

Sustainability Statement

J5652 9 John Street

Ref: J5652-B-RP-0001

Revision: 02

Status: S2

Webb Yates Engineers Ltd 48-50 Scrutton Street London. EC2A 4HH 020 3696 1550 london@webbyates.com www.webbyates.com

Registered in England & Wales No.: 5393930

CON1 REVIS	FENTS SION HISTORY	2
Ι.	EXECUTIVE SUMMARY	3
2.		4
3.	PLANNING POLICY BACKGROUND	5
3.1.	Building Regulation Compliance	5
3.2.	Camden Planning Guidance 2021	6
4.	ENVIRONMENTAL DESIGN STRATEGY	. 7
4.1.	Be Lean	7
4.2.	Be Clean	9
4.3.	Be Green	9
4.4.	Be Seen	9
5.	LOW AND ZERO CARBON TECHNOLOGIES	10
5.1.	Feasibility of LZC Technologies	.11
6.	COOLING HIERARCHY	12
6.1.	Minimising Internal Heat Gains	.12
6.2.	Reducing Heat Entering the Building	.12
6.3.	Passive Ventilation	.12
6.4.	Mechanical Ventilation	.12
6.5.	Active Cooling	.12
7.	OVERHEATING RISK ANALYSIS	13
8.	ENERGY ASSESSMENT	13
8.1.	SAP Model	.14
8.2.	Unregulated Energy	.15
8.3.	Results	.16
9.	WATER CONSUMPTION	17
10.	MATERIALS	17
11.	OPERATIONAL SUSTAINABILITY	17
12.	CONCLUSION	18
APPE	NDIX A – SAP CALCULATIONS	20
APPE	NDIX B – GLA SPREADSHEET	21

REVISION HISTORY

Revision	Status	Date	Author	Reviewer	Approver
00	S2	26.03.2024	AO	AE	AE
01	S2	12.04.2024	AO	AE	AE
02	S2	01.10.2024	AO	AE	AE

© Copyright 2019 Webb Yates Engineers Ltd.

This document has been prepared in accordance with the scope of Webb Yates Engineers appointment and is subject to the terms of that appointment. Webb Yates Engineers accepts no liability or responsibility to any other party in respect of any use or reliance upon this document. Any modification to this document subsequent to issue by Webb Yates Engineers shall not be considered valid.

I. EXECUTIVE SUMMARY

This report describes the sustainability strategy for the proposed conversion of 9 John Street, London WCIN 2ES. The project consists of the refurbishment of an existing Grade II listed office building into a residential property, with an approximate existing area of 395m² and a proposed area of 409m². The proposed development will have a lower ground floor, ground floor and three storeys above.

The guidance and policies used in formulating this report are listed below and the resulting findings are compliant with the content of each:

- Camden Local Planning Documents
- Building Regulations Part L Volume 1

The energy strategy proposed aims to achieve the best outcome in terms of sustainability and energy efficiency, whilst adhering to the constraints imposed by the building's listed status. As demonstrated for the proposed energy hierarchy of the development, energy consumption and associated carbon emissions will be reduced, prioritising natural passive design measures over active measures to reduce energy.

In addition to measures reducing operational energy and associated carbon emissions, the embodied carbon content of materials used will be minimised as far as possible. It is the philosophy of the design team to design efficient, low carbon buildings.

	Regulated residential carbon dioxide savings		
	(Tonnes CO ₂ per annum)	(%)	
Be lean: savings from energy demand reduction	-3.2	-54%	
Be clean: savings from heat network	0.0	0%	
Be green: savings from renewable energy	0.0	0%	
Cumulative on site savings	-3.2	-54%	

2. INTRODUCTION

This report describes the sustainability strategy for the proposed conversion of 9 John Street, London WC1N 2ES. The project consists of the refurbishment of an existing building of approximately 395m² GIA into a residential property of 409m² GIA. The proposed development will have a lower ground floor, ground floor and three storeys above. The building is Grade II listed, which brings limitations to the measures that can be applied.

This report sets out the sustainability strategy for the proposed development. In developing this strategy, local and regional planning policies have been addressed.

Due to its listed status and the development being below 500m², a full Energy Statement is not required. This sustainability strategy aims to achieve an improved building efficiency by making the most out of the feasible options despite the limitations brought upon by its listed status and building regulation requirements.

The proposed Sustainability Principles and Engineering Concepts incorporate the requirements and guidelines of the relevant British Standards and CIBSE Guides.

3. PLANNING POLICY BACKGROUND

The main planning documents which constitute the statutory development plan for Camden and form the basis on which decisions will be made for the proposed development are:

- Building Regulations Part L Volume I
- Camden Planning Guidance Energy Efficiency and Adaptation 2021, Local Plan 2017
- CIBSE Technical Manuals and Guides
- London Plan 2021

3.1. Building Regulation Compliance

Building regulations apply to this development. However, listed buildings are exempted from the energy requirements that have been set out in Approved Document Part LIB: Conservation of Fuel and Power in Existing Dwellings.

According to Part L, the property is classified as a material change of use, being converted from a commercial to residential space. Section 4.13 states that any existing thermal element being renovated should meet limiting standards of Table 4.3. If achieving the values of column (b) is not technically or functionally feasible with a payback of 15 years or less, the elements should be upgraded to as high degree as possible with a payback of 15 years (Section 4.13). Furthermore, current windows that have a U-value worse than 3.3 should be replaced by units with a performance as given in Table 4.2.

Table 4.2 Limiting U-values for new fabric elements in existing dwellings					
Element type	Maximum U-value ⁽¹⁾ W/(m²-K)				
Roof ⁽²⁾	0.15				
Wal(⁽²⁾⁽³⁾	0.18				
Floor ⁽⁴⁾⁽⁵⁾	0.18				
Swimming pool basin ⁽⁶⁾	0.25				
Window ^{{7}](8)(9}	1.4 or Window Energy Rating ⁽¹⁰⁾ Band B minimum				
Rooflight ⁽¹¹⁾⁽¹²⁾	2.2				
Doors with >60% of internal face glazed ⁽¹³⁾	1.4 or Doorset Energy Rating ¹⁰⁾ Band C minimum				
Other doors ⁽¹³⁾⁽¹⁴⁾	1.4 or Doorset Energy Rating ¹⁰⁾ Band B minimum				

Table 4.3 Limiting U-values for existing elements in existing dwellings								
Element U-value ⁽¹⁾ W/(m²·K)								
	(a) Threshold	(b) Improved						
Roof ⁽²⁾⁽³⁾⁽⁴⁾	0.35	0.16						
Wall – cavity insulation ⁽²⁾⁽⁵⁾	0.70	0.55						
Wall – internal or external insulation ⁽²⁾⁽⁶⁾	0.70	0.30						
Floor ^(7)[8)	0.70	0.25						

Section 4.10 also states that single-glazed units that cannot be replaced should also be supplemented with secondary glazing. In addition, area of openings in the dwelling should not exceed 25% of the total floor area.

Due to the building's Grade II listing, upgrades to the building fabric and glazing are not permitted and therefore making improvements would not be possible.

3.2. Camden Planning Guidance 2021

Camden Council strongly encourages refurbishment projects to be energy and resource efficient. Improving environmental sustainability of existing building stock is an important challenge to the borough. All proposed developments are required to minimise use of energy and other non-renewable resources, as well as to facilitate an increase in the use of low and zero carbon technologies to help reduce carbon dioxide (CO_2) emissions and air pollutants harmful to health.

The development is classified as a minor development and will therefore not need to meet the carbon reduction targets set out in the London Plan or the on-site renewable generation targets required for larger developments under the Camden planning guidance. However, performance against carbon reduction targets should be included in a Sustainability Statement based on SAP results. The unregulated consumption and associated emissions of the development should also be calculated.

All developments in Camden are expected to reduce carbon emissions through the application of the London Plan Energy Hierarchy:

- Use less energy (Be Lean);
- Supply energy efficiently (Be Clean)
- Use renewable energy (Be Green); and
- Monitor, verify and report on energy performance (Be Seen)

The Camden plan notes the importance of improving the existing building stock, and of reusing and repurposing existing buildings, but also the limitations on the improvements that can be made with heritage buildings. Guidelines on what improvements may be possible are included in the planning guidance and these are used as the basis of the measures set out in the 'be lean' improvements.

Planning guidance places importance on addressing future climate change while minimising the risk of overheating and providing comfortable environmental conditions. Measures to achieve these objectives are set out under the cooling hierarchy.

4. ENVIRONMENTAL DESIGN STRATEGY

It is proposed to use a number of energy efficiency measures to reduce the energy demand of the development in line with the energy hierarchy of Be Lean, Be Clean, Be Green and Be Seen.

4.1. Be Lean

The following design measures have been considered as part of the first step of the London Plan energy hierarchy, which is to reduce energy demand through passive design measures.

Thermal Envelope

Given the aim of maintaining the building's historical qualities, disturbances to existing fabric must be minimised. Therefore, U-value improvement for fabric to minimise heat losses has been assessed as not viable. Glazing on the front façade is proposed to have secondary glazing, whilst the remaining windows will be kept as single glazed.

Element	Building regulation Part LI Limit U-Value [W/m²K]	Proposed building U-value [W/m²K]
External wall	0.3	1.5
External floor	0.25	1.1
Roof	0.16	2
Single Glazing	1.6	5.8
Secondary Glazing	1.6	3.3

Enhanced Airtightness and Good Detailing

Enhanced airtightness could reduce cold bridges and heat losses through fabric. All existing brickwork are to be surveyed, in which brickwork will undergo a careful repair and refurbishment strategy. In addition, internal walls will also be surveyed to determine their requirement for local repairs and reskimming.

The existing building was assumed to have an air tightness of 25 m³/h/m at 50 Pa. For the proposed building, it is assumed to have an air tightness of 20 m³/h/m² to account for repairs made.

Limit Overheating

Exposed thermal mass will be utilised wherever possible to create a more comfortable internal environment. Openable windows provide natural ventilation, which reduces the need for mechanical cooling. In addition, internal blinds will be used where applicable to prevent solar gains in the summer.

Daylight

The maximisation of daylight is one of the most important environmental factors for buildings. Artificial lighting contributes up to 25% of the energy costs of a typical building, despite operation largely within daylight hours. The internal layout is designed to maximise daylight while minimising summer solar gains.

Ventilation

Openable windows will allow for natural ventilation.

Heating

It is proposed for the existing gas combi boiler to be replaced by an electric boiler, to improve efficiency and reduce associated emissions. The new electric boiler has an efficiency of 100%. Existing radiators are to be replaced by cast iron radiators. Heating controls feature a programmer, TRVs and bypass, with a delayed start thermostat. For the water heating system, primary pipework is fully insulated.

Efficient Systems

Use of efficient systems and equipment with suitable time and temperature controls which have been appropriately commissioned such that the systems can be operated efficiently. Efficient components i.e. fans, pumps, refrigeration equipment have been appropriately sized to have no more capacity for demand and standby than is required for the task to operate at their optimum levels. Insulation of pipework, ductwork and hot water systems have been selected to be in line with the future highest standards.

