

CHARTERED BUILDING SERVICES Acoustic Consultancy 7 Riseldine Road, London, SE23 1JT Tel: 0208 291 4641 Mob: 07985 484 130 E-mail: salih Hassan@hotmail.com

REPORT No: FR230724NW52HR

Date: 23/07/2024

CLIENT PROJECT REFERENCE

153 Fortess Rd London, NW5 2HR ENVIRONMENTAL NOISE SURVEY

&

ODOUR RISK ASSESSEMTN AND MANAGEMNT PLAN

PREPARED FOR:

153 Fortess Rd London, NW5 2HR

PREPARED BY:

Mr Salih K. Hassan Senior Acoustic Consultant BSc, BEng (Hons), MSc, MIOA, MIEE, LDip, MSLL, MTCEA, MCIBSE, CEng. IOA Registration No. 30878 IEE Registration No. 16695640 MCIBSE No 5628 Engineering Council No. 510932

CHECKED BY

Dr Haydar Aygun (PhD, MSc, BSc, FIOA, MASA) Associate Professor of Ventilation and Air Conditioning Fellow member of the Institute of Acoustics

Signed: Salih K Hassan

Date: 25/07/2024

Contents Page

1 Summary	3
2 Introduction	4
3 Site Description	4
4 Environmental Noise Survey Methodology	4
4.1 Sound sources under investigation	4
4.2 Measurement equipment	4
4.3 Parameters measured	4
4.4 Measurements	5
5 Noise survey results and observations	5
5.1 Results	5
5.1.1 Day noise levels 5.1.1.1 Objective method	5 7
5.2 Observations	8
5.3 Uncertainty	8
 6 Noise Impact Assessment 6.1 BS 4142:2014 + A1:2019 6.2 BS8233: 2014 Noise Assessment Criteria 6.3 Assessment 6.3.1 Day noise impact 6.4 Distance attenuation 6.5 Barrier attenuation 	8 8 9 9 9 9 9
6.6 BS 4142 Assessment for nearest noise sensitive receptors	9 10
 7 Vibration 8 Control of odour from commercial kitchen exhaust system 8.1 Maintenance management plan 	10 11 11
9 Conclusion	12
10 References	13
11 Appendix A: Acoustic technology	13
12 Appendix B: Details of extractor fan system	14
13 Appendix C: Electrostatic precipitation ESP filter	16
14 Appendix D: Maintenance and cleaning for ESP	18
15 Appendix E: Measurement set-up	21
-	

1. Summary

An environmental noise impact assessment was carried out at the premises at 153 Fortess Rd London, NW5 2HR, on Tuesday 23rd July 2024. The aim of this report is to determine the impact of the proposed extractor fan system upon noise sensitive receptors on the request of the Council.

The results of the environmental noise survey are reasonable considering the location of the measurement position and the existing noise sources in the local neighbourhood. Noise calculations of the sound source were undertaken using available details and plans provided by the client. The data and information form the basis of the assessment. A BS4142:2014+A1:2019 and BS8233: 2014 noise assessment was conducted at the site.

The summary of the difference between the Rating Level and Background Noise Level of sensitive receptors, and also external noise levels is given in table below.

Noise sensitive receptor	Difference between The Rating Level and Background Level
	Day
153 Fortess Road (Top floor bedroom)	- 14.2 dB(A)
151 Fortess Road (Top floor bedroom)	- 17.74 dB(A)
	External Noise levels
153 Fortess Road, First Floor, Rear	19.4 dB(A)
Terrace	

In accordance with BS4142:2014+A1:2019 guidance, the day Rating Level at nearest noise sensitive receptors does not exceed the background sound level as shown in Table above. Therefore, the operation of the proposed extractor fan indicates the specific sound source having a low adverse impact during daytime.

The predicted daytime Rating Level $L_{Aeq,Tr}$ at the external amenity space, rear terrace, of First Floor of 153 Fortess Road is 19.4 dB(A). The Rating Level $L_{Aeq,Tr}$ 19.4 dB(A) at the external amenity space does not exceed 50 dB(A) $L_{Aeq,16hr}$ of desirable category of BS8233:2014.

It can be confirmed that the Rating Levels of the proposed extractor fan is expected to comply with BS4142:2014+A1:2019 guidance.

2. Introduction

Environmental noise assessment was carried out at the premises at 153 Fortess Rd, London, NW5 2HR, on Tuesday 23rd July 2024. Environmental Noise Survey was undertaken in accordance with BS4142:2014+A1:2019. The site is located on a busy road with high background noise level.

3. Site Description

The site (153 Fortess Rd, London, NW5 2HR) is seeking planning permission for proposed extractor fan system that will be installed on the rear-brick-wall of the premises. The building has four floors. The premises is located in a mixed commercial and residential area, and it will be open for business between 07:00 and 23:00.

4. Environmental Noise Survey Methodology

Environmental noise survey was undertaken at the rear of the site to determine day noise levels in accordance with the methodology contained within BS4142:2014 +A1:2019. Noise survey at given time covers the most sensitive period of the time in which the noise units may be operational.

4.1. Sound source under investigation

During the measurements carried out at the site, the primary noise source identified was road traffic noise from Fortess Road. Secondary noise sources are mechanical noise from neighbour shops (151 Fortess Road). An extractor fan system with the attenuator for the kitchen of the premises will be installed on the rear wall of premises. The details of the extractor fan unit are as follow: **Helios GigaBox centrifugal fan 560mm (GBW 560/4)**. The details of the fan and attenuator are given in **Appendix B**.

