controls 0

Synthetic Rainfall Details

Rainfall Model					FEH
FEH Rainfall Version					1999
Site Location	GB	526100	184450	TQ	26100 84450
C (1km)					-0.025
D1 (1km)					0.330
D2 (1km)					0.277
D3 (1km)					0.234
E (1km)					0.332
F (1km)					2.519
Cv (Summer)					0.750
Cv (Winter)					0.840

Margin for Flood Risk Warning (mm) 300.0 DVD Status OFF
Analysis Timestep Fine Inertia Status OFF
DTS Status ON

Profile(s) Summer and Winter Duration(s) (mins) 15, 30, 60, 120, 240, 360, 480, 960, 1440 Return Period(s) (years) 100 Climate Change (%)

PN	US/MH Name	:	Storm		Climate Change		t (X) narge			First (Z) Overflow	Overflow Act.
S1.000	S1	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S1.001	S2	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S1.002	s3	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S2.000	S4	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S2.001	S5	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S2.002	S6	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S1.003	S4	15	Summer	100	+0%	100/15	Summer	100/15	Summer		
S1.004	S5	15	Summer	100	+0%	100/15	Summer				
S1.005	S6	15	Summer	100	+0%	100/15	Summer				
s3.000	S10	30	Winter	100	+0%	100/15	Summer	100/15	Summer		
S3.001	S11	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S3.002	S12	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S4.000	S13	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
S5.000	S14	15	Winter	100	+0%	100/15	Summer	100/15	Summer		
					©1982-	·2020 I	nnovyz	ze			

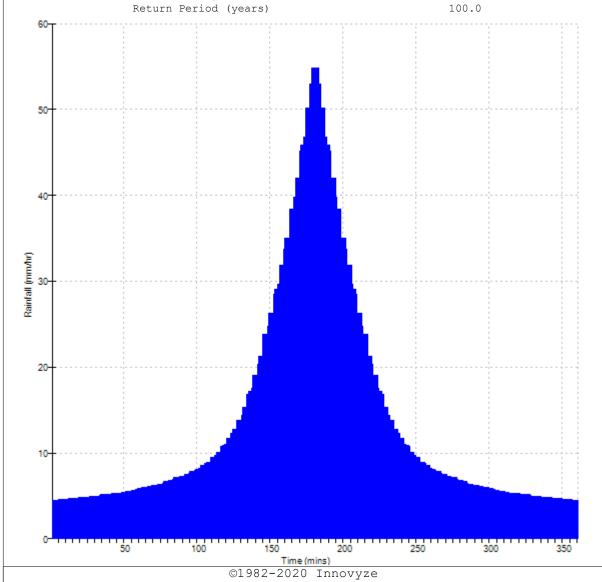
Pell Frischmann		Page 5
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Mirro
Date 06/08/2021 14:08	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Dialilade
Innovyze	Network 2020.1	

PN	US/MH Name	Water Level (m)	-		Flow / Cap.	Overflow (1/s)	Half Drain Time (mins)	Pipe Flow (1/s)	Status
S1.000	S1	48.366	0.916	317.189	1.00			365.6	FLOOD
S1.001	S2	49.031	2.056	11.389	2.49			348.3	FLOOD
S1.002	s3	49.251	2.336	61.716	1.62			345.0	FLOOD
S2.000	S4	49.399	2.264	141.212	1.97			265.8	FLOOD
S2.001	S5	49.509	2.739	49.400	4.80			361.7	FLOOD
S2.002	S6	49.469	2.729	39.034	5.61			436.4	FLOOD
S1.003	S4	49.317	2.457	8.305	1.01			705.1	FLOOD
S1.004	S5	49.088	2.718	0.000	2.06			869.5	FLOOD RISK
S1.005	S6	48.292	2.122	0.000	1.25			873.6	SURCHARGED
s3.000	S10	49.378	1.158	77.968	2.11			36.5	FLOOD
s3.001	S11	49.325	1.340	64.591	2.02			74.4	FLOOD
s3.002	S12	49.222	1.582	52.274	1.42			216.0	FLOOD
S4.000	S13	49.483	1.378	42.577	1.36			96.8	FLOOD
S5.000	S14	49.396	1.451	45.613	1.46			94.2	FLOOD

	US/MH	Level
PN	Name	Exceeded
S1.000	S1	7
S1.001	S2	2
S1.002	s3	4
S2.000	S4	6
S2.001	S5	5
S2.002	S6	4
S1.003	S4	2
S1.004	S5	
S1.005	S6	
s3.000	S10	9
s3.001	S11	7
S3.002	S12	5
S4.000	S13	6
S5.000	S14	6

Pell Frischmann		Page 6
5 Manchester Square	Finchley Road	
London	Existing Surface Water	
W1U 3PD	Discharge Rates	Micro
Date 06/08/2021 14:08	Designed by RH	Drainage
File Existing Network.MDX	Checked by RH	Dialilade
Innovyze	Network 2020.1	

