Project:	Jamestown Road, Camden	Job No.	: 10391371
Subject:	Technical Note to address Floo consultation	od Risks comments rais	ed during planning
Applicant:	Regal		
Prepared by:	SM	Date:	21.01.25

Introduction

The purpose of this Technical Note is to demonstrate that consideration and / or justification that the drainage strategy for the development at Jamestown Road, Camden not only is a sustainable, robust solution but also that it follows The London Plan's drainage hierarchy.

This technical note should be read in conjunction with the HDR Flood Risk and Drainage Strategy document Ref: 10391371-HDR-XX-XX-RP-C-10-0001issued with the planning application submission.

<u>Overview</u>

The site is located 33-35 Jamestown Road London NW1 7DB and 211 Arlington Road London NW1 7HD and has a total area of 0.27ha. The site can be accessed on the east side from Arlington Road.

The proposed redevelopment comprises the demolition of existing buildings and structures to facilitate the creation of a new building comprising basement, ground plus six storey building for a mix of Purpose Built Student Accommodation (Sui Generis), flexible commercial (Class E) and ground plus five Residential (Class C3) uses with ancillary plant, courtyards, access, hard and soft landscaping, cycle parking, highway works and all other works associated with the development.

The proposed site plan is included in Appendix A.

Notes/ Design Assumptions

We have set out this technical note specifically to address the individual points raised during the consultation in the same order they were presented for ease of tracking. Below each point is replicated in *italics* before being addressed by HDR immediately below each point.

1. Show that rainwater harvesting/blue roofs have been considered within the SuDS design, or justifies their exclusion.

Blue Roofs have not been included in the submitted design due to the extensive plant requirements (inc. solar panels, etc.) on the roofs, which cover the majority of the roof extents. Extensive green roofs as described in page 140 of the submitted Design and Access Statement. As advised by the architect and M&E consultation, the inclusion of Blue roofs would impact;

- Proposed roof build-up depth, which would increase (subsequently increasing the height of the buildings)
- Structure, loading implications for the structure of the building
- MEP strategy and coordination of plant rooms.

2. Provide details of the green roof with its minimum 150mm substrate for storage.

A typical detail for the green roof in included on the drainage strategy drawing in Appendix B. However it is not the intention of the green roof to store any volume of surface water run off, more to slow the flows from entering the wider network, apart from the natural absorption of rainwater and therefore reduction of stormwater runoff. That being said, the green roof will provide increased storm water mitigation, water quality improvement, and biodiversity benefits amongst other things.

3. Show that there have been further groundwater investigations undertaken to understand the risk at the site to the proposed tank and basement, with mitigation measures proposed if necessary.

The current site investigation report by Soiltechnics encountered groundwater in one borehole only, that is considered likely to be perched water within the made ground that has seeped in to the borehole. At the time of construction, specific tests will be carried out at strategic locations and depths to inform in further groundwater mitigation is required.

4. Provide the existing runoff rates.

Using the Lloyd Davies Modified Rational method, $Q=A \times R \times 2.78$, where A = area in hectares, Ris the rate of rainfall, in this case 50mm/hr and 2.78 being the rainfall coefficient, the existing run off could be considered as;

Q= 0.27 x 50 x 2.78 = 37.53 l/sec peak run off rate.

This summarises the current pre development peak run off rate on the basis the site is a brownfield unrestricted site.

As a sense check, the greenfield calculation reproduced in Appendix C summarises the QBAR rate as being 1.18l/sec, with our proposal to limit the discharge to 2.0l/sec to minimise the potential for blockages in the flow control device, we have demonstrated a significant betterment to the existing condition.

5. Demonstrate the calculations showing the greenfield, existing and proposed runoff rates.

Please refer to the response to point 4.

6. Provide the greenfield, existing and proposed runoff volumes for the 1 in 100-year 6hour storm.

Please refer to Appendix D for the requested calculations.

7. Demonstrate within calculations that the application conforms to Defra's Non-Statutory Standards for SuDS.

The proposal for this site, is to discharge surface water run off generated as a result of this development in to the existing public combined water network adjacent to the site. The guidance within the Defra documents states the peak flow and volume in to the receiving body should not exceed the greenfield development.

