
Appendix E: Regulatory Correspondence

Dustin Dela Cruz

From: Sent: To: Cc: Subject: Dustin Dela Cruz 19 June 2024 11:15 'Enquiries, Unit' 'will.thistleton@a2-si.com' Site Information Request - 34a Netherhall Gardens

Good morning,

A-squared Studio Engineers Ltd (A-squared) are preparing a geo-environmental desk study report. Please can you provide the requested information (see below) held by the Environment Agency (EA) with respect to the subject site shown on the below plans if information is available. The site boundary is as shown by the red line. The site is located at 34a Netherhall Gardens, London, NW3 5TP.

The site is located at approximate National Grid Reference: 526360, 185150.

The information specifically requested is any information held by the EA on the following bullet points, either for the site itself or within 500 m of the site boundary:

(information on the distance and direction to each identified feature is also requested)

- Background groundwater and surface water quality;

- Groundwater flow direction (for the various geological units) and general hydrogeological site setting / hydrogeological parameters;

- Licenced water abstractions (surface and groundwater) and details of the geological unit each abstracts from;
- Groundwater Source Protection Zones (SPZs);
- Licenced Discharge Consents;
- Records of any pollution incidents and remediation subsequently undertaken;
- Records of any 'Special Sites' as per Part 2a (EPA 1990);
- Details of any sites under consideration for investigation as a potential 'Special Site' as per Part 2a (EPA 1990);
- Records of current or historical landfill sites or waste sites;
- Details of any lined surface watercourses;
- Details of any culverted watercourses;
- Historical land uses (specifically for the site or immediately adjacent to it rather than within 500 m, in this case); and
- Any ground investigation data for the site or immediately surrounding area.

Kind regards,

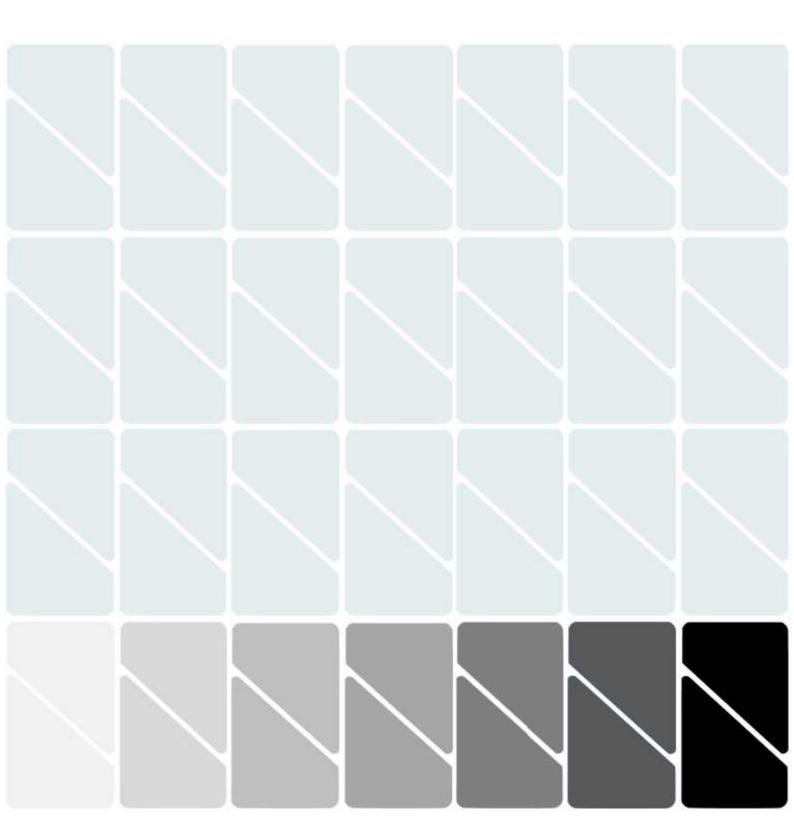
Dustin Dela Cruz

MESci (Hons) Geo-environmental Consultant N A squared Studio N A-squared 5th dio N A-squared Studio

M: 07796 162594

T: 020 7620 2868

Dustin Dela Cruz on LinkedIn


One Westminster Bridge Rd London, SE1 7XW www.a2-studio.com

A2 Site Investigation Limited

One Westminster Bridge Rd London, SE1 7XW

> 020 7021 0396 info@a2-si.com www.a2-si.com

Appendix D: Flood Risk Assessment and Drainage Strategy Report

Flood Risk Assessment and Drainage Strategy Report

for

Proposed Development

at

34a Netherhall Gardens, London NW3 5TP

Document Prepared For:

Irena Kyuchukova & Nedko Kyuchukov

c/o Studio Three Architects, First Floor, 31 Percy Street, Fitzrovia, London W1T 2DD

Reference: L2845-REP-001 July 2024 Date:

Document Record

Document Revision	Comment	Author	Reviewer	Issue Date
01	First Issue Planning	Tim Seekings	Tom Marshall MEng (Hons) CEng MIStructE	July 2024

This report has been prepared on behalf of and for the exclusive use of the Client and is subject to and issued in accordance with the agreement between the Client and PJCE. PJCE accepts no liability or responsibility whatsoever for any use of or reliance upon this report by any third party. Any copying of this report to external parties requires the permission of the Client and PJCE.

Contents

Page

1.0	Introduction	. 3
G	General	. 3
2.0	Site Parameters	. 3
S	ite Description	. 3
S	ite Topography	. 3
S	ite Geology	. 3
D	Development Proposals	. 3
3.0	Planning Policy Context	. 4
Ν	lational Planning Policy Framework and Planning Practice Guidance	. 4
	he Non-Statutory technical standards for sustainable drainage systems 2015)	. 4
Т	he London Plan and supplementary planning guidance	. 4
Lo	ondon Borough of Camden – Local Plan (July 2017)	. 5
	ondon Borough of Camden – Camden Planning Guidance Water and Tooding (March 2019)	. 5
Ρ	Policy Analysis	. 5
4.0	Flood Risk	. 6
F	Iuvial / Tidal Flooding	. 6
S	Surface Water Flooding	. 6
G	Groundwater Flooding	. 7
S	Sewer Flooding	. 7

Summary	7
5.0 Development Impact on Flooding	8
Impact on Flood Waters	8
Impact on Flood Storage Volumes	8
Access from site	8
Residual Risk	8
6.0 Existing Drainage	8
Public Sewers	8
Site Drainage	8
7.0 SuDS Hierarchy	9
8.0 Proposed Drainage	9
9.0 SuDS Maintenance, Management & Construction	10
Maintenance & Management	10
Construction Works	10
10.0 Summary / Conclusion	10

Appendices

 A. Topographical Survey B. Existing & Proposed Site Plans C. Thames Water Sewer Records D. CCTV Drainage Survey E. Existing Surface Water Flow Rates F. Drainage Strategy Plan G. MicroDrainage Calculations

PJCE

Introduction 10

General

This Flood Risk Assessment (FRA) and Drainage Strategy (DS) report has been produced by Pringuer-James 1.1.1 Consulting Engineers (PJCE) on behalf of Irena Kyuchukova & Nedko Kyuchukov to support a planning application for the development proposals at the site 34a Netherhall Gardens, London, NW3 5TP. Figure 1 below shows the location of the site.

Figure 1 – Site Location Plan

- 1.1.2 This FRA / DS had been prepared in accordance with the requirements of the National Planning Policy Framework (NPPF) and its planning practice guidance, national design standards, local surface water policies and nationally recognised SuDS Hierarchy, to demonstrate that the proposed development can be drained in an acceptable and sustainable manner and will not increase the risk of flooding to the site and surrounding area.
- 1.1.3 This report is not intended to provide the final details of the detailed drainage design for the proposed development. It rather provides essential information regarding the assessment of the potential risks of flooding from all sources and the design concepts and systematic approach used for the surface and foul water drainage strategy to meet the requirements of the relevant guidelines. The scope of this Report is as follows:
 - (i) Identification of the potential risk of flooding at the site from all sources (i.e. fluvial, tidal, pluvial, groundwater and surface water);
 - (ii) To show that flood risk from the site associated with surface water (pluvial) can be satisfactorily managed so that the site and adjacent land/ properties will not be subject to unacceptable flood risk whilst considering the potential allowance for climate change over the anticipated lifespan of the

development. Developments must be appropriately resilient to the potential impacts of climate change;

- (iii) nearby property elsewhere; and
- (iv) satisfactory and achievable sustainable disposal strategies.

Site Parameters 2.0

Site Description

2.1.1 The site is located within the London Borough of Camden, at the address 34a Netherhall Gardens, London, dwelling.

Site Topography

2.1.2 A topographical survey of the site was undertaken in February 2024 by Mobile CAD Surveying Solutions. The an average 78.5m AOD elevation. A copy of the sites topographical survey is included in Appendix A.

Site Geology

- 2.1.3 The British Geological Survey (BGS) indicates that the site sits on a sedimentary bedrock formation of Claygate this.
- 2.1.4 The nearest known borehole information to the site available on the BGS website is located approximately predominantly clay.
- 2.1.5 Groundwater was struck at 1.5m below ground level (BGL) within one of the boreholes, whereas another recorded groundwater at 11.1m BGL, indicating the high level water strike was perched groundwater.
- 2.1.6 areas as well as a Secondary A aquifer.

Development Proposals

2.1.7 The proposals will see the demolition of the existing detached property to construct a new detached dwelling with a basement. The existing and proposed site and basement plans are included in Appendix B.

To demonstrate that there will be no increased risk of flooding off site or on adjacent land and

To demonstrate that wastewater and surface water runoff from the proposed development has

NW3 5TP, it lies approximately 2.13km to the northwest of the Regent's Canal and 6.25km to the northwest of the River Thames at its nearest position. The existing site is currently occupied by a detached residential

survey shows that the site slopes from east to west, with level of approximately 76m AOD by the entrance leading on to Netherhall Gardens, rising up to around 76.5m AOD at the front of the house, rising further to around 77m AOD to the rear of the property, where a retaining wall is present, which retains unmade earth with

Member, a mixture of clay, silt and sand, there aren't any superficial deposits shown on the mapping overlaying

400m to the west of the site on Finchley Road, recorded in 1981. The borehole records show layers of

Defra Magic maps have been reviewed and show the site is not located within a source protection zone or above a designated aquifer. The maps also show the site to be located within an unproductive groundwater vulnerability zone. Despite this, the maps do show the site is in close proximity to high groundwater vulnerability

3.0 Planning Policy Context

National Planning Policy Framework and Planning Practice Guidance

- 3.1.1 The National Planning Policy Framework (NPPF), originally published in 2012, was reissued in December 2023. The NPPF includes policies on flood risk and minimising the effect of flooding. The NPPF requires local authorities to adopt proactive strategies to mitigate and adapt to climate change, taking account of flood risk, coastal change and water supply and demand considerations.
- 3.1.2 Section 14 of this document list when a Flood Risk Assessment is required:
- All development within Flood Zones 2 (Medium Risk) and 3 (High Risk); 3.1.3
- In Flood Zone 1 an assessment should accompany all proposals involving: 3.1.4
 - Sites of 1ha or more;
 - Land identified by the Environment Agency as having critical drainage problems;
 - Land identified in a Strategic Flood Risk Assessment as being at increased flood risk in future; or
 - Land that may be subject to other sources of flooding, where its development would introduce a more vulnerable use.
- 3.1.5 The NPPF goes on to state 'When determining any planning applications, local planning authorities should ensure that flood risk is not increased elsewhere. Where appropriate, applications should be supported by a site-specific flood risk assessment. Development should only be allowed in areas at risk of flooding where, in light of this assessment (and the sequential and exceptions tests, as applicable), it can be demonstrated that:
 - (a) Within the site, the most vulnerable development is located in areas of lowest flood risk, unless there are overriding reasons to prefer a different location;
 - (b) The development is appropriately flood resistant and resilient such that, in the event of a flood, it could be quickly brought back into use without significant refurbishment;
 - (c) It incorporates sustainable drainage systems, unless there is clear evidence that this would be inappropriate;
 - Any residual risk can be safely managed; and (d)
 - (e) Safe access and escape routes are included, where appropriate, as part of an agreed emergency plan'.
- 3.1.6 Within the context of a drainage strategy the most applicable requirements of National and Local Planning Policy are that development should not cause new, or exacerbate, existing flooding problems either on the proposal site, or elsewhere, and should incorporate Sustainable Drainage Systems (SuDS) in order to restrict or reduce surface water run-off.
- 3.1.7 Planning Practice Guidance has been issued to ensure the effective implementation of the planning policies set out in the NPPF on development in areas at risk of flooding. The guidance sets out an expectation that for major development SuDS will be provided unless demonstrated inappropriate but also that SuDS may not be practical for all development types and this will depend upon the nature of the proposed, development, its

location and the existing flood risk. New development will, however, only be considered appropriate if priority has been given to sustainable drainage. The Planning Practice Guidance to the NPPF outlines the following drainage hierarchy to be considered when disposing of surface water, with the aim of discharging as high up the hierarchy as possible:

- To the ground (infiltration)
- To a surface water body
- To a surface water sewer, highway drain or other drainage system
- To a combined sewer
- 3.1.8 recommended peak rainfall intensity climate change allowances.

Allowance category	Total potential	Total potential	Total potential
(applies across all	change anticipated	change anticipated	change anticipated
of England)	for the '2020s'	for the '2050s'	for the '2080s'
	(2015 to 2039)	(2040 to 2069)	(2070 to 2115)
Upper End	10%	20%	40%
Central	5%	10%	20%

Table 1 – Peak rainfall intensity climate change allowances for small and urban catchments

The Non-Statutory technical standards for sustainable drainage systems (2015)

3.1.9 In March, 2015, the Department for Environment, Food and Rural Affairs (DEFRA) published the Non-statutory be minimised and rectified before the drainage system is considered completed.

The London Plan and supplementary planning guidance

- 3.1.10 The London Plan (2021), prepared by the Mayor of London, is the statutory Spatial Development Strategy for SI 13 (Sustainable Drainage).
- 3.1.11 Policy SI 12 (Flood Risk Management) states that flood risk should "be managed in a sustainable and cost-

The Planning Practice Guidance to the NPPF also provides an overview of the expected effect of climate change and, amongst other issues, recommends contingency allowances for peak rainfall intensities to be applied to drainage modelling based upon the expected lifetime of the development. Table 1 outlines the

technical standards for sustainable drainage systems; which are intended to be used in conjunction with the NPPF and the planning practice guidance. The Non-statutory technical standards for sustainable drainage systems provide guidance for developers to ensure that flood risk, from surface water, is managed appropriately so as not to lead to an increase in flood risk on and off site. This non-statutory guidance includes advisory standards on the peak flow rate, runoff volume and flood risk within the development. These standards also set out that that pumping would not normally be acceptable unless it is not reasonably practice to provide gravity drainage, that drainage systems should be structurally sound and that any damage from its construction must

Greater London. The London Plan sets out the Mayors general policies for development and use of land within Greater London. The London Plan sets out specific polices with respect to flood risk and sustainable drainage. The most relevant of these policies to the current application are Policies SI 12 (Flood Risk Management) and

effective way in collaboration with the Environment Agency, the Lead Local Flood Authorities, developers and infrastructure providers". The policy also states that "Mayor's Regional Flood Risk Appraisal and their Strategic

Flood Risk Assessment as well as Local Flood Risk Management Strategies", should be adhered to and that "Development proposals should ensure that flood risk is minimised and mitigated, and that residual risk is addressed".

- 3.1.12 Policy SI 13 (Sustainable Drainage) states that development should utilise Sustainable Urban Drainage Systems unless demonstrated impractical. In addition Policy SI 13 indicates that all developments, making no distinction between greenfield and brownfield sites, should aim to achieve greenfield runoff rates and that drainage should aim to deliver other policy objectives such as water use efficiency and quality, bio-diversity, amenity and recreation. Policy SI 13 also states that surface water run-off should be managed as close to source as possible, with preference for green over grey features, and sets out the following drainage hierarchy for the consideration of developments within London:
 - 1. rainwater use as a resource (for example rainwater harvesting, blue roofs for irrigation)
 - 2. rainwater infiltration to ground at or close to source.
 - 3. rainwater attenuation in green infrastructure features for gradual release (for example green roofs, rain gardens)
 - 4. rainwater discharge direct to a watercourse (unless not appropriate)
 - 5. controlled rainwater discharge to a surface water sewer or drain.
 - 6. controlled rainwater discharge to a combined sewer

3.1.13 Key notes within this policy are:

- Development proposals for impermeable surfacing should normally be resisted unless they can be shown to be unavoidable, including on small surfaces such as front gardens and driveways.
- Drainage should be designed and implemented in ways that promote multiple benefits including increased water use efficiency, improved water quality, and enhanced biodiversity, urban greening, amenity and recreation.

London Borough of Camden – Local Plan (July 2017)

- 3.1.14 The local plan was adopted by The London Borough of Camden in July 2017 that will 'play an essential role in the delivery of the Camden Plan, which sets out the Council's vision for the borough, through 5 strategic objectives as set out in para 1.34. The Local Plan in particular will help deliver the objectives of creating the conditions for harnessing the benefits of economic growth, reducing inequality and securing sustainable neighbourhoods. It will also assist the delivery of other plans and strategies prepared by the Council and other service bodies, for example master plans and planning briefs.'
- 3.1.15 Policy CC3 of this document relates to flood risk and sustainable drainage, stating:
- 3.1.16 'The Council will seek to ensure that development does not increase flood risk and reduces the risk of flooding where possible. We will require development to:
 - incorporate water efficiency measures; (a)
 - (b) avoid harm to the water environment and improve water quality;
 - consider the impact of development in areas at risk of flooding (including drainage); (c)

- incorporate flood resilient measures in areas prone to flooding; (d)
- (e) greenfield run-off rate where feasible; and
- not locate vulnerable development in flood-prone areas. (f)

Where an assessment of flood risk is required, developments should consider surface water flooding in detail and groundwater flooding where applicable.

The Council will protect the borough's existing drinking water and foul water infrastructure, including the reservoirs at Barrow Hill, Hampstead Heath, Highgate and Kidderpore.'

3.1.17 Policy CC2 of this document relates to adapting to climate change, stating:

'The Council will require development to be resilient to climate change. All development should adopt appropriate climate change adaptation measures such as:

- (a)
- (b) surfaces and use of Sustainable Drainage Systems;
- (c) appropriate; and
- (d) cooling hierarchy.'

London Borough of Camden – Camden Planning Guidance Water and Flooding (March 2019)

- 3.1.18 The London Borough of Camden Planning Guidance Water and Flooding was produced in March 2019 and why certain SuDS have been ruled out and detailed information on materials and landscaping.
- 3.1.19 The Council will expect developments to achieve a greenfield surface water run-off rate where feasible once SuDS have been installed."

Policy Analysis

3.1.20 As can be seen from the planning policies and guidance, the main requirements are that developments should resilient, residual risk should be managed correctly and safe access and egress will be needed.

P1CF

utilise Sustainable Drainage Systems (SuDS) in line with the drainage hierarchy to achieve a

the protection of existing green spaces and promoting new appropriate green infrastructure;

not increasing, and wherever possible reducing, surface water runoff through increasing permeable

incorporating bio-diverse roofs, combination green and blue roofs and green walls where

measures to reduce the impact of urban and dwelling overheating, including application of the

identifies different types of SuDS that can be utilised within the borough and provides council expectations. The document states: 'A drainage report is required for all major applications, basement development, and vulnerable development in areas identified as at risk of flooding (details of what this should include can be found in paragraph 8.67 of the Local Plan). The Council will expect plans and application documents to describe how water will be managed within the development, including an explanation of the proposed SuDS, the reasons

not result in additional flood risk to the site and surrounding area. The policies stipulate that more vulnerable use classes should be located outside areas of greater flood risk, and that developments should be flood

Page 5 of 10

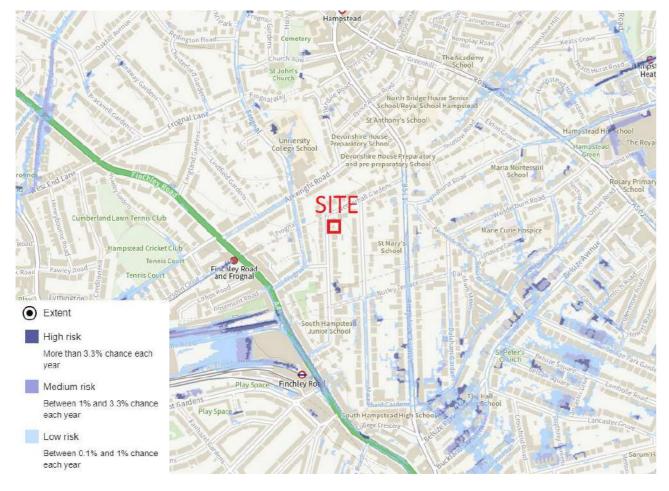
- 3.1.21 The drainage hierarchy presented by all levels of policy documents, largely follow the same concept. In line with the current London Plan the drainage hierarchy should be considered as following; re-use of water, infiltration to ground, rainwater attenuation in green infrastructure, rainwater discharge direct to a watercourse, controlled discharge to surface water sewers and finally controlled discharge to combined sewers.
- 3.1.22 The London Plan sets an expectation that, wherever possible, green infrastructure SuDS features and the multiple benefits they provide will be preferred, and that space should be made for water as part of the layout design.
- 3.1.23 There is an expectation that the Non-technical standards for sustainable drainage systems will be applied, alongside the more stringent expectations of the London Plans in regard to the greenfield runoff rate and potential betterment. Both local and national planning policy and guidance indicate that, wherever possible, developments should aim for discharge of surface water at greenfield rates regardless of development type. The different levels of policy and guidance vary as to what should be achieved in the case of brownfield sites, or where discharge at greenfield rates is not practical. It is, however, provided in Camden's advice note on surface water drainage that: 'Camden Planning Guidance 3 (CPG3) requires developments to achieve a greenfield run off rate once SuDS have been installed. Where it can be demonstrated that this is not feasible, a minimum 50% reduction in run off rate across the development is required.'
- 3.1.24 Planning guidance indicates that supporting geological studies, information on maintenance arrangements, water quality and agreement, in principle, from the sewerage undertaker for any new connections should be provided as appropriate. In addition, where infiltration SuDS are not provided this should be justified by reference to relevant site-specific information.

Flood Risk

Fluvial / Tidal Flooding

- The National Planning Policy Framework identify the Flood Zones as follows: 4.1.1
 - Zone 1: 'Low Probability' This zone comprises land assessed as having a less than a 1 in 1000 annual probability of river or sea flooding (<0.1%) in any year.
 - Zone 2: 'Medium Probability' This zone comprises land assessed as having between a 1 in 100 and 1 in 1000 annual probability of river flooding (1% - 0.1%) or between a 1 in 200 and 1 in 1000 annual probability of sea flooding (0.5%-0.1%) in any year.
 - Zone 3a: 'High Probability' This zone comprises land assessed as having a 1 in 100 or greater annual probability of river flooding (>1%) or a 1 in 200 or greater annual probability of flooding from the sea (>0.5%) in any year.
 - Zone 3b: 'The Functional Floodplain' This zone comprises land where water has to flow or be stored in times of flood. SFRAs should identify this Flood Zone (land which would flood with an annual probability of 1 in 20 (5%) or greater in any year or is designed to flood in an extreme (0.1%) flood, or at another probability to be agreed between the LPA and the Environment Agency, including water conveyance routes).
- 4.1.2 Figure 2 below has been extracted from the EA's flood map for planning and shows the various flood zone extents in the area around the site.

Figure 2 – EA Flood Map for Planning


4.1.3 As can be seen the site is shown to be located within Flood Zone 1, with the nearest areas of Flood Zone 3 near Embankment, emanating from the River Thames.

Surface Water Flooding

4.1.4 Figure 3 below has been derived from the EA flood maps and shows the risk of flooding from surface water to the site and surrounding area.

4km to the northwest of the site near Brent Cross, emanating from the River Brent and 6km to the southeast,

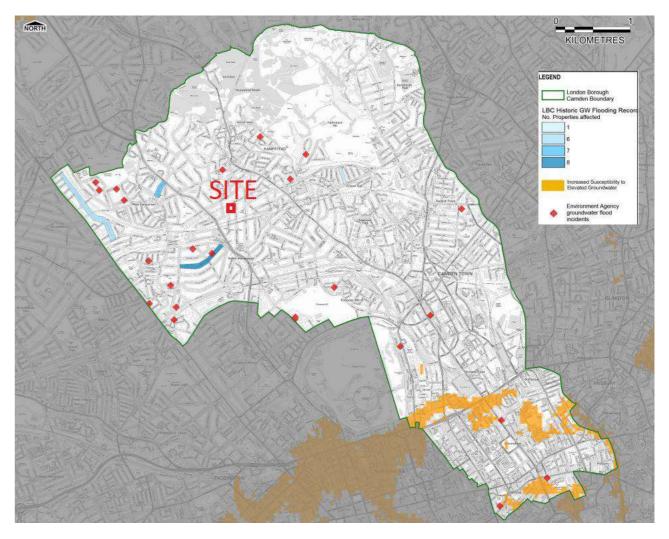


Figure 3 – EA Surface Water Flood Map

4.1.5 As can be seen, the site has a very low risk of surface water flooding as well as Netherhall Gardens and its surrounding area.

Groundwater Flooding

- 4.1.6 A Strategic Flood Risk Assessment (SFRA) was undertaken between Capita URS Infrastructure & Environment UK Ltd in July 2014 on behalf of London Borough of Camden. This document was produced to assess the risk of flooding to the Borough from a number of sources and provide key policies to the Borough in relation to drainage and flooding.
- 4.1.7 The SFRA states that groundwater flooding "usually occurs in low lying areas underlain by permeable rock and aquifers that allow groundwater to rise to the surface through the permeable subsoil following long periods of wet weather. Low lying areas may be more susceptible to groundwater flooding because the water table is usually at a much shallower depth and groundwater paths tend to travel from high to low ground."
- 4.1.8 Figure 4 below have been extracted from the London Borough of Camden (LBoC) SFRA and shows the susceptibility of groundwater flooding within the borough.

Figure 4 – LBoC SFRA Environment Agency Areas Susceptible to Groundwater Flooding

4.1.9 areas as well as a Secondary A aquifer.

Sewer Flooding

- writing in 2014) and 1 recorded incident of external sewer flooding.
- flooding in the past may no longer be at greatest risk of flooding."

Summary

4.1.12 As detailed throughout this section, all sources of flooding that may affect the site are considered low to negligible.

As can be seen, the site is shown to be in the least susceptible category of groundwater flooding. Defra Magic Mapping shows that the site is located an unproductive bedrock aquifer, an unproductive superficial aquifer and is located in a low groundwater vulnerability area however is in close proximity to high groundwater vulnerability

4.1.10 The London Borough of Camden SFRA flood maps also include sewer flood events mapping based on postcode areas, from incident recordings provided by Thames Water. The mapping shows that the NW3 5 postcode area has had no recorded incidents of internal sewer flooding in the past 10 years (from the year of

4.1.11 The SFRA notes that "TWUL target these areas for maintenance and improvements, areas that experienced

5.0 Development Impact on Flooding

Impact on Flood Waters

5.1.1 The entire site is located within Flood Zone 1 and will not impact or restrict the flow of flood waters for an event with a probability of 0.1% or greater.

Impact on Flood Storage Volumes

5.1.2 The site is located fully within Flood Zone 1 and therefore does not accommodate any flood storage volumes for all events up to and including the 0.1% AEP event. The development proposals will therefore have no impact on flood storage volumes for all events with a probability of 0.1% or greater.

Access from site

5.1.3 Access from the proposed development is achievable via Netherhall Gardens, to the west. Access to and from the site, free from fluvial/tidal flood water up to and including the 0.1% AEP event can therefore be achieved via Netherhall Road.

Residual Risk

5.1.4 The site is located in Flood Zone 1, the property and surrounding infrastructure will be free from flood waters generated by a 1 in 100-year storm event. It is therefore concluded that the residual risk for this development will be low to negligible.

6.0 Existing Drainage

Public Sewers

6.1.1 Thames Water serves the site and surrounding area for the disposal of wastewater. Asset records have been obtained from Thames Water showing the public sewer networks surrounding the site, a copy of which is included in Appendix C. The records show the surrounding area is served by combined networks only, the closest being a 991mm x 610mm sewer directly to the west of the site, along Netherhall Gardens, flowing from north to south, with some unidentified public drainage also to the south of the site, within the adjacent property No 32 site.

Site Drainage

- 6.1.2 A drainage CCTV survey of the existing property was undertaken by Happy Drains. The survey shows that the property is served by a combined water network that drains around the north of the existing dwelling and is assumed to discharge to the Thames Water combined water sewer along Netherhall Gardens via a single connection. Rainwater gullies also connect into this system, therefore, there is no separate surface water sewers. A copy of the drainage CCTV survey report is included in Appendix D, with an interactive plan of the general arrangement, viewable here: Drainify.
- 6.1.3 An assessment has been undertaken to model the existing 260m² of hardstanding area, for the 1-, 30-, and 100-year intensities, the results are shown in Table 2 below, with a copy of the calculations included in Appendix E.

Storm Intensity	Flow Rate
1-year	2.3 l/s
30-year	5.5 l/s
100-year	7.2 l/s

Table 2 – Existing Surface Water Flow Rates

6.1.4 The total site area is approximately 320m² in area, an assessment has been undertaken to review the existing greenfield runoff rate from site via the ICP SUDS method, the results are shown in Figure 5 below:

	ICPSUDS			
Micro Drainage	ICP SUDS Input (FSF	R Method)		
biomoge	Return Period (Years)	100	Partly	Jrbanis
	Area (ha)	0.032	Urban	
	SAAR (mm)	617. 0.450	Region	Regio
	Growth Curve		(None)	
	Return Period Flood			
IH 124	Return Period Flood Region	QBAR (l/s)	Q (100yrs) (l/s)	Q (1) (I/s
IH 124 ICP SUDS				
ICP SUDS	Region Region 1 Region 2	(l/s) 0.1 0.1	(I/s) 0.3 0.3	
	Region Region 1 Region 2 Region 3	(l/s) 0.1 0.1 0.1	(Vs) 0.3 0.3 0.3	
ICP SUDS	Region Region 1 Region 2 Region 3 Region 4	(l/s) 0.1 0.1 0.1 0.1	(Vs) 0.3 0.3 0.3 0.3	
ICP SUDS ADAS 345 FEH	Region Region 1 Region 2 Region 3 Region 4 Region 5	(Vs) 0.1 0.1 0.1 0.1 0.1	(Vs) 0.3 0.3 0.3 0.3 0.3 0.4	
ICP SUDS ADAS 345	Region Region 1 Region 2 Region 3 Region 4 Region 5 Region 6/Region 7	(Vs) 0.1 0.1 0.1 0.1 0.1 0.1	(Us) 0.3 0.3 0.3 0.3 0.4 0.4	
ICP SUDS ADAS 345 FEH	Region Region 1 Region 2 Region 3 Region 4 Region 5	(Vs) 0.1 0.1 0.1 0.1 0.1	(Vs) 0.3 0.3 0.3 0.3 0.3 0.4	

Figure 5 – Greenfield Runoff Rates

6.1.5 As can be seen the site is shown to have Greenfield runoff rates between 0.1l/s and 0.4l/s, depending on the return period.