Minimising Water Usage

The design shall incorporate water saving strategies, such as low flush toilets, and non-concussive spray taps in order to keep the maximum water usage to 105 litres/person per day (in accordance with Policy SI5 Water Infrastructure of London Plan 2021). Water consumption will be monitored. Other features shall include mains leak detection and sanitary shut-off.

Energy Efficient Lighting and Appliances

Provision of the required lighting levels whilst minimizing energy consumption by appropriate specification of light fittings and effective control of lighting systems by:

- Specifying 100% of the fixed internal light fittings as dedicated energy efficient fixtures.
- Having suitable energy consumption metering.
- Ensuring systems have been appropriately commissioned.
- Using lighting systems which are efficient and make use of daylight where possible/practical.
- Provision of low output or energy efficient external lighting.
- Avoiding the use of external lighting when communal spaces are unoccupied or during the day by means PIR, daylight sensors and time controls.

A lighting efficacy of average 95 lumens per circuit watt has been used as the design standard. This will be achieved including LED lighting sources throughout.

4.2. Be Clean

Due to the development location, it is not proposed to connect to an existing low carbon heat network.

4.3. Be Green

The viability of renewable systems such as Photovoltaic Panels, Solar Thermal, and Heat pumps has been assessed and all these systems have been considered not viable for this project due to the nature of the building, lack of space and its Grade II listing.

4.4. Be Seen

Sufficient information about the building, the fixed building services and their maintenance requirements will be provided to the user so that the building can be operated in such a manner as to use no more fuel and power than is reasonable in the circumstances. The systems provided within the development will allow for monitoring to ensure they are run at optimum performance.

5. LOW AND ZERO CARBON TECHNOLOGIES

The following section provides a feasibility analysis of Low or Zero Carbon (LZC) technologies for use at 9 John Street. There are various options when it comes to LZC technology, but a combination of project constraints rules these out. The constraints are:

- Grade II Listed status
- Capital expenditure
- Return on Investment
- Carbon savings potential
- Clean energy output potential
- Spatial requirements
- Operation and maintenance requirements
- Planning requirements

Out of the technologies considered the following were discounted immediately for this site:

- Ground-source heat pumps; no space for ground-loop or boreholes
- Hydroelectric: there are no suitable water courses or hydroelectric plants near the site.
- Hydrogen: generation and storage are still in the experimental stage at this scale and no systems are currently commercially available.
- Biomass: planning energy and carbon targets rule out the use of a biomass boilers or alternatives (including CHP or biomass CHP). It is also considered not a viable solution due to issues with emissions and transport.
- CHP: as above.
- Biomass CHP: as above.
- Wind Turbines: wind turbine technology is not suitable for high density areas and those within close proximity to residential properties.

The feasibility study therefore reviewed the use of the following technologies to offset CO₂ emissions:

- Air Source Heat Pumps
- Photovoltaics
- Solar Thermal Panels

5.1. Feasibility of LZC Technologies

5.1.1. Air Source Heat Pump

An air to water heat pump uses the air as a heat sink and transfers the heat in the external space into the heating system. The temperature of the Low Temperature Hot Water (LTHW) providing the heating also affects the efficiency (coefficient of performance – COP) of the units, with the ideal flow and return temperatures being $45^{\circ}C/35^{\circ}C$.

This limits the heating output that is possible using traditional radiator systems or underfloor heating systems. To ensure comfort levels in peak winter conditions would require significant fabric upgrades to match the heat pump output to the building heat loss. The listed nature of the building means that this will not possible.

Air-source heat pumps (ASHP) need to be located externally, away from noise sensitive receptors. There is no suitable location within the project site.

On the basis of space and technical limitations, such as the inability to upgrade building fabric, ASHPs are not considered appropriate for the project.

5.1.2. Solar Photovoltaic (PV) Panels and Detailed Information

Photovoltaic (PV) Panels are a renewable technology which will decrease the amount of electricity from the grid used in the building, particularly during the summer months when the solar irradiance is at its peak. Panels can be integrated within the building roof or stand alone; most efficient when south facing and angled at 30° from the horizontal. Such panels would reduce carbon emissions from the electrical uses within the building.

With limited roof space available, and the listing of the building, this technology is considered not appropriate for the project.

5.1.3. Solar Thermal Systems

Solar thermal panels would need to be roof-mounted or integrated into a new roof structure. Flat plate or evacuated tube type panels could be used. The solar thermal panels would be used to heat water which can be used for the domestic hot water supply to the dwelling.

With limited roof space available, and the listing of the building, this technology is considered not appropriate for the project.

6. COOLING HIERARCHY

The building will be designed in line with the cooling hierarchy outlined in Policy SI4 Managing heat risk in London Plan 2021 and referenced in the Camden planning guidance. The following measures will be followed at each stage of the hierarchy in order to reduce the demand for cooling.

6.1. Minimising Internal Heat Gains

Stage one of the Cooling Hierarchy is to minimise internal heat generation through energy efficient design.

Heat distribution infrastructure will be designed to minimise pipe lengths. This will be achieved at coordination stage, ensuring pipework is well insulated and that pipe configurations minimise heat loss. Good daylighting and high efficiency light fittings with simple controls will also help to reduce excess heat gains from artificial lighting. Low energy lighting will be specified throughout.

6.2. Reducing Heat Entering the Building

Incorporation of internal blinds will help to limit solar gains in the summer.

6.3. Passive Ventilation

Openable windows in all perimeter rooms will allow sufficient natural cross ventilation to prevent overheating.

6.4. Mechanical Ventilation

Mechanical extract ventilation can enhance the airflow through natural ventilation, however, due to the lack of grilles on the building and its listed status, mechanical ventilation is not proposed.

6.5. Active Cooling

It is not proposed to have any active cooling.

7. OVERHEATING RISK ANALYSIS

The measures described in the Cooling Hierarchy set out how overheating risk will be mitigated through passive design measures.

8. ENERGY ASSESSMENT

An energy assessment has been carried out to demonstrate how the targets for regulated CO₂ emissions reduction over and above 2021 Building Regulations will be met using the energy hierarchy outlined in Policy SI2 Minimising greenhouse gas emissions in the London Plan.

Energy consumption and associated carbon emissions have been calculated using approved SAP software and, using the GLA Carbon Emission Reporting Spreadsheet, a sitewide performance has been established. The unregulated energy demands of the development have been estimated based on CIBSE Guide F.

SAP software was used to output a Target Emissions Rate (TER) based on the notional building and a Dwelling Emissions Rate (DER) for the development.

See Appendix A for full SAP results.

8.1. SAP Model

Being a refurbishment project, the proposed development has been compared against the performance of the existing building with fabric and efficiencies as stipulated by the GLA Energy Assessment Guide Appendix 3. The SAP model for the proposed refurbishment was created with the aim to balance adherence with Building Regulations, Camden local planning guidance and preserving the building's historical significance. Therefore, most elements of the existing building were retained.

Baseline

The following fabric U-values have been assigned for the baseline, which the proposed development will be compared against. The values are based on values specified by the GLA Energy Assessment Guide Appendix 3.

Building Element	U-value (W/m^2K)
External Wall	0.3
Roof	0.16
Exposed Floor	0.25

	U-value (W/m^2K)	g-value
Glazing	1.60	0.63

The airtightness of the building is calculated via the SAP software. It is assumed to be a masonry building without a draught lobby and non-timber floors. No doors or windows are draught stripped. The building utilises an electric boiler with an efficiency of 100% as stated in Section 6 of Part L.

Proposed

Building Element	U-value (W/m ² K)
External Wall	1.5
Roof	2
Exposed Floor	1.1

	U-value (W/m ² K)	g-value
Existing Single Glazing	5.8	0.85
Secondary Glazing	3.3	0.6

As the existing building is to be retained to keep its historical qualities, the proposed values are based on it, with the assumption that it consists of uninsulated fabric. The front facade will have secondary glazed windows, whilst the remaining windows will be single-glazed. The proposed building's boiler is to be replaced by a new electric boiler with an efficiency of 100%. An air permeability of 20 m³/hm² at 50Pa was assigned for the proposed building, accounting for repairs to the brickwork and internal walls.

8.2. Unregulated Energy

The unregulated energy uses for the proposed development have been estimated by the methods and average values described in CIBSE Guide F and TM54: Evaluating operational energy performance of buildings at the design stage. The table below shows the electrical equipment that is used in the residential development. The number of items of equipment has been estimated based on the drawings issued by the Architect.

The power consumption of the equipment has been taken from the CIBSE Guide F 2012, paragraph 12.2. The installed capacity (nameplate rating) does not give an accurate estimate of energy use, so the 'average power consumption' as well as 'sleep mode' consumption have been used for the calculation.

The usage hours of the electrical equipment depend on the operating hours. The number of hours per day takes into account the intermittent usage and the variation of the operation from hour to hour and day to day. Instead of use a diversity factor multiplied by the power consumption, is going to be used an estimated number of hours. Overnight and weekend energy use can contribute significantly to small power energy and has been included. The equation below explains the calculation of the energy consumption.

Annual energy consumption (kWh) =

Number of equipment × {[average power consumption during operation × annual hours of operation] + [sleep mode consumption × (8760 - hours of operation)]}

EQUIPMENT	QUANTITY	AVERAGE POWER DEMAND	SLEEP- MODE POWER DEMAND	HOURS OF OPERATION/DAY	TOTAL HOURS/YEAR	ENERGY CONSUMPTION
		(W)	(W)	hours/day	hours/year	(kWh)
laptops	4	40	4	8	2080	359.52
screens	5	60	10	8	2080	690.80
multifunction devices	7	135	60	2	728	1,169.88
miscellaneous	5	15		8	2912	218.40
microwave	I	800		0.5	182	145.60
fridge	I	130	20	24	8760	1,138.80
cooking equipment	I	850		2	730	620.50
					TOT (kWh)	4,343.50
					Unregulated/m2 (kWh/m2/yr)	11.64
					kgCO2/yr	603.75
					kgCO2/m2/yr	1.62

8.3. Results

The proposed building, after following the implemented design measures, demonstrates an emission rate 54% greater than the Part L baseline scenario. Major improvements to the building fabric were restricted due to being a Grade II listed building, however, passive and active design measures were identified in section 4.1 to improve the building's energy performance as much as possible. These improvements would be more effectively represented through a comparison between the building's current state and the proposed design. Comparing against the GLA standard, which is based on a notional specification for existing buildings, does not accurately reflect the true build.

There is no specific degree of improvement over Part L to achieve as a minor development under Local and London Plan.

	Regulated residential carbon dioxide savings		
	(Tonnes CO ₂ per annum)	(%)	
Be lean: savings from energy demand reduction	-3.2	-54%	
Be clean: savings from heat network	0.0	0%	
Be green: savings from renewable energy	0.0	0%	
Cumulative on site savings	-3.2	-54%	

9. WATER CONSUMPTION

The design shall incorporate water saving strategies, such as low flush toilets, and non-concussive spray taps to keep the water use as low as possible. Water consumption will be monitored. Other features shall include mains leak detection and sanitary shut-off.