Anti-vibration mounts will be used to provide isolation from vibration and noise via high resilience rubber. These isolation products provide high levels of reduction in vibration.

4.2. Measurement equipment

A description of the equipment used for the noise survey are given in the Table 1.

Equipment	Description	Quantity	Serial No
Norsonic SLM	Type 1 sound level meter, NOR140	1	1402815
Norsonic	¹ / ₂ inch microphone	1	1225
Norsonic	Preamplifier	1	1209
Norsonic Calibrator	Class 1 Calibrator (114 dB)	1	Nor-1251-32462

Table 1: Description of the equipment used for measurements

4.3.Parameters measured

BS4142:2014+A1:2019 gives a method for assessing the impact of specific sounds based upon the amount, in dB, that a specific sound level exceeds the background sound level, taking into account the context of the situation. The standard requires measurement of the **specific sound level**, in $L_{Aeq,T}$ over a period of 1 hour (daytime) and 15 minutes (night time), and the **background sound level**, L_{AF90} , when the specific sound is not in operation, the **residual sound level**, L_{Aeq} , when the specific sound is not in operation, and the background and residual sound should be measured at times which are **representative of and similar to** those at which the specific sound is in operation. Noise parameters were measured using a calibrated system over a period of the time that is representative of the worst-case condition. Ambient, background, and maximum noise levels were measured in 1/3 octave bands throughout the noise survey.

Weather conditions were noted to be 18 degrees Celsius with partly-cloudy skies at the beginning of the measurements with a light wind, which was less than 3 m/s, and 19 degrees Celsius at the end of the measurements with a cloudy sky and a wind, which was less than 4 m/s. These weather conditions were checked against and confirmed using the Meteorology Office mobile application available on smart phone technology.

The noise monitoring equipment was calibrated before and after the measurements. No significant drift was recorded during calibration as shown in Table 2.

Measurement	Calibrator Ref Level (dB)	Level Before (dB)	Deviation Before (dB)		Deviation After (dB)
Day	114.0	114.1	0.10	114	0.00

Table 2: Calibration details

4.4.Measurements

To undertake a BS4142:2014+A1:2019 assessment, it is necessary to measure the noise levels at the site to determine day noise levels. Day residual noise levels and background noise levels were measured at the rear of the site. The sound level meter was positioned at minimum 3.5 metres away from nearby walls/fences. The sound level meter was mounted onto a tripod at 1.4 metre above the rear terrace of the site as shown in **Appendix E**.

5. Noise survey results and observations

5.1 Results

A noise survey was carried out in the rear garden of the site. Detailed day noise level results are given below.

5.1.1 Day noise levels

Measured residual ($L_{Aeq,1h}$), and background ($L_{AF90,1h}$) levels are 51.9dB, and 49.2dB respectively. Highest L_{AMax} , was 76dB that was observed at 16:25 during measuring background noise levels. A comparison of L_{Aeq} , L_{AMax} , L_{A10} and L_{A90} results for day is given numerically in Table 3, and they are given graphically for day levels in Figure 1.

Table 3: Day Residual and Background Noise Levels measured at the rear of the site.

Recorded time	LAeq	LAFmax	LAF,10	<i>L</i> AF,90
07:15	47.5	69.6	47.8	42.8
07:30	46	60.1	47.1	41.5
07:45	46.8	56.3	48.9	42.1
08:00	46.1	63.4	47.5	43.5
08:15	45.1	56.3	46.9	43.3
08:30	45.3	56.4	49.6	42.4
08:45	44.2	54.2	45.5	41.9
09:00	44.9	59.3	44.1	42.3
09:15	52.1	73.4	55	45
09:30	49.2	65.5	51.5	47.3
09:45	45	57.3	46.9	43.3
10:00	50	70.8	51.1	45.1
10:15	48.6	69.3	51.1	45.5
10:30	46.7	60.4	50.2	45.4
10:45	45.8	60.3	49.5	44.1

	- 1		1	
11:00	48.3	64.3	50.5	45.4
11:15	52.7	70.5	50.9	49.1
11:30	53.7	67.3	56.1	51
11:45	54.5	69.2	57	51.5
12:00	54.3	68.6	56.6	51.3
12:15	53	62.7	54.6	51.2
12:30	53.2	65.7	56	50.1
12:45	52.4	63.8	53.6	51
13:00	52	63.9	53	50.6
13:15	52.5	65.1	53.2	51.3
13:30	51.2	60.9	51.8	50.4
13:45	52.1	63.3	53.3	50.2
14:00	52.5	64.1	53.7	51
14:15	54.3	66	56.3	50.9
14:00	52	58.5	53.4	50.7
14:45	52	63	53.1	50.7
15:00	52.2	65.1	53.6	50.6
15:15	51.5	57.5	52.8	50.3
15:30	52.3	57.4	53.4	51.2
15:45	52.5	63.9	53	51
16:00	53.4	73.4	54.9	50.4
16:25	53.4	76	53.2	51.2
16:40	53	70	53.7	51
16:55	52.6	63.6	54.3	50.5
17:10	53.3	62.8	55	51.4
17:25	54.3	68.4	55.6	51.3
17:40	55.4	70.5	59	47.2
17:55	56.3	67.3	60.1	47.3
18:10	53.5	67	56.9	48.1
18:25	53.2	66.7	55	48.7
18:40	53.8	64.9	55.6	51.7
18:55	55.4	69.2	58.1	51.4
19:10	54.5	67.9	56	50.8
19:25	52.8	65.9	53.8	51.4
19:29	52.5	65.1	53.2	51.1
19:55	52.3	62.7	53.8	49.5
20:10	49	69.3	50.5	44.6
20:25	49	57.3	50	46.4
20:23	52.6	65	54	40.4
20:55	52.6	65.3	53.7	51
20.33	52.0	62.5	53.7	50.7
21:25	51.3	65.6	53.6	47.7
21:23	50.9	65.5	52.4	47.7
21:40	50.9		52.4	48
		63.1		
22:10	51.7	72.3	52.7	47.5
22:25	48.4	58.6	49.2	47.4
22:40 22:55	50.6	60.9 54.2	52.1	47.6
22:33	49.2	54.3	50.4	48