			Results
d Ca	tchment (QBA	R)	QBAR rural (I/s)
	0.000		0.1
6	~		QBAR urban (I/s)
			0.1
1	0/30 yrs)	Q (100 yrs)	1
5)	Q (30 yrs) (Vs)	Q (100 yrs) (Vs)	
0.1	(l/s)	(l/s)	
0.1 0.1 0.1	(I/s) 0.2 0.2 0.2	(I/s) 0.3 0.3 0.3	
0.1 0.1 0.1 0.1	(Vs) 0.2 0.2 0.2 0.2	(Vs) 0.3 0.3 0.3 0.3	
s) 0.1 0.1 0.1 0.1 0.1	(Vs) 0.2 0.2 0.2 0.2 0.2 0.3	(Vs) 0.3 0.3 0.3 0.3 0.3 0.3	
0.1 0.1 0.1 0.1 0.1 0.1	(Vs) 0.2 0.2 0.2 0.2 0.2 0.3 0.3	(Vs) 0.3 0.3 0.3 0.3 0.3 0.4 0.4	
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	(Vs) 0.2 0.2 0.2 0.2 0.3 0.3 0.3 0.2	(Vs) 0.3 0.3 0.3 0.3 0.3 0.4 0.4 0.4 0.3	
0.1 0.1 0.1 0.1	(Vs) 0.2 0.2 0.2 0.2 0.2 0.3 0.3	(Vs) 0.3 0.3 0.3 0.3 0.3 0.4 0.4	

Page 8 of 10

7.0 SuDS Hierarchy

7.1.1 Table 3 has been produced and shows the SuDS Hierarchy in order along with comments specific to the development site and their suitability:

Discharge hierarchy	Viable	Comments
Rainwater use as a resource (for example rainwater harvesting), Blue and Green Roofs	Partially	Rainwater harvesting systems require full pipe networks in addition to drainage networks, to and from the buildings. Due to space constraints, incorporating an additional rainwater harvesting network will not be practical.
		Water butts, featuring overflow provisions, can be incorporated at down pipe locations, as a source of rainwater reuse.
Rainwater infiltration to ground at or close to source	No	The BGS shows the site sits on a bedrock formation of Claygate Member, a material unsuitable for infiltration due to its poor soakage potential. The use of infiltration as a means of surface water disposal is therefore not possible.
Rainwater discharge direct to a watercourse	No	No watercourses located within the immediate vicinity of the site to discharge to.
Controlled rainwater discharge to a surface water sewer or drain.	No	No surface water sewers located within the immediate vicinity of the site to discharge to.
Controlled rainwater discharge to a combined sewer	Yes	Utilisation of existing combined water connection to Thames Water combined sewer in Netherhall Gardens.

Table 3 – SuDS Hierarchy

Proposed Drainage 8.0

- 8.1.1 The existing site comprises of a residential dwelling with associated hard landscaping which has the potential period.
- improvement that the proposed 2.0l/s discharge rate would have from the existing scenario.

Storm	Existing Flow	Proposed Flow	Percentage
Intensity	Rate	Rate	Betterment
1-year	2.3 l/s	2.0 l/s	13%
30-year	5.5 l/s	2.0 l/s	64%
100-year	7.2 l/s	2.0 l/s	72%

Table 4 – Existing and Proposed Flow Rate Comparisons

- 8.1.3 As can be seen the proposed 2.0l/s would provide an improvement from the existing surface water flow rates, with a 72% betterment from the existing 7.2l/s generated from the 1 in 100-year event.
- 8.1.4 It is proposed that all surface water generated from the redevelopment will be stored within a new attenuation stage.
- 8.1.5 It is proposed that the runoff stored within the attenuation tank will drain via the existing private combined 2.0l/s.
- 8.1.6 Foul water will be collected through a number of pipes from the dwelling and discharged into the existing private combined sewer, via a combined connection, that will also serve the surface water.
- 8.1.7 As the proposals will feature a basement level, pumps and rising mains will be utilised, that will pump up to the respective surface water and foul runs at ground level.
- 8.1.8 A drainage strategy plan showing the indicative arrangement of the proposed foul and surface water network copy of the preliminary network calculations is included in Appendix G.

PJCE

to discharge at 7.2l/s for storm intensities of 100-years as shown on the existing drainage calculations in Appendix E. Greenfield runoff rates have been calculated between 0.11/s, and 0.41/s, depending on the return

8.1.2 Given the very low greenfield runoff rates, it is not considered that utilising greenfield runoff flow rates will be practical, as these will be prone to blockages causing greater risks of flooding, contrary to the intent of the initiative. As the site currently discharges at uncontrolled rates it is considered that a proposed surface water discharge rate of 2.0l/s would provide a betterment of the existing scenario, without reducing rates to a value that may cause maintenance issues on site due to blockages. Table 4 below shows the percentage

tank located at the front of the property. The proposed attenuation tank will be approximately 12m² x 0.8m deep to accommodate all runoff for the 100-year storm, including a 40% allowance for climate change, based on a maximum discharge rate of 2.0l/s. Due to uncertainty on the depth of the sites drainage discharge position, the attenuation could take the form of a more shallow structure, which will be confirmed at the detailed design

drainage into the existing combined Thames Water sewer in Netherhall Gardens at a restricted flow rate of

combined network on site, that will be reutilised for foul alone, before discharging into the Thames Water

is included in Appendix F. MicroDrainage was used to assist in the design of the proposed attenuation tank, a

9.0 SuDS Maintenance, Management & Construction

Maintenance & Management

- It is recommended that catchpit sumps be monitored 3 monthly, and after periods of intense rainfall and cleared 9.1.1 where required. Jetting of the pipework may be required on occasion, if and when a decrease in the performance of the drainage network has been identified. For the correct methods of maintenance on the various drainage features, refer to S.H.W., Volume 1, Series 500, Clauses 520, 521 and 526.
- 9.1.2 The following maintenance regime for tanks should be adopted to ensure efficient performance.

Attenuation Tanks

Maintenance Schedule	Required Actions	Typical Frequency
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly
Regular Maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter- remove and replace surface infiltration medium as necessary.	Annually
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required
	System inspection after heavy storms	After every extreme storm event
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents.	As required
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required

9.1.3 It will be the duty of the site owner to ensure that the proposed surface water drainage system is maintained correctly during the lifetime of the site, as per the regime listed above, to mitigate the risk of drainage failure that may lead to flooding.

Construction Works

- 9.1.4 It will be the duty of the contractor to determine how the proposed drainage networks can be installed and maintained during construction.
- 9.1.5 Listed below are some potential risks that may be encountered during the construction of the new drainage network, and how these risks can be mitigated.

Item	Potential Effects	Recommended Actions
Deep	Excavations required for drainage	Temporary support to be
excavations	installation may be subject to collapse,	provided along excavations.
required for	and/or workers/plant/material falling in.	Edge support required along
installation of		excavations.
drainage		
Protection of	During work suspensions, excavations	Contractor to utilise appropriate
installed	and installed drainage that are	protection measures including
infrastructure	exposed may be subject to ingress of	but not limited to temporary
during work	debris and other material, also	pipe stoppers and trench
suspensions	presenting risk to site operators.	covers.
Storage of	Construction materials and surplus	Designated areas to store
construction	materials to be exported from site may	materials away from working
materials and	be obstructive to working areas and	areas and pedestrian/vehicle
surplus	access routes.	access routes to be provided.
materials.		
Perched	Perched groundwater encountered	Appropriate dewatering
groundwater	during the construction phase may	techniques to be utilised to
	impact on work proposals	mitigate the risk of groundwater
		effects.

10.0 Summary / Conclusion

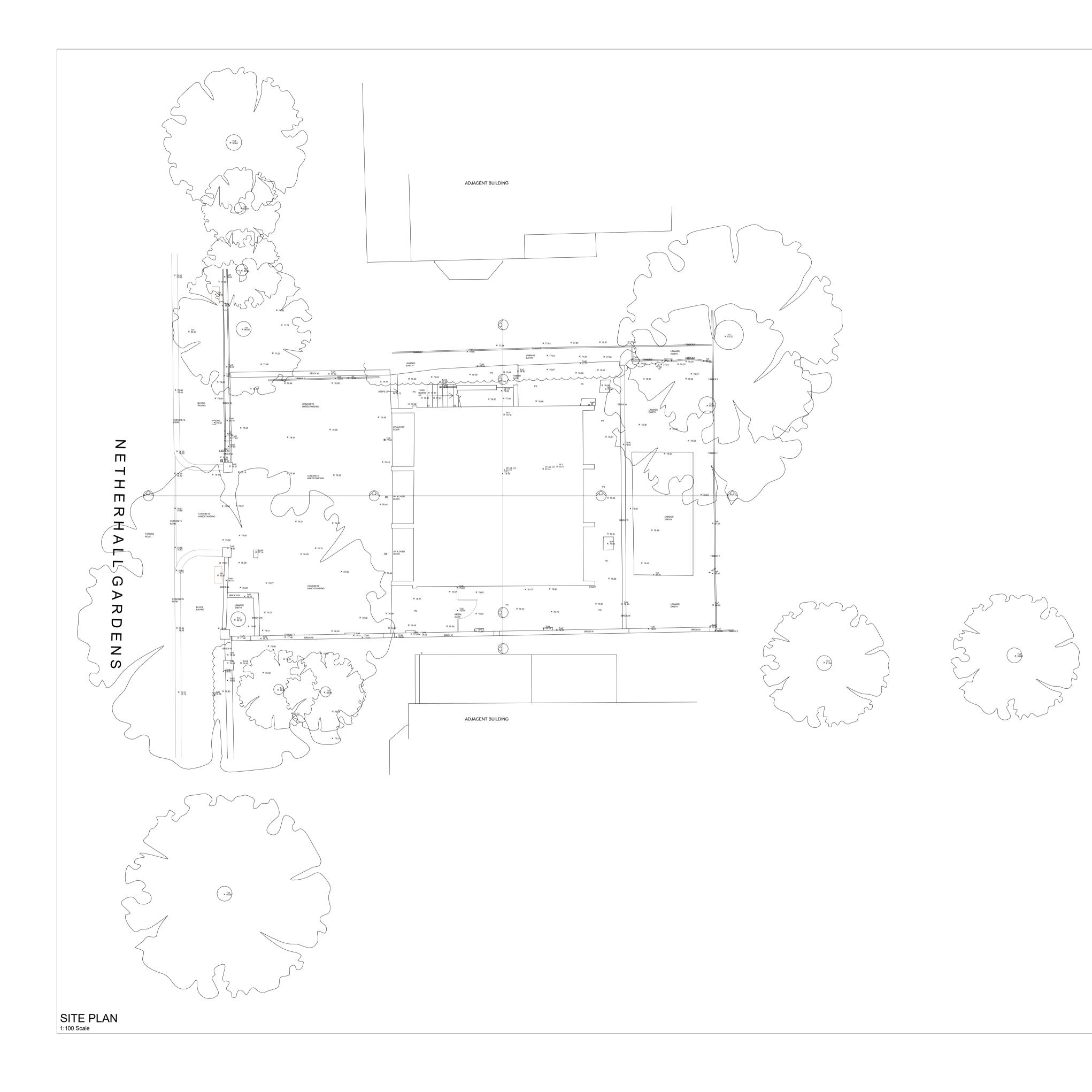
- 10.1.1 This report has been produced to assess the risk of flooding and review the proposed drainage strategy for the demolition of the existing detached dwelling to construct a new dwelling with a basement.
- 10.1.2 The site is located within Flood Zone 1, land assessed as having less than a 1 in 1000 annual probability of and all other sources is considered low to negligible.
- 10.1.3 The existing site is currently occupied by a detached residential dwelling and associated hard landscaping. water connection to the adjacent Thames Water combined sewer in Netherhall Gardens.
- 10.1.4 National and local policies have been reviewed regarding preferred methods of surface water disposal. The sewer is not possible, as there are none within the vicinity of the site to discharge to.
- 10.1.5 It is proposed that surface water generated on site will be stored within an attenuation tank, before discharging including a 40% allowance for climate change.
- 10.1.6 Surface water runoff from site is proposed to discharge at 2.0l/s, an improvement from the existing flow rates to blockages, that may cause flooding. The surface water will be restricted by a flow control unit.
- 10.1.7 This report clearly demonstrates that the proposed drainage strategy will represent a noticeable improvement and relief to the public sewer at which it currently discharges.

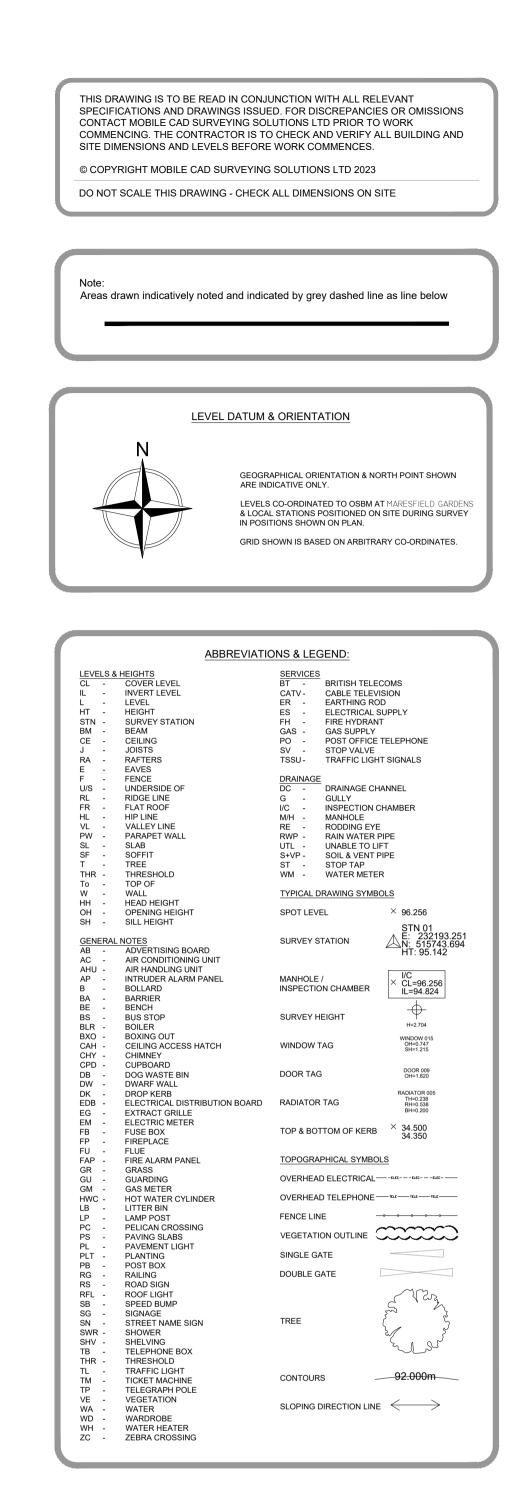
proposed development at 34a Netherhall Gardens, London, NW3 5TP. The development proposals will see the

river or sea flooding (<0.1%) in any year. The risk of flooding affecting the site from surface water, ground water

There are existing drains within the site boundary that serves the property that flow unrestricted via a combined

use of infiltration as a means of surface water disposal will not be possible due to the impermeable nature of the Claygate Member bedrock formation on site. The option of discharging to a watercourse or surface water

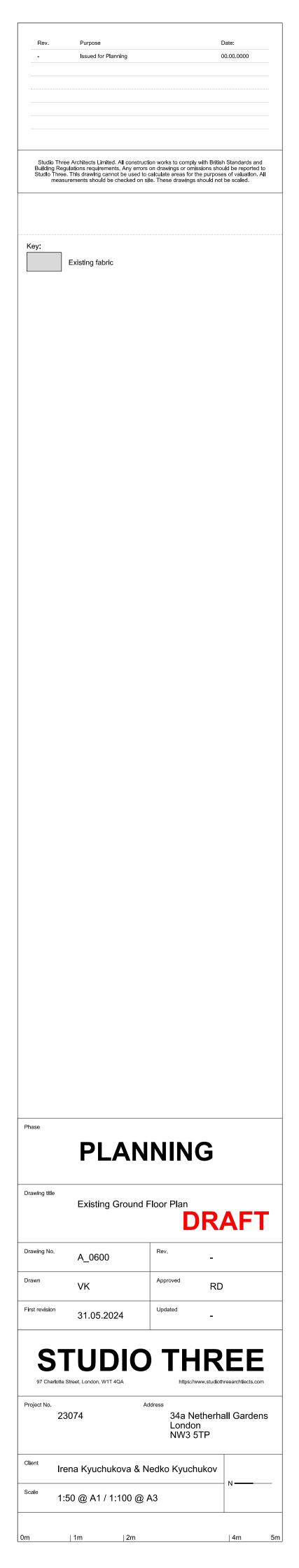

to the Thames Water combined water sewer via an existing connection from the site. The surface water drainage network has been designed to cater for all flood events up to and including the 100-year storm,

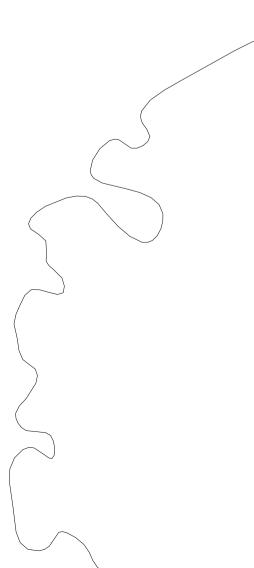

generated from the existing network and is considered the minimum flow rate achievable that won't be prone

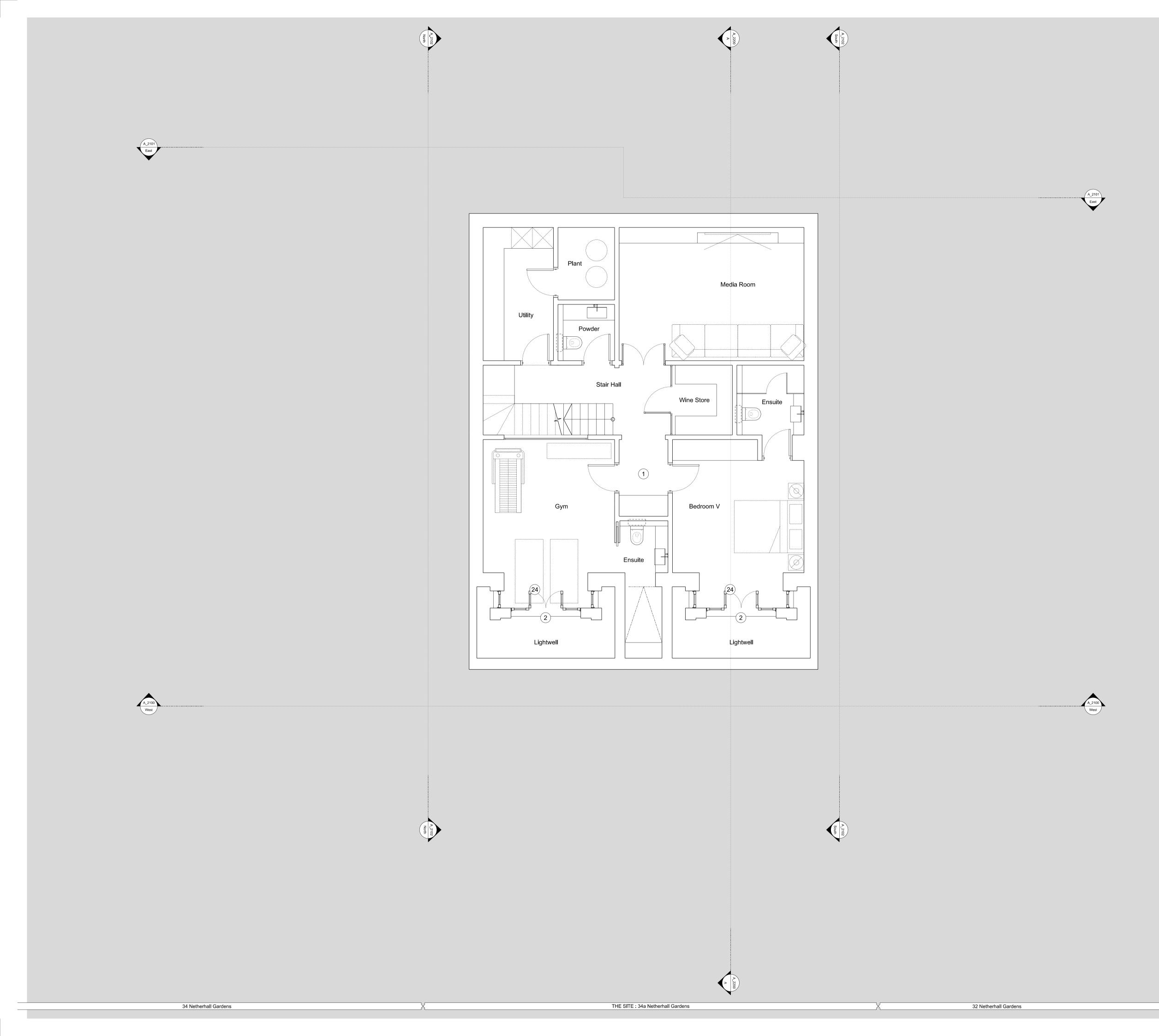
to the existing scenario, reducing the risk of flooding to the site and surrounding area, also providing betterment

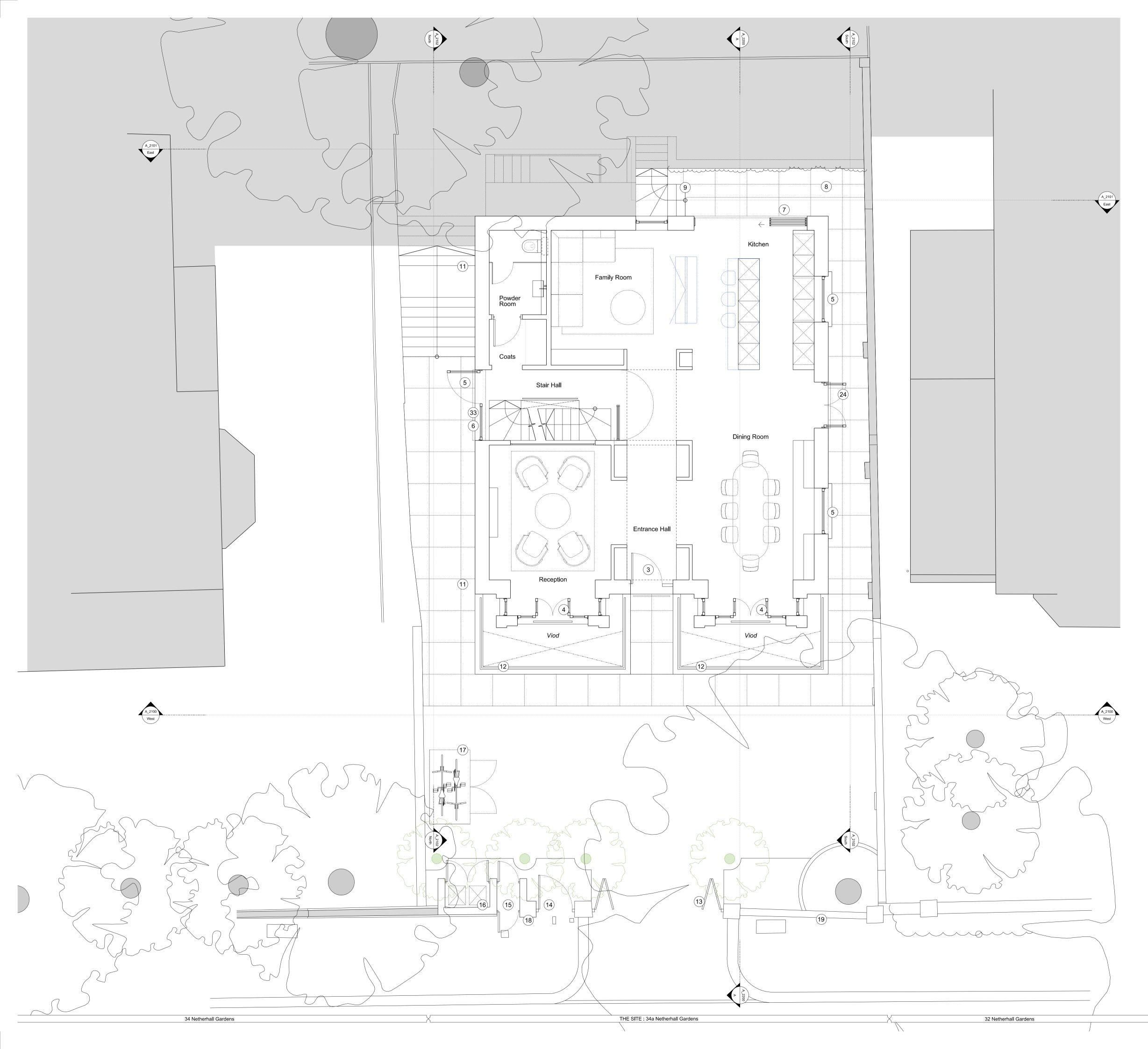
Appendix A – Topographical Survey




REV	DATE	AMENDMENTS	

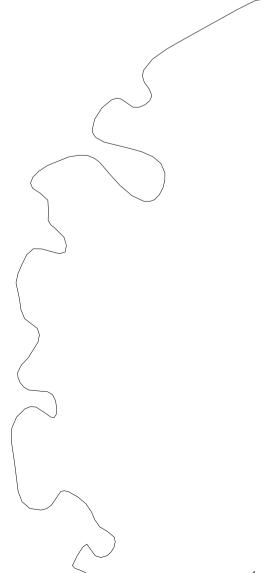



Appendix B – Existing & Proposed Site Plans



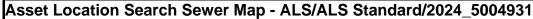
Rev.	Purpose	Date:		
-	Issued for Planning	00.00.0000		
Studio Thre Building Rec	e Architects Limited. All construction works t	to comply with British Standards and		
Studio Three	. This drawing cannot be used to calculate a urements should be checked on site. These	reas for the purposes of valuation. All		
Key:				
	Existing fabric			
	Proposed wall			
	Red brick selected to match neig Netherhall Gardens and 34 Nethe	hbouring properties at 32 erhall Gardens		
	Wet cast masonry features (copir to suit the colour of the red brickv	ngs, sills, window surrounds) vork		
	Roof slates			
	Porcelain tile paving			
Notes:				
\bigcirc	Basement beneath the footprint of	f the existing house.		
2	Front light wells.			
3	Timber front door (level threshold). Paint finish.		
(4)	Bay window: timber framed with v	wet cast masonry corner posts.		
(5)	Timber-framed casement window	vs. Paint finish.		
<u>(6)</u>	Timber-framed windows. Paint fir	iish.		
(7)	Aluminium tripartite sliding windo	ws.		
(8)	Rear terrace (lowered) with porce			
(9)	Base of staircase finished in porc			
\sim				
(10)	Metal staircase and railing. Paint	tinisn.		
(11)	External access stairs.			
(12)	Metal railings. Paint finish.			
(13)	Bi-folding vehicular access gates			
(14)	Re-open existing pedestrian accer railing pedestrian gate.	ss and provide new metal		
(15)	Parcel delivery box.			
(16)	Bin Store (brick).			
(17)	Cycle store (timber batten).			
(18)	Reinstate brick pier and cast ston	e coping.		
(19)	Re-construct garden wall to matc garden wall. Rebuild the brick pie	h the level of the remaining r with new cast stone coping.		
20	Metal railings atop brick garden w	vall.		
(21)	Fascia panel.			
(22)	Rebuild existing timber garden fe	nce.		
(23)	Glazed, timber framed side acces Paint finish.	ss door (level threshold).		
(24)	Glazed, timber framed French Do	oors. Paint finish.		
(25)	Dormer window with painted timb dormer cheeks.	er fascia and panelled		
(26)	Cast metal rainwater goods.			
(27)	Cast stone coping to parapet wal	l.		
(28)	Awning with fascia panel.			
(29)	Timber Fascia Panel, Paint Finish	1		
\sim				
(30)	Conservation roof light			
(31)	Aluminium framed window			
(32)	Photovoltaic panels			
(33)	Obscured glazing			
Phase				

