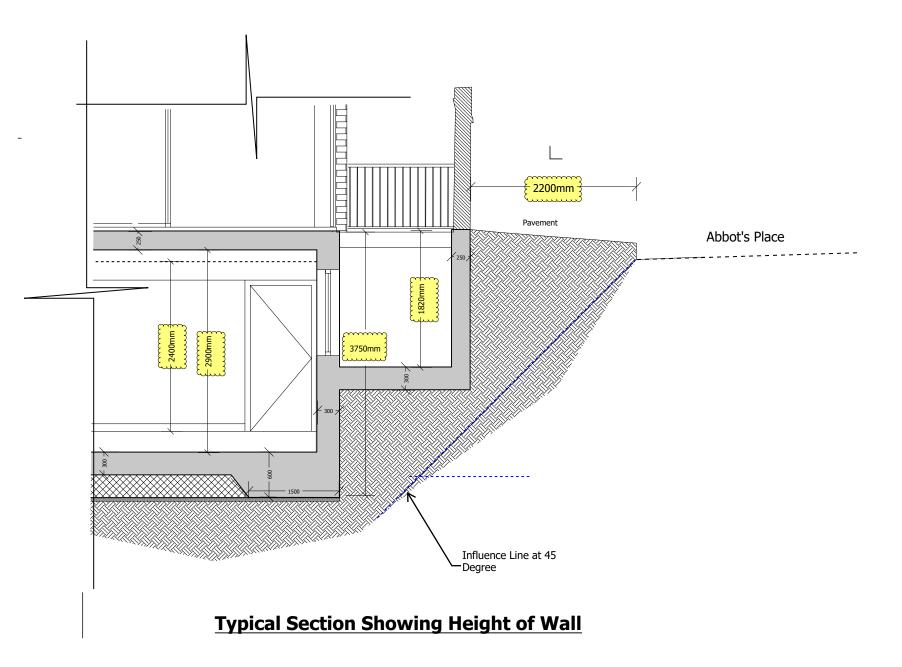
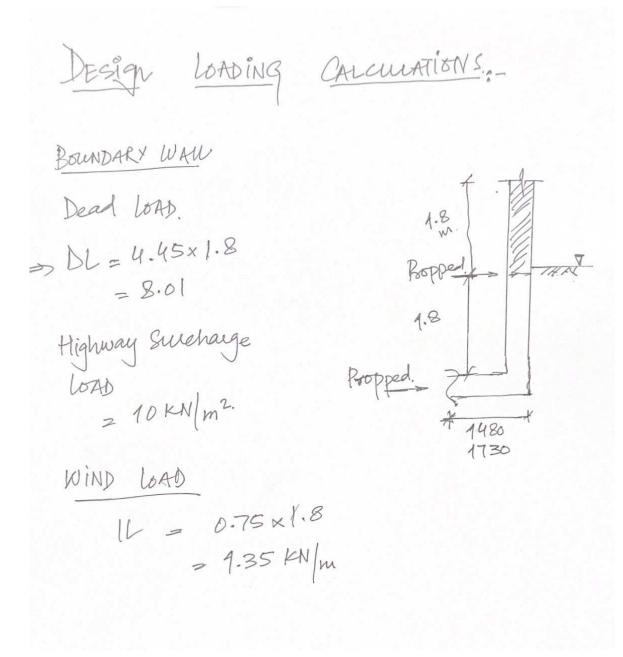


Design Loading


BS EN 1991-1 NA to BS EN 1991-1

	Design Loading			1 1 3 3 1 - 1
1	Pitched Roof (kN/m²)	Г	DL	IL
	Pitch = 34 degrees	L	kN/m ²	kN/m ²
	Roof tiles		0.50	
	Battens+membrane		0.05	
	Insulation		0.05	
	Timber rafters + Plywood		0.40	
	Ceiling and Services		0.25	
	Imposed		-	0.60
	Sub-total On slope		1.25	
	Sub-total On plan	Slope load/Cos pitch	1.51	0.60
		Total =	1.51	0.60
2	<u>First Floor (Timber)</u>	Г	DL	IL
		E	kN/m ²	kN/m ²
	Finishes		0.20	
	Floor Joists+plydeck		0.40	
	Ceiling		0.15	
	Insulation		0.05	
	Services		0.10	
	Partitions		0.50	
	Imposed	- Total =	- 1.40	1.50
3	External Existing Wall	l otal =	1.40	1.50
5			kN/m ²	
	Plaster Board+Skim		0.35	
	215mm Brick		4.00	
	Insulation		0.10	
		Total =	4.45	
		F		
4	Ground Floor (Concrete Slab)	L	DL kN/m ²	IL kN/m ²
	Finishes		0.20	NIN/111
	250mm RC Slab		6.25	
	Ceiling		0.25	
	Insulation		0.05	
	Services		0.10	
	Partitions		0.50	
	Imposed		-	1.50
		Total =	7.25	1.50
-		г		
5	Basement Floor (Concrete Slab)	L	DL kN/m ²	IL kN/m ²
	Finishes		0.20	
	300mm RC Slab		7.00	
	Insulation		0.05	
	Screed		1.65	
	Partitions		0.50	
	Imposed		-	1.50
		Total =	9.40	1.50
6	External Basement Wall		kN/m ²	
	Plaster Board+Skim			
	300mm RC		0.35 7.00	
	Insulation		7.00 0.10	
	moulauon	- Total =	7.45	
5	Wind Pressure	10tal –	7.75	
-			kN/m ²	
	WL	Total	0.75	



Typical Section Showing full height of building

Light Well Retaining Wall Design

With regard to proposed foundation designs, the in-situ testing indicates the following Allowable Bearing Capacities (based on a Factor of Safety = 3) within the Natural Strata at depths below current ground/floor level at each location:

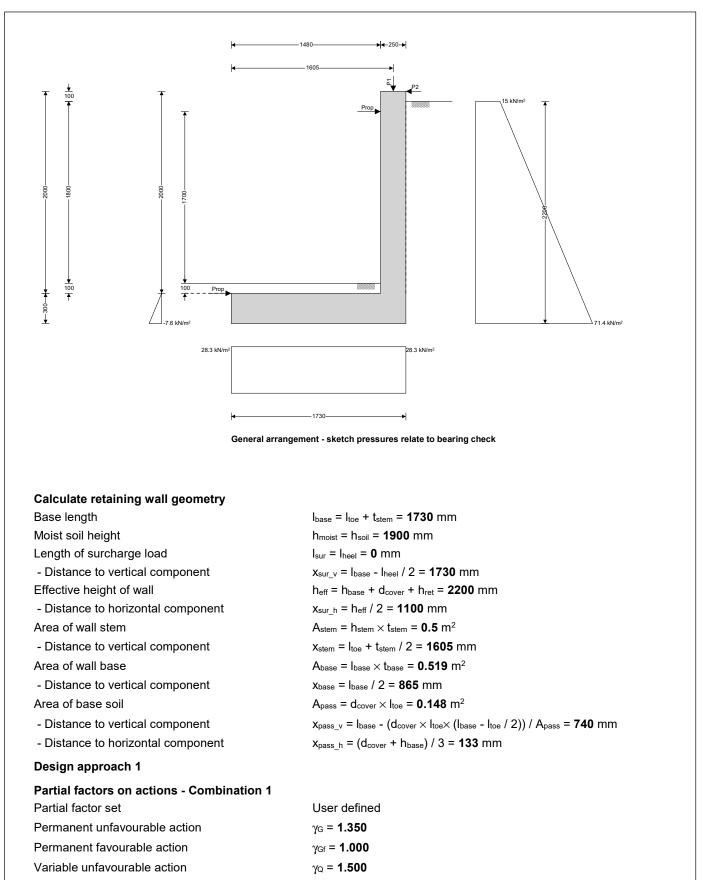

Borehole No.	Depth (m)	Allowable Bearing Capacity (kN/m ²)	Strata
1	1.0m	140 (Clay)	London Clay
	2.0m	200 (Clay)	London Clay
	3.0m	240 (Clay)	London Clay
2	1.0m	140 (Clay)	London Clay
	2.5m	220 (Clay)	London Clay
	3.0m	260 (Clay)	London Clay

Table 1, Allowable Bearing Capacity with Depth (FoS = 3)

Qaim Structures	Tedds Project uctures 10 Abbot's Place, North Maida Vale, London NW6 4NP			Job no.			
Arena Business Centre	Calcs for					Start page no./	Revision 1
RG41 5RD	Calcs by AC	Calcs o 02/0	^{date} 08/2024	Checked by ZA	Checked date	Approved by	Approved
RETAINING WALL ANALYSI In accordance with EN1997- incorporating Corrigendum Analysis summary	1:2004 incorp	-	orrigend	um dated Fet	oruary 2009 and		onal Annes
Design summary							
Overall design utilisation		0.	.65				
Overall design status		P	ass				
Description		Unit	Capacit	y Applied	FoS	Result	
Bearing pressure		kN/m ²	150	28.3	5.296	PASS	
Design summary							
Description		Unit	Provide		Utilisation	Result	
Shear resistance		kN/m	23.1	114.8	0.202	PASS	
Stem p0 - Shear resistance	·	kN/m	105.2	52.6	0.500	PASS	
Stem p1 rear face - Flexural re Stem p1 - Shear resistance	einforcement	mm²/m kN/m	565.5 105.2	292.2 20.6	0.517 0.196	PASS PASS	
Base top face - Flexural reinfo	rcement	mm ² /m	565.5	367.5	0.650	PASS	
Base bottom face - Flexural re		mm²/m	565.5	329.8	0.583	PASS	
Base - Shear resistance		kN/m	114.8	23.1	0.202	PASS	
Retaining wall details							
Stem type		Р	ropped ca	ntilever			
Stem height		h₅	stem = 2000) mm			
Prop height		h	orop = 1800	mm			
Stem thickness		t _{st}	_{tem} = 250 r	nm			
Angle to rear face of stem		α	= 90 deg				
Stem density			_{.tem} = 25 kl	N/m ³			
Toe length		•	e = 1480 r				
Base thickness			_{e –} 1400 r _{ase} = 300 r				
Base density		•	_{ase} = 25 kl				
Height of retained soil		-	ret = 1800	mm			
Angle of soil surface		•	= 0 deg				
Depth of cover			_{cover} = 100				
Depth of excavation		de	_{exc} = 100 n	nm			
Retained soil properties							
Soil type		S	tiff clay				
Moist density		γn	nr = 19 kN/	′m³			
Saturated density		•	r = 19 kN/				
Base soil properties		10					
Soil type		0	tiff clay				
••			•	3			
Soil density		γb	5 = 19 kN/r	U2			
Loading details							
		S	urchargeo	= 10 kN/m ²			
Variable surcharge load		-	5 -				
Variable surcharge load Vertical line load at 1605 mm			_{G1} = 8 kN/				