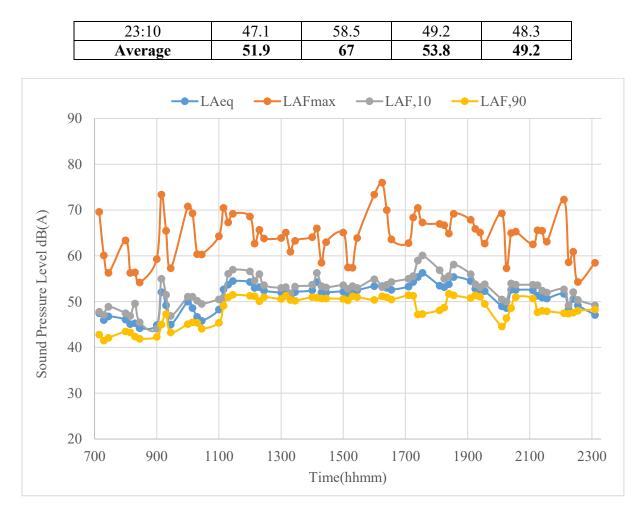


Figure 1: Day Sound Pressure Levels measured at the rear of the site.

5.1.1.1 Objective method to determine noticeable characteristics

Section B.2.1.1 of BS4142:2014+A1:2019 states "Establish whether standing waves/interference patterns are present by considering the nature of the source and the influence of any nearby sound reflecting surfaces. This can be carried out subjectively by listening in several places around the measurement location, or by measuring any change in sound pressure levels with a sound level meter at different locations in the immediate locality when traversing the measurement location".

Section 9.3 of BS 4142:2014+A1:2019 states that if the subjective method is not sufficient for assessing the audibility of tones in sound or the prominence of impulsive sounds, use the one-third octave method in 9.3.2.

Annex C of BS 4142:2014+A1:2019 states that the test for the presence of a prominent, discrete-frequency spectral component (tone) typically compares the $L_{Zeq,T}$ sound pressure level averaged over the time when the tone is present in a one-third-octave band with the time-average linear sound pressure levels in the adjacent one-third-octave bands. For a prominent, discrete tone to be identified as present, the time-averaged sound pressure level in the one-third-octave band of interest is required to exceed the time-averaged sound pressure levels of both adjacent one-third-octave bands by some constant level difference.

The level differences between adjacent one-third-octave bands that identify a tone is:

- 15 dB in the low-frequency one-third-octave bands (25 Hz to 125 Hz);
- 8 dB in the middle-frequency one-third-octave bands (160 Hz to 400 Hz); and

• 5 dB in the high-frequency one-third-octave bands (500 Hz to 10 000 Hz).

The proposed extractor fan system is a brand-new system. Therefore, no acoustic features (tonality, impulsivity, and intermittency) are expected from the new extractor fan system.

5.2 Observations

Attended environmental noise measurements were carried out at the site. Observations and detailed notes were made of the significant noise sources, which contribute to each of the measured levels.

Road traffic noise: Road traffic noise from Fortess Road was audible at the monitoring locations but it was not subjectively loud during the measurements.

People noise: The noise from people shopping and walking by was not audible at measurement location.

Site sound sources: The noise from sound sources of the site was not audible at measurement location.

Neighbourhood sound sources: The noise from mechanical units of neighbour shops (extractor fan from 151 Fortess Road) was audible at measurement locations and it was subjectively loud during the measurements.

5.3 Uncertainty

The levels of uncertainty in the data and calculations are low given the robust measurements undertaken in noise monitoring and the confidence in the data statistical analysis.

6 Noise Impact Assessment

6.1 BS4142:2014+A1:2019

BS4142:2014+A1:2019 provides guidance on the assessment of the likelihood of complaints relating to noise from industrial sources. The key aspects of the BS4142:2014+A1:2019 are summarised below. The standard presents a method of assessing potential noise impact by comparing the noise level due to industrial sources (the Rating Level) with that of the existing background noise level at the nearest noise sensitive receiver in the absence of the source (the Background Sound Level). The Specific Noise Level - the noise level produced by the source in question at the assessment location - is determined and a correction applied for certain undesirable acoustic features such as tonality, impulsivity or intermittency. The corrected *Specific Noise Level* is referred to as the *Rating Level*.

The significance of sound of an industrial and/or commercial nature depends upon both the margin by which the rating level of the specific sound source exceeds the background sound level and the context in which the sound occurs.

- a) A difference of around +10 dB or more is likely to be an indication of a significant adverse impact, depending on the context.
- b) A difference of around +5 dB is likely to be an indication of an adverse impact, depending on the context.
- c) The lower the rating level is relative to the measured background sound level, the less likely it is that the specific sound source will have an adverse impact or a significant adverse impact.
- d) Where the rating level does not exceed the background sound level, this is an indication of the specific sound source having a low impact, depending on the context.

