STRUCTURAL REPORT



PLANSING

info@plansing.co.uk +44(0) 330 133 9001

CLIENT: Max

ADDRESS: Flat 1, 56 Lisburne Road, NW3 2NR

PREPARED BY: PLANSING info@plansing.co.uk

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Disclaimer:

This document has been prepared in accordance with the PLANSING appointment scope established with our esteemed client and is strictly governed by the terms outlined in that appointment. It is crucial to recognize the confidential nature of this document, as it is specifically intended for the exclusive use and reliance of PLANSING's client. It is important to note that PLANSING bears no liability for any utilization of this document by any party other than its designated client, and such utilization is solely permitted for the explicitly stated purposes outlined within the document, for which it was meticulously prepared and provided. It is of utmost importance to emphasize that without the prior written permission of a Director of PLANSING, no individual other than the client is authorized to copy (in whole or in part), utilize, or rely upon the contents of this document. Furthermore, it is crucial to approach any advice, opinions, or recommendations contained within this document with due diligence, ensuring that they are carefully assessed and relied upon solely within the broader context of the document as a whole. Lastly, it is imperative to understand that the contents of this document are not intended to serve as a substitute for professional legal, business, or tax advice or opinion.

Client: Mr. Max	Prepared by: EF	
Address:		
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Project Information

Design Codes – Eurocodes and their respective National Annexes:

BS EN 1990. Eurocode 0: 'Basis of structural design'

BS EN 1991. Eurocode 1: 'Actions on structures'

BS EN 1992. Eurocode 2: 'Design of concrete structures'

BS EN 1993. Eurocode 3: 'Design of steel structures'

BS EN 1995. Eurocode 5: 'Design of timber structures'

BS EN 1996. Eurocode 6: 'Design of masonry structures'

BS EN 1997. Eurocode 7: 'Geotechnical Design'

ASSUMPTIONS

THE FOLLOWING ASSUMPTIONS ARE MADE ABOUT THE SITE. THEY ARE TO BE CHECKED ON SITE BY THE CONTRACTOR AND BUILDING CONTROL OFFICER PRIOR TO THE START OF THE WORKS. ANY DIFFERENCES ARE TO BE REPORTED TO PLANSING IMMEDIATELY;

- The existing masonry is assumed to be minimum 3.6N/mm² blockwork in a 1:2:8 mortar (f_k=3.5N/mm²)
- 2. Floor joists are assumed to span as indicated on the drawings.
- **3.** The external walls are assumed to be cavity brickwork.

The allowable ground bearing pressure is assumed to be 100 kN/m^2 .

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Notes:

- Work to site dimensions only. Do not use any measurements shown in the calculations these are usually for design analysis and do not relate to physical dimensions on site.
- Note also requirement of the Building Regulations outside the scope of these details (e.g., Fire Protection, Dam proofing etc.: See Building Regulations Approved Documents A to R, which must be referred to).
- These details are to be read in conjunction with all accompanying structural drawings, architectural drawings, specification notes etc.

Any discrepancies are to be reported immediately to PLANSING for clarification.

The contractor is responsible for all temporary works and for ensuring the stability of the works in progress.

IMPORTANT

These details have been produced from drawings only. No structural investigations have been undertaken and all assumed loadbearing walls and existing foundations must be physically exposed and checked on site prior to commencement. Similarly, note the strength of existing walling, foundations and ground conditions that have been assumed for the purpose of these calculations. Again, these are to be exposed and confirmed with the Building Control Officer, prior to commencement of the works.

Works carried out on site prior to the relevant Planning and Building Regulation approval being obtained for the Local Authority, is undertaken entirely at the Contractor and Client's own risk.

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

The works may fall under the Party Wall Act. Under this legislation the property owner where the works are being carried out has certain responsibilities including notifying the neighboring property owners and agreeing to the terms of a Party Wall Award. Specialist advice should be sought from a Party Wall Surveyor if the works fall under this act.