IO. MATERIALS

The development will maximise the use of recycled, responsibly sourced and low impact materials. As a refurbishment, the development will maintain the existing structure and constructions as much as possible, only making repairs or refurbishments if deemed necessary to improve air tightness. This will greatly reduce the embodied carbon of the development.

To promote resource efficiency via the effective management and reduction of construction waste. The proposed development will implement a Site Waste Management Plan (SWMP).

Demolition waste will be minimised, reused and recycled, where practicable.

These measures will aid in minimising waste to landfill, with the aim of diverting at least 85% of demolition and construction waste from landfill.

11. OPERATIONAL SUSTAINABILITY

As stated in Section 4.4 Be Seen, sufficient information about the building, the fixed building services and their maintenance requirements will be provided to the users so that the building can be operated in such a manner as to use no more fuel and power than is reasonable in the circumstances. The systems provided within the development will allow for monitoring to ensure they are run at optimum performance via user-friendly controls, and metering.

High efficiency equipment and appliances will be installed throughout. Where white goods are to be provided fridges and freezers will be A+ rated under the EU Energy Efficiency Rating Scheme, washing machines and dishwashers will be A rated.

12. CONCLUSION

In line with the Local and London Plan, Planning Policy, and the project planning conditions, this Sustainability Statement outlines the Environmental Design Strategy for the development. Different passive measures and LZC technologies were considered for this refurbishment, and despite limitations that prevent fabric improvements and LZC technology use, other passive measures have been designated that aid with carbon reductions. The existing gas boiler is to be replaced by an electric boiler to improve operational and carbon efficiency. As the carbon factor of electricity decreases with the greening of the national grid, the environmental performance of the development will further improve.

Whilst improvements over Part L were constrained by the building's listed status, the Camden Local Plan highlights that many historic buildings have environmentally sustainable qualities which have directly contributed to their survival through the use of durable, natural and locally sourced materials, good room proportions, natural light and ventilation. Therefore, there is benefit to the reuse of this building and its existing elements. The measures for the Environmental Design Strategy were chosen to sensitively improve the energy efficiency of this existing building.

This report demonstrates how the energy and sustainability strategy of the development achieves compliance with Building Regulations, Local and London planning policy. Based on the constraints of the site, the report demonstrates how the most energy and carbon efficient design solution has been achieved. In addition to energy efficiency, the development's adaptability to climate change is demonstrated with the proposed steps of the cooling hierarchy.

	Carbon Dioxide Emissi (Tonnes C	ons for residential buildings CO2 per annum)
	Regulated	Unregulated
Baseline: Part L 2021 of the Building Regulations Compliant Development	5.8	0.6
After energy demand reduction (be lean)	9.0	0.6
After heat network connection (be clean)	9.0	0.6
After renewable energy (be green)	9.0	0.6

	Regulated residential carbon dioxide sav	vings
	(Tonnes CO ₂ per annum)	(%)
Be lean: savings from energy demand reduction	-3.2	-54%
Be clean: savings from heat network	0.0	0%
Be green: savings from renewable energy	0.0	0%
Cumulative on site savings	-3.2	-54%

domestic carbon emissions
 Carbon savings
 Part L 2021 Target Emission Rate - - - minimum 35% saving on site

APPENDIX A – SAP CALCULATIONS

Dwelling Reference: Dwelling Type: 9 John Street

WC1N 2EB

J5653 New Dwelling Design Stage

1. Overall dwelling dimensions						
	Area(m²)		Av. Height(m	1)	Volume(m³)	
Basement	86.5	(1a) x	2.9	(2a) =	250.85	(3a)
Ground Floor	75	(1b) x	3.4	(2b) =	255	(3b)
First Floor	74	(1c) x	3.6	(2c) =	266.4	(3c)
2nd Floor	73.6	(1d) x	2.8	(2d) =	206.08	(3d)
3rd Floor	63.4	(1e) x	2.4	(2e) =	152.16	(3e)
Total floor area TFA		. ,			372.5	(4)
Dwelling volume					1130.49	(5)
2. Ventilation Rate						
Chimneys/Flues	0	х	80 =		0	(6a)
Open chimneys	0	х	20 =		0	(6b)
Chimneys / flues attached to closed fire	0	х	10 =		0	(6c)
Flues attached to solid fuel boiler	0	х	20 =		0	(6d)
Flues attached to other heater	0	х	35 =		0	(6e)
Number of blocked chimneys	0	х	20 =		0	(6f)
Number of intermittent extract fans	0	х	10 =		0	(7a)
Number of passive vents	0	х	10 =		0	(7b)
Number of flueless gas fires	0	х	40 =		0	(7c)
			Air changes	per hour		()
Number of storeys in the dwelling (ns)				0	0	(8)
Infiltration due to chimneys, flues, fans, PSVs, etc				5	5	(9)
Additional infiltration				0.4	0.4	(10)
Suspended wooden ground floor				0.35	0.35	(11)
No draught lobby				0		(12)
Percentage of windows and doors draught proofed				0.05	0.05	(15)
Window infiltration				0.25	0.25	(15)
Infiltration rate				1.05	1.05	(16)
Air permeability value, AP50, (m³/h/m²)				0	0	(17)
Air permeability value, AP4, (m ³ /h/m ²)				0	0	(17a)

(18)

(19)

1.05

0

1.05

0

Shelter f	actor												1	(20)
Infiltratio	on rate in	corporati	ing shelte	er factor									1.05	(21)
Infiltratio	on rate m	odified fo	or month	ly wind sp	beed									
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	(22)
Monthly	average	wind spe	ed from T	Table U2										
Wind Fac	5.1 ctor	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	52.5	(22)
Adjusted	1.28 I infiltratio	1.25 on rate (a	1.23 allowing f	1.1 or shelter	1.08 and win	0.95 nd speed)	0.95	0.93	1	1.08	1.13	1.18	13.13	(22a)
Calculate	1.34 e effective	1.31 e air char	1.29 nge rate f	1.16 or the app	1.13 plicable c	1 case:	1	0.97	1.05	1.13	1.18	1.23	13.78	(22b)
													0 0 0	(23a) (23b) (23c)
a) If bala	nced med	chanical v	/entilatio	n with he	at recove	ery (MVH	R)							
b) If bala	0 nced med	0 chanical v	0 ventilatio	0 n without	0 : heat red	0 covery (N	0 1∨)	0	0	0	0	0		(24a)
c) If who	0 le house (0 extract ve	0 entilation	0 or positi	0 ve input	0 ventilatio	0 on from o	0 outside	0	0	0	0		(24b)
d) lf natu	0 ural ventil	0 ation or v	0 whole ho	0 use positi	0 ve input	0 ventilatio	0 on from l	0 oft	0	0	0	0		(24c)
Effective	1.34 air chang	1.31 ge rate	1.29	1.16	1.13	1	1	0.97	1.05	1.13	1.18	1.23		(24d)
Effective	1.34 air chang	1.31 ge rate fr	1.29 om PCDB	1.16 :	1.13	1	1	0.97	1.05	1.13	1.18	1.23		(25)
	1.34	1.31	1.29	1.16	1.13	1	1	0.97	1.05	1.13	1.18	1.23		(25)

3. Heat losses and heat loss parameter

Items in the table below are to be expanded as necessary to allow for all different types of element e.g. 4 wall types. The k -value

ELEMENT	AXU	AXk	
	(W/K)	kJ/K	
Doors	6.02		(26)
Windows	75.94		(27)
Roof window	0		(27a)
Basement floor	21.63	6487.5	(28)
Ground floor	0	0	(28a)
Exposed floor	0	0	(28b)
Basement wall	15.96	10108	(29)
External wall	71.01	44973	(29a)

Roof							1	2.29					691.2	(30)
Total are	a of exte	rnal elen	nents ∑A,	m²									508	(31)
Party Wa	ıll							0					34629	(32)
Party flo	or												0	(32a)
Party cei	ling												0	(32b)
Internal	wall **												0	(33c)
Internal	floor												0	(32d)
Internal	ceiling flo	or											0	(32e)
Fabric he	at loss, V	N/K = ∑ (A	A x U)										202.84	(33)
Heat cap	acity Cm	= ∑(A x k	()										96888.7	(34)
Thermal	mass par	ameter (TMP = Cr	n ÷ TFA)	in kJ/m²K								250	(35)
Linear Th	near Thermal bridges: \sum (L x Ψ) calculated using Appendix K													
Point The	pint Thermal bridges: $\Sigma \chi$ (W/K) if significant point thermal bridge present and values available													
Total fab	ric heat l	oss H = ∑	(A × U) +	Σ(L×Ψ)	+∑χ								304.44	(37)
Ventilati	on heat l	oss calcu	lated moi	nthly										, , ,
Heat trar	499.44 Isfer coe	489.64 fficient, V	479.85 N/К	430.89	421.09	372.13	372.13	362.49	391.71	421.09	440.68	460.26		(38)
Heat loss	803.88 parame	794.09 ter (HLP)	784.29 , W/m²K	735.33	725.54	676.57	676.57	666.93	696.16	725.54	745.12	764.71		(39)
Number	2.16 of days ii	2.13 n month	2.11 (Table 1a	1.97)	1.95	1.82	1.82	1.79	1.87	1.95	2	2.05		(40)
	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter heat	ing ener	rgy requi	rement										
Assumed	l occupar	ncy, N n litres n	er dav fo	r mivor sl	nowers \	/d showe	or (from A	nnendiv	1)				3.23	(42)
not wate									<i>,</i>	0	0	0		(12-)
Hot wate	u er usage i	0 n litres p	u er day foi	u r baths, V	U /d,bath (f	rom App	u endix J)	U	U	U	U	U		(4za)
	90.36	89.02	87 13	83 64	81 04	78 14	76 58	78 46	80 5	83 59	87 15	90.05		(42b)

Hot water usage in litres per day for other uses, Vd,other (from Appendix J)

 47.67
 45.94
 44.2
 42.47
 40.74
 39
 39
 40.74
 42.47
 44.2
 45.94
 47.67
 (42c)

 Annual average hot water usage in litres per day Vd, average (from Appendix J)
 127.11
 (43)

 Hot water usage in litres per day for each month Vd, m = (42a) + (42b) + (42c)
 (42c)

 138.03
 134.95
 131.33
 126.11
 121.77
 117.14
 115.58
 119.19
 122.97
 127.8
 133.09
 137.72
 1525.69 (44)

 Energy content of hot water used = 4.18 x Vd,m x nm x DTm / 3600 kWh/month (from Appendix J)
 1525.69
 (44)

 218.61
 192.17
 201.85
 172.64
 163.93
 144.04
 139.79
 147.58
 151.63
 173.42
 189.61
 215.64
 2110.91 (45)

Distribution loss (46) = 0.15 x (45) 32.79 28.83 30.28 25.9 24.59 21.61 20.97 22.14 22.74 26.01 28.44 32.35 (46) Storage volume (litres) including any solar or WWHRS storage within same vessel 0 (47)