BS4142:2014+A1:2019 criteria are given below.

Difference between the rating level and the background level	Assessment (All dependant on the context)
Around 10 dBA or more	Indicates a significant adverse impact
Around 5 dBA	Indicates an adverse impact
Below 5 dBA	Lower the adverse impact
Below 0 dBA	Low adverse impact likely

6.2 BS8233: 2014 Noise Assessment Criteria

For desirable internal and external noise levels to be maintained, given in BS8233:2014 as:

- 35dB $L_{\text{Aeq,16hr}}$ within living rooms (07:00 23:00).
- 30dB $L_{Aeq,8hr}$ within bedrooms (23:00 07:00).
- 45dB L_{Amax} should not be regularly exceeded within bedrooms (23:00 07:00).
- <55dB $L_{Aeq,16hr}$ within external amenity spaces.

6.3 Assessment

6.3.1 Day noise impact

Specific noise level from the proposed extractor fan that will be installed on the rear wall of the site is 44dB(A) as calculated in **Appendix B**. No tonality and impulsivity are expected from brand new extractor fan. The rating level $L_{Aeq Tr, 1h}$ is equal to the specific noise level.

Day rating level $L_{Aeq Tr,1h} = 44 \text{ dB}(A)$

6.4 Distance attenuation

The noise sensitive receptors to noise sources were noted to be window of top floor of 153 Fortess Road (top floor flat above the site) and window of top floor bedroom of 155 Fortess Road (top floor flat above the site). The noise levels at window of the noise sensitive receptors can be predicted using outdoor sound propagation equation given below.

$$L_{\text{Aeq,Tr}} - L_{\text{Receptor}} = 20 \log\left(\frac{r_2}{r_1}\right)$$

- Distance attenuation at 2 metres (window of top floor bedroom of 153 Fortess Road) from discharge of noise sources is 6 dB(A) using a 1 metre distance from the noise source.
- Distance attenuation at 3 metres (window of top floor bedroom of 155 Fortess Road) from discharge of noise sources is 9.54 dB(A) using a 1 metre measurement distance from the noise source.

6.5 Barrier attenuation

Screening of the noise units to prevent line of sight to the sound source would reduce noise levels at the receivers. Theory of outdoor sound propagation suggest that if the line-of-sight is significantly cut by a barrier/wall then a 10 dB(A) reduction can be expected. If the line-of-sight is just cut by a barrier/wall, then a 5 dB(A) reduction might be expected.

6.6 BS 4142:2014+A1:2019 Assessment for nearest noise sensitive receptors 6.6.1 153 Fortess Road (Top floor flat, bedroom)

The predicted Rating Level $L_{Aeq,Tr}$ at the receptor is 14.2 dB(A) below background noise level at the top-floor window level of noise sensitive receptor for day as calculated in table below.

In accordance with BS4142:2014+A1:2019 guidance and criteria, *the rating level does not exceed the background sound level. This is an indication of the specific sound source having a low adverse impact (low adverse impact likely).*

```
BS4142:2014+A1:2019 Assessment- Daytime dB(A)
```

Specific Sound Level	44
Characteristic penalty	0
Façade correction	-3
Distance attenuation at 2m	-6
Line-of-site cut (barrier attenuation)	0
Rating Level at receptor point	35
Daytime background level, L_{A90}	49.2
Difference between rating level and background level	-14.2

6.6.2 155 Fortess Road (Top floor flat, bedroom)

The predicted Rating Level $L_{Aeq,Tr}$ at the receptor is 17.74 dB(A) below background noise level at the top-floor window level of noise sensitive receptor for day as calculated in table below. In accordance with BS 4142:2014+A1:2019 guidance and criteria, *the rating level does not exceed the background sound level. This is an indication of the specific sound source having a low adverse impact (low adverse impact likely)*.

BS4142:2014+A1:2019 Assessment- Daytime	dB(A)
Specific Sound Level	44
Characteristic penalty	0
Façade correction	-3
Distance attenuation at 3	-9.54
Line-of-site cut (barrier attenuation)	0
Rating Level at receptor point	31.46
Daytime background level, L_{A90}	49.2
Difference between rating level and background level	-17.74

6.6.3 External Noise levels (153 Fortess Road, first floor flat rear terrace)

BS8233:2014 provides a desirable guideline of 50dB $L_{Aeq,16hr}$ for external amenity spaces and an acceptable guideline of 55dB $L_{Aeq,16hr}$ for noisier environments.

Nearest external amenity space is rear terrace of first floor of 153 Fortess Road, which is approximately 12 meters from the discharge of the extractor fan unit. The predicted daytime Rating Level $L_{Aeq,Tr}$ at the external amenity space of 153 High Street, first floor flat is 19.4 dBA. Therefore, Rating Level $L_{Aeq,Tr}$ at the external amenity space is in the desirable category of BS8233:2014.

BS8233:2014 Assessment- Daytime	dB(A)
Specific Sound Level	44
Characteristic penalty	0
Façade correction	-3
Distance attenuation at 12 metres	-21.6
Line-of-site cut by the wall (barrier attenuation)	0
Rating Level at receptor point	19.4

7. Vibration

In addition to the control of airborne noise transfer, it is important to consider the transfer of noise as vibration to adjacent properties as well as any sensitive areas of the same building. The proposed extractor fan at the site will be installed with proper vibration dampening

connections and with rubber anti-vibration mounts with extractor fan mounting feet and flanges on the rear wall of the site. Vibration isolation products provide high levels of reduction in vibration.

