Quadrant Harmon Consulting Ltd

Structural Calculations

For

Basement At

1 Wadham Gardens

London

NW3 3DN

Development

For

Amek Property Investment LLP

Quadrant Harmon Consulting Ltd

Design Statement

The building is mainly a traditionally constructed two storey house, using loadbearing walls which support suspended timber floors and the pitched roof. Subsequent alterations have created rooms in the loft space and the building has a newer single storey side extension

Existing foundations are corbelled out brickwork for the original building and concrete strip foundations for the newer extensions.

The proposed basement will be formed by underpinning the entire perimeter walls with reinforced concrete underpinning which will act to transfer the main loads to the lower level and also to retain the adjacent ground. The base of the underpinning will be monolithic with the basement slab and in the permanent situation will be propped by the new reinforced concrete ground floor slab. The basement slab is to be designed for upward pressures due to heave.

Internal walls will be supported from the suspended ground floor slab with loads transferred to columns basement to ground floor.

It is proposed that the works are executed using the top down method and the proposed sequences for works are shown on drawings 1550/GN02 and 1550/GN03.

In order to minimise inward deflections during excavations, the sequences referred to above and shown on the drawings require temporary propping and this will be achieved by the new ground floor slab propping the top of the retaining wall. Temporary propping will also be required to prevent sliding at basement level. This will be removed on completion of the basement slab.

These calculations have been prepared for the main structural elements of the new basement. Refer to sheets 01 to 26 attached.

Quadrant Harmon Consulting Ltd

British Standards and Design Data

- 1). Building Regulations 2000: Approved Documents: DETR
- 2). BS 8110-1:1997 Structural Use of Concrete
- 3). BS 5950-1:1990 Structural Use of Steelwork in Building
- 4). BS 5628-1:1992 Structural Use of Unreinforced Masonry
- 5). BS 6399-1:1996 Loading for Buildings (Dead and Imposed Loads)
- 6). BS 6399-2:1997 Loading for Buildings (Wind Loads)
- 7). BS 6399-3:1988 Loading for Buildings (Imposed Roofs)
- 8). BS 8110-2:1985 Structural Use of Concrete, Part 2 (Code of Practice for Special Circumstances, especially section 3 "Excessive Cracking and Assessment of Crack widths")
- 9). BS 8007:1987 Design of Concrete Structures for Retaining Aqueous Liquids

Fire Resistance Requirement

1 hour for all elements of structure

Subsoil Conditions

See site Investigation report for detailed soil conditions.

Foundation Type

Pad and retaining wall foundations (underpinning) supporting the main vertical loads and earth pressures, however the basement slab is to form a raft foundation, monolithic with internal pads and the retaining wall and reinforced to accommodate the small amount of heave envisaged. Retaining Wall 350 wide and 500 deep basement raft slab

Material Data

Concrete Grade 35 with 20 mm max. aggregate Steel Reinforcement. Characteristic Strength $f_y = 460 \text{ N/mm}^2$ Structural Steel S275

Ous	ndrant Harm	on	Project		Job	No. 1550
Consultir	ng Civil & Structural Engineers		Madham	Suding	Shee	et No. 101
Tel: 0207	7 637 2770 Fax: 0207 436 7823	3			Date	10 oct 15
Ref:	Loadings				Ву:	504 Ckd:
	Roof	Ocno! Live	= 0.70 = 0.6	t t	= 0.5 = 0.27	
	50 cond	Devol	= 0.7 = 1.5			
	Furt	Dend	= 0.7			
	New Ground	Dend Frie 200 stule < \$ 5	21.2 27.2 20.4 8.8			
	New besoment		Ground Bening = 1.L = 1.	y) (24-18)20.	for be = 1. 3. 4. 4.	0 1/200 1/200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	[-	30 B-UK	= 6.6			
	Internal Walls	Conjudy e	*f) = 6 6 = 0.6 7.2			
	113 Bride W	HV	= 2.2			
	Underpin 80	o wide	= (24-1	8) 20.8 =	4.8k	my mi

	adrant Harmai		j		
Consulti	AGRANT HARMOI ing Civil & Structural Engineers	1 Wadham	Gadens		:02
Tel: 020	7 637 2770 Fax: 0207 436 7823			Date. 10 C	
Ref:	Loods (500	and hessore		By: 204	Ckd:
	Main Flonk	will	() Cus	ı	
	Roof OL	= 0.75 x 3.8 = 0.6 x 2.5	= 3.0	= 1.5	
	certify oc	20.5 x 0.75	= 0.4	= 0.2	
	Second Or	> 0.75 x 7.4 = 1.5 x 2.4	= 1.8	= 3.6	
	Frist DC	Ξ	= 1.8	= 3.6	
	Ground De	= 8.8×5.2	- 21	= 40	
	Musory Gid-Eus	= 6.9 × 7	= 48 77 = 14 91	.12	
	underpin	- 4.8 > 3	= 14		
	Total = 91+	13 = 104	<u>.</u> 91	13	
	Ground Man	De = 104/0.8	= 130 }	160	ok
	Main Flunk	well chimney	stach		
	hand of Mor	well chimney	ulu on in	side	walf
	Assure Mon	stud on we	der footi	1 / vnolen	pie
	Total weight	stud on we	×15 = 7	2 km/m	
	Ground Non	Je - 72/68	= 90 km	/wi /	ko or
	For extrining	njereb Hew pro	talk to	is loud	
	for neighbor	sixonela suo	as news .	77 hi	e =13

Project

1550

Job No.

Quadrant Harmon Consultancy Ltd Morley House

320 Regent Street,

Sheet:

Proj: 1 Wadham Gardens Ref : 1550 04

London

Tel:020 7637 2770 Fax:020 7436 7823

Date: 10/10/15

Internal Columns Base Idealisation check on bearing, sliding, and overturning under 2D loading. Input details

Size of pedestal/column below natural ground lev- Length of pedestal/column Width of pedestal/column Eccentricity of column	el [A] [B] [E]	= 0.3 m = 0.3 m = 0 m
Base dimensions Length of pad base Width of pad base Thickness of pad base Density of concrete	[L] [B] [T] [Gc]	= 1.8 m = 1.8 m = 0.5 m = 23.6 kN/m ³
Loads Vertical load Horizontal load Moment	[V] [F] [M]	= 394 kN = 0 kN = 0 kNm

Factors of safety

Against overturning	[FOSM] = 2
Against sliding excluding backfill	[FOSSE] = 1.5

Bearing soil property

Allowable soil pressure	[SBC]	= 160 kN/m²
Coefficient of friction		
against sliding	[Cf]	= 0.4

Check for bearing

At left corner of footing	PI	= (TVDAT)
•		= 133.4 kN/m ²
At right corner of footing	Pr	= (Tvl/Ar)
.		$= 133.4 \text{ kN/m}^2$
Soil pressure	Pmax	= Pl
		= 133.4 kN/m ²

/ΤσΙ/Λε\

As "e" is less than L/6, soil pressure at:-

Left corner of footing	Pl	= (Tvl/Ar) -(Tm/Z) = 133.4 kN/m²
Right corner of footing	Pr	= $(TvI/Ar)+(Tm/Z)$ = 133.4 kN/m ²
Maximum soil pressure	Pmax	= Pr = 133.4 kN/m ²
Minimum soil pressure	Pmin	= P = 133.4 kN/m²

Max. pressure (Pmax) is less than the allowable pressure (SBC). Hence safe. There is no horizontal force. Hence there is no sliding

Check for overturning

Overturning moment [OTM]	OTM	= (F*T)+ M
•		= 0 kNm

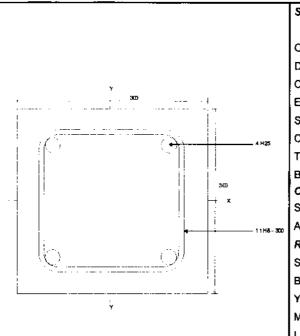
There is no overturning

1 Wadham Gardens

Column Basement to Ground

Job No 1550 Job Ref

Designed By Checked By


SOH CM 10 - 10 - 2015

Date Revision No

05

Calc No Page No

CADS RC Column Designer V2.04 (Build 359) Copyright @ 2014 - Computer and Design Services Ltd.

