Sustainability and Energy Strategy ### **Darwin Court** Prepared for Airspace Group Ltd January 2024 | Revision | Date | | |----------|-------------------|--| | A | 17th January 2024 | | | Author | Signature | |---------------------------------|-----------| | Charlie Curry OCDEA | C. Curs | | Checked & Authorised | Signature | | Ciaran Dorrity BEng (Hons) NDEA | Cina los | London Office 0207 486 0680 Oxford Office 01865 598698 contact@envisioneco.com # **CONTENTS** | EXE | CUTIVE SUMMARY | 2 | |-----|---|----| | 1 | INTRODUCTION | 4 | | | Site Location and Existing Situation | 4 | | | The Proposed Development | 5 | | 2 | SUSTAINABILITY & ENERGY POLICY CONTEXT | 6 | | | National Planning Policy Framework | 6 | | | London Plan Policy | 7 | | | London Borough of Camden | 8 | | | GLA Guidance on Preparing Energy Assessments | 9 | | 3 | SUSTAINABILITY STATEMENT | 10 | | | Climate Change Mitigation | 10 | | | Climate Change Adaptation | 10 | | | Reducing Waste and Supporting a Circular Economy | 12 | | | Sustainable Transport | 13 | | | Pollution Control | 14 | | | Sustainable Construction | 14 | | 4 | ENERGY STATEMENT | 16 | | | Methodology | 16 | | | Establishing the Target Emission Rate (TER) | 16 | | | Applying the London Plan Energy Hierarchy: Stage 1 – Be Lean | 17 | | | Applying the London Plan Energy Hierarchy: Stage 2 – Be Clean | 20 | | | Applying the London Plan Energy Hierarchy: Stage 3 – Be Green | 21 | | 5 | CONCLUSION | 25 | | ΔΡΡ | PENDIX I – SAP CALCULATIONS | 26 | # **EXECUTIVE SUMMARY** - This Sustainability and Energy Statement, has been prepared by Envision on behalf of Airspace Group Ltd and is submitted in support of a full planning application for the construction of a single-storey roof extension to the properties comprising Darwin Court, to provide residential units together with a range of upgrades to the existing buildings including accessibility enhancements, fire safety upgrades, waste and refuse store enhancements, landscaping, and other works. - 2. The primary purpose of this document is to explain how the scheme can meet the London Plan's and the London Borough of Camden's sustainability policies. Envision has undertaken a review of the relevant policies and worked with the design team to determine and agree the relevance and approach that should be taken to fulfil each policy. #### **Summary of Sustainability Strategy** - 3. The scheme will deliver a series of sustainability measures which are compatible with both the London Plan and the London Borough of Camden's requirements for sustainable design and construction: - Sustainable material selections with timber to be procured with Forest Stewardship Council accreditation and the main contractor to adopt best practice measures to reduce water and energy use through construction; - The development of a Site Waste Management Plan to ensure waste generation is minimised during construction; - No car parking and cycle storage to promote sustainable modes of transport, has been incorporated. - Development of a sustainable procurement plan by the contractor to maximise the environmental performance of chosen materials; and - Water conservation measures within the units to comply with 105 litres / bedspace per day. #### **Summary of Energy Strategy** - 4. In line with the policy CC1, the applicant has sought to make the fullest contribution to minimising CO₂ emissions whilst following the London Plan Energy Hierarchy. - 5. Envision has produced Part L1 2021 compliant SAP models in order to determine the energy and CO₂ emissions for the proposed development. These have been calculated using Elmhurst 10.2 Software with detailed calculations provided in the Appendix. This is in line with the 'Part L 2021 and the Energy Assessment Guidance 2022'. - 6. Policy CC1 requires all developments to follow the energy hierarchy to reduce carbon emissions through the specification of highly efficient fabric and renewable energy. In this development carbon savings will be made through the following: - This will be achieved through the incorporation of passive design measures, and efficient fabric including triple-glazed windows. - Reduced Air Permeability, lower than standard Buildings Regulations; - High efficiency LED throughout the development; - Efficient, electric systems have been specified including highly efficient heat pump systems for the heating and hot water and a PV array. # **Carbon Savings Predicted** 7. As seen in the table below, the new residential aspect of the development reduces CO₂ emissions by 5.23 tonnes.CO₂.year, equal to a 73.13% saving beyond the Part L Target. The development also demonstrates a 39.83% saving from the inclusion of renewable energy, therefore complying with Camden's Local Policy. Table A.1 - Final CO₂ Reductions Chart | | Carbon Dioxide Emissions for domestic buildings (Tonnes CO ₂ per annum) | | | |--|--|------|--| | | Regulated Unregulated | | | | Baseline: Part L 2021 of the Building
Regulations Compliant Development | 7.16 | 3.09 | | | After energy demand reduction | 4.77 | 3.09 | | | After heat network / CHP | 4.77 | n/a | | | After renewable energy | 1.92 | 3.09 | | | | 1 | | | | | Regulated domestic carbon dioxide savings (Tonnes CO ₂ per (%) annum) | | | |--------------------------------------|---|--------|--| | | | | | | Savings from energy demand reduction | 2.38 | 33.30% | | | Savings from renewable energy | 2.85 | 39.83% | | | Cumulative on-site savings | 5.23 | 73.13% | | # 1 INTRODUCTION 1.1 Envision has been appointed by Airspace Group Ltd to produce a Sustainability and Energy Statement in support of a full planning application for the construction of a single-storey roof extension to the properties comprising Darwin Court, to provide residential units together with a range of upgrades to the existing buildings including accessibility enhancements, fire safety upgrades, waste and refuse store enhancements, landscaping, and other works. #### Scope - 1.2 The primary purpose of this statement is to explain how best practice sustainable design and construction measures would be incorporated in the proposed development to ensure alignment with local planning policy. - 1.3 Section 4 (Energy Assessment) sets the parameters of detailed design, but remains at a strategic level. The calculations in this document are an indication of system size and carbon emissions based on guidance documents, approved software and practical experience. They are not design calculations but establish the viability and feasibility of various technologies for the proposed development. - 1.4 This statement is structured as follows: - The remainder of this section provides a description of the site and the development proposals; - Section 2 provides a description of the main sustainability and energy policies relevant to the application; - Section 3 details the sustainable design measures incorporated into the design; - Section 4 includes the Energy Statement, including measures proposed to reduce energy demand and carbon dioxide in operation; - Section 5 provides a concluding summary. # **Site Location and Existing Situation** - 1.5 Darwin Court, located at 2-24 Gloucester Avenue, comprises 5 x flat roofed apartment buildings constructed in the 1970s. The buildings are constructed in a linear form and are set within large plots with areas of soft landscaping. - 1.6 The buildings contribute to the varied character of Gloucester Road, which includes a range of buildings with varying heights, age and architectural style. - 1.7 The site is located within the Primrose Hill Conservation Area. None of the buildings are statutory listed, and the buildings are noted as making a negative contribution to the character and appearance of the Conservation Area. Figure 1.1 – Site Location # **The Proposed Development** - 1.8 The proposed development would seek the construction of a single-storey roof extension to each of the five existing buildings to provide eight self-contained residential dwellings (6 x two-bedroom units and 2x three-bedroom units). The proposal would also deliver improvements to the existing entrances to the buildings. - 1.9 The proposed development provides an opportunity to optimise an existing residential building and provide significant upgrades to the existing building to benefit existing residents. Figure 1.2 – Proposed Site Layout – 8th Floor # 2 SUSTAINABILITY & ENERGY POLICY CONTEXT 2.1 Many definitions of sustainable development exist, although the common objective for all is the integration of economic, social and environmental issues to ensure a better quality of life for people today, without compromising the needs of future generations. A key mechanism for delivering the principles of sustainable development lies within the UK planning system, which is implemented through national guidance and local planning policies. A review of all the relevant policy, regulatory and energy guidance documents was undertaken to gain an understanding of the guiding requirements for sustainability. ### **National Planning Policy Framework** - The revised National Planning Policy Framework (NPPF) was released on 20th July 2021. This replaces the previous National Planning Policy Framework published in March 2012, revised in July 2018 and updated in February 2019. It sets out the framework for all planning policy in England and how these policies are expected to be applied. At a very high level, the objective of sustainable development can be summarised as meeting the needs of the present without compromising the ability of future generations to meet their own needs. At a similarly high level, members of the United Nations
including the United Kingdom have agreed to pursue the 17 Global Goals for Sustainable Development in the period to 2030. These address social progress, economic well-being and environmental protection. - 2.3 The NPPF sets out a presumption in favour of sustainable development, and the need to support economic growth through the planning system. Achieving sustainable development means that the planning system has three overarching objectives, which are interdependent and need to be pursued in mutually supportive ways (so that opportunities can be taken to secure net gains across each of the different objectives): - a. an economic objective to help build a strong, responsive and competitive economy, by ensuring that sufficient land of the right types is available in the right places and at the right time to support growth, innovation and improved productivity; and by identifying and coordinating the provision of infrastructure; - b. a social objective to support strong, vibrant and healthy communities, by ensuring that a sufficient number and range of homes can be provided to meet the needs of present and future generations; and by fostering well-designed, beautiful and safe places, with accessible services and open spaces that reflect current and future needs and support communities' health, social and cultural well-being; and - c. an environmental objective to protect and enhance our natural, built and historic environment; including making effective use of land, improving biodiversity, using natural resources prudently, minimising waste and pollution, and mitigating and adapting to climate change, including moving to a low carbon economy. - 2.4 Planning plays a key role in helping shape places to radical reductions in greenhouse gas emissions, minimising vulnerability and providing resilience to the impacts of climate change, and supporting the delivery of renewable and low carbon energy and associated infrastructure. This is central to the economic, social and environmental dimensions of sustainable development. The NPPF does not include detailed measures on sustainable design codes and standards to apply, although expects that when setting any local requirement for a building's sustainability, local planning authorities should do so in a way consistent with the national technical standards. ### **London Plan Policy** - 2.5 The London Plan (2021) sets out the Mayor's vision for London. In accordance with the NPPF, it promotes economic development, and endorses the principles of sustainable development. It is the main vehicle for strategic decision-making on London's development, including development decisions. The Plan contains a number of policies directly related to a development's sustainable design and energy reduction, including: - Policy G1 Green Infrastructure; - Policy G5 Urban Greening; - Policy G 6 Biodiversity and Access to Nature; - Policy SI 1 Improving Air Quality; - Policy SI 2 Minimising greenhouse gas emissions; - Policy SI 3 Energy Infrastructure; - Policy SI 4 Managing heat risk; - Policy SI 7 Reducing Waste and supporting the circular economy; - Policy SI 12 Flood Risk Management; - Policy SI 13 Sustainable Drainage; and - Policy T 5 Cycling. - Policy T6.1 Residential Parking. - 2.6 Of particular importance to the CO₂ and Energy reductions required for a development is *Policy SI-2: Minimising carbon dioxide emissions*. - 2.7 Policy SI2 requires that development proposals should make the fullest contribution to minimising carbon dioxide emissions in accordance with the following energy hierarchy: - a. Be Lean: use less energy and manage demand during operation; - b. Be Clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly; and - c. Be Green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site. # **London Borough of Camden** - 2.8 The Council aims to tackle the causes of climate change in the borough by ensuring developments meet the highest feasible environmental standards. - 2.9 The London Borough of Camden's Local Plan Policy CC1 Climate Change Mitigation states that developments should be meeting the following requirements: CE1: The Council recognises the Government's targets to reduce national carbon dioxide emissions by 34 per cent against 1990 levels by 2020 in order to meet a 80 per cent reduction by 2050 and will require development to make a significant contribution towards this target. - 2.10 To deliver this the Council will: - a. promote zero carbon development and require all development to reduce carbon dioxide emissions through following the steps in the energy hierarchy; - b. require all major development to demonstrate how London Plan targets for carbon dioxide emissions have been met; - c. ensure that the location of development and mix of land uses minimise the need to travel by car and help to support decentralised energy networks; - d. support and encourage sensitive energy efficiency improvements to existing buildings; - e. require all proposals that involve substantial demolition to demonstrate that it is not possible to retain and improve the existing building; and - f. expect all developments to optimise resource efficiency. - 2.11 Camden's local plan also states that developments over 5 units are expected to demonstrate a 20% reduction in carbon emissions from onsite renewables. - 2.12 The development will follow the energy hierarchy, as per the London plan, ensuring savings are achieved at each of these stages. The proposal is not classed as a major development so any Policies referring to major developments do not apply. ### **GLA Guidance on Preparing Energy Assessments** - 2.13 The GLA guidance on preparing energy assessments (2022) provides a detailed methodology on how to demonstrate a reduction in CO₂ emissions for new development. The new guidance explains how London Plan policies apply now that Part L 2021 has taken effect, and the updates made to the GLA's carbon emissions reporting spreadsheet and how to determine the CO2 emissions baseline under Part L 2021. - 2.14 This explains the updates made to the GLA's carbon emissions reporting spreadsheet and how to determine the CO₂ emissions baseline under Part L 2021. This guidance document explains how to prepare an energy assessment to accompany strategic planning applications referred to the Mayor. Although primarily aimed at strategic planning applications, London boroughs are encouraged to apply the same structure for energy assessments related to non-referable applications and adapt it for relevant scales of development. - 2.15 Applicant's in London must continue to meet the London Plan net zero carbon target by following the energy hierarchy (Policy SI 2), the heating hierarchy (Policy SI 3) and by maximising on-site carbon reductions. Planning applicants will be expected to demonstrate that at each stage of the energy hierarchy they have maximised opportunities for carbon reduction to achieve as close to zero as possible. An on-site carbon reduction of at least 35 per cent beyond Part L 2021 of building regulations should be achieved. Once it has been demonstrated that carbon reductions have been maximised, any remaining emissions to zero should be offset by a contribution to the relevant borough's carbon offset fund. - 2.16 This sustainability and energy statement draws from this guidance, in particular for the calculation of energy performance against the new building regulations. # 3 SUSTAINABILITY STATEMENT - 3.1 This section includes a review of the scheme against the relevant policies in section 2 and identifies a series of practical measures that would be brought forward in design and construction which contribute to the developments' sustainability. - 3.2 The review is structured against the following thematic areas: - Climate Change Mitigation; - Climate Change Adaptation; - Reducing Waste and Supporting a Circular Economy; - Sustainable Transport; - Pollution Control; and - Sustainable Construction # **Climate Change Mitigation** - 3.3 Climate change mitigation involves a radical reduction in carbon emissions released from the built environment. This relates to both energy use in buildings and energy embodied within the construction process. - 3.4 The London Plan sets out an established energy hierarchy in Policy SI2 which is relevant to new build projects. This focuses on how new development can reduce regulated energy demands. The strategy is presented in the next section (section 4). ### **Climate Change Adaptation** #### **Overheating Risks** 3.5 The risk of overheating in buildings is anticipated to rise as a result of climate change. A number of passive design measures have been specified in order to reduce the risk of overheating and are discussed in the table below. | Cooling Method | Measures Employed | |---|---| | Minimise internal heat generation through energy efficient design | U-values specified in excess of the Part L Building Regulations
minimum targets | | Reducing the amount of heat entering the building in summer | Glazing configuration optimised to limit solar gains. The g-value of all installed glazing will be as low as economically and feasibly possible. External Glazing has been offset into the external structure to provide further shading. The development is surrounded by a number of tall trees which will provide external shading to the development. | | Use of high
ceilings to manage the heat within the building | Floor-to-ceiling heights are maximised within the dwellings | | Mechanical ventilation | Mechanical ventilation with heat recovery has been proposed
to serve all office spaces. MVHR units shall incorporate a full