PN	US/MH Name	Storm		Climate Change	First (X) Surcharge	First (Y) Flood	First (Z) Overflow	Overflow Act.	Water Level (m)
s3.003	S13	15 Summer	100	+0%	100/15 Summer				49.278
S3.004	S14	15 Summer	100	+0%	100/15 Summer				48.897
S1.006	s7	15 Summer	100	+0%	100/15 Summer				47.510
S1.007	S8	15 Summer	100	+0%					45.438


		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(mins)	(1/s)	Status	Exceeded
s3.003	S13	1.943	0.000	3.86			362.9	FLOOD RISK	
S3.004	S14	1.632	0.000	0.96			459.2	SURCHARGED	
S1.006	s7	1.830	0.000	5.74			1338.9	SURCHARGED	
S1.007	S8	-0.732	0.000	0.51			1337.7	OK	

Pell Frischmann		Page 1
5 Manchester Square		
London		
W1U 3PD		Micco
Date 19/10/2021 16:54	Designed by HJabbar	Drainage
File	Checked by	Dialilads
Innovyze	Network 2020.1	

Rainfall profile

Storm duration (mins) 360

FEH Data FEH Rainfall Version 1999 Site Location GB 526100 184450 TQ 26100 84450 C (1km) -0.025 D1 (1km) 0.330 D2 (1km) 0.277 D3 (1km) 0.234 E (1km) 0.332 F (1km) 2.519 Peak Intensity (mm/hr) 54.916 14.009 Ave. Intensity (mm/hr)

Appendix D Existing and Proposed Surface Water Drainage Layout and Proposed SuDS

Proposed Drainage Strategy Report Appendix E Thames Water Sewer Records

Pell Frischmann Consultants Ltd 4-5 4-5Manchester Square LONDON W1U 3PD

Search address supplied O2 Management Centre

O2 Centre

255

Finchley Road

London NW3 6LU

Your reference O2 Finchley

Our reference ALS/ALS Standard/2018_3767718

Search date 4 April 2018

Keeping you up-to-date

Knowledge of features below the surface is essential in every development. The benefits of this not only include ensuring due diligence and avoiding risk, but also being able to ascertain the feasibility for any commercial or residential project.

An asset location search provides information on the location of known Thames Water clean and/or wastewater assets, including details of pipe sizes, direction of flow and depth. Please note that information on cover and invert levels will only be provided where the data is available.

Thames Water Utilities Ltd Property Searches, PO Box 3189, Slough SL1 4WW DX 151280 Slough 13

searches@thameswater.co.uk www.thameswater-propertysearches.co.uk

Search address supplied: O2 Management Centre, O2 Centre, 255, Finchley Road, London, NW3 6LU

Dear Sir / Madam

An Asset Location Search is recommended when undertaking a site development. It is essential to obtain information on the size and location of clean water and sewerage assets to safeguard against expensive damage and allow cost-effective service design.

The following records were searched in compiling this report: - the map of public sewers & the map of waterworks. Thames Water Utilities Ltd (TWUL) holds all of these.

This searchprovides maps showing the position, size of Thames Water assets close to the proposed development and also manhole cover and invert levels, where available.

Please note that none of the charges made for this report relate to the provision of Ordnance Survey mapping information. The replies contained in this letter are given following inspection of the public service records available to this company. No responsibility can be accepted for any error or omission in the replies.

You should be aware that the information contained on these plans is current only on the day that the plans are issued. The plans should only be used for the duration of the work that is being carried out at the present time. Under no circumstances should this data be copied or transmitted to parties other than those for whom the current work is being carried out.

Thames Water do update these service plans on a regular basis and failure to observe the above conditions could lead to damage arising to new or diverted services at a later date.

Contact Us

If you have any further queries regarding this enquiry please feel free to contact a member of the team on 0845 070 9148, or use the address below:

Thames Water Utilities Ltd Property Searches PO Box 3189 Slough SL1 4WW

Email: searches@thameswater.co.uk

Web: www.thameswater-propertysearches.co.uk

Waste Water Services

Please provide a copy extract from the public sewer map.

The following quartiles have been printed as they fall within Thames' sewerage area:

TQ2584NW TQ2584NE TQ2684NW TQ2685SW

Enclosed is a map showing the approximate lines of our sewers. Our plans do not show sewer connections from individual properties or any sewers not owned by Thames Water unless specifically annotated otherwise. Records such as "private" pipework are in some cases available from the Building Control Department of the relevant Local Authority.

Where the Local Authority does not hold such plans it might be advisable to consult the property deeds for the site or contact neighbouring landowners.