Section Geometry		_	
	X - Axis	Y - Axis	
Overall Rigidity	Braced	Braced	
Depth(h) / Width(b)mm	300	300	
Clear Height m	3.30	3.30	
Effective Height im	2.48	2.48	
Stenderness Ratio	8.25	8.25	
Cover mm	35	35	
Top End Fixity	1. Fixed	1. Fixed	
Bottom End Fixity	1. Fixed	1. Fixed	
Concrete Data			
Strength Class	C28/35 N/mm²		
Aggregate Size	20 mm	Aggregate Type	Normal
Reinforcement Data	Main	Links	
Strength Type	н	н	
Bond Type	Deformed type 2	-	
Yield Stress N/mm²	500	500	
Max Steel %	6%	-	
Link Type	-	Lateral	
Partial Safety Factors			
Concrete flexure	1.50	Concrete shear	1.25
Reinforcement strength	1.15	Reinforcement	1.40

	Design code :	BS8110 /	Amendment 3	De	etailing code :	BS8656-2005	Shape	code filena	me BS8666-20	05.scc
Load set Axial load			Top X momen	t	Top Y mon	nent	Bottom X	moment	Bottom Y moment	
1	394.0		39.0		20.0		39.0		20.0	
Bar deta	ils	Far X-fac	e e	Near X-	face	Far Y-face		Near Y-fa	ace	Total
Main bar		2 H25		2 H25		2 H25		2 H25	2 H25	
Area pro	vided. (mm²)	982		982		982		982		1963
% provid	led(100Asc/Ac)	•		-		-		-		2.18 %
Area req	uired (mm²)	180		180		180		180		360
Link bars	s (no. of legs)	11 x (2) H	H8 300			11 x (2) H8 30	0	11 x (4) H8 300		00
Load	Axial	N/bh	Axial load	Design (moment (kNm)	Mx/bh²	My/b²h	Moment	capacity (kNm)	Utilisation
set	load N(kN)		capacity (kN)	Mx	My	X-Axis	Y-Axis	X-Axis	Y-Axis	ratio
1	394.0	4.38	<u>.</u>	56.1	0.0	2.08	0.00	120.7	0.0	0.46

Qua	adrant Harmon	Project 1 Wadham	Burglan	Job No. 1550
1 -	ng Civil & Structural Engineers	12000111		Sheet No. O C
Tel: 0207	7 637 2770 Fax: 0207 436 7823			Date. 10 Oct 15
Ref:	Flux 5 lab			By: 504 Ckd:
(1)	Two Way 51	Danning 500 DC = 88 CC = 1.5	so spans in/a	
(e)		my slob	4500 spa	ms
	Line Loud Dr See 03 LL.		= 44 Rm/=	

1 Wadham Gardens ことし Flat Slab **f**m Span-Middle Strip
 Job No
 1550

 Job Ref
 Flat Slab Tw

 Designed By
 SOH

 Checked By
 MC

 Date
 10 -10- 2015

 Revision No
 6 7

Page No

Slab strip on grid reference 1

CADS RC Slab Designer V1.26 (Build 148) Copyright © 2014 - Computer And Design Services Ltd

Slab geometry

	Span				Lower su	pport			Upper su	pport	
Span No	Length (m)	Span ref.	Slab Type	Category	Support ref.	Height (mm)	Remote End	Category	Support ref.	Height (mm)	Remote End
				Point Supp.	S 1	3000	Pinned	Point Supp.	\$1(U)	3000	Pinned
1	5.000	P1	Flat (Solid)								
				Point Supp.	S2	3000	Pinned	Point Supp.	\$2(U)	3000	Pinned
2	5.000	P2	Flat (Solid)								
				Point Supp.	S3	3000	Pinned	Point Supp.	\$3(U)	3000	Pinned

Support properties (mm)

		Section		
Supp	Type	S	ize	Height
ref.		Width	Length	
S1	Rec. Col.	400	400	3000
S1(U)	Rec. Col.	400	400	3000
S2	Rec. Col.	400	400	3000
S2(U)	Rec. Col.	400	400	3000
S3	Rec. Col.	400	400	3000
S3(U)	Rec. Col.	400	400	3000

Span sections and profiles (mm)

Span	Туре	O/A	Vert	Desigr	width	Trans sp	an width	Loaded	Trans s	support	S	trip width	
ref.		depth	offset	near	far	near	far	width	near	far	Mid near	Column	Mid far
P1	Flat (Solid)	300	0	2050	2 0 50	2050	2050	4100	None	None	1025	2050	1025
P2	Flat (Solid)	300	О	2050	2050	2050	2050	4100	None	None	1025	2050	1025

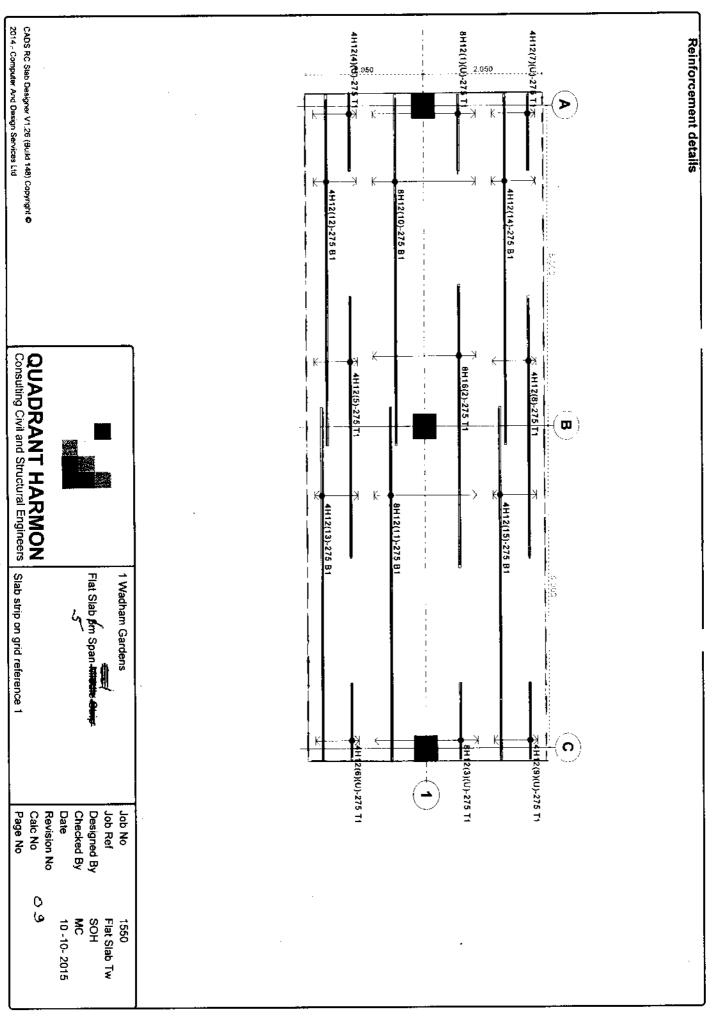
Load combinations

C-4	Cor	nb1
Category	Min	Max
Dead	1.00	1.40
Imposed	0.00	1.60

Elastic moment and shear values for span 1

Slice	Position	Hoggir	ng momen	t(kNm)	Saggir	ig momen	t(kNm)	Hogging	Sagging	
no.	(mm)	Mid near	Main	Mid far	Mid near	Main	Mid far	shear(kN)	shear(kN)	
0	0	6.72	40.32	6.72	0.00	0.00	0.00	134.41	0.00	
1	250	2.75	16.53	2.75	0.00	0.00	0.00	119.32	0.00	
2	500	0.00	0.00	0.00	1.69	4.14	1.69	0.00	104.24	
3	750	0.00	0.00	0.00	6.82	16.67	6.82	0.00	89.15	
4	1000	0.00	0.00	0.00	11.36	27.76	11.36	0.00	74.06	