summertime bypass to allow for 'free cooling' when possible. | 3.6 In addition the new units will be built to comply with Building Regulations Part O to ensure the risk of overheating is limited. #### **Water Conservation Measures** - 3.7 Water fittings will be specified with the following or similar flow rates to meet the target water consumption of 105 l/p/day for the development: - Wash basin taps 6.5 l/min - Showers 7.5 l/min - Bath 120l to overflow - Dishwasher 1.2 l/place setting - Washing machine 9 l/kg load - WC 6/4 litre dual flush - Kitchen taps 6.5 l/min Water meters will be installed to encourage residents to limit their consumption. # Flood Risk and Sustainable Drainage Play Space Primtose Hill 3.8 The development has been identified to be in Flood Zone 1, which has a low risk of flooding. Figure 3.1 – Site Location from Environment Agency Flood Map ### Reducing Waste and Supporting a Circular Economy #### **Sustainable Materials** - 3.9 Materials will be specified to reduce the embodied carbon of the development, including re-use and specifying materials with recycled content wherever possible. - 3.10 Insulating materials will be specified to maximise thermal performance whilst still paying attention to the environmental impact of the materials used. If possible, materials with a high recycled content will be specified. - 3.11 Responsible sourcing will also be pursued. All timber used on-site during the construction phase and within the building will be from legal sources. All timber will be FSC or equivalent responsibly sourced timber. Sourcing of other materials will include products where the manufacturer employs an environmental management system such as ISO 14001 or BES 6001, inline with the sustainable procurement plan. Where possible, materials will be sourced locally. - 3.12 Non-toxic materials will be used wherever possible, including the specification of products with low VOC content in line with European testing standards. #### **Construction Waste Management** - 3.13 Consideration has been given to rationalising material use in the structure of the building, including the structural frame and envelope as part of an ongoing design optimisation exercise. - 3.14 A Resource Management Plan will be developed which sets out procedures for managing waste on the site, including setting the total waste and landfill diversion targets which will be monitored throughout the build. 3.15 It is also anticipated that at least 95% by volume of construction waste and non-hazardous demolition waste will be diverted from landfill. This is in accordance with London Plan Policy SI7 of the London Plan. #### **Operational Waste** 3.16 The buildings will have sufficient space for their own waste storage facilities. Waste will be sorted to provide storage for both general, recyclable and food waste. The bins will be labelled to provide guidance on what can be included in waste stream. # **Sustainable Transport** 3.17 Transport for London's (TfL) Web-based Connectivity Assessment Toolkit (WebCAT) recognises that the site has a Public Transport Accessibility Level (PTAL) rating of 5. Figure 3.2 Local Public transport options and walking times 3.18 The development has a number of transport modes within a 10- minute proximity. This includes over 5 Bus stops and Camden Town Station within a 7 minute walk. #### **Pollution Control** 3.19 Any new development can potentially lead to detrimental environmental effects; as is the nature of construction. These potential effects have been considered during the planning stages of this proposal. The development is not of the scale that would require an Environmental Impact Assessment (EIA), however the measures as outlined in this section, and subsequently implemented, will ensure that any potential impacts can be appropriately controlled. #### **Air Quality** - 3.20 The construction site will be managed in such a way that the environmental impact is minimised. This includes following best practice policies for dust pollution by using dust sheets, covering skips and damping down where appropriate. - 3.21 A fully electric system has been specified, with heat pumps providing the heating and hot water system. This will result in zero NOx Emissions for the operation of the development. #### **Noise** 3.22 The development will comply with Building Regulations Part E, providing a good level of sound insulation. All windows are to be specified as high efficiency triple glazing to minimise the transmission of noise between the property and surrounding area. #### **Light Pollution** 3.23 All lighting will be low energy light fittings specified to have a luminous efficacy greater than 120 lm/W for residential. All external lighting will be appropriately controlled to ensure that spaces not lit during daylight hours, with PIR sensors to provide light when the area is occupied. The proposed development is in an urban location, and therefore will not significantly contribute to increasing the effects of light pollution. # **Sustainable Construction** - 3.24 The construction phase of the development can have a significant effect on the quality of the site and its surroundings, including the local environment, neighbouring residents, surrounding employees and the general public. Sustainable construction involves the prudent use of existing and new resources, the efficient management of the construction process, and consideration of potential adverse environmental impacts on local sensitive receptors. - 3.25 It is not considered that the construction phase will yield an adverse level of disturbance, particularly given the surrounding land uses, although various measures adopted by the contractor will ensure that any potential disturbance is minimised. The principal contractor will be required to deliver high standards of sustainable construction, which will be achieved through the following: - Registering the site against the Considerate Constructors Scheme, and; | 13101 | | |-------|---| | | | | b | Managing the construction site to reduce environmental effects, this will include adopting est practice measures to protect water and air quality, monitoring water and energy use rom construction activities. | # 4 ENERGY STATEMENT - 4.1 In line with the London Plan policies this energy statement will follow the following energy hierarchy to make best endeavours to reduce carbon dioxide onsite: - a. Be Lean: use less energy and manage demand during operation; - b. Be Clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly; - c. Be Green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site. Fig 4.1 - 'Energy Hierarchy' # **Methodology** - 4.2 Local planning validation requires that applicants should demonstrate how the energy hierarchy has been applied to make the fullest contribution to CO2 reduction in line with Policy SP6. - 4.3 In accordance with NCM guidance, the appropriate methodology for calculating the energy performance of the domestic portion is "The Government's Standard Assessment Procedure for Energy Rating of Dwellings". This procedure was undertaken using Stroma FSAP 10 which is a Department of Communities and Local Government (DCLG) approved methodology and software for undertaking SAP assessments. ### **Establishing the Target Emission Rate (TER)** - 4.4 The total emissions savings calculated in this report for the new-build development is expressed against a Building Regulation Target Emission Rate. This is the Baseline against which the measures implemented must show an improvement. - 4.5 The Target Emission Rates for the development have been established using The Standard Assessment Procedure for the Energy Rating of Dwellings (SAP). - 4.6 The calculated carbon emissions and total energy demand for the Target Emission Rate are illustrated below for the development. The calculated figures demonstrate a Part L1 Building Regulations 2021 compliant model. Table 4.1 - Target CO₂ emissions | Unit | Total Floor
Area (m²) | TER | Total Target CO2
(tn.CO2.yr) | TPER | Total Target
Primary Energy
(kWh.yr) | |-----------------|--------------------------|---------|---------------------------------|-------|--| | 3 Bed Unit | 382 | 5.61 | 2.14 | 32.34 | 12,353.88 | | 2 Bed Unit (SE) | 372 | 7.17 | 2.66 | 39.4 | 14,656.80 | | 2 Bed Unit (NW) | 372 | 6.31 | 2.34 | 34.73 | 12,919.56 | | | | Total = | 7.16 | | 39,930.24 | 4.7 The figure of 7.15 tn.CO₂.yr the targets that must be reached and improved upon by the proposals in this Energy Assessment in order to comply with Part L Building Regulations. This will be achieved through the implementation of fabric efficiency, energy-reduction and carbon-saving measures as outlined in the ensuing sections. Fig 4.2 - Target CO₂ emissions # Applying the London Plan Energy Hierarchy: Stage 1 – Be Lean 4.8 The Greater London Authority seeks a 'fabric first' approach to reducing the carbon footprint of London's built environment. This is achieved through buildings using less energy by improving uvalues, air-tightness and lighting efficiency amongst others. This is the first step to consider in reducing a building's carbon emissions before the efficient delivery of power, heat or renewables are considered by a
design-team. #### **Fabric Efficiency** 4.9 U-Values, are used to measure how effective elements of a buildings fabric are as insulators. That is, how effective they are at preventing heat from transmitting between the inside and the outside of a building. Very broadly, the better (i.e. lower) the U-value of a buildings fabric, the less energy is required to maintain comfortable conditions inside the building. The following U-Values are proposed for the residential aspect of the development: Table 4.3 - Proposed U-Values | Domestic | | | | | |----------------------|--|---------------------|--|--| | Elements | New Building
Elements: U-Values –
W/m² K | Comment | | | | External Wall | 0.13 | n/a | | | | Corridor Walls | 0.15 | n/a | | | | Roof | 0.11 | n/a | | | | External Windows | Triple Glazed | Frame factor of 0.8 | | | | | U-Values: 0.8 | G-Values: 0.57 | | | | External Solid Doors | 1 | n/a | | | | Thermal Bridges | Y= 0.08 | | | | | | To be calculated at the detailed design stage | | | | ### **Air Permeability** 4.10 The designed Air Permeability Rate (APR) has been set at 3 m³/h.m² @ 50Pa for the entire development. #### **Lighting Strategy – Domestic** 4.11 The Light fittings will be specified as LED, low-energy with local manual switching and if appropriate, occupancy sensing. The light fittings have been specified as to have a 100 lm/W efficiency. #### **Ventilation Strategy** 4.12 The development will include mechanical ventilation with heat recovery (MVHR). This has been assumed as a MRXBOX90L MVHR system which incorporates a full summertime bypass to assist with overheating in the summer. #### **Space & Water Heating** 4.13 In line with the 'GLA guidance on preparing Energy Assessments' methodology, a base case has been generated for the Be Lean Case, utilising a gas boiler with an efficiency of 92.3%. #### Be Lean Stage CO₂ Reductions - 4.14 The Part L 2021 GLA carbon emissions reporting spreadsheet has been used to collate the information and offer consistent and transparent process for presenting part L 2021 carbon emission performance. This includes an offset of the energy saving technologies applied to the notional building at Lean stage to highlight the passive design savings. - 4.15 The following tables and graphs represent the Be-Lean improvements for the new-build apartments over the TER and TPER emissions. Table 4.7 - Be-Lean Emissions - Domestic | Unit | Total Floor
Area (m²) | DER | Total CO2
(tn.CO2.yr) | |--------------------|--------------------------|-----------------------------|--------------------------| | 3 Bed Unit | 382 | 9.99 | 1.38 | | 2 Bed Unit (SE) | 372 | 11.50 | 1.90 | | 2 Bed Unit
(NW) | 372 | 10.41 | 1.49 | | | | Total = | 4.77 | | | | Difference over
Baseline | 2.38 | | | | % Difference | 33.30% | As detailed above, the measures as taken at the 'Be-Lean' stage enable the residential aspect of the development to achieve a 33.30% reduction in regulated CO₂ emissions over the Part L Target Emission Rate. This has been achieved by adopting the lowest U-Values feasible, a low air permeability rate and high performance-glazed windows. Fig 4.4 – Be-Lean Stage Reductions - Domestic # Applying the London Plan Energy Hierarchy: Stage 2 - Be Clean 4.17 As part of the Be Clean approach, the use of energy-efficient equipment, heat networks and community heating has been considered. As this development is a minor development, district heating networks and community heating systems are not viable. As a result, no savings are made at the Be Clean stage. # Applying the London Plan Energy Hierarchy: Stage 3 – Be Green 4.18 An analysis of low carbon/renewable technologies was undertaken to determine which would be suitable for application in a development of this size and nature. This determined that the renewable systems deemed to be the most suitable for the development is the use of an Air-Source Heat Pump providing renewable heating and hot water for the residential units. #### Low-Carbon/Renewable Technology 1 – Domestic Air Source Heat Pump - 4.19 The low-carbon/renewable energy proposed for development is an air-source heat pump (ASHP) providing space heating and hot water. ASHPs with the following specifications have been assumed: - The modelled ASHP to provide space heating is an ECODAN 8.5 kW system for each 2 bed residential unit and a 11.2 kW for each 3 bed unit. - The ASHP will be selected to operate on R32 which is an F-Gas compliant refrigerant; - These units will need to be placed on the roof of the development and external access will need to be provided. - 4.20 The hot water will be provided by an equivalent unit. The following system has been assumed: - The cylinder will have a volume of 210l and a measured loss of 1.77kw/day for the 2 bed units. - The cylinder will have a volume of 300l and a measured loss of 2.09kw/day for the 3 bed units. ### Low-Carbon/Renewable Technology 2 - PV - 4.21 The development will also include a PV array on the roof of each block. The following array will be linked to each of the new build units and the remainder of the arrays will be utilised to provide energy to the existing block. These units will include an export capable meter. - 4.22 The total PV array on the development is 69kWp covering an area of 300m². - a. Block A: 60 sqm PV Area (30 panels @ 2000x1000mm - b. Block B: 60 sqm PV Area (30 panels @ 2000x1000mm) - c. Block C: 60 sqm PV Area (30 panels @ 2000x1000mm) - d. Block D: 60 sqm PV Area (30 panels @ 2000x1000mm) - e. Block E: 60 sqm PV Area (30 panels @ 2000x1000mm) Table 4.8 – PV for new build units | Served Area | PV Area | PV Peak Power
(kWp) | PV Energy
Generation
(kWh.annum) | |---------------------------------|--------------------|------------------------|--| | 3 Bed Units – Per Unit | 11.6m² | 2.2 | 1635.81 kWh | | 2 Bed Units – Per Unit | 10.5m ² | 2 | 1392.71 kWh | | Total PV for New Build
Units | 86.2m ² | 16.4 | 11,627.88 kWh | #### **Be-Green CO2 Reductions** 4.23 The following tables and graphs represent the Be-Green improvements for the residential units of the development over the Target Emission Rate (TER) baseline emissions: Table 4.9 –Be-Green Improvement over TER – Domestic | Unit | Total Floor
Area (m²) | DER | Total CO ₂
(tn.CO2.yr) | DPER | Total Building
Primary
Energy
(kWh.yr) | |-----------------|--------------------------|--------------------------|--------------------------------------|-------|---| | 3 Bed Unit | 382 | 2.21 | 0.84 | 26.39 | 10,080.98 | | 2 Bed Unit (SE) | 372 | 1.60 | 0.59 | 21.59 | 8,031.48 | | 2 Bed Unit (NW) | 372 | 1.30 | 0.48 | 18.62 | 6,926.64 | | | | Total = | 1.92 | | 25,039.10 | | | | Be-Green
Savings | 2.85 | | 92033.10 | | | | % Difference | 59.72% | | 78.61% | | | | Difference over Baseline | 5.23 | | 14891.14 | | | | % Difference | 73.13% | | 37.29% | 4.24 As detailed above, the measures as taken at this stage would result in a 73.13% reduction in the new-build residential regulated CO_2 emissions over the Building Regulations Part L Target Emission Rate. Fig 4.6 –Be-Green Reductions – Domestic # Final CO₂ Reduction Charts 4.25 In accordance with the 'GLA guidance on preparing energy assessments', the final carbon emissions and predicted savings are presented below for the development. Table 4.10 – Final CO₂ reductions – Domestic | | | ns for domestic buildings
per annum) | |--------------------------------------|---------------------------|---| | | Regulated | Unregulated | | Baseline: Existing development | 7.16 | 3.09 | | After energy demand reduction | 4.77 | 3.09 | | After heat network / CHP | 4.77 | n/a | | After renewable energy | 1.92 | 3.09 | | | Regulated domestic c | arbon dioxide savings | | | (Tonnes CO2 per
annum) | (%) | | Savings from energy demand reduction | 2.38 | 33.30% | | Savings from renewable energy | 2.85 | 39.83% | | Cumulative on-site savings | 5.23 | 73.13% | 4.26 The residential aspect of the development has achieved a 73.13% saving overall. The development utilises an efficient ASHP and PV array to demonstrate a 39.83% carbon saving from the inclusion of renewable energy. # 5 CONCLUSION - 5.1 This Sustainability and Energy Statement, has been prepared by Envision on the behalf of Airspace Group Ltd and is submitted in support of the full planning application for the construction of 8 additional residential flats on top of an existing residential block. - 5.2 The most relevant policy when considering the sustainability of the application of CC1 of the Local Plan. This requires all development to follow the London Plan requirements and to minimise the effects of climate change and encourage all developments to meet the highest feasible environmental standards that are financially viable during construction and occupation. - 5.3 The Local Plan details that the energy hierarchy should be followed, and that savings should be made through energy efficient fabric and renewable and LZC technologies. - 5.4 The Energy Statement presented in Section 4 of this report explains the approach which has been taken to minimise carbon emissions. A reduction in emissions has been achieved through adopting efficient building fabric, including new insulation and highly efficient glazing. Measures are also incorporated to minimise pollution, footprint of the development and reduce water use. - 5.5 The scheme will incorporate a range of energy-saving measures and is to achieve a 73.13% reduction in carbon emissions, compared to a notional existing building baseline. A 39.83% saving has been achieved through the inclusion of highly efficient ASHPs and PV. - 5.6 The development is considered to comply with the London Borough of Camden's Energy and Sustainability policies, along with those found within the London Plan (2021). # **APPENDIX I
– SAP CALCULATIONS** | Property Reference | e | D | velling 3 | | | | | | | Issued on Da | ate | 25/06/2024 | | |--|---|---------------------------------------|-------------------------|-------------------------------------|-------------------------|---|---|--|-----------------------------------|--------------------------------|--|--|--| | Assessment Refer | ence | | velling 1_Be G | reen_Copy | | | | Prop Type R | ef | | | | | | Property | | SI | 17 1AD | | | | | | | | | | | | SAP Rating | | | | | 92 A | | DER | 1.3 | 11 | TER | | 6.31 | | | Environmental | | | | | 99 A | | % DER < TEI | |) | | | 79.24 | | | CO ₂ Emissions (t/y | /ear) | | | | 0.11 | | DFEE | 34. | .40 | TFEE | | 37.66 | | | Compliance Check | | | | | See BREL | | % DFEE < TF | | | | | 8.63 | | | % DPER < TPER | | | | | 45.99 | | DPER | 18. | .76 | TPER | ₹ | 34.73 | | | Accessor Details | | Ma Cam | \A/=II:- | | | | | | | A 2 2 2 | oor ID | DAEC 000 | 04 | | Assessor Details Client | | Mr. Sam | vvailis | | | | | | | Asse | ssor ID | BA56-00 | U1 | | SAP 10 WORKSHEET
CALCULATION OF D | FOR New B | uild (As I | esigned)
R REGULATIO | (Version 10 | .2, February | | | | | | | | | | 1. Overall dwell Ground floor | ing charac | teristics | | | | | | Area (m2) | | rey height (m) 2.6500 | (2b) = | Volume
(m3)
328.6000 | (1b) - (3b | | Total floor area Dwelling volume 2. Ventilation r | |)+(1b)+(1c | :)+(1d)+(1e) | (1n) | | 4.0000 | | | 3a)+(3b)+(3c) | +(3d)+(3e) | (3n) = | 328.6000 | (4) (5) | | | | | | | | | | | | | n | n3 per hour | | | Number of open c
Number of open f
Number of chimme
Number of flues
Number of flues
Number of blocke
Number of interm
Number of passiv
Number of fluele | lues ys / flues attached t attached t d chimneys ittent ext e vents | o solid fu
o other he
ract fans | el boiler | fire | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
0 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | thod
AP50
e | ys, flues | and fans | = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+ | (6g)+(7a)+ | (7b)+(7c) = | | 0.0000 | / (5) = | es per hour
0.0000
Yes
Blower Door
3.0000
0.1500 | (17) | | Shelter factor
Infiltration rat | e adjusted | to includ | de shelter i | factor | | | | | (20) = 1 - | [0.075 x
21) = (18) | | 0.9250
0.1388 | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | 0.9250 | 1.0000 | Oct
4.3000
1.0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | (22a) | | Balanced mechan
If mechanical ve
If exhaust air h
If balanced with | ntilation
eat pump u | sing Apper | ndix N, (23k | o) = (23a) x | | | | (23b) = (23b) | | 0.1492 | 0.1561 | 0.1630
0.5000
0.5000
71.2000 | (23a)
(23b) | | Effective ac | 0.3209 | 0.3174 | 0.3140 | 0.2966 | 0.2932 | 0.2758 | 0.2758 | | 0.2827 | 0.2932 | 0.3001 | 0.3070 | | | 3. Heat losses a Element | nd heat lo | ss paramet | er | | Openings | Net |
:Area | U-value | Ах | | -value | АхК | | | door
Window (Uw = 0.8
external wall
corridor wall
external roof
Total net area o
Fabric heat loss
Party Wall 1
Party Floor 1 | f external | | 1 | m2
99.6400
29.6800
24.0000 | m2
50.0900
2.0000 | 2.
50.
49.
27.
124.