This development will limit the flows to as near greenfield as reasonably practicable, and attenuating the volumes with no flooding occurring on site for all storms up to and including the 1:100 year event on site, thereby ensuring this criteria is met.

All components will be designed in accordance with the regulatory body requirements to ensure the structural integrity is appropriate for the design life of the development with the connection to the sewer to be made without effecting the function or integrity of any existing structure.

8. Demonstrate in a drawing the on and off-site overland exceedance flows.

Exceedance flow routes have been added to the drainage strategy drawing reproduced in Appendix B.

9. Provide the maintenance tasks and frequencies for all drainage components proposed, including a maintenance owner.

Regal are the maintenance owner with the following requirements forming part of the official Operation and Maintenance Manual for this development for each sustainable feature on this scheme.

Maintenance schedule	Required action	Typical frequency
Regular maintenance	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, the annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually
	Remove sediment from pre-treatment structures and/or internal forebays	Annually, or as required
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually

Storage Tank

Maintenance schedule	Required action	Typical frequency
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

Green Roof

Maintenance schedule	Required action	Typical frequency
Regular inspections	Inspect all components including soil substrate, vegetation, drains, irrigation systems (if applicable), membranes and roof structure for proper operation, integrity of waterproofing and structural stability	Annually and after severe storms
	Inspect soil substrate for evidence of erosion channels and identify any sediment sources	Annually and after severe storms
	Inspect drain inlets to ensure unrestricted runoff from the drainage layer to the conveyance or roof drain system	Annually and after severe storms
	Inspect underside of roof for evidence of leakage	Annually and after severe storms
Regular maintenance	Remove debris and litter to prevent clogging of inlet drains and interference with plant growth	Six monthly and annually or as required
	During establishment (i.e. year one), replace dead plants as required	Monthly (but usually responsibility of manufacturer)
	Post establishment, replace dead plants as required (where > 5% of coverage)	Annually (in autumn)
	Remove fallen leaves and debris from deciduous plant foliage	Six monthly or as required
	Remove nuisance and invasive vegetation, including weeds	Six monthly or as required
	Mow grasses, prune shrubs and manage other planting as required- clippings should be removed and not allowed to accumulate	Six monthly or as required
Remedial actions	If erosion channels are evident, these should be stabilised with extra soil substrate similar to the original material, and sources of erosion damage should be identified and controlled	As required
	If drain inlet has settled, cracked or moved, investigate and repair as appropriate	As required

10. Show that the management of Health and Safety risks related to the SuDS design has been considered.

Best practice design for SuDS should go hand in hand with health and safety risk consideration. Designs should be carried out so that risks are reduced to acceptable levels. The items listed below form the standard design best practices set out in the SuDS Manual.

Drowning:

There are no features that have access to water, other than those professionals tasked with carrying out specific maintenance tasks for which they would be suitably trained in the health and safety aspects incumbent on the body carrying out such tasks. Therefore it can be considered the risk of drowning as a result of this design is minimal.

Slips/Falls:

This design will not increase the risk of slips, trips or falls as a result of the SuDS and drainage components installation or operation and maintenance. There are no additional hazards as part of this design.

Ill health from untreated/polluted water:

There are no components within the proposed design that increase the risk from untreated or standing water. The green roofs provide a treatment source and the finished levels and other drainage components will direct run off away from the proposed properties to gullies and channels that will keep the run off underground.

11. Demonstrate that the development has been designed to resist flooding and cope with the risk of being flooded, with proposed mitigation measures.

As mentioned previously within this technical note, the proposed drainage strategy has measures to slow down flows entering the network, restricting the flows off site in to the existing sewer network to as near to greenfield as reasonably practicable and attenuating the surface water run off volumes generated as a result of this development, therefore providing a significant betterment from the existing situation, not only ensuring flood risk is not increased as a result of this development, but improving the offsite flood risk through the measures implemented on site.