1 Wadham Gardens Co (Flat Slab **€**m Span Middle Strip Job No 1550 Flat Slab Tw Job Ref Designed By SOH Checked By MC 10 -10- 2015 Date Revision No 08 Calc No Page No


CADS RC Slab Designer V1.26 (Build 148) Copyright © 2014 - Computer And Design Services Ltd

Elastic moment and shear values for span 1 (Contd)

Slice	Position	Hoggir	ng moment	(kNm)	Saggir	ng momen	t(kNm)	Hogging	Sagging
no.	(mm)	Mid near	Main	Mid far	Mid near	Main	Mid far	shear(kN)	shear(kN)
5	1250	0.00	0.00	0.00	15.10	36.91	15.10	0.00	58.97
6	1500	0.00	0.00	0.00	17.99	43.98	17.99	0.00	43.88
7	1750	0.00	0.00	0.00	20.04	48.98	20.04	0.00	28.80
8	2000	0.00	0.00	0.00	21.23	51.90	21.23	0.00	13.71
9	2250	0.00	0.00	0.00	21.58	52.75	21.58	0.00	9.68
10	2500	0.00	0.00	0.00	21.08	51.52	21.08	0.00	22.01
11	2750	0.00	0.00	0.00	19.73	48.22	19.73	0.00	37.10
12	3000	0.00	0.00	0.00	17.53	42.84	17.53	0.00	52.19
13	3250	0.00	0.00	0.00	14.48	35.39	14.48	0.00	67.28
14	3500	0.00	0.00	0.00	10.58	25.86	10.58	0.00	82.36
15	3750	1.34	8.01	1.34	5.84	14.26	5.84	63.80	97.45
16	4000	3.47	20.82	3.47	0.24	0.59	0.24	112.54	107.00
17	4250	5.89	35.32	5.89	0.00	0.00	0.00	127.63	0.00
18	4500	10.06	60.39	10.06	0.00	0.00	0.00	142.72	0.00
19	4750	14.76	88.56	14.76	0.00	0.00	0.00	157.80	0.00
20	5000	19.93	119.56	19.93	0.00	0.00	0.00	172.89	0.00

Elastic moment and shear values for span 2

Slice	Position	Hoggii	ng momen	t(kNm)	Saggir	ig momen	t(kNm)	Hogging	Sagging
no.	(mm)	Mid near	Main	Mid far	Mid near	Main	Mid far	shear(kN)	shear(kN)
0	٥	19.93	119.56	19.93	0.00	0.00	0.00	172.89	0.00
1	250	14.76	88.56	14.76	0.00	0.00	0.00	157.80	0.00
2	500	10.06	60.39	10.06	0.00	0.00	0.00	142.72	0.00
3	750	5.89	35.32	5.89	0.00	0.00	0.00	127.63	0.00
4	1000	3.47	20.82	3.47	0.24	0.59	0.24	112.54	107.00
5	1250	1.34	8.01	1.34	5.84	14.26	5.84	63.80	97.45
6	1500	0.00	0.00	0.00	10.58	25.86	10.58	0.00	82.36
7	1750	0.00	0.00	0.00	14.48	35.39	14.48	0.00	67.28
8	2000	0.00	0.00	0.00	17.53	42.84	17.53	0.00	52.19
9	2250	0.00	0.00	0.00	19.73	48.22	19.73	0.00	37.10
10	2500	0.00	0.00	0.00	21.08	51.52	21.08	0.00	22.01
11	2750	0.00	0.00	0.00	21.58	52.75	21.58	0.00	9.68
12	3000	0.00	0.00	0.00	21.23	51.90	21.23	0.00	13.71
13	3250	0.00	0.00	0.00	20.04	48.98	20.04	0.00	28.80
14	3500	0.00	0.00	0.00	17.99	43.98	17.99	0.00	43.88
15	3750	0.00	0.00	0.00	15.10	36.91	15.10	0.00	58.97
16	4000	0.00	0.00	0.00	11.36	27.76	11.36	0.00	74.06
17	4250	0.00	0.00	0.00	6.82	16.67	6.82	0.00	89.15
18	4500	0.00	0.00	0.00	1.69	4.14	1.69	0.00	104.24
19	4750	2.75	16.53	2.75	0.00	0.00	0.00	119.32	0.00
20	5000	6.72	40.32	6.72	0.00	0.00	0.00	134.41	0.00

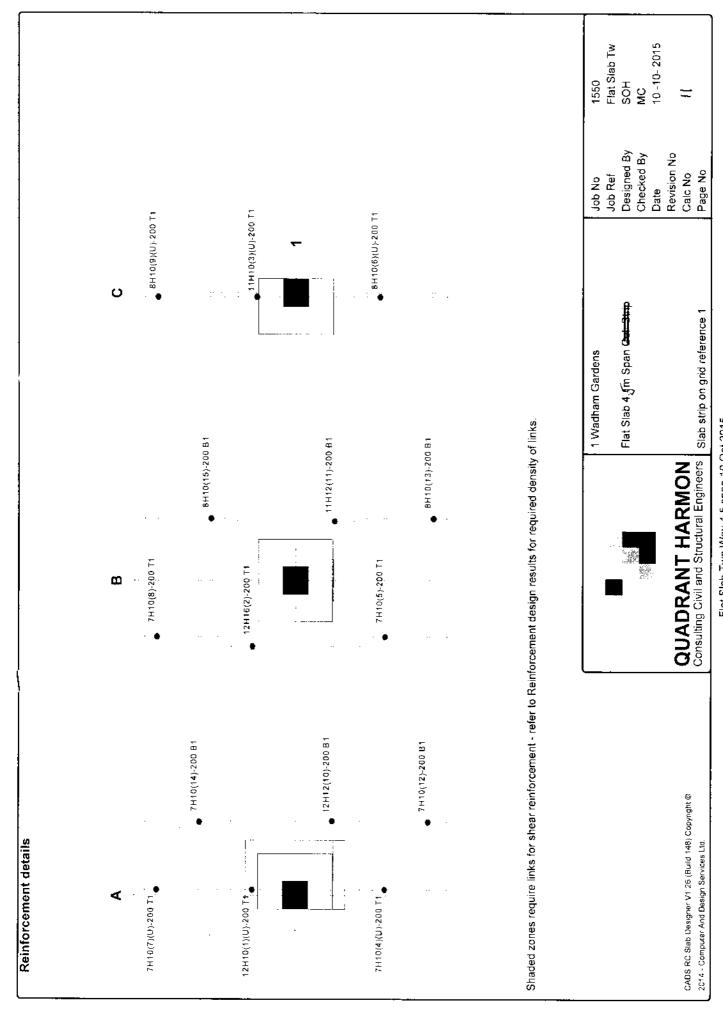
1 Wadham Gardens	Job No	1550
_	Job Ref	Flat Slab Tw
Flat Slab 4. 5m Span Cal-Strip	Designed By	SOH
	Designed By Checked By	MC
	Date	10 -10- 2015
	Revision No	
	Calc No	10
Slab strip on grid reference 1	Page No	