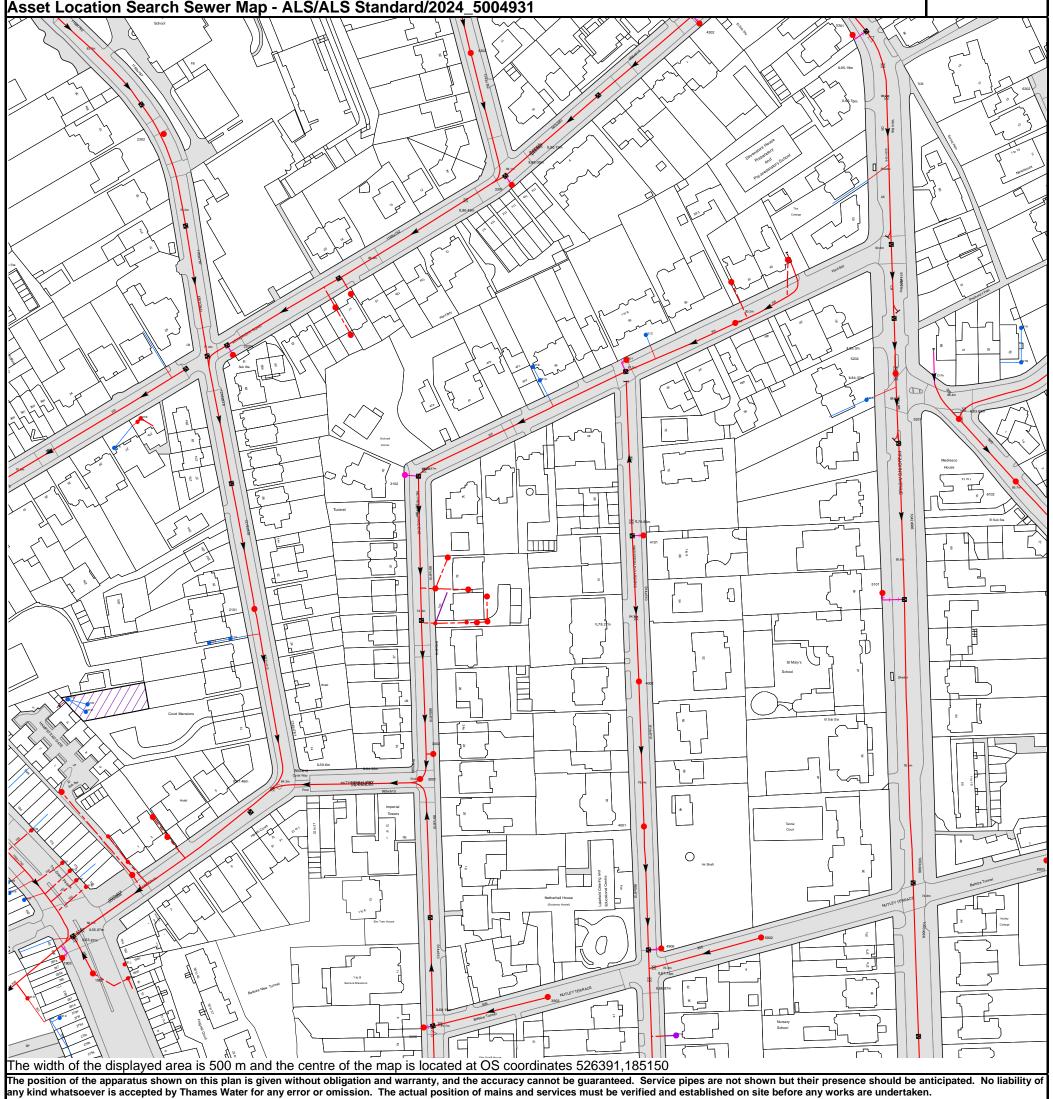
PLANNING



Rev.	Purpose Issued for Planning	Date: 00.00.0000
Building Reg Studlo Three	e Architects Limited. All construction works ulations requirements. Any errors on drawin This drawing cannot be used to calculate irements should be checked on site. These	ngs or omissions should be reported to areas for the purposes of valuation. All
Key:	Existing fabric	
	Proposed wall	
	Red brick selected to match neig Netherhall Gardens and 34 Neth	hbouring properties at 32 erhall Gardens
	Wet cast masonry features (copi to suit the colour of the red brick	ngs, sills, window surrounds) work
	Roof slates	
	Porcelain tile paving	
lotes:		
1	Basement beneath the footprint of	of the existing house.
2	Front light wells.	
3	Timber front door (level threshold	d). Paint finish.
4	Bay window: timber framed with	wet cast masonry corner posts
5	Timber-framed casement window	ws. Paint finish.
6	Timber-framed windows. Paint fi	nish.
(7)	Aluminium tripartite sliding windo	ows.
8	Rear terrace (lowered) with porc	elain paviours.
9	Base of staircase finished in por	celain tile.
(10)	Metal staircase and railing. Paint	t finish.
(11)	External access stairs.	
(12)	Metal railings. Paint finish.	
(13)	Bi-folding vehicular access gates	s XXm tall.
(14)	Re-open existing pedestrian acc railing pedestrian gate.	ess and provide new metal
(15)	Parcel delivery box.	
(16)	Bin Store (brick).	
(17)	Cycle store (timber batten).	
(18)	Reinstate brick pier and cast sto	ne coping.
(19)	Re-construct garden wall to mate	ch the level of the remaining
(20)	Metal railings atop brick garden v	
(21)	Fascia panel.	
(22)	Rebuild existing timber garden fe	ence.
(23)	Glazed, timber framed side acce Paint finish.	
(24)	Glazed, timber framed French D	oors. Paint finish.
(25)	Dormer window with painted timi	
(26)	Cast metal rainwater goods.	
(27)	Cast stone coping to parapet wa	И.
(28)	Awning with fascia panel.	
(29)	Timber Fascia Panel. Paint Finis	h.
(30)	Conservation roof light	
(31)	Aluminium framed window	
	Photovoltaic panels	
(33)	Obscured glazing	

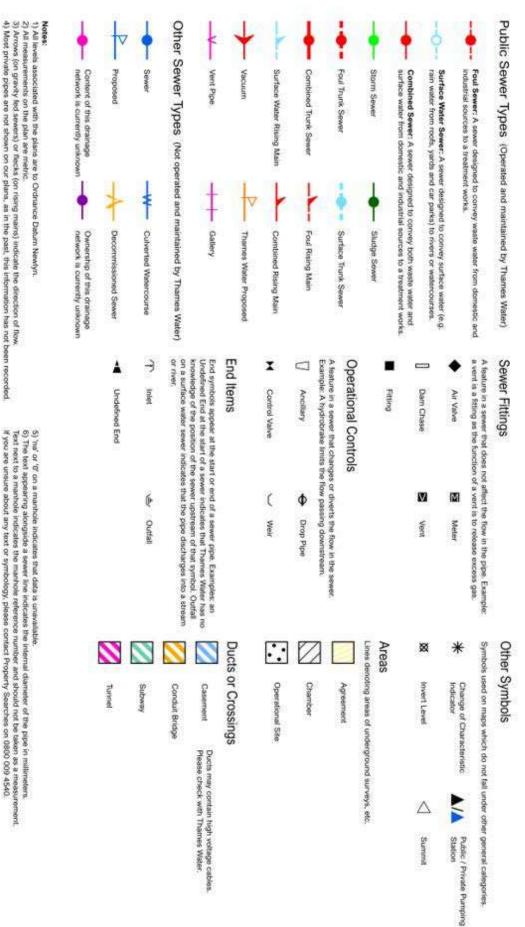
PLANNING





//

Appendix C – Thames Water Sewer Records


sed on the Ordnance Survey Map (2020) with the Sanction of the controller of H.M. Stationery Office, License no. 100019345 Crown Copyright Reserved.

<u>Thames Water Utilities Ltd</u>, Property Searches, PO Box 3189, Slough SL1 4W, T 0800 009 4540 E <u>searches@thameswater.co.uk</u> I <u>www.thameswater-propertysearches.co.uk</u>

Manhole Reference	Manhole Cover Level	Manhole Invert Level
4302	n/a	n/a
5301	n/a	n/a
211A	n/a	n/a
2203	n/a	n/a
2101	69.04	62.55
2210	n/a	n/a
3201	n/a	n/a
3202	n/a	n/a
3102	n/a	n/a
3106	n/a	n/a
3112	n/a	n/a
3105	n/a	n/a
3111	n/a	n/a
3107	n/a	n/a
3110	n/a	n/a
3108	n/a	n/a
3109	n/a	n/a
3301	n/a	n/a
321B	n/a	n/a
321A	n/a	n/a
4201	n/a	n/a
4002	82.58	76.52
4101	n/a	n/a
421C	n/a	n/a
4206	n/a	n/a
421A	n/a	n/a
5211	n/a	n/a
521A	n/a	n/a
5101	n/a	n/a
5202	89.33	n/a
6903	75.62	71.38
6102	85.7	80.58
5201	87.83	83.39
621B	n/a	n/a
621A	n/a	n/a
2302 3302	n/a	n/a
221A	n/a n/a	n/a n/a
221A 221B	n/a	n/a
191H	n/a	n/a
191B	n/a	n/a
191A	n/a	n/a
101B	n/a	n/a
1903	n/a	n/a
191E	n/a	n/a
191F	n/a	n/a
2901	n/a	n/a
191G	n/a	n/a
1911	n/a	n/a
1916	n/a	n/a
2008	n/a	n/a
1005	n/a	n/a
2007	n/a	n/a
1004	n/a	n/a
101C	n/a	n/a
101D	n/a	n/a
101E	n/a	n/a
201A	n/a	n/a
111A	n/a	n/a
191D	n/a	n/a
191C	n/a	n/a
291A	n/a	n/a
1902	57.86	54.02
191J	n/a	n/a
491A	n/a	n/a
3906	n/a	n/a
	72.04	69.19
3903		n/a
4906	n/a	
4906 5902	73.36	69.41
4906 5902 4001	73.36 76.82	71.76
4906 5902 4001 3001	73.36 76.82 70.81	71.76 64.89
4906 5902 4001	73.36 76.82	71.76
4906 5902 4001 3001	73.36 76.82 70.81	71.76 64.89
4906 5902 4001 3001 3002	73.36 76.82 70.81 n/a	71.76 64.89 n/a
4906 5902 4001 3001 3002 The position of the apparatus shown on this plan	73.36 76.82 70.81 n/a is given without obligation and warranty, and the acc	71.76 64.89 n/a curacy cannot be guaranteed. Service pipes are not
4906 5902 4001 3001 3002 The position of the apparatus shown on this plan	73.36 76.82 70.81 n/a is given without obligation and warranty, and the activity of any kind whatsoever is accepted by Thames	71.76 64.89 n/a curacy cannot be guaranteed. Service pipes are not

Asset Location Search - Sewer Key

Thames Water Utilities Ltd, Property Searches, PO Box 3189, Slough SL1 4W,

T 0800 009 4540 E searches@thameswater.co.uk | www.thameswater-propertysearches.co.uk

If you are unsure about any text or symbology, please contact Property Searches on 0800 009 4540.

Appendix D – CCTV Drainage Survey

2024-03-21

C1011396/001

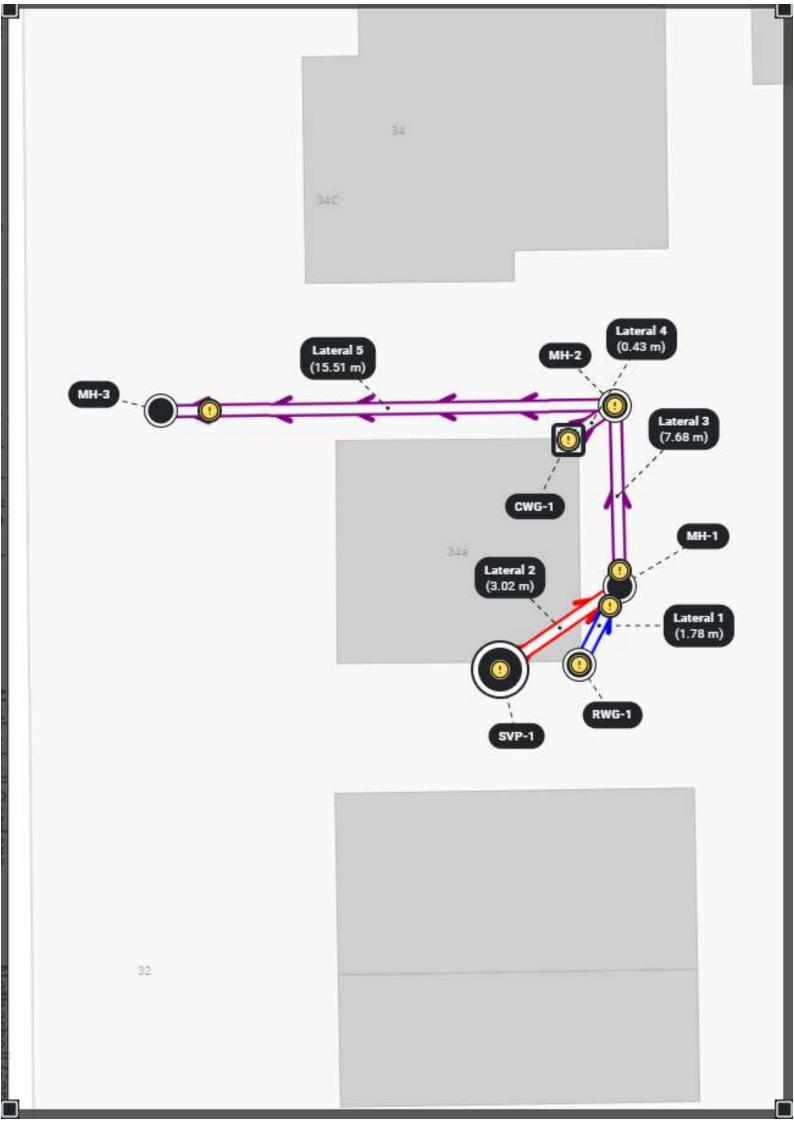
Domestic (MSCC5)

34a Netherhall Gardens, London, Greater London, NW3 5TP, United Kingdom

Supplier

Orgination Happy Drains Engineer Nathan Mead Surveyor certification number

Client


Name Irena Kyuchukova Contact Phone Number +44 07833295724 Address 34a Netherhall Gardens, London, Greater London, NW3 5TP, United Kingdom Job Reference C1011396/001

Click below for the interactive

FULL REPORT & PLAN

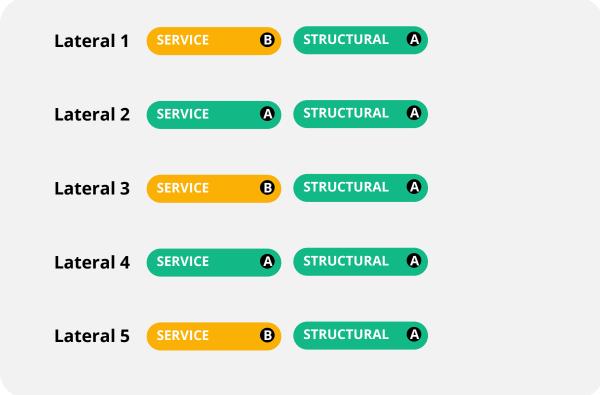
Table of contents

Section score page	3
Survey measurements	
Lateral 1	
Lateral 2	
Lateral 3	_ 9
Lateral 4	
Lateral 5	_13
Node summary	
Section header sheets	
Disclaimer	23
Infographics	74

Section scores

Grade A

Best practice suggests consideration should be given to repairs in the medium term.


Grade B

Best practice suggests consideration should be given to repairs to avoid a potential collapse.

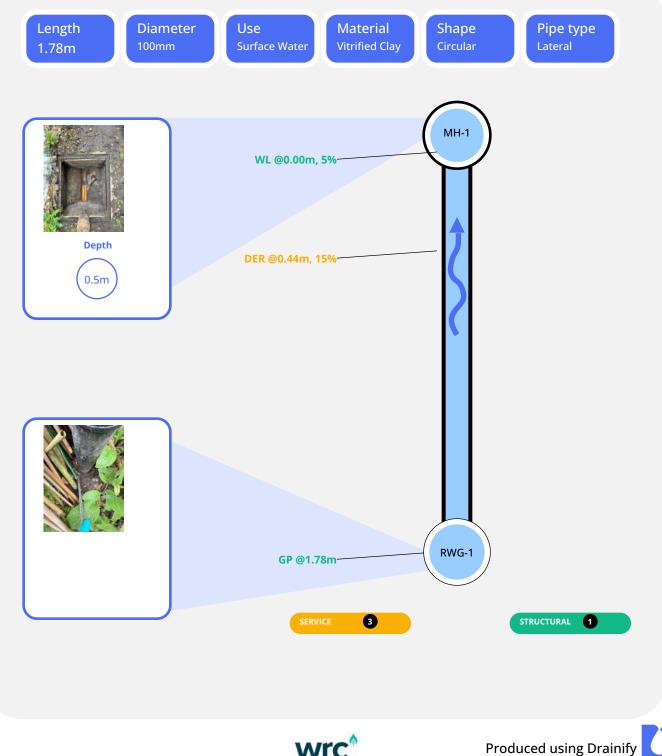
Grade C

Best practice suggests that this pipe is at risk of collapse at any time. Urgent consideration should be given to repairs to avoid total failure.

consideration should be given to repairs to avoid total failure.

FULL REPORT & PLAN

Survey measurements



Lateral 1

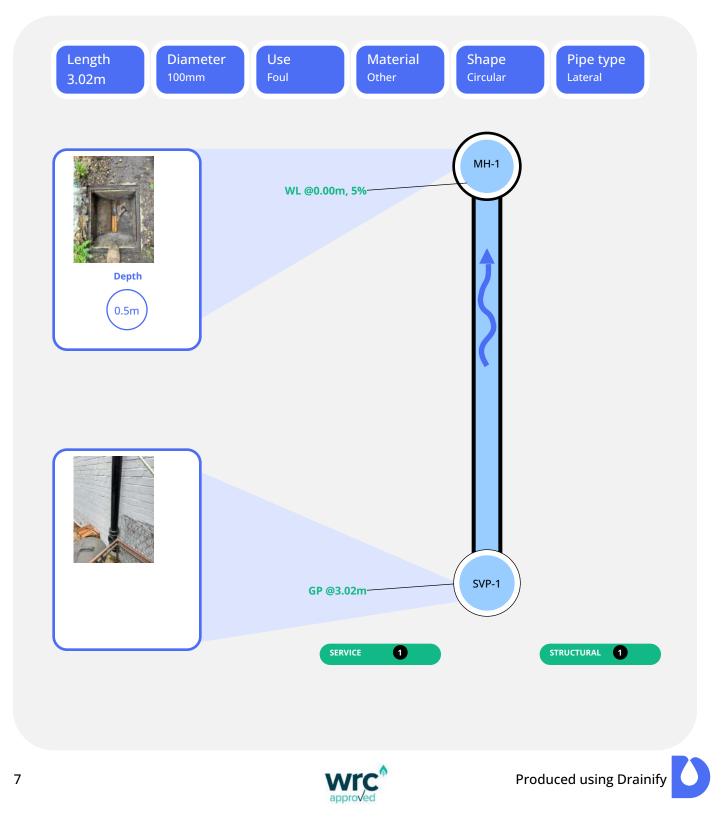
At a glance

5

FULL REPORT & PLAN

Lateral 1 Observations

WL (Water Level) **DER (Deposits Coarse Settled)** Distance: 0m Distance: 0.44m Amount: 5% Cross sectional loss: 15% Remarks: Leaf matter and mud in drain STRUCTURAL A A STRUCTURAL A B Finish Distance: 1.78m STRUCTURAL A A

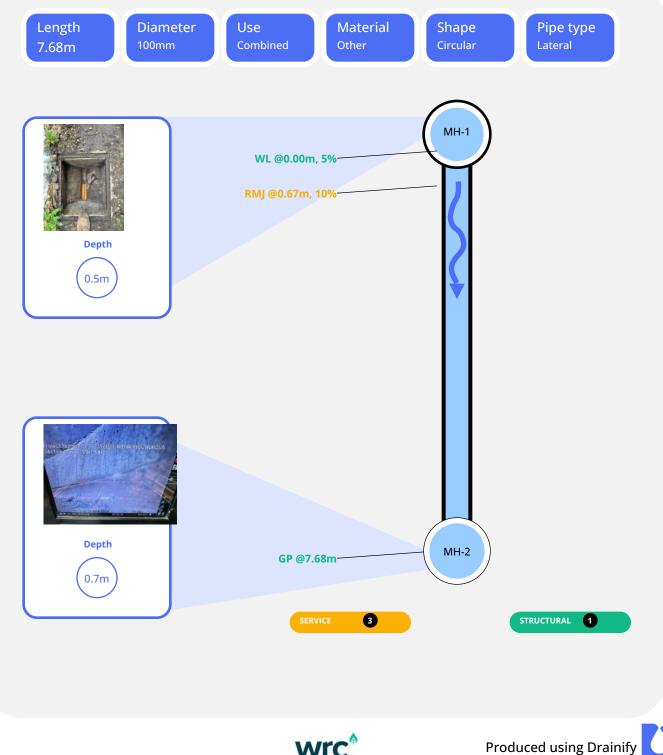


Lateral 2

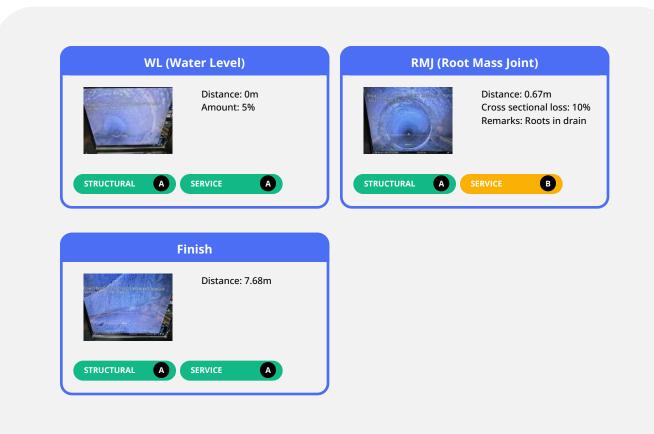
At a glance

FULL REPORT & PLAN

Lateral 2 Observations

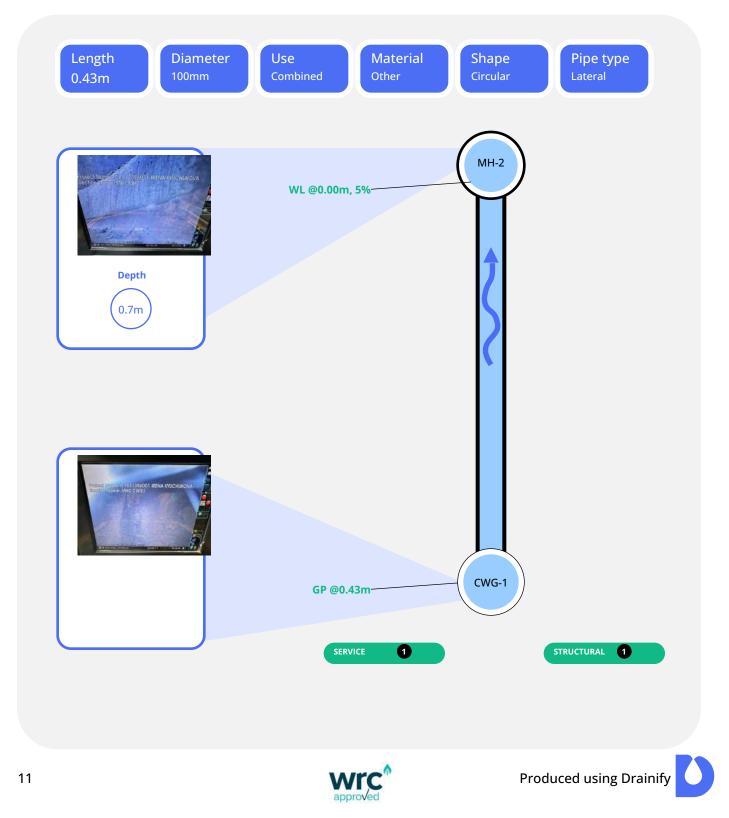


Lateral 3

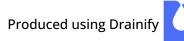

At a glance

9

Lateral 3 Observations

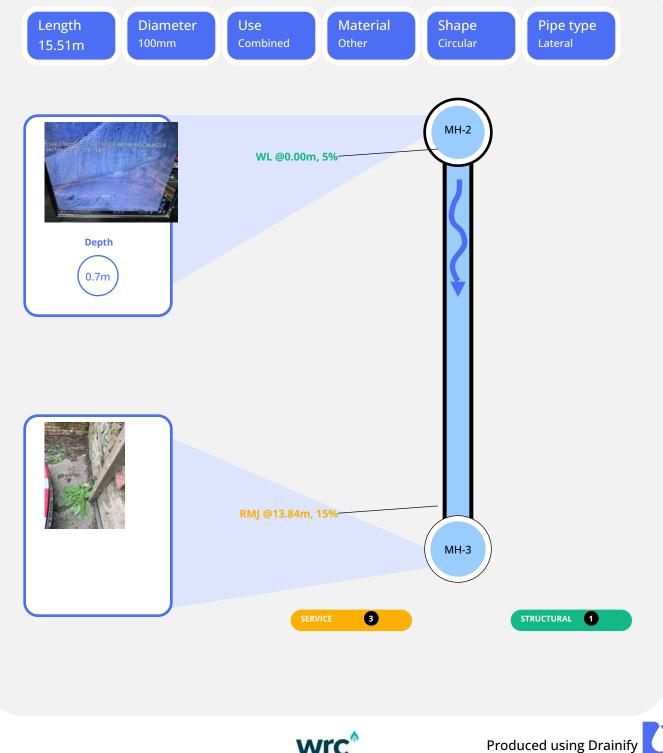


Lateral 4


At a glance

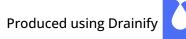
Lateral 4 Observations

WL (Water Level) Distance: 0m Amount: 5% STRUCTURAL A SERVICE A SERVICE



Lateral 5

At a glance



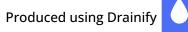
Lateral 5 Observations

WL (Water Level) Distance: 0m Mount: 5% STRUCTURAL A SERVICE A SERVICE

Node summary

MH-1	Depth Remarks Code Material Shape Wall condition 0.5 MH Image: Cover frame condition Laterial connections Surface type Cover frame condition Breadth Width Diameter Benching condition Lat Lon -0.17882774732952633 51.55107086984513
------	---

Depth Remarks Code Material Shape Wall condition
Laterial connections Surface type Cover frame condition Breadth Width Diameter Benching condition
Lat Lon 51.55104074106358



Node summary 2

SVP-1	Depth Remarks Code Material Shape Wall condition SVP SVP
-------	--

MH-2	Depth Remarks Code Material Shape Wall condition
Power Isan - Contraction International Automatics Contraction Contraction	0.7 MH Cover frame condition
	Breadth Width Diameter Benching condition
	Lat Lon
	-0.1788305160612902 51.5511397355567

Node summary 3

CWG-1

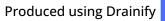
Depth Remarks Code Material Shape Wall condition Laterial connections Surface type Cover frame condition Breadth Width Diameter Benching condition Lat Lon -0.17885958774513044 51.55112682324369

MH-3	
	Depth Remarks Manhole is not visible checked underneath the car as well not there either Code Material MH

Disclaimer

The results in this report are considered the views of the suitably qualified engineer(s) you have employed to undertake the investigation. These findings are of on the day and time of the work.

This software has to be used by a qualified operative following the formal drainage standards of that specific geo-locations.

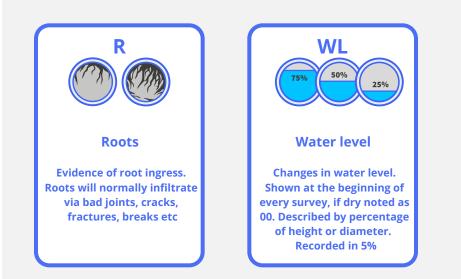

Visual investigations are an inspection of inside a drain/pie/sewer or conduit. CCTV drainage engineers are generally not qualified to comment other than pipe condition. They can only suggest required remedial actions appropriate for the pipes surveyed and not the structural integrity of a building.

A CCTV drainage survey is only part of a greater investigation of ground movement. Subsidence, for example, is a structural building issue which can have multiple causes

Pressure testing may be appropriate in certain cases, and you should be guided by a qualified professional, such as a structural engineer of the equivalent in your area.

If you have a specific requirement, please specify the data to capture any tolerances, and if possible, we will meet those requirements.

Where coordinates form part of this report, they may be of limited accuracy. A qualified technician can achieve pinpoint accuracy using 'Sonde and Trace' precision spotting techniques for record purposes or before excavations and installations.