Variable favourable action

 $\gamma_{Qf} = 0.000$

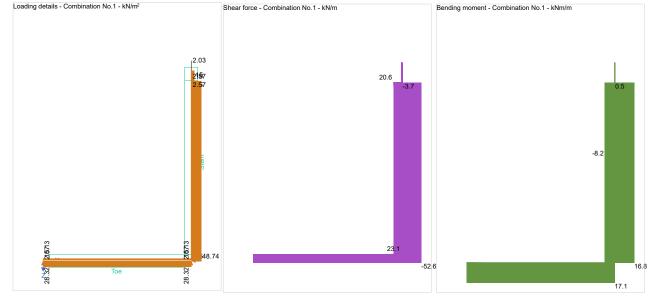
Soil parameter set	User defined
Angle of shearing resistance	$\gamma_{\Phi} = 1.00$
Jndrained shear strength	γ _{cu} = 1.00
Neight density	$\gamma_{\gamma} = 1.00$
Retained soil properties	
Design moist density	γ_{mr} ' = γ_{mr} / γ_{γ} = 19 kN/m ³
Design saturated density	γ_{sr} ' = γ_{sr} / γ_{γ} = 19 kN/m ³
Base soil properties	
Design soil density	γ_{b} ' = γ_{b} / γ_{γ} = 19 kN/m ³
Soil coefficients	
Coefficient of friction to back of wall	K _{fr} = 0.325
Coefficient of friction to front of wall	K _{fb} = 0.325
Coefficient of friction beneath base	K _{fbb} = 0.325
At rest pressure coefficient	$K_0 = 1.000$
Passive pressure coefficient	K _P = 1.000
Bearing pressure check	
/ertical forces on wall	
Nall stem	$F_{stem} = \gamma_G \times A_{stem} \times \gamma_{stem} = 16.9 \text{ kN/m}$
Nall base	$F_{base} = \gamma_G \times A_{base} \times \gamma_{base} = 17.5 \text{ kN/m}$
ine loads	$F{P_v} = \gamma_G \times P_{G1} = 10.8 \text{ kN/m}$
Base soil	$F_{pass_v} = \gamma_G \times A_{pass} \times \gamma_b' = 3.8 \text{ kN/m}$
Total	$F_{total_v} = F_{stem} + F_{base} + F_{P_v} + F_{pass_v} = 49 \text{ kN/m}$
Horizontal forces on wall	
Surcharge load	$F_{sur_h} = K_0 \times \gamma_Q \times Surcharge_Q \times h_{eff} = \textbf{33 kN/m}$
ine loads	$F{P_h} = \gamma_Q \times P_{Q2} = 2 \text{ kN/m}$
Moist retained soil	$F_{moist_h} = \gamma_G \times K_0 \times \gamma_{mr} \times h_{eff}^2 / 2 = 62.1 \text{ kN/m}$
Base soil	$F_{pass_h} = -\gamma_{Gf} \times K_P \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -1.5 \text{ kN/m}$
Total	$F_{total_h} = F_{sur_h} + F_{P_h} + F_{moist_h} + F_{pass_h} = 95.6 \text{ kN/m}$
Moments on wall	
Wall stem	M _{stem} = F _{stem} × x _{stem} = 27.1 kNm/m
Wall base	$M_{base} = F_{base} \times x_{base} = 15.2 \text{ kNm/m}$
Surcharge load	$M_{sur} = -F_{sur_h} \times x_{sur_h} = -36.3 \text{ kNm/m}$
ine loads	$M{P} = \gamma_{G} \times P_{G1} \times p_{1} - (\gamma_{Q} \times P_{Q2} \times (p_{2} + t_{base})) = 12.7 \text{ kNm/m}$
Moist retained soil	$M_{moist} = -F_{moist_h} \times x_{moist_h} = -45.5 \text{ kNm/m}$
Base soil	$M_{pass} = F_{pass_v} \times x_{pass_v} = 2.8 \text{ kNm/m}$
Total	$M_{total} = M_{stem} + M_{base} + M_{sur} + M_{P} + M_{moist} + M_{pass} = -24.1 \text{ kNm/m}$
Check bearing pressure	
Propping force to stem	$F_{prop_stem} = (F_{total_v} \times I_{base} / 2 - M_{total}) / (h_{prop} + t_{base}) = 31.6 \text{ kN/m}$
Propping force to base	F _{prop_base} = F _{total_h} - F _{prop_stem} = 63.9 kN/m
Noment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 66.5 \text{ kNm/m}$
Distance to reaction	$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} + \mathbf{M}_{\text{prop}}) / \mathbf{F}_{\text{total}_v} = 865 \text{ mm}$
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$

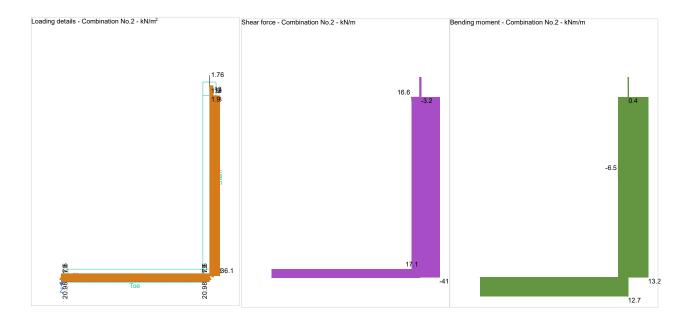
Loaded length of base	I _{load} = I _{base} = 1730 mm
Bearing pressure at toe	q _{toe} = F _{total_v} / I _{base} = 28.3 kN/m ²
Bearing pressure at heel	q _{heel} = F _{total_v} / I _{base} = 28.3 kN/m ²
Factor of safety	$FoS_{bp} = P_{bearing} / max(q_{toe}, q_{heel}) = 5.296$
PASS	 Allowable bearing pressure exceeds maximum applied bearing pressure
Design approach 1	
Partial factors on actions - Combination 2	2
Partial factor set	User defined
Permanent unfavourable action	γ _G = 1.000
Permanent favourable action	γ _{Gf} = 1.000
Variable unfavourable action	γ _Q = 1.300
Variable favourable action	$\gamma_{\rm Qf} = 0.000$
Partial factors for soil parameters – Coml	pination 2
Soil parameter set	User defined
Angle of shearing resistance	γ _{◊'} = 1.25
Undrained shear strength	$\gamma_{cu} = 1.40$
Weight density	$\gamma_{\gamma} = 1.00$
Retained soil properties	
Design moist density	γ_{mr} ' = γ_{mr} / γ_{γ} = 19 kN/m ³
Design saturated density	γ_{sr} ' = γ_{sr} / γ_{γ} = 19 kN/m ³
Base soil properties	
Design soil density	$\gamma_b' = \gamma_b / \gamma_\gamma = 19 \text{ kN/m}^3$
Soil coefficients	
Coefficient of friction to back of wall	K _{fr} = 0.325
Coefficient of friction to front of wall	K _{fb} = 0.325
Coefficient of friction beneath base	K _{fbb} = 0.325
At rest pressure coefficient	K ₀ = 1.000
Passive pressure coefficient	K _P = 1.000
Bearing pressure check	
Vertical forces on wall	
Wall stem	$F_{stem} = \gamma_G \times A_{stem} \times \gamma_{stem} = 12.5 \text{ kN/m}$
Wall base	$F_{base} = \gamma_G \times A_{base} \times \gamma_{base} = 13 \text{ kN/m}$
Line loads	$F_{P_v} = \gamma_G \times P_{G1} = 8 \text{ kN/m}$
Base soil	$F_{pass_v} = \gamma_G \times A_{pass} \times \gamma_b' = 2.8 \text{ kN/m}$
Total	$F_{total_v} = F_{stem} + F_{base} + F_{P_v} + F_{pass_v} = 36.3 \text{ kN/m}$
Horizontal forces on wall	
Surcharge load	$F_{sur_h} = K_0 \times \gamma_Q \times Surcharge_Q \times h_{eff} = 28.6 \text{ kN/m}$
Line loads	$F_{P_h} = \gamma_Q \times P_{Q2} = 1.8 \text{ kN/m}$
Moist retained soil	$F_{moist_h} = \gamma_G \times K_0 \times \gamma_{mr}' \times h_{eff}^2 / 2 = 46 \text{ kN/m}$
Base soil	$F_{pass_h} = -\gamma_{Gf} \times K_P \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -1.5 \text{ kN/m}$
Total	$F_{total_h} = F_{sur_h} + F_{P_h} + F_{moist_h} + F_{pass_h} = 74.8 \text{ kN/m}$
Moments on wall	

Wall base	M _{base} = F _{base} × x _{base} = 11.2 kNm/m
Surcharge load	M _{sur} = -F _{sur_h} × x _{sur_h} = - 31.5 kNm/m
Line loads	$M_{P} = \gamma_{G} \times P_{G1} \times p_{1} - (\gamma_{Q} \times P_{Q2} \times (p_{2} + t_{base})) = 8.8 \text{ kNm/m}$
Moist retained soil	M _{moist} = -F _{moist_h} × x _{moist_h} = -33.7 kNm/m
Base soil	$M_{pass} = F_{pass_v} \times x_{pass_v} = 2.1 \text{ kNm/m}$
Total	$M_{total} = M_{stem} + M_{base} + M_{sur} + M_{P} + M_{moist} + M_{pass} = -23 \text{ kNm/m}$
Check bearing pressure	
Propping force to stem	F_{prop_stem} = ($F_{total_v} \times I_{base}$ / 2 - M_{total}) / (h_{prop} + t_{base}) = 25.9 kN/m
Propping force to base	F _{prop_base} = F _{total_h} - F _{prop_stem} = 48.9 kN/m
Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 54.4 \text{ kNm/m}$
Distance to reaction	$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} + \mathbf{M}_{\text{prop}}) / F_{\text{total}_{v}} = 865 \text{ mm}$
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$
Loaded length of base	I _{load} = I _{base} = 1730 mm
Bearing pressure at toe	$q_{toe} = F_{total_v} / I_{base} = 21 \text{ kN/m}^2$
Bearing pressure at heel	$q_{heel} = F_{total_v} / I_{base} = 21 \text{ kN/m}^2$
Factor of safety	FoS _{bp} = P _{bearing} / max(q _{toe} , q _{heel}) = 7.149
PASS	- Allowable bearing pressure exceeds maximum applied bearing pressure