CADS RC Slab Designer V1 26 (Build 148) Copyright © 2014 - Computer And Design Services Ltd

Slab geometry

	Span				Lower su	pport			Upper su	pport	
Span No	Length (m)	Span ref.	Slab Type	Category	Support ref.	Height (mm)	Remote End	Category	Support ref.	Height (mm)	Remote End
				Point Supp.	S1	3000	Pinned	Point Supp.	S1(U)	3000	Pinned
1	4.500	P1	Flat (Solid)								
				Point Supp.	S2	3000	Pinned	Point Supp.	S2(U)	3000	Pinned
2	4.100	P2	Flat (Solid)								
				Point Supp.	S3	3000	Pinned	Point Supp.	\$3(U)	3000	Pinned

Support properties (mm)


		Section		
Supp	Type	S	ize	Height
ref.		Width	Length	
S1	Rec. Col.	400	400	3000
S1(U)	Rec. Col.	400	400	3000
S2	Rec. Col.	400	400	3000
S2(U)	Rec. Col.	400	400	3000
S3	Rec. Col.	400	400	3000
S3(U)	Rec. Col.	400	400	3000

Span sections and profiles (mm)

Span	Type	O/A	Vert	Design	n width	Trans sp	an width	Loaded	Trans :	support	5	trip width	
ref.		depth	offset	near	far	near	far	width	near	far	Mid near	Column	Mid far
P1	Flat (Solid)	300	0	2500	2500	2500	2500	5000	None	None	1375	2250	1375
P2	Flat (Solid)	300	0	2500	2500	2500	2500	5000	None	None	1475	2050	1475

Load combinations

Catamani	Cor	nb1
Category	Min	Max
Dead	1.00	1.40
Imposed	0.00	1.60

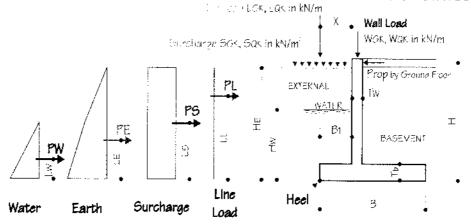
Flat Slab Two Way 4.5 span-10 Oct 2015

Project 1 Wadham Gardens Client

Location

Amek Property Investment LLP

Flank Wall RC Underpinning


Basement wall design to BS8110:1997, BS8002.1994, BS 8004:1986 etc. Originated from "RCC61 Basement Wall.xls" v2.1 © 1999-20002 BCA for RCC

CONCRETE
COUNCIL

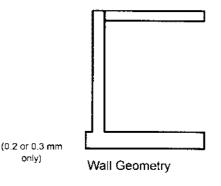
REINFO	DRCED CONCRETE C	OUNCIL
Made by	Date	Page
SOH	26-Oct-2015	₫ 2
Checked	Revision	Job No
CM_	<u> </u>	1550

IDEALISED STRUCTURE and FORCE DIAGRAMS

DESIGN STATUS: NOT VALID

DIMENSION (mm)

H =	<u>4000</u>
Hw =	3000


$$B = 3500$$

 $BI = 200$

He = <u>3500</u>

MATERIAL PROPERTIES

fe	cu =	<u>35</u>	N/mm ²	γ m =	<u>1.50</u>	concrete
	fy =	<u>460</u>	N/mm ²	γ m =	<u>1.05</u>	steel
	Cove	r to ten	sion reinford	cement (co) =	<u>40</u>	mm
Max. all	owable d	design s	surface craci	k width (W) =	0.3	mm

24.0 Concrete density = kN/m3

SOIL PROPERTIES

Design angle of int'l friction of retained mat'l (\emptyset) =	<u>21</u>	degree
Design cohesion of retained mat'l (C) =	0	kN/m2
Density of retained mat'l (q) =	<u>20</u>	kN/m3
Submerged Density of retained mat'l (qs) =	19.00	kN/m3

Design angle of int'l friction of base mat'l (Øb) = <u>20</u> degree

Design cohesion of base mat'l (Cb) = kN/m2 0

Density of base mat'l (qb) = 20 kN/m3 Allowable gross ground bearing pressure (GBP) = 160 kN/m2 LOADINGS (unfactored)

Surcharge load -- live (SQK) = 5 kN/m2 Surcharge load -- dead (SGK) = <u>5</u> kN/m2 Line load -- live (LQK) = <u>13</u> kN/m

Line load -- dead (LGK) = <u>77</u> kN/m Distance of line load from wall (X) = 2000 mm Wall load -- live (WQK) = <u>13</u> kN/m

Wall load -- Dead (WGK) = <u>77</u> (Only granular backfill considered, ie "C" = 0)

(default=2/3 of q), only apply when Hw >0 13.33

ASSUMPTIONS

only)

- a) Wall friction is zero
- b) Minimum active earth pressure = 0.25gH
- c) Granular backfill
- h) Design not intended for walls over 3.5 m high
- i)Does not include check for temp or shrinkage

LATERAL FORCES

Ko 0.64 default Ko = (1-SIN Ø) 0.64 $= 2Ko^{0.5}$ Kac = 1.60

kN/m

Force (kN)		Lever a	rm (m)	γ _f	Ultimate Force (kN)
PE =	75.71	LE =	1.173	<u>1.40</u>	106.00
PS(GK) =	11.23	LS =	1.75	<u>1.40</u>	15.72
PS(QK) =	11.23	L\$ =	1.75	<u>1.60</u>	17.97
PL(GK) =	49.41	LL =	1.82	<u>1.40</u>	69.17
PL(QK) =	8.34	LL =	1.82	<u>1.60</u>	13.35
PW =	45.00	LW =	1.00	<u>1.40</u>	63.00
Total	200.92				285.20

Project	1 Wadham Gardens	REINFORCED CONCRETE	REINFO	RCED CONCRETE C	OUNCIL
Client	Amek Property Investment LLP	COUNCIL	Made by	Date	Page
Location	Flank Wall RC Underpinning		SOH	26-Oct-2015	13
	Basement wall design to BS8110:1997, BS8002:1994	. BS 8004:198	Checked	Revision	Job No
	Originated from 'RCC61 Basement Wall.xls' v2 1 © 1999-	20002 BCA for RC	CM	-	1550

EXTERNAL STABILITY

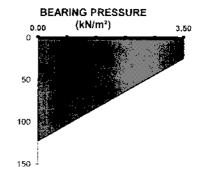
STABILITY CHECK:

ΟK

ANALYSIS - Assumptions & Notes

- 1) Wall idealised as a propped cantilever (i.e. pinned at top and fixed at base)
- 2) Wall is braced.
- 3) Maximum slenderness of wall is limited to 15, i.e [0.9*(He-Tb/2)/Tw < 15]
- 4) Maximum Ultimate axial load on wall is limited to 0.1fcu times the wall cross-sectional area
- 5) Design Span (Effective wall height) = He (Tb/2)
- 6) -ve moment is hogging (i.e. tension at external face of wall)+ve moment is sagging (i.e. tension at internal face of wall)
- 7) " Wall MT. " is maximum +ve moment on the wall.
- 8) Estimated lateral deflections are used for checking the $P\Delta$ effect .