12. Provide a Flood Risk Emergency Plan.

The National Planning Policy Framework states a Flood Risk Emergency Plan (FREP) is required for planning applications for developments in flood zones 2 and 3. This proposed development is located in Flood Zone 1, and with the methods of mitigation mentioned within this technical note it is considered the risk of flooding is low and hence a FREP is not required for this planning application.

Appendix A

Appendix B

10391371 Planning Response to LLFA

-1	

NOTES:

- THIS DRAWING IS NOT TO BE SCALED. ALL DIMENSIONS ARE IN METRES UNLESS OTHERWISE STATED.
- THIS DRAWING IS BASED ON: • SITE PLAN BY 'MORRIS+COMPANY', DWG.
- 23054-MCO-XX-00-DR-A-01110-P07.
- DO NOT SCALE FROM THIS DRAWING, WORK TO DIMENSIONS OR CO-ORDINATES PROVIDED. 4. THE CONTRACTOR IS ADVISED TO CHECK THE ACCURACY OF
- DRAWING INFORMATION TO ACTUAL ON-SITE CONDITIONS. I.E. THE LOCATION, LEVELS, SIZES, CONDITION OF EXISTING SEWERS TO BE RE-USED AND/OR CONNECTED INTO.
- THE CONTRACTOR SHOULD INSTALL FINAL DRAINAGE CONNECTION PRIOR TO INSTALLING ANY UPSTREAM DRAINAGE TO AVOID POTENTIAL LEVEL ISSUES.
- REPORT CONFLICTS TO ENGINEER IMMEDIATELY. 6 THE CONTRACTOR IS RESPONSIBLE FOR PROTECTING 7
- RETAINED SERVICES AND MAKING CONTACT WITH OWNERS OF APPARATUS TO OBTAIN NECESSARY CONSENT FOR EXCAVATION, PROTECTION AND/OR DIVERTING.
- BURIED OBSTRUCTIONS ENCOUNTERED DURING EXCAVATION 8 THAT CONFLICT WITH PROPOSED WORKS SHOULD BE BROKEN OUT AND REMOVED. RESIDUAL VOIDS TO BE BACKFILLED AND COMPACTED AS PER SPECIFICATION.
- 9. SURFACE WATER NETWORK ANALYSIS IS BASED ON FSR METHOD, SIZING OF THE DRAINAGE COMPONENTS FOR 1 IN 30 YEARS WITHOUT FLOODING AND ANALYSIS FOR 1 IN 100 YRS +40% CLIMATE CHANGE.
- 11. SETTING OUT OF DOWNPOINT LOCATIONS TO BE CONFIRMED BY THE M&E DESIGNER.

KEY:

		EXISTING THAMES WATER COMBINE WATER SEWER	Đ			
SWME		PROPOSED FOUL WATER MANHOLE				
0001011		(PCC) PROPOSED CATCHPIT MANHOLE				
SWMF	I CP					
	HB	PROPOSED HYDR-BRAKE MANHOLE (PCC)				
		- PROPOSED SURFACE WATER PIPE				
R		PROPOSED ATTENUATION TANK				
þ		PROPOSED GREEN ROOF				
FWMH		PROPOSED FOUL WATER MANHOLE				
CWMF	I 🔴	PRIVATE COMBINED WATER MANHO	νLE			
·						
		PROPOSED COMBINED WATER PIPE				
		PROPOSED NON-RETURN VALVE				
		EXCEEDENCE FLOW ROUTE				
P02	EXCEEDENCE F	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED				
P02 P01	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 Description Date				
P02 P01 Rev Drawing St	EXCEEDENCE F GREEN ROOF D PRELIMINARY IS E	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 Description Date Suitability:				
P02 P01 Rev Drawing St	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREL	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 Description Date Suitability: LIMINARY S2				
P02 P01 Rev Drawing St	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREL	LOW ROUTES AND TYPICAL ETAIL ADDED SUE 03.09.24 Description Date LIMINARY Suitability: S2				
P02 P01 Rev Drawing St	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PRELI PRELI PRELI	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 SUE 03.09.24 Description Date LIMINARY Suitability: S2 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com w: www.hdrinc.com				
P02 P01 Rev Drawing St	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREI AUS REGAL LO	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 SUE 03.09.24 Description Date LIMINARY Suitability: S2 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com w: www.hdrinc.com NDON SUME				
P02 P01 Rev Drawing St	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREI REGAL LO MORRIS+C	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 Description Date LIMINARY Suitability: S2 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com W: WWW.hdrinc.com				
P02 P01 Rev Drawing St	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREI REGAL LO MORRIS+C 33-35 JAME LONDON	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 Description Date LIMINARY Suitability: S2 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com w: www.hdrinc.com NDON SOMPANY ESTOWN ROAD STOWN ROAD				
P02 P01 Rev Drawing St Client:	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREI REGAL LO MORRIS+C 33-35 JAME LONDON DRAINAGE GROUND F	LOW ROUTES AND TYPICAL ETAIL ADDED SUE O3.09.24 Description Date LIMINARY 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com W: WWW.hdrinc.com W: WWW.hdrinc.com COMPANY ESTOWN ROAD STRATEGY LOOR LEVEL				
P02 P01 Rev Client: Client: Project: Title:	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREI REGAL LO MORRIS+C 33-35 JAME LONDON DRAINAGE GROUND F	LOW ROUTES AND TYPICAL 21.01.25 SUE 03.09.24 Description Date LIMINARY Suitability: SUE 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com w: www.hdrinc.com NDON STRATEGY STRATEGY STRATEGY LOOR LEVEL 0391371				
P02 P01 Rev Client: Client: Client: Project: Title: Client: Cl	EXCEEDENCE FI GREEN ROOF DI PRELIMINARY IS atus: PREI REGAL LO MORRIS+C 33-35 JAME LONDON DRAINAGE GROUND F CT Number: 1	LOW ROUTES AND TYPICAL 21.01.25 ETAIL ADDED 03.09.24 Description Date LIMINARY Suitability: S2 240 BLACKFRIARS ROAD LONDON. SE1 8NW UNITED KINGDOM t: +44 (0) 20 7429 3333 e: info@hdrinc.com W: WWW.hdrinc.com W: WWW.hdrinc.com NDON COMPANY ESTOWN ROAD STRATEGY FLOOR LEVEL 0391371 I - DRAINAGE 1				

Appendix C

10391371 Planning Response to LLFA

Bogdan Serban

Calculated by:

Greenfield runoff rate estimation for sites

www.uksuds.com | Greenfield runoff tool

Jun 12 2024 10:18

Site Details

		onto botal	
Site name:	Jamestown	Latitude:	51.54006° N
Site location:	NW1 7DJ	Longitude:	0.14565° W
This is an estimatic criteria in line with	on of the greenfield runoff rates that Environment Agency guidance "Rainfa	are used to meet normal best practice Reference:	966953299

developments", SC030219 (2013), the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis Date: for setting consents for the drainage of surface water runoff from sites.

Runoff estimation	approach	IH124	
Site characteristic	cs		Notes
Total site area (ha): 0.28			(1) Is Q _{BAR} < 2.0 l/s/ha?
Methodology Q _{BAR} estimation method:	Calculate from S	SPR and SAAR	When Q _{BAR} is < 2.0 l/s/ha then limiting discharge rates are set at 2.0 l/s/ha.
SPR estimation method:	Calculate from S	SOIL type	
Soil characteristic	Default	Edited	(2) Are flow rates < 5.0 l/s?
SOIL type:	4	4	Where flow rates are less than 5.0 l/s consent
HOST class:	N/A	N/A	for discharge is usually set at 5.0 l/s if blockage
SPR/SPRHOST: 0.47		0.47	from vegetation and other materials is possible. Lower consent flow rates may be set where the
Hydrological characteristics	Default	Edited	blockage risk is addressed by using appropriate drainage elements.
SAAR (mm):	625	625	
Hydrological region:	6	6	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 1 year.	0.85	0.85	Where groundwater levels are low enough the
Growth curve factor 30 years:	2.3	2.3	use of soakaways to avoid discharge offsite
Growth curve factor 100 years:	3.19	3.19	surface water runoff.
Growth curve factor 200	3.74	3.74	
We use co	okies on thi	s site to e	enhance
your user e	experience		OK, I AGREE MORE INFO
By clicking th Greenfied runoff	e Accept butt rates _{Def} a	:on, you agr ault Edit	ee to us doing

Q _{BAR} (I/s):	1.18	1.18
1 in 1 year (l/s):	1.01	1.01
1 in 30 years (l/s):	2.72	2.72
1 in 100 year (l/s):	3.78	3.78
1 in 200 years (l/s):	4.43	4.43

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement , which can both be found at www.uksuds.com/terms-and-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.