8. Control of odour from commercial kitchen exhaust system

The café is proposing the installation of an extraction system and flue. Surrounding properties include residential and commercial properties. The kitchen extract flue discharges at a height of approximately 1.1 metre above the edge of the roof. The design given in Figure 2 currently show the flue terminating with extract duct curved at the outlet grill. An ESP system is to be installed as shown on the proposed plans in Figure 2 and this system will eliminate odours and smoke from being extracted.

The first stage of odour control is to use an Electrostatic Precipitator model ESP 1500E unit for oil, grease and smoke removal. More detail for ECP could be found in Appendix C.

The second stage of odour control is to use Carbon Filters 605 x 750 x 1200 from Purified Air Ltd. Carbon filters use panels of activated carbon to remove the malodourous gases within the commercial kitchen extract duct through the process of chemical adsorption.

By installing ESP units before carbon filters, the carbon life span is greatly increased, allowing it to nullify malodours at optimum efficiency for much longer.

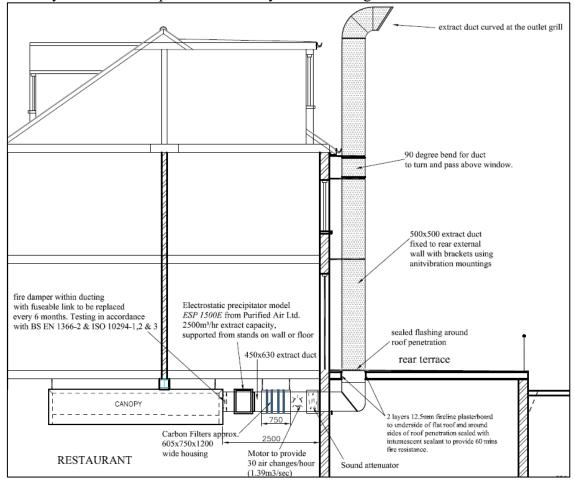


Figure 2: The design of proposed ventilation system for the kitchen.

8.1 Maintenance management plan

It is advised to follow the maintenance and cleaning procedure given in **Appendix D** and it also is advised that a service maintenance contract should be taken out to enable engineers to carry out the necessary services. Internals of the maintenance depend on how aggressive the

cooking is. We would probably advise every 12 weeks to start with, it could be increased or decreased depending on engineer's recommendation.

In addition, we would advise the carbon filters could be replaced with a new filter every 6 months, based on engineer's recommendation. All required maintenance will be carried out as specified in the ESP technical maintenance literature which is given in Appendix D.

The proposed kitchen ventilation system Helios GBW 560/4 fan through ductwork discharging vertically at least 1 metre above the edge of the roof that has ESP followed by carbon filtration will be able to control odour from commercial kitchen exhaust systems.

9. Conclusion

An environmental noise survey was undertaken at the site in order to determine prevailing day noise levels that are representative of the nearest noise sensitive neighbouring residential receivers. A BS4142:2014+A1:2019 noise assessment was carried out at the site. All worst-case situations were considered for the assessment.

The summary of the difference between the Rating Level and Background Noise Level of noise sensitive receptors, and also external noise levels is given in table below.

Noise sensitive receptor	Difference between The Rating Level and Background Level
	Day
153 Fortess Road (Top floor bedroom)	- 14.2dB(A)
155 Fortess Road (Top floor bedroom)	- 17.74dB(A)
	External Noise levels
153 Fortess Road, First Floor, Rear Terrace	19.4dB(A)

In accordance with BS4142:2014+A1:2019 guidance, the day Rating Level at nearest noise sensitive receptors does not exceed the background sound level as shown in Table above. Therefore, the operation of the proposed extractor fan indicates the specific sound source having a low adverse impact during daytime.

The predicted daytime Rating Level $L_{Aeq,Tr}$ at the external amenity space, rear terrace, of First Floor of 153 Fortess Road is 19.4 dB(A). The Rating Level $L_{Aeq,Tr}$ 19.4 dB(A) at the external amenity space does not exceed 50 dB(A) $L_{Aeq,16hr}$ of desirable category of BS8233:2014.

It can be confirmed that the Rating Levels of the proposed extractor fan is expected to comply with BS4142:2014+A1:2019 guidance.

10. References

- BS4142:2014+A1:2019 "Methods for rating and assessing industrial and commercial sound".
- BS8233:2014 "Guidance on sound insulation and noise reduction for buildings".

11. Appendix A: Acoustic Terminology

Parameter	Description
Decibel (dB)	A logarithmic scale representing the sound pressure or power level relative to the threshold of hearing $(20x10^{-6} \text{ Pascals})$.
Ambient noise level	The totally encompassing sound in a given $L_{Aeq,T}$ situation at a given time, usually composed of sound from many sources near and far.
Background noise level	The A-weighted sound pressure level of the $L_{A90,T}$ residual noise at the assessment position exceeded for 90% of a given time interval T, measured using the fast response and reported to the nearest whole dB.
Rating level <i>L</i> _{Ar,T}	The specific noise level plus any adjustment for the characteristic features of the noise.
Residual noise level	The ambient noise level at the assessment $L_{Aeq,T}$ position in the absence of the noise source under investigation.
Specific noise level	The equivalent continuous A-weighted noise $L_{Aeq,T}$ level produced by the source over a given reference time interval.
L _{Aeq,T}	The A-weighted equivalent continuous noise level over the time period T (typically T= 16 hours for daytime periods, T = 8 hours for night-time periods). This is the sound level that is equivalent to the average energy of noise recorded over a given period.
L _{n,T}	The noise level exceeded for n% of the time over a given period T. e.g., L90, the noise level exceeded for 90% of the time (background noise) level.
L _{Max}	The maximum noise level measured.

