

95 Avenue Road, London, NW8 6HY

Reference: 678 -Rev - V1

juin-24

www.rida-reports.co.uk

Section

	Introduction	1
	Site Characteristics	2,0
	Discharge Arrangement	3,0
	Peak Runoff	4,0
	Proposed Sustainable Drainage	5,0
Main	tenance and Management Plan	6,0
	Appendices	
Distribu	Appendices tion Existing and Proposed Areas	Α
Distribu	• •	A B
Distribu	tion Existing and Proposed Areas	• • • • • • • • • • • • • • • • • • • •
	tion Existing and Proposed Areas Site Investigation results	В

Rev 1 Produced by: ARD 079 721 44579 arge@rida-reports.co.uk

Purpose of this report

1,1 The purpose of this statement is to accompany the technical drawings and details showing the proposed Surface Water drainage system as part of the planning application for this development.

Site Characteristics

2,1 The site background is clearly identified through answers to the questions in table 1 below.

Table 1: Site Characteristics . See appendix B for support documentation

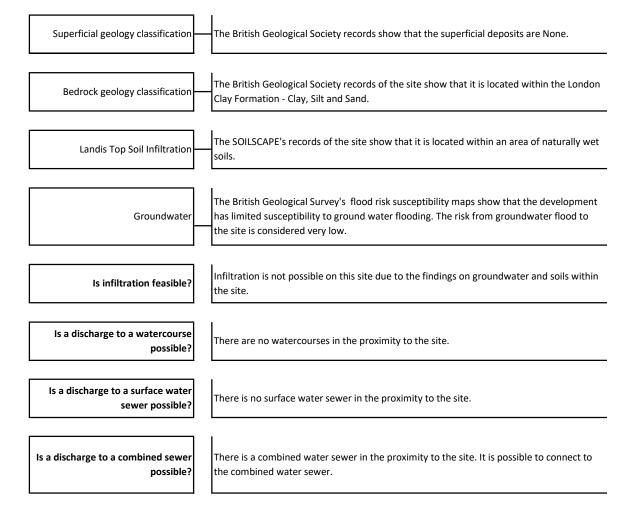
TOPIC	QUESTION	ANSWER	
Protected species or habitat	Is the site near to designated sites and priority habitats?		
Flood Plain	Is the site located in the flood plain?	No	
Soils and Geology	Soil permeability? - See appendix B for results	No	
Space constraints	Space for SuDS components?	Yes	
	Sited on a flat site?	Yes	
Topography	Sited on a steep slope (5-15%)	No	
	Sited on a very steep slope (>15%)	No	
Groundwater	Is the site at groundwater flood risk?	No	
Contaminated land	Are there contaminated soils on site?	Unknown	
Source Protection Zone	Is the site within a SPZ 3?	No	
Runoff characteristics	Is the development in a high risk flooding area?	No	

Existing and Proposed Site

2,2 The distribution of catchment areas for existing and proposed site is as per table 2 below. See appendix A for details

Table 2: Existing and Proposed catchment areas in hectares

	Existing Site Proposed Site	
S	0,028	0,025
Connected to Drainage	0,000	0,000
Self Draining Areas	0,002	0,005
ay from drainage System	em 0,000	
Total Development Area	0,030	0,030
	Self Draining Areas ay from drainage System	S 0,028 Connected to Drainage 0,000 Self Draining Areas 0,002 ay from drainage System 0,000


2,3 It has been assumed that the positively drained areas will have different runoff coefficients depending on the type of surface as follow:

Impermeable Surface	1,0
Permeable Surfaces	0,5
Grass Areas	0,3

Evaluation of Discharge Point

- 3,1 The SuDS design takes into account Building Regulations Section H3 and the National Planning Practice Guidance. The aim is to discharge surface water run-off as high up the drainage hierarchy, as reasonably practicable:
 - 1. into the ground (infiltration);
 - 2. to a surface water body;
 - 3. to a surface water sewer, highway drain, or another drainage system;
 - 4. to a combined sewer.
- 3,2 The discharge point has been evaluated following the NPPG and Building regulations. The findings are in table 3 below.

Table 3: Drainage Hierarchy evaluation

Existing and Proposed Peak Run-off Calculations

4,1 The current site is a Brownfield. The peak runoff rate for the existing site was calculated as per table 4 and discharge rates as per table 5.

Table 4: Peak run-off rate calculation method for existing site

Method Used	Calculation Method
	Report 124 Flood Estimation for Small Catchments method has been used to estimate the site peak flow rates
X	This is a brownfield site, runoff rates are calculated in accordance with best practice simulation modelling and using the modified rational method
	This is a brownfield site where the pre-development drainage isn't known. The runoff rates are calculated using the Greenfield model with soil type 5
4,2 The 5.	runoff flow produced by the development will be controlled as per table
Table 5: Runoff di	scharge rate control
Control Used	Description of runoff discharge
	Water will be discharged into the ground via a SuDS as described in table 6 below
	The peak discharge rate has been reduced to Greenfield Qbar flow
	The peak discharge rate has been taken as 0.7 l/s as it is not possible to reduce it to the Greenfield Qbar rate
	The peak discharge rate has been reduced to Brownfield pre-development 1 in 1 flow
X	The peak discharge rate has been reduced by 60% from the existing Brownfield predevelopment 1 in 2 flow rate

Run-off flows

4,3 The size of the SuDS has been calculated for all events up to the 1 in 100 including an allowance for climate change of 40%. As per tables above, it is proposed to discharge at a rate of 2.64 l/s. See table 6 for values and appendix C for calculations.

Table 6: Peak discharge rates for SuDS

Return Period Event	Discharge Rate (I/s)			Infiltration Rate	
	Existing Greenfield	Existing Proposed Brownfield		(m/hr)	
Qbar	0,10	N/A	N/A	0,0000	
1 in 1	0,10	5,10	2,6	0,000	
1 in 2	0,10	6,60	2,6	0,0000	
1 in 30	0,30	12,20	2,6	0,000	
1 in 30 + CC	N/A	N/A	2,6	0,000	
1 in 100	0,40	15,50	2,6	0,0000	
1 in 100 + CC	N/A	N/A	2,6	0,000	

Proposed Sustainable Drainage System

5,1 The following sustainable drainage systems have been used for this site. The drainage design uses these drainage system through out the site. See table 7 for details.

Table 7: Proposed Drainage System

SuDS Proposed	Feasible	Proposed
Use of green roofs	No	No
Store rainwater for later use	No	No
Use infiltration techniques, for instance soakaways, permeable surfaces	No	No
Attenuate rainwater in ponds or open water features for gradual release	No	No
Attenuate rainwater by storing in tanks or sealed water features for gradual release	Yes	Yes
Discharge Point Proposed		
Discharge rainwater direct to a watercourse	No	No
Discharge rainwater to a surface water sewer/drain	No	No
Discharge rainwater to the combined sewer	Yes	Yes

- 5,2 The location and details of the SuDS can be seen drainage layouts in appendix D. Calculations are in appendix C.
- 5,3 The drainage calculations demonstrate:
 - No flooding occurs for the 1 in 30 storm events.
 - Any flooding for the 1 in 100 year + 40% climate change event can be safely contained on site
- 5,4 The proposed drainage strategy presents one possible solution to demonstrate that the development can be sustainably drained, to comply with the requirements of the NPPF. Other solutions may be feasible and may prove to be better suited to the site. These will become apparent during the detailed design stage. The strategy above should not therefore be interpreted as the definitive scheme solution.

