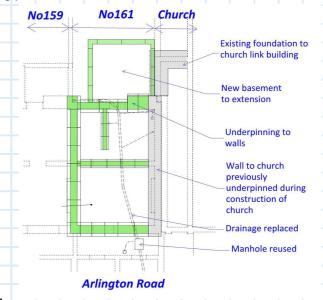
Section 2 - Pa			273	Z _x (cm³)		kNm	Moment	t Uniform	Equivaler
Section 2 - 11			309	S _x (cm³)		33.77	MA	noment	Maximum n
		Calc By:	ct No:	Project I		1.00	m	tor	Uniform fact
D.C		2930	c .		cl. 4.3.7.2	33.77	M _{bar}	oment	Buckling me
BC							CTDU		
_	λ_{Lo}	limiting slenderness		Project:			derness R		
1.00	n	correction factor			slendemess	radius of	:h	ective lengt	Eff
0.848	u	buckling parameter				gyration	LE	factor	L
13.3	Х	torsional index		Date:	λ	r _y (cm)	m		m
0.596	٧	slenderness factor	cl. B.2.5 (d)	cl. 4.3.7.5	156.68	3.87	6.064	1.4L+2D	4.100
79.15	λ_{LT}	equivalent slenderness	L IV cl. B.2.5	' l				•	
0.314	η_{LT}	Perry coefficient	of 161 ^{ci} Ær lin	bishment of	osed Refur	ons for Pror	al Calculatio	Structura	Title:
84.98	M _D	Plastic moment capacity			Actual	Allowable	nits	ection Lim	
99.79	M _E	Elastic critical moment	cl. B.2.2		mm	mm	atios	deflection r	span/
108.04	ϕ_{B}	Buckling index			5.8	9.0	500	ads	Imposed Lo
					10.4	12.5	360		Total Loads
51.53	M _b	Buckling capacity	cl. B.2.1						
					52×37	152x1	UC	used:	Section

Section 3 - Page 9/30


Project No:		сак ву:
	S-2930	ВС
Project:	161 ARLIN	GTON ROAD,
		N NW1 7ET
Date:		Rev:
	1 Nov 24	Rev 01

Title: Structural Calculations for Proposed Refurbishment of 161 Arlington Road

Section 3 Ground Conditions and Design Parameters

Basement

The proposed basement works has two distinct parts, the construction of the new basement to the rear extension and the underpinning of the main walls in the main house, The wall to the church does not require underpinning as it was previously underpinned for the construction of the church c1927as shown in the following plan:

Rear Basement

The existing basement appears to have been constructed within the original rear lightwell, with the original wall retained (a wall in this position was observed during the trial pit investigation but could not be investigated further.

The basement has two distinct parts.

At the rear, adjacent the house, there are existing walls present on all sides:

- The rear wall of No161
- The retaining wall between the lightwell to the rear of No159 and No161. This wall founds at a similar level to existing formation level and has been confirmed by trial pit.
- The flank wall to the church link building. This wall founds at a similar level to existing Formation level and has been confirmed by trial pit.

In this zone the lateral loading is minimal due to the existing walls. There may be a requirement for underpinning.

At the front, further from the house, the basement retains the soil to the gardens (L Clay). This is the worst design case.

To enhance safety during construction it has been assumed that the garden walls adjacent the front basement section will be demolished for the duration of construction and rebuilt to match the existing once the basement has been constructed. This also deals with the matter of the No159 garden wall showing lateral movement beyond the limits normally taken for stability.

Project No:		Calc By:	
	S-2930	ВС	
Project:			
	161 ARLIN	GTON ROAD,	
	LONDOI	N NW1 7ET	
Date:		Rev:	
	1 Nov 24	Rev 01	

Section 3 - Page 10/30

Title: Structural Calculations for Proposed Refurbishment of 161 Arlington Road

Section 3 Ground Conditions and Design Parameters

Ground Conditions and Geotechnical Parameters

Fastrak Report 27798 included a borehole carried out at garden level which confirmed the soil strata on the site to be topsoil/made ground over brown London Clay. The borehole is included below:

Water Strikes			n Situ Testing	Depth (m)	Legend	Stratum Description
Strikes	Depth (m)	Type	Results	(m)		TOPSOIL
		1 1		0.12		
		1 1		0.12		MADE GROUND
		1 1		1		
		1 1		0.45		
	0.50	D	V (kPa) = 38	0.10		Mid brown CLAY
		1 1	V (kPa) = 38	1		
		1 1		1		
		1 1		1		
	1.00	ь		1		
	1.00	"	V (kPa) = 60	1		
		1 1	V (kPa) = 62	1		
		1 1		1		
		1 1		1		1
	1.50	D		1		
		1 1	V (kPa) = 76 V (kPa) = 80	1		
		1 1	V (ki a) = 00	1		
		1 1		1		
				1		
	2.00	D	V (kPa) = 100	1		1
		1 1	V (kPa) = 104	2.20		
		1 1		2.20		Mid brown sandy CLAY
		1 1		1		
	2.50	ь		1		2.40m - Mid brown CLAY begins to show grey mottling.
		-	V (kPa) = 124	1		
		1 1	V (kPa) = 130	1		
		1 1		1		
		1 1		1		
	3.00	D	V (kPa) = 138	1		
		1 1	V (kPa) = 138 V (kPa) = 140	1		
		1 1		1		
		1 1		1		
	3.50	ь		1		
	5.50	"	V (kPa) = 140	1		
		1 1		1		
		1 1		1		
		1 1		1		
	4.00	D	M (I-D-) - 440	1		
		1 1	V (kPa) = 140	1		
		1 1		1		
	l			I		
	4.50	ь		1		
	4.50	"	V (kPa) = 140	1		
	l	1 1		1		
_				1		
lacksquare				1		4.90m - Standing water
	5.00	D		5.00	and the same	End of Borehole at 5.000
			V (kPa) = 140	I		2.10 31 2-3 31 000 84 3.000
		1		1		
				1		
		1 1		I.	1	I

Geotechnical Design Parameters

For the design of the new retaining walls long term (>6m) / effectice stress parameters will be used:

Cohesion	c'	0	kN/m2	
Angle of shearing resistance	φ'	23	degree	
Density - London Clay	γ	20	kN/m3	
Density - water	Υ _w	10	kN/m3	
Other Design parameters				
Surcharge	q	5	kN/m2	(Garden areas with no limited access)
Density concrete	Υ _c	24	kN/m3	

Project No:		Calc By:	
	S-2930	ВС	
Project:	161 ARI	LINGTON ROAD,	
	LONE	OON NW1 7ET	
Date:		Rev:	
	1 Nov 24	Rev 01	

Section 4 - Page 11/30

Title: Structural Calculations for Proposed Refurbishment of 161 Arlington Road

Section 4 New Extension - Assumed Basement Construction Sequence

Assumed Sequence of Construction for Rear Basement

The sequence below has been assumed in the design of the new basement.

- 1 Isolate all services and ensure they are not live. Demolish existing conservatory structure.
- 2. Locally demolish existing garden walls and ground floor slab to basement
- 3. Reduce dig across area of new basement
- 4. Install local propping to side faces
- 5. Demolish existing basement walls, demolishing original rear lightwell wall
- 6. Adjust propping to side walls as required
- 7. Batter back rear soil face to an slope of approx 60deg.
- 8. Demolish existing basement walls and floor slab
- 9. Install drainage and below ground services
- 10. Site blind area of new basement
- 11. Cast new basement slab with starter bars for walls
- 12. Cast new basement walls with starter bars to ground floor slab
- 13. Prop new basement walls off basement slab using push-pull props as required
- 14. Cast new ground floor slab (RC on metal decking
- 15. Install waterproofing lining to basement
- 16. Complete fit out of new extension

Section 5 - Page 12/30 Section 5 - Page 13/30

Density water

Project No:		Calc By:
	S-2930	ВС
Project:	161 ARLIN	GTON ROAD,
	LONDOI	N NW1 7ET
Date:		Rev:
	1 Nov 24	Rev 01