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 using user defined factors


Tedds calculation version 2.9.17


Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C30/37
Characteristic compressive cylinder strength	f _{ck} = 30 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 37 N/mm ²
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 38 N/mm ²
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 2.9 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.0 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	E_{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 32837 N/mm ²
Partial factor for concrete - Table 2.1N	γ _C = 1.50
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{\rm cc}$ = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = \textbf{17.0} \ N/mm^2$
Maximum aggregate size	h _{agg} = 20 mm
Ultimate strain - Table 3.1	$\varepsilon_{cu2} = 0.0035$
Shortening strain - Table 3.1	$\varepsilon_{cu3} = 0.0035$
Effective compression zone height factor	$\lambda = 0.80$
Effective strength factor	η = 1.00
Bending coefficient k ₁	K ₁ = 0.40
Bending coefficient k ₂	$K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$
Bending coefficient k ₃	K ₃ = 0.40
Bending coefficient k4	K_4 = 1.00 × (0.6 + 0.0014/ ϵ_{cu2}) =1.00
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement	E _s = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N	γs = 1.15

Design yield strength of reinforcement	$f_{yd} = f_{yk} / \gamma_{S} = 435 \text{ N/mm}^2$
Cover to reinforcement	
Front face of stem	c _{sf} = 40 mm
Rear face of stem	c _{sr} = 50 mm
Top face of base	c _{bt} = 50 mm
Bottom face of base	с _{ьь} = 75 mm
Loading details Combination No.1 kN/m2	

Check stem design at 895 mm Depth of section Rectangular section in flexure - Sec

h = **250** mm

Rectangular section in flexure - Section 6.1 Design bending moment combination 1 Depth to tension reinforcement

M = 8.2 kNm/m d = h - c_{sf} - ϕ_{sx} - ϕ_{sfM} / 2 = 194 mm

	$K = M / (d^2 \times f_{ck}) = 0.007$
	$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_c)) ^{0.5} , 0.95) × d = 184 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 24 \text{ mm}$
Area of tension reinforcement required	$A_{sfM.req} = M / (f_{yd} \times z) = 102 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sfM,prov} = \pi \times \phi_{sfM}^2 / (4 \times s_{sfM}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sfM.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 292 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{sfM.max} = 0.04 × h = 10000 mm²/m
	max(A _{sfM.req} , A _{sfM.min}) / A _{sfM.prov} = 0.517
PASS - Area of	reinforcement provided is greater than area of reinforcement required

PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output

Deflection control - Section 7.4

Reference reinforcement ratio Required tension reinforcement ratio Required compression reinforcement ratio Structural system factor - Table 7.4N Reinforcement factor - exp.7.17 Limiting span to depth ratio - exp.7.16.a

Actual span to depth ratio

Crack control - Section 7.3

Limiting crack width Variable load factor - EN1990 – Table A1.1 Serviceability bending moment Tensile stress in reinforcement Load duration Load duration factor Effective area of concrete in tension

Mean value of concrete tensile strength Reinforcement ratio Modular ratio Bond property coefficient Strain distribution coefficient

Maximum crack spacing - exp.7.11 Maximum crack width - exp.7.8
$$\begin{split} \rho_0 &= \sqrt{(f_{ck} \ / \ 1 \ N/mm^2) \ / \ 1000} = \textbf{0.005} \\ \rho &= A_{sfM.req} \ / \ d = \textbf{0.001} \\ \rho' &= A_{sfM.2.req} \ / \ d_2 = \textbf{0.000} \\ K_b &= \textbf{1} \\ K_s &= \min(500 \ N/mm^2 \ / \ (f_{yk} \times A_{sfM.req} \ / \ A_{sfM.prov}), \ 1.5) = \textbf{1.5} \\ \min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times \rho_0 \ / \ \rho + 3.2 \times \sqrt{(f_{ck} \ / \ 1 \ N/mm^2)} \times (\rho_0 \ / \ \rho - 1)^{3/2}], \ 40 \times K_b) = \textbf{40} \\ h_{prop} \ / \ d &= \textbf{9.3} \end{split}$$

PASS - Span to depth ratio is less than deflection control limit

w_{max} = 0.3 mm ψ₂ = **0.6** M_{sls} = 5 kNm/m $\sigma_s = M_{sls} / (A_{sfM.prov} \times z) = 47.9 \text{ N/mm}^2$ Long term kt = 0.4 $A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$ A_{c.eff} = **75250** mm²/m $f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$ $\rho_{p.eff}$ = A_{sfM.prov} / A_{c.eff} = 0.008 $\alpha_{e} = E_{s} / E_{cm} = 6.091$ k₁ = **0.8** k₂ = 0.5 k₃ = 3.4 k₄ = **0.425** $s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} / \rho_{p.eff} = 407 \text{ mm}$ $w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$ w_k = **0.059** mm w_k / w_{max} = 0.195 PASS - Maximum crack width is less than limiting crack width

Strain distribution coefficient

Check stem design at base of stem	
Depth of section	h = 250 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 16.8 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - φ _{sr} / 2 = 194 mm
	$K = M / (d^2 \times f_{ck}) = 0.015$
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_{C}) \times (1 - \lambda \times (\delta - K_1)/(2 \times K_2)) \times (\lambda \times (\delta - K_1)/(2 \times K_2))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c})) ^{0.5} , 0.95) × d = 184 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 24 \text{ mm}$
Area of tension reinforcement required	$A_{sr.req} = M / (f_{yd} \times z) = 210 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sr.prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 292 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{sr.max} = 0.04 × h = 10000 mm ² /m
	max(A _{sr.req} , A _{sr.min}) / A _{sr.prov} = 0.517
PASS - Area of I	reinforcement provided is greater than area of reinforcement required

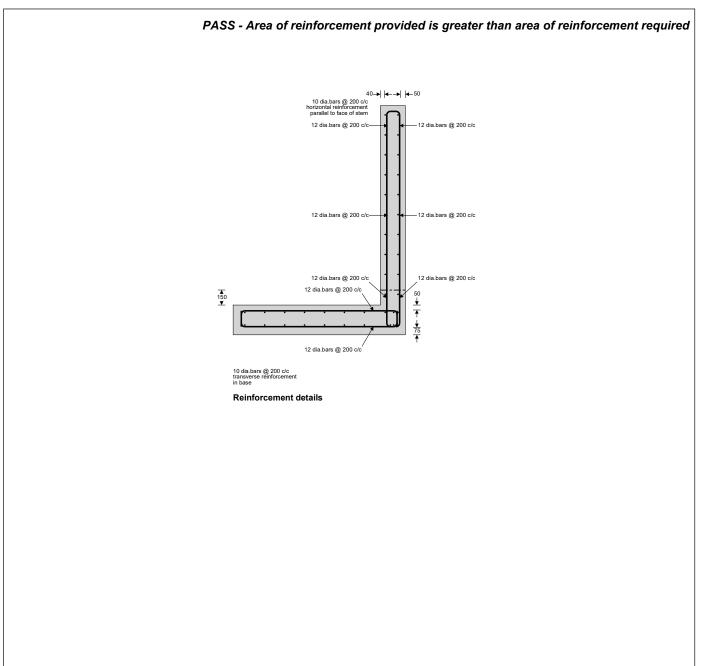
Library item: Rectangular single output

Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 \text{ N/mm}^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sr.req} / d = 0.001$
Required compression reinforcement ratio	ρ' = A _{sr.2.req} / d ₂ = 0.000
Structural system factor - Table 7.4N	K _b = 1
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)})$
	N/mm ²) × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 40
Actual span to depth ratio	h _{prop} / d = 9.3
	PASS - Span to depth ratio is less than deflection control limit
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 10.5 kNm/m
Tensile stress in reinforcement	σ_s = M _{sls} / (A _{sr.prov} × z) = 100.6 N/mm ²
Load duration	Long term
Load duration factor	k _t = 0.4
Effective area of concrete in tension	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 75250 mm²/m
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff}$ = A _{sr.prov} / A _{c.eff} = 0.008
Modular ratio	$\alpha_e = E_s / E_{cm} = 6.091$
Bond property coefficient	k ₁ = 0.8