UNFACTORED LOADS AND FORCES


	Force	Lever arm	Base MT.	Wall MT.	Reaction at	Reaction at	Estimated Elastic
Lateral Force	(kN)	to base (m)	(kNm)	(kNm)	Base (kN)	Top (kN)	Deflection ∆ (mm)
PE =	65.35	1.09	-32.79	13.91	55.10	10.24	0.3
PS(GK) =	10.43	1.63	-5.44	3.00	7.36	3.07	0.1
PS(QK) =	10.43	1.63	-5.44	3.00	7.36	3.07	0.0
PL(GK) =	49.41	1.57	-35.65	24.40	38.21	11.20	0.4
PL(QK) =	8.34	1.57	-6.02	4.12	6.45	1.89	0.0
PW ≈	37.81	0.92	-18.39	7.03	33.47	4.34	0.1
Total	181.76		-103.74	55.45	147.95	33.81	1.0

GROUND BEARING FAILURE

LOAD CASE: Wall Load MAX ckwise "+") Surcharge MIN

Taking moments about centre of base (anticlockwise "+")

Vertical FOR	CES (kN)	Lever arm (m	Moment (kNm)		
Wall load =	90	1.38	123.75		
Wall (sw) = 29.40		1.38	40.43		
Base =	42.00	0.00	0.00		
Earth =	Earth = 11.50		18.98		
Water =	5.00	1.65	8.25		
Surcharge =	1.00	1.65	1.65		
Line load = 77.00		0.00	0.00		
Σ V =	255.90		$\sum Mv = 193.05$		

MOMENT due to LATERAL FORCES, Mo = -92.28 kNm

RESULTANT MOMENT, M = Mv + Mo = 100.77 kNm

ECCENTRICITY FROM BASE CENTRE, M / V = 0.39 m

MAXIMUM GROSS BEARING PRESSURE = 122.47 kN/m²

< 160 OK

SLIDING AT BASE (using overall factor of safety instead of partial safety fair F.O.S = 1.50

SUM of LATERAL FORCES, P = 147.95 kN BASE FRICTION, $F_b = -(V TANØb + B.Cb) = -93.14$ kN

Factor of Safety, $F_b/P = 0.63$ < 1.50 FAIL .. but

therefore, LATERAL RESISTANCE to be provided by BASEMENT SLAB = 128.79 kN

Project	1 Wadham Gardens	REINFORCED CONCRETE	REINFO	RCED CONCRETE C	OUNCIL
Client Location	Amek Property Investment LLP Flank Wall RC Underpinning	COUNCIL	Made by SOH	Date 26-Oct-2015	Page 14
	Basement wall design to BS8110:1997, BS8002:199	4. BS 8004:198	Checked	Revision	Job No
	Onginated from 'RCC61 Basement Wall.xls' v2.1 © 1999	-20002 BCA for RC0	СМ	-	1550

OUTER BA	SE (per metre l γ _f =	ength) <u>1.50</u>	(ASSU	MED)					BS8110 reference
	Ult. Shear = Ult. MT. =	29.48 1.06	kN kNm	(AT d from TENSION					
	BOTTOM REIN	FORCEM	ENT:	Min. As =	650 <u>16</u>	mm² mm			Table 3.25
				centres = As =	<u>225</u> 894	mm mm²	< 766 > 650	OK OK	
	MOMENT of R	ESISTANO	CE:	d =	452	mm			
				Z = As' =	42 9 0	mm mm²			3.4.4.4
				Mres =	168.10	k Nm	> 1.06	OK	
	SHEAR RESIS	TANCE:		100As/bd =	0.30% 0.41	N/mm²			
				vc = Vres =	186.17	kN	> 29.48	ок	Table 3.8 3.5.5.2
	CHECK CRAC		IN ACCO	RDANCE WITH	BS8100/80	D⊤Temp & sh	rinkage effects n	ot included	
	X =	97.65	mm	Em =	-0.00127				B\$8007
	Acr =	114.31	mm	W =	-0.32 NO CRAC	mm CKING	< 0.30	OK	App. B.2
INNED DAG	SE (per metre le	anath \							
INNER DAG	Ult. Shear =	-54.08	kN	(AT d from	EACE of	ΑΙΛΙΙΝ			
	Ult. MT. =	156.66	kNm	(AT d from TENSION -					
	BOTTOM REIN	NFORCEM	ENT:	Min. As =	650	mm²			Table 3.25
				φ =	<u>16</u>	mm			
				centres = As =	<u>225</u> 894	mm mm²	< 766 > 650	ok ok	
	MOMENT of R	ESISTANO	DE:	d =	452	mm			
				Z =	429	mm			
				As' =	0	mm^2			
				Mres =	168.10	kNm	> 156.66	OK	3.4.4 4
	SHEAR RESIS	TANCE:		100As/bd =	0.20%	h 1/2			T.I. 0.0
				vc = Vres =	0.41 186.17	N/mm² kN	> 54.08	ок	Table 3.8 3.5.5 2
	CHECK CRAC	K WIDTH	IN ACCO	RDANCE WITH	BS8100/80) Temp & sh	rinkage effects n	ot included	
	· X =	97.65	mm		0.000304				B\$8007
	Acr =	114.31	mm	W =	0.08	mm	< 0.30	OK	App. B.2

REINFORCEMENT SUMMARY for BASE

	Type	Ф	centres	As	Min. As	
		mm	mm	mm²	mm²	
TOP	T	<u>16</u>	<u>225</u>	894	650	ок
BOTTOM	T	16	225	894	650	ок
TRANSVERSE	Т	<u>16</u>	225	894	650	ок

1 Wadham Gardens London Basement Slab Upward Pressure NOTE: BARS ANNOTATED TOP ARE BOTTOM BARS AND VICE VERSA

Slab strip on grid reference 1

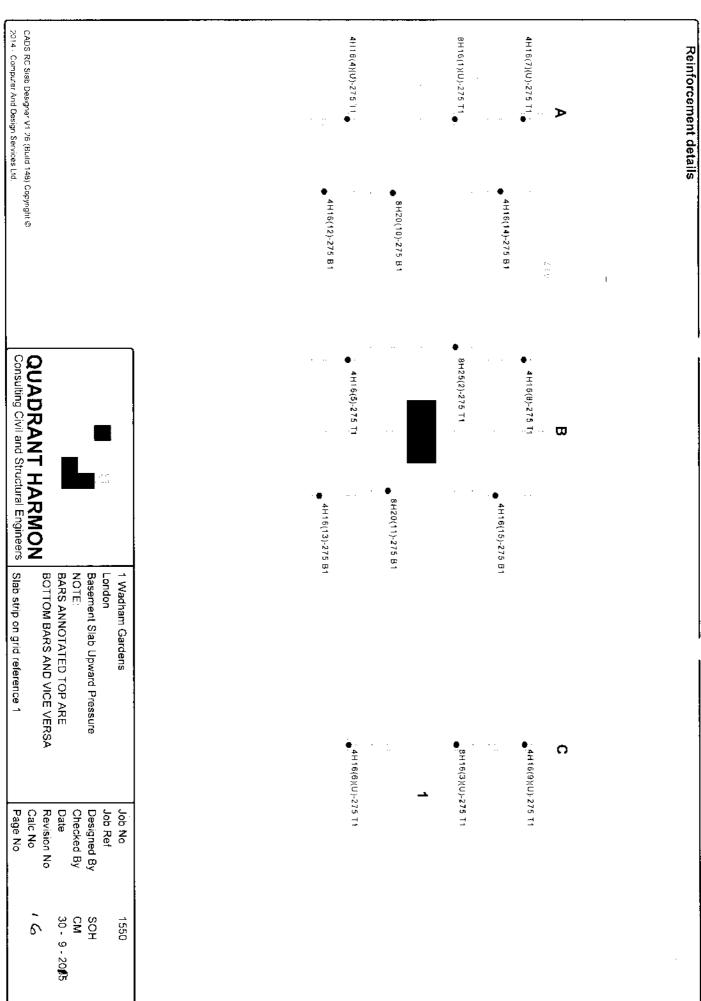
Job No 1550
Job Ref
Designed By SOH
Checked By CM
Date 30 - 9 - 20 5
Revision No
Calc No 15