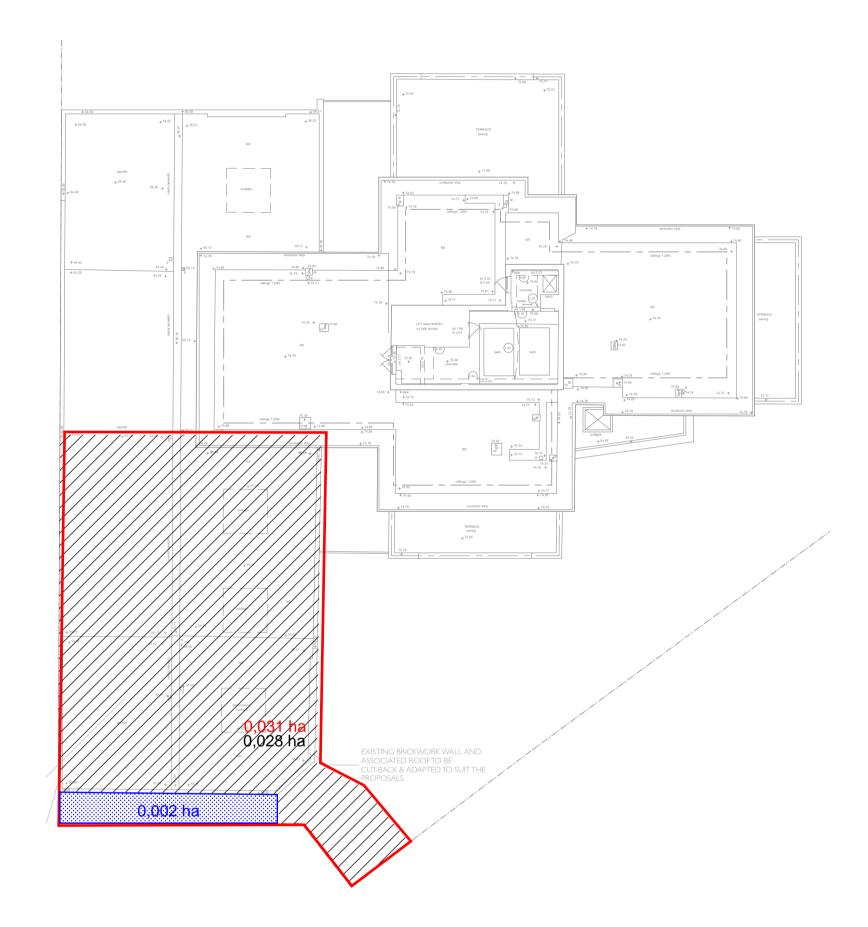
Management of Exceedance Flows

5,5 The drainage network has been designed to attenuate surface runoff for all events up to and including the 1% AEP + CC(1 in 100 years). However consideration has been given to what may happen when the design capacity of the surface water drainage network is exceeded. Surface water will flow to the lowest points within the site. The flood risk to the buildings would therefore remain low. See appendix D.

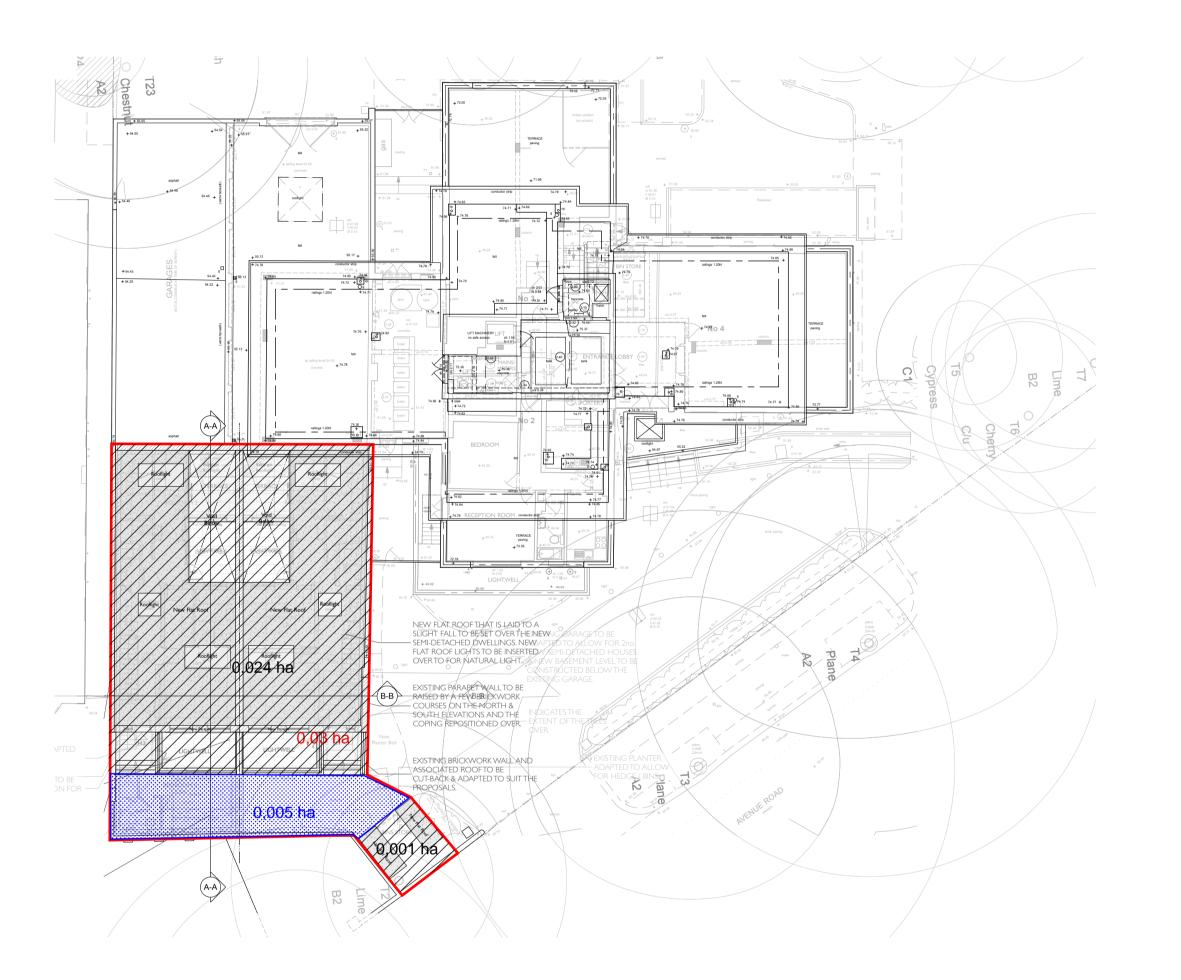
Maintenance and Management plan responsibility

- 6,1 The SuDS will be maintained by The Owner the property
 - Maintenance and Management plan for proposed SuDS
- 6,2 The maintenance and Management Plan Guidance from the SuDS Manual, CIRIA C753 (CIRIA, 2015) is to be followed for the effective maintenance of the proposed SuDS techniques outlined above. The maintenance for SuDS structures are as follow:

INLETS, OUTLETS, CONTROLS AND INSPECTION CHAMBERS	
Regular Maintenance	Frequency
Inlets, outlets and surface control structures	
Inspect surface structures removing obstructions and silt as necessary. Check there is no physical damage.	Monthly
Strim vegetation 1m min. surround to structures and keep hard aprons free from silt and debris	Monthly
Inspection chambers and below ground control chambers	
Remove cover and inspect ensuring water is flowing freely and that the exit route for water is unobstructed. Remove debris and silt.	Annually
Undertake inspection after leaf fall in autumn	
Occasional Maintenance	
Check topsoil levels are 20mm above edges of baskets and chambers to avoid mower damage	As necessary
Remedial work	Frequency
Unpack stone in basket features and unblock or repair and repack stone as design detail as necessary.	As required
Repair physical damage if necessary.	As required


Maintenance and Management Plan

Maintenance schedule	Required action	Typical frequency	
	Inspect and identify any areas that are not operating correctly. If required, take remedial action	Monthly for 3 months, then annually	
	Remove debris from the catchment surface (where it may cause risks to performance)	Monthly	
Regular maintenance	For systems where rainfall infiltrates into the tank from above, check surface of filter for blockage by sediment, algae or other matter; remove and replace surface infiltration medium as necessary.	Annually	
	Remove sediment from pre-treatment structures and/ or internal forebays	Annually, or as required	
Remedial actions	Repair/rehabilitate inlets, outlet, overflows and vents	As required	
Monitoring	Inspect/check all inlets, outlets, vents and overflows to ensure that they are in good condition and operating as designed	Annually	
	Survey inside of tank for sediment build-up and remove if necessary	Every 5 years or as required	



Appendix A

EXISTING SITE 1:200 PROPOSED SITE 1:200

Do not scale from this drawing. Refer to figured dimensions only. RIDA Reports Ltd registered in England and Wales No. 10590566. This drawing is copyright of RIDA Reports Ltd.