Water storage loss (or HIU loss)

a) If manufacturer's declared loss factor is known (kWh/day):	0	(48)
Temperature factor from Table 2b	0	(49)
Energy lost from water storage, kWh/day (48) x (49) =	300	(50)
b) If manufacturer's declared loss factor is not known :		. ,
Hot water storage loss factor from Table 2 (kWh/litre/day)	0.02	(51)
Volume factor from Table 2a	0.74	(52)
Temperature factor from Table 2b	1	(53)
Energy lost from water storage, kWh/day	4.86	(54)
Enter (50) or (54) in (55)	4.86	(55)
Water storage (or HIU) loss calculated for each month (56) = (55) × (41)		
150.75 136.16 150.75 145.89 150.75 145.89 150.75 150.75 145.89 150.75 145.89 150.75 145.89 150.75 145.89 150.75 If the vessel contains dedicated solar storage or dedicated WWHRS storage,		(56)
(57)m = (56)m		
where Vs is Vww from Appendix G3 or (H12) from Appendix H (as applicable).		
150.75 136.16 150.75 145.89 150.75 145.89 150.75 150.75 145.89 150.75 145.89 150.75 Primary circuit loss for each month from Table 3		(57)
modified by factor from Table H4 if there is solar water heating and a cylinder thermostat, although not for DHW-only	heat networ	·ks)
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(59)
		(61)
Total heat required for water heating calculated for each month $(62) = 0.85 \times (45) + (46) + (57) + (59) + (61)$		()
369.36 328.33 352.6 318.53 314.68 289.93 290.54 298.33 297.52 324.17 335.49 366.39 CWWHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no WWHRS contribution to water hea	3885.88 ting)	(62)
0 0 0 0 0 0 0 0 0 0		(63a)
PV diverter DHW input calculated using Appendix G (negative quantity) (enter 0 if no PV diverter contribution)		, ,
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(63b)
		(62c)
FGHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no FGHRS contribution to water heating)		(050)
0 0 0 0 0 0 0 0 0 0		(63d)
Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)		
369.36 328.33 352.6 318.53 314.68 0 0 0 0 324.17 335.49 366.39 Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)	2709.56	(64)
		(64a)
Heat gains from water heating, kWh/month 0.25 x [0.85 × (45) + (61) + (64a)] + 0.8 x [(46) + (57) + (59)]		. ,
193.29 172.83 187.72 174.11 175.11 164.6 167.08 169.67 167.13 178.26 179.75 192.3 include (57) m in calculation of (65) m only if hot water store is in the dwelling or hot water is from heat network		(65)

5. Internal gains (see Tables 5 and 5a)

Metabolic gains (Table 5), watts

193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57

(66)

Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

Appliance	60.42 es gains (53.67 calculate	43.65 d in Appe	33.04 endix L, eo	24.7 quation L	20.85 16 or L16	22.53 5a), also s	29.29 see Table	39.31 5	49.91	58.26	62.1	(67)
Cooking a	768.11 gains (cal	776.08 culated ir	756 n Append	713.24 ix L, equa	659.26 ation L18	608.53 or L18a)	574.64 , also see	566.67 Table 5	586.75	629.51	683.49	734.22	(68)
Pumps ar	57.58 nd fans ga	57.58 ains (Tabl	57.58 e 5a)	57.58	57.58	57.58	57.58	57.58	57.58	57.58	57.58	57.58	(69)
Losses e.	10 g. evapor	10 ation (ne	10 gative va	10 lues) (Tal	10 ble 5	0	0	0	0	10	10	10	(70)
Water he	-129.05 ating gai	-129.05 ns (Table	-129.05 5)	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	(71)
Total inte	259.79 ernal gain	257.18 s	252.31	241.82	235.36	228.62	224.57	228.05	232.12	239.6	249.66	258.47	(72)
	1220.44	1219.04	1184.06	1120.21	1051.43	980.11	943.85	946.12	980.29	1051.14	1123.51	1186.9	(73)

6. Solar gains

Solar gains in watts, calculated for each month 506.82 890.15 1289.24 1716.94 2032.19 2065.48 1971.37 1728.84 1436.2 1003.03 611.95 430.57 (83) Total gains – internal and solar (watts) 1727.26 2109.19 2473.3 2837.15 3083.62 3045.59 2915.22 2674.96 2416.49 2054.17 1735.46 1617.48 (84)

7. Me	ean inter	nal tem	perature	e (heatin	ıg seasoı	n)								
Tempera Utilisatio	ature dur on factor	ing heati for gains	ng perioo for living	ds in the garea, 🛙	living are .,m (see 1	a from Ta Fable 9a)	able 9, Th	1 (°C)					21	(85)
Mean in	1 Iternal ter	1 mperatur	0.99 re in livin	0.99 g area T1	0.96 (follow s	0.89 steps 3 ai	0.79 nd 4 in Ta	0.83 ble 9c)	0.95	0.99	1	1		(86)
Tempera	18.16 ature dur	18.39 ing heati	18.82 ng perioc	19.47 ds in rest	20.05 of dwelli	20.59 ng from ⁻	20.83 Table 9, T	20.78 h2 (°C)	20.36	19.62	18.85	18.22		(87)
Roof	19.23	19.25	19.26	19.35	19.37 Utilisatio	19.46 n factor f	19.46 or gains f	19.48 or rest of	19.42 f dwellin _{	19.37 g, ⊡2,m (s	19.33 see Table	19.3 9a)		(88)
Roof	1	1	0.99	0.98	0.93 Me	0.81 ean inter	0.6 nal temp	0.67 erature ir	0.91 n the rest	0.99 of dwell	1 ing T2	1		(89)
Living ar	16.73 rea fractio	16.98 on	17.41	18.12	18.69	19.25	19.41	19.41	19.04	18.28	17.49	16.84	0.08	(90) (91)
Mean in	ternal te	mperatur	re (for the	e whole o	dwelling)									
Adjuste	16.84 d mean ir	17.09 Iternal te	17.52 mperatu	18.22 re:	18.8	19.35	19.52	19.51	19.14	18.38	17.6	16.95		(92)
	16.59	16.84	17.27	17.97	18.55	19.1	19.27	19.26	18.89	18.13	17.35	16.7		(93)

8. Space heating requirement

Utilisation factor for gains,

Useful ga	1 ins, mGm	0.99 n , W	0.99	0.97	0.91	0.78	0.57	0.64	0.88	0.98	0.99	1		(94)
Monthly	1721.35 average e	2095.21 external t	2438.69 emperat	2741.53 ure from	2816.91 Table U1	2375.62	1664.99	1702.62	2131.97	2006.39	1725.56	1613.34		(95)
Heat loss	4.3 rate for i	4.9 mean inte	6.5 ernal tem	8.9 Iperature	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Space hea	9879.72 ating req	9478.84 uirement	8445.72 for each	6673.07 month	4968.41	3044.43	1806.9	1910.21	3333.87	5463.73	7635.02	9558.62		(97)
Solar spa	6069.83 ce heatin	4961.8 g calculat	4469.23 ted using	2830.71 Appendi	1600.72 x H (nega	0 itive quai	0 ntity)	0	0	2572.26	4254.81	5911.29		(98a)
Space hea	0 ating req	0 uirement	0 for each	0 month a	0 fter solar	0 contribu	0 Ition	0	0	0	0	0		(98b)
Space hea	6069.83 ating req	4961.8 uirement	4469.23 in kWh/	2830.71 m²/year	1600.72	0	0	0	0	2572.26	4254.81	5911.29	87.71	(98c) (99)

8c. Spac	e Cooling	requirem	ient										
Heat loss ra	ite,												
0 Utilisation f	0 actor for lo	0 DSS	0	0	0	0	0	0	0	0	0		(100)
0 Useful loss,	0 mLm (wat	0 ts)	0	0	0	0	0	0	0	0	0		(101)
0 Gains	0	0	0	0	0	0	0	0	0	0	0		(102)
0 Space cooli	0 ng require	0 ment for m	0 nonth, wh	0 Iole dwel	0 ling, cont	0 inuous (k	0 (Wh)	0	0	0	0		(103) (104)
0 Cooled frac Intermitten	0 tion cy factor	0	0	0	0	0	0	0	0	0	0	0	(104) (105)
0 Space cooli	0 ng require	0 ment for m	0 nonth	0	0	0	0	0	0	0	0	0	(106)
0 Space cooli	0 ng requirei	0 ment in kV	0 Vh/m²/ye	0 ar	0	0	0	0	0	0	0	0	(107) (108)
8f Snac	e heating	requirem	ent										

Fabric Energy Efficiency,

9a. Energy requirements - Individual heating systems including micro-CHP

0

(109)

SAP WORKSHEET

0

Fraction of space heat from secondary/supplementary system, 0													0	(201)	
Fraction of	space h	eat from	n main sy	stem(s),										1	(202)
Fraction of	main he	eating fr	om main	system 2	<u>2,</u>									0	(203)
Fraction of	total sp	ace heat	t from ma	ain syste	m 1,									1	(204)
Fraction of	total sp	ace heat	t from ma	ain syste	m 2,									0	(205)
Efficiency of	of main s	space he	ating sys	tem 1 (ir	ı %),									100	(206)
Efficiency of	of main s	space he	ating sys	tem 2 (ir	ı %),									0	(207)
Efficiency of	of secon	dary/sup	plement	ary heat	ing syste	m, %,								100	(208)
Cooling Sys	stem Sea	asonal Ei	nergy Effi	iciency R	atio,				0					0	(209)
Space heat	ing requ	irement	: (calculat	ted abov	e) <i>,</i>										
0)	0	0	0	0	0	0	0		0	0	0	0		(210)
Space heat	ing fuel	(main h	eating sys	stem 1),	kWh/mo	nth			0					0	
6	6069.83 4961.8 4469.23 2830.71 1600.72 0 0 0 2572.26 4254.81 5911.29														
Space heat	ing fuel	(main h	eating sys	stem 2),	kWh/mo	nth			0					0	
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0														
Space heat	pace heating fuel (secondary), kWh/month 0														
0)	0	0	0	0	0	0	0		0	0	0	0		(215)
Output fro	Jutput from water heater), 0														(216)
Efficiency of	of water	heater													
1	.00	100	100	100	100	100	100	10	0	100	100	100	100		(217)
Fuel for wa	iter heat	ting													
3 Space Cool	69.36 ing	328.33	352.6	318.53	314.68	0	0	0		0	324.17	335.49	366.39	2709.56	(219)
0 Annual tota) als	0	0	0	0	0	0	0 kW	h/vea	0	0 kWh/year	0	0		(221)
Space heat	ing fuel	used, m	ain syste	m 1										32670.64	(211)
Space heat	ing fuel	used, m	ain syste	m 2										0	(213)
Space heat	ing fuel	used, se	condary											0	(215)
Water heat	ting fuel	used												2709.56	(219)
Electricity f	for insta	ntaneou	is electric	shower	(s)									0	(64a)
Space cool	ing fuel	used												0	(221)
Electricity f	for pum	ps, fans a	and elect	ric keep-	hot										. ,
Mechanica	l vent fa	ns - bala	anced, ex	tract or p	oositive in	nput from	n outside		0		0			0	(230a)
warm air h	eating s	ystem fa	ins											0	(230b)
Heating cir	culation	pump o	or water p	oump wit	hin warn	n air heat	ing unit							214.5	(230c)
Oil boiler a	uxiliary	(oil pum	p, flue fa	n, etc; e>	cludes ci	irculation	pump)							0	(230d)
Gas boiler a	auxiliary	(flue fa	n, etc; ex	cludes ci	rculation	pump)								0	(230e)
Maintainin	g electri	c keep-ł	not facilit	y for gas	combi bo	oiler								0	(230f)
Pump for s	olar wat	er heati	ng											0	(230g)
Pump for s	torage V	VWHRS												0	(230h)
Total electricity for the above 21												214.5	(231)		
Electricity f	for lighti	ng												426.84	(232)

