Ref	Diameter	Cut Off Level	Easting (E)	Northing (N)	GkVert	QkVert	GkmTension*	QkmTension*
P001	450	+20.195 m	531050286	181957175	1062	292	0	0
P002	450	+20.195 m	531050755	181955909	1062	292	0	0
P003	450	+20.195 m	531051899	181957052	389	122	-371 **	-186**
P004	450	+20.195 m	531058237	181959927	492	151	0	0
P005	450	+20.195 m	531059037	181961014	492	151	-41	-8
P006	450	+20.195 m	531059579	181959778	492	151	-41	-8
P007	450	+20.195 m	531060966	181961859	269	57	0	0
P008	450	+20.195 m	531061507	181960623	454	57	0	0
P009	450	+19.285 m	531051745	181954163	454	91	0	0
P010	450	+19.285 m	531052287	181952927	201	91	0	0
P011	450	+19.285 m	531053118	181954765	201	79	-56	-11
P012	450	+19.285 m	531053660	181953528	√201	79	-56	-11
P013	450 🗻 🗻	±19.285 m	531054460	1,81954616	201	58	0	0
P015	450	+20.195 m	531059581	181956859	156	75	0	0
P016	450	+20.195 m	531060381	181957947	156	75	-34	-6
P017	450	+20.195 m	531060923	181956710	156	75	-34	-6
P018	450	+20.195 m	531062137	181958716	248	47	0	0
P019	450	+20.195 m	531062678	181957479	248	47	0	0
P020	450	+19.285 m	531055553	181950940	114	21	-56	-11
P021	450	+19.285 m	531056095	181949704	608	120	0	0
P022	450	+19.285 m	531057332	181950245	114	21	-56	-11
P023	450	+19.285 m	531061271	181953445	91	16	-95	-28
P024	450	+19.285 m	531061813	181952209	360	96	0	0
P025	450	+19.285 m	531062508	181953987	91	16	-95	-28
P026	450	+19.285 m	531063049	181952750	360	96	-68	-8
P027	450	+19.285 m	531063744	181954529	91	16	-68	-8
P028	450	+19.285 m	531064286	181953292	450	60	0	0
P029	450	+20.495 m	531037762	181941044	233	46	0	0
P030	450	+20.495 m	531040447	181942242	318	60	0	0
P031	450	+20.495 m	531043129	181943445	284	45	0	0
P032	450	+19.570 m	531036360	181940430	273	43	0	0

Note

* Except for P003, compression and tension loads may be used in conjunction, allowing for appropriate load factors

** P003 Tension loads should be taken as a standalone load case

This drawing is to be read in conjunction with all relevant architects, engineers and specialists drawings and specifications.

Do not scale from this drawing in either paper or digital form. Use written dimensions only. To check drawing has been printed to the intended scale the above bar should be 100mm

3 Piling design to be the responsibility of the contractor

4 All piles to have 75mm embedment into underside of pile caps / raft

All piles to be designed for a nominal 50 kN horizontal and tension load UNO. These may be treated as temporary actions

6 All loads provided in the pile table relate to forces at the head of the pile. The contractor is to assess and allow for any secondary effects in relation to this.

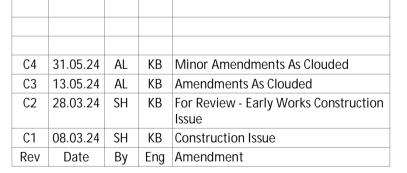
All loads stated in the pile table relate to permanent works design loadings only. All temporary / construction works loading to be assessed by the contractor.

8 Pile cap / raft design assumes piles are pinned at the head.

9 Retaining wall to be propped in the temporary condition, if required, subject to contractor method statement / sequence and temporary works design. Lateral movement to be limited such that the movement of the retained adjacent party/boundary walls does not exceed damage category 1 (very slight)

Piles generally have assumed installation tolerance of +/- 75mm in plan, and 1/75 of depth U.N.O.

11 Unless noted otherwise, piled crane base and pile mat to be designed by the contractor. Refer to temporary works engineers drawings for crane base loads and setting out


No

Installation tolerances 75mm except where noted otherwise.

Contractor to confirm pile locations for construction, as required by existing pile locations. Greater positional tolerances have been given to piles at risk of clashing.

It is recommended piles are constructed closer toward the south and east party walls as allowed by construction methodologies and boundary conditions.

Where selected locations differ from the given tolerances, they should be confirmed prior to construction.

STRUCTURAL & CIVIL ENGINEERS

http://hts.uk.com/

100 Grays Inn Road, WC1X 8AL

Proposed Piling Schedule

Purpose of Issue Construction Scale at A1

Drg No 2423-HTS-00-XX-DR-S-1071