We use cookies on this site to enhance your user experience

By clicking the Accept button, you agree to us doing so.

Appendix D

10391371 Planning Response to LLFA

HDR Consulting Ltd							Page 1
7th Floor							
240 Blackfriars Road	ł						
London, SE1 8NW							Micco
Date 22/01/2025 16:	1 4	Desi	igned by				
File STOPACE CALCS	SPCY	Chec	rked by		Drainage		
		Court	cao Cont		1		
тшоууге		Sour	ce con	LIOI ZUZU	• ⊥		
Summary	of Posult	s for 1(00 voar	Poturn I	Period	(+102)	
Summary	OI RESULE	5 101 10	oo year	iteeuin i	CIIOU	(1100)	-
	Half	Drain Ti	me : 669	minutes.			
Storm	Max Ma	ax M	lax	Max	Max	Max	Status
Event	Level Dep	th Infil	tration	Control E	Outflow	Volume	
	(m) (n	1) (J	L/S)	(1/S)	(1/S)	(m ³)	
15 min Summe	31.510 0.5	510	0.0	1.3	1.3	48.0	0 K
30 min Summer	31.654 0.6	554	0.0	1.3	1.3	61.5	O K
60 min Summer	31.787 0.7	87	0.0	1.3	1.3	74.1	O K
120 min Summe:	31.898 0.8	398	0.0	1.4	1.4	84.5	ОК
180 min Summe:	31.943 0.9	943	0.0	1.4	1.4	88.7	OK
240 min Summe:	31.960 0.9	960	0.0	1.4	1.4	90.3	ОК
360 min Summe:	31.965 0.9	165	0.0	1.4	1.4	90.8	O K
480 min Summe:	31.949 0.9	949	0.0	1.4	1.4	89.3	OK
600 min Summe:	31.928 0.9	928	0.0	1.4	1.4	87.3	OK
720 min Summe:	- 31.908 U.9	908	0.0	1.4	1.4	85.4	OK
960 min Summe:	1 31.868 U.8	368	0.0	1.4	1.4	81.7	OK
1440 min Summe:	2 31.796 U.7	196	0.0	1.3	1.3	/4.9	OK
2160 min Summe	2 31.700 0.7	12	0.0	1.3	1 2	63.9 57.6	OK
4320 min Summe	2 31.013 U.C	125	0.0	1.3	13	37.0	OK
4320 min Summe	231.4250.4	120 000	0.0	1.3	13	40.0	OK
7200 min Summe	$\sim 31 202 0.2$	209	0.0	13	13	10 0	OK
8640 min Summe	- 31 147 0 1	17	0.0	13	1 3	13.0	O K
10080 min Summe	~ 31 113 0 1	13	0.0	1.3	1 2	10 6	0 K
15 min Winter	31.573 0.5	573	0.0	1.3	1.3	53.9	0 K
10			0.0	1.0	2.0	00.9	0 11
	Storm	Rain	Flooded	Discharge	Time-Pe	ak	
	Event	(mm/hr)	Volume	Volume	(mins))	
			(m³)	(m³)			
1	5 min Summer	150.416	0.0	49.0		26	
3	0 min Summer	97.118	0.0	63.2		41	
6	0 min Summer	59.609	0.0	78.1		70	
12	0 min Summer	35.327	0.0	92.5	1	28	
18	0 min Summer	25.675	0.0	100.9	1	86	
24	0 min Summer	20.358	0.0	106.7	2	44	
36	0 min Summer	14.677	0.0	115.3	3	62	
48	0 min Summer	11.628	0.0	121.8	4	70	
60	0 min Summer	9.700	0.0	127.0	5	20	
72	0 min Summer	8.361	0.0	131.4	5	80	
96	0 min Summer	6.610	0.0	138.4	7	08	
144	0 min Summer	4.739	0.0	148.8	9	82	
216	0 min Summer	3.394	0.0	160.3	13	92	
288) min Summer	2.675	0.0	168.4	18	16	
432	U min Summer	1.911	0.0	180.4	25	56	
576	U min Summer	1.504	0.0	189.5	32	32	
720) min Summer	1.249	0.0	196.6	38	96	
864) min Summer	1.0/2	0.0	202.6	45	10	
1008	J MIIN SUMMER	0.942	0.0	207.6	52	40	