12. APPENDIX B: Details of extractor fan system, its sound power level and attenuator.

GigaBox centrifugal fan 560 mm ø

GBW 560/4

Self supporting frame construction from aluminium hollow profiles. Double-walled side panels from galvanised sheet steel. Intake cone for ideal airflow, spigot and flexible connector for duct connection. With discharge adapter (square to circular) on the pressure side for low-loss discharge and flexible seeve to reduce vibration transmission. Simple positioning by standard crane hooks. Installation must be carried out with condensation discharge showing downward. Rexible assembly by three possible centrifugal discharge directions via discharge adapter. Outdoor installation is possible using outdoor cover hood and external weather louvres (accessories).

Impeller:

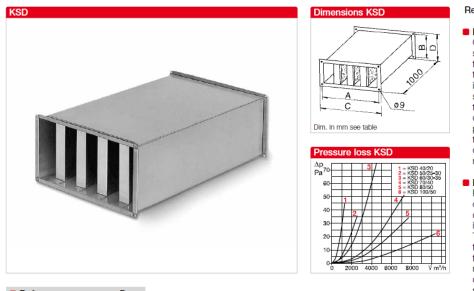
Smooth running backward curved aluminium centrifugal impeller highly efficient and direct driven. Energy efficient with a low noise development. Dynamically balanced together with the motor to DIN ISO 1940 Pt.1 - class 6.3 Motor:

Maintenance free external rotor motor or IECstandard motor protected to IP44 and 54. With ball bearings and radio suppressed as standard.

Electrical Connection:

Standard terminal box (IP54) fitted on the motor support plate.

Motor Protection:


Motors have thermal contacts wired to the terminal block and must be connected to a motor protection unit.

Speed Control:

Speed controllable by voltage reduction using transformer controller.

Type Ref. No.		Ref. No. R.P.M.		Level		p	Motor Current power Full Load (nominal)		 Maximum air flow temp.		Nom. weight (net)		5 step trans controller					
				m	in ⁻¹	dB(/	A) at 4 m	ł	kW	1	Amps	+°(2	k	g	Туре		Ref.
GBW	/ 560/4	1	5508	1	370		44		2.0		8.7	60		9	0	TSW 1	0 1	498
Volume Flow m3/s against stati								ire										
0	50	100	150	200	250	300	400	500	600	700	800					_		
2.77	2.72	2.55	2.48	2.41	2.31	2.22	2.0	1.72	1.44	1.00	0.36	Тур	Ref.			Hel	ios	*

Reference	Page
Selection - noise calculation	494

Rectangular duct silencer KSD

Design – Installation Casing made of galvanised steel sheet, with connection flanges, dimensionally matched to the rectangular duct fans, for insertion on the inlet and outlet side of the rectangular duct system. The silencers upstream or downstream of the fan must be provided with a flexible connector (VS or VS Ex) to the further duct system to prevent structure-borne noise transmission.

Pressure loss Rectangular duct silencers cause flow resistances (adjacent diagram) which must be taken into account for the design. These values apply for uniform flows. In case of non-uniform flows (e.g. for the outflow from rectangular duct fans), a straight duct piece at least 1 m in length must be used or allow for higher resistances.

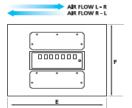
_		Nom. duct	No.	Dimensions in mm				Weight	Insertion loss De dB at Hz							Average
Туре	Ref. no.	size in cm	links	Α	В	С	D	approx. kg	125	250	500	1000	2000	4000	8000	loss
KSD 40/20	08728	40/20	3	420	220	443	240	13	8	11	23	31	31	26	18	17
KSD 50/25-30	08729	50/25-30	3	520	270/320	540	340	16.5	6	9	19	25	25	20	15	14
KSD 60/30-35	08730	60/30-35	4	620	320/370	640	390	20	7	10	21	28	28	23	16	12
KSD 70/40	08731	70/40	4	720	420	740	440	25	6	8	18	24	24	20	14	12
KSD 80/50	08732	80/50	5	820	520	840	540	31	7	9	19	26	26	21	15	14
KSD 100/50	08733	100/50	5	1020	520	1040	540	35	5	7	16	21	21	17	12	11

Sound pressure level of the fan extractor system at façade level. $L_P = L_W - 20 \log(r) - 11 - L_{Attenuator}$

Fan noise	125	250	500	1000	2000	Overall (dB)
Exhaust $L_W dB(A)$	62	74	75	75	74	
2x Attenuator dB(A)	14	20	42	56	56	
$L_{\rm P}$ dB(A) 1m from the façade using the equation given above	37	43	22	8	7	44

13. APPENDIX C – Electrostatic Precipitation (ESP) Filter Unit & UV-C Odour Control Technology Technical Specifications

JULY 2009



lamps. The unit can be stacked as with our ESP range to accommodate higher airflows

B

۰

Six ESP and Three UV-C modules installed as an integrated system.