253. | m2
.0000
.0900
.5500
.6800
.0000 | W/m2K
1.0000
0.7752
0.1300
0.1500
0.1100
(30) + (32)
0.0000 | 2.000
38.829
6.441
4.152 | K
00
95
5
20
00 | kJ/m2K | kJ/K | | | Thermal mass par
Thermal bridges
Point Thermal br
Total fabric hea | (User defi
idges | | | | area) | | | | (: | 33) + (36) | (36a) =
+ (36a) = | 120.0000
20.2656
0.1500
85.4786 | (36)
(36a) | SAP 10 Online 2.13.6 Page 1 of 7 | | eat loss ca | lculated mo | nthly (38)m | = 0 33 x | (25)m x (5) | | | | | | | | | |---|---|--|---|---|--|--|--|---|--|---|--|--|--| | (38)m | Jan
34.7984 | Feb
34.4223 | Mar
34.0461 | Apr
32.1654 | May
31.7893 | Jun
29.9086 | Jul
29.9086 | Aug
29.5324 | Sep
30.6608 | Oct
31.7893 | Nov
32.5416 | Dec
33.2939 | (38) | | Heat transfer Average = Sum | 120.2770 | 119.9008 | 119.5247 | 117.6440 | 117.2678 | 115.3871 | 115.3871 | 115.0110 | 116.1394 | 117.2678 | 118.0201 | 118.7724
117.5499 | (39) | | - | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | HLP
HLP (average)
Days in mont | 0.9700 | 0.9669 | 0.9639 | 0.9487 | 0.9457 | 0.9305 | 0.9305 | 0.9275 | 0.9366 | 0.9457 | 0.9518 | 0.9578
0.9480
31 | (40) | | Days in mone | 31 | 20 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | | | | | 4. Water heat | ing energy | requirement | s (kWh/year |) | | | | | | | | | | | Assumed occup-
Hot water usa | ancy | | | | | | | | | | | 2.8775 | (42) | | Hot water usa | 90.5832
ge for bath | 89.2219
s | 87.2383 | 83.4429 | 80.6420 | 77.5185 | 75.7430 | 77.7117 | 79.8697 | 83.2234 | 87.1003 | 90.2362 | | | Hot water usa | 31.2862
ge for othe
44.0988 | 30.8216
r uses
42.4952 | 30.1673
40.8916 | 28.9608 | 28.0575
37.6844 | 27.0558
36.0808 | 26.5147
36.0808 | 27.1644
37.6844 | 27.8719 | 28.9437
40.8916 | 30.1750
42.4952 | 31.1805
44.0988 | | | Average daily | | | | 39.2000 | 37.0044 | 30.0000 | 30.0000 | 37.0044 | 39.2000 | 40.0910 | 42.4552 | 152.6118 | | | Daily hot wat | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy conten | | 162.5387
231.4530 | 158.2972
243.2969 | 151.6918
207.6584 | 146.3839
197.0608 | 140.6551
172.9518 | 138.3386
167.3085 | 142.5606
176.5198 | 147.0296
181.3022 | 153.0588
207.6993
Total = S | 159.7706
227.6225
um(45)m = | 165.5154
259.1572
2534.8836 | | | Distribution | 39.4280 | = 0.15 x (
34.7180 | 45)m
36.4945 | 31.1488 | 29.5591 | 25.9428 | 25.0963 | 26.4780 | 27.1953 | 31.1549 | 34.1434 | 38.8736 | (46) | | Water storage
Store volume
a) If manufa | | ared loss f | actor is kn | own (kWh/ | 4au) • | | | | | | | 210.0000 | | | Temperature
Enter (49) or | factor fro
(54) in (5 | m Table 2b | | (2011/ | 27 - | | | | | | | 0.5400
0.9558 | (49) | | Total storage | 29.6298 | 26.7624 | 29.6298 | 28.6740 | 29.6298 | 28.6740 | 29.6298 | 29.6298 | 28.6740 | 29.6298 | 28.6740 | 29.6298 | (56) | | If cylinder c | 29.6298
23.2624 | 26.7624
21.0112 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | | | Combi loss
Total heat re | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | WWHRS | 315.7454
0.0000 | 279.2266
0.0000 | 296.1891
0.0000 |
258.8444
0.0000 | 249.9530
0.0000 | 224.1378
0.0000 | 220.2007
0.0000 | 229.4120
0.0000 | 232.4882 | 260.5915
0.0000 | 278.8085
0.0000 | 312.0494
0.0000 | (63a) | | PV diverter
Solar input
FGHRS | -0.0000
0.0000
0.0000 (63c) | | Output from w | | 279.2266 | 296.1891 | 258.8444 | 249.9530 | 224.1378 | 220.2007 | 229.4120 | 232.4882 | 260.5915 | 278.8085 | 312.0494 | | | 12Total per y | | ar) | | | | | | Total p | er year (kW | h/year) = S | um (64) m = | 3157.6466
3158 | | | Electric show | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
al Energy u | 0.0000 | 0.0000 | 0.0000 | 0.0000
wer(s) (bWh | 0.0000
/wear) = Su | 0.0000
m(64a)m = | 0.0000 | | | Heat gains fr | | ating, kWh/
115.1770 | | 109.9952 | 107.8365 | 98.4553 | 97.9438 | 101.0066 | 101.2318 | 111.3738 | 116.6333 | 128.4835 | Metabolic gai | ains (see T | able 5 and | 5a) | | | | | | | | | | | | Metabolic gai | ains (see T

ns (Table 5
Jan
143.8766 | able 5 and
), Watts
Feb
143.8766 | 5a)

Mar
143.8766 | Apr
143.8766 | May
143.8766 | Jun
143.8766 | | | Sep
143.8766 | Oct
143.8766 | Nov
143.8766 | Dec
143.8766 | (66) | | Metabolic gai
(66)m
Lighting gain | ains (see T
ns (Table 5
Jan
143.8766
s (calculat
146.4397 | able 5 and
), Watts
Feb
143.8766
ed in Appen
162.1297 | Mar
143.8766
dix L, equa
146.4397 | Apr
143.8766
tion L9 or
151.3211 | May
143.8766
L9a), also:
146.4397 | Jun
143.8766
see Table 5
151.3211 | Jul
143.8766
146.4397 | Aug
143.8766 | | 143.8766 | | | | | Metabolic gai | ains (see T

ns (Table 5
Jan
143.8766
s (calculat
146.4397
ins (calcul
290.3331 | able 5 and
), Watts
Feb
143.8766
ed in Appen
162.1297
ated in App
293.3459 | Mar
143.8766
dix L, equa
146.4397
endix L, eq
285.7539 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913 | May
143.8766
L9a), also:
146.4397
or L13a), a.
249.1890 | Jun
143.8766
see Table 5
151.3211
lso see Tab
230.0137 | Jul
143.8766
146.4397
le 5
217.2035 | Aug
143.8766
146.4397 | 143.8766
151.3211 | 143.8766
146.4397 | 143.8766 | 143.8766 | (67) | | Metabolic gain
(66)m
Lighting gain
Appliances ga
Cooking gains
Pumps, fans | ains (see T Table 5 Jan 143.8766 s (calculat 146.4397 ins (calcul 290.3331 (calculate 37.3877 0.0000 | able 5 and), Watts Feb 143.8766 ed in Appen 162.1297 ated in App 293.3459 d in Append 37.3877 0.0000 | Mar
143.8766
dix L, equa
146.4397
endix L, eq
285.7539
dix L, equat
37.3877
0.0000 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000 | May
143.8766
L9a), also:
146.4397
or L13a), a.
249.1890 | Jun
143.8766
see Table 5
151.3211
lso see Tab
230.0137
see Table | Jul
143.8766
146.4397
le 5
217.2035 | Aug
143.8766
146.4397
214.1907
37.3877 | 143.8766
151.3211 | 143.8766
146.4397 | 143.8766
151.3211 | 143.8766
146.4397 | (67)
(68)
(69) | | Metabolic gai
(66)m
Lighting gain
Appliances ga
Cooking gains
Pumps, fans
Losses e.g. e | ains (see T S (Table 5 Jan 143.8766 6 (calculat 146.4397 ins (calcul 290.3331 (calculate 37.3877 0.0000 vaporation -115.1013 | able 5 and | Mar
143.8766
dix L, equa
146.4397
endix L, eq
285.7539
dix L, equat
37.3877
0.0000
ralues) (Tab | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
le 5) | May
143.8766
L9a), also:
146.4397
or L13a), a:
249.1890
L15a), also
37.3877 | Jun
143.8766
see Table 5
151.3211
Iso see Tab
230.0137
see Table
37.3877
0.0000 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000 | 143.8766
151.3211
221.7828
37.3877
0.0000 | 143.8766
146.4397
237.9453
37.3877
0.0000 | 143.8766
151.3211
258.3476
37.3877
0.0000 | 143.8766
146.4397
277.5229
37.3877
0.0000 | (67)
(68)
(69)
(70) | | Metabolic gain
(66)m
Lighting gain
Appliances ga
Cooking gains
Pumps, fans | ains (see T
 | able 5 and | Mar 143.8766 dix L, equa 146.4397 endix L, equa 285.7539 dix L, equat 37.3877 0.0000 alues) (Tab -115.1013 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
le 5)
-115.1013 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
0.0000 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013 | (67)
(68)
(69)
(70)
(71) | | Metabolic gai
(66)m
Lighting gain
Appliances ga
Cooking gains
Pumps, fans
Losses e.g. e | ains (see T | able 5 and | Mar
143.8766
dix L, equa
146.4397
vendix L, eq
285.7539
dix L, equat
37.3877
0.0000
values) (Tab
-115.1013 | Apr
143.8766
tion L9 or
151.3211
vaction L13
269.5913
ion L15 or
37.3877
0.0000
le 5)
-115.1013 | May
143.8766
L9a), also:
146.4397
or L13a), a:
249.1890
L15a), also
37.3877
0.0000 | Jun 143.8766 see Table 5 151.3211 lso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | Metabolic gai
(66)m
Lighting gain
Appliances ga
Cooking gains
Pumps, fans
Losses e.g. e
Water heating
Total interna | ains (see T | able 5 and | Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 lix L, equa 37.3877 0.0000 alues) (Tab -115.1013 165.6048 663.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
ile 5)
-115.1013
152.7711
639.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
0.0000
-115.1013
144.9415
606.7333 | Jun 143.8766 see Table 5 151.3211 Sso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | Metabolic gai
(66)m
Lighting gain
Appliances ga
Cooking gains
Pumps, fans
Losses e.g. e | ains (see T | able 5 and | Mar 143.8766 dix L, equa 146.4397 endix L, equa 285.7539 dix L, equat 37.3877 0.0000 alues) (Tab -115.1013 165.6048 663.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
le 5)
-115.1013
152.7711
639.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
0.0000
-115.1013
144.9415
606.7333 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | Metabolic gai (66)m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna | ains (see T | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 lix L, equat 37.3877 0.0000 alues) (Tab -115.1013 165.6048 663.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
ile 5)
-115.1013
152.7711
639.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
0.0000
-115.1013
144.9415
606.7333 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 |
143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | Metabolic gai (66)m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna | ains (see T. Jan 143.8766 s (calculat 146.4397 o.0000 vaporation -115.1013 gains (Tab 174.3447 l gains 677.2805 | able 5 and | Mar
143.8766
dix L, equa
146.4397
endix L, eq
285.7539
dix L, equat
37.3877
0.0000
alues) (Tab
663.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
le 5)
-115.1013
152.7711
639.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
0.0000
-115.1013
144.9415
606.7333 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013
172.6929
662.8185 | (67)
(68)
(69)
(70)
(71)
(72)
(73) | | Metabolic gai (66) m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna | mins (see T- ms (Table 5 Jan 143.8766 s (calculat 146.4397 ins (calcul) 290.3331 (calculate 37.3877 0.0000 vaporation -115.1013 gains (Tab 174.3447 l gains 677.2805 | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 dix L, equat 37.3877 0.0000 alues) (Tab 663.9614 A 4.0 30.55 15.5 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 0.0000 le 5) -115.1013 152.7711 639.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223 | 143.8766
146.4397
277.5229
37.3877
0.0000
-115.1013
172.6929
662.8185 | (67)
(68)
(69)
(70)
(71)
(72)
(73) | | Metabolic gai (66) m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain [Jan] Northeast Southeast Southwest | ains (see T | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 dix L, equas 37.3877 0.0000 calues) (Tab 663.9614 4.0 30.5 15.5 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 0.0000 le 5) -115.1013 152.7711 639.8465 | May 143.8766 L9a), also: 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 fic data Table 6b 0.5700 0.5700 0.5700 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table
0.77
0.77 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223
ss
or
6d
00
00
00
659.6353 | 143.8766 146.4397 277.5229 37.3877 0.0000 -115.1013 172.6929 662.8185 Gains W 14.3333 354.8605 180.8021 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83) | | Metabolic gai (66)m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain [Jan] Northeast Southeast Southwest | ains (see T | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 dix L, equas 37.3877 0.0000 calues) (Tab 663.9614 4.0 30.5 15.5 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 0.0000 le 5) -115.1013 152.7711 639.8465 | May 143.8766 L9a), also: 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 fic data Table 6b 0.5700 0.5700 0.5700 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table
0.77
0.77 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223
ss
or
6d
00
00
00
659.6353 | 143.8766 146.4397 277.5229 37.3877 0.0000 -115.1013 172.6929 662.8185 Gains W 14.3333 354.8605 180.8021 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83) | | Metabolic gai (66) m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain [Jan] Northeast Southeast Southwest | mins (see T- ns (Table 5 Jan 143.8766 s (calculat 146.4397 ins (calculate 37.3877 0.0000 vaporation -115.1013 gains (Table 174.3447 1 gains 677.2805 | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 lix L, equat 37.3877 0.0000 alues) (Tab -115.1013 165.6048 663.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
0.0000
le 5)
-115.1013
152.7711
639.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511
fic data
Table 6b
0.5700
0.5700
0.5700 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table
0.77
0.77 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223
ss
or
6d
00
00
00
659.6353 | 143.8766 146.4397 277.5229 37.3877 0.0000 -115.1013 172.6929 662.8185 Gains W 14.3333 354.8605 180.8021 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83) | | Metabolic gai (66)m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain [Jan] Northeast Southeast Southeast Southeast Southast Total gains 7. Mean inter | mins (see T- ms (Table 5 Jan 143.8766 s (calculat 146.4397 ins (calculat 290.3331 (calculate 37.3877 0.0000 vaporation -115.1013 gains (Tab 174.3447 l gains 677.2805 | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, equa 285.7539 dix L, equat 37.3877 0.0000 alues) (Tab -115.1013 165.6048 663.9614 A.0.0 30.5 15.5 1300.9943 1964.9556 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 0.0000 le 5) -115.1013 152.7711 639.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511
fic data
Table 6b
0.5700
0.5700
0.5700 | Aug 143.8766 146.4397 214.1907 37.3877 0.0000 -115.1013 135.7615 562.5550 Specific or Tab 0 0 0 1612.0293 2174.5843 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table
0.77
0.77 | 143.8766
151.3211
258.3476
37.3877
0.0000
-115.1013
161.9907
637.8223
ss
or
6d
00
00
00
659.6353 | 143.8766 146.4397 277.5229 37.3877 0.0000 -115.1013 172.6929 662.8185
Gains W 14.3333 354.8605 180.8021 470.1209 1132.9394 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83)
(84) | | Metabolic gai (66) m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain [Jan] Northeast Southeast Southwest Solar gains Total gains Total gains | ains (see T ns (Table 5 Jan 143.8766 s (calculat 146.4397 ins (calculate 37.3877 0.0000 vaporation -115.1013 gains (Table 174.3447 l gains 677.2805 | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 lix L, equat 37.3877 0.0000 alues) (Tab -115.1013 165.6048 663.9614 4.00 30.5 15.5 1300.9943 1964.9556 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 0.0000 le 5) -115.1013 152.7711 639.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 1848.6578 2455.3910 | Jun 143.8766 see Table 5 151.3211 Iso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or 1843.7994 2428.0407 | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511
fic data
Table 6b
0.5700
0.5700
0.5700 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766 151.3211 221.7828 37.3877 0.0000 -115.1013 140.5997 579.8665 FF data le 6c .8000 .8000 .8000 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table
0.77
0.77
0.77
1044.0865
1644.3304 | 143.8766 151.3211 258.3476 37.3877 0.0000 -115.1013 161.9907 637.8223 ss or 6dd 00 00 00 659.6353 1297.4576 | 143.8766 146.4397 277.5229 37.3877 0.0000 -115.1013 172.6929 662.8185 Gains W 14.3333 354.8605 180.8021 470.1209 1132.9394 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83)
(84) | | Metabolic gai (66) m Lighting gain Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain [Jan] Northeast Southeast Southeast Southwest 7. Mean interna 7. Mean interna | ains (see T | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 endix L, eq 285.7539 dix L, equat 37.3877 0.0000 calues) (Tab -115.1013 165.6048 663.9614 A 4.0 30.5 15.5 1300.9943 1964.9556 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 0.0000 le 5) -115.1013 152.7711 639.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 0.0000 -115.1013 144.9415 606.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 2455.3910 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or 1843.7994 2428.0407 Th1 (C) Jun 35.8214 | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 gfic data Table 6b 0.5700 0.5700 0.5700 1774.0779 2335.5290 | Aug 143.8766 146.4397 214.1907 37.3877 0.0000 -115.1013 135.7615 562.5550 Specific or Tab 0 0 0 1612.0293 2174.5843 | 143.8766 151.3211 221.7828 37.3877 0.0000 -115.1013 140.5997 579.8665 FF data le 6c .8000 .8000 .415.8363 1995.7028 | 143.8766
146.4397
237.9453
37.3877
0.0000