Energy sa	iving/ger	neration	technolo	gies (App	endices N	И, N) - En	ergy used	d in dwel	ling					
Electricity	y generat	ted by P\	/s (Apper	idix M) (n	egative o	uantity)	07		U					
	0	0	0	0	0	0	0	0	0	0	0	0	0	(233a)
Electricity	y generat	ted by wi	ind turbir	ies (Appe	ndix M) (negative	quantity)						
	0	0	0	0	0	0	0	0	0	0	0	0	0	(234a)
Electricity	generat	ted by hy	dro-elect	ric gener	ators									
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235a)
Electricity	y used or	net elec	tricity ge	nerated b	by micro-	СНР								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235c)
Energy sa	iving/ger	neration	technolo	gies (App	endices N	И, N) - En	ergy exp	orted						
Electricity	generat	ted by P\	/s (Apper	idix M) (n	egative o	quantity)								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(233b)
Electricity	y generat	ted by wi	ind turbir	nes (Appe	ndix M) (negative	quantity)						
	0	0	0	0	0	0	0	0	0	0	0	0	0	(234b)
Electricity	/ generat	ted by hy	dro-elect	ric gener	ators									
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235b)
Electricity	y used or	net elec	tricity ge	nerated b	by micro-	СНР								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235d)
Appendix	Q items	: annual	energy											
Appendix	. Q, <iten< td=""><td>n 1 descr</td><td>iption></td><td></td><td></td><td></td><td></td><td>Fuel</td><td>k٧</td><td>Vh/year</td><td></td><td></td><td></td><td></td></iten<>	n 1 descr	iption>					Fuel	k٧	Vh/year				
energy sa	ived												0	(236a)
energy us	sed												0	(237a)
Total deli	vered en	ergy for	all uses										37197.86	

10a. Fuel costs – Individual heating systems including micro-CHP

Fuel required	kWh/year	Fuel price	Fuel cost £/yea	r
Space heating - main system 1 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		5387.39	(240a)
Low-rate fraction	0		5387.39	(240b)
High-rate cost	0		0	(240c)
Low-rate cost	0		0	(240d)
Space heating - main system 1 cost (other fuel)	0		0	(240e)
Space heating - main system 2 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		5387.39	(241a)
Low-rate fraction	0		5387.39	(241b)
High-rate cost	0		0	(241c)
Low-rate cost	0		0	(241d)
Space heating - main system 2 cost (other fuel)	0		0	(241e)
Space heating - secondary (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		5387.39	(242a)

Low-rate fraction	0		5387.39	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Space heating - secondary cost (other fuel)	0		0	(242e)
Water heating (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		0	(243)
Low-rate fraction	0		0	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Water heating cost (other fuel)	0		446.81	(247)
(for a DHW-only heat network use (342a) or (342b) instead of (247	7)			
Energy For instantaneous electric shower(s)	0		0	(247a)
Space cooling	0		0	(248)
Pumps, fans And electric keep-hot	0		40.51	(249)
Energy For lighting	0		80.61	(250)
Additional standing charges	0		92	(251)
Energy saving/generation technologies	0		0	(252)
Appendix Q, <item 1="" description=""></item>	Fuel	kWh/year		
energy saved Or generated	0		0	(253)
energy used	0		0	(254)
Total energy cost	0		6241.29	(255)
11a. SAP rating – Individual heating systems including micro-CHP				
Energy cost deflator	0		0	(256)
Energy cost factor (ECF)	0		0	(257)
SAP rating	0		0	(258)

11a. SAP rating – Individual heating systems including micro-CHP		
Energy cost deflator	0.36	(256)
Energy cost factor (ECF)	5.38	(257)
SAP rating	20.72	(258)
12a. CO2 emissions – Individual heating systems including micro-CHP		

Energy	Emission factor	Emissions	
KWh/year	kg	kg CO2/year	
Space heating - main system 1		5038.99	(261)
Space heating - main system 2		0	(262)
Space heating - secondary		0	(263)
Energy for water heating		569.01	(264)
Energy for instantaneous electric shower(s)		0	(264a)

Space and water heating		5608	(265)
Space cooling		0	(266)
Electricity for pumps, fans and electric keep		29.75	(267)
Electricity for lighting		61.61	(268)
energy saved or generated	0	0	(269b)
Appendix Q items			
energy saved	0	0	
energy used	0	0	
energy saved	0	0	(270b)
energy used		0	(271b)
Total CO2, kg/year		5836.11	(272)
Dwelling CO2 Emission Rate		15.67	(273)
El rating		81	(274)

13a. Primary Energy – Individual heating systems including micro-CHP

	Fnergy	Emission factor	Fmissionsr	
	KWh/vear	kø	kg CO2/vear	
Space heating - main system 1		10	51326.39	(275)
Space heating - main system 2			0	(276)
Space heating - secondary			0	(277)
Energy for water heating			3061.8	(278)
Energy for instantaneous electric shower(s)			0	(278a)
Space and water heating			54388.19	(279)
Space cooling			0	(280)
Electricity for pumps, fans and electric keep			324.5	(281)
Electricity for lighting			654.71	(282)
energy saved or generated	0		0	()
Appendix Q items				
energy saved	0		0	
energy used	0		0	
energy saved	0		0	(284b)
energy used			0	(285b)
Total PE, kWh/year			57047.49	(286)
Dwelling PE Rate			153.15	(287)

Dwelling Reference: Dwelling Type: 9 John Street WC1N 2EB

J5653 New Dwelling Design Stage

	Area(m²)		Av. Height(m)			Volume(m³)	
Basement	86.5 (1a) x	2.9	(2a)	=	250.85	(3a)
Ground Floor	75 (1b) x	3.4	(2b)	=	255	(3b)
First Floor	74 (1c) x	3.6	(2c)	=	266.4	(3c)
2nd Floor	73.6 (1d) x	2.8	(2d)	=	206.08	(3d)
3rd Floor	63.4 (1e) x	2.4	(2e)	=	152.16	(3e)
Fotal floor area TFA						372.5	(4)
Dwelling volume						1130.49	(5)

Chimneys/Flues	0	х	80	=	0	(6a)
Open chimneys	0	х	20	=	0	(6b)
Chimneys / flues attached to closed fire	0	х	10	=	0	(6c)
Flues attached to solid fuel boiler	0	х	20	=	0	(6d)
Flues attached to other heater	0	х	35	=	0	(6e)
Number of blocked chimneys	0	х	20	=	0	(6f)
Number of intermittent extract fans	0	х	10	=	0	(7a)
Number of passive vents	0	х	10	=	0	(7b)
Number of flueless gas fires	0	х	40	=	0	(7c)
		A	ir ch	anges per hour		
Number of storeys in the dwelling (ns)				0	0	(8)
Infiltration due to chimneys, flues, fans, PSVs, etc				0	0	(9)
Additional infiltration				0	0	(10)
Structural infiltration				0	0	(11)
Suspended wooden ground floor				0	0	(12)
No draught lobby				0	0	(13)
Percentage of windows and doors draught proofed				0	0	(14)
Window infiltration				0	0	(15)
Infiltration rate				0	0	(16)
Air permeability value, AP50, (m ³ /h/m ²)				20	20	(17)
Air permeability value, AP4, (m ³ /h/m ²)				0	0	(17a)
Air permeability value)				1	1	(18)
Number of sides on which dwelling is sheltered				0	0	(19)

Shelter fa Infiltratio	actor on rate in on rate m	corporat odified f	ing shelte or month	er factor ly wind sp	peed								1 1	(20) (21)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total	(22)
Monthly	Nonthly average wind speed from Table U2													
Wind Fac	5.1 ctor	5	4.9	4.4	4.3	3.8	3.8	3.7	4	4.3	4.5	4.7	52.5	(22)
Adjusted	1.28 I infiltratio	1.25 on rate (a	1.23 allowing f	1.1 For shelte	1.08 r and wir	0.95 nd speed)	0.95	0.93	1	1.08	1.13	1.18	13.13	(22a)
Calculate	1.28 e effective	1.25 e air char	1.23 nge rate fo	1.1 or the ap	1.08 plicable d	0.95 case:	0.95	0.93	1	1.08	1.13	1.18	13.13	(22b)
a) If bala	nced mec	chanical v	ventilatio	n with he	at recove	ery (MVH	R)						0 0 0	(23a) (23b) (23c)
, b) If bala	0 nced med	0 chanical v	0 ventilatio	0 n without	0 t heat red	0 covery (N	0 1∨)	0	0	0	0	0		(24a)
c) lf who	0 le house (0 extract v	0 entilation	0 n or positi	0 ve input	0 ventilatio	0 on from c	0 outside	0	0	0	0		(24b)
d) If natu	0 Iral ventil	0 ation or	0 whole ho	0 use posit	0 ive input	0 ventilatio	0 on from l	0 oft	0	0	0	0		(24c)
Effective	1.28 air chang	1.25 ge rate	1.23	1.1	1.08	0.95	0.95	0.93	1	1.08	1.13	1.18		(24d)
Effective	1.28 air chang	1.25 ge rate fr	1.23 om PCDB	1.1 :	1.08	0.95	0.95	0.93	1	1.08	1.13	1.18		(25)
	1.28	1.25	1.23	1.1	1.08	0.95	0.95	0.93	1	1.08	1.13	1.18		(25)

3. Heat losses and heat loss parameter

Items in the table below are to be expanded as necessary to allow for all different types of element e.g. 4 wall types. The k -value

ELEMENT	A X U ()\///K)	A X k	
	(••• / K)	KJ/K	
Doors	6.02		(26)
Windows	198.66		(27)
Roof window	0		(27a)
Basement floor	95.15	6487.5	(28)
Ground floor	0	0	(28a)
Exposed floor	0	0	(28b)
Basement wall	79.8	10108	(29)
External wall	355.05	44973	(29a)