1								
UVC 3	000	UVC 4500						
A - Width 950mm B - Width 900mm C - Width 800mm	D-Height 530mm E-Depth 810mm F-Height 630mm	A-Width 1400mm B-Width 1350mm C-Width 1250mm	D - Height 530mm E - Depth 660mm F - Height 630mm					
 Electrical Supply Power Consumption Weight Unit 	220/240v 50Hz 1ph 500w (verneckofsk lanps) 105 Kg.	 Weight Per Rack Min/Max Working Maximum Relative 	•					

140

The design of cooking exhaust centrol systems varies. Different types of cooking and location have separate requirements and may require additional equipment. The equipment in this brochure is designed to be used in conjunction with other items of our manufacture. Furfild Air Limited offer a free consultation service and will assist you with design, plases discuss your project with us before selecting explorent.

Instaliation of grease smoka and odour equipment must be meak on the negative side of the 1 nm of the system must be witched or an instructor to fin is operational. If there is ductiver indice the premises on the positive side of the 1 nm place must of the positive side of the 1 nm place ensure that it is completely sealed so as not to let fumes or odour control compounds back into the plasmission the control compounds back into the plasmission the start is with our technical department and at them to provide a design statement to commit the tam be done.

UV-C Odour Control Technology

Purified Air Systems...

...market leaders in odour control for the food service industry

The emission of cooking odours from commercial kitchens is becoming an increasingly important environmental issue, as well as having a significant influence on the granting of planning permission for new restaurants. UVC Technology from Purified Air uses UV-C (ultra-violet light) to eliminate cooking odours and alter the make up of grease to a better-managed compound.

How UV-C Technology Works

when ozone and ultra-violet light are combined and the Purified Air modular system features six to eighteen high output UV-C lamps. These lamps act to oxidise odours and features a photo catalytic liner, which enhances the grease permanently destroying and altering the production of hydroxyl free radicals. Free radicals are compounds. Some of the lamps are designed to produce UV light at 185nm, which converts ozone from the oxygen are significantly more powerful than plain ozone. present in the air. Ozone is a highly reactive oxidant which

encounters rendering them harmless, and at the same time removes odours. The remaining lamps in the system UV-C technology is based on the synergy, which occurs combine to produce UV light at 254nm, the most efficient UV-C wave length, which converts the ozone to hydroxyl free radicals. Purified Air's UV-C odour control system also natural air deansing agents and are strong oxidants. They

Safetv

Band Cultra-violet light is the most powerful of the three bands, so to ensure the safety of customer's employees the UV-C technology is secured behind locked panels. The system has also been engineered to shut down automatically when the panel is unlocked. However, since the lamps typically have a life of twelve months and with the system able to operate even if one lamp fails at optimum efficiency it is unlikely that, apart from routine servicing by experienced engineers, the system will ever need to be opened. As an option Purified Air's UV-C system can also be fitted with a self-diagnostic module, which constantly monitors the unit to ensure no installation or component failure

Electrostatic Precipitator (ESP)

UV-C technology cannot remove smoke, for instance where there is a lot of smoke produced due to the cooking style, for example char-grilling. Then Purified Air recommends that the UV-C system be used in conjunction with a filtration system such as their Electrostatic Precipitator (ESP).

Purified Air's highly efficient ESP range cleans the kitchen extract emissions of both smoke and grease and can

remove particulate down to sub-micron (0.01 micro) size. Filter efficiency of 98% is attained during a single pass through the ESP, based on the charging of particles. These particles are then trapped on the earthed plates in the collector cell with larger particulate in the air stream removed by the pre-filter. Lastly the air stream passes through an after-filter to prevent re-entrainment and provide good air distribution.

Main Features

- High efficiency UV-C technology
- ■*Cooking odour's reduced by up to 95%
- Grease altered to better managed compound
- Robust, compact construction
- Twelve month lamp life
- Minímum maíntenance
- High security UV-C lamps locked behind panels
- Optional self-diagnostic system

This unit's tried and tested UV-C technology allows for the siting of commercial kitchens in locations such as residential areas and shopping centres, where previously planning permission would not have been granted.

After extensive research and development Purified Air devised the best combination of lamps at different wave lengths, which when combined with the photo catalytic liner provides the most effective odour control. "Ociour reduction is dependant on type and volume of cooking

14. Appendix D: Maintenance and cleaning for ESP Electrostatic Precipitator (ESP) Filter unit

Maintenance and Cleaning

Introduction

If you carry out the simple cleaning and maintenance described below, at the prescribed intervals, paying attention to the associated Warnings and Cautions, then any problems will mostly be detected and corrected before they result in a total breakdown of the Unit.

The indicated maintenance intervals can vary depending on specific working and local environmental conditions. It is therefore recommended that the Unit is thoroughly inspected annually in addition to the indicated periodic maintenance. Please contact your service agent to arrange this.

WARNING!

Overdue maintenance can lead to fire.

Always switch OFF the Unit and isolate the electric supply before carrying out the activities below.

Do not carry out any service, maintenance or repairs to the Unit before it has been protected against unintended starting by switching off and isolating the electrical supply.

Maintenance and Cleaning Schedule

Basic maintenance activities can be carried out by the user. Please see the table below for the optimum frequency for such activities.

Note: Other activities are strictly reserved for qualified personnel.

Basic Maintenance Activities	Frequency
Clean the outside of the Unit with mild detergent	Every 6 months
Check the door sealing material (see 7.3.2 on page 27)	Every 12 months
Clean the inside of the Unit and remove dust/ grease from the filter compartment (see 7.3.2 on page 27)	From once a week to once every 3 months depending on the degree of pollution.
Clean the Mesh Pre-filter, ESP Collector Cell and the Mesh Post-filter and check for damage (see 7.3.3 on page 28 and 7.3.4 on page 28)	From once a week to once every 3 months depending on the degree of pollution.