-115.1013
149.6959
600.2440
Acce
fact
Table
0.77
0.77
1044.0865
1644.3304 | 143.8766 151.3211 258.3476 37.3877 0.0000 -115.1013 161.9907 637.8223 ss or 6d 00 00 059.6353 1297.4576 | 143.8766 146.4397 277.5229 37.3877 0.0000 -115.1013 172.6929 662.8185 Gains W 14.3333 354.8605 180.8021 470.1209 1132.9394 21.0000 Dec 34.8004 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83)
(84) | SAP 10 Online 2.13.6 Page 2 of 7 | | 0.9126 | 0.8267 | 0.7174 | 0.5699 | 0.4274 | 0.3004 | 0.2164 | 0.2418 | 0.3903 | 0.6449 | 0.8502 | 0.9277 | (86) | |--|--|--|--|-------------------------------|-------------------------|-------------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|--|-------------------------| | Living
Non living
24 / 16 | 19.8705
18.7981
0 | 20.2309
19.2367
0 | 20.5292
19.5899
0 | 20.7575
19.8581
0 | 20.8597
19.9678
0 | 20.8983
20.0172
0 | 20.9065
20.0236
0 | 20.9054
20.0257
0 | 20.8822
19.9990
0 | 20.7211
19.8290
0 | 20.2774
19.3122
0 | 19.8020
18.7217
0 | | | 24 / 9
16 / 9
MIT | 28
20.4222 | 0
0
20.2309 | 0
0
20.5292 | 0
0
20.7575 | 0
0
20.8597 | 0
0
20.8983 | 0
0
20.9065 | 0
0
20.9054 | 0
0
20.8822 | 0
0
20.7211 | 0
0
20.2774 | 0
10
19.9696 | | | Th 2
util rest of h | 20.1084
house
0.9009 | 0.8075 | 0.6909 | 20.1263
0.5372 | 0.3909 | 20.1416 | 20.1416 | 0.1974 | 20.1365 | 0.6062 | 20.1237 | 20.1186 | | | MIT 2
Living area fi | 19.5860 | 19.2367 | 19.5899 | 19.8581 | 19.9678 | 20.0172 | 20.0236 | 20.0257 | 19.9990 | 19.8290
Living are | 19.3122 | 18.9734
0.4508 | (90) | | MIT
Temperature ac | 19.9630 | 19.6849 | 20.0133 | 20.2636 | 20.3699 | 20.4144 | 20.4216 | 20.4223 | 20.3971 | 20.2312 | 19.7473 | 19.4225 | | | adjusted MIT | | 19.6849 | 20.0133 | 20.2636 | 20.3699 | 20.4144 | 20.4216 | 20.4223 | 20.3971 | 20.2312 | 19.7473 | 19.4225 | (93) | | | | | | | | | | | | | | | | | 8. Space heat: | | | | | | | | | | | | | | | Utilication | Jan
0.8989 | Feb
0.7974 | Mar | Apr | May
0.4011 | Jun | Jul
0.1883 | Aug
0.2119 | Sep
0.3585 | Oct
0.6109 | Nov
0.8200 | Dec
0.9088 | (94) | | Utilisation Useful gains Ext temp. Heat loss rate | 1103.1409
4.3000 | | 0.6877
1351.3087
6.5000 | 0.5425
1233.1001
8.9000 | 984.9476
11.7000 | 0.2737
664.6712
14.6000 | 439.7049
16.6000 | 460.7069
16.4000 | 715.4624 | 1004.5619 | | | (95) | | Space heating | 1883.8953 | 1772.7198 | 1615.1749 | 1336.8568 | 1016.7011 | 670.9114 | 440.9665 | 462.6089 | 731.3458 | 1129.4245 | 1492.6415 | 1808.0115 | (97) | | Space heating
Space heating
Solar heating | 580.8813
requiremen | | 196.3165
er year (kW) | 74.7049
h/year) | 23.6246 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.8978 | 308.6720 | 579.1383
2171.5352 | (98a) | | Solar heating
Space heating | 0.0000
contributi | 0.0000
on - total p | 0.0000
per year (k | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | 580.8813 | 315.2998
t after sola | | 74.7049
tion - total | 23.6246
L per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 92.8978 | 308.6720 | 579.1383
2171.5352 | (98c) | | Space heating | per m2 | | | | | | | | | (98c |) / (4) = | 17.5124 | (99) | | | | | | | | | | | | | | | | | 9a. Energy red | quirements | - Individua | l heating s | ystems, incl | luding micr | O-CHP | | | | | | | | | Fraction of sp
Fraction of sp
Efficiency of
Efficiency of | pace heat f
pace heat f
main space
main space | rom seconda:
rom main sy:
heating sy:
heating sy: | ry/supplements
stem(s)
stem 1 (in stem 2 (in stem 2) | ntary system
%)
%) | | | | | | | | 0.0000
1.0000
274.2634
0.0000 | (202)
(206)
(207) | | Efficiency of | Jan | Feb | ry neating :
Mar | system, * Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 0.0000
Dec | (208) | | Space heating | requiremen | | | 74.7049 | 23.6246 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.8978 | 308.6720 | 579.1383 | (98) | | Space heating | efficiency | (main heat: | | 1) | 274.2634 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 274.2634 | 274.2634 | 274.2634 | | | Space heating | fuel (main | | | 27.2384 | 8.6139 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 33.8717 | 112.5458 | 211.1614 | | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requiremen | + | | | | | | | | | | | | | Efficiency of | 315.7454 | 279.2266 | 296.1891 | 258.8444 | 249.9530 | 224.1378 | 220.2007 | 229.4120 | 232.4882 | 260.5915 | 278.8085 | 312.0494
279.6279 | | | | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | 279.6279 | | | Space cooling | | rement | 105.9226 | 92.5675 | 89.3877 | | 78.7478 | 82.0419 | 83.1420 | 93.1923 | 99.7070 | | | | (221)m
Pumps and Fa | 0.0000
42.3221 | 0.0000
38.2264 | 0.0000
42.3221 | 0.0000
40.9569 | 0.0000
42.3221 | 40.9569 | 0.0000
42.3221 | 0.0000
42.3221 | 0.0000
40.9569 | 0.0000
42.3221 | 0.0000
40.9569 | 0.0000
42.3221 | (231) | | Lighting
Electricity ge | | 22.7135
PVs (Append
-57.1881 | | | | | 10.5578 | 13.7234 | 17.8253 | 23.3878 | 26.4164 | | | | (233a)m
Electricity ge
(234a)m | | wind turbin | | | | | 0.0000 | -96.7059
0.0000 | -82.7267 | -66.1839
0.0000 | -43.0555
0.0000 | -32.9691 | | | Electricity ge
(235a)m | | hydro-elect | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity us
(235c)m | | electricity | | | | N) (negati | | | 0.0000 | 0.0000 | 0.0000 | | (235c) | | Electricity ge | enerated by | | dix M) (neg | ative quanti | ity) | | | | -73.7364 | -40.6620 | -16.3543 | -8.9448 | | | Electricity ge
(234b)m | | wind turbing | | | | ty) | 0.0000 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | | (234b) | | Electricity ge | | | | | | gative quant | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity us
(235d)m | | | | | | N) (negati | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Annual totals
Space heating | kWh/year | | | | | | | | | | | 791.7701 | | | Space heating
Space heating | fuel - mai | n system 2 | | | | | | | | | | 0.0000 | (213) | | Efficiency of
Water heating | water heat | | | | | | | | | | | 279.6279
1129.2317 | (219) | | Space cooling | fuel | | | | | | | | | | | 0.0000 | | | | WithHeatRec | overy, Datal | | e factor = 1 | L.1000, SFE | e = 1.2430) | | | | | | | | | Total electric | city for th | | h/year | 2430) | | | | | | | | 498.3088
498.3088 | (231) | | Electricity fo | | | | | | | | | | | | 228.5002 | (232) | | Energy saving,
PV generation | | technologie | es (Appendi | ces M ,N and | i Q) | | | | | | | -1727.2394 | | | Wind generation Hydro-electric | c generatio | | | | | | | | | | | 0.0000 | (235a) | | Electricity ge
Appendix Q - s | | | whheuarx N) | | | | | | | | | 0.0000 | (233) | SAP 10 Online 2.13.6 Page 3 of 7 | Energy saved or
Energy used
Total delivered | | r all uses | | | | | | | | | | -0.0000
0.0000
920.5713 | (237) | |---|------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------------|----------------------|------------------|----------------------------------|---------------------------------------|----------------| | 12a. Carbon diox | kide emiss | ions - Indi | vidual heat: | ing systems | | micro-CHP | | | | | | | | | | | | | | | | | Energy
kWh/year | kg | | k | Emissions
g CO2/year | | | Space heating -
Total CO2 associ
Water heating (c | iated with | community : | systems | | | | | 791.7701 | | 0.1578 | | 124.9210
0.0000
159.2364 | (373) | | Space and water
Pumps, fans and | heating | | | | | | | 498.3088 | | 0.1387 | | 284.1573
69.1216 | (265) | | Energy for light Energy saving/g | | tochnologi | 0.5 | | | | | 228.5002 | | 0.1443 | | 32.9796 | (268) | | PV Unit electric | city used | in dwelling | | | | | | -927.4925
-799.7469 | | 0.1337
0.1242 | | -124.0139
-99.3377 | | | Total
Total CO2, kg/ye
EPC Dwelling Car | ear | | Pate (DER) | | | | | | | | | -223.3516
162.9069
1.3100 | (272) | | DIO DWOILING OUL | 2000 210011 | do 2.112022011 | 11400 (2211) | | | | | | | | | 1.0100 | (270) | | 13a. Primary ene | ergy - Ind | ividual hear | ting systems | s including | micro-CHP | | | | | | | | | | | | | | | | | | Energy 1 | Primary energy
kg | | | nary energy
kWh/year | | | Space heating -
Total CO2 associ | iated with | community : | systems | | | | | 791.7701 | | 1.5840 | | 1254.1464 | (275)
(473) | | Water heating (c
Space and water | heating | | | | | | | 1129.2317
498.3088 | | 1.5214 | | 1718.0366
2972.1830
753 8415 | (279) | | Pumps, fans and
Energy for light | erectric
ing | reeh-uor | | | | | | 498.3088
228.5002 | | 1.5128
1.5338 | | 753.8415
350.4812 | | | Energy saving/g
PV Unit electric
PV Unit electric | city used | in dwelling | | | | | | -927.4925
-799.7469 | | 1.4941
0.4559 | | -1385.7826
-364.5905
-1750.3731 | | | Total
Total Primary en
Dwelling Primary | | | | | | | | | | | | 2326.1326
18.7600 | (286) | | 1 Overall dual | | | | | | | | | | | | | | | 1. Overall dwell | ling chara | cteristics | | | | | | Area | Storey | y height | | Volume | | | Ground floor
Total floor area | a TFA = (1 | a) + (1b) + (1c) |)+(1d)+(1e) | (1n) | 1 | 24.0000 | | (m2)
124.0000 | (1b) x | (m)
2.6500 | (2b) = | (m3)
328.6000 | (1b) - (3b | | Dwelling volume | | | | | | | | (3a | a)+(3b)+(3c)+ | (3d) + (3e) | (3n) = | 328.6000 | (5) | | 2. Ventilation r | n | 3 per hour | | | Number of open of
Number of open f | | | | | | | | | | | 0 * 80 =
0 * 20 = | 0.0000 | | | Number of chimne
Number of flues | eys / flue
attached | to solid fue | el boiler | ire | | | | | | | 0 * 10 =
0 * 20 = | 0.0000 | (6c)
(6d) | | Number of flues
Number of blocke
Number of interm | ed chimney | S | ater | | | | | | | | 0 * 35 =
0 * 20 =
4 * 10 = | 0.0000
0.0000
40.0000 | (6f) | | Number of passiv
Number of fluele | e vents | | | | | | | | | | 0 * 10 =
0 * 40 = | 0.0000 | (7b) | | Infiltration due | | | and fonc | = (60)±/65) | +(60)+(64)+ | (60)±(64); | 6a) + 17a) + 17 | h)+(7a) = | | 40 0000 | Air change | s per hour
0.1217 | (8) | | Pressure test Pressure Test Me | | ∟y∍, ⊥⊥ues a | unu taliS = | - (ua) + (bb) | , (UC) + (BQ) + | (UE) T (UI) + (| og, 1 (/a) + (/. | ω) · (/ ∪) = | | -10.0000 | | Yes
Slower Door | | | Measured/design
Infiltration rat
Number of sides | te | | | | | | | | | | | 5.0000
0.3717
1 | | | Shelter factor
Infiltration rat | ie adjuste | d to include | e shelter fa | actor | | | | | (20) = 1 - (21) | | x (19)] =
x (20) = | 0.9250
0.3438 | | | Wind speed | Jan
5.1000 | Feb
5.0000 | Mar
4.9000 | Apr
4.4000 | May
4.3000 | Jun
3.8000 | Jul
3.8000 | Aug
3.7000 | Sep
4.0000 | Oct
4.3000 | Nov
4.5000 | Dec
4.7000 | (22) | | Wind factor
Adj infilt rate | 1.2750 | 1.2500 | 1.2250 | 1.1000 | 1.0750 | 0.9500 | 0.9500 | 0.9250 | 1.0000 | 1.0750 | 1.1250 | 1.1750 | (22a) | | Effective ac | 0.4384
0.5961 | 0.4298
0.5924 | 0.4212
0.5887 | 0.3782
0.5715 | 0.3696
0.5683 | 0.3267
0.5534 | 0.3267
0.5534 | 0.3181
0.5506 | 0.3438
0.5591 | 0.3696
0.5683 | SAP 10 Online 2.13.6 Page 4 of 7 | Element TER Opaque door TER Opening Type (Uw = 1.20) external wall corridor wall external roof Total net area of external elements Aum(A, m2 Fabric heat loss, W/K = Sum (A x U) Party Wall 1 | m2 99.6400 29 29.6800 2 124.0000 | m2 29.0000 70.0000 2°.122.255 | m2
2.0000
2.0000
0.6400
0.6800
4.0000
3.3200
(26) | U-value
W/m2K
1.0000
1.1450
0.1800
0.1800
0.1100
(30) + (32)
0.0000 | A x
W 2.00
33.20
12.71
4.98
13.64
= 66.54
0.00 | /K
000
61
52
24
00 | K-value
kJ/m2K | A x K
kJ/K | (26)
(27)
(29a)
(29a)
(30)
(31)
(33)
(32) | |--|--|---|--|---|---|---|--|---|--| | Thermal mass parameter (TMP = Cm / TFA) in kJ List of Thermal Bridges K1 Element E2 Other lintels (including other ste E3 Sill E4 Jamb E7 Party floor between dwellings (in E14 Flat roof E16 Corner (normal) E17 Corner (inverted - internal area E18 Party wall between dwellings Thermal bridges (Sum(L x Psi) calculated usin Point Thermal bridges Total fabric heat loss | el lintels) blocks of flats) greater than externa | al area) | | 21
21
33
48
48
21
15 | .1000
.1000
.3000
.8000
.8000
.2000
.9000 | Psi-value
0.0500
0.0500
0.05500
0.0700
0.0800
0.0900
-0.0900
0.0600
33) + (36) | Tot
1.05
1.05
1.66
3.41
3.90
1.90
-1.47
0.31
(36a) =
+ (36a) = | 50
550
60
40
80 | (36)
(36a) | | Ventilation heat loss calculated monthly (38) Jan Feb Mar | m = 0.33 x (25) m x
Apr May | (5)
Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | (38)m 64.6399 64.2353 63.8386
Heat transfer coeff | 61.9756 61.63 | 270 60.0044 | 60.0044 | 59.7039 | 60.6294 | 61.6270 | 62.3322 | 63.0694 | | | 143.2237 142.8190 142.4224 Average = Sum(39)m / 12 = | 140.5593 140.23 | 138.5881 | 138.5881 | 138.2876 | 139.2131 | 140.2108 | 140.9159 | 141.6531
140.5577 | (39) | | Jan Feb Mar | | Jun
1.1176
31 30 | Jul
1.1176
31 | Aug
1.1152
31 | Sep
1.1227
30 | Oct
1.1307
31 | Nov
1.1364
30 | Dec
1.1424
1.1335
31 | (40) | | 4. Water heating energy requirements (kWh/yea | r) | | | | | | | 2.8775 | (42) | | 72.4666 71.3776 69.7906
Hot water usage for baths | 66.7543 64.5 | 136 62.0148 | 60.5944 | 62.1693 | 63.8958 | 66.5787 | 69.6803 | 72.1889 | (42a) | | 31.2862 30.8216 30.1673
Hot water usage for other uses | | | 26.5147 | 27.1644 | 27.8719 | 28.9437 | 30.1750 | 31.1805 | | | 44.0988 42.4952 40.8916
Average daily hot water use (litres/day) | 39.2880 37.6 | 36.0808 | 36.0808 | 37.6844 | 39.2880 | 40.8916 | 42.4952 | 44.0988
135.9089 | | | Jan Feb Mar
Daily hot water use | Apr May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 147.8516 144.6944 140.8495
Energy conte 234.1608 206.0428 216.4805
Energy content (annual) | | | 123.1900
148.9876 | 127.0182
157.2751 | 131.0557
161.6048 | 136.4141
185.1126
Total = 8 | 142.3505
202.8044
Sum(45)m = | 147.4682
230.8996
2257.4179 | | | Distribution loss (46)m = 0.15 x (45)m 35.1241 30.9064 32.4721 | 27.7219 26.30 | 23.0832 | 22.3481 | 23.5913 | 24.2407 | 27.7669 |
30.4207 | 34.6349 | (46) | | Water storage loss:
Store volume
a) If manufacturer declared loss factor is k
Temperature factor from Table 2b
Enter (49) or (54) in (55)
Total storage loss | nown (kWh/day): | | | | | | | 210.0000
1.7016
0.5400
0.9188 | (48)
(49) | | 28.4842 25.7277 28.4842
If cylinder contains dedicated solar storage | 27.5653 28.48 | 342 27.5653 | 28.4842 | 28.4842 | 27.5653 | 28.4842 | 27.5653 | 28.4842 | (56) | | 28.4842 25.7277 28.4842 Primary loss 23.2624 21.0112 23.2624 Combi loss 0.0000 0.0000 0.0000 Total heat required for water heating calcula | 22.5120 23.20
0.0000 0.00 | 524 22.5120 | 28.4842
23.2624
0.0000 | 28.4842
23.2624
0.0000 | 27.5653
22.5120
0.0000 | 28.4842
23.2624
0.0000 | | 28.4842
23.2624
0.0000 | (59) | | 285,9074 252.7817 268.2270 WWHRS -33.1287 -29.2993 -30.6805 PV diverter -0.0000 -0.0000 -0.0000 Solar input 0.0000 0.0000 0.0000 FGHRS 0.0000 0.0000 0.0000 Output from w/h | 234.8899 227.09
-25.4047 -23.66
-0.0000 -0.00
0.0000 0.00 | 763 -20.2599
000 -0.0000
000 0.0000
000 0.0000 | -0.0000
0.0000
0.0000 | -20.1945
-0.0000
0.0000
0.0000 | -20.9617
-0.0000
0.0000
0.0000 | -0.0000
0.0000
0.0000 | -27.9952
-0.0000
0.0000
0.0000 | -32.5152
-0.0000
0.0000
0.0000 | (63a)
(63b)
(63c)
(63d) | | 252.7787 223.4824 237.5465 12Total per year (kWh/year) Electric shower(s) | 209.4852 203.4. | 193 183.7056 | 181.7437 | | | | 224.8865
Sum(64)m = | 2558.8743 | | | 0.0000 0.0000 0.0000 | | 0.0000
gy used by inst | | | | 0.0000
/year) = Si | | 0.0000 | | | Heat gains from water heating, kWh/month
119.2558 105.9003 113.3770 | | | | 93.6912 | | | 107.4943 | 118.1714 | (65) | | 5. Internal gains (see Table 5 and 5a) Metabolic gains (Table 5), Watts | | | | | 0 | 0 | N | Dee | | | Jan Feb Mar
(66)m 143.8766 143.8766 143.8766
Lighting gains (calculated in Appendix L, equ | | 766 143.8766 | | Aug
143.8766 | Sep
143.8766 | Oct
143.8766 | Nov
143.8766 | Dec
143.8766 | (66) | | 146.4397 162.1297 146.4397
Appliances gains (calculated in Appendix L, e | 151.3211 146.43
quation L13 or L13a | 397 151.3211
, also see Tak | 146.4397
ole 5 | | | 146.4397 | | 146.4397 | | | 290.3331 293.3459 285.7539
Cooking gains (calculated in Appendix L, equa | 269.5913 249.18
tion L15 or L15a), a | 390 230.0137
also see Table | 217.2035
5 | | | 237.9453 | | 277.5229 | | | 37.3877 37.3877 37.3877
Pumps, fans 3.0000 3.0000 3.0000 | 3.0000 3.00 | | 37.3877
0.0000 | 37.3877
0.0000 | 37.3877
0.0000 | 37.3877
3.0000 | | 37.3877