Rev 01 Title: Structural Calculations for Proposed Refurbishment of 161 Arlington Road New Extension - Basement 5Section 5 Rear Wall - Sections 3b (+3a) Wall design: Treat as propped cantilever Use effective stress parameters Design for full height water - cracked zone 2.35m from surface Surcharge = 5kPa Ring beam cast on top of wall Support to top of wall from RC ring beam / slab Support to bottom of wall from basement slab` SURCHARGE SOIL PRESSURE www PRESSURE PRESSURE **Wall Parameters** Height to formation Floor to floor 2210 mm 350 FFL dropped Finsihes, allow 250 300 Slab 50 Blinding 3160 Allow Ht = 3200 mm Wall stem thickness 250 mm Base to wall 300 mm Base to wall width 1.7 24 kN/m3 **Soil Parametrs** 0 kPa $Ka = 1-\sin \varphi' / 1+\sin \varphi'$ Cohesion Angle of shearing resistance φ' 23 degree = 0.4381 **Density London Clay** 20 kN/m3

10 kN/m3

Project No:		Calc By:
	S-2930	ВС
Project:	161 ARLING	STON ROAD,
	LONDON	NW1 7ET
Date:		Rev:
	1 Nov 24	Rev 01

_																					
Sur	char	ge									5	кРа									
۸nr	liod	Dro	ccur	o/E0	rces																
ΛÞŀ	Jileu	110	33ui	C/10	1003																
Soil				p =	K	.Υ'.	Н-	2c' √	K)c =	0.5	* ps *	Н		z = H/3	2			
Wa					=Yw				а					pw*Hv			z = Hw				
													p _a +		N						
Sur	char	ge		Pq	Ka *	q					۲	q =	P _q *'	•			z = H/2	4			
tba	se	0	.3				H =	3.	2	m			Hw:	= H-0.4	5 =	2.75	m				
tste			25																		
Tak	ing r	netr	e w	idth,	mor	ner	its a	bout	int	erna	l bot	ton	n cor	ner of	wall	stem @	formati	on			
				SLS	Z			10					F/l								
					0.91						1.4	4	62.8 52.9			1 //156	= ld fac	rtor			
Sui	rcha			01	1.		11.				1.		11.2			1.4150	- IU Ia	LUI			
Ju.	ciiai	80	7.	kN		m		Nm						kN							
	Р	a =	89.	683		@		1.04	151		= Ap	plie	d Re	sultan	t						
				kN				m al	oov	e for	mati	on									
D+ -	top		ctior 787			Rb :		tom 76.8				b =		Mome 52.81			Mn -	Mome 27.554		SLS	
Rt =			102			ND -		108			IVI	D –		74.759			Mp =	39.007		ULS	
		10.	102	IXI V				100	.00	KIV				71.733				33.007	KIVIII	GES	
e wa	II - S	ecti	on 2	2																	
E	111																				
					nk wal																
	l i					Capital.															
				Nov	single	cki	n of h	rick to		As F	Rear	wal	l wit	n addit	ional	loading					
				mas	k cond	rete															
				- 110								_			- line	load pa	rallel to	wall			
											ii) fla	ank	wall	over							
	Щ	8 285		party	wall I	ine =															
			_		lle of e																
. 1																					
			wa																		

Section 5 - Page 14/30

Project No:

S-2930

BC

Project:

161 ARLINGTON ROAD,

LONDON NW1 7ET

Date:

Rev:

1 Nov 24

Rev. 01

				,,,,,			AN	IJ									L	ONDC			/ E I			
													Date:		1 N	ov :	24		F	lev:		Rev	01	
	Title:		Stru	ctura	al Calo	cula	tions	for I	Pronc	osed Re	furbi	shme	nt o	f 161	Arlin	gto	n Ro	ad						
5Sect							Basen			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,	0	. 101	,	Б.С.								
Jocet							o wal			2	.163	kN/ı	m rı	ın								1100		
	Give	.5 111	10 10	uu p	Jaran	CIL	o wa				.105	KI V/		111							-			_
	Pres	ssure	- เมท	der	focti	ng :					7.21	kPa		= pr	essu	re @	D 60	00mm	høl					
						_	2.6m	und	ler) =		8319							sprea						
						. ,-			,	-				(/		_			
	Res	ultar	nt Fo	orce						10).455	kN (മ	1.73	333 r	n al	bov	e form	nati	on		1 🗐		
																					_	 F		
	Ca	se	- 1	F	z		М	0			γf										1			
	S	oil	44.	861	1.06	67	47.8	351			1.4	62.8	305								1			
	Wa	ter	37.	813	0.91	67	34.6	661			1.4	52.9	938								1			
Sui	rchai	rge	7.	01	1.0	6	11.2	215			1.6	11.2	215		1.43	14	=ld	factor	-					
'all li	ne lo	ad	10.	455	1.73	33	18.1	21			1.4	14.6	536											
	P	a =	100).14	(<u>@</u>		1.1			Applie	ed Re	esult	ant										
				kN			r	m al	bove	forma	ation													
		reac							react						t bas							@ ld		
Rt =		16.3			I	₹b :			966 l		Mb=				kNm		Λ	/lp =		33.68			SLS	
		22.8	366	kN				118	3.73 k	kN			84.	983	kNm				- 1	47.63	31 k	Nm	ULS	
	Exte	erna			lana ma		ai a	- d		100											1			
		D =	25	50	mm		gives	s d =	=	190							•							
			25		mm mm		gives	s d =	=	190							1							
	cov	D = er =	25 5	50 0	mm		gives	s d =	=	190							1							
	cov	D = er = M =	25 5 84.	50 0 983	mm kNm									INTERNA FACE			1	EXTERNA FACE	AL					
	cov	D = er =	25 5 84.	50 0 983 5	mm kNm N/m				= fy =						Ner -			FACE	AL					
	cov	D = er = M = fcu=	25 5 84.	50 0 983 5	mm kNm										Jmm cover		in cover	FACE	AL					
	cov	D = er = M = fcu=	25 5 84.5 3 10	50 0 983 5	mm kNm N/m	m2			fy =		reqd				30mm cover		SOmm cover	FACE	AL					
	cov	D = er = M = fcu= b =	25 5 84.5 3 10	50 0 983 5	mm kNm N/m mm	m2			fy =	500	reqd				30mm cover		SOmm cover	FACE	AAL					
	cov	D = er = M = fcu= b =	2! 5 84. 3 10 673	50 0 983 5 000	kNm N/m mm	m2 56			fy =	500	reqd				30mm cover		Somm cover	FACE	AL					
	cov	D = er = M = fcu= b = 0.06	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy =	500 reinf				FACE	30mm cover			FACE						
	cov	D = er = M = fcu= b = 0.06	25 84. 3 10 673	983 5 00 mm	kNm N/m mm	m2 56	r	no c	fy =	500					30mm cover	15		FACE						
	cov	D = er = M = fcu= b = 0.06	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp	500 reinf H20 @	200		As p	Drov	30mm cover	15		FACE						
	cov	D = er = M = fcu= b = 0.06	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = (8	500 reinf H20 @	200/(47.6	3+84	As p))*1.	.733	15		FACE						
_	cov	D = er = M = fcu= b = 0.00	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = ({	500 reinf H20 @ 84.98/ 1.1100	200 /(47.6 6 m fi	3+84 rom	As p 4.98 forn	orov	30mu cover	15		FACE						
_	cov K = z =	D = er = M = fcu= b = 0.00	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = ({	500 reinf H20 @	200 /(47.6 6 m fi	3+84 rom	As p 4.98 forn	orov	30mu cover	15		FACE						
_	cov K = z =	D = er = M = fcu= b = 0.00	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = (8 = = pc	500 reinf H20 @ 84.98/ 1.1100 bint of	200 (47.6 6 m fi zero	3+84 rom mon	As p 4.98 forn nent	prov	= .733		20	mm2	/m					
-	COV K = Z = As =	D = er = M = fcu= b = 0.00	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = ({ = po	500 reinf H20 @ 84.98/ 1.1100 bint of H20 L	200 (47.6 6 m fi zero bars i	3+84 rom mon	As p 4.98 form nent	prov)))*1. natic t in w	= .733		20	mm2	/m		0			
-	COV K = Z = As =	D = er = M = fcu= b = 0.00	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = ({ = po	500 reinf H20 @ 84.98/ 1.1100 bint of	200 (47.6 6 m fi zero bars i	3+84 rom mon	As p 4.98 form nent	prov)))*1. natic t in w	= .733		20	mm2	/m					
_	COV K = Z = As =	D = er = M = fcu= b = 0.00	25 84. 3 10 673	983 5 00 mm	kNm N/m mm <0.1	m2 56	r	no c	fy = comp Use x = ({ = po	500 reinf H20 @ 84.98/ 1.1100 bint of H20 L	200 (47.6 6 m fi zero bars i	3+84 rom mon	As p 4.98 form nent	prov)))*1. natic t in w	= .733		20	mm2	/m		0			
_	COV K = Z = Z = AS = 1.7.638Nm	D = er = M = fcu= b = 0.00	25 5 84. 3 10 673 54	50 0 983 5 00 mm	kNm N/m mm <0.1	m2 56 18	r	no c	fy = comp Use x = ({ = po	500 reinf H20 @ 84.98/ 1.1100 bint of H20 L	200 (47.66 m fi zero bars i	3+84 rom mon	As p 4.98 form nent ttor high	prov)))*1. natic t in w m jur	= .733 on vall	n to	20) giv	mm2	/m)			