Roof	of 153.6													(30)
Total are	a of exter	rnal elem	ents ∑A,	m²									508	(31)
Party Wa	ll							0					34629	(32)
Party floo	or												0	(32a)
Party ceil	ling												0	(32b)
Internal v	wall **												0	(33c)
Internal f	loor												0	(32d)
Internal o	ceiling flo	or											0	(32e)
Fabric heat loss, W/K = \sum (A x U)											888.28	(33)		
Heat capacity $Cm = \sum (A \times k)$											96888.7	(34)		
Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K											250	(35)		
Linear Thermal bridges: Σ (L x Ψ) calculated using Appendix K												0	(36)	
Point Thermal bridges: $\Sigma \chi$ (W/K) if significant point thermal bridge present and values available											0	(36a)		
Total fab	ric heat lo	oss H = ∑((A × U) +	Σ(L×Ψ) -	+∑χ								888.28	(37)
Ventilatio	on heat lo	ss calcul	ated mor	nthly										
Heat trar	475.65 nsfer coef	466.33 ficient, V	457 V/K	410.37	401.04	354.87	354.87	346.13	373.06	401.04	419.69	438.35		(38)
Heat loss	1363.94 paramet	1354.61 er (HLP),	1345.29 W/m²K	1298.65	1289.33	1243.16	1243.16	1234.42	1261.35	1289.33	1307.98	1326.63		(39)
Number	3.66 of days in	3.64 1 month (3.61 Table 1a)	3.49	3.46	3.34	3.34	3.31	3.39	3.46	3.51	3.56		(40)
	31	28	31	30	31	30	31	31	30	31	30	31		(41)

4. Wat	ter heati	ing ener	gy requi	rement										
Assumed	occupan	icy, N											3.23	(42)
Hot wate	r usage ii	n litres pe	er day for	mixer sh	iowers, V	d,showe	r (from A	ppendix .	J)					
Hot wate	0 r usage ii	0 n litres pe	0 er day for	0 baths, V	0 d,bath (fi	0 rom Appe	0 endix J)	0	0	0	0	0		(42a)
Hot wate	90.36 r usage ii	89.02 n litres pe	87.13 er day for	83.64 other us	81.04 ses, Vd,ot	78.14 her (fron	76.58 n Appenc	78.46 lix J)	80.5	83.59	87.15	90.05		(42b)
Annual av Hot wate	47.67 45.94 44.2 42.47 40.74 39 39 40.74 42.47 44.2 45.94 47.67 Annual average hot water usage in litres per day Vd,average (from Appendix J) Hot water usage in litres per day for each month Vd,m = (42a) + (42b) + (42c)											127.11	(42c) (43)	
Energy co	138.03 ontent of	134.95 hot wate	131.33 er used =	126.11 4.18 x Vo	121.77 l,m x nm	117.14 x DTm / 3	115.58 3600 kW	119.19 h/month	122.97 (from Ap	127.8 pendix J	133.09	137.72	1525.69	(44)
Distributi	218.61 ion loss (4	192.17 46) = 0.15	201.85 5 x (45)	172.64	163.93	144.04	139.79	147.58	151.63	173.42	189.61	215.64	2110.91	(45)
Storage v Water sto	32.79 volume (li prage los:	28.83 itres) incl s (or HIU	30.28 uding anv loss)	25.9 y solar or	24.59 WWHRS	21.61 storage	20.97 within sa	22.14 me vesse	22.74 el	26.01	28.44	32.35	0	(46) (47)

a) If manufacturer's declared loss factor is known (kWh/day):	0	(48)
Temperature factor from Table 2b	0	(49)
Energy lost from water storage, kWh/day (48) x (49) =	300	(50)
b) If manufacturer's declared loss factor is not known :		
Hot water storage loss factor from Table 2 (kWh/litre/day)	0.02	(51)
Volume factor from Table 2a	0.74	(52)
Temperature factor from Table 2b	1	(53)
Energy lost from water storage, kWh/day	4.86	(54)
Enter (50) or (54) in (55)	4.86	(55)
Water storage (or HIU) loss calculated for each month (56) = $(55) \times (41)$		()
150.75 136.16 150.75 145.89 150.75 145.89 150.75 150.75 145.89 150.75 145.89 150.75		(56)
[[7]] = [[6]] = [[47]] = [47] = [62] = [57] = [56		
(57) iff = (56) iff $(47) - 85$ \div (47) , else (57) iff = (56) iff		
		(53)
150./5 136.16 150./5 145.89 150./5 145.89 150./5 150./5 145.89 150./5 145.89 150./5		(57)
madified by factor from Table 14 if there is color water besting and a cylinder thermestat, although not for DHW only	haat natura	rka)
modified by factor from Table H4 II there is solar water heating and a cylinder thermostal, although not for DHW-only	neat networ	rksj
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(59)
0 0 0 0 0 0 0 0 0 0		(61)
	2005 00	(62)
CWWHRS DHW input calculated using Appendix G (negative quantity) (enter 0 if no WWHRS contribution to water hea	3885.88 ting)	(02)
0 0 0 0 0 0 0 0 0 0		(63a)
PV diverter DHW input calculated using Appendix G (negative quantity) (enter 0 if no PV diverter contribution)		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		(63b)
		(620)
EGHRS DHW input calculated using Annendix G (negative quantity) (enter 0 if no EGHRS contribution to water heating)		(630)
		((2))
Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)		(630)
369.36 328.33 352.6 318.53 314.68 0 0 0 0 324.17 335.49 366.39	2709.56	(64)
Output from water heater for each month, kWh/month (64) = (62) + (63a) + (63b) + (63c) + (63d)		
0 0 0 0 0 0 0 0 0 0 0		(64a)
Heat gains from water heating, kWh/month 0.25 x [0.85 × (45) + (61) + (64a)] + 0.8 x [(46) + (57) + (59)]		
193.29 172.83 187.72 174.11 175.11 164.6 167.08 169.67 167.13 178.26 179.75 192.3 include (57) m in calculation of (65) m only if hot water store is in the dwelling or hot water is from heat network		(65)

5. Internal gains (see Tables 5 and 5a)

Metabolic gains (Table 5), watts

193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57 193.57

(66)

Lighting gains (calculated in Appendix L, equation L12 or L12a), also see Table 5

Applianc	60.42 es gains (53.67 calculate	43.65 d in Appe	33.04 endix L, e	24.7 quation L	20.85 .16 or L16	22.53 6a), also s	29.29 see Table	39.31 5	49.91	58.26	62.1	(67)
Cooking	768.11 gains (cal	776.08 culated ii	756 n Append	713.24 lix L, equ	659.26 ation L18	608.53 or L18a)	574.64 , also see	566.67 Table 5	586.75	629.51	683.49	734.22	(68)
Pumps a	57.58 nd fans g	57.58 ains (Tab	57.58 le 5a)	57.58	57.58	57.58	57.58	57.58	57.58	57.58	57.58	57.58	(69)
Losses e.	10 g. evapor	10 ration (ne	10 gative va	10 Ilues) (Ta	10 ble 5	0	0	0	0	10	10	10	(70)
Water he	-129.05 eating gai	-129.05 ns (Table	-129.05 5)	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	-129.05	(71)
Total int	259.79 ernal gain	257.18 Is	252.31	241.82	235.36	228.62	224.57	228.05	232.12	239.6	249.66	258.47	(72)
	1220.44	1219.04	1184.06	1120.21	1051.43	980.11	943.85	946.12	980.29	1051.14	1123.51	1186.9	(73)

6. Solar gains

Solar gains in watts, calculated for each month

	565.69	999.79	1464.16 1975.	4 2359.79	9 2407.46	2294.1	1997.44	1639.65	1130.92 6	84.16	479.85	(83)
Total gai	ns – inter	mal and s	olar (watts)									
	1786.13	2218.84	2648.22 3095.	61 3411.23	1 3387.56	3237.95	2943.56	2619.94	2182.06 18	807.67	1666.75	(84)

7. Me	ean inter	nal tem	perature	e (heatin	g seasor	ר)								
Tempera Utilisatio	ature dur on factor	ing heati for gains	ng perioo for living	ds in the l g area, ⊡1	iving are .,m (see T	a from Ta ⁻ able 9a)	able 9, Th	1 (°C)					21	(85)
Mean in	1 ternal ter	1 mperatur	0.99 re in livin	0.98 g area T1	0.96 (follow s	0.92 steps 3 ar	0.86 nd 4 in Ta	0.89 ible 9c)	0.96	0.99	1	1		(86)
Tempera	16.85 ature dur	17.12 ing heati	17.65 ng period	18.44 Is in rest	19.24 of dwelli	20 ng from ⁻	20.45 Table 9, T	20.37 h2 (°C)	19.73	18.72	17.7	16.88		(87)
Roof	18.46	18.47	18.48	18.53 I	18.54 Jtilisatio	18.59 n factor f	18.59 or gains f	18.6 for rest of	18.57 f dwelling	18.54 g,	18.52 see Table	18.5 9a)		(88)
Roof	1	0.99	0.99	0.97	0.93 Me	0.82 ean inter	0.61 nal tempo	0.68 erature ir	0.91 n the rest	0.98 of dwell	0.99 ing T2	1		(89)
Living ar	14.99 ea fractio	15.26 on	15.79	16.61	17.39	18.14	18.49	18.45	17.9	16.9	15.87	15.04	0.08	(90) (91)
Mean in	ternal ter	mperatur	e (for the	e whole o	welling)									
Adjuste	15.14 d mean in	15.4 Iternal te	15.94 mperatu	16.75 re:	17.54	18.29	18.64	18.6	18.04	17.04	16.01	15.18		(92)
	14.89	15.15	15.69	16.5	17.29	18.04	18.39	18.35	17.79	16.79	15.76	14.93		(93)

8. Space heating requirement

Utilisation factor for gains,

Useful ga	0.99 ins, mGm	0.99 1 <i>,</i> W	0.98	0.95	0.9	0.78	0.56	0.63	0.87	0.96	0.99	0.99		(94)
Monthly	1772.33 average e	2189.94 external t	2585.91 emperat	2949.61 ure from	3070 Table U1	2646.93	1826.73	1859.13	2276.81	2104.45	1786.07	1656.13		(95)
Heat loss	4.3 rate for i	4.9 mean int	6.5 ernal tem	8.9 perature	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Space he	14439.8 ating req	613890.2 uirement	312356.5 for each	89869.1 month	7201.52	4272.36	2219.27	2404.97	4656.77	7976.57	11330.7	614229.98		(97)
Solar spa	9424.64 ce heatin	7862.59 g calcula	7269.38 ted using	4982.03 Appendi	3073.85 x H (nega	0 ative qua	0 ntity)	0	0	4368.86	6872.18	9354.94		(98a)
Space he	0 ating req	0 uirement	0 for each	0 month a	0 fter solar	0 . contribu	0 Ition	0	0	0	0	0		(98b)
Space he	9424.64 ating req	7862.59 uirement	7269.38 : in kWh/	4982.03 m²/year	3073.85	0	0	0	0	4368.86	6872.18	9354.94	142.84	(98c) (99)

8c. 5	Space C	Cooling re	equirem	ent										
Heat lo	ss rate,													
Utilisat	0 ion fact	0 or for los:	0	0	0	0	0	0	0	0	0	0		(100)
Useful	0 loss, ml	0 Lm (watts)	0	0	0	0	0	0	0	0	0	0		(101)
Gains	0	0	0	0	0	0	0	0	0	0	0	0		(102)
Space o	0 cooling	0 requireme	0 ent for m	0 Ionth, wh	0 ole dwel	0 ling, cont	0 inuous (l	0 ‹Wh)	0	0	0	0		(103) (104)
Cooled	0 fractio	0 n	0	0	0	0	0	0	0	0	0	0	0	(104) (105)
Interm	ittency ⁻	factor												
Space o	0 cooling	0 requireme	0 ent for m	0 Ionth	0	0	0	0	0	0	0	0	0	(106)
Space o	0 cooling	0 requireme	0 ent in kW	0 /h/m²/ye	0 ar	0	0	0	0	0	0	0	0	(107) (108)