Drawing Scale Bar

Drawing Line scale length scale length

1:5 = 0.25 metres 1:200 = 10.0 metres
1:10 = 0.5 metres 1:250 = 12.5 metres
1:20 = 1.0 metres 1:500 = 25.0 metres
1:25 = 1.25 metres 1:1000 = 50.0 metres
1:50 = 2.5 metres 1:1250 = 62.5 metres
1:100 = 5.0 metres 1:2500 = 125 metres
1:100 = 5.0 metres 1:2500 = 125 metres
1:100 = 5.0 metres 1:2500 = 125 metres

GENERAL NOTES PERMEABLE AREAS IMPERMEABLE AREAS STUDY AREA

PRELIMINARY

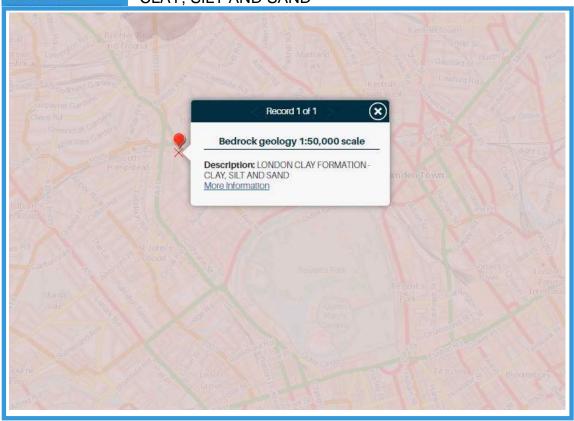
4 Bean Acre Road, Hook Norton, Banbury, Oxfordshire e: info@rida—reports.co.uk t: 01608 510 121 www.rida-reports.co.uk

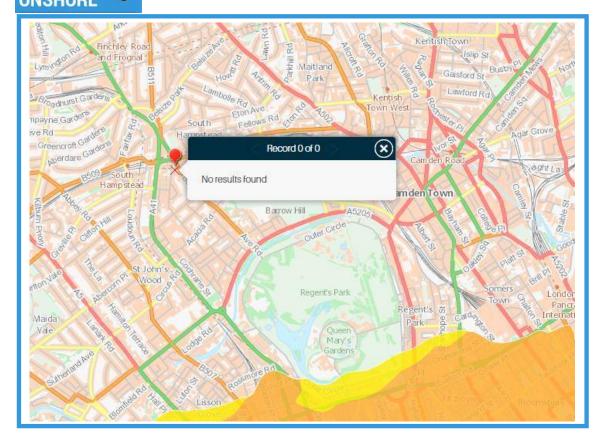
95 Avenue Road, London, NW8 6HY

Existing and Proposed Areas Permeable and Impermeable

__ A1 0678 002

P1

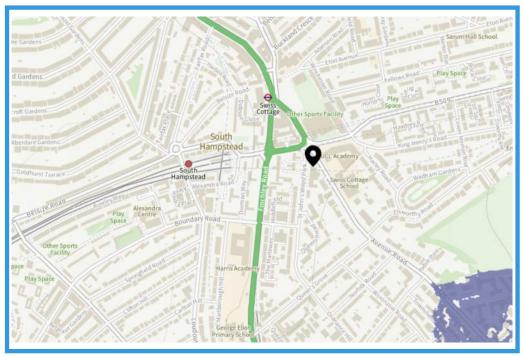

Appendix B



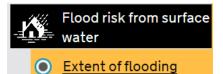
SITE GEOLOGY

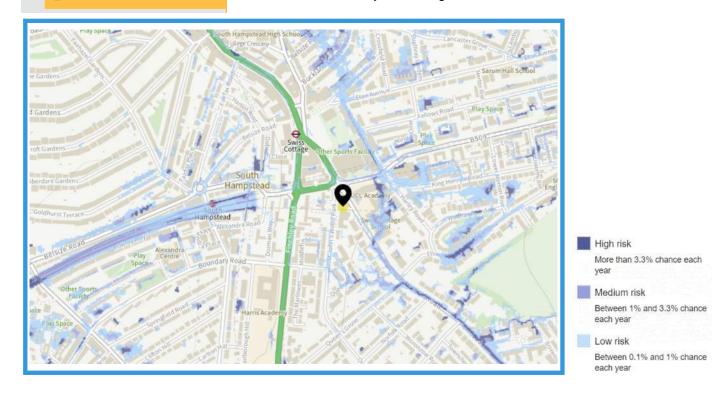
GEOINDEX GEOLOGY - BEDROCK - LONDON CLAY FORMATION - CLAY, SILT AND SAND

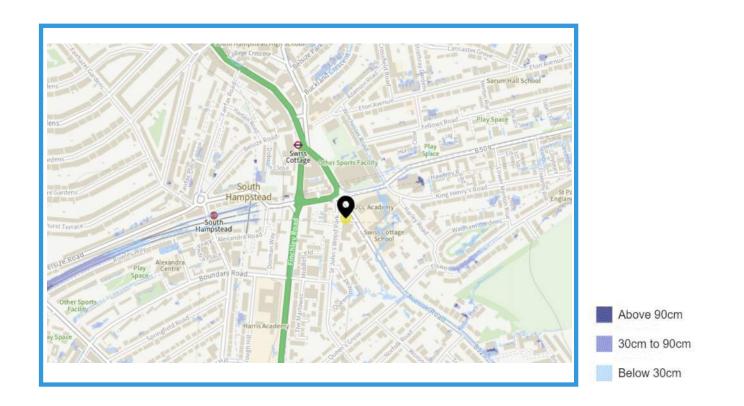
GEOINDEX GEOLOGY - SUPERFICIAL DEPOSITS - No results found


SITE HYDROGEOLOGY

Main River Map



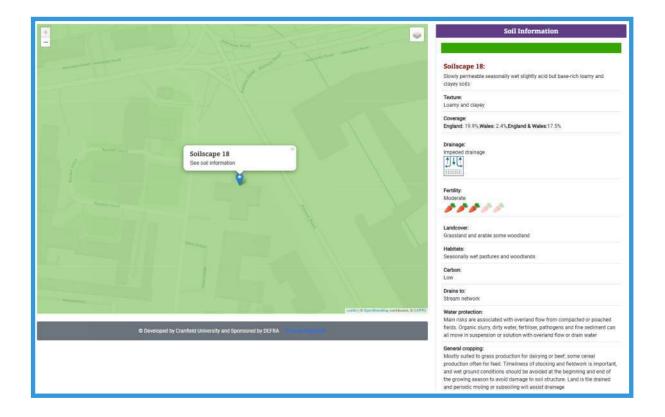

- When river levels are normal
- When there is also flooding from rivers



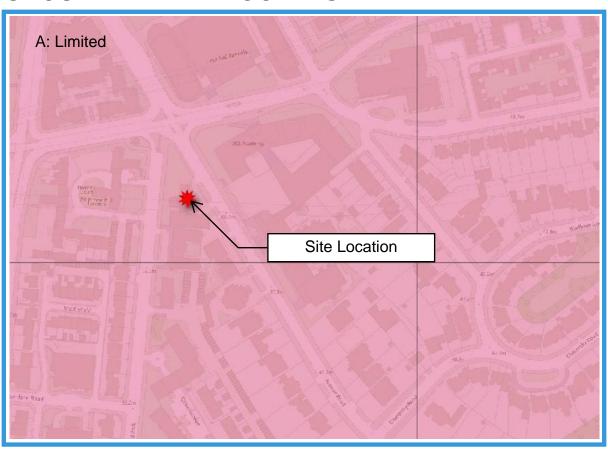
SITE FLOOD RISK

High risk means a chance of flooding greater than 3.3% (1:30) Medium risk means a chance of flooding of btw 1% (1:100) and 3.3% Low risk means a chance of flooding of btw 0.1% (1:1000) and 1% Flooding from surface water is difficult to predict as rainfall location and volume are difficult to forecast. In addition, local features can greatly affect the chance and severity of flooding