18

Infographics

Observations in survey

Appendix E – Existing Surface Water Flow Rates

		Page 1		
	34a Netherhall Gardens			
	London			
	1 in 1 Year	Micro		
Date 15/07/2024	Designed by TS	Dcainago		
File Brownfield Calculations	Checked by TM	Diamage		
XP Solutions	Source Control 2020.1.3			
Summary of Results for 1 year Return Period				

Storm	Max	Max	Max	Max	Status
Event	Level	Depth	Control	Volume	
	(m)	(m)	(l/s)	(m³)	
60 min Summer	0.043	0.043	2.5	0.1	ОК
60 min Winter	0.040	0.040	2.1	0.1	ΟK

Storm	Rain	Flooded Discharge Time-Peak		
Event	(mm/hr)	Volume	Volume	(mins)
		(m³)	(m³)	
60 min Summer	13.524	0.0	2.6	32
60 min Winter	13.524	0.0	3.0	30

			Page 2
	34a Netherh	all Gardens	
	London		
	1 in 1 Year		Mirco
Date 15/07/2024	Designed by	/ TS	Dcainago
File Brownfield Calculations	Checked by	ТМ	Diamage
XP Solutions	Source Cont	crol 2020.1.3	
Ra	infall Deta	ils	
Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	1	Cv (Summer)	0.750
Region Engla	and and Wales	Cv (Winter)	0.840
M5-60 (mm)	21.000	Shortest Storm (mins)	60
Ratio R	0.437	Longest Storm (mins)	60
Summer Storms	Yes	Climate Change %	+0

<u>Time Area Diagram</u>

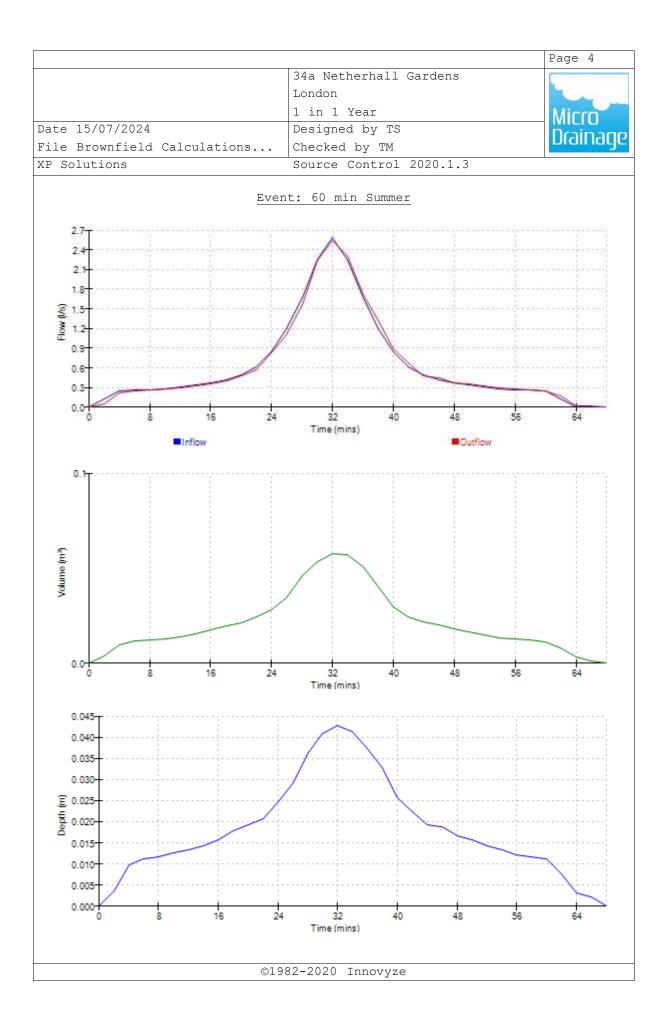
Total Area (ha) 0.026

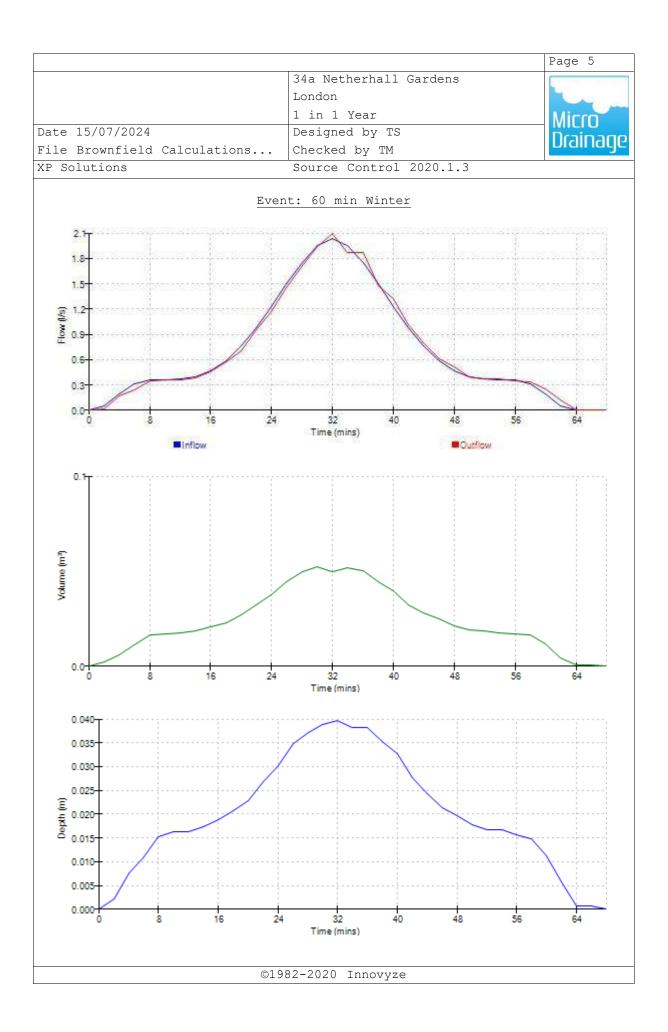
Time	(mins)	Area
From:	To:	(ha)

0 4 0.026

		Page 3
	34a Netherhall Gardens	
	London	
	1 in 1 Year	Mirro
Date 15/07/2024	Designed by TS	Drainago
File Brownfield Calculations	Checked by TM	Diamage
XP Solutions	Source Control 2020.1.3	

Model Details


Storage is Online Cover Level (m) 1.500


Pipe Structure

Diameter (m) 0.600 Length (m) 10.000 Slope (1:X) 100.000 Invert Level (m) 0.000

Pipe Outflow Control

Diameter (m) 0.600 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 0.000 Roughness k (mm) 0.600

		Page 1
	34a Netherhall Gardens	
	London	Second and
	1 in 30 Year	Mirro
Date 15/07/2024	Designed by TS	Drainago
File Brownfield Calculations	Checked by TM	Diamage
XP Solutions	Source Control 2020.1.3	
Summary of Resul	ts for 30 year Return Period	

Storm Event	Max Level (m)	-	Max Control (l/s)		Status
<mark>60 min Summer</mark> 60 min Winter			<mark>6.1</mark> 4.9	<mark>0.1</mark> 0.1	<mark>o k</mark> o k

Storm	Rain	Flooded	Discharge	Time-Peak
Event	(mm/hr)	Volume	Volume	(mins)
		(m³)	(m³)	
60 min Summer	32.372	0.0	6.3	32
60 min Winter	32.372	0.0	7.1	32

		Page 2		
	34a Netherhall Gardens			
	London			
	1 in 30 Year	Micro		
Date 15/07/2024	Designed by TS	Dcainago		
File Brownfield Calculations	Checked by TM	Diamage		
XP Solutions	Source Control 2020.1.3			
Rainfall Details				

Rainfall Model	FSR	Winter Storms	Yes
Return Period (years)	30	Cv (Summer)	0.750
Region	England and Wales	Cv (Winter)	0.840
M5-60 (mm)	21.000	Shortest Storm (mins)	60
Ratio R	0.437	Longest Storm (mins)	60
Summer Storms	Yes	Climate Change %	+0

Time Area Diagram

Total Area (ha) 0.026

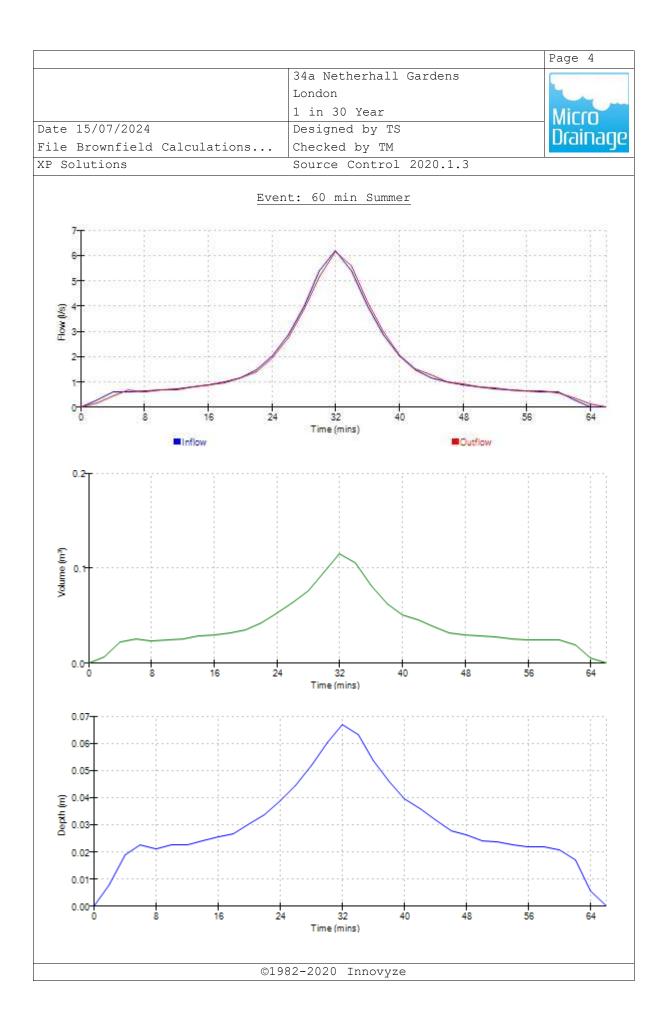
Time	(mins)	Area
From:	To:	(ha)

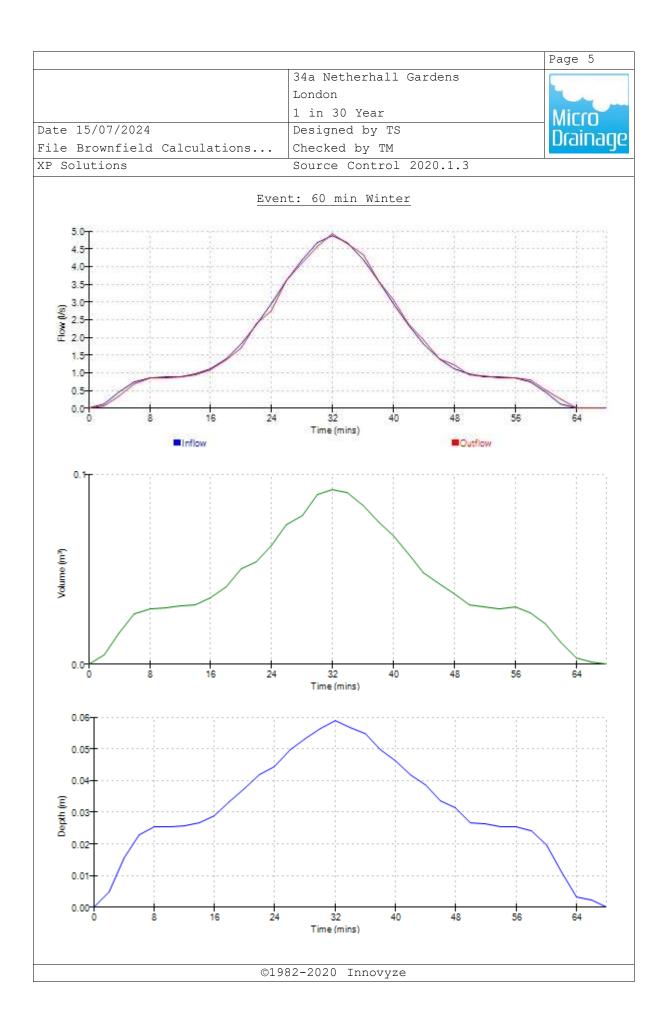
0 4 0.026

©1982-2020 Innovyze

		Page 3
	34a Netherhall Gardens	
	London	
	1 in 30 Year	Mirro
Date 15/07/2024	Designed by TS	Dcainago
File Brownfield Calculations	Checked by TM	Diamage
XP Solutions	Source Control 2020.1.3	

Model Details


Storage is Online Cover Level (m) 1.500


Pipe Structure

Diameter (m) 0.600 Length (m) 10.000 Slope (1:X) 100.000 Invert Level (m) 0.000

Pipe Outflow Control

Diameter (m) 0.600 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 0.000 Roughness k (mm) 0.600

		Page 1
	34a Netherhall Gardens	
	London	
	1 in 100 Year	Micro
Date 15/07/2024	Designed by TS	Dcainago
File Brownfield Calculations	Checked by TM	Diamage
XP Solutions	Source Control 2020.1.3	

Summary of Results for 100 year Return Period

Storm Event	Max Level (m)	-	Max Control (l/s)		Status
<mark>60 min Summer</mark> 60 min Winter			<mark>8.0</mark> 6.4	0.2 0.1	<mark>o k</mark> o k

Storm	Rain	Flooded	Discharge	Time-Peak
Event	(mm/hr)	Volume	Volume	(mins)
		(m³)	(m³)	
60 min Summer	42.578	0.0	8.3	32
60 min Winter	42.578	0.0	9.3	32

		Page 2
	34a Netherhall Gardens	
	London	
	1 in 100 Year	Mirro
Date 15/07/2024	Designed by TS	Drainago
File Brownfield Calculations	Checked by TM	Diamage
XP Solutions	Source Control 2020.1.3	
Ra	infall Details	

Yes
0.750
0.840
60
60
+0

Time Area Diagram

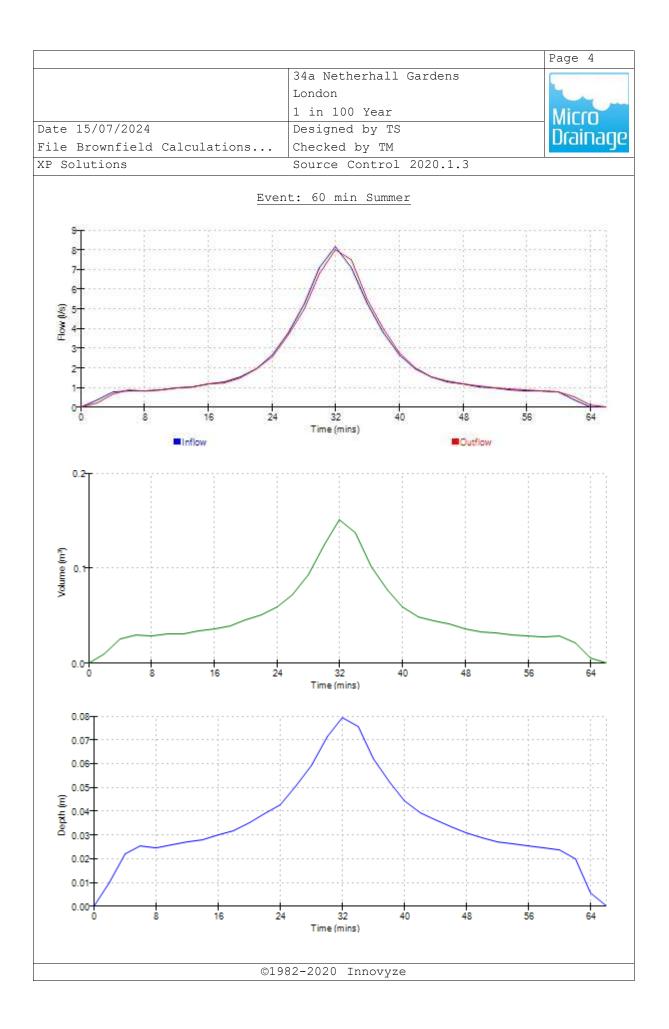
Total Area (ha) 0.026

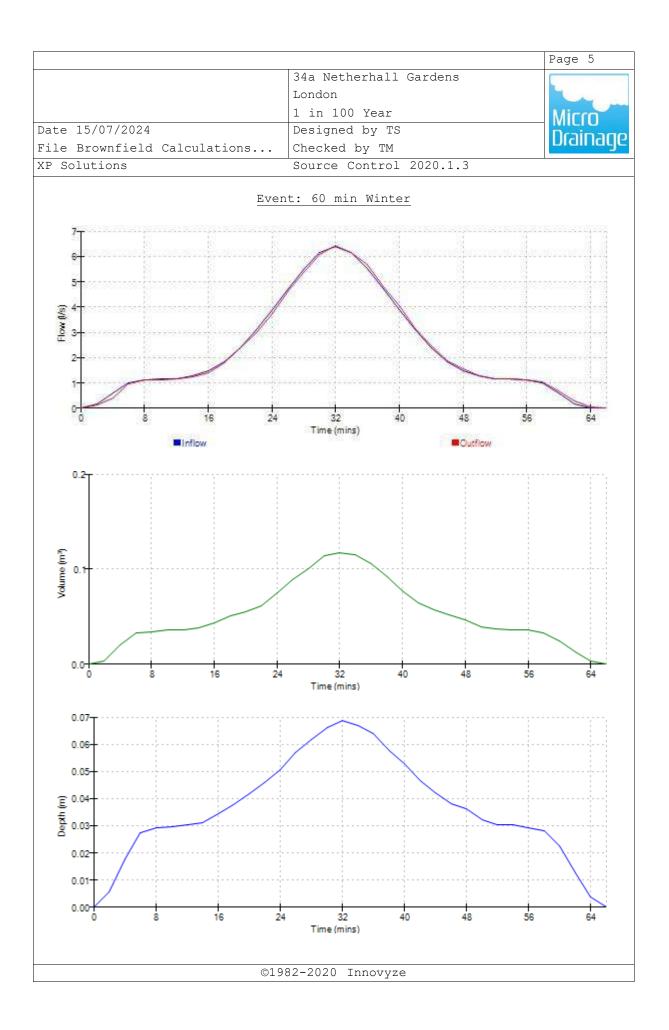
Time	(mins)	Area
From:	To:	(ha)

0 4 0.026

		Page 3
	34a Netherhall Gardens	
	London	
	1 in 100 Year	Mirro
Date 15/07/2024	Designed by TS	Drainago
File Brownfield Calculations	Checked by TM	Diamage
XP Solutions	Source Control 2020.1.3	

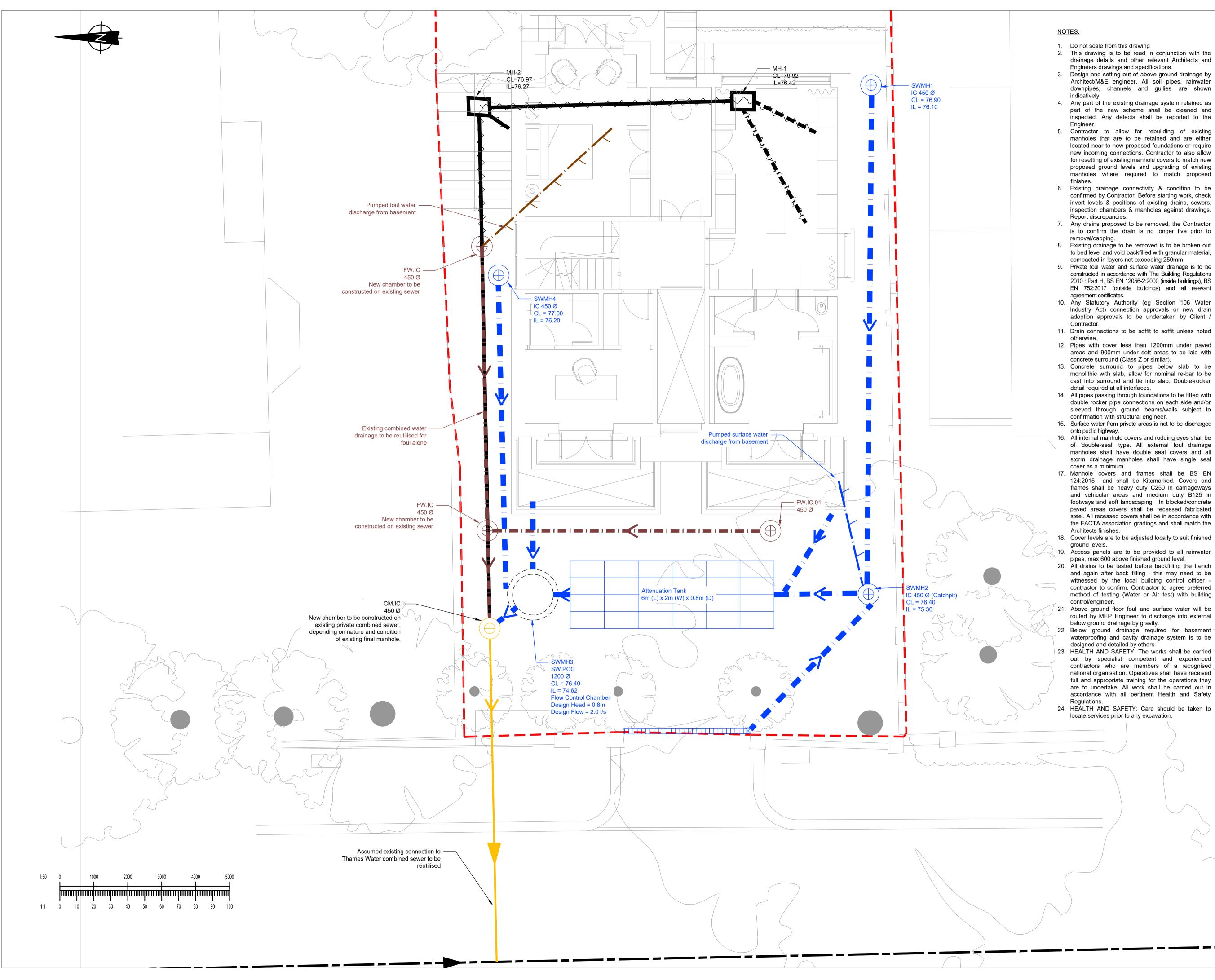
Model Details


Storage is Online Cover Level (m) 1.500

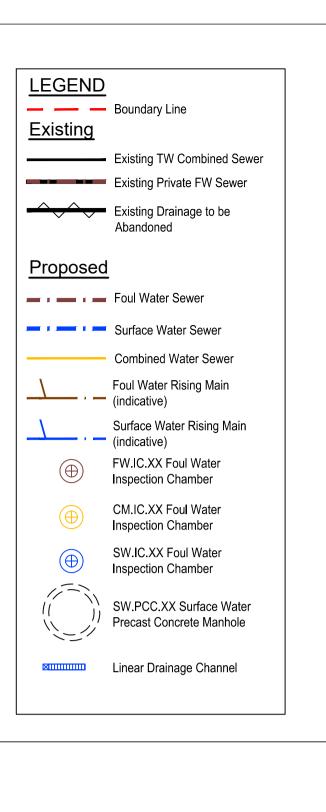

Pipe Structure

Diameter (m) 0.600 Length (m) 10.000 Slope (1:X) 100.000 Invert Level (m) 0.000

Pipe Outflow Control


Diameter (m) 0.600 Entry Loss Coefficient 0.500 Slope (1:X) 100.0 Coefficient of Contraction 0.600 Length (m) 10.000 Upstream Invert Level (m) 0.000 Roughness k (mm) 0.600

Appendix F – Drainage Strategy Plan



- confirmed by Contractor. Before starting work, check invert levels & positions of existing drains, sewers, inspection chambers & manholes against drawings.
- to bed level and void backfilled with granular material,

- areas and 900mm under soft areas to be laid with

- routed by MEP Engineer to discharge into external
- out by specialist competent and experienced contractors who are members of a recognised national organisation. Operatives shall have received full and appropriate training for the operations they are to undertake. All work shall be carried out in P01 30.07.24 TS TM Issued For Information accordance with all pertinent Health and Safety

Rev. Date Drawn Chk Amendment Pringuer-James Consulting Engineers Overseas House, Elm Grove, London, SW19 4HE Phone:+44 (020) 8940 4159 Email:mail@pjce.com Website:www.pjce.com Irena & Nedko Kyuchukova 34a Netherhall Gardens LONDON, NW3 5TP

PROPOSED DRAINAGE STRATEGY LAYOUT

Status :	FOR I	NFORMA	TION				
Scales : 1:50 @ A1			Date :	JUL. 24			
Drawn : TS	Engineer :	ТМ	Checked	: TM			
Drawing No. L2845-PJC-DR01 P01							

Appendix G – MicroDrainage Calculations

		Page 1
	34a Netherhall Gardens	
	London, NW3 5TP	
	Surface Water Drainage Calcs	Mirro
Date 30/07/2024 17:27	Designed by TS	Dcainago
File Surface Water Network.MDX	Checked by TM	Diamage
Innovyze	Network 2020.1	

$\underline{\texttt{STORM}}$ SEWER DESIGN by the Modified Rational Method

Network Design Table for Storm

PN	Length (m)	Fall (m)	Slope (1:X)	I.Area (ha)	T.E. (mins)	ase (l/s)	k (mm)	HYD SECT	DIA (mm)	Section Type	Auto Design
1.000	14.400	0.300	48.0	0.006	5.00	0.0	0.600	0	150	Pipe/Conduit	8
2.000	5.000	0.050	100.0	0.008	5.00	0.0	0.600	0	150	Pipe/Conduit	ð
1.001 1.002		0.020 0.010		0.006 0.000	0.00 0.00		0.600 0.600	0		Pipe/Conduit Pipe/Conduit	e e
3.000	9.000	0.090	100.0	0.012	5.00	0.0	0.600	0	150	Pipe/Conduit	ð
1.003	1.000	0.010	100.0	0.000	0.00	0.0	0.600	0	150	Pipe/Conduit	ď

Network Results Table

PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)		Add Flow (l/s)		Cap (l/s)	Flow (l/s)
1.000	50.00	5.16	76.100	0.006	0.0	0.0	0.0	1.46	25.7	0.8
2.000	50.00	5.08	75.350	0.008	0.0	0.0	0.0	1.00	17.8	1.1
1.001 1.002	50.00 50.00		75.300 74.630	0.020 0.020	0.0	0.0	0.0	1.00 1.00	17.8 17.8	2.7 2.7
3.000	50.00	5.15	76.200	0.012	0.0	0.0	0.0	1.00	17.8	1.6
1.003	50.00	5.23	74.620	0.032	0.0	0.0	0.0	1.00	17.8	4.3

		Page 2
	34a Netherhall Gardens	
	London, NW3 5TP	
	Surface Water Drainage Calcs	Micro
Date 30/07/2024 17:27	Designed by TS	Dcainago
File Surface Water Network.MDX	Checked by TM	Diamaye
Innovyze	Network 2020.1	

Manhole Schedules for Storm

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
SWMH1	76.900	0.800	Open Manhole	450	1.000	76.100	150				
CD	76.000	0.650	Junction		2.000	75.350	150				
SWMH2	76.400	1.100	Open Manhole	450	1.001	75.300	150	1.000	75.800	150	500
								2.000	75.300	150	
Tank	76.400	1.770	Junction		1.002	74.630	150	1.001	75.280	150	650
SWMH4	77.000	0.800	Open Manhole	450	3.000	76.200	150				
SWMH3	76.400	1.780	Open Manhole	1200	1.003	74.620	150	1.002	74.620	150	
								3.000	76.110	150	1490
	76.000	1.390	Open Manhole	0		OUTFALL		1.003	74.610	150	

No coordinates have been specified, layout information cannot be produced.

		Page 3
	34a Netherhall Gardens	
	London, NW3 5TP	
	Surface Water Drainage Calcs	Mirro
Date 30/07/2024 17:27	Designed by TS	Drainago
File Surface Water Network.MDX	Checked by TM	Diamage
Innovyze	Network 2020.1	1

PIPELINE SCHEDULES for Storm

Upstream Manhole

PN		Diam (mm)		C.Level (m)	I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	0	150	SWMH1	76.900	76.100	0.650	Open Manhole	450
2.000	0	150	CD	76.000	75.350	0.500	Junction	
1.001 1.002	0			76.400 76.400			Open Manhole Junction	450
3.000	0	150	SWMH4	77.000	76.200	0.650	Open Manhole	450
1.003	0	150	SWMH3	76.400	74.620	1.630	Open Manhole	1200

Downstream Manhole

PN	Length (m)	-	MH Name		I.Level (m)	D.Depth (m)	MH Connection	MH DIAM., L*W (mm)
1.000	14.400	48.0	SWMH2	76.400	75.800	0.450	Open Manhole	450
2.000	5.000	100.0	SWMH2	76.400	75.300	0.950	Open Manhole	450
1.001 1.002		100.0 100.0		76.400 76.400		0.970 1.630	Junction Open Manhole	1200
3.000	9.000	100.0	SWMH3	76.400	76.110	0.140	Open Manhole	1200
1.003	1.000	100.0		76.000	74.610	1.240	Open Manhole	0

Simulation Criteria for Storm

Volumetric Runoff Coeff	0.750	Additional Flow - % of Total Flow 0.000
Areal Reduction Factor	1.000	MADD Factor * 10m³/ha Storage 2.000
Hot Start (mins)	0	Inlet Coeffiecient 0.800
Hot Start Level (mm)	0	Flow per Person per Day (l/per/day) 0.000
Manhole Headloss Coeff (Global)	0.500	Run Time (mins) 60
Foul Sewage per hectare (l/s)	0.000	Output Interval (mins) 1

Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0 Number of Online Controls 1 Number of Storage Structures 1 Number of Real Time Controls 0

Synthetic Rainfall Details

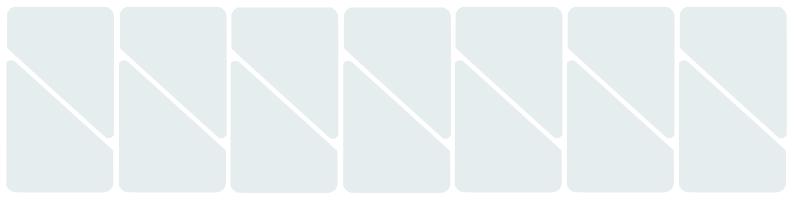
Rainfall Model	FSR	Profile Type Summer
Return Period (years)	1	Cv (Summer) 0.750
Region Er	ngland and Wales	Cv (Winter) 0.840
M5-60 (mm)	21.000 Storm	Duration (mins) 30
Ratio R	0.436	

						Page	4
	34	1a Netherh	all Garden	S		67	
	Lo	ondon, NWS	3 5TP				
	Su	, urface Wat	er Drainag	e Calcs		Mic	
ate 30/07/2024 17:27	De	esigned by	7 TS				iu
ile Surface Water Network.MDX		necked by				Uld	III Idyt
nnovyze		etwork 202					
	Online (Controls :	for Storm				
		_	,	_			
<u>Hydro-Brake® Optir</u>	num Manhole	: SWMH3, 1	DS/PN: 1.00	3, Volum	e (m³):	2.2	
	Uniti	Reference M	D-SHE-0070-20	00-0800-2	000		
		n Head (m)	D DILL 0070 20		800		
	-	'low (l/s)			2.0		
	2	Flush-Flo™		Calcula	ited		
		Objective :	Minimise upst	ream stor	age		
		plication		Surf			
	Sump .	Available			Yes		
	Diam	neter (mm)			70		
	Invert	Level (m)		74.	620		
Minimum Out	let Pipe Diam	neter (mm)			100		
Suggested	Manhole Diam	neter (mm)		1	200		
Control Points H	ead (m) Flow	(1/s)	Control Poi	nts	Head (m)	Flow (l/s)	
Design Point (Calculated)	0.800	2.0	F	Kick-Flo®	0.504	1.6	
Flush-Flo™	0.240	2.0 Mean	Flow over He	ad Range	-	1.7	
The hydrological calculations have b	oon based on	the wood/Di	cohargo rola	tionchin f	or the Ury	dro-Proko® () n + i miim
specified. Should another type of c			-	-	-		-
storage routing calculations will be			па пушто-вг	are opcimu	uno pe ull	LIISea ullell	LIIESE
storage routing carculations will be	e invaridated	1					
Depth (m) Flow (1/s) Depth (m) Flo	(1/.)	.h. (.m.) 171	(1 (a) Denth	(m) Elen (-h () 17]	(1/-)

0.100	1.8	0.800	2.0	2.000	3.0	4.000	4.2	7.000	5.5
0.200	2.0	1.000	2.2	2.200	3.2	4.500	4.4	7.500	5.6
0.300	2.0	1.200	2.4	2.400	3.3	5.000	4.7	8.000	5.8
0.400	1.9	1.400	2.6	2.600	3.4	5.500	4.9	8.500	6.0
0.500	1.6	1.600	2.7	3.000	3.7	6.000	5.1	9.000	6.2
0.600	1.8	1.800	2.9	3.500	3.9	6.500	5.3	9.500	6.3
	1				1		I		