ITEMS

LOADING DETAILS

- 1. Steel Design
 - Beam

2. PADSTONE DESIGN

• **PS**

UC 152x152x23 (BS4-1) (S355)

440 x 102 x 215

Prepared by:	
Date:	PLANSING
June 2024	info@plansing.co.uk +44(0) 330 133 9001

LOADING DETAILS

GENERAL LOADING FOR PITCHED ROOF

Clay Tiles	=	0.65	KN/m ²
Felt and battens	=	0.05	KN/m ²
Timber rafters	=	0.1	KN/m ²
Insulations and other membranes	=	0.1	KN/m ²
Ceiling and services	=	0.2	KN/m ²
Total dead load on the slope	=	1.10	KN/m²
Live Load	=	0.6	KN/m ²

GENERAL LOADING FOR FLAT ROOF	
Waterproofing, Insulation	
Timber joist	
Plyboard decking	

Plyboard decking	=	0.1	KN/m²
Ceiling and services	=	0.2	KN/m ²
Total dead load	=	0.95	KN/m²
Live Load	=	0.6	KN/m ²

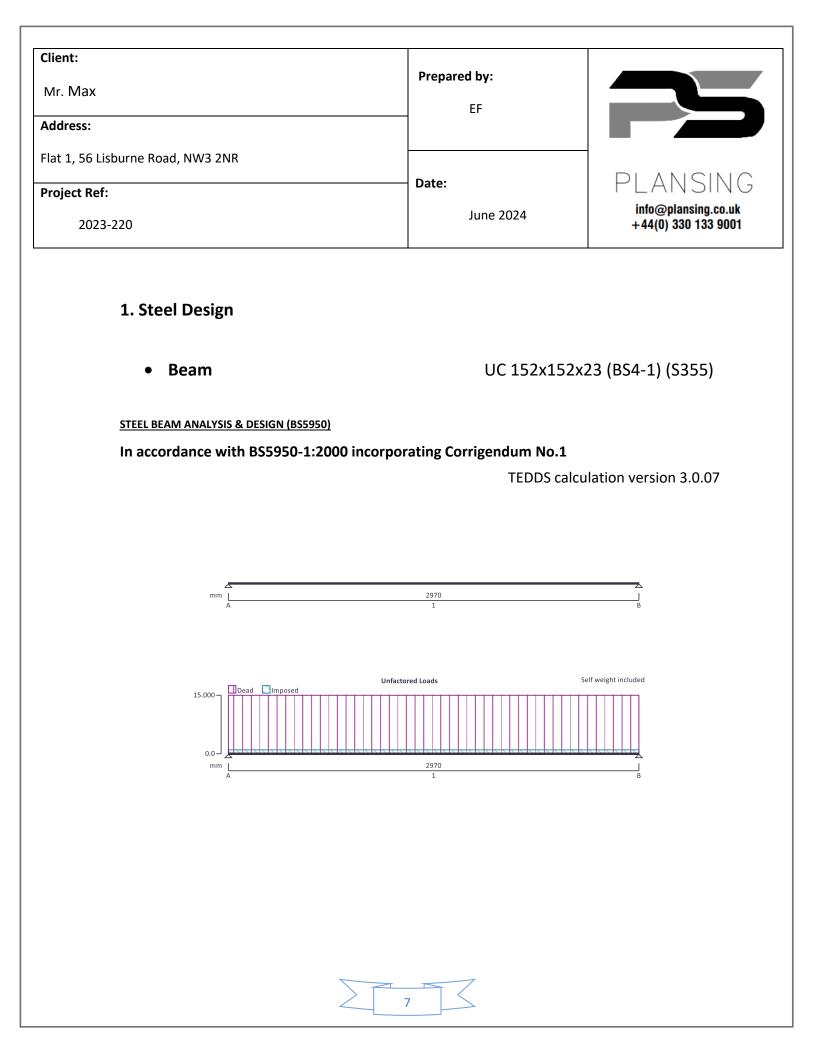
GENERAL LOADING FOR LOFT FLOOR

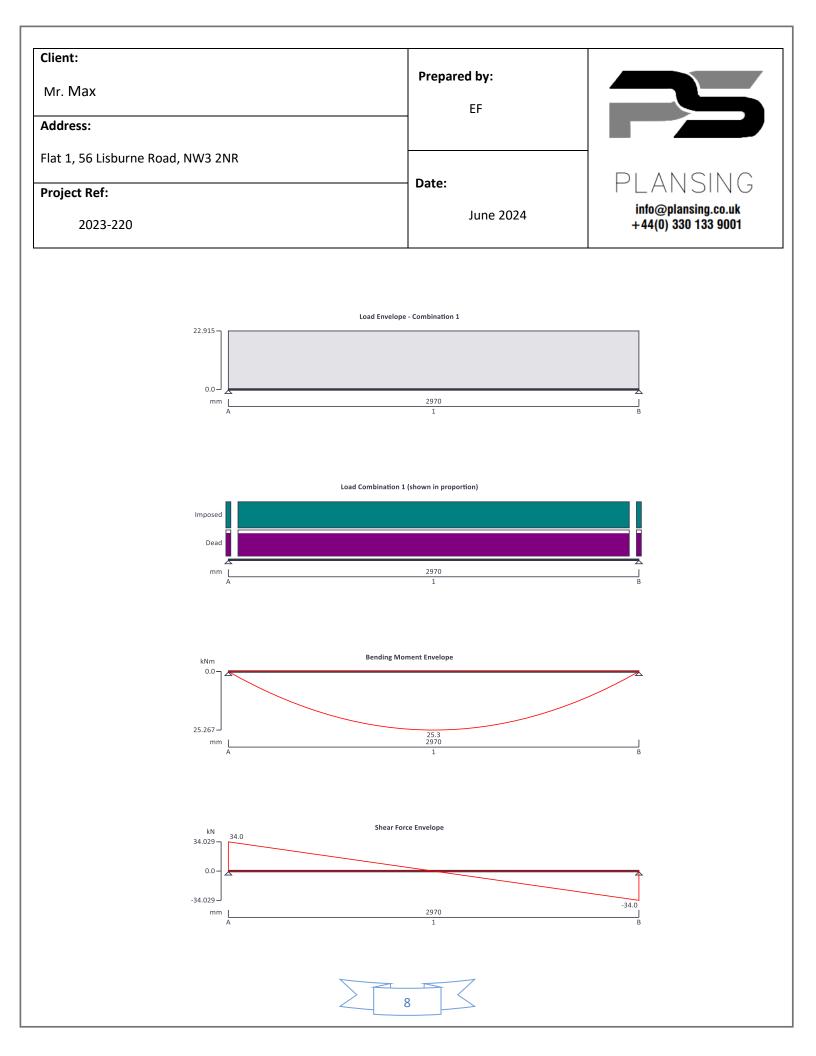