MAGIC RESULTS



Site Check Results	×
You selected the loc	ort generated on Fri Jun 14 2024 (ation: Centroid Grid Ref: TQ26788405 have been found in your search area:
Source Protection Z	ones merged (England)
Zone	2
Aquifer Designation	Map (Bedrock) (England)
Typology	Unproductive
Aquifer Designation No Features found	Map (Superficial Drift) (England)
	OK Cancel Export to CSV Print



SOILSCAPES MAP

GROUND WATER FLOOD RISK

Flood map for planning

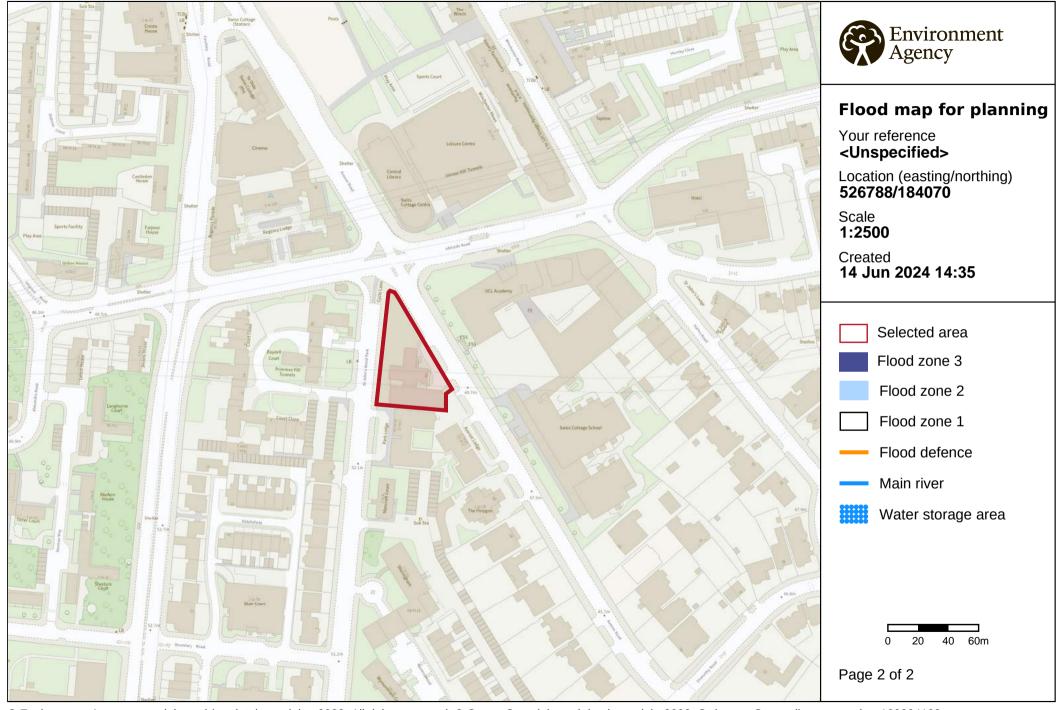
Your reference Location (easting/northing) Created

<Unspecified> 526788/184070 14 Jun 2024 14:35

Your selected location is in flood zone 1, an area with a low probability of flooding.

You will need to do a flood risk assessment if your site is any of the following:

- bigger that 1 hectare (ha)
- In an area with critical drainage problems as notified by the Environment Agency
- identified as being at increased flood risk in future by the local authority's strategic flood risk assessment
- at risk from other sources of flooding (such as surface water or reservoirs) and its
 development would increase the vulnerability of its use (such as constructing an
 office on an undeveloped site or converting a shop to a dwelling)


Notes

The flood map for planning shows river and sea flooding data only. It doesn't include other sources of flooding. It is for use in development planning and flood risk assessments.

This information relates to the selected location and is not specific to any property within it. The map is updated regularly and is correct at the time of printing.

Flood risk data is covered by the Open Government Licence **which** sets out the terms and conditions for using government data. https://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

Use of the address and mapping data is subject to Ordnance Survey public viewing terms under Crown copyright and database rights 2022 OS 100024198. https://flood-map-for-planning.service.gov.uk/os-terms

© Environment Agency copyright and / or database rights 2022. All rights reserved. © Crown Copyright and database right 2022. Ordnance Survey licence number 100024198.

Site Check Report Report generated on Fri Jun 14 2024 You selected the location: Centroid Grid Ref: TQ26788406 The following features have been found in your search area:

SSSI Impact Risk Zones - to assess planning applications for likely impacts on SSSIs/SACs/SPAs & Ramsar sites (England)

1. DOES PLANNING PROPOSAL FALL INTO ONE OR MORE OF 2. IF YES, CHECK THE CORRESPONDING DESCRIPTION(S) BELOW. LPA SHOULD CONSULT THE CATEGORIES BELOW?

NATURAL ENGLAND ON LIKELY RISKS FROM THE FOLLOWING:

All Planning Applications

Infrastructure Airports, helipads and other aviation proposals.

Wind & Solar Energy

Minerals, Oil & Gas

Planning applications for quarries, including: new proposals, Review of Minerals Permissions (ROMP), extensions, variations to conditions etc. Oil & gas exploration/extraction.

Rural Non Residential

Residential **Rural Residential** Air Pollution

Livestock & poultry units with floorspace > 500m², slurry lagoons & digestate stores > 750m², manure

stores > 3500t.

Combustion General combustion processes >50MW energy input. Incl: energy from waste incineration, other

incineration, landfill gas generation plant, pyrolysis/gasification, anaerobic digestion, sewage

treatment works, other incineration/ combustion.

Waste Composting Discharges Water Supply Notes 1

Notes 2

GUIDANCE - How to use the Impact Risk Zones /Metadata for magic/SSSI IRZ User Guidance MAGIC.pdf

Source Protection Zones merged (England)

2

Aquifer Designation Map (Bedrock) (England)

Unproductive **Typology**

Soilscape (England)

Reference 18

SLOWLY PERMEABLE SEASONALLY WET SLIGHTLY ACID BUT BASE-RICH LOAMY AND

CLAYEY SOILS

Main Surface Texture Class LOAMY

Natural Drainage Type IMPEDED DRAINAGE

Natural Fertility MODERATE

Characteristic Semi-natural Habitats LOWLAND SEASONALLY WET PASTURES AND WOODLANDS

Main Land Cover GRASSLAND AND ARABLE SOME WOODLAND Hyperlink /Metadata_for_magic/soilscape_summary.pdf

Aquifer Designation Map (Superficial Drift) (England)

No Features found

Areas of Outstanding Natural Beauty (England)

No Features found

Limestone Pavement Orders (England) No Features found

Local Nature Reserves (England) - points

No Features found

Local Nature Reserves (England)

No Features found

Moorland Line (England) No Features found

National Nature Reserves (England) - points

No Features found

National Nature Reserves (England)

No Features found

National Parks (England)

No Features found

Ramsar Sites (England) - points

No Features found

Ramsar Sites (England)

No Features found

Proposed Ramsar Sites (England) - points

No Features found

Proposed Ramsar Sites (England)

No Features found

Sites of Special Scientific Interest Units (England) - points

Sites of Special Scientific Interest Units (England)

Sites of Special Scientific Interest (England) - points

No Features found

Sites of Special Scientific Interest (England)

No Features found

Special Areas of Conservation (England) - points

No Features found

Special Areas of Conservation (England)

No Features found

Possible Special Areas of Conservation (England) - points

No Features found

Possible Special Areas of Conservation (England)

No Features found

Special Protection Areas (England) - points

No Features found

Special Protection Areas (England)

No Features found

Potential Special Protection Areas (England) - points

No Features found

Potential Special Protection Areas (England)

No Features found

Biosphere Reserves (England) - points

No Features found

Biosphere Reserves (England)

No Features found

Less Favoured Areas (England)