										P	age 5	
						34a Nether	hall Gard	lens			87	
					I	London, NW	13 5TP				4	
					S	Surface Wa	ter Drain	nage Calc	s		Micco	
Date 30/0	07/2	2024 17	:27		Ι	Designed b	V TS	-			Desin	
File Sur:	-			·k.MDX		Checked by	-				Drain	age
Innovyze						Network 20					0	
		Su	mmary (of Crit	ical Resul	ts by Maxi	.mum Level	l (Rank 1) for	Storm		
		Fou nber of I	H ole Head 11 Sewag nput Hyd	Hot Start Not Start Noss Coe ge per he drographs	tion Factor art (mins) Level (mm) ff (Global) ctare (l/s) s 0 Number	0 1 0 0.500 Flow p 0.000 of Offline	Titional Flo MADD Facto Der Person Controls C	r * 10m³/r Inlet Co per Day (1) Number of	ha Stora effiecie /per/da f Time/A	ge 2.000 ent 0.800 y) 0.000 .rea Diagram		
	IN	umber or	OIIIIIe	CONCLOTS	s 1 Number o: Synthe	etic Rainfal		Number of	L REAL I		LS U	
			Rainfal	ll Model	<u></u>		(mm) 21.0	00 Cv (Sum	mer) 0.	750		
				Region	England and	Wales Ra	tio R 0.4	36 Cv (Win	ter) 0.	840		
			Ма	rgin for	Flood Risk V Analy	Varning (mm) sis Timester						
						DTS Status						
				Dunatia	Profile(s)	15 20 60	120 240	Summer a				
			Retur		n(s) (mins) (s) (years)	15, 50, 80,	120, 240,		900, 144 ., 30, 10			
					Change (%)			_	0, 0,			
									Water	Surcharged	Flooded	
			Doturn	Climate	First (X)	First (Y)	First (Z)			Depth	Volume	Flow
US/M	ИН		Recurn								/ 3 \	
•		Storm		Change	Surcharge	Flood	Overflow	Act.	(m)	(m)	(m³)	Cap
PN Nam	e		Period	Change +40%	Surcharge	Flood	Overiiow	Act.	(m) 76.142		(m°)	Cap.
PN Nam	e H1 15		Period	-	Surcharge	Flood	Overiiow	Act.			0.000	_
PN Name .000 SWMF .000 C	e H1 15 CD 15	5 Winter 5 Winter	Period 100	+40% +40%	Surcharge		Overilow	Act.	76.142	-0.108	0.000	0.1
PN Name .000 SWMH .000 C .000 SWMH	e H1 15 CD 15 H2 15	5 Winter 5 Winter 5 Winter	Period 100 100	+40% +40%	100/15 Summe	er	Overilow	Act.	76.142 75.481	-0.108 -0.019	0.000 0.000 0.000	0.1
PN Nam .000 SWMF .000 C .001 SWMF .002 Tar	e H1 15 CD 15 H2 15 hk 60	5 Winter 5 Winter 5 Winter 0 Winter	Period 100 100 100 100	+40% +40% +40%	100/15 Summe	er	Overilow	Act.	76.142 75.481 75.472 75.397	-0.108 -0.019 0.022 0.617	0.000 0.000 0.000 0.000	0. 0. 1. 0.
PN Nam	e H1 15 CD 15 H2 15 hk 60 H4 15	5 Winter 5 Winter 5 Winter 0 Winter 5 Winter	Period 100 100 100	+40% +40% +40% +40% +40%	100/15 Summe	er er	Uverilow	Act.	76.142 75.481 75.472	-0.108 -0.019 0.022	0.000 0.000 0.000 0.000 0.000	0.: 0.: 1.:
PN Nam .000 SWMF .000 C .001 SWMF .002 Tar 3.000 SWMF	e H1 15 CD 15 H2 15 hk 60 H4 15	5 Winter 5 Winter 5 Winter 0 Winter 5 Winter	Period 100 100 100 100 100	+40% +40% +40% +40% +40%	100/15 Summe 30/15 Summe	er er	Uverilow	Act.	76.142 75.481 75.472 75.397 76.277	-0.108 -0.019 0.022 0.617 -0.073	0.000 0.000 0.000 0.000 0.000	0

			Hall Diall	Fibe		
	US/MH	Overflow	Time	Flow		Level
PN	Name	(l/s)	(mins)	(l/s)	Status	Exceeded
1.000	SWMH1			4.1	OK	
2.000	CD			5.4	OK*	
1.01	SWMH2			13.4	SURCHARGED	
1.02	Tank		56	2.1	SURCHARGED*	
3.000	SWMH4			8.1	OK	
1.003	SWMH3			2.0	SURCHARGED	


Appendix E: Factual Report

Netherhall Gardens

Factual Report

July 2024 50124-A2SI-XX-XX-RP-X-0002-00

 \square

Project Name	Netherhall Gardens
Project Number	50124
Client	Nedko Kyuchukov
Document Name	Factual Report

This document has been prepared for the sole benefit, use and information of Nedko Kyuchukov for the purposes set out in the document or instructions commissioning it. The liability of A2 Site Investigation Limited in respect of the information contained in this document is as per the A2SI Terms & Conditions and will not extend to any third party. All concepts and proposals are copyright © July 2024. Issued in commercial confidence.

A2 Site Investigation Limited One Westminster Bridge Rd London, SE1 7XW

0207 021 0396 contact@a2-si.com www.a2-si.com

Prepared by

W. Frost BEng

Engineering Geologist

Checked by

W. Thistleton BEng

Approved by

D. Seeley FCMI MAPM ann

Senior Engineer

Director

Document Reference	Status	Notes	Revision	Issued by	Date
50124-A2SI-XX-XX-RP-X-0002-00	First Issue		00	JAS	26/07/2024

Contents

Introduction	1
Site Location	1
Proposed Development	2
Scope and Purpose of the Investigation	2
Investigation Strategy	2
Anticipated Ground Conditions	3
Limitations of Report	4
Standards	4
Ground Investigation Summary	4
Fieldwork Overview	4
Cable Percussion Boreholes	5
Trial Pits	5
Gas and Groundwater Monitoring Installations	6
Ground Conditions	6
Encountered Geology	7
In Situ Testing	8
Standard Penetration Testing	8
Laboratory Testing	10
Geotechnical Laboratory Testing	10
Geoenvironmental Laboratory Testing	11
Groundwater Monitoring	11
Groundwater Monitoring	11
Slug Test	11
	Site Location

Appendices

- Appendix A: Summary of Exploratory Holes
- Appendix B: Exploratory Hole Location Plan
- Appendix C: Exploratory Hole Logs and In Situ Testing Results
- Appendix D: Geotechnical Laboratory Testing Results
- Appendix E: Geoenvironmental Laboratory Testing Results
- Appendix F: Groundwater Monitoring Results

Abbreviations

Abbreviation	Full name	Abbreviation	Full name
ACM	Asbestos-containing Material	PL	Plastic Limit
BGS	British Geological Survey	PI	Plasticity Index
ВН	Borehole	PSD	Particle Size Distribution
BRE	Building Research Establishment	SGV	Soil Guideline Value
BSI	British Standards Institution	SOM	Soil Organic Matter
BS	British Standard	SPT	Standard Penetration Test
CIRIA	Construction Industry Research and Information Association	SPZ	Source Protection Zone
GAC	Generic Assessment Criteria	SVOC	Semi-volatile Organic Compounds
LL	Liquid Limit	TPH	Total Petroleum Hydrocarbon
m bgl	Metres Below Ground Level	UST	Underground Storage Tank
m OD	Metres Ordnance Datum	UXO	Unexploded Ordnance
PAH	Polycyclic Aromatic Hydrocarbons	VOC	Volatile Organic Compound
PCB	Polychlorinated Biphenyl	WAC	Waste Acceptance Criteria
PID	Photo Ionisation Detector		

1. Introduction

A2 Site Investigation (A2SI) were appointed to undertake a ground investigation at 34a Netherhall Gardens. The ground investigation was specified by A-squared Studio, who also acted as Investigation Supervisor. This first draft issue of the report describes the work undertaken and presents the findings to date.

A desk study has been completed for the site in conjunction with this investigation, (report ref 50124-A2SI-XX-XX-RP-Y-0001-00, dated July 2024), which has been referred to in this report.

2. Site Location

The site is situated at 34a Netherhall Gardens, London, NW3 5TP, as presented in Figure 2.1. The site is located at National Grid Reference 526360, 185150. The site falls within the administrative boundaries of the London Borough of Camden and currently includes a 2-floor residential dwelling with a garage on ground floor.

Figure 2.1 Site location and extent shown in red

3. Proposed Development

The scheme for the proposed development comprises the complete demolition of the existing residential dwelling followed by the construction of a new three-storey detached house over a single-story basement. The footprint of the proposed basement matches that of the overlying residential development. A 'conservative approach' has been assumed based on the provided plans that the development scheme will include areas of soft landscaping.

4. Scope and Purpose of the Investigation

A2SI have been commissioned to undertake a site investigation at the site comprising:

- 2 No. modular cable percussion boreholes; 1 No to 15.00m bgl and 1 No. to 8.00m bgl.
- 6 No. foundation inspection pits up to 1.50m bgl along boundary walls and the walls of the structure to be demolished. The pits shall record the foundations dimensions, depth, condition and founding strata. 1 No. environmental sample pit.

4.1. Investigation Strategy

Table 4.1 summarises the strategy for the phases of the intrusive investigation.

Table 4.1 Summary of investigation strategy

Location ID	Method	Purpose/Comments		
BH01- BH02	Modular Cable Percussion boreholes to 15.00m bgl and 8.00m bgl respectively	To determine the deeper ground conditions in order to facilitate geotechnical design and to facilitate sampling for testing. To facilitate the install of monitoring wells.		
TP01-06	Hand excavated structural inspection pits up to 1.20m bgl	To determine the foundation depths and dimensions.		
TP07	Hand excavated environmental pit	To facilitate environmental sampling for testing.		

5. Anticipated Ground Conditions

Table 5.1 presents a review of available geological maps and memoirs, including the online British Geological Survey (BGS) "Geology Viewer", previous site investigations and other relevant data.

According to the BGS, the site is indicated to be underlain by the London Clay Formation. Also given the history of the site it is anticipated that Made Ground would be present in varying thickness.

Table 5.1 Anticipated geological sequence

Unit	Depth ¹ (m bgl)	Thickness (m)	Description
Made Ground	0.00	1.0	Various anthropological deposits. Typically sandy clays with fragments of flints and bricks.
London Clay Formation	1.0	103.0	Weathered London Clat Formation found to be 9m thick and typically consists of firm to stiff mottled brown and blue-grey clay with small gypsum crystals London Clay Formation consisted of grey stiff and
Tormation			fairly silty well fissured clays with occasional fossil shell fragments and small nodules of pyrite. Extreme fissures at deeper depth.

1.

Depths refer to top of stratum.

6. Limitations of Report

This report has been prepared in accordance with the specification provided by the client. The data reported relates to the specific locations where each exploratory hole was formed and may not represent the ground and groundwater conditions of the site as a whole. Furthermore, it should be considered that groundwater levels may vary throughout the year due to seasonal conditions and other influences such as flooding, leaking mains, storm drainage and foul water systems.

7. Standards

The site investigation, soil descriptions and laboratory testing were undertaken in accordance with following standards:

- AGS Assessment and Control of Asbestos Risk in Soil Part 1: Protection of Personnel working on Ground Investigations, May 2021.
- BGS Geology Viewer: 2022. <u>https://www.bgs.ac.uk/map-viewers/bgs-geology-viewer/</u>. British Geological Survey.
- BGS GeoIndex: 2022. <u>https://www.bgs.ac.uk/map-viewers/geoindex-onshore/</u>. British Geological Survey.
- British Standards Institution BS 10175:2011+A2:2017, Investigation of potentially contaminated sites code of practice.
- British Standards Institution BS 5930:2015+A1:2020, Code of practice for site investigations.
- British Standards Institution BS 1377-2:2022, Methods of test for soils for civil engineering purposes Part 2: Classification tests and determination of geotechnical properties.
- British Standards Institution BS 1377-9:1990, Methods for test for soils for civil engineering purposes In-situ tests.
- British Standards Institution BS 8576:2013 Guidance on investigations for ground gas permanent gases and volatile organic compounds (VOCs).
- British Standards Institution BS EN ISO 14688-1:2018, Geotechnical investigation and testing identification and classification of soil. Identification and description.
- British Standards Institution BS EN ISO 22475-1: 2021 : Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution.
- British Standards Institution BS EN ISO 5667-1:2023 Water quality. Sampling Guidance on the design of sampling programmes and sampling techniques.
- Building Research Establishment (2005), BRE Special Digest 1: Concrete in aggressive ground.
- Norbury, D. (2010), Soil and Rock Description in Engineering Practice (Caithness: Whittles).
- UK Specification for Ground Investigation 3rd Edition, published by ICE Publishing (2022).

8. Ground Investigation Summary

8.1. Fieldwork Overview

The fieldwork was carried out between 1st and 2th July 2024. A site walkover was conducted prior to the commencement of the ground investigation and confirmed the anticipated layout of the site.

Up to date utility drawings were procured prior to the site work and can be downloaded using the following link - <u>Statutory Utility</u> <u>Drawings</u>.

A preliminary Unexploded Ordnance (UXO) Risk Assessment for the site was carried out by Brimstone in accordance with CIRIA C681 Guidelines: 'Unexploded Ordnance, a Guide for the construction Industry' (published in 2009) and is included in the previous Phase I Desk Study. The report's findings have concluded the risk of UXO on site is not considered to be significantly elevated above the background level. No further measures are required to mitigate the risk from UXO across the site.

The preliminary UXO risk assessment is presented in Appendix I.

After reviewing all available service information and site reconnaissance, all locations were scanned using Ground Penetrating Radar (GPR) & Electromagnetic (CAT & Genny) techniques, to check for services within proximity to exploratory hole locations. All positions were surveyed to determine the National Grid coordinates.

The specific details of the investigation undertaken are discussed throughout Section 8 and comprised:

- 2 No. modular cable percussion boreholes (BH01 and BH02); BH01 to 15.00m bgl and BH02 to 8.00m bgl.
- 6 No. foundation inspection pits up to 1.50m bgl along boundary walls and the walls of the structure to be demolished. The pits shall record the foundations dimensions, depth, condition and founding strata. Ino environmental sample pit.
- 1 No. shallow hand excavated pit to facilitate environmental sampling
- Appropriate sampling in the form of undisturbed thin wall samples (UT100), small disturbed samples, and bulk samples
- Geotechnical in situ testing
- Geotechnical/geoenvironmental laboratory testing
- Instrumentation and monitoring of groundwater levels and ground gas concentrations (3 No. visits over three weeks)

All works were supervised by an experienced ground engineer.

An exploratory hole location plan and detailed exploratory hole logs are presented in Appendices B and C respectively.

8.2. Cable Percussion Boreholes

2 No. cable percussion boreholes (BH01 and BH02). BH01 was completed to 15.00m bgl. BH02 was completed to 8.00m bgl.

UT100 sampling and SPT testing were undertaken at alternate 1.00m intervals in cohesive soils until 5.00m below top of stratum, then alternate 1.50m intervals. All soils encountered were logged on site and sub-sampled accordingly for geotechnical and geoenvironmental laboratory analysis.

A standpipe was installed in both boreholes for monitoring of ground gas and groundwater levels.

8.3. Trial Pits

A total of 7 no. hand excavated trial pits (TP01-TP07) were completed to a maximum depth of 1.20m bgl to determine the extent and thickness of existing foundation structures and for geoenvironmental sampling. A summary of the findings is presented in Table 8.1.

Where the concrete was found such as in TP02, a probe hole was carried out using a Hilti drill or similar to determine the slab thickness across the proposed pitting location.

TP07 was hand excavated to 0.60m bgl to facilitate environmental sampling.

All soils encountered were logged on site.

Table 8.1Trial Pit locations

Exploratory Hole Reference	General Findings	Bearing Stratum	Notes
TP01	Concrete foundations to a depth of 1080mm	Brownish orange silty CLAY	Telecoms services found at a depth

Exploratory Hole Reference	General Findings	Bearing Stratum	Notes		
TP02	Concrete foundation found at depth of 980mm.	Orange mottled brown slightly gravelly slightly sandy silty CLAY.	Drill probe proved thickness of concrete to be 500mm		
TP03	Concrete foundation to a depth of 1040mm	Brown orange mottled grey very gravelly slightly sandy silty CLAY.			
TP04	A metal cage filled with loosely placed bricks was encountered at 230mm	Greyish brown slightly gravelly fine sandy SILT.	Two drill probs to 1200mm only encountered bricks.		
TP05	No foundations where found	Orange mottled grey silty CLAY.	A drill probe was angled into the wall 500mm and no foundations were found.		
TP06	Concrete foundations found to a depth of 390mm	Brown slightly gravelly slightly fine sandy silty CLAY.			

8.4. Gas and Groundwater Monitoring Installations

2 No. combined gas and groundwater monitoring pipes were installed (BH01 – BH02). The monitoring installations comprise of a 50mm internal diameter HDPE casing and well screen. Details are presented in Table 8.3.

Table 8.2	Gas, groundwater	r and pore water	monitoring installations
-----------	------------------	------------------	--------------------------

Location Ref	Borehole (m Bef bgl)	cation Borehole (m Diameter In:		Type of Installation	Top of Response Zone (m bgl)	Bottom of Response Zone (m bgl)	Target Strata
BH01	15	50	SP/G	0.8	9.00	Claygate Member	
BH02	8	50	SP/G	1.00	7.50	Claygate Member	

Key

SP/G - Standpipe with Gas monitoring valve

9. Ground Conditions

The ground conditions generally confirm the published geological records, comprising of Made Ground overlying Claygate Member with London Clay Formation being encountered at 9.00m bgl in BH01 and 7.50m bgl in BH02, the extent of the London Clay were not proven.

The full set of exploratory hole logs are presented in Appendix C.

Encountered ground conditions are presented in Table 9.1 and a cross section is presented in Figure 9.1.

9.1. Encountered Geology

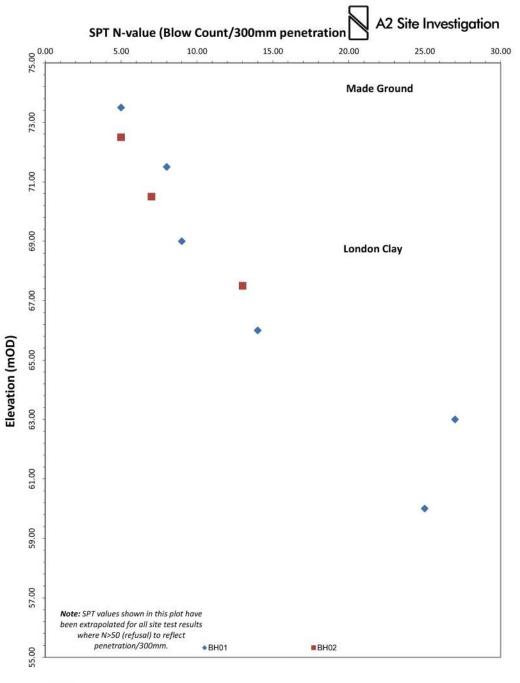
The following ground conditions were encountered at the site. Detailed exploratory hole logs are presented in Appendix C. A photographic record is presented in Appendix D.

Table 9.1 Ground conditions encountered

Unit	Depth (m bgl)	Depth (m bgl)Elevation (m OD)min - max^{(1)}min - max^{(1)}		Description	
	min – max ⁽¹⁾			·	
Made Ground – Paving Slab & Concrete Surfacing	0.00	76.36-76.79	0.00 – 0.30	Weak yellowish grey CONCRETE, 70% aggregate of sub-rounded fine to coarse flint and limestone. Partially weathered toward base.	
				Soft greyish brown slightly gravelly fine sandy SILT, with brick slate and occasional ceramic, concrete and plastic.	
				and	
Made Ground	0.00	76.37 – 78.63	0.00 - 0.50	Medium dense brownish grey silty fine sandy GRAVEL with brick, sandstone, slate and occasional concrete and flint.	
				and	
				Soft to firm brown mottled grey very gravelly slightly sandy silty CLAY with brick, flint occasional roots.	
Made Ground - Reworked Ground	0.23 - 0.35	76.06 – 76.58	0.10-0.86	Firm orangish brown mottled dark grey slightly gravelly slightly sandy silty CLAY. Sand is fine. Gravel is sub- angular to sub-rounded flint, brick, wood and rare concrete.	
London Clay Formation - Claygate Member	0.45 – 0.80	75.56 – 76.09	0.64 – 8.20	Soft to firm orangish brown mottled reddish orange and blueish grey slightly sandy silty CLAY with occasional organic fragments (<20mm), Sand is fine to medium.	
London Clay Formation	7.50-9.00	67.36-69.29	Not proven	Soft to firm brownish grey silty CLAY with rare pockets of fine sand (<80mm).	

(1) Depth / elevation refers to top of stratum.

1	Project Net	herhal	I Gardens	Title BH (Cross S	Sectio	n				
3	Job No 501	24		Vertical Scale 1:12	9					A2 Site Investige	atio
	Client Neo	lko Ky	uchukov	Horizontal Scale 1:20	0						
		•					Mile Securi	440 150 870		Welk Depend Welk Depend Welk Depend	F:
		× —			111		Made General				— x
		× —				×			x		<u>-</u> .
		a —				×					
		*									t,
						×-×					
								ras 100	×	Linder Sing Linder Sing Groups Weak of Head of Head of	_ .
.egend	Кеу	u								Lavin Cog. Tasibu	
	SANDSTONE	y. 			908		Lasceri Clar Pamatas Corgile Mareter				+.
	Bandy gravely SILT	100-									
	Bity gravely CLAY CONDRETE	u									
<u>-</u>	Sity CLAY										Ξ.
	Sity sandy gravely CLAY					×					
<u>- x</u> -	Sity sandy CLAY	ю. —			#00		Linden Cile Families				
	Chainage (m	0		97.4		10.77		16.84	£17.66	33.88	
	Elevation (m)	AOD)		that	t	16.31	76.48	76.43	腔线	78.67	
Ĩ	Offset (m)			a.	-	0.34		2.40	6.91	363	


Figure 9.1 Geological cross-section

10. In Situ Testing

10.1. Standard Penetration Testing

Standard Penetration Tests were completed in all cable percussion boreholes. The tests were completed in accordance with BS EN ISO 22476-3.

Figure 10.1 presents the SPT versus Elevation plot for the site. Detailed SPT results are presented in Appendix C.

50124

Figure 10.1 SPT/ Elevation plot

11. Laboratory Testing

11.1. Geotechnical Laboratory Testing

Geotechnical laboratory testing was undertaken by i2 Analytical, a United Kingdom Accreditation Service (UKAS) accredited laboratory, in accordance with relevant standards.

The following type and number of tests scheduled are presented in Table 11.1. The results summary is presented in Table 11.2 and detailed results are presented in Appendix E.

Table 11.1	Geotechnical	laboratory	testing	summary
------------	--------------	------------	---------	---------

Test description	Number of tests
Natural moisture content BS 1377:1990 - Part 2 : 3.2	8
4 Point Liquid and Plastic Limit BS 1377:1990 - Part 2: 4.3 and 5.3	4
Particle Size Distribution Wet Sieve Method BS 1377:1990 - Part 2	1
Suite D (brownfield, pyrite present) ⁽¹⁾	4
Quick Undrained Triaxial – 100mm or 38mm single stage BS 1377:1990 - Part 7 : 8	4

(1) Includes pH, water & acid soluble sulphate, total sulphur, magnesium, chloride and nitrate

Table 11.2 Summary of the geotechnical laboratory test results

Strata	Parameter	Value (min -max)
Made Ground	Water Soluble Sulphate (g/L)	0.031 – 0.130
	Moisture Content (%)	27.5 – 34.9
	Plasticity Index (%)	40 - 43
Claygate Member	Undrained Shear Strength (kPa)	47 – 68
	рН	8.0 - 8.3
	Moisture Content (%)	18.0 – 43.6
London Clay Formation	Plasticity Index (%)	44
	Undrained Shear Strength (kPa)	83 – 136

Strata	Parameter	Value (min -max)
	рН	8.6 – 9.1

11.2. Geoenvironmental Laboratory Testing

Selected soil and groundwater samples were sent for geoenvironmental laboratory testing which was undertaken by i2 Analytical, a United Kingdom Accreditation Service (UKAS) accredited laboratory. The following type and number of tests scheduled is presented in Table 11.3 and the results are presented in Appendix F.

Table 11.3 Geonvironmental testing - soil

Test description	Number of tests
A2SI RA Suite ⁽¹⁾	4
WAC (full)	1

(1) A2SI Risk Assessment Suite includes: Asbestos Identification, Metals, Anions. Inorganics, Fraction of Organic Carbon, pH, Soil Organic Matter, Total Organic Carbon, Polyaromatic Hydrocarbons (PAH16-MS), VPH/EPH (TPH CWG incl BTEX); Speciated Phenols by HPLC or GCMS, Total Cyanide, Sulphide (acid soluble), Sulphate (water soluble)

12. Groundwater Monitoring

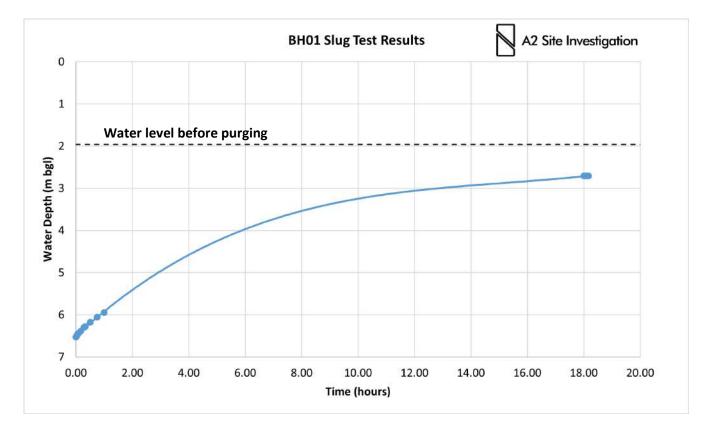
3 No. rounds of groundwater monitoring visits have been undertaken between 9th July 2024 and 22nd July 2024. A summary is presented in Table 12.1. The results are presented in Appendix E.

12.1. Groundwater Monitoring

The groundwater levels and any free-phase liquids were measured using a calibrated Geotech Oil/Water Interface meter. Groundwater levels were recorded in the monitoring wells during the monitoring visits and the results are presented in Table 12.1.

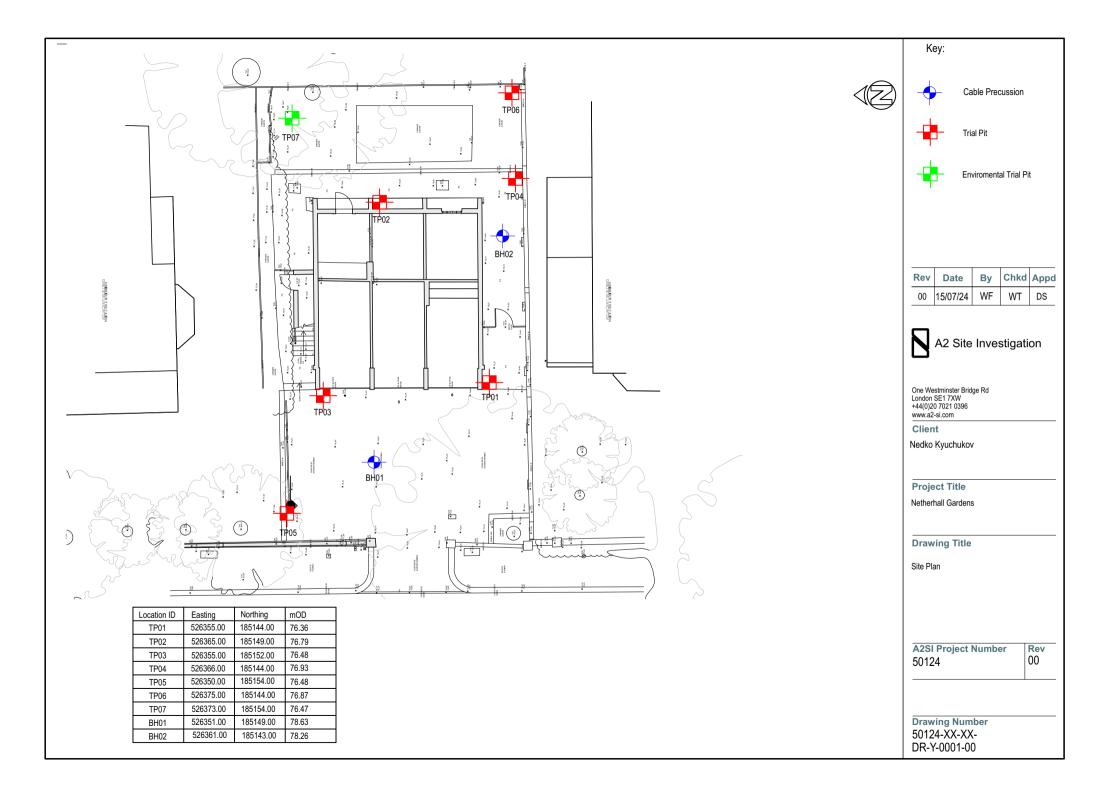
Table 12.1 Groundwater monitoring results

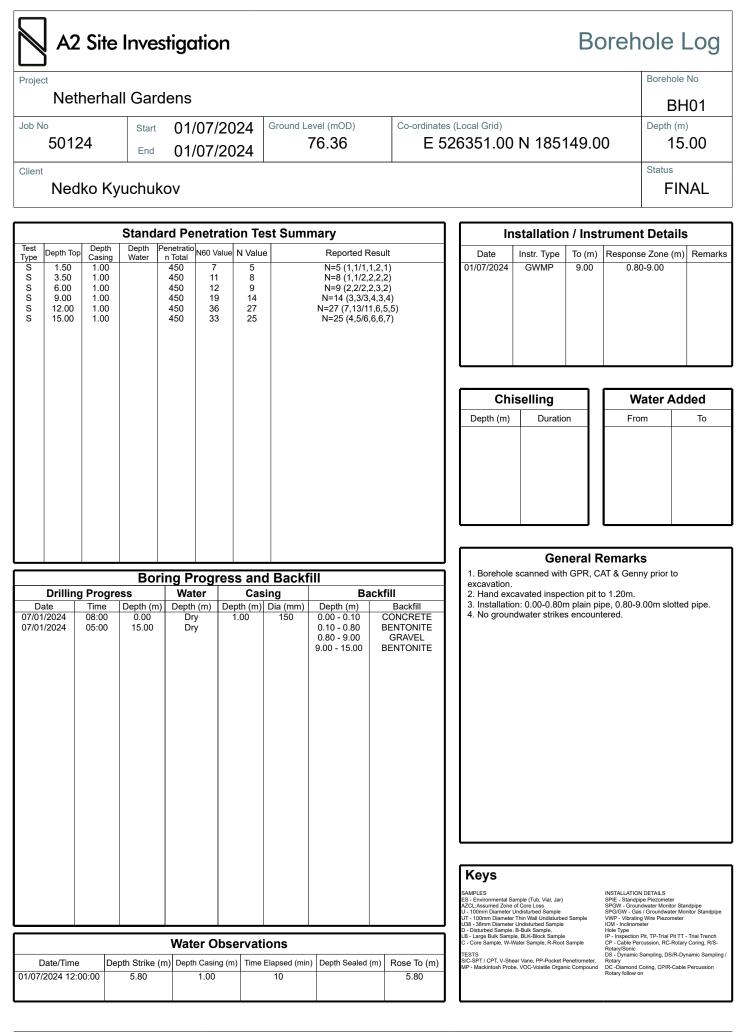
Exploratory hole reference	Depth of monitoring well (m bgl)	Round 1 09/07/2024 (m bgl)	Round 2 15/07/2024 (m bgl)	Round 3 22/07/2024 (m bgl)	Notes
BH01	9.20	1.83	1.90	1.96	Slug test carried out on third visit
BH02	7.56	6.59	6.51	3.68	


12.2. Slug Test

1 No. slug test was carried out within BH01 on 22nd July 2024. Before the test, the groundwater level was measured at 1.96m bgl. The borehole was purged of water, and the rising groundwater level was measured.