Plywood Flooring	=	=	0.15	KN/m ²
			7	

KN/m²

KN/m²

0.45


0.2


=

=

Client:		Prepare	d by:		
Mr. Ma	x	Fiepare			
Address:	:	_	EF		
Flat 1, 56	5 Lisburne Road, NW3 2NR				
Project F	Ref	Date:			PLANSING
	023-220		June 2024		info@plansing.co.uk +44(0) 330 133 9001
20	JZ5-ZZU				+44(0) 330 133 9001
	Timber Joists	=	0.2	KN/r	n²
	Insulation	=	0.05	KN/r	n ²
	Ceiling and services	=	0.2	KN/r	n²
	Partitions	=	0.5	KN/r	n²
	Total dead load	=	1.10	KN/r	m²
	Live Load	=	1.5	KN/r	m²
	GENERAL LOADING FOR FIRST FLOOR				
	Plywood Flooring	=	0.15	KN/r	n ²
	Timber Joists	=	0.2	KN/r	n ²
	Insulation	=	0.05	KN/r	n²
	Ceiling and services	=	0.2	KN/r	n ²
	Partitions	=	0.5	KN/r	n²
	Total dead load	=	1.10	KN/r	m²
	Live Load	=	1.5	KN/r	m²
	WALL LOAD				
	Brick Wall (102mm)	=	2	KN/r	n ²
	Block wall with plaster	=	1.9	KN/r	n ²