No Features found

Nitrate Vulnerable Zones 2017 Designations (England)

No Features found

Wild Bird General Licence Protected Sites Condition Zone (England)

No Features found

Appendix C

Rida Reports Limited

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 15/06/2024 Page 1

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	0.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.400	1 year (l/s)	0.1
Summer CV	1.000	2 year (l/s)	0.1
Winter CV	1.000	30 year (l/s)	0.3
Analysis Speed	Normal	100 year (l/s)	0.4
Skip Steady State	X	Check Discharge Volume	X

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	0	0
2	0	0	0
30	0	0	0
30	40	0	0
100	0	0	0
100	40	0	0

Pre-development Discharge Rate

Site Makeup	Greenfield	Growth Factor 30 year	2.40
Greenfield Method	IH124	Growth Factor 100 year	3.19
Positively Drained Area (ha)	0.028	Betterment (%)	0
SAAR (mm)	640	QBar	0.1
Soil Index	4	Q 1 year (I/s)	0.1
SPR	0.47	Q 2 year (I/s)	0.1
Region	6	Q 30 year (I/s)	0.3
Growth Factor 1 year	0.85	Q 100 year (I/s)	0.4
Growth Factor 2 year	0.88		

Rida Reports Limited

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 15/06/2024 Page 1

Simulation Settings

Rainfall Methodology	FSR	Drain Down Time (mins)	240
FSR Region	England and Wales	Additional Storage (m³/ha)	0.0
M5-60 (mm)	20.000	Check Discharge Rate(s)	\checkmark
Ratio-R	0.400	1 year (l/s)	5.1
Summer CV	1.000	2 year (l/s)	6.6
Winter CV	1.000	30 year (l/s)	12.2
Analysis Speed	Normal	100 year (l/s)	15.5
Skip Steady State	Х	Check Discharge Volume	х

Storm Durations

15	30	60	120	180	240	360	480	600	720	960	1440

Return Period (years)	Climate Change (CC %)	Additional Area (A %)	Additional Flow (Q %)
1	0	0	0
2	0	0	0
30	0	0	0
30	40	0	0
100	0	0	0
100	40	0	0

Pre-development Discharge Rate

Site Makeup	Brownfield	Betterment (%)	0
Brownfield Method	MRM	Q 1 year (I/s)	5.1
Contributing Area (ha)	0.028	Q 2 year (I/s)	6.6
PIMP (%)	100	Q 30 year (I/s)	12.2
CV	1.000	Q 100 year (I/s)	15.5
Time of Concentration (mins)	6.00		

Mario Mora 20/06/2024 Page 1

Rainfall Methodology FSR Return Period (years) 2 Additional Flow (%) 0

CAUSEWAY

FSR Region **England and Wales**

M5-60 (mm) 20.000 Ratio-R 0.400 CV 1.000

Time of Entry (mins) 6.00

Maximum Time of Concentration (mins) 30.00 Maximum Rainfall (mm/hr) 50.0 Minimum Velocity (m/s) 1.00 Connection Type Level Inverts

Minimum Backdrop Height (m) 0.200 Preferred Cover Depth (m) 1.200

Include Intermediate Ground Enforce best practice design rules ✓

Circular Link Type

Shape Circular Auto Increment (mm) 75 Barrels 1 Follow Ground

Available Diameters (mm)

100 150

Nodes

Name	Area (ha)	T of E (mins)	Cover Level (m)	Diameter (mm)	Easting (m)	Northing (m)	Depth (m)
Development	0.031	6.00	50.900	450	9.755	0.288	1.300
Tank			50.700		30.003	0.303	2.300
Outfall			50.620	450	34.961	0.296	2.270

<u>Links</u>

Name	US	DS	Length	ks (mm) /	US IL	DS IL	Fall	Slope	Dia	T of C	Rain
	Node	Node	(m)	n	(m)	(m)	(m)	(1:X)	(mm)	(mins)	(mm/hr)
1.000	Development	Tank	30.000	0.600	49.600	48.400	1.200	25.0	150	6.25	50.0
1.001	Tank	Outfall	5.000	0.600	48.400	48.350	0.050	100.0	150	6.33	50.0

Name	Vel	Cap	Flow	US	DS	Σ Area	Σ Add	Pro	Pro
	(m/s)	(I/s)	(I/s)	Depth	Depth	(ha)	Inflow	Depth	Velocity
				(m)	(m)		(I/s)	(mm)	(m/s)
1.000	2.022	35.7	5.6	1.150	2.150	0.031	0.0	40	1.479
1.001	1.005	17.8	5.6	2.150	2.120	0.031	0.0	58	0.891

Pipeline Schedule

Link	Length (m)			Link Type			US Depth (m)			DS Depth (m)
1.000	30.000	25.0	150	Circular	50.900	49.600	1.150	50.700	48.400	2.150
1 001	5 000	100.0	150	Circular	50 700	48 400	2 150	50 620	48 350	2 120

Link	US	Dia	Node	MH	DS	Dia	Node	MH
	Node	(mm)	Type	Type	Node	(mm)	Type	Type
1.000	Development	450	Manhole	Adoptable	Tank		Junction	
1.001	Tank		Junction		Outfall	450	Manhole	Adoptable

CAUSEWAY

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 2

Flap Valve Invert Level (m) Diameter (m) 0.028 48.400 Downstream Link Design Depth (m) 2.300 Discharge Coefficient 1.001 0.600 Design Flow (I/s) 2.6 Replaces Downstream Link

Node Tank Depth/Area Storage Structure

Base Inf Coefficient (m/hr) 0.00000 Safety Factor 2.0 Invert Level (m) 48.400 Side Inf Coefficient (m/hr) 0.00000 Time to half empty (mins) Porosity 0.95

Depth Area Inf Area Depth Area Inf Area Depth Area Inf Area (m) (m²)(m²) (m) (m²)(m²) (m) (m²) (m²) 0.000 7.5 0.0 0.800 7.5 1.600 7.5 0.0 0.0 0.400 7.5 0.0 1.200 7.5 0.0 1.601 0.0 0.0

Approval Settings

Node Size x Coordinates x Full Bore Velocity x Time to Half Empty Proportional Velocity x Return Period (years) Node Losses x Crossings x 10 Link Size x Cover Depth x Surcharged Depth x Discharge Rates Х Link Length x Backdrops x Flooding x Discharge Volume x

Rainfall

Event	Peak	Average	Event	Peak	Average
	Intensity	Intensity		Intensity	Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
1 year 15 minute summer	109.521	30.991	2 year 60 minute winter	40.727	16.200
1 year 15 minute winter	76.857	30.991	2 year 120 minute summer	37.449	9.897
1 year 30 minute summer	71.439	20.215	2 year 120 minute winter	24.880	9.897
1 year 30 minute winter	50.133	20.215	2 year 180 minute summer	28.672	7.378
1 year 60 minute summer	48.435	12.800	2 year 180 minute winter	18.637	7.378
1 year 60 minute winter	32.179	12.800	2 year 240 minute summer	22.636	5.982
1 year 120 minute summer	30.053	7.942	2 year 240 minute winter	15.039	5.982
1 year 120 minute winter	19.966	7.942	2 year 360 minute summer	17.235	4.435
1 year 180 minute summer	23.233	5.979	2 year 360 minute winter	11.203	4.435
1 year 180 minute winter	15.102	5.979	2 year 480 minute summer	13.550	3.581
1 year 240 minute summer	18.475	4.882	2 year 480 minute winter	9.003	3.581
1 year 240 minute winter	12.274	4.882	2 year 600 minute summer	11.088	3.033
1 year 360 minute summer	14.169	3.646	2 year 600 minute winter	7.576	3.033
1 year 360 minute winter	9.210	3.646	2 year 720 minute summer	9.878	2.647
1 year 480 minute summer	11.185	2.956	2 year 720 minute winter	6.639	2.647
1 year 480 minute winter	7.431	2.956	2 year 960 minute summer	8.113	2.136
1 year 600 minute summer	9.182	2.511	2 year 960 minute winter	5.374	2.136
1 year 600 minute winter	6.274	2.511	2 year 1440 minute summer	5.891	1.579
1 year 720 minute summer	8.203	2.199	2 year 1440 minute winter	3.959	1.579
1 year 720 minute winter	5.513	2.199	30 year 15 minute summer	268.706	76.035
1 year 960 minute summer	6.768	1.782	30 year 15 minute winter	188.566	76.035
1 year 960 minute winter	4.483	1.782	30 year 30 minute summer	174.929	49.499
1 year 1440 minute summer	4.949	1.326	30 year 30 minute winter	122.757	49.499
1 year 1440 minute winter	3.326	1.326	30 year 60 minute summer	116.589	30.811
2 year 15 minute summer	141.566	40.058	30 year 60 minute winter	77.459	30.811
2 year 15 minute winter	99.345	40.058	30 year 120 minute summer	70.438	18.615
2 year 30 minute summer	91.753	25.963	30 year 120 minute winter	46.797	18.615
2 year 30 minute winter	64.388	25.963	30 year 180 minute summer	53.298	13.715
2 year 60 minute summer	61.301	16.200	30 year 180 minute winter	34.645	13.715