3.0000 | | | Losses e.g. evaporation (negative values) (Ta -115.1013 -115.1013 -115.1013 Water heating gains (Table 5) | | 013 -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | (71) | | ### ################################## | 140.9890 134.00 | 126.7079 | 122.2253 | 125.9291 | 130.2715 | 138.3699 | 149.2977 | 158.8325 | (72) | | 666.2258 682.2283 653.7450 | 631.0643 598.7 | 982 574.2057 | 552.0315 | 552.7225 | 569.5383 | 591.9179 | 628.1293 | 651.9581 | (73) | SAP 10 Online 2.13.6 Page 5 of 7 | 6. Solar gains | | | | | | |----------------|--|--|--|--|--| |----------------|--|--|--|--|--| | [Jan] | | | rea
m2 | Solar flux
Table 6a
W/m2 | Speci
or | | Specific
or Tab | | Acce
fact
Table | or | Gains
W | | |--|--|--
--|---|---|---|---|---|---|---|--|---| | Northeast
Southeast
Southwest | | 2.33
17.6
9.00 | 300
700 | | | 0.6300
0.6300
0.6300 | 0 | .7000
.7000
.7000 | 0.77
0.77
0.77 | 00 | 8.0343
198.6934
101.2021 | (77) | | Solar gains 307.9298 52
Total gains 974.1556 120 | | 728.4088
1382.1538 | | 1035.0660
1633.8642 | | 993.3116
1545.3431 | 902.5714
1455.2939 | | 584.5652
1176.4831 | 369.3149
997.4442 | 263.2093
915.1673 | | | 7. Mean internal temperature | | | | | | | | | | | | | | Temperature during heating p
Utilisation factor for gains | periods i | in the livi | ng area fro | m Table 9, 5 | | | | | | | 21.0000 | (85) | | tau 28.8593 2 | Feb
28.9411
2.9294 | Mar
29.0217
2.9348 | Apr
29.4063
2.9604 | May
29.4794
2.9653 | Jun
29.8246
2.9883 | Jul
29.8246
2.9883 | Aug
29.8894
2.9926 | Sep
29.6907
2.9794 | Oct
29.4794
2.9653 | Nov
29.3319
2.9555 | Dec
29.1793
2.9453 | | | util living area | 0.9215 | 0.8718 | 0.7821 | 0.6584 | 0.5059 | 0.3794 | 0.4156 | 0.6074 | 0.8216 | 0.9282 | 0.9623 | (86) | | | 19.2617
19.9588 | 19.7368
19.9614 | 20.2740
19.9735 | 20.6630
19.9758 | 20.8899
19.9864 | 20.9651
19.9864 | 20.9537
19.9884 | 20.8028
19.9823 | 20.2741
19.9758 | 19.4774
19.9712 | 18.7941
19.9664 | | | util rest of house 0.9486 | 0.9095 | 0.8525 | 0.7501 | 0.6097 | 0.4382 | 0.2976 | 0.3319 | 0.5405 | 0.7877 | 0.9152 | 0.9561 | (89) | | Living area fraction | 17.9808
18.5582 | 18.5688 | 19.2216 | 19.6648 | 19.9057
20.3494 | 19.9686
20.4179 | 19.9632 | 19.8254
fLA =
20.2660 | 19.2408
Living are
19.7066 | 18.2670
a / (4) =
18.8127 | 17.4016
0.4508
18.0294 | (91) | | Temperature adjustment | 18.5582 | 19.0954 | 19.6960 | 20.1148 | 20.3494 | 20.4179 | 20.4097 | 20.2660 | 19.7066 | 18.8127 | 0.0000 | | | 8. Space heating requirement | | | | | | | | | | | | | | Utilisation 0.9317 | Feb
0.8894 | Mar
0.8336 | Apr
0.7406 | May
0.6167 | Jun
0.4632 | Jul
0.3331 | Aug
0.3676 | Sep
0.5601 | Oct
0.7776 | Nov
0.8966 | Dec
0.9404 | | | Useful gains 907.5922 107
Ext temp. 4.3000
Heat loss rate W | 4.9000 | 6.5000 | 8.9000 | 11.7000 | 744.1851
14.6000 | 514.7691
16.6000 | 534.9565
16.4000 | 763.0154
14.1000 | 914.7771
10.6000 | 894.2932
7.1000 | 860.6277
4.2000 | | | 1976.4950 195
Space heating kWh | | | | | 796.7934 | 529.1111 | 554.4916 | | 1276.8466 | | | | | 795.2637 58
Space heating requirement -
Solar heating kWh | | | 268.4570
h/year) | 128.1308 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 269.3797 | 544.4711 | 817.1686
3888.3175 | (98a) | | | 0.0000
- total p | 0.0000
per year (ki | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating kWh 795.2637 58 Space heating requirement af | | | | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 269.3797 | 544.4711 | 817.1686
3888.3175 | (98c) | | Space heating per m2 | | | | | | | | | (98c |) / (4) = | 31.3574 | (99) | | 9a. Energy requirements - Ir | ndividual | l heating s | ystems, inc | luding micro | o-CHP | | | | | | | | | Fraction of space heat from
Fraction of space heat from
Efficiency of main space heat
Efficiency of main space heat
Efficiency of secondary/supp | main sys
ating sys
ating sys | stem(s)
stem 1 (in s
stem 2 (in s | %) | m (Table 11 |) | | | | | | 0.0000
1.0000 | | | Jan | | rv neating : | | | | | | | | | 92.3000
0.0000 | (206)
(207) | | Space heating requirement | Feb | ry neating :
Mar | | May | Jun | Jul | Aug | Sep | Oct | Nov | 92.3000 | (206)
(207) | | 795.2637 58 | 87.9764 | Mar
477.4703 | Apr
268.4570 | May
128.1308 | Jun
0.0000 | Jul
0.0000 | Aug
0.0000 | Sep
0.0000 | Oct
269.3797 | Nov
544.4711 | 92.3000
0.0000
0.0000
Dec | (206)
(207)
(208) | | Space heating efficiency (ma | 87.9764
ain heati
92.3000 | Mar
477.4703
ing system 3
92.3000 | Apr
268.4570 | = | | | = | - | 269.3797 | | 92.3000
0.0000
0.0000
Dec | (206)
(207)
(208) | | Space heating efficiency (ma 92.3000 Space heating fuel (main heat 861.6075 GS Space heating efficiency (ma 92.3000 heatin | 87.9764
ain heati
92.3000
ating sys
37.0275
ain heati | Mar
477.4703
ing system 1
92.3000
stem)
517.3026
ing system 2 | Apr 268.4570 1) 92.3000 290.8526 2) | 128.1308
92.3000
138.8199 | 0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 269.3797
92.3000
291.8523 | 544.4711
92.3000
589.8928 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398 | (206)
(207)
(208)
(98)
(210)
(211) | | Space heating efficiency (mag 92.3000 g 92.30000 92.300000 g 92.30000 92.300000 g 92.30000 92.30000000 g 92.30000 92.300000 g 92.30000 92.300000 g 92.30000 92.3000000000 g 92.3000000000000000000000000000000000000 | 87.9764
ain heati
92.3000
ating sys
37.0275
ain heati
0.0000
ating sys | Mar
477.4703
ing system :
92.3000
stem)
517.3026
ing system :
0.0000
stem 2) | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 | 128.1308
92.3000
138.8199
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 269.3797
92.3000
291.8523
0.0000 | 544.4711
92.3000
589.8928
0.0000 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212) | | Space heating efficiency (ma 92.3000 °S pace heating fuel (main hea 861.6075 63 pace heating efficiency (ma 0.0000 °S pace heating fuel (main hea 0.0000 °S pace heating fuel (secondary fuel (secondary fuel (secondary fuel (secondary fuel secondary fuel (secondary fuel secondary fuel (secondary fuel secondary fuel secondary fuel secondary fuel secondary fuel secondary fuel secondary fuel fuel fuel fuel fuel fuel fuel fuel | 87.9764
ain heati
92.3000
ating sys
37.0275
ain heati
0.0000
ating sys
0.0000 | Mar
477.4703
ing system 92.3000
stem)
517.3026
ing system 0.0000 | Apr 268.4570 1) 92.3000 290.8526 2) | 128.1308
92.3000
138.8199 |
0.0000
0.0000
0.0000 | 0.0000 | 0.0000 | 0.0000 | 269.3797
92.3000
291.8523 | 544.4711
92.3000
589.8928 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Space heating efficiency (may 22.3000 good per leading fuel (main heat 861.6075 63 good heating efficiency (may 0.0000 good heating fuel (main heat 0.0000 good heating fuel (secondar 0.0000 good heating fuel (secondar 0.0000 good heating fuel (secondar 0.0000 good fuel (secondar 0.0000 good fuel fuel fuel fuel fuel fuel fuel fuel | 87.9764
ain heati
92.3000
ating sys
37.0275
ain heati
0.0000
ating sys
0.0000
ry) | Mar
477.4703
ing system
92.3000
stem)
517.3026
ing system
0.0000
stem 2)
0.0000 | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 | 128.1308
92.3000
138.8199
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 269.3797
92.3000
291.8523
0.0000 | 544.4711
92.3000
589.8928
0.0000
0.0000 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213) | | Space heating efficiency (mg 92.3000 95 | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 ry) 0.0000 | Mar
477.4703
ing system
92.3000
stem)
517.3026
ing system
0.0000
stem 2)
0.0000 | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 | 128.1308
92.3000
138.8199
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000 | 269.3797
92.3000
291.8523
0.0000 | 544.4711
92.3000
589.8928
0.0000
0.0000 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215) | | Space heating efficiency (may 22.3000 % 92.300 | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 ry) 0.0000 | Mar
477.4703
ing system:
92.3000
stem)
517.3026
ing system:
0.0000
stem 2)
0.0000 | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 0.0000 | 128.1308
92.3000
138.8199
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000 | 269.3797
92.3000
291.8523
0.0000
0.0000 | 544.4711
92.3000
589.8928
0.0000
0.0000 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215) | | Space heating efficiency (me 92.3000 °S pace heating fuel (main heat 861.6075 65 space heating efficiency (ma 0.0000 space heating fuel (main heat 0.0000 space heating fuel (secondar 0.0000 space heating fuel (secondar 0.0000 space heating fuel secondar 1252.7787 22 space secondar space spac | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 23.4824 86.1249 /month 59.4865 ent | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 stem 2) 0.0000 237.5465 85.5929 277.5306 | Apr 268.4570 92.3000 290.8526 0.0000 0.0000 209.4852 84.6171 247.5684 | 128.1308
92.3000
138.8199
0.0000
0.0000
203.4193
83.0530
244.9269 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980 | 269.3797
92.3000
291.8523
0.0000
0.0000
212.1477
84.5965
250.7759 | 544.4711
92.3000
589.8928
0.0000
0.0000
0.0000
224.8865
85.9660
261.5994 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000
250.1310
79.8000
86.5133
289.1242 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219) | | Space heating efficiency (mm 92.30000 92.30000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.30 | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 23.4824 86.1249 /month 59.4865 ent 0.0000 | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 stem 2) 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 | 128.1308
92.3000
138.8199
0.0000
0.0000
203.4193
83.0530
244.9269
0.0000
7.3041 | 0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685 | 269.3797 92.3000 291.8523 0.0000 0.0000 212.1477 84.5965 250.7759 0.0000 7.3041 | 544.4711
92.3000
589.8928
0.0000
0.0000
224.8865
85.9660
261.5994
0.0000
7.0685 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000
250.1310
79.8000
86.5133
289.1242
0.0000
7.3041 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(217)
(219)
(221)
(231) | | Space heating efficiency (mm 92.3000 9 | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 23.4824 86.1249 /month 59.4865 ent
0.0000 6.5973 24.4099 s (Appencis).0730 | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 stem 2) 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 21.9784 ing My (negging) | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 16.1023 attached 1-153.9064 | 128.1308
92.3000
138.8199
0.0000
0.0000
0.0000
203.4193
83.0530
244.9269
0.0000
7.3041
12.4379
ity)
-153.8763 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685
10.1619 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041
11.3463 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041
14.7483 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685
19.1566 | 269.3797 92.3000 291.8523 0.0000 0.0000 212.1477 84.5965 250.7759 0.0000 7.3041 25.1345 | 544.4711
92.3000
589.8928
0.0000
0.0000
224.8865
85.9660
261.5994
0.0000 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000
0.0000
250.1310
79.8000
86.5133
289.1242 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232) | | Space heating efficiency (mg 92.3000 9 | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 23.4824 86.1249 /month 59.4865 ent 0.0000 6.5973 24.4099 (3.0730 0.0000 15.0730 0.0000 | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 stem 2) 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 dix M) (negral of the control | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 16.1023 ative quant -153.9064 ix M) (nega 0.0000 | 128.1308
92.3000
138.8199
0.0000
0.0000
0.0000
203.4193
83.0530
244.9269
0.0000
7.3041
12.4379
ity)
-153.8763
tive quanti
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685
10.1619
-139.4095
ty) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041
11.3463
-137.4796
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041
14.7483 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685
19.1566 | 269.3797 92.3000 291.8523 0.0000 0.0000 212.1477 84.5965 250.7759 0.0000 7.3041 25.1345 | 544.4711
92.3000
589.8928
0.0000
0.0000
224.8865
85.9660
261.5994
0.0000
7.0685
28.3893 | 92.3000 0.0000 0.0000 Dec 817.1686 92.3000 885.3398 0.0000 0.0000 250.1310 79.8000 86.5133 289.1242 0.0000 7.3041 31.2730 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(217)
(219)
(221)
(231)
(232)
(233a) | | Space heating efficiency (may 22.3000 92.3000 | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 23.4824 86.1249 /month 59.4865 ent 0.0000 6.5973 24.4099 s (Append 15.0730 nd turbiir 0.0000 dro-elect 0.0000 | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 stem 2) 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 21.9784 dix M) (nega-150.7193 nes (Append: 0.0000 ric general 0.0000 | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 16.1023 ative quant -153.9064 ix M) (nega 0.0000 tors (Appen. (A | 128.1308 92.3000 138.8199 0.0000 0.0000 0.0000 203.4193 83.0530 244.9269 0.0000 7.3041 12.4379 ity) -153.8763 tive quanti 0.0000 dix M) (neg, | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685
10.1619
-139.4095
ty)
0.0000
ative quant | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041
11.3463
-137.4796
0.0000
ity) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041
14.7483
-135.2578
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685
19.1566 | 269.3797
92.3000
291.8523
0.0000
0.0000
212.1477
84.5965
250.7759
0.0000
7.3041
25.1345 | 544.4711
92.3000
589.8928
0.0000
0.0000
224.8865
85.9660
261.5994
0.0000
7.0685
28.3893
-94.3423 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000
0.0000
250.1310
79.8000
86.5133
289.1242
0.0000
7.3041
31.2730
-78.9051 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(219)
(221)
(231)
(232)
(233a)
(233a)
(233a) | | Space heating efficiency (me 92.3000 9 Space heating fuel (main hea 861.6075 65 Space heating efficiency (me 0.0000 Space heating fuel (main hea 0.0000 Space heating fuel (secondar 0.0000 Space heating fuel (secondar 0.0000 Water heating fuel (secondar 0.0000 Water heating requirement 252.7787 22 Efficiency of water heater (217)m 86.4484 8 Fuel for water heating, kWh, 292.4041 25 Space cooling fuel requiremen (221)m 0.0000 Pumps and Fa 7.3041 Lighting 30.4273 2 Electricity generated by PVG (233a)m -89.6649 -11 Electricity generated by wir (234a)m 0.0000 Electricity generated by hyd (235a)m 0.0000 Electricity used or net elected by the second of sec | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.00000 23.4824 86.1249 /month 59.4865 ent 0.0000 6.5973 24.4099 s (Appent) 5.0730 ating sys 0.0000 chidal 0.00000 chidal sys 0.00000 chidal sys 0.0000 c | Mar 477.4703 ing system: 92.3000 stem: 0.0000 stem: 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 21.9784 dix M) (neg-150.7193 nes (Appendio 0.0000 tric generated 10.0000 generated 10.0000 generated 10.0000 | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 16.1023 ative quant -153.9064 ix M) (nega 0.0000 tors (Appen 0.0000 by micro-CH 0.0000 | 128.1308 92.3000 138.8199 0.0000 0.0000 0.0000 203.4193 83.0530 244.9269 0.0000 7.3041 12.4379 ity) -153.8763 tive quanti 0.0000 0.0000 P (Appendix 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685
10.1619
-139.4095
ty)
0.0000
ative quant | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041
11.3463
-137.4796
0.0000
ity) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041
14.7483
-135.2578
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685
19.1566
-130.2876
0.0000 | 269.3797 92.3000 291.8523 0.0000 0.0000 212.1477 84.5965 250.7759 0.0000 7.3041 25.1345 -123.3131 0.0000 | 544.4711
92.3000
589.8928
0.0000
0.0000
224.8865
85.9660
261.5994
0.0000
7.0685
28.3893
-94.3423
0.0000 | 92.3000
0.0000
0.0000
Dec
817.1686
92.3000
885.3398
0.0000
0.0000
250.1310
79.8000
86.5133
289.1242
0.0000
7.3041
31.2730
-78.9051
0.0000 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(217)
(219)
(221)
(231)
(232)
(233a)
(234a)
(235a) | | Space heating efficiency (me 92.3000 Space heating fuel (main heat 861.6075 6: Space heating efficiency (me 0.0000 Space heating fuel (main heat 0.0000 Space heating fuel (secondar fuel fuel fuel fuel fuel fuel fuel | 87.9764 ain heati