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Support A	Vertically restrained		
	Rotationally free		
Support B	Vertically restrained	Vertically restrained	
	Rotationally free	Rotationally free	
Applied loading			
Beam loads	Imposed full UDL 1 kN/m		
	Dead full UDL 15 kN/m		
	Dead self weight of bea	am´1	
Load combinations			
Load combination 1	Support A	Dead ´ 1.40	
		Imposed ´ 1.60	
		Dead ´ 1.40	
		Imposed ´ 1.60	
	Support B	Dead ´ 1.40	
		Imposed ´ 1.60	
Analysis results			
Maximum moment;	M _{max} = 25.3 kNm;	M _{min} = 0 kNm	
Maximum shear;	V _{max} = 34 kN;	V _{min} = - 34 kN	
Deflection;	d _{max} = 0.4 mm;	d _{min} = 0 mm	
Maximum reaction at support A;	R _{A_max} = 34 kN;	R _{A_min} = 34 kN	
Unfactored dead load reaction at sup	port A; R _{A_Dead} = 22.6 kN		

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Maximum reaction at support B;	R _{B_max} = 34 kN;	R _{B_min} = 34 kN
Unfactored dead load reaction at support	B; R _{B_Dead} = 22.6 kN	
Unfactored imposed load reaction at supp	oort B; R _{B_Imposed} = 1.5 kN	
Section details		
Section type;	UC 152x152x23 (BS4-1)	
Steel grade;	S355	
From table 9: Design strength py		
Thickness of element;	max(T, t) = 6.8 mm	
Design strength;	p _γ = 355 N/mm ²	
Modulus of elasticity;	E = 205000 N/mm ²	

Lateral restraint Span 1 has full lateral restraint

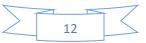
Client:		
	Prepared by:	
Mr. Max	EF	
Address:		
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001
Effective length factors		
Effective length factor in major axis;	K _x = 1.00	
Effective length factor in minor axis;	K _y = 1.00	
Effective length factor for lateral-torsic	onal buckling;	K _{LT.A} = 1.20 ; + 2 ´ D
	K _{LT.B} = 1.20 ; + 2 ´ D	
Cclassification of cross sections - Sections	ion 3.5	
	e = $\sqrt{275} \text{ N/mm}^2 / \text{py}$] = 0.88
linternal compression parts - Table 11	L	
Depth of section;	d = 123.6 mm	
	d / t = 24.2 ´ e <= 80 ´	e; Class 1 plastic
Ooutstand flanges - Table 11		
Width of section;	b = B / 2 = 76.1 mm	
	b / T = 12.7 ´ e <= 15 ´	e; Class 3 semi-
compact		
	Sec	tion is class 3 semi-compact
Shear capacity - Section 4.2.3		
Design shear force;	F _v = max(abs(V _{max}), at	os(V _{min})) = 34 kN
	d / t < 70 ´ e	
	Web does not need to be	e checked for shear buckling
Shear area;	A _v = t ´ D = 884 mm ²	
Design shear resistance;	$P_v = 0.6 \text{ '} p_y \text{ '} A_v = 188$.3 kN
PASS	5 - Design shear resistance	e exceeds design shear force
Moment capacity - Section 4.2.5		
Design bending moment;	M = max(abs(M _{s1_max})	, abs(M _{s1_min})) = 25.3 kNm
	11	