8f. Space heating requirement			
Fabric Energy Efficiency,	0	0	(109)

9a. Energy requirements - Individual heating systems including micro-CHP

Fraction of space	heat fron	n second	ary/supp	lementar	y system	,		0					0	(201)	
Fraction of space	action of space heat from main system (s), action of main heating from main system 2, action of total space heat from main system 1,														
Fraction of main h	ction of main heating from main system 2, Iction of total space heat from main system 1, Iction of total space heat from main system 2, Iciency of main space heating system 1 (in %),														
Fraction of total s	pace hea	t from m	ain syste	m 1,									1	(204)	
Fraction of total s	pace hea	t from m	ain syste	m 2,									0	(205)	
Efficiency of main	space he	eating sys	stem 1 (ir	1 %) <i>,</i>									100	(206)	
Efficiency of main	space he	eating sys	stem 2 (ir	1 %) <i>,</i>									0	(207)	
Efficiency of secor	ndary/su	oplement	tary heat	ing syste	m, %,								100	(208)	
Cooling System Se	easonal E	nergy Eff	iciency R	atio,				0					0	(209)	
Space heating req	uirement	t (calcula	ted abov	e) <i>,</i>											
0	0	0	0	0	0	0	0		0	0	0	0		(210)	
Space heating fue	l (main h	eating sy	stem 1),	kWh/mo	nth			0					0		
9424.64	7862.59	7269.38	4982.03	3073.85	0	0	0		0	4368.86	6872.18	9354.94		(211)	
Space heating fue	l (main h	eating sy	stem 2),	kWh/mo	nth			0					0		
0	0	0	0	0	0	0	0		0	0	0	0		(213)	
Space heating fue	l (second	ary), kW	h/month					0					0		
0	0	0	0	0	0	0	0		0	0	0	0		(215)	
Output from wate	er heater)	,						0					100	(216)	
Efficiency of wate	r heater														
100	100	100	100	100	100	100	10	0	100	100	100	100		(217)	
Fuel for water hea	ating														
369.36 Space Cooling	328.33	352.6	318.53	314.68	0	0	0		0	324.17	335.49	366.39	2709.56	(219)	
0	0	0	0	0	0	0	0		0	0	0	0		(221)	
Annual totals							kW	h/yea	ar	kWh/year					
Space heating fue	l used, m	ain syste	m 1										53208.47	(211)	
Space heating fue	l used, m	ain syste	m 2										0	(213)	
Space heating fue	l used, se	econdary											0	(215)	
Water heating fue	el used												2709.56	(219)	
Electricity for insta	antaneou	is electrio	c shower	(s)									0	(64a)	
Space cooling fuel	used												0	(221)	
Electricity for pum	nps, fans	and elect	tric keep-	hot											
Mechanical vent f	ans - bala	anced, ex	tract or p	positive in	nput from	n outside		0		0			0	(230a)	
warm air heating	system fa	ans											0	(230b)	
Heating circulation	n pump c	or water p	oump wit	hin warn	n air heat	ing unit							214.5	(230c)	
Oil boiler auxiliary	oil pum	ip, flue fa	in, etc; ex	cludes ci	rculation	pump)							0	(230d)	
Gas boiler auxiliar	y (flue fa	n, etc; ex	cludes ci	rculation	pump)								0	(230e)	
Maintaining electi	ric keep-ł	not facilit	y for gas	combi bo	oiler								0	(230f)	
Pump for solar wa	iter heati	ng											0	(230g)	
Pump for storage	WWHRS												0	(230h)	
Total electricity fo	or the abo	ove											214.5	(231)	
Electricity for light	ting												426.84	(232)	

Energy saving/generation technologies (Appendices M, N) - Energy used in dwelling Electricity generated by PVs (Appendix M) (negative quantity)

	0	0	0	0	0	0	0	0	0	0	0	0	0	(233a)
Electricity	y generat	ed by w	ind turbir	nes (App	endix M) (negative	quantity)						
	0	0	0	0	0	0	0	0	0	0	0	0	0	(234a)
Electricity	y generat	ed by hy	/dro-elect	ric gene	rators									
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235a)
Electricity	y used or	net elec	ctricity ge	nerated	by micro-	СНР								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235c)
Energy sa	wing/ger	eration	technolog	gies (App	endices N	И, N) - Er	nergy exp	orted						
Electricity	y generat	ed by P\	√s (Appen	ıdix M) (ı	negative c	quantity)								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(233b)
Electricity	y generat	ed by w	ind turbir	ies (App	endix M) (negative	quantity	·)						
	0	0	0	0	0	0	0	0	0	0	0	0	0	(234b)
Electricity	y generat	ed by hy	/dro-elect	ric gene	rators									
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235b)
Electricity	y used or	net elec	ctricity ge	nerated	by micro-	СНР								
	0	0	0	0	0	0	0	0	0	0	0	0	0	(235d)
Appendix	Q items	: annual	energy											
Appendix	Q, <iten< td=""><td>n 1 descr</td><td>ription></td><td></td><td></td><td></td><td></td><td>Fuel</td><td>k۷</td><td>Vh/year</td><td></td><td></td><td></td><td></td></iten<>	n 1 descr	ription>					Fuel	k۷	Vh/year				
energy sa	ived												0	(236a)
energy us	sed												0	(237a)
Total deli	vered en	ergy for	all uses										57735.69	

10a. Fuel costs – Individual heating systems including micro-CHP

Fuel required		F ord and an	End and Chara	
	kWh/year	Fuel price	Fuel cost £/year	•
Space heating - main system 1 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		8774.08	(240a)
Low-rate fraction	0		8774.08	(240b)
High-rate cost	0		0	(240c)
Low-rate cost	0		0	(240d)
Space heating - main system 1 cost (other fuel)	0		0	(240e)
Space heating - main system 2 (electric off-peak tariff				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		8774.08	(241a)
Low-rate fraction	0		8774.08	(241b)
High-rate cost	0		0	(241c)
Low-rate cost	0		0	(241d)
Space heating - main system 2 cost (other fuel)	0		0	(241e)
Space heating - secondary (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		8774.08	(242a)

Low-rate fraction	0		8774.08	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Space heating - secondary cost (other fuel)	0		0	(242e)
Water heating (electric off-peak tariff)				
High-rate fraction (Table 12a, or Appendix F for electric CPSU)	0		0	(243)
Low-rate fraction	0		0	(242b)
High-rate cost	0		0	(242c)
Low-rate cost	0		0	(242d)
Water heating cost (other fuel)	0		446.81	(247)
(for a DHW-only heat network use (342a) or (342b) instead of (247)				
Energy For instantaneous electric shower(s)	0		0	(247a)
Space cooling	0		0	(248)
Pumps, fans And electric keep-hot	0		40.51	(249)
Energy For lighting	0		80.61	(250)
Additional standing charges	0		92	(251)
Energy saving/generation technologies	0		0	(252)
Appendix Q, <item 1="" description=""></item>	Fuel	kWh/year		
energy saved Or generated	0		0	(253)
energy used	0		0	(254)
Total energy cost	0		9627.98	(255)
11a. SAP rating – Individual heating systems including micro-CHP				
Energy cost deflator	0		0	(256)
Energy cost factor (ECF)	0		0	(257)
SAP rating	0		0	(258)

11a. SAP rating – Individual heating systems including micro-CHP		
Energy cost deflator	0.36	(256)
Energy cost factor (ECF)	8.3	(257)
SAP rating	-1.96	(258)
12a. CO2 emissions – Individual heating systems including micro-CHP		

Energy	Emission factor	Emissions	
KWh/year	kg	kg CO2/year	
Space heating - main system 1		8181.34	(261)
Space heating - main system 2		0	(262)
Space heating - secondary		0	(263)
Energy for water heating		569.01	(264)
Energy for instantaneous electric shower(s)		0	(264a)

Space and water heating		8750.35	(265)
Space cooling		0	(266)
Electricity for pumps, fans and electric keep		29.75	(267)
Electricity for lighting		61.61	(268)
energy saved or generated	0	0	(269b)
Appendix Q items			
energy saved	0	0	
energy used	0	0	
energy saved	0	0	(270b)
energy used		0	(271b)
Total CO2, kg/year		8978.46	(272)
Dwelling CO2 Emission Rate		24.1	(273)
El rating		71	(274)

13a. Primary Energy – Individual heating systems including micro-CHP

Energy	y E	mission factor	Emissionsr	
KWh/ye	ar	kg	kg CO2/year	
Space heating - main system 1			83498.04	(275)
Space heating - main system 2			0	(276)
Space heating - secondary			0	(277)
Energy for water heating			3061.8	(278)
Energy for instantaneous electric shower(s)			0	(278a)
Space and water heating			86559.83	(279)
Space cooling			0	(280)
Electricity for pumps, fans and electric keep			324.5	(281)
Electricity for lighting			654.71	(282)
energy saved or generated 0			0	
Appendix Q items				
energy saved 0			0	
energy used 0			0	
energy saved 0			0	(284b)
energy used			0	(285b)
Total PE, kWh/year			89219.14	(286)
Dwelling PE Rate			239.51	(287)

Building Regulations England Part L (BREL) Compliance Report

Approved Document L1 2021 Edition, England assessed by Stroma SAP 10.2 SAP 10 program, 10.2

Date: Fri 12 Apr 2024 11:52:22

Project Information			
Assessed By	Webb Yates Engineers	Building Type	House, Mid-terrace
OCDEA Registration	STR0037816	Assessment Date	2024-03-20

Dwelling Details			
Assessment Type	As designed	Total Floor Area	372 m ²
Site Reference	9 John Street - LEAN v2	Plot Reference	J5653
Address	9 John Street, WC1N 2EB		

Client Details	
Name	Not Provided
Company	Not Provided
Address	Not Provided, Not Provided, WF10 5QU

This report covers items included within the SAP calculations. It is not a complete report of regulations compliance.