This report relates only to sewerage apparatus of Thames Water Utilities Ltd, it does not disclose details of cables and or communications equipment that may be running through or around such apparatus.

The sewer level information contained in this response represents all of the level data available in our existing records. Should you require any further Information, please refer to the relevant section within the 'Further Contacts' page found later in this document.

For your guidance:

- The Company is not generally responsible for rivers, watercourses, ponds, culverts
 or highway drains. If any of these are shown on the copy extract they are shown for
 information only.
- Any private sewers or lateral drains which are indicated on the extract of the public sewer map as being subject to an agreement under Section 104 of the Water Industry Act 1991 are not an 'as constructed' record. It is recommended these details be checked with the developer.

Clean Water Services

Please provide a copy extract from the public water main map.

The following quartiles have been printed as they fall within Thames' water area:

TQ2584NW TQ2584NE TQ2684NW TQ2685SW

Enclosed is a map showing the approximate positions of our water mains and associated apparatus. Please note that records are not kept of the positions of individual domestic supplies.

For your information, there will be a pressure of at least 10m head at the outside stop valve. If you would like to know the static pressure, please contact our Customer Centre on 0800 316 9800. The Customer Centre can also arrange for a full flow and pressure test to be carried out for a fee.

For your guidance:

- Assets other than vested water mains may be shown on the plan, for information only.
- If an extract of the public water main record is enclosed, this will show known public
 water mains in the vicinity of the property. It should be possible to estimate the
 likely length and route of any private water supply pipe connecting the property to
 the public water network.

Payment for this Search

A charge will be added to your suppliers account.

Further contacts:

Waste Water queries

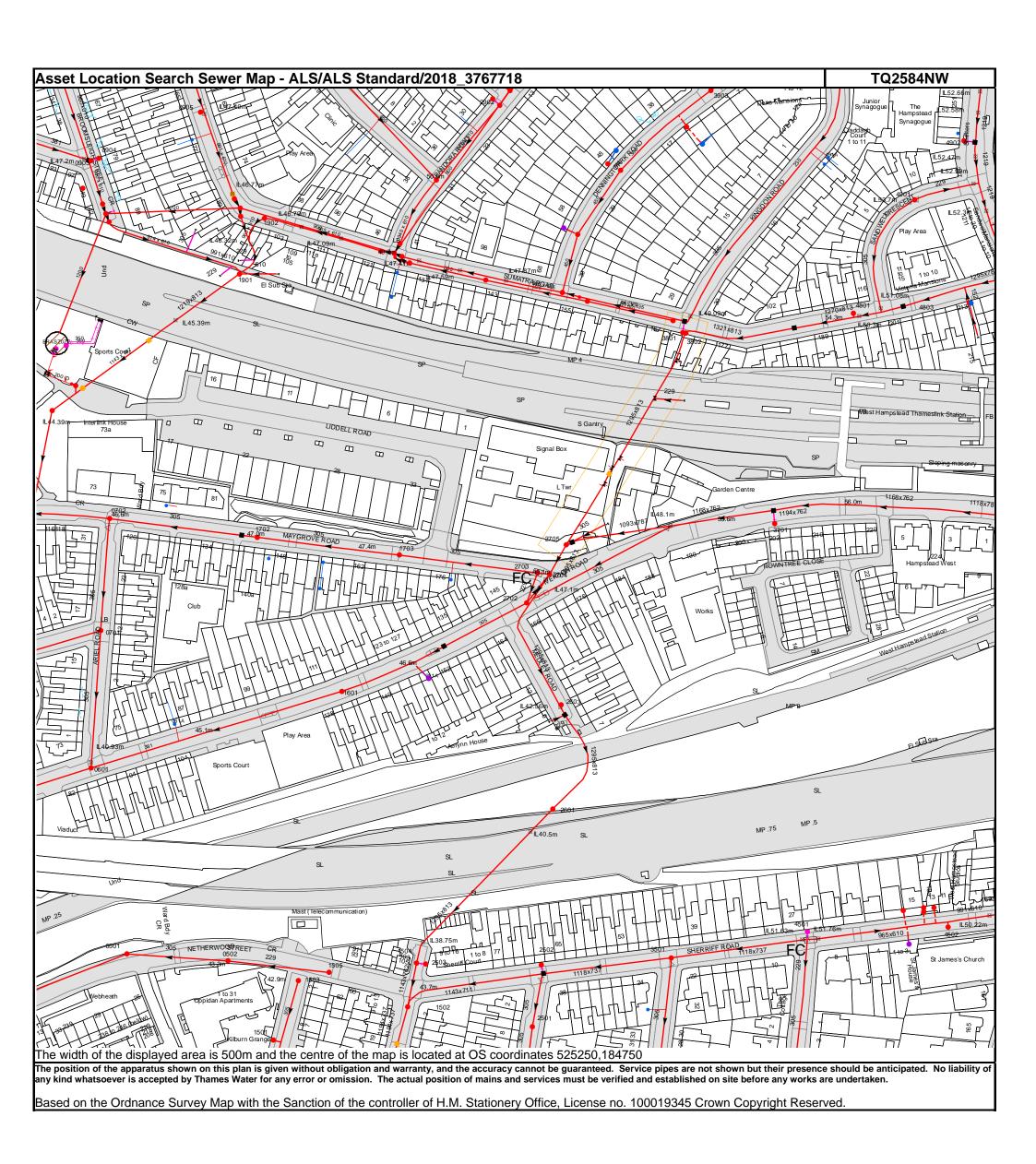
Should you require verification of the invert levels of public sewers, by site measurement, you will need to approach the relevant Thames Water Area Network Office for permission to lift the appropriate covers. This permission will usually involve you completing a TWOSA form. For further information please contact our Customer Centre on Tel: 0845 920 0800. Alternatively, a survey can be arranged, for a fee, through our Customer Centre on the above number.