Figure 12.2 presents the results of the slug test.



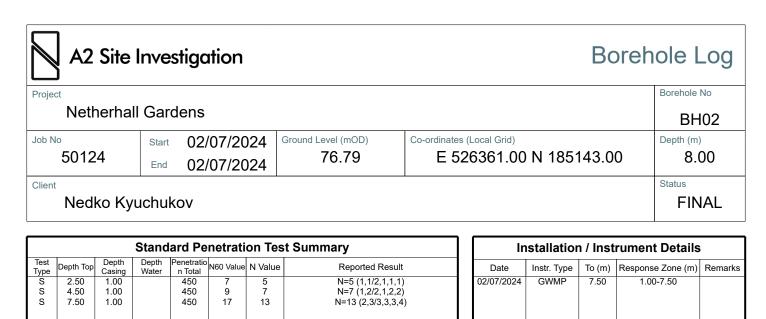

Appendix A: Summary of Exploratory Holes

Location ID	Location Type	Status	Easting	Northing	Ground Level	Final Depth	Date Start	Date End
BH01	СР	FINAL	526351.00	185149.00	76.36	15.00	01/07/2024	01/07/2024
BH02	СР	FINAL	526361.00	185143.00	76.79	8.00	02/07/2024	02/07/2024
TP01	TP	FINAL	526355.00	185144.00	76.48	1.09	01/07/2024	01/07/2024
TP02	TP	FINAL	526365.00	185149.00	76.93	0.98	01/07/2024	01/07/2024
TP03	ТР	FINAL	526355.00	185152.00	76.48	1.20	02/07/2024	02/07/2024
TP04	TP	FINAL	526366.00	185144.00	76.87	0.40	02/07/2024	02/07/2024
TP05	TP	FINAL	526350.00	185184.00	76.47	0.33	02/07/2024	02/07/2024
TP06	TP	FINAL	526375.00	185144.00	78.63	0.44	02/07/2024	02/07/2024
TP07	ТР	FINAL	526373.00	185154.00	78.26	0.50	01/07/2024	01/07/2024

Appendix B: Exploratory Hole Location Plan

Appendix C: Exploratory Hole Logs and In Situ Testing Results

All dimensions in metres	Contractor	A2 Site Investigation	Method	Cable Dergussion	Logaed by	Approved by
Scale 1:50		A2 Site Investigation		Cable Percussion	ČM Č	''WT '


Borehole Log

- TOU	lemaii	Gardens		1						E	3H01		
ob No 5012	4	Start 01/07		Ground Level (mOD) 76.36	Co-Ordinates (Local Gr E 526351		N 1851	49.0		Depth (m	¹⁾ 15.00		
lient	-	End 01/07	2024		SPT Energy Ratio %	1	Sheet				Status		
	ko Kyu	chukov			80		Sheet 1	heet 1 of 2			INAL		
SA	MPLES & T			Stratum	Description		Depth	Reduce		Lege	- meut		
Depth (m)	Type No	Test Result	Mook vol		70% aggregate of subroun	dod fino	(thickness)	Leve		2090	Instru		
0.20 - 0.50	BRE 1		to coarse		s Partially weathered towar		(0.30) -	76.06	3				
0.40 0.50 - 1.00	ES 2 BRE 3		Soft orang	gish brown mottled dark g	rey slightly gravelly slightly subrounded fine to coarse		(0.50)						
			brick and	rare concrete. Sand is fin KED GROUND]	e to coarse.	or mint,	0.80	75.56	5				
			Soft orang	gish brown mottled reddis	h orange and bluish grey sl rganic fragments (<20mm).	ightly Sand is							
1.50	SPT	N=5 (1,1/1,1,2,1)	fine to me			Canalo	-						
1.50	JF I	IN-J (1, 1/1, 1,2,1)	[-						
2.50 - 2.95	U 4	Ublow= 16 100%rec											
	n -												
3.00	D 5												
3.50	SPT	N=8 (1,1/2,2,2,2)											
	-	, , , , , , , , , , , , , , , , , , , ,											
4.00	BRE 6												
4.50 - 4.95	U 7	Ublow= 24 100%rec					-						
5.00	D 8						(8.20) _						
5.00	00						-						
5.50	D 9						-						
			5 80 to 6 00	mwith claystone band e	encountered								
6.00	SPT	N=9 (2,2/2,2,3,2)	5.00 10 0.00	mwur Gaystone Dand (<u>encountereu</u>								
7.00	BRE 10		7.00 1- 0.01										
7.00 - 7.50	BRE 11		1.00 to 8.00	mbecoming brown									
7.50 7.50 - 7.95	ES 12 U 13	Ublow= 27 100%rec											
		100%IEC											
8.00	D 14		8.00 to 9.00	mbecoming greyish bro	own								
8.50	D 15						-						
0.00	513						-						
9.00	SPT	N=14	Soft to firr	m brownish arev silty CLA	Y with rare pockets of fine s	sand	9.00	67.36	6				
		(3,3/3,4,3,4)	(<80mm).										
			1-01.001										
40.00													
10.00	BRE 16			T				<u> </u>					
		Contractor			Method			1	Logged By		Approved by		

Borehole Log

roject Neth	nerhall	Gardens							D	orehole No BH	01		
5012	24	Start 01/07 End 01/07	/2024 /2024	Ground Level (mOD)	Co-Ordinates (Local Gr E 526351		N 1851	49.00		epth (m) 15.	00		
lient Ned	ko Kyu	chukov			SPT Energy Ratio %					Status FINAL			
SA	MPLES & T	ESTS					Depth	Reduced	ter		nstrument /		
Depth (m)	Type No	Test Result		Stratum De			(thickness)	Level	Water	Legend	Instrumen /		
10.00 10.50 - 10.95	D 17 U 18	Ublow= 29 100%rec	(<80mm). [LONDON -10.00 to 13.0 10.00 to 15.0	brownish grey silty CLAY CLAY FORMATION] 10mbecoming slightly m 10mbecoming firm and c 10mwith occasional poc	icaceous Jark grey								
- 11.00	D 19		<u>(<20mm)</u>										
11.50 - 12.00	D 20 SPT	N=27					(6.00)						
12.00	BRE 21	(7,13/11,6,5,5)	12.00 to 12.2	0mwith claystone band	encountered		(0.00)						
- 13.00	D 22		13.00 to 15.0	0mbecoming stiff									
13.50 - 13.95	U 23	Ublow= 38 70%rec											
- 14.00	D 24												
14.50	D 25												
- 15.00 15.00	SPT BRE 26	N=25 (4,5/6,6,6,7)		End of Boreho	le at 15.00m			61.36					
- All dimensions i Scale 1:		Contractor	2 Site Inv	estigation	Method Cable P	ercussi	ion –	Log	ged By CM	Appro	oved by WT		

Chisel	ling	Water A	\dded
Depth (m)	Duration	From	То

General Remarks

1. Borehole scanned with GPR, CAT & Genny prior to

excavation.

2. Hand excavated inspection pit to 1.20m.

m slotted pipe.

Date	Time		Depth (m)	Depth (n	n) Dia (mm)	Depth (m)	Backfill			pe, 1.00-7.50m slotted pipe.
Date 07/01/2024 07/01/2024	1000 08:00 05:00	Depth (m) 0.00 8.00	Depth (m) Dry Dry	Depth (r 1.00	n) Dia (mm) 150	Depth (m) 0.00 - 0.10 0.10 - 1.00 1.00 - 7.50 7.50 - 8.00	Backfill CONCRETE BENTONITE GRAVEL BENTONITE		water strikes encoun	
Date/Time	e D	lepth Strike (m	Water O		ations ne Elapsed (min)	Depth Sealed (m) Rose To (m)	D - Disturbed Sample, B LB - Large Bulk Sample, C - Core Sample, W-Wa TESTS S/C-SPT / CPT, V-Shear	Core Loss disturbed Sample hin Wall Undisturbed Sample Indisturbed Sample -Bulk Sample,	INSTALLATION DETAILS SPIE - Standpipe Piezometer SPGW - Granutwheter Monitor Standpipe SPGW - Granutwheter Monitor Standpipe VMP - Vitratillar Wire Piezometer ICM - Indinometer Hole Type DP - Cable Percussion, RC-Rotary Coring, RS- Rotary/Sonic DS - Dynamic Sampling, DS/R-Dynamic Sampling Rotary
										Rotary follow on

Backfill

All dimensions in metres Contractor Scale 1:50

Drilling Progress

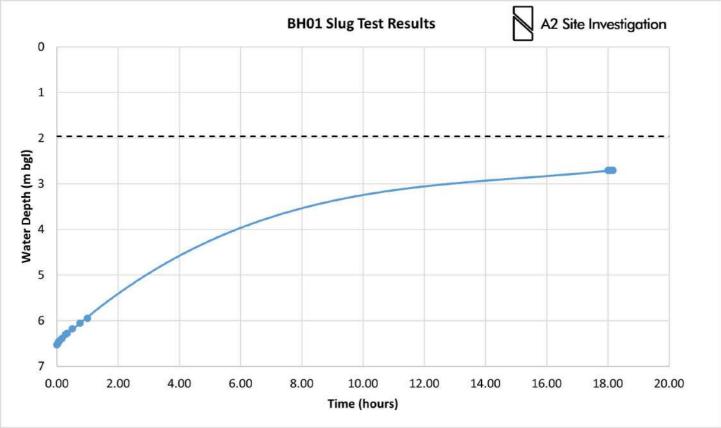
A2 Site Investigation

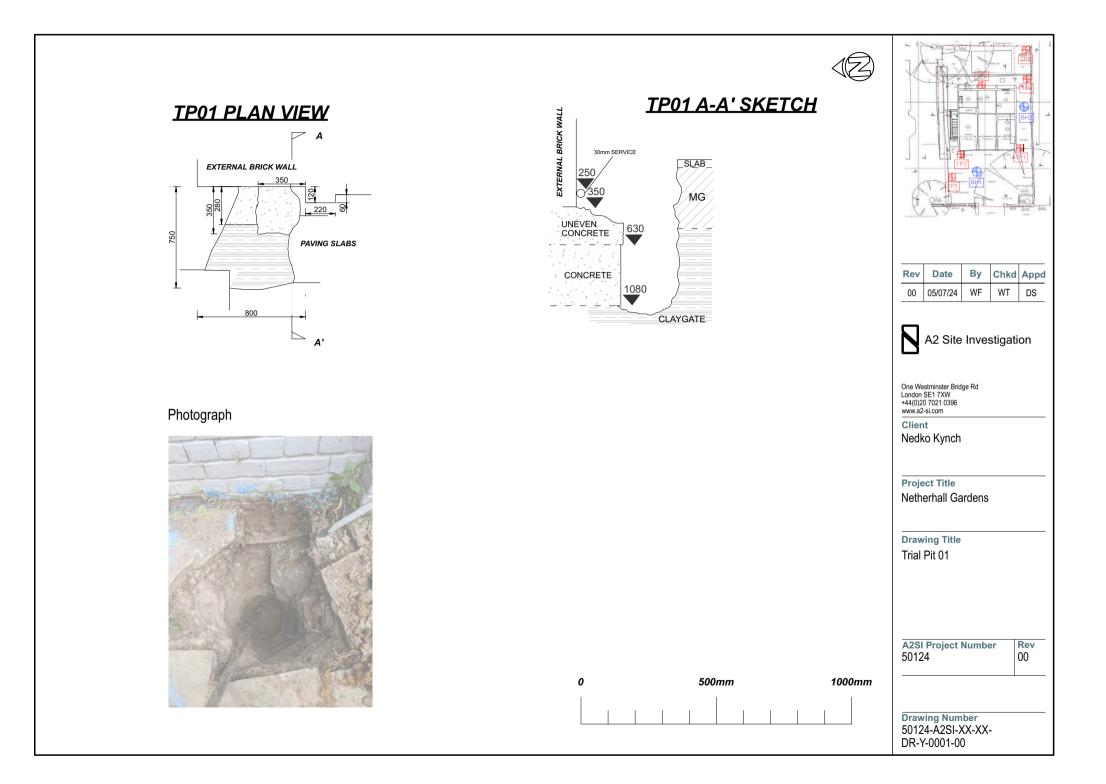
Cable Percussion

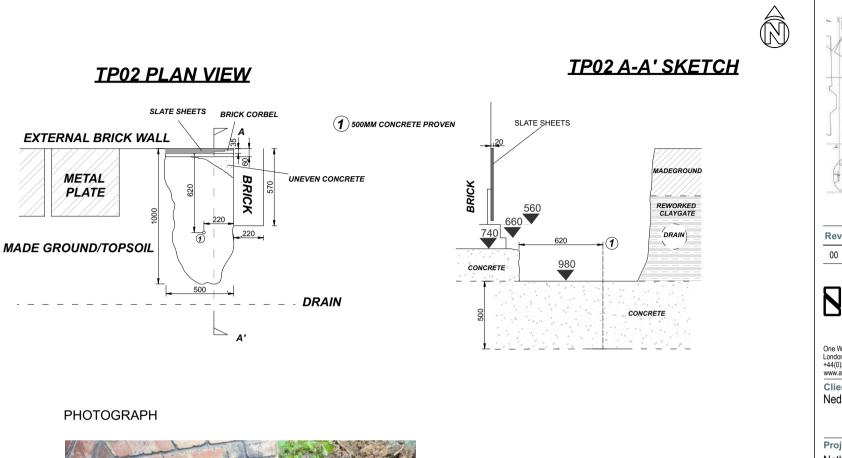
Logged by Approved by WT

Boring Progress and Backfill

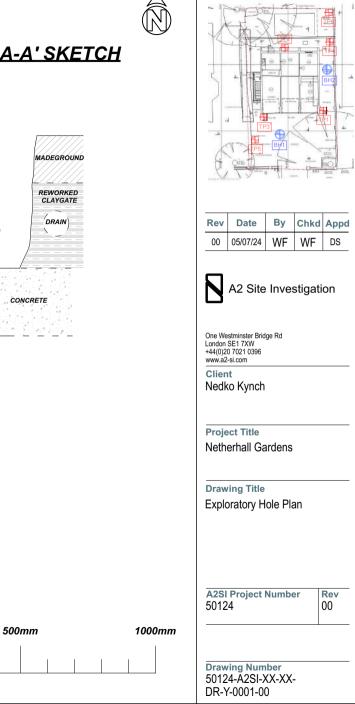
Casing

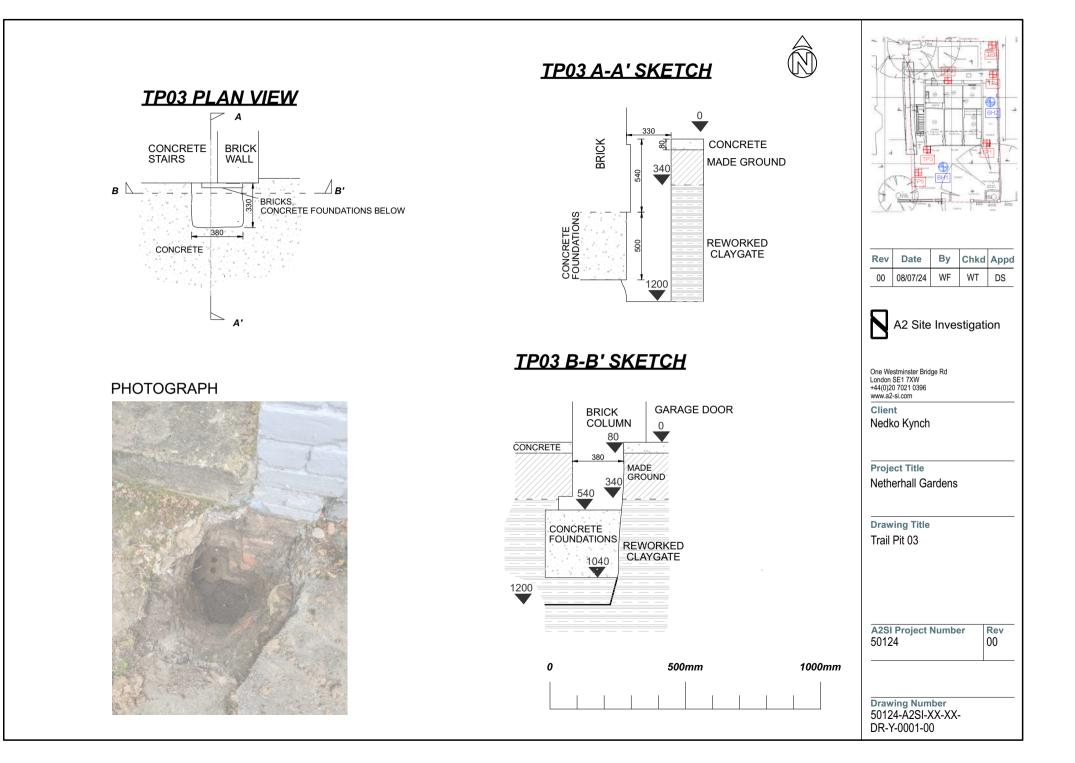

Water

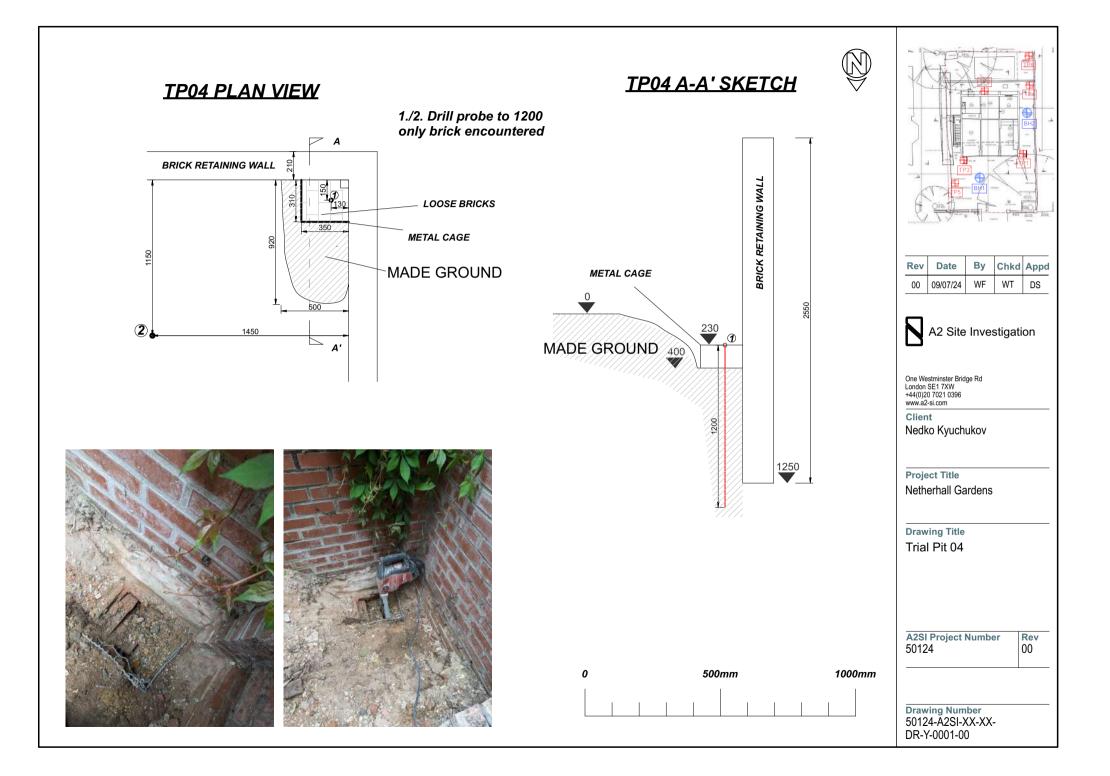

Method

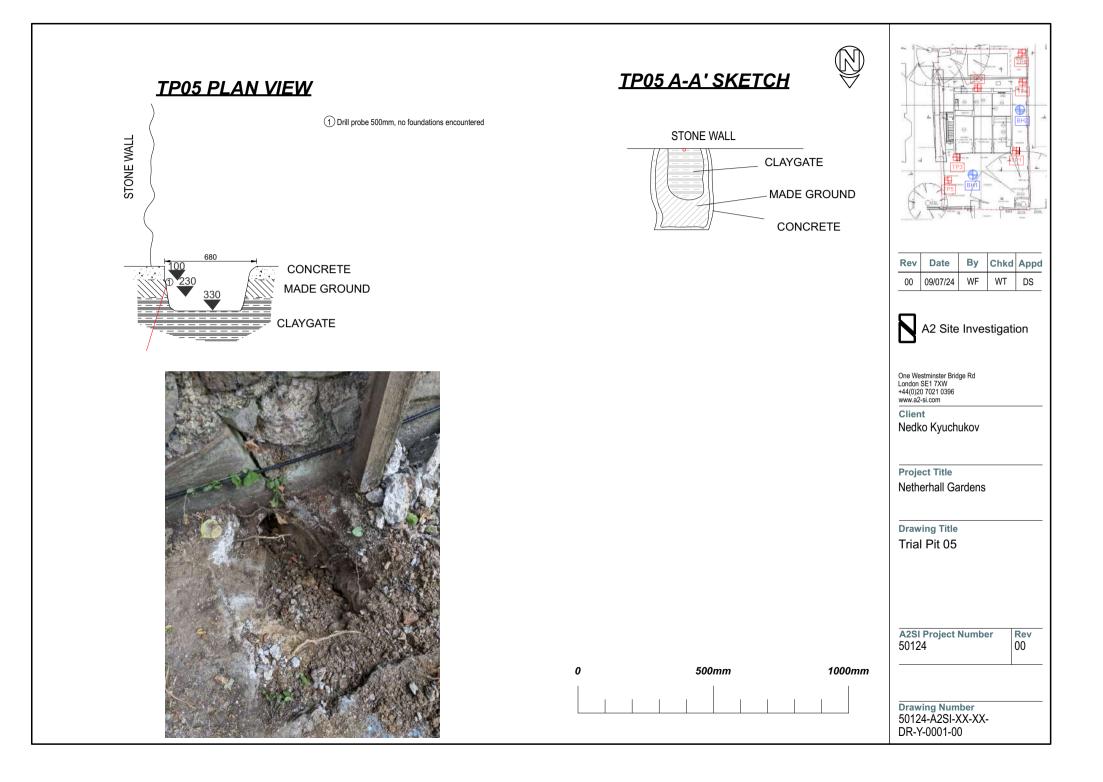


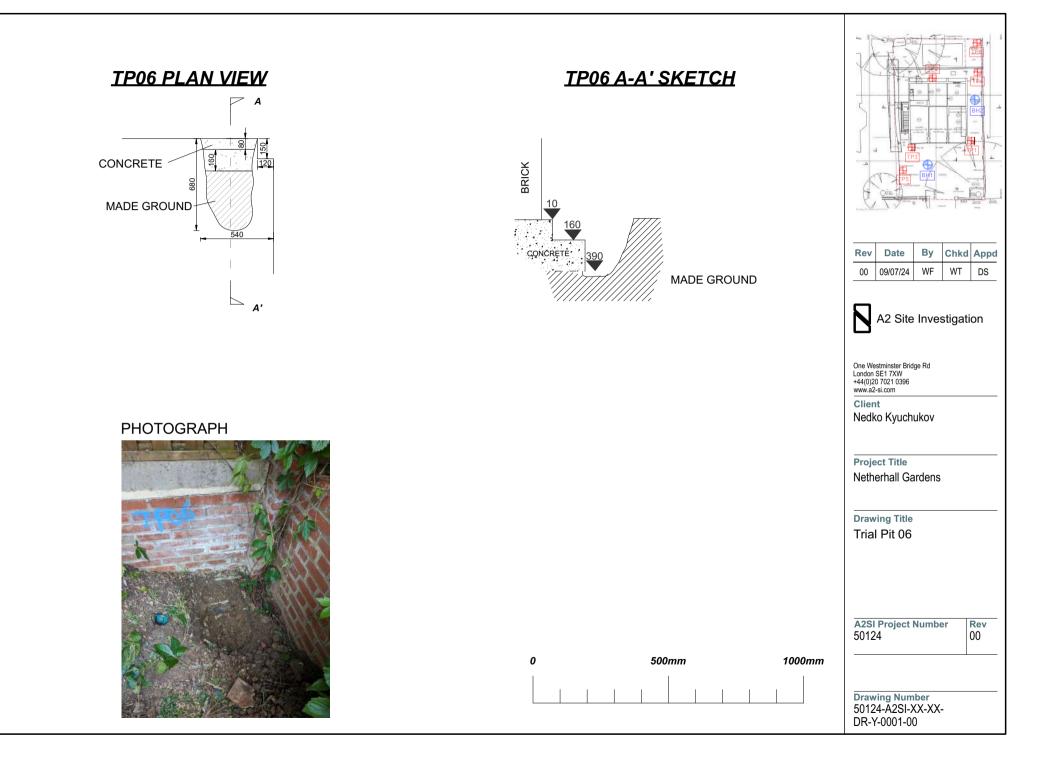
Borehole Log


noject Netł	herhall	Gardens							Boreho	BH02	
50101			/2024 /2024	Ground Level (mOD)		Co-Ordinates (Local Grid) E 526361.00 N 185143.00				Depth (m) 8.00	
lient Ned	lko Kyu	chukov			SPT Energy Ratio %	Sheet S	heet 1 of	⁻ 1	Status	FINAL	
SA	AMPLES & T			Stratum D			Depth Re	duced	Water P	egend ,	
Depth (m)	Type No	Test Result		Stratum De	escription		· /		> Le	egend user	
0.20 0.20 - 0.50	B 2 ES 1		\ [MADE GR	Iow SANDSTONE. OUND: PAVING SLAB]		/	(0.06)	6.73 6.49			
0.20 - 0.30 0.50 0.50 - 1.00	B 4 ES 3		subangular Sand is fine [MADE GR	to subrounded fine to co to medium. OUND]	ndy gravelly SILT. Gravel is arse of brick, flint and rare	glass.	$\begin{array}{c} 0.00 \\ (0.24) \\ 0.30 \\ (0.40) \\ \end{array}$	6.09			
1.50 - 1.95	U 5	Ublow= 16 100%rec	is subangu fine to coar [REWORK Soft to firm	ar to subrounded fine to	silty CLAY with rare gravel coarse of flint and brick. S bluish grey silty CLAY. YGATE MEMBER]	. Gravel and is	0.70 - - - - - - - - - - - - - - - - - -				
2.00	D 6		2.00 to 7.50m 5-20mm)	with pocket of yellow a	nd grey fine sand (approxin	nately					
2.50 2.50	SPT BRE 7	N=5 (1,1/2,1,1,1)									
3.50 - 3.95	U 8	60%rec									
4.00	D 9						(6.80) -				
4.50	SPT	N=7 (1,2/2,1,2,2)									
			5.00 to 7.50m	becoming slightly oran	gish brown mottled dark blu	iish grey					
5.50 5.70	D 10 BRE 11										
6.00 6.00 - 6.45	BRE 12 U 13	100%rec									
6.50	D 14										
7.00 7.00	BRE 16 D 15		7.00 to 7.50m	becoming brown							
7.50 7.50	SPT BRE 17	N=13 (2,3/3,3,3,4)	(5-20mm a	h brown silty CLAY with c oproximately). CLAY FORMATION]	occasional pockets of fine	sand	7.50 – 69 (0.50) –	9.29		W	
8.00 8.00	BRE 19 D 18			End of Boreh	ble at 8.00m			8.79			
All dimensions	in metres	Contractor		estigation	Method Cable P			Logge	а ву СМ	Approved by	









Appendix D: Geotechnical Laboratory Testing Results

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3 and 5.5, Fall Cone Method, 4 Pt Test, BS 1377-2:2022,

cl 5.2 and 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041								EIIVII	onmental Sci
Client: Client Address:	A2 Site Investigation Li One Westminster Bridg London, SE1 7XW		3ank,			_	lient Reference: Job Number: Date Sampled: Date Received:	24-029861-1 01/07/2024	
Contact: Site Address: <u>Testing carried out at i</u>	Charlie Mason Netherhall Gardens 2 Analytical Limited, ul. F	Pionierow, 41-71	1 Ruda Slas	ska, Poland			Date Tested: Sampled By:	16/07/2024	
Test Results: Laboratory Reference: Hole No.: Sample Reference: Sample Description: Sample Preparation: Cone Type:	252685 BH01 Not Given Greyish brown silty CL/ Tested in natural condi 80g/30deg		content in th	e sample was i	increased	I	Depth Top [m]: Depth Base [m]: Sample Type:	Not Given	
As Received Water Content [W] %	Liquid Limit [WL] %	Plastic Li [Wp] %		lasticity Index [lp] %	Liquidity Index [IL] % #		Consistency Index [IC] % #	% Passing 425µm BS Test Sieve	
34.9	72	32		40	0.08		0.93	100)
80 70 60 50 50 40 30			CIM	C		•	CIV A lin SiV		
Ч									

Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil Liquid Limit Plasticity CI Clay Low below 35 L Si Silt Μ Medium 35 to 50 Н High 50 to 70 V Very high exceeding 70

50

LIQUID LIMIT

SiM

40

Note: Water Content by BS EN 17892-1: 2014; # Non accredited

CIL - SiL

20

10

Remarks:

20

10

0 + 0

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

CIL

SiL

30

0

Organic

Signed: Katasyna Koziej

SIH

60

70

append to classification for organic material (eg CIHO)

Katarzyna Koziel Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

80

90

100

TEST CERTIFICATE

DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3 and 5.5, Fall Cone Method, 4 Pt Test, BS 1377-2:2022,

cl 5.2 and 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client: Client Address:			A2 Site Investigation Limited							Client Reference: 50124 Job Number: 24-029861-1					
			One Westminster Bridge Road, South Bank, London, SE1 7XW								Date Sampled: 01/07/2024				
Conta	act:	Charlie N	Charlie Mason							Date Received: 03/07/2024 Date Tested: 16/07/2024					
Site Address:			Netherhall Gardens							Sampled By:	Not Given				
	ng carried out a	at i2 Analytica	al Limited, u	I. Pioniero	ow, 41-71	11 Ruda	Slaska, Polar	nd							
	Results: atory Reference	ce: 252687								Depth Top [m]:	8.50				
lole No.:		BH01									Depth Base [m]: Not Given				
•	ble Reference:	Not Give	en brown CLA	/						Sample Type:	D				
samp	le Description	Greyish		ſ											
	le Preparation Type:	: Tested ir 80g/30de		ndition; Th	ne water	content i	n the sample	was in	creased						
As Received Water Content [W] %			Liquid Limit [WL] %		Plastic Limit [Wp] %		Plasticity Index [lp] %		Liquidity Index [IL] % #	Consistency Index [IC] % #	% Passing 425µr BS Test Sieve				
	33.9		71		28		43		0.14	0.86	100				
	80 -						-				-				
	80														
	70														
	70									U line					
										-					
	60									,					
	50								/	CIV					
	50									A li	ne				
PLASTICITY INDEX									•						
N N N	40							СН							
ICIT						/				SiV					
-AST	30				/	СІМ		\nearrow							
-						CIW									
σ.							\frown	SIH							
d	20			/				-							
д.	20			CIL											
4	20			CIL			_								
4		CIL -	SiL			SiM									
c		<u>CIL</u> -	SiL 20	CIL SiL		SiM	50	60	70	80	90 100				

of the UKAS Accreditation. This fataeyna, approval of the issuing

Katarzyna Koziel Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

CI

Si

Remarks:

Clay

Silt

Note: Water Content by BS EN 17892-1: 2014; # Non accredited

Plasticity

Low

High

Medium

Very high

Organic

L

Μ

Н

V

0

Page 1 of 1

Liquid Limit

below 35

35 to 50

50 to 70

exceeding 70

Date Reported: 23/07/2024

append to classification for organic material (eg CIHO)

DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3 and 5.5, Fall Cone Method, 4 Pt Test, BS 1377-2:2022,

cl 5.2 and 6

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041												
Clie	nt:		A2 Site Invest	tigation Limit	ed				C	lient Reference:	50124	
Clie	nt Addres	SS:	One Westmin	etor Bridgo E	Pood South	Book				Job Number:	24-029861-1	
			London, SE1		Noau, South	Dalik,				Date Sampled:	01/07/2024	
			London, OL I	/////						Date Received:	03/07/2024	
Con	tact:		Charlie Masor	n						Date Tested:	16/07/2024	
Site	Address	:	Netherhall Ga	ardens						Sampled By:	Not Given	
Tes	ting carrie	ed out at i2	Analytical Lim	nited, ul. Pior	nierow, 41-7	11 Ruda Slas	ska, Poland					
Tes	t Resul	ts:										
		eference:	252689							Depth Top [m]:	13.00	
	e No.:		BH01							Depth Base [m]:		
Sam	nple Refe	erence:	Not Given							Sample Type:		
	nple Desc		Greyish brown	n CLAY								
Sam	nple Prep	oration	Tested in natu	ural condition	. The water	contont in th	o complo was	incrossed				
	ipie Prep le Type:	aration.	80g/30deg		i, The water		e sample was	Increased				
COII	e Type.		oog/oodeg									
As	Receive	ed Water	Liquid L	imit	Plastic L	imit P	asticity Index	Liquidity	ndex	Consistency	% Passing	425um
	Content		[WL]		[Wp]		[lp] %	[IL] %		Index [IC] % #	BS Test	
	43.		72		28		44	0.36		0.64	100)
	80 -											
	00										-	
											/	
	70 -									U line	 	
											1	
										.1		
	60 -									-		
								/		civ		
	50 -							1			ne	
×							/					
PLASTICITY INDEX	40								•			
⊆ ≻	40 -						C	н				
G										siv		
STI	30 -											
۲ <u>ک</u>					1	СІМ						
-												
	20 -			-			S	н				
				CIL								
	10 -											
			CIL - SiL			SiM						
					1	1					1	

Note: Water Content by BS EN 17892-1: 2014; # Non accredited

Clay

Silt

20

10

CI

Si

SiL

30

Plasticity

L

Μ

Н

V

0

Low

High

Medium

Very high

Organic

40

50

LIQUID LIMIT Legend, based on BS EN ISO 14688 2:2018 Geotechnical investigation and testing - Identification and classification of soil

60

Liquid Limit

exceeding 70

below 35

35 to 50

50 to 70

70

append to classification for organic material (eg CIHO)

Remarks:

0 0

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Signed: Katasyna. Koziej

Katarzyna Koziel Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

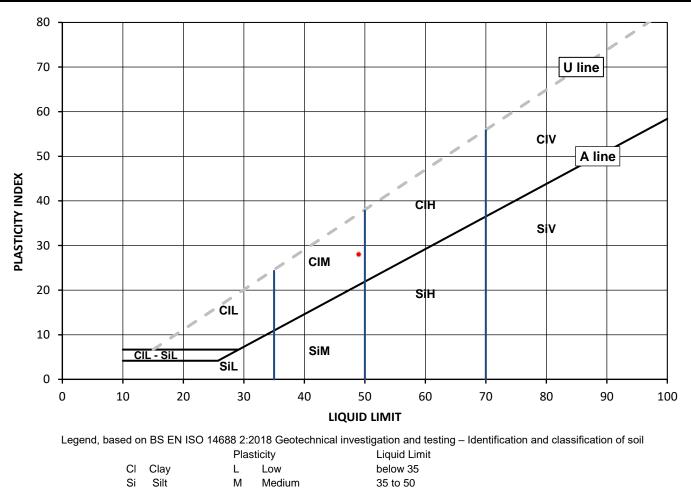
80

90

100

DETERMINATION OF LIQUID AND PLASTIC LIMITS Tested in Accordance with: BS EN ISO 17892-12:2018+A2:2022, cl 5.3 and 5.5, Fall Cone Method, 4 Pt Test, BS 1377-2:2022,

cl 5.2 and 6


i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client:	A2 Site Investigation Limited	Client Reference: 50124
Client Address:	One Westminster Bridge Road, South Bank,	Job Number: 24-029861-1
	London, SE1 7XW	Date Sampled: 01/07/2024
		Date Received: 03/07/2024
Contact:	Charlie Mason	Date Tested: 18/07/2024
Site Address:	Netherhall Gardens	Sampled By: Not Given
Testing carried out at	2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland	
Test Results:		
Laboratory Reference:	252692	Depth Top [m]: 0.50
Hole No.:	BH02	Depth Base [m]: Not Given
Sample Reference:	Not Given	Sample Type: B
Sample Description:	Yellowish Brown slightly gravelly slightly sandy CLAY	

Sample Preparation:Tested after washing to remove >0.425mm; The water content in the sample was increased
80g/30deg

As Received Water	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Consistency	% Passing 425µm
Content [W] %	[WL] %	[Wp] %	[lp] %	[IL] % #	Index [IC] % #	BS Test Sieve
7.5	49	21	28	-0.46	1.46	96

Note: Water Content by BS EN 17892-1: 2014; # Non accredited

Remarks:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Н

V

0

High

Very high

Organic

Signed:

50 to 70

exceeding 70

Katarzyna Koziel Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

append to classification for organic material (eg CIHO)

SUMMARY REPORT

Tested in Accordance with:

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

Client Reference: 50124 Job Number: 24-029861-1 Date Sampled: 01/07/2024 Date Received: 03/07/2024 Date Tested: 18/07/2024 Sampled By: Not Given

4041 Client: Client Address:	A2 Site Investigation Limited One Westminster Bridge Road, South Bank, London, SE1 7XW	BS EN ISO 17892-12:2018+A2:2022 cl 5.3 and 5.5, Fall Cone Method, 4 Pt Test, BS 1377-2:2022, cl 5.2 and 6. W by BS EN ISO 17892-1:2014+A1:2022.											
Contact:	Charlie Mason												
Site Address:	Netherhall Gardens												
Testing carried out	Testing carried out at i2 Analytical Limited, ul. Pionierow, 41-711 Ruda Slaska, Poland												

Test results

TESTING

			Sample	e							Liquid	& Plastie	c Limit				Density	
Laboratory Reference	Hole No.	Reference	Depth Top m	Depth Base m	Туре	Description	Remarks	W %	% Passing 425um %	WL* %	Correlation Factor	Wp %	lp %	Cone type	Sample Preparation	bulk Mg/m3	dry Mg/m3	PD Mg/m3
252683	BH01	Not Given	2.50	Not Given	U	Yellowish brown CLAY		27.5										
252684	BH01	Not Given	4.50	Not Given	U	Yellowish brown CLAY		33.4										
252685	BH01	Not Given	7.00	Not Given	D	Greyish brown silty CLAY	Atterberg 4 Point	34.9	100	72	-	32	40	80g/30 deg	N / I			
252687	BH01	Not Given	8.50	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	33.9	100	71	-	28	43	80g/30 deg	N / I			
252688	BH01	Not Given	10.50	Not Given	U	Dark grey CLAY		31.5										
252689	BH01	Not Given	13.00	Not Given	D	Greyish brown CLAY	Atterberg 4 Point	43.6	100	72	-	28	44	80g/30 deg	N / I			
252691	BH01	Not Given	14.50	Not Given	D	Brown CLAY		30.0										
252692	BH02	Not Given	0.50	Not Given	В	Yellowish Brown slightly gravelly slightly sandy CLAY	Atterberg 4 Point	7.5	96	49	-	21	28	80g/30 deg	W / I			
						tion, R - Tested after >0,425mm removed by ha uid limit corrected as per the report Correlation						- The w	vater co	ntent in	the sar	nple wa	s increa	ised ,

Comments:

Signed:

Katasyna

Kozies

Katarzyna Koziel Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

			RA							Tes		ETE	RMI SIZI	NA E DI	FION ISTR	N C Rie Bs	FIC DF PA BUTIC EN IS 2 cl. 1	RTIO DN 60 178	CLE	:201	6,	l F	Unit Brad	naly t 8 F ckm than	larr ills	owo Ind	den ust	rial	Es	l itate		Enviro	Analytical	2 Initial Scien
Conta Site A	t Addres	5		One \ Londo Charl Nethe	West on, S lie Ma erhal	II Garc	ter B XW dens	ridg	e Ro	bad					Slas	ka	Pola	nd					(Da Da	Job ate ate Dat	o Ni Sa Red te T	uml mp cei\ Tes	ber: led: /ed: ted:	: 24 : 0 : 0 : 18	0124 4-02 1/07 3/07 8/07 ot G	986 /202 /202 /202	24 24 24		
Test Labor Hole Samp Samp	ratory R	l ts: Referei erence criptio	nce: e: n:	25269 BH02 Not G Yellov	92 2 Given wish		n sliq	ghtly	gra	vell	ly sliç	ghtly	san	ıdy (CLA	Y			by b	200	1			De	pth	Ba	se	[m]: [m]: /pe:	: N	ot G	iver	١		
	CL				SIL	T					Tine		SAI Med	ND			arse		Fine		GR	AVEL dium		Соа	arse		СО	BBL	ES		BOL	JLDEF	RS	
Percentage Passing %	00																																	
	0.001			_	0.01	1	- 1				.1		-		rticle	1 e S	ize	mm				0						100						1000
	Sieving Particle Size mm % Passing 500 100 300 100 150 100 125 100						(cle S 0.04 0.03 0.02	6ize 17 800	mm		% Pa	assi 59 56 54	ng				y coa vel id			tions									dry 0.0 5.0 34.0 27.0 34.0	0 00 00	S		
	125 100 90 100 75 100 63 100 50 100 37.5 100							(0.01 0.01 0.00	17				50 46 27					ding 00	An	alys	sis			n n	า <u>m</u> า <u>m</u> าm					20 0.05 0.00	78		
																		Cur	vatur	e C	oeff	icien icient Curva		e Co			nt c	alc	ula	ited	0.9 in a		dan	

Uniformity and Curvature Coefficient calculated in accordance with BS EN ISO 14688-2:2018

Note: Tested in Accordance with ISO 17892 -4, by sieving and hydrometer sedimentation

Particle density

2.65

Remarks:

Signed:

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Katarzyna Koziel

Senior Reporting Specialist

Date Reported: 23/07/2024

Page 1 of 1

for and on behalf of i2 Analytical Ltd

(assumed)

Mg/m3

10 98 6.3 97 5 97 3.35 96 2 95

95

94

94

93

93

87

60

1.18

0.6

0.425

0.3

0.212

0.15

0.063

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST Tested in Accordance with: BS EN ISO 17982-8:2018, BS 1377-2 Cl. 28:2022

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041															Environm	iental Sc
Clier	ot-	A2 Site Ir	wootigati	on Limit	od							Client Re	foronoo	50124		
	nt Address:	AZ SILE II	ivestigati		eu								Number:		61 1	
Ciler	ni Address.	One Wes	tminster	Bridge F	Road, Sc	outh Ba	ınk,								-	
		London, S	SE1 7XW	,									ampled:			
-													eceived:			
Cont		Charlie M											Tested:			
	Address:	Netherha										Sam	pled By:	Not Give	en	
Test	ting carried out at	i2 Analytica	l Limited,	ul. Pior	nierow, 4	1-711	Ruda Sla	aska, Pola	and							
Tes	t Results:															
Labo	oratory Reference	: 252683										Depth	Top [m]:	2.50		
Hole	e No.:	BH01										Depth B	ase [m]:	Not Give	en	
Sam	ple Reference:	Not Giver	า									Samp	le Type:	U		
Sam	ple Description:	Yellowish	brown C	LAY												
Sam	ple Preparation:	Sample p	orepared i	in accord	dance w	ith BS	EN ISO	17892-8:	2018 Cl	ause 6.2.						
Test	Number		1					Rate	of Strai	in			2.00	%/min		
	th within Sample			m					Pressur				50	kPa		
Leng	•	2		mm						- at Failure			14.8	%		
-	neter			mm						ess, (σ1			95	kPa		
Leng	gth Prior to Shear	ing 2		mm						hear Stre			47		(σ1-σ3)	f
-	Density	Ť.	1.98	Mg/m3					e of Fail		•	Co	mpound			
Initia	al Water Content		27.5	%				Mem	nbrane T	hickness	;		0.27	mm		
Fina	l Water Content		27.4	%				Men	nbrane C	Correction	n		2.24	kPa		
Dry I	Density		1.55	Mg/m3										-		
Dovi	ator Stress v	Avial Strai	in													
1	100											-				
Ра							_		_			·				
s v	80															
res																
۲. کې	60															
ato	40															
evi	40															
Б р	20															
ecte																
Corrected Deviator Stress kPa	0 1	3	4	5	6	8	9	10	11	13	14	15	16	18	19	20
	0 1	5	4	5	0	0		ial Strain		15	14	15	10	10	15	20
							AX	iai Strain	70							
Mol	hr Circles															
	150											٦		(Townson)	1	
														37.4		
	125											_	1			
													3	140		
ø	100											_		1	1.5	
ЧĂ														1 cm	1	-
gth	75										_	_	1		NO POL	
Shear Strength kPa																
Sti	50				_	+-						_	Posit	ion withi	n sample	•
ear					\mathbf{i}											
Sh	25	-+/-			$+ \mathbf{h}$							_				
					`											
	0															
	0 25	50	75	100	125	150	175	200	225	250	275	300				
							es kPa									
Note	: Deviator stress	corrected fo	r area ch	ange an	id memb	orane e	ffects.									
_																
Ren	narks:															
								Sigr	ed:	Kat	tarzyna k	اهاتم				
								1.1.1.1	NAME OF TAXABLE			oziel orting Spr	ocialist			

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST Tested in Accordance with: BS EN ISO 17982-8:2018, BS 1377-2 Cl. 28:2022

i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041	L.::																		Environr	nental Sc
Clie	⊃nt·		A	2 Site Iı	nvestia	ation Lim	ited									Client Re	eference:	50124		
	ent Addı	ress:	7 (1		woodig		neou								·		Number:		861-1	
0						er Bridge	Road	d, Sout	h Bar	nk,							Sampled:			
			Lc	ondon,	SE1 7>	<w .<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Received:</td><td></td><td></td><td></td></w>											Received:			
Cor	ntact:		Cł	narlie M	lason												e Tested:			
Site	e Addre	SS:	Ne	etherha	II Gard	lens										Sam	pled By:	Not Giv	ren	
Tes	sting ca	rried out	at i2 Ai	nalytica	al Limite	ed, ul. Pic	oniero	w, 41-	711 F	Ruda Sla	iska, Po	bland					. ,			
	st Res			-																
		Referen	ce: 25	52686												Depth	Top [m]:	7.50		
	le No.:			H01												•	Base [m]:		ren	
Sar	mple Re	eference:	No	ot Give	n											•	ole Type:			
		escription		ark bro	wn CLA	٩Y														
Sar	mple Pr	eparatior	n: Sa	ample p	orepare	ed in acco	ordanc	ce with	BS E	N ISO 1	17892-8	8: 201	8 Claus	se 6.2.						
Tes	st Numb	ber			1								Strain					%/min		
		in Sampl	le		-	m						II Pre					150	kPa		
	ngth				39.15 70.20	mm							ain at I				15.0 135	%		
	meter	or to She	oring		139.14	mm mm									- σ3)f ength, cu		68	kPa kPa 3	⁄₂(σ1 - σ3	/t
	k Densi		anny		1.93	Mg/m3	ł						Failure		ingin, cu	-	Brittle	кга /	2(01-03	JI
		er Conter	nt		29.0	%	,						ne Thio				0.24	mm		
		r Conten			28.1	%							ne Cor				2.96	kPa		
Dry	/ Density	у			1.50	Mg/m3	3											•		
		Stress v	v Axia	al Stra	in															
	³⁰⁰ T																			
	250				_									_						
Ϋ́	200 -				-									-						
tress	150																			
j,								~~~		~						-+				
evia	100																			
Ďp	50																			
recte																				
Corr	0 F	1		3	4	5	6		 8	9	10	1	1	13	14	15	16	18	19	20
	Ũ	•	·	0	•	Ū	Ũ		0	-	ial Strai		•	10		10	10	10	10	20
Мо	ohr Cir	cles																		
	150															٦				
	125															_	1	2		_
																	1			
B	100	-														_		W	100	
ų L	75																1	-	-	
ength	75																6		all states	2
Shear Strength kPa	50				_					\wedge						-	Posit	ion with	in sampl	е
Shea	25															_				
									/											
	0	<u>ا</u> 0 2	25	50	75	100	125	. 1/	 50	175	200	22	5 2		275	_ 300				
		- Z		50	.5	100				es kPa	200	22	- Z							
Not		ator atra		acted fo	or area	change a														
NOt	e. Devi	aior stres	ss corre		n area	change a	anu m	Blame	ne er	เฮบเร.										
Re	marks:																			
1.0																				
											Sig	gned:	1.000		arzyna K		ocialist			

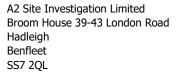
Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation. This report may not be reproduced other than in full without the prior written approval of the issuing laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Senior Reporting Specialist for and on behalf of i2 Analytical Ltd

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST Tested in Accordance with: BS EN ISO 17982-8:2018, BS 1377-2 Cl. 28:2022 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB

4041 Client: Client Addr Contact: Site Addres Testing car	ss: ried out a	Or Lo Ch Ne	ndon, SI arlie Ma therhall	ninster E1 7XV son Garde	r Bridge V ns	Road, S	outh Bar 41-711 F		a, Pola	and			Jo Date Date Da	Reference b Number Sampled Received te Tested impled By	24-029 01/07/2 03/07/2 18/07/2	861-1 2024 2024 2024	mental So
Test Result Laboratory Hole No.: Sample Re Sample De Sample Pre	Reference: scription:	B⊢ No Da	l01 it Given irk browr			rdance v	vith BS E	N ISO 17	892-8:	2018 Cla	ause 6.2	2.	Depth	h Top [m] Base [m] nple Type	: Not Giv	/en	
Test Numb Depth withi Length Diameter Length Prio Bulk Densit Initial Wate Final Water Dry Density	n Sample or to Shea ty r Conten r Content	aring t	13 69 13 1 3 3 3 1	1 9.16 9.50 9.16 .95 1.4 0.0 .48	m mm mm Mg/m3 % % Mg/m3				Cell Axia Devi Undi Mod Mem	e of Strai Pressure I Strain a ator Stre rained S e of Fail abrane T abrane C	e at Failur ess, (σ hear Str ure hicknes	1 - σ3)f ength, c s	;u	2.00 210 14.4 166 83 Compound 0.24 2.87	-	⁄₂(σ1 - σζ	3)f
Corrected Deviator S 300 250 250 200 150 100 0 0 0				4	5	6	8	9	10	11	13	14	+	16	18	19	
Mohr Circ 300 -					Ū	J	C		Strain								
														÷	-		
250 -																-	8
- 200 م										_			_		N		
또 드 150 -					_			_		_	_			6	1 de	- William	<i>P</i> .
Shear Strength kPa 001 cm 02 cm														Pos	ition with	<u>in sa</u> mp	le
Shea Shea				_		\land		\searrow									
0 -																	
Note: Devia				50 area c	200 hange a		300 I Stresse brane eff	es kPa	400	450	500	550	600				
Remarks:																	
Opinions and ir report may not laboratory. The	be reproduc	ed other	than in full	without	the prior w	ritten appro	val of the is	suing		ned: tapyna keier	Se		porting S	pecialist of i2 Ana	ytical Lt	d	

UNCONSOLIDATED UNDRAINED TRIAXIAL TEST Tested in Accordance with: BS EN ISO 17982-8:2018, BS 1377-2 Cl. 28:2022 i2 Analytical Ltd Unit 8 Harrowden Road Brackmills Industrial Estate Northampton NN4 7EB



4041																	Environmental
Clie	nt:		A	2 Site Inv	/estigat	ion Limite	d						(Client Re	ference:	50124	
Clie	nt Addr	ress:	0	na Wast	minstor	Bridge Ro	nad Sou	th Rank						Job I	Number:	24-0298	61-1
				ondon, S			Jau, 50u	ui bank,								01/07/20	
•																03/07/20	
	tact: Addres		-	harlie Ma etherhall		16										18/07/20 Not Give	
						ıs I, ul. Pioni	erow 41	-711 Ruo	la Slaski	a Polani	4			Sam	ріец Бу.		FT 1
	st Res			laijticai		, un riern	,			, r orarra	~						
		Referer	nce: 25	52690										Depth -	Top [m]:	13.50	
	e No.:			H01												Not Give	en
San	nple Re	ference	: N	ot Given										Samp	le Type:	U	
		scriptior		ark brow													
San	nple Pre	eparatio	n: Sa	ample pr	epared	in accorda	ance with	n BS EN	ISO 178	92-8: 20	18 Clau	se 6.2.					
Tes	t Numb	er			1	[Rate of	Strain				2.00	%/min	
		in Samp	le		-	m				Cell Pr					270	kPa	
Len	-				6.54	mm					train at				6.0	%	
	neter	arto Cha	arina		7.90	mm						s, (σ1 -			272 136	kPa kPa 1/	(-1 -2)f
	gin Pric CDensi	or to She tv	earing		6.53 .97	mm Mg/m3					of Failur	ear Stren	igtn, cu	Co	mpound	kPa ½	(σ1 - σ3)f
		er Contei	nt			%					ane Thi	-			0.22	mm	
Fina	al Wate	r Conter	nt	2		%				Membr	ane Coi	rrection			2.01	kPa	
Dry	Density	y		1	.53	Mg/m3											
Devi	ator S	tress v	v Axia	al Straii	า												
	³⁰⁰ T				-												
						+	<u> </u>	+									
	250 -			~						<u> </u>		~~~	~~~	_			
КР КР	200		_/		ļ		ļ		ļ			_					
Corrected Deviator Stress kPa																	
Stre	150 -	$\neg \uparrow$										_					
ator	100																
evia	100																
⊇ p∈	50 -					_						_					
ecte																	
Cori	0	1		3	4	5	6	8	9	10	11	13	14	15	16	18	19 20
	0	1		5	4	5	0	0		Strain %		15	14	15	10	10	19 20
									/ Mai v		,						
Мо	hr Cir	cles															
	300 -													٦			
	250 -																
	200															6	
	200 -													_			
Shear Strength kPa															1		
lth	150 -															AL AL	STATE OF STATE
renç											\sim						
r Sti	100 -											\mathbf{h}		-	Posit	ion withir	n sample
hea	50						/										
S	50 -																
	0 -																
		05	50	100	150	200 2	250 3	, 100 3	50 4	00 4	50 5	500 5	550	600			
						I	Normal S	Stresses	kPa								
Note	e: Devia	ator stre	ss corre	ected for	area cl	nange and	l membra	ane effec	ts.								
_																	
Rer	marks:																
										Signed	1:	Kata	irzyna K	oziel			
Opini	ons and i	nterpretatio	ons expre	ssed hereir	are outsi	de of the sco	pe of the UI	KAS Accredi	tation. This	Katas	y na	Seni	or Repo	orting Spe			
repor	t may not	be reprodu	uced othe	r than in ful	I without t	he prior writte only to the sa	n approval	of the issuir	ng	Kozi	1	for a	nd on l	pehalf of	i2 Analy	tical Ltd	
1000	atory. Tilt			and rep	S.C. GIALE	, io uie od	pio(3) Sul		sung.	Page 1	of 1	Dat	e Reno	rted: 23/	07/2024		GF 463.