CAUSEWAY

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 3

Rainfall

Event	Peak Intensity	Average Intensity	Event	Peak Intensity	Average Intensity
	(mm/hr)	(mm/hr)		(mm/hr)	(mm/hr)
30 year 240 minute summer	41.604	10.995	100 year 60 minute winter	101.841	40.510
30 year 240 minute winter	27.641	10.995	100 year 120 minute summer	92.562	24.461
30 year 360 minute summer	31.221	8.034	100 year 120 minute winter	61.496	24.461
30 year 360 minute winter	20.295	8.034	100 year 180 minute summer	69.806	17.964
30 year 480 minute summer	24.324	6.428	100 year 180 minute winter	45.376	17.964
30 year 480 minute winter	16.160	6.428	100 year 240 minute summer	54.269	14.342
30 year 600 minute summer	19.756	5.404	100 year 240 minute winter	36.055	14.342
30 year 600 minute winter	13.498	5.404	100 year 360 minute summer	40.484	10.418
30 year 720 minute summer	17.490	4.687	100 year 360 minute winter	26.315	10.418
30 year 720 minute winter	11.754	4.687	100 year 480 minute summer	31.414	8.302
30 year 960 minute summer	14.215	3.743	100 year 480 minute winter	20.871	8.302
30 year 960 minute winter	9.416	3.743	100 year 600 minute summer	25.431	6.956
30 year 1440 minute summer	10.161	2.723	100 year 600 minute winter	17.376	6.956
30 year 1440 minute winter	6.829	2.723	100 year 720 minute summer	22.452	6.017
30 year +40% CC 15 minute summer	376.189	106.449	100 year 720 minute winter	15.089	6.017
30 year +40% CC 15 minute winter	263.992	106.449	100 year 960 minute summer	18.166	4.784
30 year +40% CC 30 minute summer	244.900	69.298	100 year 960 minute winter	12.033	4.784
30 year +40% CC 30 minute winter	171.860	69.298	100 year 1440 minute summer	12.896	3.456
30 year +40% CC 60 minute summer	163.225	43.136	100 year 1440 minute winter	8.667	3.456
30 year +40% CC 60 minute winter	108.443	43.136	100 year +40% CC 15 minute summer	488.233	138.153
30 year +40% CC 120 minute summer	98.613	26.061	100 year +40% CC 15 minute winter	342.620	138.153
30 year +40% CC 120 minute winter	65.516	26.061	100 year +40% CC 30 minute summer	320.551	90.705
30 year +40% CC 180 minute summer	74.617	19.202	100 year +40% CC 30 minute winter	224.948	90.705
30 year +40% CC 180 minute winter	48.503	19.202	100 year +40% CC 60 minute summer	214.603	56.713
30 year +40% CC 240 minute summer	58.245	15.393	100 year +40% CC 60 minute winter	142.577	56.713
30 year +40% CC 240 minute winter	38.697	15.393	100 year +40% CC 120 minute summer	129.587	34.246
30 year +40% CC 360 minute summer	43.710	11.248	100 year +40% CC 120 minute winter	86.094	34.246
30 year +40% CC 360 minute winter	28.413	11.248	100 year +40% CC 180 minute summer	97.729	25.149
30 year +40% CC 480 minute summer	34.053	8.999	100 year +40% CC 180 minute winter	63.526	25.149
30 year +40% CC 480 minute winter	22.624	8.999	100 year +40% CC 240 minute summer	75.977	20.078
30 year +40% CC 600 minute summer	27.658	7.565	100 year +40% CC 240 minute winter	50.477	20.078
30 year +40% CC 600 minute winter	18.898	7.565	100 year +40% CC 360 minute summer	56.677	14.585
30 year +40% CC 720 minute summer	24.485	6.562	100 year +40% CC 360 minute winter	36.841	14.585
30 year +40% CC 720 minute winter	16.456	6.562	100 year +40% CC 480 minute summer	43.979	11.622
30 year +40% CC 960 minute summer	19.901	5.240	100 year +40% CC 480 minute winter	29.219	11.622
30 year +40% CC 960 minute winter	13.183	5.240	100 year +40% CC 600 minute summer	35.604	9.738
30 year +40% CC 1440 minute summer	14.225	3.812	100 year +40% CC 600 minute winter	24.327	9.738
30 year +40% CC 1440 minute winter	9.560	3.812	100 year +40% CC 720 minute summer	31.433	8.424
100 year 15 minute summer	348.738	98.681	100 year +40% CC 720 minute winter	21.125	8.424
100 year 15 minute winter	244.728	98.681	100 year +40% CC 960 minute summer	25.432	6.697
100 year 30 minute summer	228.965	64.789	100 year +40% CC 960 minute winter	16.847	6.697
100 year 30 minute winter	160.677	64.789	100 year +40% CC 1440 minute summer	18.055	4.839
100 year 60 minute summer	153.288	40.510	100 year +40% CC 1440 minute winter	12.134	4.839
· ·			•		

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 4

Results for 1 year Critical Storm Duration. Lowest mass balance: 97.28%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	Development	11	49.638	0.038	4.9	0.0060	0.0000	OK
60 minute summer	Tank	44	48.680	0.280	3.6	1.9979	0.0000	SURCHARGED
15 minute summer	Outfall	1	48.350	0.000	0.7	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	Development	1.000	Tank	4.9	1.128	0.137	0.3138	
60 minute summer	Tank	Orifice	Outfall	0.8				4.0

Mario Mora 20/06/2024 Page 5

Results for 2 year Critical Storm Duration. Lowest mass balance: 97.28%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	Development	11	49.643	0.043	6.4	0.0068	0.0000	OK
60 minute summer	Tank	46	48.771	0.371	4.6	2.6449	0.0000	SURCHARGED
15 minute summer	Outfall	1	48.350	0.000	0.9	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	Development	1.000	Tank	6.4	1.163	0.179	0.3266	
60 minute summer	Tank	Orifice	Outfall	1.0				5.0

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 6

Results for 30 year Critical Storm Duration. Lowest mass balance: 97.28%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	Development	11	49.660	0.060	12.1	0.0096	0.0000	OK
60 minute summer	Tank	48	49.183	0.783	8.8	5.5788	0.0000	SURCHARGED
15 minute summer	Outfall	1	48.350	0.000	1.3	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	Development	1.000	Tank	12.1	1.326	0.339	0.3631	
60 minute summer	Tank	Orifice	Outfall	1.4				9.6

Rida Reports Limited

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 7

Results for 30 year +40% CC Critical Storm Duration. Lowest mass balance: 97.28%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	Development	11	49.673	0.073	16.9	0.0115	0.0000	OK
120 minute summer	Tank	84	49.563	1.163	8.1	8.2870	0.0000	SURCHARGED
15 minute summer	Outfall	1	48.350	0.000	1.5	0.0000	0.0000	OK

Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
15 minute summer	Development	1.000	Tank	16.9	1.395	0.473	0.3908	
120 minute summer	Tank	Orifice	Outfall	1.8				16.2