Cleaning and Maintenance Tasks

Clean or replace the Mesh Filters and Collector Cell and clean the Main Chassis at the prescribed intervals mentioned in Maintenance and Cleaning Schedule on page 26 or:

- If the Mesh Filters and/or Collector Cell are damaged.
- When the Collector Cell starts to make a crackling sound (arcing).
- When the filtering and extraction performance of the Unit starts to decline.

It is a matter of experience to determine when the Unit needs to be cleaned, since the nature and the degree of pollution depends strongly on factors such as the particular location, humidity, and intensity of use etc. Nevertheless, the filters and Main Chassis should be cleaned regularly at intervals ranging from once a week to once every 3 months using the procedures outlined in the sections below:

Removing the Mesh Filters and Collector Cell

Start the cleaning procedure by removing the Mesh Filters and Collector Cell from the Main Chassis:

- Isolate the Unit from the mains power supply by turning the Rotary Mains Isolator Switch to the 'Off' position.
- 2. Allow at least 60 seconds for any static electrical charge to dissipate.
- 3. Double check that the mains power supply has been isolated.
- Unscrew the top and bottom Star Knobs on the main Door Assembly anti-clockwise and open it.
- 5. Remove the Mesh Pre-Filter, Collector Cell and the Mesh Post-Filter in this order.
- 6. Remove the Filter Carrier.

Cleaning the Main Chassis

Having removed the Mesh Filters (pre and post) and the Collector Cell:

- Remove any accumulated grease from the sump; depending on its viscosity, either via the Drain Plug (see Figure 5 - Electrostatic Precipitator Unit - Main Chassis Components on page 10) or by scooping and scraping it out.
- Spray the sump with a high quality degreaser and wipe over the sump's surfaces with a suitable cloth or paper towels.
- Clean the electrical contact points on the inside of the Door Assembly, using a high quality degreaser and a suitable cloth or paper towels, ensuring that they are free of contaminants/grease.
- Ensure that the rubber door seal is undamaged and free from contaminants/grease, cleaning with warm soapy water if necessary.
- Clean the Filter Carrier and Backplate, using a high quality degreaser and a cloth, and replace in the Unit.

Cleaning the Mesh Filters (pre and post)

Clean the Mesh Filters as follows:

- Clean the Mesh Filters (pre and post) in hot water (at approx. 60°C) to which a detergent solution has been added. This treatment can be repeated several times. A pressure washer can also be used to clean the filters.
- Allow the Mesh Filters to dry completely after cleaning before re-inserting into the Unit.

Cleaning the Collector Cell

Clean the Collector Cell as follows:

 Clean the Collector Cell in hot water (approx. 60°C) to which a detergent solution has been added.

WARNING

Although the Collector Cell can be cleaned using a pressure washer, extreme care must be exercised to avoid damaging or distorting the plates.

- 2. Check the Ioniser during washing for broken Ionisation Wires.
 - Note: If fitted, broken ionisation wires can simply be replaced by hooking the sprung end of the new wire over the support post, pulling the wire against the spring's tension and attaching the other end of the wire to the opposite post, having first removed the broken wire.
- Whilst washing the Collector Cell, check to see if any of the Collector Cell's plates have been bent.
 - Note: If a bent plate is found, it can normally be straightened by either carefully applying pressure with a screwdriver or by using a pair of long nosed pliers.

If the Collector Cell is beyond repair, please contact Purified Air to purchase a new one.

 Allow the Collector Cell to dry completely after cleaning before re-inserting into the Unit.

Replacing the Collector Cell and Pre and Post Mesh Filters

Replace the Collector Cell and pre and post Mesh Filters as follows:

Replace the Collector Cell.

Note: If the Unit has more than one Collector Cell, ensure that the electrical connections between them are making contact.

 Slide the Mesh Filters (pre and post) into their previous positions in the Collector Cell and Filter Carrier.

INFORMATION

Ensure that the Collector Cell is correctly orientated with the extraction duct's airflow, as indicated by the arrow engraved on the Collector Cell.

Pay due attention to the position of the contact pin and contact spring on the Collector Cell which should connect with the contact discs on the door when it is closed.

- 3. Close the Main Door and refit the top and bottom Star Knobs.
- Tighten the Star Knobs clockwise sufficiently to ensure a good seal between the Main Door and the Main Chassis of the Unit.
 - Note: It may be necessary to push the Main Door inwards, against the seal, onto the Main Chassis of the Unit whilst tightening the Star Knobs to enable them to be tightened sufficiently to ensure an adequate seal.
- 5. Switch the Unit On as normal. The green Run Light Indicator should illuminate.

INFORMATION

After the Unit is turned on, you may briefly hear a clicking or arcing as the plates in the Collector Cell build up a charge. This is perfectly normal.

WARNING

Should the clicking or arcing persist or the green Run Light Indicator go out, the Unit has a fault.

In this case, switch off the Unit and consult a qualified service technician.

Servicing

Purified Air or their designated distributor will be happy to carry out regular servicing of the Unit and offer Preventative Maintenance Contracts for all installations of their equipment.

Please contact their Head Office for full details:

service@purifiedair.com

Freephone: 0800 018 4000

15. Appendix E: Measurement set-up and images of equipment used for environmental noise survey