1a Target emission rate and dwelling emission rate				
Fuel for main heating system	Electricity			
Target carbon dioxide emission rate	8.61 kgCO ₂ /m ²			
Dwelling carbon dioxide emission rate	24.2 kgCO ₂ /m ²	FAIL		
1b Target primary energy rate and dwelling primary energy	IY			
Target primary energy	45.34 kWh _{PE} /m ²			
Dwelling primary energy	240.52 kWh _{PE} /m ²	FAIL		
1c Target fabric energy efficiency and dwelling fabric energy efficiency				
Target fabric energy efficiency	38.3 kWh/m ²			
Dwelling fabric energy efficiency	152.5 kWh/m ²	FAIL		

2a Fabric U-values	; ;			
Element	Maximum permitted	Dwelling average U-Value	Element with highest	
	average U-Value [W/m ² K]	[W/m ² K]	individual U-Value	
External walls	0.26	1.5	Basement (1.5)	FAIL
Party walls	0.2	0	Party walls (0)	N/A
Curtain walls	1.6	0	N/A	N/A
Floors	0.18	1.1	Lower Ground (1.1)	FAIL
Roofs	0.16	2	Roof (2)	FAIL
Windows, doors,	1.6	4.46	4 (5.8)	FAIL
and roof windows				
Roofliahts	2.2	N/A	N/A	N/A

2b Envelope elements (better than typically expected values are flagged with a subsequent (!))				
Name	Net area [m ²]	U-Value [W/m ² K]		
Basement wall: Basement	53.2	1.5		
Exposed wall: Exposed	236.7	1.5		
Party wall: Party walls	494.7	0 (!)		
Basement floor: Lower Ground	86.5	1.1		
Exposed roof: Boof	76.8	2		

2c Openings (better than typically expected values are flagged with a subsequent (!))				
Name	Area [m ²]	Orientation	Frame factor	U-Value [W/m ² K]
1, Doors	2.3	South West	N/A	1.4
2, Doors	2	South West	N/A	1.4
3, Windows (1)	18	South West	0.9	3.3
4, Windows (2)	15.6	North East	0.9	5.8
5, Windows (2)	6.6	South East	0.9	5.8
6, Windows (2)	2.8	South East	0.9	5.8
7, Windows (2)	3.7	North East	0.9	5.8
8, Windows (1)	3.8	South West	0.9	3.3

2d Thermal bridging (better than typically expected values are flagged with a subsequent (!)) Building part **1 - Main Dwelling**: SAP default y-value (0.2 W/m²K) used for thermal bridging

3 Air permeability (better than typicall	y expected	values are flagged with a subsequent (!))	
Maximum permitted air permeability at 5	0Pa	8 m ² /hm ²	
Dwelling air permeability at 50Pa		20 m ³ /hm ² , Design value	FAIL
Air permeability test certificate reference		Not Provided	
4 Space heating			
Main heating system 1: Boiler with radi	ators or unde	erfloor heating - Electricity	
Efficiency	100.0%		
Emitter type	Radiators		
Flow temperature			
System type			
Manufacturer			
Model			
Commissioning			
Secondary heating system: N/A	•		
Fuel	N/A		
Efficiency	N/A		
Commissioning			
E list water	•		
S Hot water			
Conceity	200 litroc		
Declared heat loss			
Primary pinework insulated			
Manufacturer			
Mandaetaren			
Commissioning			
Waste water heat recovery system 1 -	type: N/A		
Efficiency			
Manufacturer			
Model			
C. Constructor	-		
6 Controls			
Function	vs, and bypa T	455	
Function			
Manufacturor			
Manuacturei			
Water heating - type: HW separately tim	l Jed		
Manufacturer			
Model			
7 Lighting	751.041		
Minimum permitted light source efficacy	75 Im/W		
Lowest light source efficacy	95 Im/vv		UK
External lights control	IN/A		
8 Mechanical ventilation			
System type: N/A			
Maximum permitted specific fan power	N/A		
Specific fan power	N/A		N/A
Minimum permitted heat recovery	N/A		
efficiency			
Heat recovery efficiency	N/A		N/A
Manufacturer/Model			
Commissioning			
9 Local generation			
N/A			
11 Supporting documentary evidence			
N/A			

12 Declarations									
a. Assessor Declaration									
This declaration by the assessor is confirmation that the contents of this BREL Compliance Report									
are a true and accurate reflection based upon the design ir	nformation submitted for this dwelling for								
the purpose of carrying out the "As designed" assessment,	and that the supporting documentary								
evidence (SAP Conventions, Appendix 1 (documentary evidence)	idence) schedules the minimum								
documentary evidence required) has been reviewed in the	course of preparing this BREL								
Compliance Report.									
Signed:	Assessor ID:								
Name:	Date:								
b. Client Declaration									
N/A									

APPENDIX B – GLA SPREADSHEET

	The applicant should complete all the light blue cells including information on the modelled units, the area per unit, the number of units, the TER/DER/BER and the TFEE/DFEE.																			
				1			1	1	RESIDEN	ITIAL CO ₂ ANA	LYSIS (PART L	.1)	1			1			-	
				Baseline		'Be Lean'	'Be Clean'	'Be Green'	Fabric Energy Effici	ency (FEE)	Baseline			'Be Lean'			'Be Clean'		"Be	Green'
Unit identifier (e.g. plot number dwelling type etc.)	Model total floc , area	or Number of units	Total area represented by model	TER	Energy saving/generation technologies (-)	DER	DER	DER	Target Fabric Energy Efficiency	Dwelling Fabric Energy Efficiency	Part L 2021 CO ₂ emissions	Energy saving/generation technologies	Part L 2021 CO ₂ emissions	Part L 2021 CO ₂ emissions with Notional PV savings included	'Be Lean' savings	Part L 2021 CO ₂ emissions	Part L 2021 CO ₂ emissions with Notional PV savings included	'Be Clean' savings	Part L 2021 CO ₂ emissions	'Be Green' savings
L	(m²) (Row 4)		(m²)	(kgCO ₂ / m ²) (Row 273)	(kgCO ₂ p.a.) (Row 269)	(kgCO ₂ / m ²) (Row 273 or 384)	(kgCO ₂ / m ²) (Row 273 or 384)	(kgCO ₂ / m ²) (Row 273 or 384)	(kWh/m²)	(kWh/m²)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)	(kgCO ₂ p.a.)
Sum		1	373	15.7	0.0	24.2	24.2	24.2	38.3	152.5	5,817	0	9.015	9,015	.1177	9.015	9.015	0	9.015	
					1				NON-RESID	ENTIAL CO. A	NALYSIS (PAR	T I 2)								
				Baseline		'Be Lean'	'Be Clean'	'Be Green'			Baseline	,		'Be Lean'		1	'Be Clean'		'Be	Green'
Building the	Model free	Number of units	Total area	8915/1	0.011/1	PDI MI	8918/1	PRIM			Burl 2021 CO	Farmer	Best 1 2021 CO	Best 1 2021 CO	'Reliant' and an	But 1 2021 CO	Bert 1 2021 CO	Re Clean's subset	But 1 2021 CO	'Re Green' emiliar
building out		Number of units	represented by model	TER	Displaced electricity (-)	BER	BER	BER			emissions	saving/generation technologies	emissions	emissions with Notional PV savings included	or community	emissions	emissions with Notional PV savings included		emissions	be detail and ge
-																				
Sum		0	0	0.0	0.0	0.0	0.0	0.0			0	0	0	0	0	0	0	0	0	0
Total Sum	on consempti	CREARD COLARALYS									6.017	0	0.015	0.016	1.07	0.015	0.016		0.015	
ovali bum			313	1 .	1 .		1 .	1 .			0,037		3,015	8,015	-2,117	9,015	3,015		8,015	

Residential

Part L 2021 Performance Non-residential

Baseline: Part L 2021 of the Building Regulations Compliant Development After energy demand reduction (be lean)

After heat network connection (be clean)

After renewable energy (be green)

Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for residential buildings

	Carbon Dioxide Emissions for residential buildings (Tonnes CO ₂ per annum)						
	Regulated	Unregulated					
Baseline: Part L 2021 of the Building Regulations Compliant Development	5.8	0.6					
After energy demand reduction (be lean)	9.0	0.6					
After heat network connection (be clean)	9.0	0.6					
After renewable energy (be green)	9.0	0.6					

Table 2: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for residential buildings

	Regulated residential of	carbon dioxide savings		
	(Tonnes CO ₂ per annum)	(%)		
Be lean: savings from energy demand reduction	-3.2	-54%		
Be clean: savings from heat network	0.0	0%		
Be green: savings from renewable energy	0.0	0%		
Cumulative on site savings	-3.2	-54%		
Annual savings from off-set payment	9.0	-		
	(Tonne	es CO ₂)		
Cumulative savings for off-set payment	270	-		
Cash in-lieu contribution	25.691			

(£) 20,001 *carbon price is based on GLA recommended price of £95 per tonne of carbon dioxide unless Local Planning Authority price is inputted in the 'Development Information' tab

Be lean: savings from energy demand reduction 0.0 Be clean: savings from heat network 0.0 Be green: savings from renewable energy 0.0

Total Cumulative Savings	0.0	0%	
Annual savings from off-set payment	0.0	-	
	(Tonne	es CO ₂)	
Cumulative savings for off-set payment	0	-	
Cash in-lieu contribution (£)	0		

Table 3: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for non-residential buildings

0.0 0.0

0.0

0.0

(Tonnes CO₂ per annum)

Carbon Dioxide Emissions for non-residential buildings (Tonnes CO₂ per annum) Regulated Unregulated

Table 4: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for non-residential buildings

Regulated non-residential carbon dioxide savings

(%)

0%

0%

0%

Non-domestic Part L 2021 Carbon Emissions 0.6 0.5 0.4 Regulated CO₂ e 0.1 0 be lean be clean be green Further on-site savings and/or off-set payment non-domestic carbon emissions
 arbon savings
 Part L 2021 Target Emission Rate - - - minimum 35% saving on site

SITE-WIDE

	Total regulated emissions (Tonnes CO ₂ / year)	CO ₂ savings (Tonnes CO ₂ / year)	Percentage savings (%)	
Part L 2021 baseline	5.8			
Be lean	9.0	-3.2	-54%	
Be clean	9.0	0.0	0%	
Be green	9.0	0.0	0%	
Total Savings	-	-3.2	-54%	
	-	CO ₂ savings off-set (Tonnes CO ₂)	-	
Off-set	-	270.4	-	

Target Fabric Energy Efficiency (kWh/m²) Dwelling Fabric Energy Efficiency (kWh/m²) Improvement (%) 152.50 -298% Development total 38.30

	Area weighted non-residential cooling demand (MJ/m ²)	Total non-residential cooling demand (MJ/year)		
Actual				
Notional				

EUI & space heating demand (predicted energy use) Residential

Building type	EUI (kWh/m ² /year) (excluding renewable energy)	Space heating demand (kWh/m ² /year) (excluding renewable energy)	EUI value from Table 4 of the guidance (kWh/m ² /year) (excluding renewable energy)	Space heating demand from Table 4 of the guidance(kWh/m ² /yea r) (excluding renewable energy)	Methodology used (e.g. 'be seen' methodology or an alternative predictive energy modelling methodology)	Explanatory notes (if expected performance differs from the Table 4 values in the guidance)

Non-residential

Building type	EUI (kWh/m ² /year) (excluding renewable energy)	Space heating demand (kWh/m ² /year) (excluding renewable energy)	EUI value from Table 4 of the guidance (kWh/m ² /year) (excluding renewable energy)	Space heating demand from Table 4 of the guidance(kWh/m ² /yea r) (excluding renewable energy)	Methodology used (e.g. 'be seen' methodology or an alternative predictive energy modelling methodology)	Explanatory notes (if expected performance differs from the Table 4 values in the guidance)