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 8

Results for 100 year Critical Storm Duration. Lowest mass balance: 97.28%

Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
15 minute summer	Development	11	49.670	0.070	15.7	0.0111	0.0000	OK
120 minute summer	Tank	84	49.478	1.078	7.6	7.6776	0.0000	SURCHARGED
15 minute summer	Outfall	1	48.350	0.000	1.5	0.0000	0.0000	OK

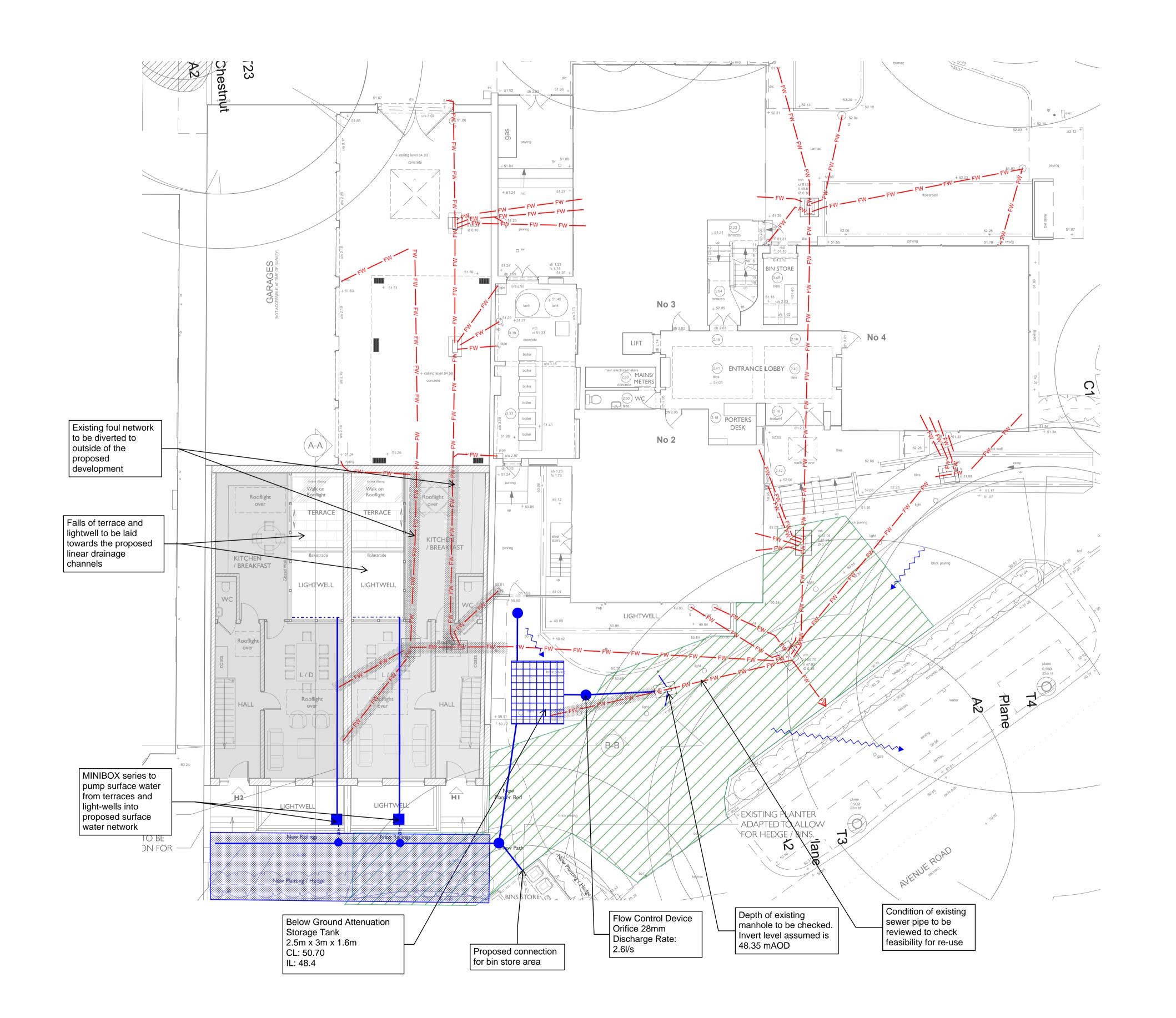
Link Event (Upstream Depth)	US Node	Link	DS Node	Outflow (I/s)	Velocity (m/s)	Flow/Cap	Link Vol (m³)	Discharge Vol (m³)
15 minute summer	Development	1.000	Tank	15.7	1.387	0.439	0.3840	voi (iii)
120 minute summer	Tank	Orifice	Outfall	1.7				15.2

Rida Reports Limited

File: 95 Avenue Road.pfd Network: Storm Network

Mario Mora 20/06/2024 Page 9

Results for 100 year +40% CC Critical Storm Duration. Lowest mass balance: 97.28%


Node Event	US	Peak	Level	Depth	Inflow	Node	Flood	Status
	Node	(mins)	(m)	(m)	(I/s)	Vol (m³)	(m³)	
120 minute summer	Development	86	49.983	0.383	10.7	0.0608	0.0000	SURCHARGED
120 minute summer	Tank	86	49.978	1.578	10.6	11.2439	0.0000	SURCHARGED
15 minute summer	Outfall	1	48.350	0.000	1.8	0.0000	0.0000	OK

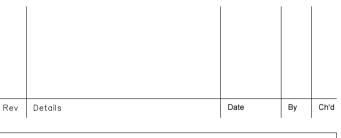
Link Event	US	Link	DS	Outflow	Velocity	Flow/Cap	Link	Discharge
(Upstream Depth)	Node		Node	(I/s)	(m/s)		Vol (m³)	Vol (m³)
120 minute summer	Development	1.000	Tank	10.6	1.157	0.298	0.5281	
120 minute summer	Tank	Orifice	Outfall	2.0				21.3

Appendix D

Do not scale from this drawing. Refer to figured dimensions only. RIDA Reports Ltd registered in England and Wales No. 10590566. This drawing is

| Drawing Scale Bar | Drawing Line | Scale | Ength | Line | Scale | Line | Scale | Line | Lin

GENERAL NOTES


1. All dimensions are in millimetres and levels in m AOD unless stated otherwise.

2. Do not scale. If in any doubt, consult Engineer.

3. Read in conjunction with the architects and engineers schedule drawings.

4. Check inverts and sizes of existing pipes prior to the commencement of any work. Report any discrepancies to the engineer and await instructions.

5. The location of services is shown as indicative. This drawing should be read in conjunction with the utilities drawings. No warranty to their accuracy can be given. The contractor shall take all necessary measures to satisfy himself as to the location of the existing services and connection points. Excavation should be undertaken in compliance with HSG47.

PRELIMINARY

KEY

Proposed Surface Water Sewer Pipe

MINIBOX Series pump

Tree Root Protection Zone (from

----- Proposed Linear Drainage Channel

Tree Protection Plan)