k₂ = **0.5** k₃ = **3.4** k₄ = **0.425**

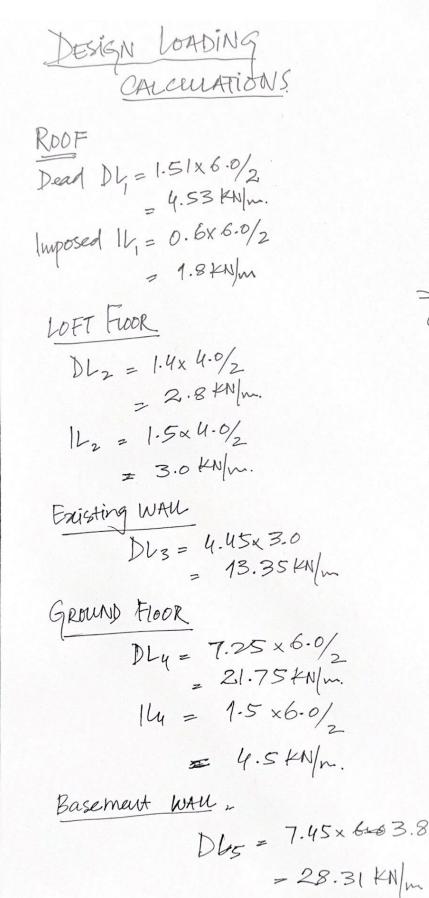
Maximum crack spacing - exp.7.11	$s_{r.max}$ = $k_3 \times c_{sr}$ + $k_1 \times k_2 \times k_4 \times \phi_{sr}$ / $\rho_{p.eff}$ = 441 mm
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.133 mm
	w _k / w _{max} = 0.444
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 52.6 kN/m
	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 2.000
Longitudinal reinforcement ratio	$\rho_{I} = min(A_{sr.prov} / d, 0.02) = 0.003$
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.542 N/mm ²
Design shear resistance - exp.6.2a & 6.2b	$V_{Rd.c}$ = max($C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}$, $v_{min}) \times d$
	V _{Rd.c} = 105.2 kN/m
	V / V _{Rd.c} = 0.500
	PASS - Design shear resistance exceeds design shear force
Check stem design at prop	
Depth of section	h = 250 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 0.5 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - φ _{sr1} / 2 = 194 mm
	$K = M / (d^2 \times f_{ck}) = 0.000$
	$\begin{aligned} K' &= (2 \times \eta \times \alpha_{\mathrm{cc}} / \gamma_{\mathrm{C}}) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2)) \\ K' &= 0.207 \end{aligned}$
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_c)) ^{0.5} , 0.95) × d = 184 mm
Depth of neutral axis	x = 2.5 × (d − z) = 24 mm
Area of tension reinforcement required	$A_{sr1.req} = M / (f_{yd} \times z) = 6 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{sr1,prov} = \pi \times \phi_{sr1}^2 / (4 \times s_{sr1}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sr1.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 292 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{sr1.max} = 0.04 × h = 10000 mm ² /m
	max(A _{sr1.req} , A _{sr1.min}) / A _{sr1.prov} = 0.517
PASS - Area of I	reinforcement provided is greater than area of reinforcement required
	Library item: Rectangular single output
Deflection control - Section 7.4	
Reference reinforcement ratio	$\rho_0 = \sqrt{(f_{ck} / 1 N/mm^2) / 1000} = 0.005$
Required tension reinforcement ratio	$\rho = A_{sr1.req} / d = 0.000$
Required compression reinforcement ratio	$\rho' = A_{sr1.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	$K_b = 0.4$
Reinforcement factor - exp.7.17	$K_s = min(500 \text{ N/mm}^2 / (f_{yk} \times A_{sr1.req} / A_{sr1.prov}), 1.5) = 1.5$
Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)})$
	N/mm^2 × (ρ_0 / ρ - 1) ^{3/2}], 40 × K _b) = 16
Actual span to depth ratio	$(h_{stem} - h_{prop}) / d = 1$
	PASS - Span to depth ratio is less than deflection control limit

Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 0.2 kNm/m
Tensile stress in reinforcement	$\sigma_s = M_{sls} / (A_{sr1,prov} \times z) = 1.9 \text{ N/mm}^2$
Load duration	Long term
Load duration factor	$k_t = 0.4$
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$
	$A_{c.eff} = 75250 \text{ mm}^2/\text{m}$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$
Reinforcement ratio	ρ _{p.eff} = A _{sr1.prov} / A _{c.eff} = 0.008
Modular ratio	$\alpha_{\rm e} = E_{\rm s} / E_{\rm cm} = 6.091$
Bond property coefficient	$k_1 = 0.8$
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr1} / \rho_{p.eff} = 441 \text{ mm}$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.002 mm
	w _k / w _{max} = 0.008
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 20.6 kN/m
-	C _{Rd,c} = 0.18 / γ _C = 0.120
	k = min(1 + √(200 mm / d), 2) = 2.000
Longitudinal reinforcement ratio	$\rho_{\rm I} = \min(A_{\rm sr1, prov} / d, 0.02) = 0.003$
0	$v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.542 \text{ N/mm}^2$
Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}}$ = max($C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{\text{ck}})^{1/3}$, v_{min}) × d
	$V_{Rd.c} = 105.2 \text{ kN/m}$
	$V / V_{Rd.c} = 0.196$
	PASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of ste	m - Section 9.6
Minimum area of reinforcement – cl.9.6.3(1)	$A_{sx,req} = max(0.25 \times A_{sr,prov}, 0.001 \times t_{stem}) = 250 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement – cl.9.6.3(2)	s _{sx_max} = 400 mm
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{sx,prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$
PASS - Area of re	einforcement provided is greater than area of reinforcement required
Check base design at toe	
Depth of section	h = 300 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 17.1 kNm/m
Depth to tension reinforcement	d = h - c _{bb} - φ _{bb} / 2 = 219 mm
	$K = M / (d^2 \times f_{ck}) = 0.012$
	$K' = (2 \times \eta \times \alpha_{cc}/\gamma_{c}) \times (1 - \lambda \times (\delta - K_{1})/(2 \times K_{2})) \times (\lambda \times (\delta - K_{1})/(2 \times K_{2}))$
	K' = 0.207 K' > K - No compression reinforcement is required


Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c})) ^{0.5} , 0.95) × d = 208 mm
Depth of neutral axis	$x = 2.5 \times (d - z) = 27 \text{ mm}$
Area of tension reinforcement required	$A_{bb,req} = M / (f_{yd} \times z) = 189 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 565 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	A _{bb.min} = max(0.26 × f _{ctm} / f _{yk} , 0.0013) × d = 330 mm²/m
Maximum area of reinforcement - cl.9.2.1.1(3)	A _{bb.max} = 0.04 × h = 12000 mm ² /m
	max(A _{bb.req} , A _{bb.min}) / A _{bb.prov} = 0.583
Minimum area of reinforcement - exp.9.1N	$\begin{split} A_{bb.min} &= max(0.26 \times f_{ctm} \ / \ f_{yk}, \ 0.0013) \times d = \textbf{330} \ mm^2/m \\ A_{bb.max} &= 0.04 \times h = \textbf{12000} \ mm^2/m \end{split}$

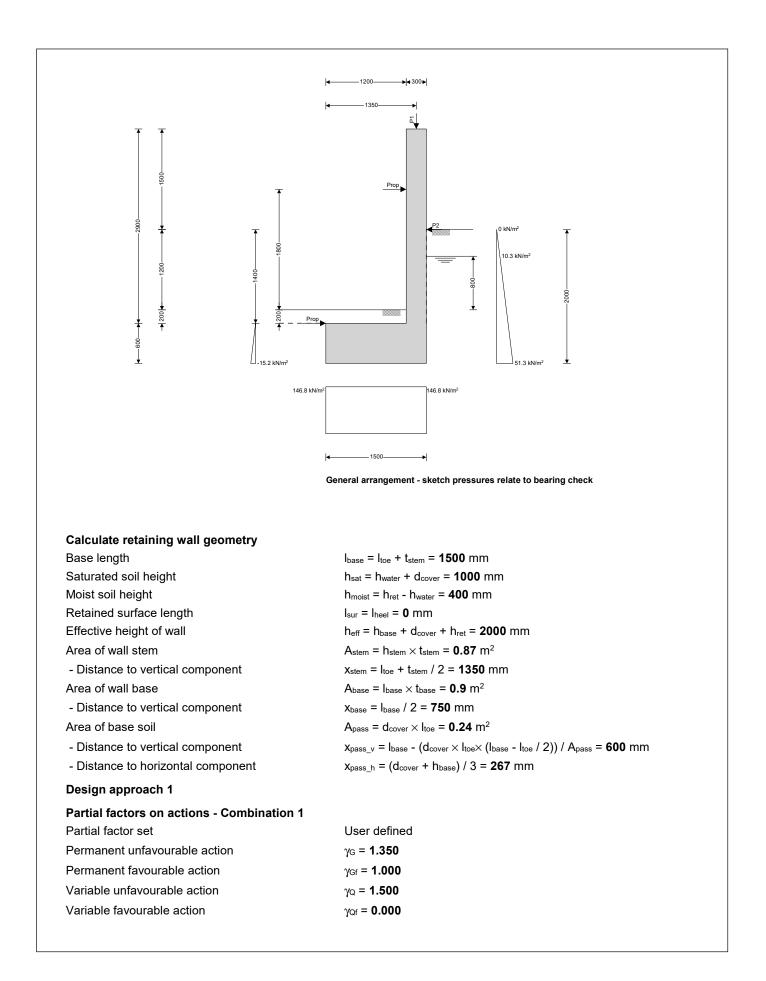
PASS - Area of reinforcement provided is greater than area of reinforcement required

Library item: Rectangular single output


Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	ψ ₂ = 0.6
Serviceability bending moment	M _{sis} = 12.7 kNm/m
Tensile stress in reinforcement	σ_s = M _{sis} / (A _{bb,prov} × z) = 107.8 N/mm ²
Load duration	Long term
Load duration factor	k _t = 0.4
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$
	A _{c.eff} = 90875 mm²/m
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 2.9 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{bb.prov} / A_{c.eff} = 0.006$
Modular ratio	$\alpha_{\rm e} = E_{\rm s} / E_{\rm cm} = 6.091$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max}$ = $k_3 \times c_{bb}$ + $k_1 \times k_2 \times k_4 \times \phi_{bb}$ / $\rho_{p.eff}$ = 583 mm
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.189 mm
	w _k / w _{max} = 0.628
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 23.1 kN/m
	$C_{Rd,c}$ = 0.18 / γ_{C} = 0.120
	k = min(1 + √(200 mm / d), 2) = 1.956
Longitudinal reinforcement ratio	ρ _I = min(A _{bb,prov} / d, 0.02) = 0.003
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.524 N/mm ²
Design shear resistance - exp.6.2a & 6.2b	$V_{Rd.c}$ = max($C_{Rd.c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_l \times f_{ck})^{1/3}$, v_{min}) × d
	V _{Rd.c} = 114.8 kN/m
	V / V _{Rd.c} = 0.202
	PASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - S	Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2)	$A_{bx.req} = 0.2 \times A_{bb.prov} = 113 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement - cl.9.3.1.1(3)	s _{bx_max} = 450 mm
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$



Basement Retaining Wall



TOTAL Dead LOAD = (4.53 + 2.8 + 13.35 + 21.75) + 28.31 + 28.2) + 28.31 + 28.2) + 48.94 + 100 - 100LOADING = (1.8 + 3.0 + 4.5 + 4.5) $1L \Rightarrow UDL = 13.8 KN/m$