S-2930 BC

Project:

161 ARLINGTON ROAD,

LONDON NW1 7ET

Date: Rev:

									1	Nov 24		Rev 01
Title:	9	Structur	al Calcu	lations	for Prop	osed Re	furbis	shment o	f 161 Ar	lington Road	j	
ection 5	ı	New Ex	tension	- Base	ment							
Inte	rnal	Face										
	D=	250	mm	give	es d =	210						
cov	er =	30	mm									
		47.631										
	fcu=		N/mm	2	fy =	500						
	b =	1000	mm									
14	0.00	00	.0.150									
Κ =	0.03	09	<0.156)	no com	p reinf r	eqd					
	202	E2 man	1	00.5	Han	7 - 0 0	d =	100 5	mm			
Z =	202.	.53 mm	, > 1	99.5	USE	2 = 0.95	ou =	199.5	ınm			
۸	5/10	.85 mm	2/~		LJ1	າ @ າດດ	1	۸۵۶	rov -	566 m	m2 /m	
AS =	J48.	ΠΙΙΙ Co.	12 / 111		ПТ	2 @ 200	'	AS [rov =	וו סטכ	11112 / 111	
Trai	1CVA	co roin	f As =0.	13%	۸c =	325	mm	2/m	H12 ⋒	200 = 566	mm2	
ııdı	isvel	3E [EII]	A3 -U.	13/0/	TC -	323	11111	14/111	1112 @	200 - 300	1111112	
seme	nt sl:	ab										
			ns ont	o coli	ımns eit	her side	_ al	low 2m	either s	ide		
vv sur	7700	<u>///</u> 3pt	1113 0110	o core	iiiiis cic	rici side	u	IOW ZIII (zitiiti 3	Dead	Live	
oof		Dea	nd		1.26	X 2				2.52	LIVC	
, 31		Live			1.5	Λ 2				2.52	3	
		LIVE			1.5						3	
azing	2.5n	n high										
روا		Dea	ad		1.36	/m run				1.36		
		300				, 🚛						
round	floor	slab										
		Dea	ad		3.95	x2				7.9		
		Live	2		1.5						3	
aseme	nt wa	all - 250	RC wa	II x 3.	2m high					19.2		
							Wall	line load	ding	30.98	6.00	
									-			
seme	nt sla	ab 300r	nm thic	k + 1	00mm s	creed				7.2		
										1.6		
						ba	sem	ent floor	udl	8.8	1.5	
seme	nt w	idth	3.6	m								
tal lo	ad / r	n width	of bas	emer	nt slab							
								flank w	/alls	61.962	12	
								base	slab	31.68	5.4	
									SLS	31.68	5.4	
									ULS	44.352	8.64	
erage	load	l under	slab	10).3 kN/	m2	Less	s than all	owable	bearing p	ressure	