92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.0000 23.4824 86.1249 /month 59.4865 ent 0.0000 6.5973 24.4099 s (Appenca 10.0000 dturbir 0.0000 ctricity 0.0000 s (Appenca 6.3766 nd turbir | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 ctem 2) 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 21.9784 dix M) (negrally and see (Appendix 0.0000) ric generated 1 0.0000 dix M) (negrally and see (Appendix 0.0000) generated 1 0.0000 dix M) (negrally and see (Appendix 0.0000) | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 16.1023 ative quant -153.9064 ix M) (nega 0.0000 tors (Appen 0.0000 by micro-CH 0.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 1.0000 by micro-CH 0.0000 0.0 | 128.1308 92.3000 138.8199 0.0000 0.0000 0.0000 203.4193 83.0530 244.9269 0.0000 7.3041 12.4379 ity) -153.8763 tive quanti 0.0000 Qix M) (negrous dive dive dive dive dive dive dive dive | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685
10.1619
-139.4095
ty)
0.0000
ative quant
0.0000
N) (negati
0.0000
-673.6997
ty) | 0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041
11.3463
-137.4796
0.0000
ity)
0.0000
ve if net g
0.0000
-665.9026 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041
14.7483
-135.2578
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685
19.1566
-130.2876
0.0000
0.0000
0.0000 | 269.3797 92.3000 291.8523 0.0000 0.0000 212.1477 84.5965 250.7759 0.0000 7.3041 25.1345 -123.3131 0.0000 0.0000 -260.9227 | 544.4711 92.3000 589.8928 0.0000 0.0000 224.8865 85.9660 261.5994 0.0000 7.0685 28.3893 -94.3423 0.0000 0.0000 -120.7179 | 92.3000 0.0000 0.0000 Dec 817.1686 92.3000 885.3398 0.0000 0.0000 0.0000 250.1310 79.8000 86.5133 289.1242 0.0000 7.3041 31.2730 -78.9051 0.0000 0.0000 0.0000 -73.2280 | (206)
(207)
(208)
(98)
(210)
(211)
(212)
(213)
(215)
(64)
(216)
(217)
(221)
(231)
(232)
(233a)
(234a)
(235c)
(235c)
(233b) | | Space heating efficiency (me 92.3000 Space heating fuel (main heat 861.6075 63.5 Space heating efficiency (me 0.0000 Space heating fuel (main heat 0.0000 Space heating fuel (secondar 252.7787 22.5 Space cooling fuel requirement 2217)m 86.4484 Space cooling fuel requirement 2210 m 0.0000 Space fuel fuel fuel fuel fuel fuel fuel fue | 87.9764 ain heati 92.3000 ating sys 37.0275 ain heati 0.0000 ating sys 0.00000 23.4824 86.1249 /month 59.4865 ent 0.0000 6.5973 24.4099 s (Appenc) 0.0000 dro-elect dro-olect 0.0000 | Mar 477.4703 ing system: 92.3000 stem) 517.3026 ing system: 0.0000 stem 2) 0.0000 237.5465 85.5929 277.5306 0.0000 7.3041 21.9784 dix M) (negral of the control co | Apr 268.4570 1) 92.3000 290.8526 2) 0.0000 0.0000 0.0000 209.4852 84.6171 247.5684 0.0000 7.0685 16.1023 ative quant -153.9064 ix M) (nega 0.0000 tors (Appen 0.0000 by micro-CH 0.0000 by micro-CH 0.0000 ative quant -522.1453 ix M) (nega 0.0000 | 128.1308 92.3000 138.8199 0.0000 0.0000 0.0000 203.4193 83.0530 244.9269 0.0000 7.3041 12.4379 ity) -153.8763 tive quanti: 0.0000 P (Appendix 0.0000 P (Appendix 0.0000) ity) -675.6025 tive quanti: 0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
183.7056
79.8000
230.2075
0.0000
7.0685
10.1619
-139.4095
ty)
0.0000
ative quant
0.0000
N) (negati
0.0000
-673.6997
ty) | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
181.7437
79.8000
227.7490
0.0000
7.3041
11.3463
-137.4796
0.0000
ity)
0.0000
ve if net g
0.0000
-665.9026
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
188.8272
79.8000
236.6256
0.0000
7.3041
14.7483
-135.2578
0.0000
0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
190.7204
79.8000
238.9980
0.0000
7.0685
19.1566
-130.2876
0.0000
0.0000 | 269.3797 92.3000 291.8523 0.0000 0.0000 212.1477 84.5965 250.7759 0.0000 7.3041 25.1345 -123.3131 0.0000 0.0000 | 544.4711 92.3000 589.8928 0.0000 0.0000 224.8865 85.9660 261.5994 0.0000 7.0685 28.3893 -94.3423 0.0000 0.0000 | 92.3000 0.0000 0.0000 Dec 817.1686 92.3000 885.3398 0.0000 0.0000 0.0000 250.1310 79.8000 86.5133 289.1242 0.0000 7.3041 31.2730 -78.9051 0.0000 0.0000 | (206) (207) (208) (98) (210) (211) (212) (213) (215) (241) (231) (232) (233a) (235a) (235a) (234b) (234b) | SAP 10 Online 2.13.6 Page 6 of 7 | (235d)m 0.0000 Annual totals kWh/year Space heating fuel - main Space heating fuel - main Space heating fuel - secor Efficiency of water heater | system 2
ndary | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
4212.6951
0.0000
0.0000
79.8000 | (211)
(213) | |---|-----------------------------|-------------|------------|-------------|-----------|--------|-----------------------|------------|-----------|--------|--|-----------------| | Water heating fuel used
Space cooling fuel | = | | | | | | | | | | 3056.9961 | | | Electricity for pumps and
Total electricity for the
Electricity for lighting | above, kWh/ | | L) | | | | | | | | 86.0000
245.5656 | | | Energy saving/generation t
PV generation
Wind generation
Hydro-electric generation
Electricity generated - Mi
Appendix Q - special featu | (Appendix N
Ecro CHP (Ap |) | s M ,N and | Q) | | | | | | | -6129.0107
0.0000
0.0000
0.0000 | (234)
(235a) | | Energy saved or generated
Energy used
Total delivered energy for | | | | | | | | | | | -0.0000
0.0000
1472.2461 | (237) | | 12a. Carbon dioxide emiss | ions - Indiv | idual heati | ng systems | including r | micro-CHP | | | | | | | | | | | | | | | | Energy | Emissi | on factor | | Emissions | | | | | | | | | | kWh/year | | g CO2/kWh | k | g CO2/year | | | Space heating - main syste | | | | | | | 4212.6951 | | 0.2100 | | 884.6660 | | | Total CO2 associated with | | ystems | | | | | 2056 2061 | | 0.0100 | | 0.0000 | | | Water heating (other fuel)
Space and water heating | | | | | | | 3056.9961 | | 0.2100 | | 641.9692
1526.6351 | | | Pumps, fans and electric | keep-hot | | | | | | 86.0000 | | 0.1387 | | 11.9293 | | | Energy for lighting | | | | | | | 245.5656 | | 0.1443 | | 35.4427 | | | B | | _ | | | | | | | | | | | | Energy saving/generation
PV Unit electricity used in | | 8 | | | | _ | -1502.2350 | | 0.1367 | | -205.3185 | | | PV Unit electricity export | | | | | | | -4626.7757 | | 0.1268 | | -586.7670 | | | Total | | | | | | | | | | | -792.0856 | | | Total CO2, kg/year
EPC Target Carbon Dioxide | Emission Da | +^ (TED) | | | | | | | | | 781.9216
6.3100 | | | AFC Target Carbon Dioxide | | | | | | | | | | | 6.3100 | (273) | | 13a. Primary energy - Indi | ividual heat | ing systems | including | micro-CHP | | | | | | | | | | | | | | | | | | imary ener | | | ary energy | | | Space heating - main syste | em 1 | | | | | | kWh/year
4212.6951 | K | 1.1300 | | kWh/year
4760.3454 | (275) | | Total CO2 associated with | community s | ystems | | | | | | | | | 0.0000 | | | Water heating (other fuel) | | | | | | | 3056.9961 | | 1.1300 | | 3454.4056 | | | Space and water heating
Pumps, fans and electric b | seep-hot | | | | | | 86.0000 | | 1.5128 | | 8214.7510
130.1008 | | | Energy for lighting | | | | | | | 245.5656 | | 1.5338 | | 376.6567 | | | Energy saving/generation | technologio | c | | | | | | | | | | | | PV Unit electricity used i | | ~ | | | | - | -1502.2350 | | 1.5052 | | -2261.2266 | | | PV Unit electricity export | | | | | | - | -4626.7757 | | 0.4656 | | -2154.0223 | | | Total | | | | | | | | | | | -4415.2490 | | | Total Primary energy kWh/y
Target Primary Energy Rate | | | | | | | | | | | 4306.2596
34.7300 | | | | \/ | | | | | | | | | | 22.7000 | / | SAP 10 Online 2.13.6 Page 7 of 7 | Property Reference | | Dwelling 3 | | | | | | 1 | ssued on Da | te | 25/06/2024 | | |--|---|--------------------------------|---|-------------------------------------|---|---|--|---|--------------------|--|---------------------------------------|--| | Assessment Reference | | Dwelling 1_Be | Lean_Copy | | | | Prop Type Re | ef | | | | | | Property | | SE17 1AD | | | | | | | | | | | | SAP Rating | | | | 86 B | | DER | 10.4 | 1 1 | TER |
 6.31 | | | Environmental | | | | 90 B | | % DER < TEF | 2 | | | | -64.98 | | | CO ₂ Emissions (t/year) | | | | 1.11 | | DFEE | 34.4 | 10 | TFEE | | 37.66 | | | Compliance Check | | | | See BREL | | % DFEE < TF | EE | | | | 8.63 | | | % DPER < TPER | | | | -74.93 | | DPER | 60.7 | 75 | TPER | | 34.73 | | | | | | | | | | | | | | | | | Assessor Details Client | Mr. | Sam Wallis | | | | | | | Asses | sor ID | BA56-00 |)1 | | SAP 10 WORKSHEET FOR N CALCULATION OF DWELLIN 1. Overall dwelling ch Ground floor Total floor area TFA = Dwelling volume | Wew Build (F | s Designed) FOR REGULAT | (Version 1 | 0.2, February | 7 2022)
 | | Area (m2) 124.0000 | | | (2b) = | | (1b) - (3 | | umber of open chimney umber of open flues umber of chimneys / fumber of flues attach umber of flues attach umber of blocked chim umber of intermittent umber of passive vent umber of flueless gas | lues attached to soliced to other neys. | med to closed
I fuel boiler | | | | | | | | m 0 * 80 = 0 * 20 = 0 * 20 = 0 * 35 = 0 * 20 = 0 * 10 = 0 * 10 = 0 * 10 = 0 * 10 = 0 * 10 = 0 * 40 = | 0.0000
0.0000
0.0000 | (6a)
(6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | nfiltration due to ch | imneys, flu | es and fans | = (6a)+(6b |)+(6c)+(6d)+(| (6e) + (6f) + | (6g)+(7a)+(| 7b)+(7c) = | | 0.0000 | Air change / (5) = | s per hour
0.0000 | (8) | | ressure test
ressure Test Method
easured/design AP50
nfiltration rate
umber of sides shelte | red | | | | | | | | | В | Yes
lower Door
3.0000
0.1500 | (17) | | helter factor | | | | | | | | (20) = 1 - | | | 0.9250 | | | nfiltration rate adju | sted to inc | lude shelter | factor | | | | | (21 | .) = (18) > | (20) = | 0.1388 | (21) | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | ind speed 5.100
ind factor 1.275 | 0 5.000 | 0 4.9000 | 4.4000 | 4.3000
1.0750 | 3.8000
0.9500 | 3.8000
0.9500 | 3.7000
0.9250 | 4.0000 | 4.3000
1.0750 | 4.5000
1.1250 | 4.7000
1.1750 | | | dj infilt rate | | | | 0.1492 | 0.1318 | 0.1318 | 0.1283 | 0.1388 | 0.1492 | 0.1561 | 0.1630 | | | Balanced mechanical v
f mechanical ventilat | entilation | | | | | 0.1010 | 0.1203 | 3.2500 | | 3.1301 | 0.5000 | | | f exhaust air heat pu | mp using Ap | | | | | | | a) | | | 0.5000 | (23b) | | If balanced with heat | _ | _ | _ | | | | | | | | 71.2000 | | | ffective ac 0.320 | 9 0.317 | 4 0.3140 | 0.2966 | 0.2932 | 0.2758 | 0.2758 | 0.2723 | 0.2827 | 0.2932 | 0.3001 | 0.3070 | (25) | | | | | | | | | | | | | | | | . Heat losses and hea | **** | 2 | | | lement cor indow (Uw = 0.80) tternal wall pridor wall tternal roof otal net area of exte abric heat loss, W/K arty Wall 1 arty Floor 1 | | | Gross
m2
99.6400
29.6800
124.0000 | Openings
m2
50.0900
2.0000 | 2.
50.
49.
27.
124.
253. | TArea m2 .0000 .0900 .5500 .6800 .0000 .3200 (26) (8300 .0000 | U-value
W/m2K
1.0000
0.7752
0.1300
0.1500
0.1100
30) + (32)
0.0000 | A x C W/F 2.0000 38.8295 6.4415 4.1520 13.6400 = 65.0630 0.0000 | ()
;
;
; | -value
kJ/m2K | A x K
kJ/K | | | hermal mass parameter | | | | | | | | | | | 120.0000 | | | hermal mass parameter
hermal bridges (User
oint Thermal bridges
otal fabric heat loss | defined val | | | area) | | | | (33 | 3) + (36) + | (36a) =
- (36a) = | 20.2656
0.1500
85.4786 | (36)
(36a) | SAP 10 Online 2.13.6 Page 1 of 7 | | eat loss ca | lculated mo | onthly (38)m | = 0 33 x | (25)m x (5) | | | | | | | | | |--|---|--|---|--|--|--|--|---|--|---|--|--|--| | (38) m | Jan
34.7984 | Feb
34.4223 | Mar
34.0461 | Apr
32.1654 | May
31.7893 | Jun
29.9086 | Jul
29.9086 | Aug
29.5324 | Sep
30.6608 | Oct
31.7893 | Nov
32.5416 | Dec
33.2939 | (38) | | Heat transfer Average = Sum | 120.2770 | 119.9008 | 119.5247 | 117.6440 | 117.2678 | 115.3871 | 115.3871 | 115.0110 | 116.1394 | 117.2678 | 118.0201 | 118.7724
117.5499 | (39) | | - | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | HLP
HLP (average)
Days in mont | 0.9700 | 0.9669 | 0.9639 | 0.9487 | 0.9457 | 0.9305 | 0.9305 | 0.9275 | 0.9366 | 0.9457 | 0.9518 | 0.9578
0.9480
31 | (40) | | Days in mone | 31 | 20 | 31 | 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | | | | | | | | | | | | | | | | 4. Water heat | ing energy | requirement | s (kWh/year |) | | | | | | | | | | | Assumed occupa | ancy | | | | | | | | | | | 2.8775 | (42) | | Hot water usa | 90.5832
ge for bath | 89.2219
s | 87.2383 | 83.4429 | 80.6420 | 77.5185 | 75.7430 | 77.7117 | 79.8697 | 83.2234 | 87.1003 | 90.2362 | | | Hot water usa | 31.2862
ge for othe
44.0988 | 30.8216
r uses
42.4952 | 30.1673
40.8916 | 28.9608 | 28.0575
37.6844 | 27.0558
36.0808 | 26.5147
36.0808 | 27.1644
37.6844 | 27.8719 | 28.9437
40.8916 | 30.1750
42.4952 | 31.1805
44.0988 | | | Average daily | | | | 39.2000 | 37.0044 | 30.0000 | 30.0000 | 37.0044 | 39.2000 | 40.0910 | 42.4932 | 152.6118 | | | Daily hot wate | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy conten | t (annual) | 162.5387
231.4530 | 158.2972
243.2969 | 151.6918
207.6584 | 146.3839
197.0608 | 140.6551
172.9518 | 138.3386
167.3085 | 142.5606
176.5198 | 147.0296
181.3022 | 153.0588
207.6993
Total = S | 159.7706
227.6225
um(45)m = | 165.5154
259.1572
2534.8836 | | | Distribution : | 39.4280 | = 0.15 x (
34.7180 | 36.4945 | 31.1488 | 29.5591 | 25.9428 | 25.0963 | 26.4780 | 27.1953 | 31.1549 | 34.1434 | 38.8736 | (46) | | Water storage
Store volume
a) If manufa | | ared loss f | actor is kn | own (kWh/ | lav). | | | | | | | 210.0000 | | | Temperature
Enter (49) or | factor fro
(54) in (5 | m Table 2b | | (Anii/ | 27 - | | | | | | | 0.5400
0.9558 | (49) | | Total storage | 29.6298 | 26.7624 | 29.6298 | 28.6740 | 29.6298 | 28.6740 | 29.6298 | 29.6298 | 28.6740 | 29.6298 | 28.6740 | 29.6298 | (56) | | If cylinder co | 29.6298
23.2624 | 26.7624
21.0112 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | 28.6740
22.5120 | 29.6298
23.2624 | | | Combi loss
Total heat re | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | WWHRS | 315.7454
0.0000 | 279.2266
0.0000 | 296.1891
0.0000 | 258.8444
0.0000 | 249.9530
0.0000 | 224.1378
0.0000 | 220.2007
0.0000 | 229.4120
0.0000 | 232.4882 | 260.5915
0.0000 | 278.8085
0.0000 | 312.0494
0.0000 | (63a) | | PV diverter
Solar input
FGHRS | 0.0000
0.0000
0.0000 (63c) | | Output from w | | 279.2266 | 296.1891 | 258.8444 | 249.9530 | 224.1378 | 220.2007 | 229.4120 | 232.4882 | 260.5915 | | 312.0494 | | | 12Total per ye | | ar) | | | | | | Total p | er year (kW | h/year) = S | um (64) m = | 3157.6466
3158 | | | Electric show | er(s)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
al Energy u | 0.0000 | 0.0000 | 0.0000 | 0.0000
wer(s) (bWh | 0.0000
/wear) = Su | 0.0000
m(64a)m = | 0.0000 | | | Heat gains from | | ating, kWh/
115.1770 | | 109.9952 | 107.8365 | 98.4553 | 97.9438 | 101.0066 | 101.2318 | 111.3738 | 116.6333 | 128.4835 | 5. Internal ga | ains (see T | able 5 and | 5a) | | | | | | | | | | | | 5. Internal games Metabolic gain (66) m | ains (see T

ns (Table 5
Jan
143.8766 | able 5 and
), Watts
Feb
143.8766 |
5a)
Mar
143.8766 | Apr
143.8766 | May
143.8766 | Jun
143.8766 | | | Sep
143.8766 | Oct
143.8766 | Nov
143.8766 | Dec
143.8766 | (66) | | 5. Internal general Metabolic gain (66) m Lighting gain: | ains (see T
 | able 5 and
), Watts
Feb
143.8766
ed in Appen
162.1297 | Mar
143.8766
dix L, equa
146.4397 | Apr
143.8766
tion L9 or
151.3211 | May
143.8766
L9a), also:
146.4397 | Jun
143.8766
see Table 5
151.3211 | Jul
143.8766
146.4397 | Aug
143.8766 | | 143.8766 | | | | | 5. Internal games Metabolic gain (66) m | ains (see T

ns (Table 5
Jan
143.8766
s (calculat
146.4397
ins (calcul
290.3331 | able 5 and
), Watts
Feb
143.8766
ed in Appen
162.1297
ated in App
293.3459 | Mar
143.8766
ddix L, equa
146.4397
pendix L, eq
285.7539 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913 | May
143.8766
L9a), also:
146.4397
or L13a), also:
249.1890 | Jun
143.8766
see Table 5
151.3211
lso see Tab
230.0137 | Jul
143.8766
146.4397
le 5
217.2035 | Aug
143.8766
146.4397 | 143.8766
151.3211 | 143.8766
146.4397 | 143.8766 | 143.8766 | (67) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga. Cooking gains Pumps, fans | ains (see T Table 5 Jan 143.8766 s (calculat 146.4397 ins (calcul 290.3331 (calculate 37.3877 3.0000 | able 5 and | Mar
143.8766
ddix L, equa
146.4397
pendix L, eq
285.7539
dix L, equat
37.3877
3.0000 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000 | May
143.8766
L9a), also:
146.4397
or L13a), also:
249.1890 | Jun
143.8766
see Table 5
151.3211
lso see Tab
230.0137
see Table | Jul
143.8766
146.4397
le 5
217.2035 | Aug
143.8766
146.4397
214.1907
37.3877 | 143.8766
151.3211 | 143.8766
146.4397 | 143.8766
151.3211 | 143.8766
146.4397 | (67)
(68)
(69) | | 5. Internal game (66)m (19) (19) (19) (19) (20) (20) (20) (20) (20) (20) (20) (20 | ains (see T | able 5 and | Mar
143.8766
ddix L, equa
146.4397
vendix L, eq
285.7539
dix L, equat
37.3877
3.0000
values) (Tab | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5) | May
143.8766
L9a), also:
146.4397
or L13a), a.