0.0

©1982-2020 Innovyze

15 min Winter 150.416

54.8

26

HDR Consult	ing Ltd								Page 2	2
7th Floor										
240 Blackfr	ciars Road									
London, SF	c1 8NW								Micc	
Date 22/01/	2025 16.1	1		Desi	aned by	T SIMADK	q			0
Date 22/UI/	2023 10:1			Dest	grieu D	Y OIMARN			Drain	naqu
FILE STORAG	E CALCS.S	RUX		Chec	кеа ру					
Innovyze				Sour	ce Con	trol 2020	0.1			
	Summary	of Resu	ults f	or 10	00 year	Return	Period	(+40응)	-	
	Storm	Max	Max	м	ax	Max	Max	Max	Status	
	Event	Level	Depth	Infil	tration	Control S	Outflow	Volume		
		(m)	(m)	(1	/s)	(1/s)	(l/s)	(m³)		
30	min Winter	31 735	0 735		0 0	13	13	69 1	ОК	
60	min Winter	31.886	0.886		0.0	1.4	1.4	83.3	0 K	
120	min Winter	32.015	1.015		0.0	1.5	1.5	95.5	0 K	
180	min Winter	32.070	1.070		0.0	1.5	1.5	100.6	0 K	
240	min Winter	32.094	1.094		0.0	1.5	1.5	102.9	ΟK	
360	min Winter	32.109	1.109		0.0	1.5	1.5	104.3	ОК	
480	min Winter	32.099	1.099		0.0	1.5	1.5	103.4	ОК	
600	min Winter	32.078	1.078		0.0	1.5	1.5	101.3	ОК	
720	min Winter	32.050	1.050		0.0	1.5	1.5	98.7	ОК	
960	min Winter	32.002	1.002		0.0	1.5	1.5	94.3	ОК	
1440	min Winter	31.906	0.906		0.0	1.4	1.4	85.2	ΟK	
2160	min Winter	31.768	0.768		0.0	1.3	1.3	72.2	ΟK	
2880	min Winter	31.639	0.639		0.0	1.3	1.3	60.1	ΟK	
4320	min Winter	31.357	0.357		0.0	1.3	1.3	33.6	ΟK	
5760	min Winter	31.193	0.193		0.0	1.3	1.3	18.1	ΟK	
7200	min Winter	31.116	0.116		0.0	1.2	1.2	10.9	ΟK	
8640	min Winter	31.082	0.082		0.0	1.1	1.1	7.7	ΟK	
10080	min Winter	31.070	0.070		0.0	1.0	1.0	6.6	ΟK	
		Ctorm	-		Floodod	Dicchange	. Mima-Da	- -		
		Event	- (m	m/hr)	Volume	Volume	mine re)		
		Lvenc	(11	,,	(m ³)	(m ³)	(1111)	,		
					()	()				
	30	min Wi	nter 9	7.118	0.0	70.7	7	40		
	60	min Wi	nter 5	9.609	0.0	87.4	1	68		
	120	min Wi	nter 3	5.327	0.0	103.0	6 1	L26		
	180	min Wi	nter 2	5.675	0.0	113.0	2 1	L84		
	240	min Wi	nter 2	0.358	0.0	119.5	5 2	240		
	360	min Wi	nter 1	4.677	0.0	129.2	2 3	354		
	480	min Wi	nter 1	1.628	0.0	136.5	o 4	164		
	600	min Win	nter	9.700	0.0	142.3	5 5	D / U		
	720	min Wi	nter	8.361	0.0	147.1		220 740		
	960	min Wil	iter	0.61U	0.0	155.0	J .	/48) = 0		
	1440	min Wii	nter	4./39	0.0	106.0	o 1(108 516		
	2100	min W11	uter ato∽	3.394 2.675	0.0	1/9.5	ט ב זיר ד	960 910		
	1330 1330	min Will	nter	2.0/J 1 011	0.0	100. 202 1	, 15 1 24	580		
	4320	min Wil	nter	1 501	0.0	202.	ר ∠נ ס פי	288		
	7200	min Wi	nter	1 249	0.0	212.2	- 32) 32	388		
	7200 8640	min Wi	nter	1.072	0.0	220.2		416		
	10080	min Wi	nter	0.942	0.0	232	5 51	L44		
	10000			12	0.0	272.0				
			©198	32-20	20 Inno	ovyze				