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Effective plastic modulus - Section 3.5.6Limiting value for class 2 compact flange; $b_{2f} = 10 \text{ } e = 8.801$ Limiting value for class 3 semi-compact flange; $b_{3f} = 15 \text{ } e = 13.202$ Limiting value for class 2 compact web; $b_{2w} = 100 \text{ } e = 88.014$ Limiting value for class 3 semi-compact web; $b_{3w} = 120 \text{ } e = 13.202 \text{ } e = 105.617$

Effective plastic modulus - cl.3.5.6.2

$$\begin{split} S_{eff} &= \min(Z_{xx} + (S_{xx} - Z_{xx}) \ ' \ \min([((b_{3w} \ / \ (d \ / \ t))^2 - 1) \ / \ ((b_{3w} \ / \ b_{2w})^2 - 1)], \ [(b_{3f} \ / \ (b \ / \ T) - 1) \ / \ (b_{3f} \ / \ b_{2f} - 1)]), \ S_{xx}) = \mathbf{170473} \ \mathrm{mm^3} \end{split}$$


Moment capacity low shear - cl.4.2.5.2; $M_c = min(p_y \circ S_{eff}, 1.2 \circ p_y \circ Z_{xx}) = 60.5 \text{ kNm}$

PASS - Moment capacity exceeds design bending moment

Check vertical deflection - Section 2.5.2

Consider deflection due to imposed loadsLimiting deflection; $d_{lim} = L_{s1} / 250 = 11.88 \text{ mm}$ Maximum deflection span 1; $d = max(abs(d_{max}), abs(d_{min})) = 0.395 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Client: Mr. Max Address:	Prepared by: EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Beam B-1:

Section UC 152 x 152 x 23 (BS4-1) (S355)

We incorporated the following loads in our calculations for Beam B-1.

Self-Weight: Auto incorporated by software using our steel sectional properties.

Factors used are;

- Self-Weight = 1.0
- Dead Load = 1.4
- Live Load = 1.6

We had taken loadings being applied on our beam 'B-1':

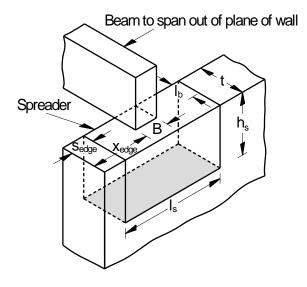
• Chimney Load

Our load derivation for each source for Beam B-1 is as follows;

<u>Chimney Load;</u> Unit Weight of Bricks 20 kN/m³

Chimney width= 0.275 m

Chimney height including stack= 2.5 m


Dead Load (UDL) = 20 x 0.275 x 2.5 = 13.75 kN/m

Client:			
Mr. Max		Prepared by:	
Address:		EF	
Flat 1, 56 Lisburne Roa			
Flat 1, 56 LISDUITIE KO	au, INVVS ZINK	Date:	PLANSING
Project Ref:			info@plansing.co.uk
2023-220		June 2024	+44(0) 330 133 9001
2. PA	DSTONE DESIGN		
•	PS	440 x 102 x 23	15
		2005	
MASO	NRY BEARING DESIGN TO BS5628-1		ulation version 1.0.06
		TEDDS Calco	JIALION VERSION 1.0.06
	ry details		
	ry type;	Aggregate concrete blocks (25% or less formed
voids)		$2 \in \mathbb{N}^{d}$	
· · · ·	essive strength of unit;	p _{unit} = 3.6 N/mm ²	
	designation;	ii 	
	orizontal dimension of masonry un		l _{unit} = 100 mm
-	of masonry units;	h _{unit} = 215 mm	
-	ry of masonry units;	Category II	
-	ry of construction control ;	Normal	
	safety factor for material strength;	-	
	ess of load bearing leaf;	t = 100 mm	
Effoctiv	ve thickness of masonry wall;	t _{ef} = 150 mm	
	of masonry wall;	h = 2000 mm	

Prepared by: EF	
Date:	PLANSING
June 2024	info@plansing.co.uk +44(0) 330 133 9001
	EF Date:

Bearing details

Beam spanning out of plane of wall

Width of bearing;	B = 100 mm
Length of bearing;	l _b = 100 mm
Edge distance;	x _{edge} = 275 mm

Compressive strength from Table 2 BS5628:Part 1 - aggregate concrete blocks (25% or less formed voids)

Mortar designation;	Mortar = "ii"	
Block compressive strength;	p _{unit} = 3.6 N/mm ²	
Characteristic compressive strength (Tabl	e 2c);	f _{kc} = 1.70 N/mm ²
Characteristic compressive strength (Tabl	e 2d);	f _{kd} = 3.50 N/mm ²

Client:		
Mr. Max	Prepared by: EF	
Address:		
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001

Height of solid block;	h _{unit} = 215.0 mm ;
Least horizontal dimension;	l _{unit} = 100.0 mm
Block ratio;	ratio = $h_{unit} / I_{unit} = 2.2$
	Ratio between 0.6 and 4.5 - OK
Characteristic compressive strength;	f _k = 3.50 N/mm ²
Loading details	
Characteristic concentrated dead load;	G _k = 23 kN
Characteristic concentrated imposed load	; $\mathbf{Q}_{k} = 2 \mathbf{k} \mathbf{N}$
Design concentrated load;	$F = (G_k \times 1.4) + (Q_k \times 1.6) = 35.4 \text{ kN}$
Characteristic distributed dead load;	g _k = 0.0 kN/m
Characteristic distributed imposed load;	q _k = 0.0 kN/m
Design distributed load;	$f = (g_k \times 1.4) + (q_k \times 1.6) = 0.0 \text{ kN/m}$
Masonry bearing type	
Bearing type;	Туре 2
Bearing safety factor;	g _{bear} = 1.50
Check design bearing without a spreader	
Design bearing stress;	$f_{ca} = F / (B \times I_b) + f / t = 3.540 \text{ N/mm}^2$
Allowable bearing stress;	$f_{cp} = g_{bear} \times f_k / g_m = 1.500 \text{ N/mm}^2$
FAIL - Design bearing stress	exceeds allowable bearing stress, use a spreader
Spreader details	
Length of spreader;	l _s = 440 mm
Depth of spreader;	h _s = 215 mm
Edge distance;	s _{edge} = max(0 mm, x _{edge} – (I _s - B) / 2) = 105 mm

Client: Mr. Max	Prepared by:	
Address:	EF	
Flat 1, 56 Lisburne Road, NW3 2NR		
Project Ref:	Date:	PLANSING
2023-220	June 2024	info@plansing.co.uk +44(0) 330 133 9001
Spreader bearing type		
Bearing type;	Туре 1	
Bearing safety factor;	g _{bear} = 1.25	
Check design bearing with a spreader		
Loading acts at midpoint of spreader		
Design bearing stress;	$f_{ca} = F / (I_s \times t) + f / t = 0.805 f$	N/mm²
Allowable bearing stress;	f_{cp} = $g_{bear} \times f_k$ / g_m = 1.250 N/r	mm²
PASS - Allow	wable bearing stress exceeds a	lesign bearing stress
Check design bearing at 0.4 $ imes$ h below th	e bearing level	
Slenderness ratio;	h _{ef} / t _{ef} = 13.33	
Eccentricity at top of wall;	e _x = 0.0 mm	
From BS5628:1 Table 7		
Capacity reduction factor;	b = 0.97	
Length of bearing distributed at 0.4 $ imes$ h;	l _d = 1175 mm	
Maximum bearing stress;	$f_{ca} = F / (I_d \times t) + f / t = 0.301$	N/mm²
Allowable bearing stress;	$f_{cp} = b \times f_k / g_m = 0.970 \text{ N/mm}$	1 ²
PASS - Allowable bearing stress at	0.4 ´ h below bearing level exc	eeds design bearing
		stress

• NOTE:

12 mm thick steel plate above the beam to match the width of the chimney.