	Project Job no. 10 Abbot's Place, North Maida Vale, London NW6 4NP					
Arena Business Centre Calcs for					Start page no./Revision	
RG41 5RD				1		1
Calcs by		s date	Checked by	Checked date	Approved by	Approved of
AC	02	2/08/2024	ZA			
RETAINING WALL ANALYSIS Base	ment R	etaining	y Wall			
In accordance with EN1997-1:2004 inc	orporating	Corrigend	um dated Febi	ruary 2009 and	the UK Natio	nal Annex
incorporating Corrigendum No.1 using		-		-		
					Tedds calcul	ation version 2
Analysis summary						
Design summary						
Overall design utilisation		0.883				
Overall design status		Pass				
Description	Unit	Capacit		FoS	Result	
Bearing pressure	kN/m ²	200	146.8	1.363	PASS	
Design summary						
Description	Unit	Provide		Utilisation	Result	
Shear resistance	kN/m	145.7	225.7	0.645	PASS	
Stem p0 - Shear resistance	kN/m	132.9	60.1	0.453	PASS	
Stem p1 front face - Flexural reinforceme			407.3	0.720	PASS	
Stem p1 - Shear resistance	kN/m	132.9	51.3	0.386	PASS	
Base bottom face - Flexural reinforcemer Base - Shear resistance	nt mm²/m kN/m	1005.3 225.7	888.0 145.7	0.883	PASS PASS	
Retaining wall details	KIN/111	225.7	145.7	0.045	FA33	
Stem type	,	Propped ca	ntilever			
Stem height		h _{stem} = 2900				
Prop height		h _{prop} = 2000				
Stem thickness		t _{stem} = 300 mm				
Angle to rear face of stem		α = 90 deg				
Stem density		$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$				
-		$I_{\text{toe}} = 1200 \text{ mm}$				
Toe length	-					
Toe length Base thickness		t _{base} = 600 n	nm			
Base thickness	t					
-	t	t _{base} = 600 n	√/m³			

Height of retained soil	h _{ret} = 1200 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 200 mm
Depth of excavation	d _{exc} = 200 mm
Height of water	h _{water} = 800 mm
Water density	γ _w = 9.8 kN/m³
Retained soil properties	
Soil type	Stiff clay
Moist density	γ _{mr} = 19 kN/m ³
Saturated density	γ_{sr} = 19 kN/m ³
Base soil properties	
Soil type	Stiff clay
Soil density	γ _b = 19 kN/m³
Loading details	
Vertical line load at 1350 mm	P _{G1} = 98.9 kN/m
	P _{Q1} = 13.8 kN/m
Horizontal line load at 1400 mm	P _{G2} = 63.9 kN/m

Partial factors for soil parameters – Com	nbination 1
Soil parameter set	User defined
Angle of shearing resistance	$\gamma_{\phi'} = 1.00$
Undrained shear strength	$\gamma_{cu} = 1.00$
Weight density	γ _Y = 1.00
Retained soil properties	
Design moist density	γ_{mr} ' = γ_{mr} / γ_{γ} = 19 kN/m ³
Design saturated density	γ_{sr} ' = γ_{sr} / γ_{γ} = 19 kN/m ³
Base soil properties	
Design soil density	γ_{b} ' = γ_{b} / γ_{γ} = 19 kN/m ³
Soil coefficients	
Coefficient of friction to back of wall	K _{fr} = 0.325
Coefficient of friction to front of wall	K _{fb} = 0.325
Coefficient of friction beneath base	K _{fbb} = 0.325
At rest pressure coefficient	K ₀ = 1.000
Passive pressure coefficient	K _P = 1.000
Bearing pressure check	
Vertical forces on wall	
Wall stem	$F_{stem} = \gamma_G \times A_{stem} \times \gamma_{stem} = 29.4 \text{ kN/m}$
Wall base	$F_{base} = \gamma_G \times A_{base} \times \gamma_{base} = 30.4 \text{ kN/m}$
Line loads	$F_{P_v} = \gamma_G \times P_{G1} + \gamma_Q \times P_{Q1} = 154.3 \text{ kN/m}$
Base soil	$F_{pass_v} = \gamma_G \times A_{pass} \times \gamma_b' = 6.2 \text{ kN/m}$
Total	$F_{total_v} = F_{stem} + F_{base} + F_{P_v} + F_{water_v} + F_{pass_v} = 220.2 \text{ kN/m}$
Horizontal forces on wall	
Line loads	$F_{P_h} = \gamma_G \times P_{G2} = 86.3 \text{ kN/m}$
Saturated retained soil	$F_{sat_h} = \gamma_G \times K_0 \times (\gamma_{sr'} - \gamma_{w'}) \times (h_{sat} + h_{base})^2 / 2 = 15.9 \text{ kN/m}$
Water	$F_{water_h} = \gamma_G \times \gamma_w' \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 17 \text{ kN/m}$
Moist retained soil	$\begin{aligned} F_{moist_h} &= \gamma_G \times K_0 \times \gamma_mr' \times ((h_eff - h_sat - h_base)^2 / 2 + (h_eff - h_sat - h_base) \times (h_sat \\ &+ h_base)) = 18.5 \ kN/m \end{aligned}$
Base soil	$F_{pass_h} = -\gamma_{Gf} \times K_P \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -6.1 \text{ kN/m}$
Total	F _{total_h} = F _{P_h} + F _{sat_h} + F _{water_h} + F _{moist_h} + F _{pass_h} = 131.5 kN/m
Moments on wall	
Wall stem	M _{stem} = F _{stem} × x _{stem} = 39.6 kNm/m
Wall base	M _{base} = F _{base} × x _{base} = 22.8 kNm/m
Line loads	$M_{P} = (\gamma_{G} \times P_{G1} + \gamma_{Q} \times P_{Q1}) \times p_{1} - (\gamma_{G} \times P_{G2} \times (p_{2} + t_{base})) = 35.7 \text{ kNm/m}$
Saturated retained soil	$M_{sat} = -F_{sat_h} \times x_{sat_h} = -8.5 \text{ kNm/m}$
Water	$M_{water} = -F_{water_h} \times x_{water_h} = -9 \text{ kNm/m}$
Moist retained soil	$M_{moist} = -F_{moist_h} \times x_{moist_h} = -16.7 \text{ kNm/m}$
Base soil	$M_{pass} = F_{pass_v} \times x_{pass_v} = 3.7 \text{ kNm/m}$
Total	$M_{total} = M_{stem} + M_{base} + M_{P} + M_{sat} + M_{water} + M_{moist} + M_{pass} = 67.6 \text{ kNm/m}$
Check bearing pressure	
Propping force to stem	$F_{prop_stem} = (F_{total_v} \times I_{base} / 2 - M_{total}) / (h_{prop} + t_{base}) = 37.5 \text{ kN/m}$
Propping force to base	F _{prop_base} = F _{total_h} - F _{prop_stem} = 94 kN/m

Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 97.5 \text{ kNm/m}$	
Distance to reaction	$\overline{\mathbf{x}}$ = (M _{total} + M _{prop}) / F _{total_v} = 750 mm	
Eccentricity of reaction	e = x - I _{base} / 2 = 0 mm	
Loaded length of base	I _{load} = I _{base} = 1500 mm	
Bearing pressure at toe	q _{toe} = F _{total_v} / I _{base} = 146.8 kN/m ²	
Bearing pressure at heel	q _{heel} = F _{total_v} / I _{base} = 146.8 kN/m ²	
Factor of safety	FoS _{bp} = P _{bearing} / max(q _{toe} , q _{heel}) = 1.363	
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure		

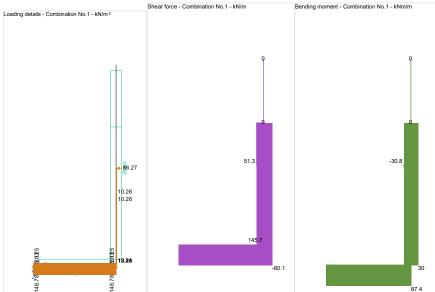
Design approach 1

Partial factors on actions - Combination 2

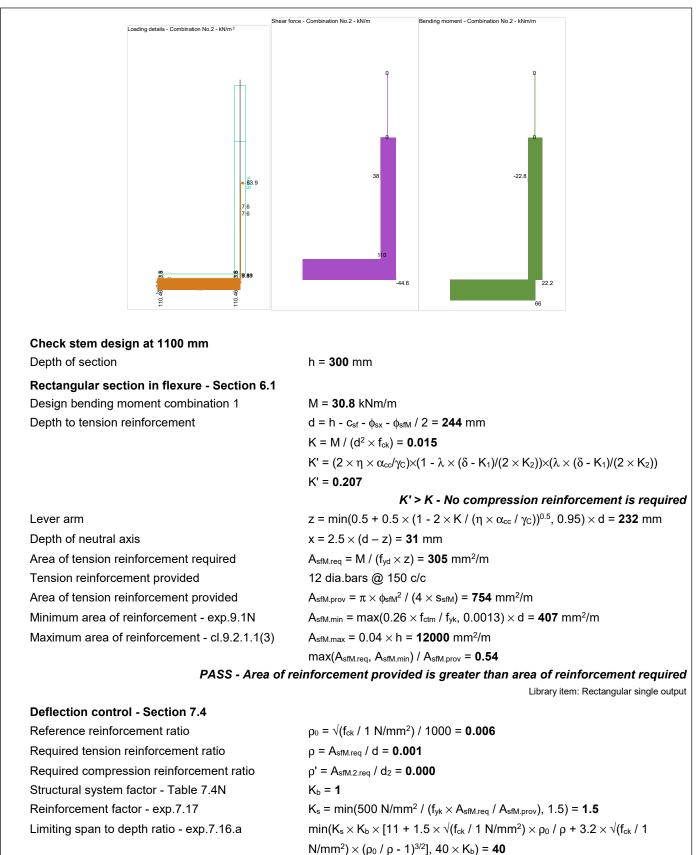
Partial factor set	User defined
Permanent unfavourable action	γ _G = 1.000
Permanent favourable action	γ _{Gf} = 1.000
Variable unfavourable action	γ _Q = 1.300
Variable favourable action	$\gamma_{\rm Qf}$ = 0.000