HDR Consulting	Ltd						Page 3
7th Floor							
240 Blackfriars	Road						
London, SE1 8N	1M						Micro
Date 22/01/2025	5 16:14		Designed	d by SIM	ARKS		
File STORAGE CA	ALCS.SRCX		Checked	by			Diamage
Innovyze			Source (Control	2020.1		
		-	Model Det	ails			
	Sto	rage is Or	nline Cover	Level (m	n) 34.000		
		<u>Cellula</u>	ar Storage	e Struct	ure		
		Inve	rt Level (r	n) 31.00	0 Safety Fa	actor 2.0	I.
Infi Infi	ltration Co ltration Co	efficient efficient	Base (m/h) Side (m/h)	r) 0.0000 r) 0.0000) Porc	osity 0.95	
Depth (m) Area (m²) Inf. Ar	ea (m²) De	pth (m) A	rea (m²) I	nf. Area	(m²)
0.0	00 99.	0	0.0	2.001	0.0		0.0
2.0	00 99.	0	0.0				
	Hydr	o-Brake	Ontimum	Outflow	Control		
	iiyai	<u>o brance</u>	opermum	OUCTION	CONCLOT		
		Unit	Reference	MD-SHE-C	057-2000-2	000-2000	
		Desig	yn Head (m)			2.000	
		Design	Flush-Flo™	4	Ca	2.0 lculated	
			Objective	e Minimis	se upstream	storage	
		1	Application	1		Surface	
		Dia	o Available ameter (mm)			res 57	
		Invert	: Level (m)			31.000	
Mi	nimum Outle	t Pipe Dia	ameter (mm)			75	
	suggested M	annoie Dia	ameter (mm)			1200	
		Control Po	oints	Head (m)	Flow (l/s))	
	Design	n Point (C	alculated)	2.000	2.0)	
			Flush-Flo™	0.247	1.3	3	
	Mean I	low over	Kick-Flo® Head Bange	0.506	1.1	5	
	ilean i	100 0001	neud nange		±••	, ,	
The hydrologica	l calculati	ons have b	been based	on the He	ad/Dischar	ge relatio	onship for the
Hydro-Brake® Op Hydro-Brake Opt	tımum as sp imum® be ut	ecified.	Should and on these st	other type	e of contro uting calcu	l device d lations wi	other than a
invalidated							
Depth (m) Flow		h (m) Flo	w (1/s) De	nth (m) F	'low (1/s)	Depth (m)	Flow (1/s)
	(_, 5, 560			(m/ E		()	(1,5)
0.100	1.2	1.200	1.6	3.000	2.4	7.000	3.6
0.200	1.3	1.600	1.8	4.000	2.0	8.000	3.8
0.400	1.3	1.800	1.9	4.500	2.9	8.500	3.9
0.500	1.1	2.000	2.0	5.000	3.0	9.000	4.0
0.600	1.2	2.200	2.1	5.500	3.2	9.500	4.1
U.800 1 000	1.3	2.400	2.2	6.000 6 500	3.3		
T.000	T • J	2.000	2.3	0.000	3.4		
		©19	82-2020 I	innovyze			