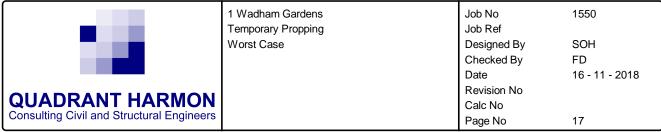
CADS RC Slab Designer V1 26 (Build 148) Copyright © 2014 - Computer And Design Services Ltd

Slab geometry

	s	pan			Lower su	pport		Upper support			
Span No	Length (m)	Span ref.	Slab Type	Category	Support ref.	Height (mm)	Remote End	Category	Support ref.	Height (mm)	Remote End
				Line Supp.	S1	-	-	None	-	-	-
1	5.000	P1	Flat (Solid)								
				Point Supp.	S2	-	-	Point Supp.	S2(U)	3000	Pinned
2	5.000	P2	Flat (Solid)								
				Line Supp.	S 3	-	-	None	-	-	-

Support properties (mm)


		Section		
Supp	Туре	Size		Height
ref.		Width	Length	
S1	Conc. Wall	350	-	-
S2	Conc. Base	1000	512	-
S2(U)	Rec. Col.	400	400	3000
S 3	Conc. Walt	350	-	-


Span sections and profiles (mm)

Span	Туре	O/A	Vert	Desigr	width	Trans sp	an width	Loaded	Trans s	support	s	trip width	
ref.		depth	offset	near	far	near	far	width	near	far	Mid near	Column	Mid far
P1	Flat (Solid)	500	٥	2050	2050	2050	2050	4100	None	None	1025	2050	1025
P2	Flat (Solid)	500	0	2050	2050	2050	2050	4100	None	None	1025	2050	1025

Loads on slab strip (in kN & m units)

Load reference	Load type	Start posn.	Start value	End posn.	End value	Category	Area loads%	Other loads%
Span 1 (Length 5.0m)							100.00	100.00
Pressure	AL		50.000			Dead		
Span 2 (Length 5.0m)							100.00	100.00
Pressure	A∟		50.000			Dead		

CADS SW Member Designer V3.71 (Build 414) Copyright © 2017 Computer and Design Services Ltd.

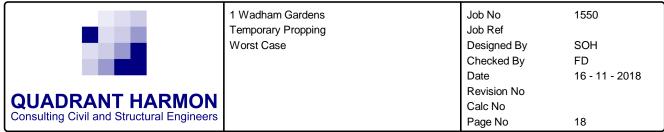
Calculations for strength, stability and stiffness of steel members to BS 5950 Part 1 Member Details

Member profile	Uniform	
Member length	9000	mm
Member type	Beam	
Member slope	-0.0	deg
Section - reference	203x203 UC46	
- type	Rolled I-section	
- axis	Major	
Steel - grade	grade S275	
- ult. tensile strength	410	N/mm2
- yield stress	275	N/mm2
- design strength	275	N/mm2
- Youngs E. modulus	205000	N/mm2

Support Conditions

Degree of Freedom		End 1	End 2
Displacement	- normal	fixed	fixed
	- lateral	fixed	fixed
	- axial	fixed	free
Rotation	- normal	free	free
	- lateral	free	free
	- axial	fixed	fixed

Lateral Restraints


No.	Туре	Connection	Offset mm	Start mm	Length mm	Spacing mm
1	End 1	Both flanges				
2	End 2	Both flanges				

Effective Length Factors

Major axis effective length factor on full member length = 1.00 Minor axis effective length factors on division length and member depth

.	Pos	ition		Mor	Axial Compression				
Division Number	Start	End	Sag	ging	Hog	ging	Length	Depth	
Number	mm	mm	Length	Depth	Length	Depth	Lengui	ъерш	
1	0	9000	1.00	0.00	1.00	0.00	1.00	0.00	

Note: * indicates Destabilising Loads

CADS SW Member Designer V3.71 (Build 414) Copyright © 2017 Computer and Design Services Ltd.

Stiffness Criteria (Length/Deflection Ratios)

		Normal		Lateral			
Member type	Length	Ratio	Defl.	Length	Ratio	Defl.	
	mm	L/Defl.	mm	mm	L/Defl.	mm	
Column	9000	300.00	30.00	9000	300.00	30.00	

Load Details (Units: kN and m)

No.	Name	Load No.	Туре	Start Pos. mm	Loaded Length mm	Start Value	End Value	Load Description
2	Imposed	1	PA	9000		62.00		
		2	MN	0		6.20		

Load Combinations

Load	Safety	Safety Factors												
Case	Comb	Comb												
	1	2												
	ULS	SLS												
1	1.00	0.00												
2	1.60	1.00												
3	0.00	0.00												

Summary of Critical Results for Member (203x203 UC46) - File name: Calculatio Sheet 19-06 Nov 2018

Design Criterion	Utilization	Load	Position	Status
	Ratio	Combination		
Local capacity / strength	0.073	1	0	OK
Lateral buckling	0.413	1	0	OK
Torsional buckling				n/a
Deflection	0.115	2	3804	OK

Critical Capacity Positions, Utilization Ratios and Status for Member Calculatio Sheet 19-06 Nov 2018

	Axial	Sh	ear	Ben	ding	Combined	Torsion	
Cmb	Fz	Fvx	Fvy	Mx My		Combined	Mt	Status
	mm U	mm U	mm U	mm U	mm U	mm U	mm U	
1	0 0.061	0 0.005	n/a	0 0.073	n/a	0 0.073	n/a	OK

Critical Lateral Buckling Lengths for Member Calculatio Sheet 19-06 Nov 2018 (Units: kN and kNm)

Comb	Buckling	Length		Utilization	Status
No.	Number	Start(mm)	End(mm)	Ratio	
1	1	0	9000	0.413	OK

1 Wadham Gardens Temporary Propping Worst Case Job No 1550

Job Ref

Designed By SOH

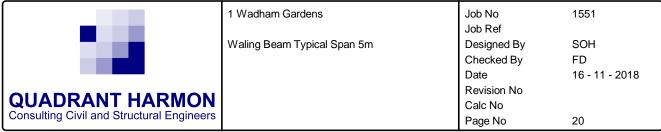
Checked By FD

Date 16 - 11 - 2018

Revision No

Calc No

19


CADS SW Member Designer V3.71 (Build 414) Copyright © 2017 Computer and Design Services Ltd.