Page 1 of 1

Appendix E: Geoenvironmental Laboratory Testing Results

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: charlotte.mason@a2-si.com labs@a2-si.com

Analytical Report Number : 24-028978

Project / Site name:	Netherall Gardens	Samples received on:	03.07.2024
Your job number:	50124	Samples instructed on/ Analysis started on:	04.07.2024
Your order number:	PO3638-I2-01	Analysis completed by:	10.07.2024
Report Issue Number:	1	Report issued on:	11.07.2024
Samples Analysed:	8 soil samples		

Signed:

Rafał Szczepańczyk Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4 weeks from reporting
leachates	-	2 weeks from reporting
waters	-	2 weeks from reporting
asbestos	-	6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number				247879	247880	247881	247882	247883
Sample Reference				TP01	BH01	BH01	BH01	TP03
Sample Number				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
Depth (m)				0.30	4.00	10.00	15.00	0.30
Date Sampled				01/07/2024	01/07/2024	01/07/2024	01/07/2024	02/07/2024
Time Taken				None Supplied	None Supplied	None Supplied	None Supplied	None Supplied
		Ε.						
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	7.9	21	18	18	13
Total mass of sample received	kg	0.01	NONE	1.1	0.9	0.9	0.6	1.1
				1.1	0.9	0.9	0.0	1.1
Asbestos								
Asbestos Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Not-detected	-	-	-	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	DSO	-	-	-	DSO
				530				530
General Inorganics								
pH (L099)	pH Units	N/A	MCERTS	11.2	8.3	8.6	9.1	9.1
Total Sulphate as SO ₄	%	0.005	MCERTS	-	0.04	0.104	0.071	-
	-			100				120
Water Soluble Sulphate as SO ₄ 16hr extraction (2:1)	mg/kg	2.5	MCERTS	130	140	960	650	120
Water Soluble SO4 16hr extraction (2:1 Leachate Equivalent)	g/l	0.00125	MCERTS	0.0636	-	-	-	0.0609
Water Soluble SO4 16hr extraction (2:1 Leachate				63.6	68.4	479	324	60.9
Equivalent)	mg/l	1.25	MCERTS					
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	7.4	42	27	-
Total Sulphur	mg/kg	50	MCERTS	-	250	7900	4500	-
Total Sulphur	%	0.005	MCERTS	-	0.025	0.785	0.452	-
Organic Matter (automated)	%	0.1	MCERTS	0.9	-	-	-	1.1
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.0055	-	-	-	0.0063
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.5	-	-	-	0.6
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	< 2.0	< 2.0	< 2.0	-
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	< 2.0	< 2.0	< 2.0	-
Creational DAMa								
Speciated PAHs	mg/kg	0.05	MCERTS	< 0.0F	-		-	< 0.0E
Naphthalene	mg/kg	0.05	MCERTS	< 0.05 < 0.05	-	-	-	< 0.05 < 0.05
Acenaphthylene Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05			-	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.31		-	-	0.29
Anthracene	mg/kg	0.05	MCERTS	< 0.05	_	-	-	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	0.56	-	-	-	0.47
Pyrene	mg/kg	0.05	MCERTS	0.30	-	-	-	0.47
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.25	-	-	-	0.41
Chrysene	mg/kg	0.05	MCERTS	0.31	-	-	-	0.25
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.33	-	-	-	0.33
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.18	-	-	-	0.13
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.27	-	-	-	0.25
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.18	-	-	-	0.16
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	-	-	-	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.2	-	-	-	0.16
				012	1	1		0.10
Total PAH								
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	3.07	-	-	-	2.72
								· · · · · · · · · · · · · · · · · · ·

Lab Sample Number				247879	247880	247881	247882	247883
Sample Reference				TP01	BH01	BH01	BH01	TP03
Sample Number				None Supplied				
Depth (m)				0.30	4.00	10.00	15.00	0.30
Date Sampled				01/07/2024	01/07/2024	01/07/2024	01/07/2024	02/07/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
Heavy Metals / Metalloids								
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	-	-	-	14
Barium (aqua regia extractable)	mg/kg	1	MCERTS	96	-	-	-	84
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	0.92	-	-	-	0.95
Boron (water soluble)	mg/kg	0.2	MCERTS	0.5	-	-	-	0.3
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	-	-	-	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	-	-	-	< 1.8
Chromium (III)	mg/kg	1	NONE	34	-	-	-	38
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	34	-	-	-	38
Copper (aqua regia extractable)	mg/kg	1	MCERTS	33	-	-	-	39
Lead (aqua regia extractable)	mg/kg	1	MCERTS	310	-	-	-	190
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	-	-	-	< 0.3
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	1.1	-	-	-	1.1
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	20	-	-	-	24
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	57	-	-	-	60
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	220	-	-	-	430
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	16	36	15	-
Magnesium (water soluble)	mg/kg	5	NONE	-	32	72	30	-
Petroleum Hydrocarbons					1			
TPHCWG - Aliphatic >EC5 - EC6 _{HS_1D_AL}	mg/kg	0.02	NONE	< 0.020	-	-	-	< 0.020
TPHCWG - Aliphatic >EC6 - EC8 _{HS_1D_AL}	mg/kg	0.02	NONE	< 0.020	-	-	-	< 0.020
TPHCWG - Aliphatic >EC8 - EC10 _{HS_1D_AL}	mg/kg	0.05	NONE	< 0.050	-	-	-	< 0.050
TPHCWG - Aliphatic >EC10 - EC12 _{EH_CU_1D_AL}	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPHCWG - Aliphatic >EC12 - EC16 _{EH_CU_1D_AL}	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPHCWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	-	-	-	< 8.0
TPHCWG - Aliphatic > EC21 - EC35 _{EH_CU_1D_AL}	mg/kg	8 10	MCERTS NONE	< 8.0	-	-	-	< 8.0
TPHCWG - Aliphatic >EC35 - EC40 _{EH_CU_1D_AL} TPHCWG - Aliphatic >EC5 - EC40 _{EH_CU+HS_1D_AL}	mg/kg mg/kg	10	NONE	< 10	-	-	-	< 10
	iiig/ kg	10	110IAL	< 10	-	-	-	< 10
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	-	-	< 0.010
TPHCWG - Aromatic > EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	-	-	-	< 0.010
TPHCWG - Aromatic >EC8 - EC10 Hs_1D_AR	mg/kg	0.05	NONE	< 0.010	-	-	-	< 0.050
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	-	-	-	< 1.0
TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	-	-	-	< 2.0
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	-	-	< 10
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	-	-	-	< 10
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	-	-	-	< 10
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	-	-	-	< 10
			-		•			•
TPH Total >EC5 - EC40 _{EH_CU+HS_1D_TOTAL}	mg/kg	10	NONE	< 10	-	-	-	< 10

< 5.0

< 5.0

Analytical Report Number: 24-028978 Project / Site name: Netherall Gardens Your Order No: PO3638-I2-01

p & m-Xylene

o-Xylene

Lab Sample Number	247879	247880	247881	247882	247883			
Sample Reference	TP01	BH01	BH01	BH01	TP03			
Sample Number				None Supplied				
Depth (m)				0.30	4.00	10.00	15.00	0.30
Date Sampled				01/07/2024	01/07/2024	01/07/2024	01/07/2024	02/07/2024
Time Taken				None Supplied				
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status					
VOCs								
MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0	-	-	-	< 5.0
Benzene	µg/kg	5	MCERTS	< 5.0	-	-	-	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0	-	-	-	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	-	-	-	< 5.0

< 5.0

< 5.0

MCERTS

MCERTS

µg/kg

µg/kg

5

5

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Lab Sample Number				247884	247885	247886
Sample Reference				TP06	BH02	BH02
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.50	3.00
Date Sampled				02/07/2024	02/07/2024	02/07/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Share Contract	%	0.1	NONE	- 0.1	- 0.1	- 0.1
Stone Content	-			< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	15	15	15
Total mass of sample received	kg	0.1	NONE	1.1	1.1	0.8
Asbestos						
Asbestos in Soil Detected/Not Detected	Туре	N/A	ISO 17025	Not-detected	Not-detected	-
Asbestos Analyst ID	N/A	N/A	N/A	DSO	DSO	-
Course I Toomania						
General Inorganics pH (L099)	pH Units	N/A	MCERTS	8.3	8.3	8
Total Sulphate as SO ₄	%	0.005	MCERTS	-	-	0.015
				31	38	86
Water Soluble Sulphate as SO4 16hr extraction (2:1) Water Soluble SO4 16hr extraction (2:1 Leachate	mg/kg	2.5	MCERTS	51	50	00
Equivalent)	g/l	0.00125	MCERTS	0.0154	0.0188	-
Water Soluble SO ₄ 16hr extraction (2:1 Leachate	5,			15.4	10.0	42.9
Equivalent)	mg/l	1.25	MCERTS	15.4	18.8	42.8
Water Soluble Chloride (2:1) (leachate equivalent)	mg/l	0.5	MCERTS	-	-	5.4
Total Sulphur	mg/kg	50	MCERTS	-	-	60
Total Sulphur	%	0.005	MCERTS	-	-	0.006
Organic Matter (automated)	%	0.1	MCERTS	2.2	1	-
Fraction Organic Carbon (FOC) Automated	N/A	0.001	MCERTS	0.013	0.0058	-
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	1.3	0.6	-
Water Soluble Nitrate (2:1) as N	mg/kg	2	NONE	-	-	< 2.0
Water Soluble Nitrate (2:1) as N (leachate equivalent)	mg/l	2	NONE	-	-	< 2.0
Speciated PAHs	-					
Naphthalene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Fluorene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Phenanthrene	mg/kg	0.05	MCERTS	0.24	0.06	-
Anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Fluoranthene	mg/kg	0.05	MCERTS	0.53	0.15	-
Pyrene	mg/kg	0.05	MCERTS	0.48	0.11	-
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.32	0.1	-
Chrysene	mg/kg	0.05	MCERTS	0.32	0.08	-
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.38	0.12	-
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.14	0.06	-
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.33	0.11	-
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.15	0.05	-
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05	< 0.05	-
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.19	0.06	-
Fotal PAH Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	3.00	0 00	-
Specialeu Tulai LFA-10 FALIS				3.09	0.89	-

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	3.09	0.89	-

Lab Sample Number				247884	247885	247886
Sample Reference				TP06	BH02	BH02
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.50	3.00
Date Sampled				02/07/2024	02/07/2024	02/07/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
Heavy Metals / Metalloids			a			
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	25	-
Barium (aqua regia extractable)	mg/kg	1	MCERTS	85	81	-
Beryllium (aqua regia extractable)	mg/kg	0.06	MCERTS	1.4	0.92	-
Boron (water soluble)	mg/kg	0.2	MCERTS	1.6	0.6	-
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	-
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	-
Chromium (III)	mg/kg	1	NONE	44	39	-
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	44	39	-
Copper (aqua regia extractable)	mg/kg	1	MCERTS	32	26	-
Lead (aqua regia extractable)	mg/kg	1	MCERTS	150	96	-
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	< 0.3	< 0.3	-
Molybdenum (aqua regia extractable)	mg/kg	0.25	MCERTS	0.92	1	-
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	29	20	-
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	-
Vanadium (aqua regia extractable)	mg/kg	1	MCERTS	69	61	-
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	94	83	-
Magnesium (leachate equivalent)	mg/l	2.5	NONE	-	-	13
Magnesium (water soluble)	mg/kg	5	NONE	-	-	26
Petroleum Hydrocarbons						
TPHCWG - Aliphatic >EC5 - EC6 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	< 0.020	-
TPHCWG - Aliphatic >EC6 - EC8 HS_1D_AL	mg/kg	0.02	NONE	< 0.020	< 0.020	-
TPHCWG - Aliphatic >EC8 - EC10 HS_1D_AL	mg/kg	0.05	NONE	< 0.050	< 0.050	-
TPHCWG - Aliphatic >EC10 - EC12 EH_CU_1D_AL	mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPHCWG - Aliphatic >EC12 - EC16 EH_CU_1D_AL	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPHCWG - Aliphatic >EC16 - EC21 _{EH_CU_1D_AL}	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPHCWG - Aliphatic >EC21 - EC35 EH_CU_1D_AL	mg/kg	8	MCERTS	< 8.0	< 8.0	-
TPHCWG - Aliphatic >EC35 - EC40 _{EH_CU_1D_AL}	mg/kg	10	NONE	< 10	< 10	-
TPHCWG - Aliphatic >EC5 - EC40 _{EH_CU+HS_1D_AL}	mg/kg	10	NONE	< 10	< 10	-
TPHCWG - Aromatic >EC5 - EC7 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	< 0.010	-
TPHCWG - Aromatic >EC7 - EC8 HS_1D_AR	mg/kg	0.01	NONE	< 0.010	< 0.010	-
TPHCWG - Aromatic >EC8 - EC10 Hs_1D_AR	mg/kg	0.05	NONE	< 0.050	< 0.050	-
TPHCWG - Aromatic >EC10 - EC12 EH_CU_1D_AR	mg/kg	1	MCERTS	< 1.0	< 1.0	-
TPHCWG - Aromatic >EC12 - EC16 EH_CU_1D_AR	mg/kg	2	MCERTS	< 2.0	< 2.0	-
TPHCWG - Aromatic >EC16 - EC21 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	-
TPHCWG - Aromatic >EC21 - EC35 EH_CU_1D_AR	mg/kg	10	MCERTS	< 10	< 10	-
TPHCWG - Aromatic >EC35 - EC40 EH_CU_1D_AR	mg/kg	10	NONE	< 10	< 10	-
TPHCWG - Aromatic >EC5 - EC40 EH_CU+HS_1D_AR	mg/kg	10	NONE	< 10	< 10	-
TPH Total >EC5 - EC40 EH_CU+HS_1D_TOTAL	mg/kg	10	NONE	< 10	< 10	-

Lab Sample Number	247884	247885	247886			
Sample Reference				TP06	BH02	BH02
Sample Number				None Supplied	None Supplied	None Supplied
Depth (m)				0.30	0.50	3.00
Date Sampled				02/07/2024	02/07/2024	02/07/2024
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			
VOCs						

MTBE (Methyl Tertiary Butyl Ether)	µg/kg	5	NONE	< 5.0	< 5.0	-
Benzene	µg/kg	5	MCERTS	< 5.0	< 5.0	-
Toluene	µg/kg	5	MCERTS	< 5.0	< 5.0	-
Ethylbenzene	µg/kg	5	MCERTS	< 5.0	< 5.0	-
p & m-Xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	-
o-Xylene	µg/kg	5	MCERTS	< 5.0	< 5.0	-

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 24-028978 Project / Site name: Netherall Gardens

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
247879	TP01	None Supplied	0.3	Brown clay and sand with vegetation and rubble
247880	BH01	None Supplied	4	Brown clay and sand
247881	BH01	None Supplied	10	Brown clay and sand
247882	BH01	None Supplied	15	Brown clay
247883	TP03	None Supplied	0.3	Brown clay and sand with vegetation and rubble
247884	TP06	None Supplied	0.3	Brown clay and loam with gravel and vegetation
247885	BH02	None Supplied	0.5	Brown clay and sand with gravel and vegetation
247886	BH02	None Supplied	3	Brown clay and sand

Analytical Report Number : 24-028978 Project / Site name: Netherall Gardens

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Asbestos identification in Soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques	In-house method based on HSG 248, 2021	A001B	D	ISO 17025
Organic matter (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L038B	D	MCERTS
Boron, water soluble, in soil	Determination of water soluble boron in soil by hot water extract followed by ICP-OES	In-house method based on Second Site Properties version 3	L038B	D	MCERTS
Magnesium, water soluble, in soil	Determination of water soluble magnesium by extraction with water followed by ICP-OES	In-house method based on TRL 447	L038B	D	NONE
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES	In-house method	L038B	D	MCERTS
Sulphate, water soluble, in soil (16hr extraction)	Sulphate, water soluble, in soil (16hr extraction)	In-house method	L038B	D	MCERTS
Total Sulphur in soil	Determination of total sulphur in soil by extraction with aqua-regia, potassium bromide/bromate followed by ICP- OES	In-house method	L038B	D	MCERTS
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	W	MCERTS
Total petroleum hydrocarbons with carbon banding by GC-FID/GC-MS HS in soil	Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS with carbon banding aliphatic and aromatic	In-house method	L076B/L088	D/W	MCERTS
Water Soluble Nitrate (2:1) as N in soil	Determination of nitrate by reaction with sodium salicylate and colorimetry	In-house method based on Examination of Water and Wastewatern & Polish Standard Method PN- 82/C-04579.08, 2:1 extraction	L078B	W	NONE
Chromium III in soil	In-house method by calculation from total Cr and Cr VI	In-house method by calculation	L080	w	NONE

Analytical Report Number : 24-028978 Project / Site name: Netherall Gardens

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

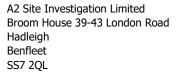
Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry	In-house method	L080	W	MCERTS
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser	In-house method	L082B	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement	In-house method	L099	D	MCERTS
Fraction Organic Carbon FOC Automated	Determination of fraction of organic carbon in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate	In-house method	L009B	D	MCERTS

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland.

Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC.

Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by the client. The instructed on date indicates the date on which this information was provided to the laboratory.


Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: charlotte.mason@a2-si.com labs@a2-si.com

Analytical Report Number : 24-028980

Project / Site name:	Netherall Gardens	Samples received on:	03.07.2024
Your job number:	50124	Samples instructed on/ Analysis started on:	04.07.2024
Your order number:	PO3638-I2-01	Analysis completed by:	10.07.2024
Report Issue Number:	1	Report issued on:	10.07.2024
Samples Analysed:	1 10:1 WAC sample		

Signed:

Rafał Szczepańczyk Technical Reviewer For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	-	4 weeks from reporting
leachates	-	2 weeks from reporting
waters	-	2 weeks from reporting
asbestos	-	6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Lab Sample Number	247892			
Sample Reference				BH02
Sample Number				None Supplied
Depth (m)				0.50
Date Sampled	02/07/2024			
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	

Stone Content	%	0.1	NONE	< 0.1
Moisture Content	%	0.01	NONE	15
Total mass of sample received	kg	0.1	NONE	1.1

General Inorganics

pH (L005B)	pH Units	N/A	MCERTS	8
Total Organic Carbon (TOC) - Automated	%	0.1	MCERTS	0.6
Loss on Ignition @ 450°C	%	0.2	MCERTS	2.8
Acid Neutralisation Capacity	+/- mmol/kg	-9999	NONE	3.1

Speciated PAHs

Naphthalene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthylene	mg/kg	0.05	MCERTS	< 0.05
Acenaphthene	mg/kg	0.05	MCERTS	< 0.05
Fluorene	mg/kg	0.05	MCERTS	< 0.05
Phenanthrene	mg/kg	0.05	MCERTS	0.07
Anthracene	mg/kg	0.05	MCERTS	< 0.05
Fluoranthene	mg/kg	0.05	MCERTS	< 0.05
Pyrene	mg/kg	0.05	MCERTS	0.12
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.1
Chrysene	mg/kg	0.05	MCERTS	0.11
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.13
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	< 0.05
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.1
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.07
Coronene	mg/kg	0.05	NONE	< 0.05

Total PAH

Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	< 0.80
Total WAC-17 PAHs	mg/kg	0.85	NONE	< 0.85

Petroleum Hydrocarbons

Mineral Oil (EC10 - EC40) EH_CU_1D_AL	mg/kg	10	NONE	< 10

VOCs

Benzene	µg/kg	5	MCERTS	< 5.0
Toluene	µg/kg	5	MCERTS	< 5.0
Ethylbenzene	µg/kg	5	MCERTS	< 5.0
p & m-Xylene	µg/kg	5	MCERTS	< 5.0
o-Xylene	µg/kg	5	MCERTS	< 5.0
Total BTEX	µg/kg	5	MCERTS	< 5.0

PCB Congener 180

Lab Sample Number		247892		
Sample Reference		BH02		
Sample Number	None Supplied			
Depth (m)				0.50
Date Sampled				02/07/2024
Time Taken	None Supplied			
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status	
PCBs by GC-MS				
PCB Congener 28	mg/kg	0.001	MCERTS	< 0.001
PCB Congener 52	mg/kg	0.001	MCERTS	< 0.001
PCB Congener 101	mg/kg	0.001	MCERTS	< 0.001
PCB Congener 118	mg/kg	0.001	MCERTS	< 0.001
PCB Congener 138	mg/kg	0.001	MCERTS	< 0.001
PCB Congener 153	mg/kg	0.001	MCERTS	< 0.001

mg/kg

0.001

MCERTS

< 0.001

< 0.007

Total PCBs mg/kg 0.007 MCERTS

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

i2 Analytical

7 Woodshots Meadow Croxley Green Business Park Watford, WD18 8YS

Telephone: 01923 225404 Fax: 01923 237404 email:reception@i2analytical.com

Waste Acceptance Criteria Analytical R		24-0289	90				
Report No:		24-0289	80				
					Client:	A2SITEIN	
					Cheffe.	AZJITLIN	
Location		Netherall G	ardens		1		
					Landfill	Waste Acceptanc	e Criteria
Lab Reference (Sample Number)		247892	2			Limits	
Sampling Date		02.07.20	24			Stable Non-	
Sample ID		BH02				reactive	
Depth (m)	0.50			Inert Waste Landfill	HAZARDOUS waste in non- hazardous Landfill	Hazardous Waste Landfil	
Solid Waste Analysis							
TOC (%)**	0.6				3%	5%	6%
Loss on Ignition (%) **	2.8						10%
BTEX (μg/kg) **	< 5.0				6000		
Sum of PCBs (mg/kg) **	< 0.007				1		
Mineral Oil (mg/kg) _{EH_1D_CU_AL}	< 10				500		
Total PAH (WAC-17) (mg/kg)	< 0.85				100		
pH (units)**	8.0					>6	
Acid Neutralisation Capacity (mmol / kg)	3.1					To be evaluated	To be evaluate
					Limit valu	es for compliance le	aching test
Eluate Analysis	10:1			10:1			
(BS EN 12457 - 2 preparation utilising end over end leaching	mall malka				using BS EN	l 12457-2 at L/S 10	l/kg (mg/kg)
procedure)	mg/l			mg/kg			
Arsenic *	0.00222			0.0222	0.5	2	25
Barium *	0.00822			0.0822	20	100	300
Cadmium *	< 0.000100			< 0.00100	0.04	1	5
Chromium *	0.00065			0.0065	0.5	10	70
Copper *	0.0052			0.052	2	50	100
Mercury *	< 0.000500			< 0.00500	0.01	0.2	2
Molybdenum *	0.0121			0.121	0.5	10	30
Nickel *	0.00033			0.0033	0.4	10	40
Lead *	0.0018			0.018	0.5	10	50
Antimony *	0.0035			0.035	0.06	0.7	5
Selenium *	< 0.0040			< 0.040	0.1	0.5	7
Zinc *	0.0020			0.020	4	50	200
Chloride *	2.6			26	800	15000	25000
Fluoride*	1.1			11	10	150	500
Sulphate *	2.8			28	1000	20000	50000
TDS*	63			630	4000	60000	100000
Phenol Index (Monohydric Phenols) *	< 0.010			< 0.10	1	-	-
DOC	12.3			123	500	800	1000
Leach Test Information	+ +						-
	+ +						
Stone Content (%)	< 0.1				1	1	
Sample Mass (kg)	1.1				1		
Dry Matter (%)	85						
Moisture (%)	15						
Results are expressed on a dry weight basis, after correction for moist	ure content where appli	able.			*= UKAS accredite	ed (liquid eluate ana	vsis only)
					** = MCERTS accr		,,/
stated limits are for guidance only and i2 cannot be held responsible f							

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes as defined by the Waste (England and Wales) Regulations 2011 (as amended) and EA Guidance WM3. This analysis is only applicable for landfill acceptance criteria (The Environmental Permitting (England and Wales) Regulations) and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Analytical Report Number : 24-028980 Project / Site name: Netherall Gardens

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
247892	BH02	None Supplied	0.5	Brown clay and sand with gravel and vegetation

Analytical Report Number : 24-028980 Project / Site name: Netherall Gardens

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status	
H at 20°C in soil Determination of pH in soil by addition of water followed by In electrometric measurement		In-house method	L005B	W	MCERTS	
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate (Walkley Black Method)	In-house method	L009B	D	MCERTS	
Moisture Content	Moisture content, determined gravimetrically (up to 30°C)	In-house method	L019B	W	NONE	
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight	In-house method based on British Standard Methods and MCERTS requirements.	L019B	D	NONE	
PCB's By GC-MS in soil	Determination of PCB by extraction with hexane followed by GC-MS	In-house method based on USEPA 8082	L027B	D	MCERTS	
Total dissolved solids 10:1 WAC	Determination of total dissolved solids in water by electrometric measurement	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L031B	w	ISO 17025	
Fluoride 10:1 WAC	Determination of fluoride in leachate by 1:1ratio with a buffer solution followed by Ion Selective Electrode	In-house method based on Use of Total Ionic Strength Adjustment Buffer for Electrode Determination	L033B	W	ISO 17025	
Dissolved organic carbon 10:1 WAC	Determination of dissolved organic carbon in leachate by TOC/DOC NDIR Analyser	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L037B	w	NONE	
Metals in leachate by ICP-OES	Determination of metals in leachate by acidification followed by ICP-OES	In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil	L039B	W	ISO 17025	
Sample Preparation		In-house method	L043B	W	NONE	
Acid neutralisation capacity of soil	Determination of acid neutralisation capacity by addition of acid or alkali followed by electronic probe	In-house method based on Guidance an Sampling and Testing of Wastes to Meet Landfill Waste Acceptance	L046B	w	NONE	
Loss on ignition of soil @ 450°C	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	In-house method	L047	D	MCERTS	
Speciated PAHs and/or Semi-volatile organic compounds in soil	Determination of semi-volatile organic compounds (including PAH) in soil by extraction in dichloromethane and hexane followed by GC-MS	In-house method based on USEPA 8270	L064B	D	MCERTS	
BTEX and/or Volatile organic compounds in soil	Determination of volatile organic compounds in soil by headspace GC-MS	In-house method based on USEPA 8260	L073B	w	MCERTS	
Total petroleum hydrocarbons by GC-FID/G0 MS HS in soil	C-Determination of total petroleum hydrocarbons in soil by GC-FID/GC-MS HS	In-house method	L076B/L088	D/W	NONE	
Monohydric phenols 10:1 WAC	Determination of phenols in leachate by distillation followed by colorimetry	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton	L080	W	ISO 17025	

Analytical Report Number : 24-028980 Project / Site name: Netherall Gardens

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Chloride 10:1 WAC		In-house based on MEWAM Method ISBN 0117516260	L082B	W	ISO 17025

For method numbers ending in 'UK' or 'A' analysis have been carried out in our laboratory in the United Kingdom (Watford).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride).

For method numbers ending in 'PL' or 'B' analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture

Correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

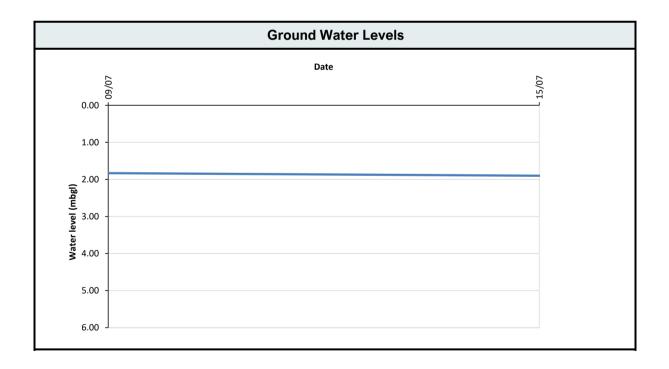
Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Quality control parameter failure associated with individual result applies to calculated sum of individuals. The result for sum should be interpreted with caution

Appendix F: Groundwater Monitoring Results


Project Number	50124
Project Name	Netherhall Gardens
Borehole Number	BH01
Borehole Depth (m)	15.00

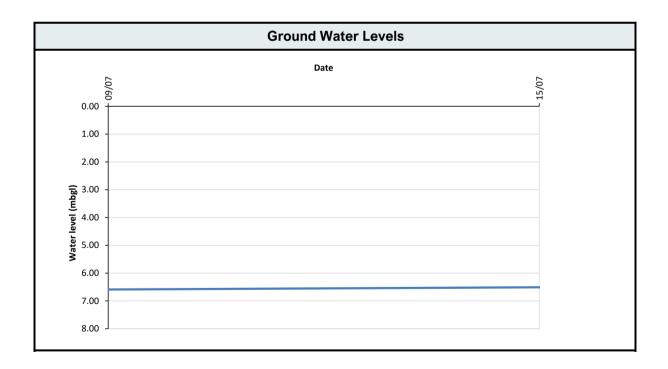
 Install Depth (m)
 9.00

 Plain (m)
 0.80

 Slotted (m)
 8.20

Visit	Date	Engineer	Atmospheric Pressure (mbar)	Weather condtion	Water level (m)	Base of Well (m)
1	09/07/2024	FA/AN/AR	1002.00	Rainy	1.83	9.20
2	15/07/2024	FA	1008.00	Overcast	1.90	9.20
3	22/07/2024	FA/AN/AR	1006.00	Sunny	1.96	9.20
4						
5						
6						

Instrument	Model	S/N
Interface Meter	DIP-100	5569

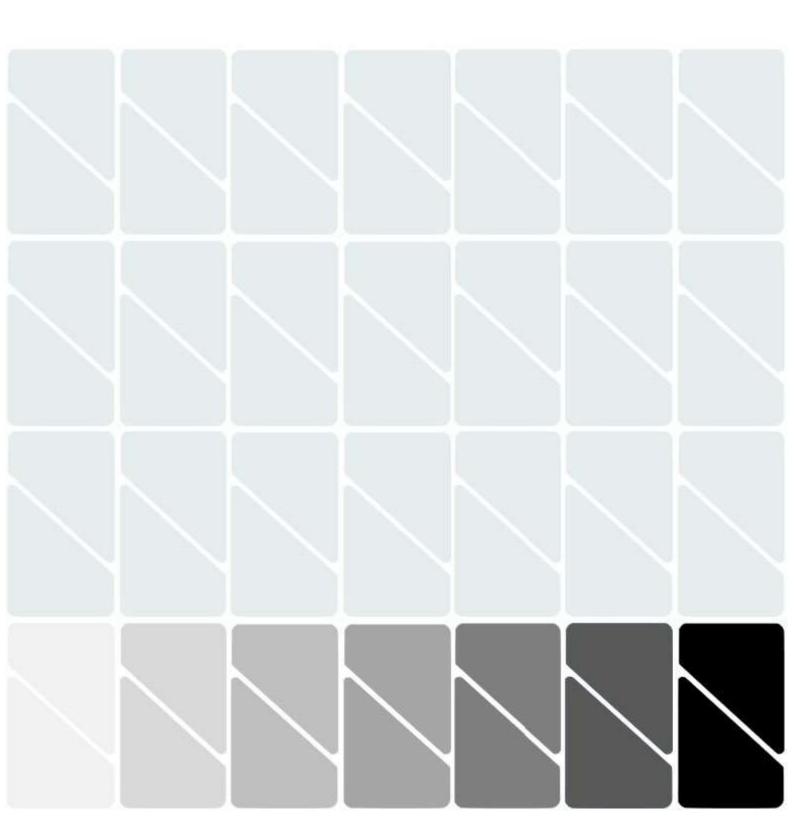

Project Number	50124
Project Name	Netherhall Gardens
Borehole Number	BH02
Borehole Depth (m)	8.00

 Install Depth (m)
 9.00

 Plain (m)
 0.80

 Slotted (m)
 8.20

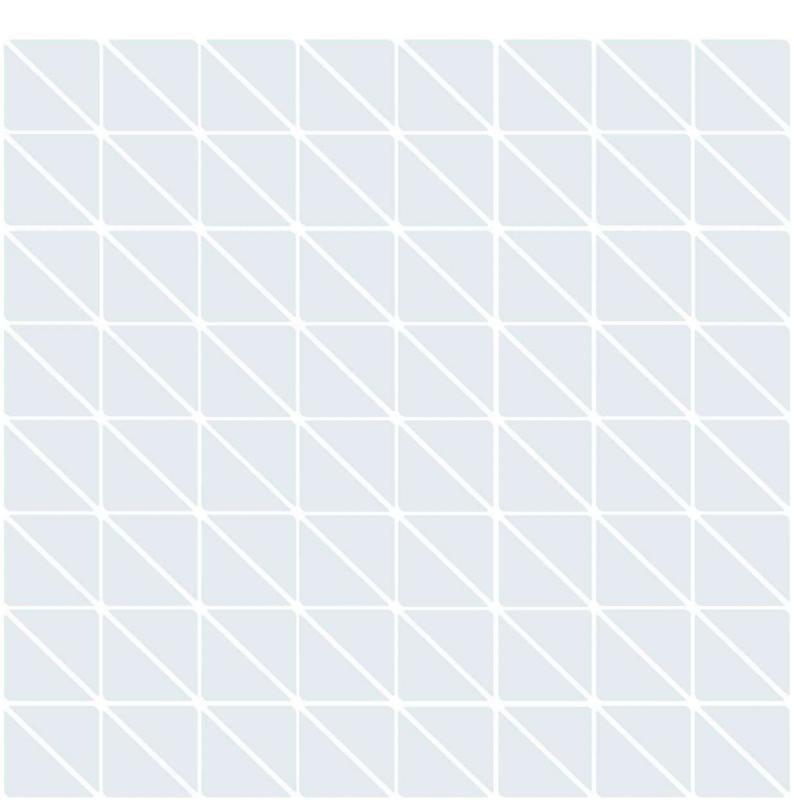
Visit	Date	Engineer	Atmospheric Pressure (mbar)	Weather condtion	Water level (m)	Base of Well (m)
1	09/07/2024	FA/AN/AR	1002.00	Rainy	6.59	7.56
2	15/07/2024	FA	1008.00	Overcast	6.51	7.56
3	22/07/2024	FA/AN/AR	1006.00	Sunny	3.68	7.56
4						
5						
6						


Instrument	Model	S/N
Interface Meter	DIP-100	5569

A2 Site Investigation Limited

One Westminster Bridge Rd London, SE1 7XW

> 020 7021 0396 contact@a2-si.com www.a2-si.com



A-squared Studio Engineers Ltd

One Westminster Bridge Rd London, SE1 7XW

> 020 7620 2868 contact@a2-studio.com www.a2-studio.com