Partial factors for soil parameters – Combination 2			
Soil parameter set	User defined		
Angle of shearing resistance	$\gamma_{\phi'} = 1.25$		
Undrained shear strength	γ _{cu} = 1.40		
Weight density	$\gamma_{\gamma} = 1.00$		
Retained soil properties			
Design moist density	γ_{mr} ' = γ_{mr} / γ_{γ} = 19 kN/m ³		
Design saturated density	γ_{sr} ' = γ_{sr} / γ_{γ} = 19 kN/m ³		
Base soil properties			
Design soil density	γ_{b} ' = γ_{b} / γ_{γ} = 19 kN/m ³		
Soil coefficients			
Coefficient of friction to back of wall	K _{fr} = 0.325		
Coefficient of friction to front of wall	K _{fb} = 0.325		
Coefficient of friction beneath base	K _{fbb} = 0.325		
At rest pressure coefficient	K ₀ = 1.000		
Passive pressure coefficient	K _P = 1.000		
Bearing pressure check			
Vertical forces on wall			
Wall stem	$F_{stem} = \gamma_G \times A_{stem} \times \gamma_{stem} = 21.8 \text{ kN/m}$		
Wall base	$F_{base} = \gamma_G \times A_{base} \times \gamma_{base} = 22.5 \text{ kN/m}$		
Line loads	$F_{P_v} = \gamma_G \times P_{G1} + \gamma_Q \times P_{Q1} = \textbf{116.9 kN/m}$		
Base soil	$F_{pass_v} = \gamma_G \times A_{pass} \times \gamma_b' = 4.6 \text{ kN/m}$		
Total	$F_{total_v} = F_{stem} + F_{base} + F_{P_v} + F_{water_v} + F_{pass_v} = 165.7 \text{ kN/m}$		
Horizontal forces on wall			
Line loads	$F_{P_h} = \gamma_G \times P_{G2} = 63.9 \text{ kN/m}$		
Saturated retained soil	$F_{sat_h} = \gamma_G \times K_0 \times (\gamma_{sr'} - \gamma_{w'}) \times (h_{sat} + h_{base})^2 / 2 = \textbf{11.8 kN/m}$		
Water	$F_{water_h} = \gamma_G \times \gamma_w' \times (h_{water} + d_{cover} + h_{base})^2 / 2 = 12.6 \text{ kN/m}$		

••••	
Moist retained soil	$F_{moist_h} = \gamma_{G} \times K_0 \times \gamma_{mr}' \times ((h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat})^2 / 2 + (h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base}) \times (h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{sat} - h_{base})^2 / 2 + (h_{eff} - h_{$
	+ h _{base})) = 13.7 kN/m
Base soil	$F_{pass_h} = -\gamma_{Gf} \times K_P \times \gamma_b' \times (d_{cover} + h_{base})^2 / 2 = -6.1 \text{ kN/m}$
Total	F _{total_h} = F _{P_h} + F _{sat_h} + F _{water_h} + F _{moist_h} + F _{pass_h} = 95.8 kN/m
Moments on wall	
Wall stem	M _{stem} = F _{stem} × x _{stem} = 29.4 kNm/m
Wall base	M _{base} = F _{base} × x _{base} = 16.9 kNm/m
Line loads	$M_{P} = (\gamma_{G} \times P_{G1} + \gamma_{Q} \times P_{Q1}) \times p_{1} - (\gamma_{G} \times P_{G2} \times (p_{2} + t_{base})) = 30 \text{ kNm/m}$
Saturated retained soil	M _{sat} = -F _{sat_h} × x _{sat_h} = -6.3 kNm/m
Water	M _{water} = -F _{water_h} × x _{water_h} = -6.7 kNm/m
Moist retained soil	M _{moist} = -F _{moist_h} × x _{moist_h} = -12.4 kNm/m
Base soil	$M_{pass} = F_{pass_v} \times x_{pass_v} = 2.7 \text{ kNm/m}$
Total	$M_{total} = M_{stem} + M_{base} + M_{P} + M_{sat} + M_{water} + M_{moist} + M_{pass} = 53.6 \text{ kNm/m}$
Check bearing pressure	
Propping force to stem	F_{prop_stem} = ($F_{total_v} \times I_{base} / 2 - M_{total}$) / ($h_{prop} + t_{base}$) = 27.2 kN/m
Propping force to base	F _{prop_base} = F _{total_h} - F _{prop_stem} = 68.7 kN/m
Moment from propping force	$M_{prop} = F_{prop_stem} \times (h_{prop} + t_{base}) = 70.6 \text{ kNm/m}$
Distance to reaction	$\overline{\mathbf{x}} = (\mathbf{M}_{\text{total}} + \mathbf{M}_{\text{prop}}) / F_{\text{total}_v} = 750 \text{ mm}$
Eccentricity of reaction	$e = \overline{x} - I_{base} / 2 = 0 mm$
Loaded length of base	I _{load} = I _{base} = 1500 mm
Bearing pressure at toe	$q_{toe} = F_{total_v} / I_{base} = 110.5 \text{ kN/m}^2$
Bearing pressure at heel	q _{heel} = F _{total_v} / I _{base} = 110.5 kN/m ²
Factor of safety	FoS _{bp} = P _{bearing} / max(q _{toe} , q _{heel}) = 1.811
	PASS - Allowable bearing pressure exceeds maximum applied bearing pressure


RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1 using user defined factors


Tedds calculation version 2.9.17

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete			
Concrete strength class	C35/45		
Characteristic compressive cylinder strength	f _{ck} = 35 N/mm ²		
Characteristic compressive cube strength	f _{ck,cube} = 45 N/mm ²		
Mean value of compressive cylinder strength	f _{cm} = f _{ck} + 8 N/mm ² = 43 N/mm ²		
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.2 N/mm ²		
5% fractile of axial tensile strength	$f_{ctk,0.05}$ = 0.7 × f_{ctm} = 2.2 N/mm ²		
Secant modulus of elasticity of concrete	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 34077 N/mm ²		
Partial factor for concrete - Table 2.1N	γc = 1.50		
Compressive strength coefficient - cl.3.1.6(1)	$\alpha_{\rm cc}$ = 0.85		
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} \ / \ \gamma_C = \textbf{19.8} \ N/mm^2$		
Maximum aggregate size	h _{agg} = 20 mm		
Ultimate strain - Table 3.1	$\epsilon_{cu2} = 0.0035$		
Shortening strain - Table 3.1	ε _{cu3} = 0.0035		
Effective compression zone height factor	$\lambda = 0.80$		
Effective strength factor	η = 1.00		
Bending coefficient k1	K ₁ = 0.40		

Bending coefficient k ₂	$K_2 = 1.00 \times (0.6 + 0.0014/\epsilon_{cu2}) = 1.00$
Bending coefficient k ₃	K ₃ = 0.40
Bending coefficient k ₄	$K_4 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement	E _s = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N	γs = 1.15
Design yield strength of reinforcement	f_{yd} = f_{yk} / γ_S = 435 N/mm ²
Cover to reinforcement	
Front face of stem	c _{sf} = 40 mm
Rear face of stem	c _{sr} = 50 mm
Top face of base	c _{bt} = 50 mm
Bottom face of base	c _{bb} = 60 mm

 $h_{prop} / d = 8.2$

Actual span to depth ratio

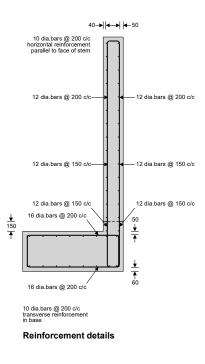
PASS - Span to depth ratio is less than deflection control limit

QAIM STRUCTURES

Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 22.8 kNm/m
Tensile stress in reinforcement	$\sigma_s = M_{sls} / (A_{sfM, prov} \times z) = 130.3 \text{ N/mm}^2$
Load duration	Long term
Load duration factor	$k_{t} = 0.4$
Effective area of concrete in tension	$A_{c.eff} = min(2.5 \times (h - d), (h - x) / 3, h / 2)$
	$A_{c.eff} = 89833 \text{ mm}^2/\text{m}$
Mean value of concrete tensile strength	$f_{ct.eff} = f_{ctm} = 3.2 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{sfM,prov} / A_{c.eff} = 0.008$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 5.869$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sf} + k_1 \times k_2 \times k_4 \times \phi_{sfM} / \rho_{p.eff} = 379 \text{ mm}$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.148 mm
	$w_k / w_{max} = 0.494$
	PASS - Maximum crack width is less than limiting crack width
Check stem design at base of stem	
Depth of section	h = 300 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 30 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - φ _{sr} / 2 = 244 mm
	$K = M / (d^2 \times f_{ck}) = 0.014$
	$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_{1}) / (2 \times K_{2})) \times (\lambda \times (\delta - K_{1}) / (2 \times K_{2}))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c})) ^{0.5} , 0.95) × d = 232 mm
Depth of neutral axis	x = 2.5 × (d − z) = 31 mm
Area of tension reinforcement required	$A_{sr.req} = M / (f_{yd} \times z) = 298 \text{ mm}^2/\text{m}$
Tension reinforcement provided	12 dia.bars @ 150 c/c
Area of tension reinforcement provided	$A_{sr,prov} = \pi \times \phi_{sr}^2 / (4 \times s_{sr}) = 754 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{sr.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 407 mm^2/m$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{sr.max} = 0.04 \times h = 12000 \text{ mm}^2/\text{m}$
	$max(A_{sr.req}, A_{sr.min}) / A_{sr.prov} = 0.54$
PASS - Area of I	reinforcement provided is greater than area of reinforcement required
	Library item: Rectangular single output
Deflection control - Section 7.4	
Reference reinforcement ratio	ρ₀ = √(f _{ck} / 1 N/mm²) / 1000 = 0.006
Required tension reinforcement ratio	$\rho = A_{sr.reg} / d = 0.001$
Required compression reinforcement ratio	$\rho' = A_{sr.2.req} / d_2 = 0.000$
Structural system factor - Table 7.4N	$K_b = 1$

Reinforcement factor - exp.7.17

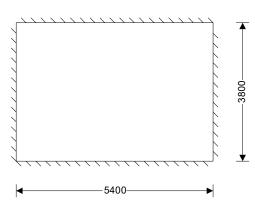
 $K_{s} = min(500 \text{ N/mm}^{2} / (f_{yk} \times A_{sr.req} / A_{sr.prov}), 1.5) = 1.5$