Deflection Checks for Member Calculatio Sheet 19-06 Nov 2018

Critical Combination 2 (OK)

Page No

			Normal				Lateral						
Comb	Pos'n	s'n Allowable		Ac	Actual		Allowable		Actual		ratio		
Comb.		Deflect.	L/defl.	Deflect.	L/defl.		Deflect.	L/defl.	Deflect.	L/defl.			
	mm	mm	ratio	mm	ratio	mm	mm	ratio	mm	ratio			
2	3804	30.0	300.0	3.4	2617.2	0	30.0	300.0	0.0	>10000	0.115		

CADS SW Member Designer V3.71 (Build 414) Copyright © 2017 Computer and Design Services Ltd.

Calculations for strength, stability and stiffness of steel members to BS 5950 Part 1 Member Details

Member profile	Uniform						
Member length	5000	mm					
Member type	Beam						
Member slope	-0.0	deg					
Section - reference	305x305 UC97						
- type	Rolled I-section						
- axis	Major						
Steel - grade	grade S275						
- ult. tensile strength	410	N/mm2					
- yield stress	275	N/mm2					
- design strength	275	N/mm2					
- Youngs E. modulus	205000	N/mm2					

Support Conditions

Degree of Freedom		End 1	End 2
Displacement	- normal	fixed	fixed
	- lateral	fixed	fixed
	- axial	fixed	free
Rotation	- normal	free	free
	- lateral	free	free
	- axial	fixed	fixed

Lateral Restraints

No.	Туре	Connection	Offset mm	Start mm	Length mm	Spacing mm
1	End 1	Both flanges				
2	End 2	Both flanges				

Effective Length Factors

Major axis effective length factor on full member length = 1.00 Minor axis effective length factors on division length and member depth

Division Number	Pos	ition		Mor	Axial Compression				
	Start	End	Sag	ging	Hog	ging	Length	Depth	
	mm	mm	Length	Depth	Length	Depth	Lengui		
1	0	5000	1.00	0.00	1.00	0.00	1.00	0.00	

Note: * indicates Destabilising Loads

1	Wadham Gardens
---	----------------

Waling Beam Typical Span 5m

Job No	1551
Job Ref	
Designed By	SOH
Checked By	FD
Date	16 - 11 - 2018
Revision No	
Calc No	
Page No	21

CADS SW Member Designer V3.71 (Build 414) Copyright © 2017 Computer and Design Services Ltd.

Stiffness Criteria (Length/Deflection Ratios)

		Normal		Lateral			
Member type	Length	Ratio	Defl.	Length	Ratio	Defl.	
	mm	L/Defl.	mm	mm	L/Defl.	mm	
Plaster finish beam	5000	360.00	13.89	5000	360.00	13.89	

Load Details (Units: kN and m)

No.	Name	Load No.	Туре	Start Pos. mm	Loaded Length mm	Start Value	End Value	Load Description
2	Imposed	1	UN			10.50		

Load Combinations

Load	Safety	Safety Factors											
Case	Comb	Comb											
	1	2											
	ULS	SLS											
1	1.00	0.00											
2	1.60	1.00											
3	0.00	0.00											

Critical Capacity Positions, Utilization Ratios and Status for Member Waling Beam 16-Nov 2018

	Axial Shear				ear		Bending				Comb	inad	Torsion		
Cmb	Fz		Fv	x	Fvy	,	Mx My		Combined		Mt		Status		
	mm	U	mm	U	mm	U	mm	U	mm	U	mm	U	mm	U	
1	n/a	a	0 (0.084	n/	n/a		2500 0.120 n/a		'a	2500 0.120		n/a		ОК

Critical Lateral Buckling Lengths for Member Waling Beam 16-Nov 2018 (Units: kN and kNm)

Comb	Buckling	Length		Utilization	Status
No.	Number	Start(mm)	End(mm)	Ratio	
1	1	0	5000	0.120	OK

Deflection Checks for Member Waling Beam 16-Nov 2018

Critical Combination 2 (OK)

_												
ſ	Normal				Lateral					Utilization		
ı	0	Comb. Pos'n Allowab	vable	Ac	tual Pos'n		Pos'n Allowable		Actual		ratio	
١	COIIID.		Deflect.	L/defl.	Deflect.	L/defl.		Deflect.	L/defl.	Deflect.	L/defl.	
l		mm	mm	ratio	mm	ratio	mm	mm	ratio	mm	ratio	
	2	2500	13.9	360.0	1.9	2675.0	0	13.9	360.0	0.0	>10000	0.135

GEO-ENVIRONMENTAL SERVICES LTD

Job No.	Sheet No.	Rev.
GE10977	22	
Drg. Ref.	•	
Made by	Date	Checked

Preliminary Pile Working Loads

Notes

Assumed Cu vs Depth profile of 50kPa at 1m increasing at 8z, where z = depth below 1m in metres. This correlates well with a design line developed for a previous project within c.60m of the subject site.

STAGE SPECIFIC DATA

Stage 0: Initial Stage

Stage specific warnings

- 1 Stage 0 The bottom most layer in Soil Profile 1 is assigned "Total stress" material. For this layer the cohesion is assumed to be constant at "Cu-Top", i.e cohesion specified at the top of this layer. The user specified value of cohesion at the bottom of this layer, "Cu-Bottom" is ignored. (Material Properties)
- 2 Stage 0 Soil profile 1: Soil Profile 1 has no associated groundwater profile. Please review "Soil Profile Groundwater Map" table as necessary.

CAPACITY RESULTS

Stress Profiles

Soil Profile 1: Soil Profile 1

Depth	Density	Undrained Cohesion	Nq	Total vertical stress	Porewater pressure	Effective vertical stress	Effective horizontal stress*	Cumulative skin friction per unit perimeter
[m]	$[kN/m^3]$	[kPa]		[kPa]	[kPa]	[kPa]	[kPa]	[kN/m]
0.0	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0
3.5000	0.0	0.0	0.0	0.0	0.0	0.0	NA	0.0
3.5000	20.000	50.000	N.A.	0.0	0.0	0.0	NA	0.0
4.0000	20.000	54.545	N.A.	10.000	0.0	10.000	NA	0.0
12.000	20.000	127.27	N.A.	170.00	0.0	170.00	NA	0.0
14.000	20.000	145.45	N.A.	210.00	0.0	210.00	NA	0.0
16.000	20.000	163.64	N.A.	250.00	0.0	250.00	NA	0.0

^{*} Effective horizontal stress not calculated for "Total Stress" materials and for Beta Method.

Cross-section 1 results:

Results - Compression

Soil Profile 1: Soil Profile 1

Son Frome	1. 3011 F101	iie i					
Depth	Pile length	Ultimate (base capacity (Qb)	Cumulative external Friction (Q _S)	Negative skin friction (Q _{nsf})	Ultimate capacity	Allowable capacity	Limiting criterion #
[m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	
12.000	8.0000	80.967	308.45	0.0	389.41	129.80	2
14.000	10.000	92.534	424.12	0.0	516.65	172.22	2
16.000	12.000	104.10	555.21	0.0	659.31	219.77	2

- # Limiting criteria :
- 1: Global factor of safety
- 2: Shaft and base factors of safety
- 3: Shaft factor of safety 4: Pile material limiting stress [Compression]

GEO-ENVIRONMENTAL SERVICES LTD

Job No.	Sheet No.	Rev.
GE10977	23	
Drg. Ref.		
Made by JT	Date	Checked

Preliminary Pile Working Loads

Depth	Pile	Ultimate	Cumulative	Negative	Ultimate	Allowable	Limiting
	length	base	external	skin	capacity	capacity	criterion
		capacity	Friction	friction			#
		(Q _b)	(Q _s)	(Q _{nsf})			

Nq Calculation Details

Soil Profile 1: Soil Profile 1

There are no pile toe levels in any drained material(with Berezantzev/Bolton option) in the given soil profile.