If you have any questions regarding sewer connections, budget estimates, diversions, building over issues or any other questions regarding operational issues please direct them to our service desk. Which can be contacted by writing to:

Developer Services (Waste Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk


Clean Water queries

Should you require any advice concerning clean water operational issues or clean water connections, please contact:

Developer Services (Clean Water) Thames Water Clearwater Court Vastern Road Reading RG1 8DB

Tel: 0800 009 3921

Email: developer.services@thameswater.co.uk

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, DX 151280 Slough 13 T 0845 070 9148 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4801	54.75	n/a
4803 48AD	n/a n/a	n/a n/a
4901	57.68	n/a
4501	55.34	n/a
4504	n/a	n/a
451A	n/a	n/a
4505 4507	n/a n/a	n/a n/a
4506	n/a	n/a
4502	n/a	n/a
1501	n/a	n/a
2501 351B	n/a n/a	n/a n/a
1502	n/a	n/a
1503	n/a	n/a
1505	n/a	n/a
2502	n/a	n/a
2503 1504	n/a 44.05	n/a 38.58
3501	51.18	47.27
2601	51.08	40.97
2603	48.77	n/a
1601	45.83	43.23
261A 2702	n/a 48.31	n/a 45.26
271A	n/a	n/a
2704	48.99	45.02
2703	48.72	45.94
171A 1703	n/a 47 44	n/a 44 84
1703 2705	47.44 50.27	44.81 45.44
191A	49.87	40.28
191D	50	46.57
1702	46.98	43.68
1902 191B	49.87 49.76	46.59 47.32
181A	n/a	n/a
191F	49.7	43.21
1911	n/a	n/a
191E	49.79	47.46
191G 191C	49.68 49.65	47.38 47.49
291D	50.75	47.49
281B	50.08	47.76
281A	50.77	48.11
291E	n/a	n/a
291B 281D	51.27 n/a	48.58
281C	50.9	n/a 48.34
29BF	n/a	n/a
39CD	n/a	n/a
391A	52.11	49.57
39BJ 39CA	n/a n/a	n/a n/a
381A	51.65	48.84
3801	n/a	n/a
3802	n/a	48.02
3904	n/a	n/a
39CF 3701	n/a n/a	n/a n/a
491C	n/a n/a	n/a n/a
491A	n/a	n/a
4902	n/a	n/a
491B	n/a 54.46	n/a 51 65
3903 291A	54.46 51.92	51.65 43.88
2902	n/a	n/a
291C	51.92	48.55
09FA	n/a	n/a
091D	n/a	n/a
09EJ 0905	n/a 51.11	n/a n/a
09EI	n/a	n/a
09DJ	n/a	n/a
081E	51.9	44.96
081B 081C	51.69 51.69	n/a n/a
081D	51.69	n/a n/a
081A	51.89	44.69
09CB	n/a	n/a
0903	n/a	n/a
0904 091C	50.32 49.67	n/a 46.77
091C 09FB	49.67 n/a	46.77 n/a
09FD	n/a	n/a
091B	49.54	39.9
091A	49.39	46.66
0700	1 40 00	
0702 09FC	46.62 n/a	42.76 n/a

Manhole Reference	Manhole Cover Level	Manhole Invert Level
191H	50.18	46.69
1901	49.34	45.97
0502	n/a	n/a
0501	n/a	n/a
0601	44.64	40.85
061A	n/a	n/a
0701	45.8	42.09
171B	n/a	n/a
171C	n/a	n/a

The position of the apparatus shown on this plan is given without obligation and warranty, and the accuracy cannot be guaranteed. Service pipes are not shown but their presence should be anticipated. No liability of any kind whatsoever is accepted by Thames Water for any error or omission. The actual position of mains and services must be verified and established on site before any works are undertaken.