249.1890
L15a), also
37.3877 | Jun
143.8766
see Table 5
151.3211
Iso see Tab
230.0137
see Table
37.3877
0.0000 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000 | 143.8766
151.3211
221.7828
37.3877
0.0000 | 143.8766
146.4397
237.9453
37.3877
3.0000 | 143.8766
151.3211
258.3476
37.3877
3.0000 | 143.8766
146.4397
277.5229
37.3877
3.0000 | (67)
(68)
(69)
(70) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga. Cooking gains Pumps, fans | ains (see T | able 5 and | Mar
143.8766
ddix L, equa
146.4397
vendix L, equ
285.7539
dix L, equat
37.3877
3.0000
values) (Tab | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
3.0000 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013 | (67)
(68)
(69)
(70)
(71) | | 5. Internal gametabolic gain (66)m Lighting gain: Appliances gametabolic gains Pumps, fans Losses e.g. et Water heating | ains (see T | able 5 and
Feb
143.8766
ed in Appen
162.1297
ated in Appen
293.3459
d in Append
37.3877
3.0000
(negative v
-115.1013
le 5)
171.3944 | Mar
143.8766
ddix L, equa
146.4397
yendix L, eq
285.7539
dix L, equat
37.3877
3.0000
ralues) (Tab
-115.1013 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013 | May
143.8766
L9a), also:
146.4397
or L13a), a:
249.1890
L15a), also
37.3877
3.0000 | Jun 143.8766 see Table 5 151.3211 lso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000
-115.1013 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | 5. Internal gametabolic gain (66)m Lighting gain: Appliances ga. Cooking gains Pumps, fans Losses e.g. er Water heating Total internal | ains (see T | able 5 and | Mar
143.8766
ddix L, equa
146.4397
sendix L, equa
285.7539
tix L, equat
37.3877
3.0000
ralues) (Tab
-115.1013 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013
152.7711
642.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
3.0000
-115.1013
144.9415
609.7333 | Jun 143.8766 see Table 5 151.3211 Iso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | 5. Internal gametabolic gain (66)m Lighting gain: Appliances gametabolic gains Pumps, fans Losses e.g. et Water heating | ains (see T | able 5 and), Watts Feb 143.8766 ed in Appen 162.1297 ated in Appen 293.3459 d in Append 37.3877 3.0000 (negative v -115.1013 le 5) 171.3944 696.0329 | Mar 143.8766 ddix L, equa 146.4397 endix L, equ 285.7539 dix L, equat 37.3877 3.0000 ralues) (Tab -115.1013 165.6048 666.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013
152.7711
642.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
3.0000
-115.1013
144.9415
609.7333 | Jun 143.8766 see Table 5 151.3211 lso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013
149.6959 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga. Cooking gains Pumps, fans Losses e.g. e. Water heating Total interna. | ains (see T | able 5 and), Watts Feb 143.8766 ed in Appen 162.1297 ated in Appen 293.3459 d in Append 37.3877 3.0000 (negative v -115.1013 le 5) 171.3944 696.0329 | Mar
143.8766
ddix L, equa
146.4397
pendix L, equa
285.7539
tix L, equat
37.3877
3.0000
ralues) (Tab
-115.1013
165.6048
666.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013
152.7711
642.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
3.0000
-115.1013
144.9415
609.7333 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013
149.6959
603.2440 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013
172.6929 | (67)
(68)
(69)
(70)
(71)
(72) | | 5. Internal gametabolic gain (66)m Lighting gain: Appliances ga Cooking gains Pumps, fans Losses e.g. er Water heating Total internal | ains (see T | able 5 and | Mar
143.8766
ddx L, equa
146.4397
yendix L, eq
285.7539
dix L, equat
37.3877
3.0000
values) (Tab
666.9614 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le
5)
-115.1013
152.7711
642.8465 | May
143.8766
L9a), also:
146.4397
or L13a), a
249.1890
L15a), also
37.3877
3.0000
-115.1013
144.9415
609.7333 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013
149.6959
603.2440
Acce
fact
Table | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013
172.6929
665.8185 | (67)
(68)
(69)
(70)
(71)
(72)
(73) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga. Cooking gains Pumps, fans Losses e.g. e Water heating Total interna. | ains (see T | able 5 and | Mar 143.8766 dix L, equa 146.4397 vendix L, eq 285.7539 dix L, equat 37.3877 3.0000 values) (Tab -115.1013 165.6048 666.9614 A 4.0 30.5 15.5 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013
152.7711
642.8465 | May 143.8766 L9a), also: 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665 | 143.8766
146.4397
237.9453
37.3877
3.0000
-115.1013
149.6959
603.2440 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223 | 143.8766
146.4397
277.5229
37.3877
3.0000
-115.1013
172.6929
665.8185 | (67)
(68)
(69)
(70)
(71)
(72)
(73) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga: Cooking gains Pumps, fans Losses e.g. e Water heating Total interna. 6. Solar gain: [Jan] Northeast Southwest Solar gains | ains (see T | able 5 and | Mar 143.8766 ddx L, equa 146.4397 vendix L, eq 285.7539 dix L, equas 37.3877 3.0000 values) (Tab -115.1013 165.6048 666.9614 4.0 30.5 15.5 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 3.0000 le 5) -115.1013 152.7711 642.8465 | May 143.8766 L9a), also: 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 so see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511
 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766 146.4397 237.9453 37.3877 3.0000 -115.1013 149.6959 603.2440 Acce fact Table 0.77 0.77 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223
ss
or
6d
00
00
00
00 | 143.8766 146.4397 277.5229 37.3877 3.0000 -115.1013 172.6929 665.8185 Gains W 14.3333 354.8605 180.8021 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83) | | 5. Internal gametabolic gain (66)m Lighting gain: Appliances ga. Cooking gains Pumps, fans Losses e.g. er Water heating Total internal 6. Solar gain: [Jan] Northeast Southeast Southwest | ains (see T | able 5 and | Mar 143.8766 ddx L, equa 146.4397 vendix L, eq 285.7539 dix L, equas 37.3877 3.0000 values) (Tab -115.1013 165.6048 666.9614 4.0 30.5 15.5 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 3.0000 le 5) -115.1013 152.7711 642.8465 | May 143.8766 L9a), also: 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 so see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci | Jul
143.8766
146.4397
1e 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511
 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766 146.4397 237.9453 37.3877 3.0000 -115.1013 149.6959 603.2440 Acce fact Table 0.77 0.77 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223
ss
or
6d
00
00
00
00 | 143.8766 146.4397 277.5229 37.3877 3.0000 -115.1013 172.6929 665.8185 Gains W 14.3333 354.8605 180.8021 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga: Cooking gains Pumps, fans Losses e.g. e Water heating Total interna. 6. Solar gain: [Jan] Northeast Southwest Solar gains | ains (see T | able 5 and | Mar 143.8766 dix L, equa 146.4397 sendix L, equa 285.7539 lix L, equat 37.3877 3.0000 calues) (Tab -115.1013 165.6048 666.9614 4.00 30.5 15.5 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013
152.7711
642.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 1848.6578 2458.3910 | Jun 143.8766 see Table 5 151.3211 Iso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or 1843.7994 2428.0407 | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 fic data Table 6b 0.5700 0.5700 0.5700 1774.0779 2335.5290 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766 146.4397 237.9453 37.3877 3.0000 -115.1013 149.6959 603.2440 Acce fact Table 0.77 0.77 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223
ss
or
6d
00
00
00
00 | 143.8766 146.4397 277.5229 37.3877 3.0000 -115.1013 172.6929 665.8185 Gains W 14.3333 354.8605 180.8021 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83) | | 5. Internal g. Metabolic gain (66)m Lighting gain: Appliances ga Cooking gains Pumps, fans Losses e.g. e Water heating Total interna 6. Solar gain: [Jan] Northeast Southeast Southwest 7. Mean interna | ains (see T | able 5 and | Mar 143.8766 dix L, equa 146.4397 sendix L, equa 285.7539 lix L, equat 37.3877 3.0000 calues) (Tab -115.1013 165.6048 666.9614 4.0.0 30.5 15.5 1300.9943 1967.9556 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 3.0000 le 5) -115.1013 152.7711 642.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 | Jun 143.8766 see Table 5 151.3211 Iso see Table 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or 1843.7994 2428.0407 | Jul
143.8766
146.4397
le 5
217.2035
5
37.3877
0.0000
-115.1013
131.6449
561.4511
fic data
Table 6b
0.5700
0.5700
0.5700
1774.0779
2335.5290 | Aug 143.8766 146.4397 214.1907 37.3877 0.0000 -115.1013 135.7615 562.5550 Specific or Tab 0 0 0 1612.0293 2174.5843 | 143.8766
151.3211
221.7828
37.3877
0.0000
-115.1013
140.5997
579.8665
FF
data
le 6c
.8000
.8000
.8000 | 143.8766 146.4397 237.9453 37.3877 3.0000 -115.1013 149.6959 603.2440 Acce fact Table 0.77 0.77 | 143.8766
151.3211
258.3476
37.3877
3.0000
-115.1013
161.9907
640.8223
ss
or
6d
00
00
00
00 | 143.8766 146.4397 277.5229 37.3877 3.0000 -115.1013 172.6929 665.8185 Gains W 14.3333 354.8605 180.8021 470.1209 1135.9394 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83)
(84) | | 5. Internal gametabolic gain (66)m Lighting gain: (66)m Cooking gains Pumps, fans Losses e.g. e Water heating Total international form of the southeast Southeast Southeast Southeast Total gains Total gains Total gains Total gains | ains (see T | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 sendix L, equa 285.7539 lix L, equat 37.3877 3.0000 (alues) (Tab -115.1013 165.6048 666.9614 4.0. 30.5 15.5 1300.9943 1967.9556 | Apr
143.8766
tion L9 or
151.3211
uation L13
269.5913
ion L15 or
37.3877
3.0000
le 5)
-115.1013
152.7711
642.8465 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 1848.6578 2458.3910 | Jun 143.8766 see Table 5 151.3211 180 see Tabl 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or 1843.7994 2428.0407 | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 fic data Table 6b 0.5700 0.5700 0.5700 | Aug
143.8766
146.4397
214.1907
37.3877
0.0000
-115.1013
135.7615
562.5550
Specific
or Tab | 143.8766 151.3211 221.7828 37.3877 0.0000 -115.1013
140.5997 579.8665 FF data le 6c .8000 .8000 .8000 | 143.8766 146.4397 237.9453 37.3877 3.0000 -115.1013 149.6959 603.2440 Acce fact Table 0.77 0.77 0.77 1044.0865 1647.3304 | 143.8766 151.3211 258.3476 37.3877 3.0000 -115.1013 161.9907 640.8223 ss or 66d 00 00 00 659.6353 1300.4576 | 143.8766 146.4397 277.5229 37.3877 3.0000 -115.1013 172.6929 665.8185 Gains W 14.3333 354.8605 180.8021 470.1209 1135.9394 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83)
(84) | | 5. Internal gametabolic gain (66)m Lighting gain: (66)m Lighting gains Cooking gains Pumps, fans Losses e.g. e Water heating Total international formula for the southeast Southeast Southeast Southeast Total gains Total gains Total gains Total gains Temperature difference of the southeast Southeast Southeast Southeast Southeast Southeast Southeast Total gains Total gains Total gains Total gains | ains (see T | able 5 and | 5a) Mar 143.8766 dix L, equa 146.4397 sendix L, equa 285.7539 dix L, equas 37.3877 3.0000 ralues) (Tab -115.1013 165.6048 666.9614 A 4.0 30.5 15.5 1300.9943 1967.9556 | Apr 143.8766 tion L9 or 151.3211 uation L13 269.5913 ion L15 or 37.3877 3.0000 le 5) -115.1013 152.7711 642.8465 rea m2 200 200 500 1633.1915 2276.0380 | May 143.8766 L9a), also 146.4397 or L13a), a 249.1890 L15a), also 37.3877 3.0000 -115.1013 144.9415 609.7333 Solar flux Table 6a W/m2 11.2829 36.7938 36.7938 36.7938 1848.6578 2458.3910 | Jun 143.8766 see Table 5 151.3211 lso see Tab 230.0137 see Table 37.3877 0.0000 -115.1013 136.7434 584.2412 Speci or 1843.7994 2428.0407 Th1 (C) Jun 35.8214 | Jul 143.8766 146.4397 1e 5 217.2035 5 37.3877 0.0000 -115.1013 131.6449 561.4511 fic data Table 6b 0.5700 0.5700 0.5700 1774.0779 2335.5290 Jul 35.8214 | Aug 143.8766 146.4397 214.1907 37.3877 0.0000 -115.1013 135.7615 562.5550 Specific or Tab 0 0 0 1612.0293 2174.5843 | 143.8766 151.3211 221.7828 37.3877 0.0000 -115.1013 140.5997 579.8665 FF data le 6c .8000 .8000 .415.8363 1995.7028 | 143.8766 146.4397 237.9453 37.3877 3.0000 -115.1013 149.6959 603.2440 Acce fact Table 0.77 0.77 0.77 1044.0865 1647.3304 | 143.8766 151.3211 258.3476 37.3877 3.0000 -115.1013 161.9907 640.8223 ss or 66d 00 00 059.6353 1300.4576 | 143.8766 146.4397 277.5229 37.3877 3.0000 -115.1013 172.6929 665.8185 Gains W 14.3333 354.8605 180.8021 470.1209 1135.9394 21.0000 Dec 34.8004 | (67)
(68)
(69)
(70)
(71)
(72)
(73)
(75)
(77)
(79)
(83)
(84) | SAP 10 Online 2.13.6 Page 2 of 7 | The column | | | | | | | | | | | | | | |--|---------------------------|-----------------------|-------------|--------------|-------------|--------------|--------------|------------|----------|------------|-----------|----------|-----------------| | Mathematical Property Math | 0.9121 | 0.8261 | 0.7168 | 0.5693 | 0.4269 | 0.3004 | 0.2164 | 0.2418 | 0.3903 | 0.6441 | 0.8495 | 0.9273 | (86) | | Company Comp | Th 2 20.1084 | | | | | | | | | | | | | | Company Comp | 0.9004 | | | | | | | | | | | | | | Part | Living area fraction | | | | | | | | fLA = | Living are | a / (4) = | 0.4508 | (91) | | | Temperature adjustment | | | | | | | | | | | -0.1500 | | | Property | aajaseea mii 15.1545 | 19.5500 | 13.0044 | 20.1140 | 20.2201 | 20.2011 | 20.2710 | 20.2723 | 20.24/1 | 20.0013 | 13.3333 | 19.0017 | (33) | | Martine Mart | | | | | | | | | | | | | | | | 8. Space heating requirem | nent | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Extraction | | | | | 0.3944 | | | | | | | | | | Second Deciding | Heat loss rate W | | | | | | | | | | | | | | Second particular construction Second Seco | Space heating kWh | | | | | | | | | | | | | | | Space heating requirement | | | | 22.0568 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 87.9803 | 298.8123 | | | | Strong S | 0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | | 306.4742 | 189.4533 | 71.1853 | 22.0568 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 87.9803 | 298.8123 | | | | Pacific and pure Pacific and a | | after sol | ar contribu | tion - total | per year | (kWh/year) | | | | (980 | (4) = | | | | Pacific and pure Pacific and a | | | | | | | | | | | | | | | Franction of paper heat from secondary supplementary system (Falls 1) 1 1 1 1 1 1 1 1 1 | | | | | | | | | | | | | | | Pacticiancy of anii space heatt growth (1 th s) 1.000 1000 | | | | | | | | | | | | | | | ### Part | Fraction of space heat fr | om main sy | stem(s) | | n (Table 11 |) | | | | | | 1.0000 | (202) | | The proper content | Efficiency of main space | heating sy | stem 2 (in | %) | | | | | | | | 0.0000 | (207) | | Secretary Secr | | | | | Mav | Jun | Jul | Aug | Sep | Oct | Nov | | (=++/ | | Space heating Efficiency California Space Sp | Space heating requirement | : | | | | | | | | | | | (98) | | Solito S | Space heating efficiency | (main heat | ing system | | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | | | | Space heating fuel Gain heating system Space Space heating fuel Gain heating system | Space heating fuel (main | heating sy | stem) | | | | | | | | | | | | Page | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Nater heating heatin | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Mathemating Requirement Section Sectio | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Signature Sign | | | | | | | | | | | | | | | C217m S2.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 92.3000 02.3000
02.3000 02.300 | 315.7454 | 279.2266 | 296.1891 | 258.8444 | 249.9530 | 224.1378 | 220.2007 | 229.4120 | 232.4882 | 260.5915 | 278.8085 | | | | Square S | (217)m 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | | | | C211m | 342.0860 | 302.5207 | 320.8982 | 280.4382 | 270.8050 | 242.8362 | 238.5707 | 248.5503 | 251.8832 | 282.3310 | 302.0677 | 338.0817 | (219) | | Lighting 28.3128 22.7135 20.4510 14.9831 11.9735 9.4557 10.5578 13.7234 17.8253 23.3788 26.464 29.0997 (232) Electricity generated by PWS (Appendix M) (negative quantity) (234a)m 0.0000 0 | (221)m 0.0000 | 0.0000 | | | | | | | | | | | | | C33a m 0.0000 0 | Lighting 28.3128 | 22.7135 | 20.4510 | 14.9833 | 11.5735 | | | | | | | | | | C334a | (233a)m 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233a) | | C35a m | (234a)m 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | C35c) | (235a)m 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | C33b) m | (235c)m 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) (235b)m 0.000 0.0000 0. | (233b)m 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233b) | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if net generation) (235d)m 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.0 | Electricity generated by | hydro-elec | tric genera | tors (Append | dix M) (neg | ative quant: | ity) | | | | 0.0000 | 0.0000 | (234b) | | Annual totals kWh/year Space heating fuel - main system 1 2213.5006 (211) Space heating fuel - secondary 0.0000 (213) Space heating fuel - secondary 0.0000 (215) Efficiency of water heater 92.3000 Water heating fuel used 3421.0689 (219) Space cooling fuel coolin | Electricity used or net e | electricity | generated | by micro-CHE | (Appendix | N) (negativ | ve if net ge | eneration) | | | | | | | Space heating fuel - main system 2 0.0000 (213) Space heating fuel - secondary 0.0000 (215) Efficiency of water heater 92.3000 Water heating fuel used 3421.0689 (219) Space cooling fuel 0.0000 (221) Electricity for pumps and fans: | Annual totals kWh/year | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | Efficiency of water heater 92.3000
Water heating fuel used 3421.0689 (219) Space cooling fuel 0.0000 (221) Electricity for pumps and fans: | Space heating fuel - mair | system 2 | | | | | | | | | | 0.0000 | (213) | | Space cooling fuel 0.0000 (221) | Efficiency of water heate | | | | | | | | | | | 92.3000 | | | (BalancedWithHeatRecovery, Database: in-use factor = 1.1000, SFP = 1.2430) mechanical ventilation fans (SFP = 1.2430) central heating pump Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Fenergy saved or generated -0.0000 (236) | | | | | | | | | | | | | | | mechanical ventilation fans (SFP = 1.2430) 498.3088 (230a) central heating pump 41.0000 (230c) Total electricity for the above, kWh/year 539.3088 (231) Electricity for lighting (calculated in Appendix L) 228.5002 (232) Energy saving/generation technologies (Appendices M ,N and Q) 70.000 (233) Wind generation 90.000 (233) Wind generation (Appendix N) 90.000 (234) Hydro-electric generation (Appendix N) 90.000 (235a) Electricity generated 90.0000 (235a) Energy saved or generated 90.0000 (235b) Energy saved or generated 90.0000 (236b) | | | baaa. in ua | o footon - 1 | 1000 CED | - 1 2420) | | | | | | | | | Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Energy saved or generated Energy saved or generated -0.0000 (235) | mechanical ventilation | | | | , 588 | - 1.2430) | | | | | | | | | Energy saving/generation technologies (Appendices M , N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saving/generated - Micro CHP (Appendix N) Electricity generated E | Total electricity for the | | | ix T.) | | | | | | | | 539.3088 | (231) | | PV generation 0.000 (233) Wind generation 0.000 (234) Hydro-electric generation (Appendix N) 0.0000 (235a) Electricity generated - Micro CHP (Appendix N) 0.0000 (235) Appendix Q - special features - 0.0000 (235) Energy saved or generated -0.0000 (236) | | | | | 1 () | | | | | | | 220.3002 | (22) | | Hydro-electric generation (Appendix N) 0.0000 (235a) Electricity generated - Micro CHP (Appendix N) 0.0000 (235) Appendix Q - special features Energy saved or generated -0.0000 (236) | PV generation | | (uppend) | n all | - ×1 | | | | | | | | | | Appendix Q - special features Energy saved or generated -0.0000 (236) | Hydro-electric generation | | | | | | | | | | | | | | | Electricity generated - N | | | | | | | | | | | 0.0000 | (235a) | | Energy used 0.0000 (237) Total delivered energy for all uses 6402.3784 (238) | Appendix Q - special feat | Micro CHP (i
cures | | | | | | | | | | 0.0000 | (235a)
(235) | SAP 10 Online 2.13.6 Page 3 of 7 | 12a. Carbon dio | xide emissi | ons - Indiv | vidual hea | ting systems | including m | | | Energy | | n factor | | Emissions | | |--|--|--|------------------|--------------------------------------|-------------------------|---|---------------|---|-----------------|----------------------------|--|---|--| | Space heating - | | | avetome. | | | | | kWh/year
2213.5006 | | 0.2100 | | g CO2/year
464.8351
0.0000 | | | Total CO2 associated with community systems Water heating (other fuel) Space and water heating 3421.0689 | | | | | | | 3421.0689 | | 0.2100 | | 718.4245
1183.2596 | (264) | | | Pumps, fans and
Energy for light | ting | teep-hot | | | | | | 539.3088
228.5002 | | 0.1387
0.1443 | | 74.8088
32.9796 | (268) | | Total CO2, kg/ye
EPC Dwelling Ca: | | de Emission | Rate (DER |) | | | | | | | | 1291.0480 | | | | | | | | | | | | | | | | | | 13a. Primary end | ergy - Indi | vidual heat | ting system | ms including | micro-CHP | | | | | | | | | | Space heating - | main syste | sm 1 | | | | | | Energy
kWh/year
2213.5006 | | | | ary energy
kWh/year
2501.2556 | | | Total CO2 assoc:
Water heating (| iated with | community s | systems | | | | | 3421.0689 | | 1.1300 | | 0.0000
3865.8079 | (473) | | Space and water
Pumps, fans and | heating
electric k | | | | | | | 539.3088 | | 1.5128 | | 6367.0635
815.8663 | (279)
(281) | | Energy for light
Total Primary en
Dwelling Primary | nergy kWh/y | | | | | | | 228.5002 | | 1.5338 | | 350.4812
7533.4110
60.7500 | (286) | | Dwelling Illmar | y chergy he | ree (DIER) | | | | | | | | | | 00.7300 | (207) | | | | | | | | | | | | | | | | | SAP 10 WORKSHEE | T FOR New E | Build (As De | | | | | | | | | | | | | CALCULATION OF | TARGET EMIS | SSIONS
 | 1. Overall dwell | | | | | | | |
Area | Storey | y height | | Volume | | | Ground floor
Total floor area
Dwelling volume | | a)+(1b)+(1c) | +(1d)+(1e) |)(1n) | 12 | 24.0000 | | (m2)
124.0000 | | (m)
2.6500
(3d)+(3e) | | | (1b) - (3b)
(4)
(5) | | 2. Ventilation | rate | | | | | | | | | | m | 3 per hour | | | Number of open of
Number of open in
Number of chimme
Number of flues
Number of flues
Number of block
Number of inter
Number of passi
Number of fluel | flues eys / flues attached t attached t ed chimneys mittent ext ve vents | to solid fue
to other hea
tract fans | el boiler | fire | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 =
4 * 10 =
0 * 10 =
0 * 40 = | 0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
40.0000
0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
te | eys, flues a | and fans | = (6a)+(6b) | +(6c)+(6d)+ | (6e)+(6f)+(| (6g)+(7a)+(| 7b)+(7c) = | | 40.0000 | Air change
) / (5) =
B | 0.1217
Yes
lower Door
5.0000
0.3717 | (8) | | Shelter factor
Infiltration rate | | l to include | e shelter : | factor | | | | | (20) = 1 - (21) | | x (19)] =
x (20) = | 0.9250
0.3438 | (20) | | Wind speed | Jan
5.1000 | Feb
5.0000 | Mar
4.9000 | Apr
4.4000 | May
4.3000 | Jun
3.8000 | Jul
3.8000 | | Sep
4.0000 | Oct
4.3000 | | Dec
4.7000 | | | Wind factor
Adj infilt rate | 1.2750 | 1.2500 | 1.2250
0.4212 | 1.1000 | 1.0750 | 0.9500 | 0.9500 | 0.9250 | 1.0000 | 1.0750 | | 1.1750
0.4040 | | | Effective ac | 0.5961 | 0.4298 | 0.4212 | | 0.5683 | 0.5534 | 0.5534 | 0.5506 | | 0.5683 | | 0.5816 | | | 3. Heat losses | | | | | | | | | | | | | | | Element | | | | Gross | Openings | Net | Area | U-value | AxU | | K-value | A x K | | | TER Opaque door
TER Opening Type
external wall
corridor wall
external roof
Total net area
Fabric heat loss | e (Uw = 1.2 | elements A | | m2
99.6400
29.6800
124.0000 | m2
29.0000
2.0000 | 2.