Results - Tension

Soil Profile 1: Soil Profile 1

Depth	Pile (length	Cumulative external Friction (Q _S)	Ultimate capacity	Allowable capacity	Limiting criterion #
[m]	[m]	[kN]	[kN]	[kN]	
12.000	8.0000	308.45	308.45	102.82	1
14.000	10.000	424.12	424.12	141.37	1
16.000	12.000	555.21	555.21	185.07	1

- # Limiting criteria :
- 1: Factor of safety on shaft
- 2: Pile material limiting stress [Tension]

Cross-section 2 results:

Results - Compression

Soil Profile 1: Soil Profile 1

٠,								
	Depth	Pile length	Ultimate base capacity (Q _b)	$ \begin{array}{c} {\tt Cumulative} \\ {\tt external} \\ {\tt Friction} \\ ({\tt Q_S}) \end{array} $	Negative skin friction (Q _{nsf})	Ultimate capacity	Allowable capacity	Limiting criterion #
	[m]	[m]	[kN]	[kN]	[kN]	[kN]	[kN]	
	12.000	8.0000	182.18	462.67	0.0	644.85	214.95	2
	14.000	10.000	208.20	636.17	0.0	844.37	281.46	2
	16.000	12.000	234.23	832.81	0.0	1067.0	355.68	2

- # Limiting criteria :
- 1: Global factor of safety
- 2: Shaft and base factors of safety
- 3: Shaft factor of safety
 4: Pile material limiting stress [Compression]

Nq Calculation Details

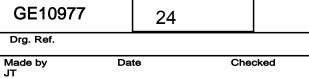
Soil Profile 1: Soil Profile 1

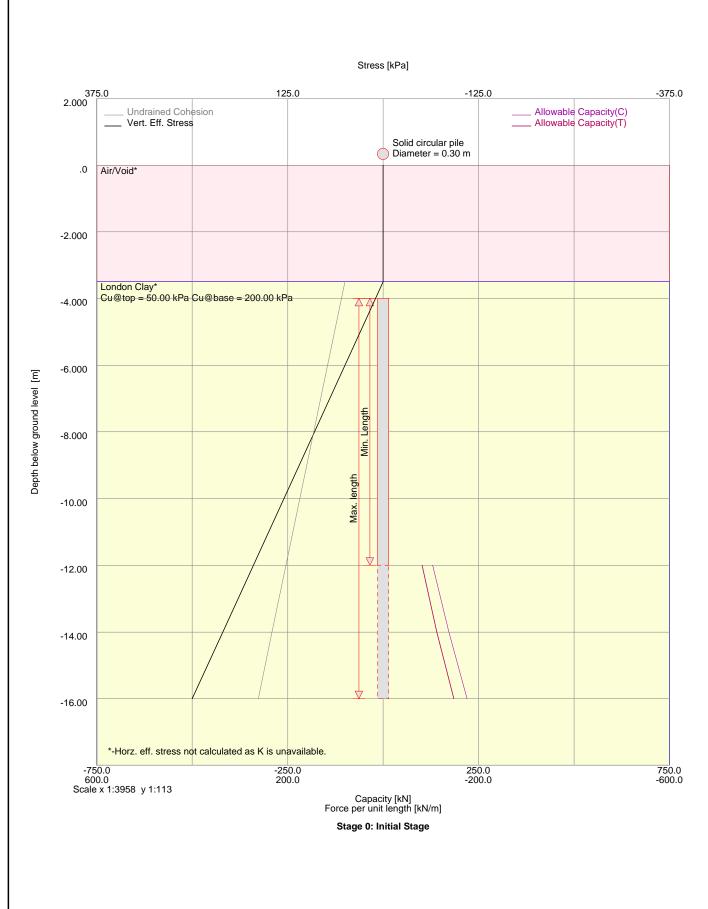
There are no pile toe levels in any drained material(with Berezantzev/Bolton option) in the given soil profile.

Results - Tension

Soil Profile 1: Soil Profile 1

•	Juli Fruille	I. Son Fion	ile i			
	Depth	Pile (length	Cumulative external Friction (Q _S)	Ultimate capacity	Allowable capacity	Limiting criterion #
	[m]	[m]	[kN]	[kN]	[kN]	
	12.000	8.0000	462.67	462.67	154.22	1
	14.000	10.000	636.17	636.17	212.06	1
	16.000	12.000	832.81	832.81	277.60	1

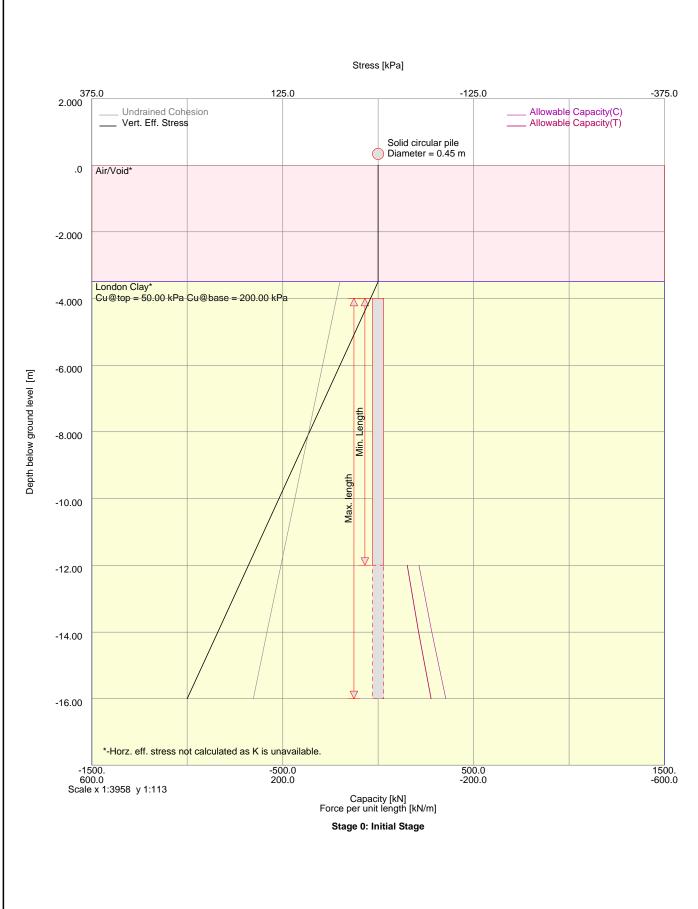

- # Limiting criteria :
 1: Factor of safety on shaft
- 2: Pile material limiting stress [Tension]



GEO-ENVIRONMENTAL SERVICES LTD

Job No.	Sheet No.	Rev.
GE10977	24	
Drg. Ref.		

Preliminary Pile Working Loads



GEO-ENVIRONMENTAL SERVICES LTD

Job No.	Sheet No. F	Rev.	
GE10977	25		
Drg. Ref.			

Preliminary Pile Working Loads

Made by Date Checked

Consulting	drant Harmon Civil & Structural Engineers 37 2770 Fax: 0207 436 7823	Project I Wadham Gudlens	Job No. 15 50 Sheet No. 26 Date. Nov 18
Ref:	Piles uplift F	NO.	By: 504 Ckd:
	Aven of Stuli	2 2.5× 1.5 = 4 m = 40× 4 = 160	
	Weight of Stul	= 7.1 × 4 = 23 131 R	
	From Calerlatin	Shoots	
		Capacity Thisis = 141	kw
	for 14 m 10	myth.	
	PAPE 460		