Limiting span to depth ratio - exp.7.16.a	$min(K_s \times K_b \times [11 + 1.5 \times \sqrt{(f_{ck} / 1 N/mm^2)} \times \rho_0 / \rho + 3.2 \times \sqrt{(f_{ck} / 1 N/mm^2)})$
	N/mm ²) × ($\rho_0 / \rho - 1$) ^{3/2}], 40 × K _b) = 40
Actual span to depth ratio	h _{prop} / d = 8.2
	PASS - Span to depth ratio is less than deflection control limit
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	ψ ₂ = 0.6
Serviceability bending moment	M _{sis} = 22.2 kNm/m
Tensile stress in reinforcement	σ_s = M _{sls} / (A _{sr.prov} × z) = 127.1 N/mm ²
Load duration	Long term
Load duration factor	kt = 0.4
Effective area of concrete in tension	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 89833 mm²/m
Mean value of concrete tensile strength	f _{ct.eff} = f _{ctm} = 3.2 N/mm ²
Reinforcement ratio	$\rho_{p.eff} = A_{sr,prov} / A_{c.eff} = 0.008$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 5.869$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{sr} + k_1 \times k_2 \times k_4 \times \phi_{sr} / \rho_{p.eff} = 413 \text{ mm}$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.157 mm
	w _k / w _{max} = 0.525
	PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 60.1 kN/m
-	C _{Rd,c} = 0.18 / γ _C = 0.120
	k = min(1 + √(200 mm / d), 2) = 1.905
Longitudinal reinforcement ratio	$\rho_l = \min(A_{sr,prov} / d, 0.02) = 0.003$
	$v_{min} = 0.035 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2} \times \text{f}_{ck}^{0.5} = 0.545 \text{ N}/\text{mm}^2$
Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd,c}} = \text{max}(C_{\text{Rd,c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_1 \times f_{\text{ck}})^{1/3}, \text{V}_{\text{min}}) \times d$
	$V_{Rd,c} = 132.9 \text{ kN/m}$
	$V_{Rd.c} = 1.32.3$ KV/III V / V _{Rd.c} = 0.453
	PASS - Design shear resistance exceeds design shear force
	1 Abb - Besign shear resistance exceeds design shear force
Check stem design at prop	h - 200 mm
Depth of section	h = 300 mm
Rectangular section in shear - Section 6.2	
Design shear force	V = 51.3 kN/m
	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.905
	$K = \min(1 + \sqrt{200 \min(4)}, 2) = 1.303$
Longitudinal reinforcement ratio	$\rho_{\rm l} = \min({\rm A}_{\rm sr1.prov} / {\rm d}, 0.02) = 0.002$
Longitudinal reinforcement ratio	
Longitudinal reinforcement ratio Design shear resistance - exp.6.2a & 6.2b	$p_l = min(A_{sr1.prov} / d, 0.02) = 0.002$

	V / V _{Rd.c} = 0.386
	PASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of ste	
Minimum area of reinforcement – cl.9.6.3(1)	$A_{\text{sx.req}} = \max(0.25 \times A_{\text{sr.prov}}, 0.001 \times t_{\text{stem}}) = 300 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement – cl.9.6.3(2)	$s_{sx_max} = 400 \text{ mm}$
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{sx.prov} = \pi \times \phi_{sx}^2 / (4 \times s_{sx}) = 393 \text{ mm}^2/\text{m}$
PASS - Area of r	einforcement provided is greater than area of reinforcement required
Check base design at toe	
Depth of section	h = 600 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 87.4 kNm/m
Depth to tension reinforcement	d = h - c _{bb} - φ _{bb} / 2 = 532 mm
	$K = M / (d^2 \times f_{ck}) = 0.009$
	$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_1) / (2 \times K_2)) \times (\lambda \times (\delta - K_1) / (2 \times K_2))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_{c})) ^{0.5} , 0.95) × d = 505 mm
Depth of neutral axis	x = 2.5 × (d − z) = 67 mm
Area of tension reinforcement required	$A_{bb.req} = M / (f_{yd} \times z) = 398 \text{ mm}^2/\text{m}$
Tension reinforcement provided	16 dia.bars @ 200 c/c
Area of tension reinforcement provided	$A_{bb,prov} = \pi \times \phi_{bb}^2 / (4 \times s_{bb}) = 1005 \text{ mm}^2/\text{m}$
Minimum area of reinforcement - exp.9.1N	$A_{bb.min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times d = 888 \text{ mm}^2/\text{m}$
Maximum area of reinforcement - cl.9.2.1.1(3)	$A_{bb,max} = 0.04 \times h = 24000 \text{ mm}^2/\text{m}$
	max(A _{bb.req} , A _{bb.min}) / A _{bb.prov} = 0.883
PASS - Area of r	einforcement provided is greater than area of reinforcement required
	Library item: Rectangular single output
Crack control - Section 7.3	
Limiting crack width	w _{max} = 0.3 mm
Variable load factor - EN1990 – Table A1.1	$\psi_2 = 0.6$
Serviceability bending moment	M _{sis} = 64 kNm/m
Tensile stress in reinforcement	σ_{s} = M _{sls} / (A _{bb,prov} × z) = 126 N/mm ²
Load duration	Long term
Load duration factor	k _t = 0.4
Effective area of concrete in tension	A _{c.eff} = min(2.5 × (h - d), (h - x) / 3, h / 2)
	A _{c.eff} = 170000 mm²/m
Mean value of concrete tensile strength	$f_{\text{ct.eff}} = f_{\text{ctm}} = 3.2 \text{ N/mm}^2$
Reinforcement ratio	$\rho_{p.eff} = A_{bb,prov} / A_{c.eff} = 0.006$
Modular ratio	$\alpha_{e} = E_{s} / E_{cm} = 5.869$
Bond property coefficient	k ₁ = 0.8
Strain distribution coefficient	k ₂ = 0.5
	k ₃ = 3.4
	k ₄ = 0.425
Maximum crack spacing - exp.7.11	$s_{r.max} = k_3 \times c_{bb} + k_1 \times k_2 \times k_4 \times \phi_{bb} \ / \ \rho_{p.eff} = \textbf{664} \ mm$
Maximum crack width - exp.7.8	$w_{k} = s_{r.max} \times max(\sigma_{s} - k_{t} \times (f_{ct.eff} / \rho_{p.eff}) \times (1 + \alpha_{e} \times \rho_{p.eff}), 0.6 \times \sigma_{s}) / E_{s}$
	w _k = 0.251 mm

	w _k / w _{max} = 0.836 PASS - Maximum crack width is less than limiting crack width
Rectangular section in shear - Section 6.2	
Design shear force	V = 145.7 kN/m
	$C_{Rd,c} = 0.18 / \gamma_{C} = 0.120$
	k = min(1 + √(200 mm / d), 2) = 1.613
Longitudinal reinforcement ratio	$\rho_{I} = min(A_{bb,prov} / d, 0.02) = 0.002$
	v_{min} = 0.035 N ^{1/2} /mm × k ^{3/2} × f _{ck} ^{0.5} = 0.424 N/mm ²
Design shear resistance - exp.6.2a & 6.2b	$V_{\text{Rd.c}} = max(C_{\text{Rd.c}} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_{\text{I}} \times f_{\text{ck}})^{1/3}, v_{\text{min}}) \times d$
	V _{Rd.c} = 225.7 kN/m
	V / V _{Rd.c} = 0.645
	PASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - S	Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2)	$A_{bx.req} = 0.2 \times A_{bb,prov} = 201 \text{ mm}^2/\text{m}$
Maximum spacing of reinforcement - cl.9.3.1.1(3)	s _{bx_max} = 450 mm
Transverse reinforcement provided	10 dia.bars @ 200 c/c
Area of transverse reinforcement provided	$A_{bx,prov} = \pi \times \phi_{bx}^2 / (4 \times s_{bx}) = 393 \text{ mm}^2/\text{m}$
PASS - Area of re	inforcement provided is greater than area of reinforcement required

Tekla Tedds Qaim Structures	Project 10 Abbot's Place, North Maida Vale, London NW6 4NP			Job no.		
Arena Business Centre RG41 5RD	Calcs for				Start page no./Re	evision 1
KG41 JKD	Calcs by AC	Calcs date 02/08/2024	Checked by ZA	Checked date	Approved by	Approved date


RC SLAB DESIGN

Basement Slab

In accordance with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex

Tedds calculation version 1.0.22

Description	Unit	Provided	Required	Utilisation	Result
Short span	·				•
Reinf. at midspan	mm²/m	754	407	0.540	PASS
Bar spacing at midspan	mm	150	300	0.500	PASS
Shear at discont. supp	kN/m	132.9	10.7	0.080	PASS
Deflection ratio		15.57	40.00	0.389	PASS
Long span	·				·
Reinf. at midspan	mm²/m	754	387	0.514	PASS
Bar spacing at midspan	mm	150	300	0.500	PASS
Shear at discont. supp	kN/m	128.7	10.7	0.083	PASS
Cover					
Min cover bottom	mm	50	17	0.340	PASS

Short span direction

Slab definition

Slab reference name	Basement Floor Slab
Type of slab	Two way spanning with restrained edges
Overall slab depth	h = 300 mm
Shorter effective span of panel	l _x = 3800 mm
Longer effective span of panel	l _y = 5400 mm
Support conditions	Four edges discontinuous

Bottom outer layer of reinforcement

Loading

Characteristic permanent action	G _k = 2.5 kN/m ²
Characteristic variable action	Q _k = 1.5 kN/m ²
Partial factor for permanent action	γ _G = 1.35
Partial factor for variable action	γ _Q = 1.50
Quasi-permanent value of variable action	ψ2 = 0.30
Design ultimate load	$q = \gamma_G \times G_k + \gamma_Q \times Q_k = \textbf{5.6} \text{ kN/m}^2$
Quasi-permanent load	$q_{\text{SLS}} = 1.0 \times G_k + \psi_2 \times Q_k = \textbf{3.0} \text{ kN/m}^2$
Concrete properties	
Concrete strength class	C35/45
Characteristic cylinder strength	f _{ck} = 35 N/mm ²