29.
70.
27.
124.
253. | | W/m2K
1.0000
1.1450
0.1800
0.1800
0.1100
30) + (32) | | | kJ/m2K | kJ/K | (26)
(27)
(29a)
(29a)
(30)
(31)
(33) | | Party Wall 1 Thermal mass pa: | | MP = Cm / TH | FA) in kJ/ı | n2K | | 5. | 8300 | 0.0000 | 0.0000 | | | 120.0000 | (32) | | List of Thermal
K1 Eleme | | | | | | | | I | Length Ps: | i-value | Tot | al | | SAP 10 Online 2.13.6 Page 4 of 7 | E3 Sill
E4 Jamb
E7 Part
E14 Fla
E16 Cor
E17 Cor | y floor be
t roof
ner (norma
ner (inver
ty wall be
(Sum(L x
ridges | etween dwel | lings | locks of fl | n external a | rea) | | 21
33
48
48
21
15 | .1000
.1000
.3000
.8000
.8000
.2000
.9000
.3000 | 0.0500
0.0500
0.0500
0.0700
0.0800
0.0900
-0.0900
0.0600 | 1.05
1.05
1.66
3.41
3.90
1.90
-1.43
0.31
(36a) =
+ (36a) = | 50
50
60
40
80 | (36a) | |--|--|-----------------------------|-----------------------------|------------------------------|--------------------------------|------------------------------|------------------------------|----------------------------------|--|---|---|-----------------------------------|----------------| | Ventilation hea | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | (20) | | (38)m
Heat transfer c
Average = Sum(3 | 143.2237 | | 63.8386 | 61.9756 | 61.6270 | 60.0044
138.5881 | 60.0044
138.5881 | 59.7039
138.2876 | 60.6294 | 61.6270 | 62.3322 | 63.0694
141.6531
140.5577 | | | HLP
HLP (average)
Days in mont | Jan
1.1550 | Feb
1.1518
28 | Mar
1.1486 | Apr
1.1335 | May
1.1307 | Jun
1.1176 | Jul
1.1176 | Aug
1.1152
31 | Sep
1.1227 | Oct
1.1307 | Nov
1.1364 |
Dec
1.1424
1.1335
31 | (40) | | | | | | | | | | | | | | | | | 4. Water heatin | g energy r | equirement | s (kWh/year |) | | | | | | | | | | | Assumed occupan
Hot water usage | су | | | | | | | | | | | 2.8775 | (42) | | Hot water usage | | | 69.7906 | 66.7543 | 64.5136 | 62.0148 | 60.5944 | 62.1693 | 63.8958 | 66.5787 | 69.6803 | 72.1889 | | | Hot water usage | 31.2862
for other
44.0988 | 30.8216
uses
42.4952 | 30.1673
40.8916 | 28.9608 | 28.0575
37.6844 | 27.0558
36.0808 | 26.5147
36.0808 | 27.1644
37.6844 | 27.8719
39.2880 | 28.9437
40.8916 | 30.1750
42.4952 | 31.1805
44.0988 | | | Average daily h | | | | 33.2000 | 37.0044 | 30.0000 | 30.0000 | 37.0044 | 33.2000 | 40.0310 | 42.4332 | 135.9089 | | | Daily hot water | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte
Energy content | (annual) | 144.6944
206.0428 | 140.8495
216.4805 | 135.0032
184.8126 | 130.2555
175.3489 | 125.1514
153.8882 | 123.1900
148.9876 | 127.0182
157.2751 | 131.0557
161.6048 | 136.4141
185.1126
Total = S | 142.3505
202.8044
um(45)m = | 147.4682
230.8996
2257.4179 | | | Distribution lo
Water storage l | 35.1241 | = 0.15 x (
30.9064 | 45) m
32.4721 | 27.7219 | 26.3023 | 23.0832 | 22.3481 | 23.5913 | 24.2407 | 27.7669 | 30.4207 | 34.6349 | (46) | | Store volume a) If manufact Temperature f | urer decla
actor from | Table 2b | actor is kn | own (kWh/c | lay): | | | | | | | 210.0000
1.7016
0.5400 | (48)
(49) | | Enter (49) or (
Total storage 1 | | 25.7277 | 28.4842 | 27.5653 | 28.4842 | 27.5653 | 28.4842 | 28.4842 | 27.5653 | 28.4842 | 27.5653 | 0.9188 | | | If cylinder con
Primary loss
Combi loss | | | | 27.5653
22.5120
0.0000 | 28.4842
23.2624
0.0000 | 27.5653
22.5120
0.0000 | 28.4842
23.2624
0.0000 | 28.4842
23.2624
0.0000 | 27.5653
22.5120
0.0000 | 28.4842
23.2624
0.0000 | 27.5653
22.5120
0.0000 | 28.4842
23.2624
0.0000 | (57)
(59) | | Total heat requ | | | | | | 203.9656 | 200.7342 | 209.0217
-20.1945 | 211.6821
-20.9617 | 236.8592
-24.7116 | 252.8817
-27.9952 | 282.6462
-32.5152 | (62) | | PV diverter
Solar input
FGHRS | -0.0000
0.0000
0.0000 (63b)
(63c) | | | 252.7787 | 223.4824 | 237.5465 | 209.4852 | 203.4193 | 183.7056 | 181.7437 | | 190.7204
er year (kW | 212.1477
h/year) = S | | 250.1310
2558.8743 | | | 12Total per yea
Electric shower | (s) | | 0.0000 | 0 0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2559 | | | Heat gains from | 0.0000 | 0.0000 | 0.0000 | 0.0000
Tot | 0.0000
al Energy u | 0.0000
sed by inst | 0.0000
antaneous e | 0.0000
lectric sho | | 0.0000
/year) = Su | 0.0000
m(64a)m = | 0.0000 | | | | | | | 101.5121 | 99.7008 | 91.2297 | 90.9356 | 93.6912 | 93.7955 | 102.9472 | 107.4943 | 118.1714 | (65) | | 5. Internal gai | ns (see Ta | ble 5 and | 5a) | | | | | | | | | | | | Metabolic gains | (Table 5) | , Watts | | | | | | | _ | | | _ | | | (66)m
Lighting gains | 143.8766 | | 143.8766 | 143.8766 | May
143.8766 | 143.8766 | 143.8766 | Aug
143.8766 | Sep
143.8766 | Oct
143.8766 | Nov
143.8766 | Dec
143.8766 | (66) | | Appliances gain | 146.4397 | 162.1297 | 146.4397 | 151.3211 | 146.4397 | 151.3211 | 146.4397 | 146.4397 | 151.3211 | 146.4397 | 151.3211 | 146.4397 | (67) | | | 290.3331 | 293.3459 | 285.7539 | 269.5913 | 249.1890 | 230.0137 | 217.2035
5 | 214.1907 | | 237.9453 | 258.3476 | 277.5229 | (68) | | Pumps, fans | 3.0000 | 3.0000 | 3.0000 | 3.0000 | 37.3877
3.0000 | 37.3877
0.0000 | 37.3877
0.0000 | 37.3877
0.0000 | 37.3877
0.0000 | 37.3877
3.0000 | 37.3877
3.0000 | 37.3877
3.0000 | | | Losses e.g. eva -
Water heating g | 115.1013 | -115.1013 | | | -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | -115.1013 | (71) | | | 160.2900 | | 152.3885 | 140.9890 | 134.0064 | 126.7079 | 122.2253 | 125.9291 | 130.2715 | 138.3699 | 149.2977 | 158.8325 | (72) | | | 666.2258 | 682.2283 | 653.7450 | 631.0643 | 598.7982 | 574.2057 | 552.0315 | 552.7225 | 569.5383 | 591.9179 | 628.1293 | 651.9581 | (73) | | 6. Solar gains | | | | | | | | | | | | | | | [Jan] | - | | A | | Solar flux
Table 6a
W/m2 | | | | FF
data
le 6c | Acce
fact
Table | or | Gains
W | | | Northeast
Southeast
Southwest | | | | | 11.2829
36.7938
36.7938 | | | | | 0.77
0.77
0.77 | 00 | 8.0343
198.6934
101.2021 | (77) | | Solar gains
Total gains | | | 728.4088 | 914.4152 | 1035.0660 | 1032.3512 | 993.3116 | 902.5714 | 792.7118 | 584.5652 | 369.3149 | 263.2093 | (83) | SAP 10 Online 2.13.6 Page 5 of 7 | 7. Mean intern | | | ing season) | | | | | | | | | | | |---|---|---|--|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|-------------------------------------|---|-------------------------| | Temperature du
Utilisation fa | | | | | | Th1 (C) | | | | | | 21.0000 | (85) | | tau
alpha | Jan
28.8593
2.9240 | Feb
28.9411
2.9294 | Mar
29.0217
2.9348 | Apr
29.4063
2.9604 | May
29.4794
2.9653 | Jun
29.8246
2.9883 | Jul
29.8246
2.9883 | Aug
29.8894
2.9926 | Sep
29.6907
2.9794 | Oct
29.4794
2.9653 | Nov
29.3319
2.9555 | Dec
29.1793
2.9453 | | | util living ar | 0.9558 | 0.9215 | 0.8718 | 0.7821 | 0.6584 | 0.5059 | 0.3794 | 0.4156 | 0.6074 | 0.8216 | 0.9282 | 0.9623 | (86) | | MIT
Th 2
util rest of h | 18.8591
19.9561 | 19.2617
19.9588 | 19.7368
19.9614 | 20.2740
19.9735 | 20.6630
19.9758 | 20.8899
19.9864 | 20.9651
19.9864 | 20.9537
19.9884 | 20.8028
19.9823 | 20.2741
19.9758 | 19.4774
19.9712 | 18.7941
19.9664 | | | MIT 2
Living area fr | 0.9486
17.4770 | 0.9095
17.9808 | 0.8525
18.5688 | 0.7501
19.2216 | 0.6097
19.6648 | 0.4382
19.9057 | 0.2976
19.9686 | 0.3319
19.9632 | 0.5405
19.8254 | 0.7877
19.2408
Living area | 0.9152
18.2670 | 0.9561
17.4016
0.4508 | (90) | | MIT
Temperature ad | 18.1001 | 18.5582 | 19.0954 | 19.6960 | 20.1148 | 20.3494 | 20.4179 | 20.4097 | 20.2660 | 19.7066 | 18.8127 | 18.0294 | | | adjusted MIT | 18.1001 | 18.5582 | 19.0954 | 19.6960 | 20.1148 | 20.3494 | 20.4179 | 20.4097 | 20.2660 | 19.7066 | 18.8127 | 18.0294 | (93) | | 8. Space heati | ng require | ment | | | | | | | | | | | | | Utilisation
Useful gains
Ext temp. | Jan
0.9317
907.5922
4.3000 | Feb
0.8894
1075.6845
4.9000 | Mar
0.8336
1152.1005
6.5000 | Apr
0.7406
1144.6270
8.9000 | May
0.6167
1007.6239
11.7000 | Jun
0.4632
744.1851
14.6000 | Jul
0.3331
514.7691
16.6000 | Aug
0.3676
534.9565
16.4000 | Sep
0.5601
763.0154
14.1000 | Oct
0.7776
914.7771
10.6000 | Nov
0.8966
894.2932
7.1000 | Dec
0.9404
860.6277
4.2000 | (95) | | | 1976.4950 | 1950.6494 | 1793.8616 | 1517.4839 | 1179.8427 | 796.7934 | 529.1111 | 554.4916 | 858.3945 | 1276.8466 | 1650.5031 | 1958.9726 | (97) | | Space heating
Space heating
Solar heating | 795.2637
requiremen | 587.9764
t - total p | | 268.4570
Wh/year) | 128.1308 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 269.3797 | 544.4711 | 817.1686
3888.3175 | (98a) | | Solar heating
Space heating | 0.0000
contributi | 0.0000
on - total | 0.0000
per year (} | 0.0000
(Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | 795.2637
requiremen | | 477.4703
lar contribu | | 128.1308
1 per year | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 269.3797
(98c) | 544.4711 | 817.1686
3888.3175
31.3574 | | | 9a. Energy req | uirements | - Individua | al heating s | | luding mic | ro-CHP | | | | | | 0.0000 | (001) | | Fraction of sp
Fraction of sp
Efficiency of
Efficiency of
Efficiency of | ace heat f
main space
main space | rom main sy
heating sy
heating sy | ystem(s)
ystem 1 (in
ystem 2 (in | %)
%) | m (Table I | 1) | | | | | | 0.0000
1.0000
92.3000
0.0000
0.0000 | (202)
(206)
(207) | | Cross besting | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating Space heating | 795.2637 | 587.9764 | | 268.4570 | 128.1308 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 269.3797 | 544.4711 | 817.1686 | (98) | | Space heating | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating | 861.6075 | 637.0275 | 517.3026 | 290.8526 | 138.8199 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 291.8523 | 589.8928 | 885.3398 | (211) | | Space heating | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating | 0.0000
fuel (seco | 0.0000
ndary) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | 252.7787 | 223.4824 | 237.5465 | 209.4852 | 203.4193 | 183.7056 | 181.7437 | 188.8272 | 190.7204 | 212.1477 | 224.8865 | 250.1310 | | | Efficiency of (217)m | 86.4484 | 86.1249 | 85.5929 | 84.6171 | 83.0530 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 84.5965 | 85.9660 |
79.8000
86.5133 | | | Fuel for water
Space cooling | 292.4041 | 259.4865 | 277.5306 | 247.5684 | 244.9269 | 230.2075 | 227.7490 | 236.6256 | 238.9980 | 250.7759 | 261.5994 | 289.1242 | (219) | | (221)m
Pumps and Fa
Lighting | 0.0000
7.3041
30.4273 | 0.0000
6.5973
24.4099 | 7.3041
21.9784 | 0.0000
7.0685
16.1023 | 0.0000
7.3041
12.4379 | 0.0000
7.0685
10.1619 | 0.0000
7.3041
11.3463 | 0.0000
7.3041
14.7483 | 0.0000
7.0685
19.1566 | 0.0000
7.3041
25.1345 | 0.0000
7.0685
28.3893 | 0.0000
7.3041
31.2730 | (231) | | Electricity ge (233a)m | -89.6649 | -115.0730 | -150.7193 | -153.9064 | -153.8763 | | -137.4796 | -135.2578 | -130.2876 | -123.3131 | -94.3423 | -78.9051 | (233a) | | Electricity ge
(234a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | Electricity ge
(235a)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | Electricity us
(235c)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | N) (negati
0.0000 | ve if net g
0.0000 | eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | Electricity ge
(233b)m | -91.8955 | -186.3766 | -358.4731 | -522.1453 | -675.6025 | | -665.9026 | -570.5230 | -427.2889 | -260.9227 | -120.7179 | -73.2280 | (233b) | | Electricity ge
(234b)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | Electricity ge
(235b)m | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | Electricity us
(235d)m
Annual totals | 0.0000 | 0.0000 | | | 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Space heating
Space heating
Space heating
Efficiency of
Water heating | fuel - mai
fuel - mai
fuel - sec
water heat
fuel used | n system 2
ondary | | | | | | | | | | 4212.6951
0.0000
0.0000
79.8000
3056.9961 | (213)
(215)
(219) | | Space cooling Electricity fo Total electric | r pumps an | e above, kl | | | | | | | | | | 0.0000 | (231) | | Electricity fo
Energy saving/ | r lighting | (calculate | ed in Append | | d 0) | | | | | | | 245.5656 | (232) | | crgy saving/ | 50 | | (ubbeng) | m , m all | - ×/ | | | | | | | | | SAP 10 Online 2.13.6 Page 6 of 7 | PV generation Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used Total delivered energy for all uses | | | -6129.0107
0.0000
0.0000
0.0000
-0.0000
-0.0000
1472.2461 | (234)
(235a)
(235)
(236)
(237) | |--|---|--|--|--| | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year | Energy
kWh/year
4212.6951
3056.9961
86.0000
245.5656
-1502.2350
-4626.7757 | 0.2100
0.2100
0.1387
0.1443 | Emissions
kg CO2/year
884.6660
0.0000
641.9692
1526.6351
11.9293
35.4427
-205.3185
-586.7670
-792.0856
781.9216 | (373)
(264)
(265)
(267)
(268) | | EPC Target Carbon Dioxide Emission Rate (TER) 13a. Primary energy - Individual heating systems including micro-CHP | | | 6.3100 | (273) | | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy Pr
kWh/year
4212.6951 | timary energy factor
kg CO2/kWh
1.1300
1.1300
1.5128
1.5338 | Primary energy
kWh/year
4760.3454
0.0000
3454.4056
8214.7510
130.1008
376.6567 | (473)
(278)
(279)
(281) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER) | -1502.2350
-4626.7757 | 1.5052
0.4656 | -2261.2266
-2154.0223
-4415.2490
4306.2596
34.7300 | (286) | SAP 10 Online 2.13.6 Page 7 of 7