>>>>> Exceedance Flows

Silt Trap

-RM —— RM —— Proposed Rising Main

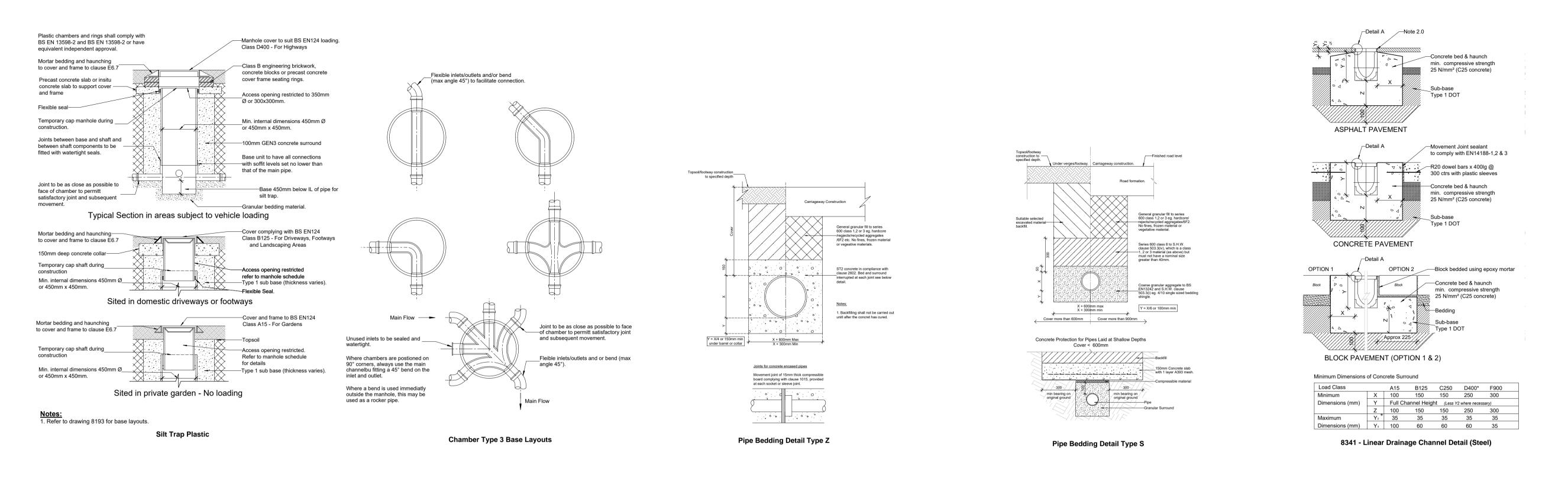
- FW ---- FW ---- Existing Foul Sewer Pipe

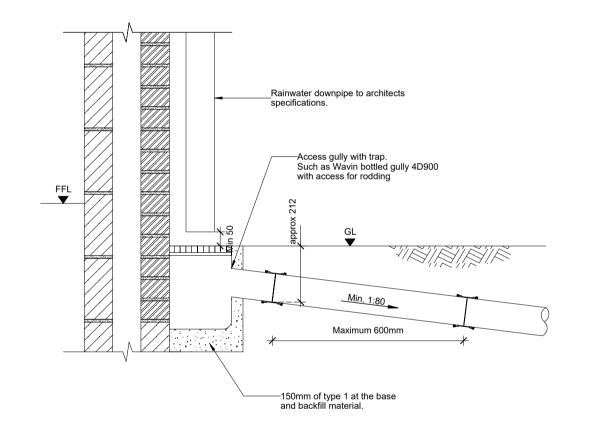
Existing Foul Sewer Pipe to be diverted

4 Bean Acre Road, Hook Norton, Banbury, Oxfordshire e: info@rida-reports.co.uk t: 01608 510 121 Www.rida-reports.co.uk

Client:

Project:

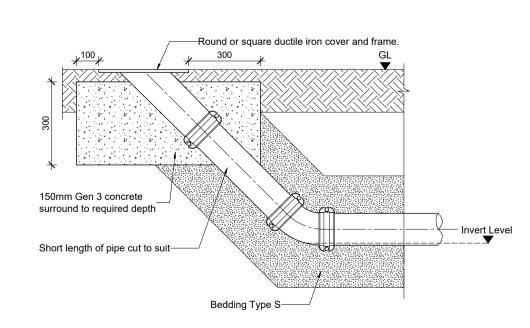

95 Avenue Road, London, NW8 6HY


Drawing:

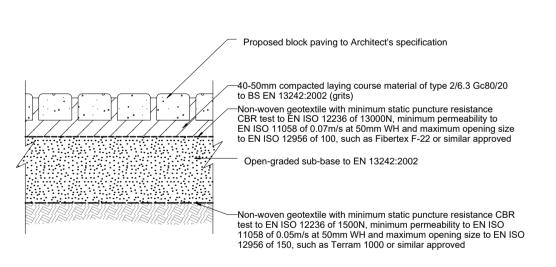
Proposed Drainage Strategy

 Print Size:
 Scale:
 Project No:
 Drawing No:
 Revision:

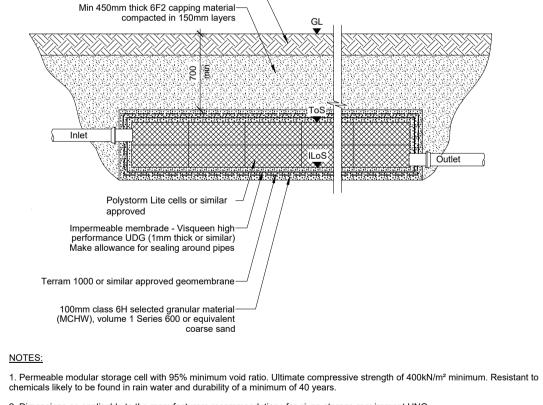
 A1
 1:100
 0678
 003
 P1



NOTES:

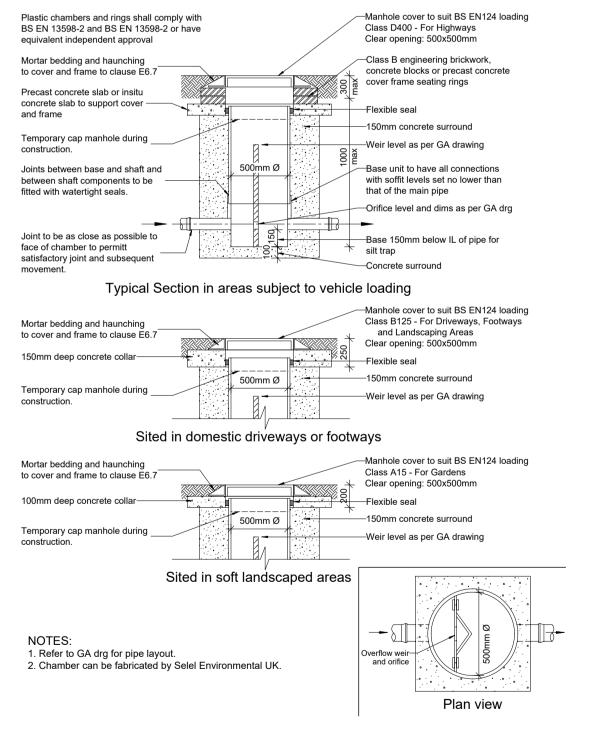

accordance with the manufacturers recommendations

1. This details shows the standard generic arrangement. 2. The pipe and connector details will be different for each manufacturer of the components. They are to be in installed in


8250 - External Rainwater (High Level)

External Rodding Eye Detail

Permeable Paving - Infiltration

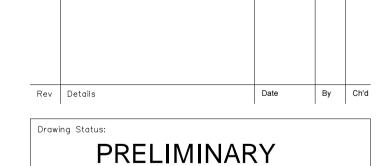

Proposed pavement build-up,

refer to Architect's detail

4. See GA drgs for pipe sizes and layout and IL, ILoS, ToS, GL levels.

2. Dimensions as applicable to the manufacturers recommendations for given storage requirement UNO. 3. Air Vents should be provided as per suppliers recommendations

Cellular Attenuation System - Hardstanding Area



Flow Control -Orifice Plate - Plastic - Type 3

Do not scale from this drawing. Refer to figured dimensions only. RIDA Reports Ltd registered in England and Wales No. 10590566. This drawing is copyright of RIDA Reports Ltd.

> Drawing Scale Bar Drawing Line scale length 1:5 = 0.25 metres 1:200 = 10.0 metres
> 1:10 = 0.5 metres 1:250 = 12.5 metres
> 1:20 = 1.0 metres 1:500 = 25.0 metres
> 1:25 = 1.25 metres 1:1000 = 50.0 metres
> 1:50 = 2.5 metres 1:1250 = 62.5 metres
> 1:100 = 5.0 metres 1:2500 = 125 metres
> Measure length of line above for checking of scale

GENERAL		

4 Bean Acre Road, Hook Norton, Banbury, Oxfordshire e: info@rida—reports.co.uk t: 01608 510 121 www.rida-reports.co.uk

95 Avenue Road, London, NW8 6HY

Standard Details

NTS 0678 006 P1