Partial factor (Table 2.1N)	γc = 1.50
Compressive strength factor (cl. 3.1.6)	$\alpha_{\rm cc} = 0.85$
Design compressive strength (cl. 3.1.6)	f _{cd} = 19.8 N/mm ²
Mean axial tensile strength (Table 3.1)	f _{ctm} = 0.30 N/mm ² × (f _{ck} / 1 N/mm ²) ^{2/3} = 3.2 N/mm ²
Maximum aggregate size	d _g = 20 mm
Reinforcement properties	
Characteristic yield strength	f _{yk} = 500 N/mm ²
Partial factor (Table 2.1N)	γs = 1.15
Design yield strength (fig. 3.8)	f _{yd} = f _{yk} / γ _S = 434.8 N/mm²
Concrete cover to reinforcement	
Nominal cover to outer bottom reinforcement	c _{nom_b} = 50 mm
Fire resistance period to bottom of slab	R _{btm} = 60 min
Axia distance to bottom reinft (Table 5.8)	a _{fi_b} = 10 mm
Min. btm cover requirement with regard to bond	$c_{\min,b_b} = 12 \text{ mm}$
Reinforcement fabrication	Subject to QA system
Cover allowance for deviation	$\Delta c_{dev} = 5 \text{ mm}$
Min. required nominal cover to bottom reinft	c _{nom_b_min} = 17.0 mm
	PASS - There is sufficient cover to the bottom reinforcement
Reinforcement design at midspan in short spa	n direction (cl.6.1)
Bending moment coefficient	β _{sx_p} = 0.0881
Design bending moment	$M_{x_p} = \beta_{sx_p} \times q \times I_x^2 = 7.2 \text{ kNm/m}$
Reinforcement provided	12 mm dia. bars at 150 mm centres
Area provided	$A_{sx_p} = 754 \text{ mm}^2/\text{m}$
Effective depth to tension reinforcement	d _{x_p} = h - c _{nom_b} - φ _{x_p} / 2 = 244.0 mm
K factor	$K = M_{x_p} / (b \times d_{x_p}^2 \times f_{ck}) = 0.003$
Redistribution ratio	δ = 1.0
K' factor	K' = $0.598 \times \delta$ - $0.18 \times \delta^2$ - 0.21 = 0.208
	K < K' - Compression reinforcement is not required
Lever arm	z = min(0.95 × d _{x_p} , d _{x_p} /2 × (1 + $\sqrt{(1 - 3.53 \times K)})$ = 231.8 mm
Area of reinforcement required for bending	$A_{sx_p_m} = M_{x_p} / (f_{yd} \times z) = 71 \text{ mm}^2/\text{m}$
Minimum area of reinforcement required	$A_{sx_p_min} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{x_p}, 0.0013 \times b \times d_{x_p}) = 407 \text{ mm}^2/\text{m}$
Area of reinforcement required	A _{sx_p_req} = max(A _{sx_p_m} , A _{sx_p_min}) = 407 mm ² /m
	PASS - Area of reinforcement provided exceeds area required
Check reinforcement spacing	
Reinforcement service stress	$\sigma_{sx_p} = (f_{yk} / \gamma_s) \times min((A_{sx_p_m} / A_{sx_p}), 1.0) \times q_{SLS} / q = 21.5 \text{ N/mm}^2$
Maximum allowable spacing (Table 7.3N)	s _{max_x_p} = 300 mm
Actual bar spacing	s _{x_p} = 150 mm
	PASS - The reinforcement spacing is acceptable

Reinforcement design at midspan in long span direction (cl.6.1)

Bending moment coefficient	$\beta_{sy_p} = 0.0560$
Design bending moment	$M_{y_p} = \beta_{sy_p} \times q \times I_x^2 = 4.5 \text{ kNm/m}$
Reinforcement provided	12 mm dia. bars at 150 mm centres
Area provided	A _{sy_p} = 754 mm²/m
Effective depth to tension reinforcement	$d_{y_p} = h - c_{nom_b} - \phi_{x_p} - \phi_{y_p} / 2 = 232.0 \text{ mm}$
K factor	$K = M_{y_p} / (b \times d_{y_p}^2 \times f_{ck}) = 0.002$

Redistribution ratio	δ = 1.0	
K' factor	K' = $0.598 \times \delta$ - $0.18 \times \delta^2$ - 0.21 = 0.208	
	K < K' - Compression reinforcement is not required	
Lever arm	z = min(0.95 × d _{y_p} , d _{y_p} /2 × (1 + $\sqrt{(1 - 3.53 \times K))}$ = 220.4 mm	
Area of reinforcement required for bending	$A_{sy_p_m} = M_{y_p} / (f_{yd} \times z) = 47 \text{ mm}^2/\text{m}$	
Minimum area of reinforcement required	$A_{sy_p_{min}} = max(0.26 \times (f_{ctm}/f_{yk}) \times b \times d_{y_p}, 0.0013 \times b \times d_{y_p}) = 387 \text{ mm}^2/\text{m}^2$	
Area of reinforcement required	A _{sy_p_req} = max(A _{sy_p_m} , A _{sy_p_min}) = 387 mm ² /m	
	PASS - Area of reinforcement provided exceeds area required	
Check reinforcement spacing		
Reinforcement service stress	$\sigma_{sy_p} = (f_{yk} / \gamma_s) \times min((A_{sy_p_m} / A_{sy_p}), 1.0) \times q_{SLS} / q = 14.4 \text{ N/mm}^2$	
Maximum allowable spacing (Table 7.3N)	s _{max_y_} = 300 mm	
Actual bar spacing	s _{y_p} = 150 mm	
	PASS - The reinforcement spacing is acceptable	
Shear capacity check at short span discon	tinuous support	
Shear force	$V_{x_d} = q \times I_x / 2 = 10.7 \text{ kN/m}$	
Reinforcement provided	12 mm dia. bars at 150 mm centres	
Area provided	A _{sx_d} = 754 mm²/m	
Effective depth	$d_{x_d} = d_{x_p} = 244.0 \text{ mm}$	
Effective depth factor	k = min(2.0, 1 + (200 mm / d _{x_d}) ^{0.5}) = 1.905	
Reinforcement ratio	$\rho_l = min(0.02, A_{sx_d} / (b \times d_{x_d})) = 0.0031$	
Minimum shear resistance	$V_{\text{Rd,c}_\text{min}} = 0.035 \text{ N/mm}^2 \times k^{1.5} \times (f_{ck} \ / \ 1 \ \text{N/mm}^2)^{0.5} \times b \times d_{x_d}$	
	V _{Rd,c_min} = 132.9 kN/m	
Shear resistance constant (cl. 6.2.2)	$C_{Rd,c}$ = 0.18 N/mm ² / γ_{C} = 0.12 N/mm ²	
Shear resistance		
$V_{Rd,c_x_d} =$	$max(V_{\text{Rd},\text{c}_\text{min}},~C_{\text{Rd},\text{c}} \times k \times (100 \times \rho_{\text{I}} \times (f_{\text{ck}}/1~\text{N/mm}^2))^{0.333} \times b \times d_{x_d}) = \textbf{132.9}~\text{kN/m}^2$	
	PASS - Shear capacity is adequate (0.080	
Shear capacity check at long span discont	inuous support	
Shear force	$V_{y_d} = q \times I_x / 2 =$ 10.7 kN/m	
Reinforcement provided	12 mm dia. bars at 150 mm centres	
Area provided	A _{sy_d} = 754 mm²/m	
Effective depth	$d_{y_d} = d_{y_p} = 232.0 \text{ mm}$	
Effective depth factor	k = min(2.0, 1 + (200 mm / d _{y_d}) ^{0.5}) = 1.928	
Reinforcement ratio	$\rho_{I} = min(0.02, A_{sy_{d}} / (b \times d_{y_{d}})) = 0.0032$	
Minimum shear resistance	$V_{\text{Rd,c}_\text{min}}$ = 0.035 N/mm ² × k ^{1.5} × (f _{ck} / 1 N/mm ²) ^{0.5} × b × d _{y_d}	
	V _{Rd,c_min} = 128.7 kN/m	
Shear resistance constant (cl. 6.2.2)	$C_{Rd,c}$ = 0.18 N/mm ² / γ_{C} = 0.12 N/mm ²	
Shear resistance		
$V_{Rd,c_y_d} =$	$max(V_{\text{Rd},c_\text{min}},\ C_{\text{Rd},c} \times k \times (100 \times \rho_l \times (f_{ck}/1 \ N/mm^2))^{0.333} \times b \times d_{y_d}) = \textbf{128.7} \ kN/m^2$	
	PASS - Shear capacity is adequate (0.083	

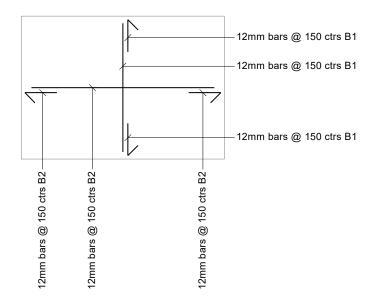
,
$\rho_0 = (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / 1000 = 0.0059$
$\rho = max(0.0035, A_{sx_p_{req}} / (b \times d_{x_p})) = 0.0035$
$\rho' = A_{scx_p_req} / (b \times d_{x_p}) = 0.0000$
$K_{\delta} = 1.0$

 $ratio_{lim_x_bas} = K_{\delta} \times [11 + 1.5 \times (f_{ck}/1 \text{ N/mm}^2)^{0.5} \times \rho_0/\rho + 3.2 \times (f_{ck}/1 \text{ N/mm}^2)^{0.5} \times (\rho_0/\rho - 1)^{1.5}] = \textbf{36.86}$

Mod span-to-depth ratio limit

 $ratio_{lim_x} = min(40 \times K_{\delta}, min(1.5, (500 \text{ N/mm}^2/\text{ } f_{yk}) \times (A_{sx_p} / A_{sx_p_m})) \times ratio_{lim_x_bas}) = \textbf{40.00}$

Actual span-to-eff. depth ratio


ratio_{act_x} = l_x / d_{x_p} = 15.57 PASS - Actual span-to-effective depth ratio is acceptable

Reinforcement summary

Midspan in short span direction Midspan in long span direction Discontinuous support in short span direction Discontinuous support in long span direction 12 mm dia. bars at 150 mm centres B1 12 mm dia. bars at 150 mm centres B2 12 mm dia. bars at 150 mm centres B1 12 mm dia. bars at 150 mm centres B2

Reinforcement sketch

The following sketch is indicative only. Note that additional reinforcement may be required in accordance with clauses 9.2.1.2, 9.2.1.4 and 9.2.1.5 of EN 1992-1-1:2004 to meet detailing rules.

