Whole Lifecycle Carbon Assessment Chalk Farm

Prepared for Regal Chalk Farm Limited

11494-WCL-ZZ-ZZ-RP-Y-1-004

Revision 1

23 May 2024

Contents

1.	Introduction	3
2.	GLA Whole Lifecycle carbon Assessment Guidance	4
3.	Key Assumptions	6
4.	Detailed Planning Stage WLC Emissions	7
5.	Comparison with GLA Benchmarks	8
6.	Factors Contributing to Embodied carbon Savings	9
7.	Opportunities for Further Reducing Embodied Carbon	10
8.	Conclusion	10
Appen	dix A – Building Materials Specification and Quantities	11

Revisions:

Rev No:	Date:	Status/Comments:	Prepared by:	Checked by:
00	January 2024		KV	EH

Figure 1.1 Proposed Site Plan

1. Introduction

1.1 Purpose of this Document

This Whole Life Carbon Assessment has been prepared by Whitecode Consulting Ltd on behalf of Regal Chalk Farm Limited ('the Applicant') in support of an application for full planning permission for the redevelopment of 100 Chalk Farm Road ('the Site') within London Borough of Camden ('LBC').

A listed building consent application accompanies the application for works to the adjacent Roundhouse, which is a Grade II* listed building.

The site is located on the south-western side of Chalk Farm Road and borders the mainline railway into Euston, with the Juniper Crescent Housing Estate to the south. It lies within the Regents Canal Conservation Area, to which the existing building on the site is a neutral contributor. To the west, the site is adjacent to the Grade II* listed Roundhouse theatre and live music venue. Beyond that, to the north-west is Chalk Farm Underground Station. To the east is the Petrol Filling Station site, which forms part of the Camden Goods Yard development and is currently in use as a temporary supermarket.

The development will provide 264 student accommodation units, together with 1000 sqm (GIA) of commercial space, 30 affordable residential units, with public realm improvements, new areas of landscaping, amenity and play space, and improved accessibility to the site.

The description of development is as follows:

"Demolition of existing buildings and redevelopment of the site to provide two buildings containing purpose-built student accommodation with associated amenity and ancillary space (Sui Generis), affordable residential homes (Class C3), ground floor commercial space (Class E) together with public realm, access, servicing, and other associated works."

Full details and scope of the planning application is described in the submitted Town Planning Statement, prepared by Gerald Eve LLP.

The purpose of this report is to summarise the outcomes of a Whole Life Carbon (WLC) assessment. The results will enable the Design Team to make informed decisions to steer the design process to optimise cost and mitigate environmental impacts.

1.2 Existing Site

The site consists of three 1970s commercial buildings: the main six-storey office building fronting Chalk Farm Road; a two-storey link building which adjoins the Roundhouse; and a three-storey office building to the rear of the site. There are surface and subterranean car parks at the rear.

2. GLA Whole Lifecycle carbon Assessment Guidance

The Greater London Authority 'Whole Life-Cycle Carbon Assessments' guidance was adopted in March 2022 and provides guidance on how to prepare a Whole Life-Cycle Carbon assessment in line with Policy SI2 of the London Plan. Policy SI2 applies to planning applications that are referred to the Mayor.

Planning applicants should continue to follow the GLA's Energy Assessment Guidance to assess and reduce operational emissions and insert the relevant information into the WLC assessment.

Calculating and reducing WLC emissions offers a wealth of benefits including:

- Ensuring that a significant source of emissions from the built environment are accounted for which is necessary in achieving a net zero-carbon city.
- Achieving resource efficiency and cost savings by encouraging the re-use of existing materials instead of new materials and the retrofit and retention of existing structures and fabric over new construction
- Identifying the carbon benefits of using recycled material and the benefits of designing for future reuse and recycling to reduce waste and support the circular economy.
- Encouraging a 'fabric first' approach to building design thereby minimising mechanical plant and services in favour of natural ventilation
- Considering operational and embodied emissions simultaneously to find the optimum solutions for the development over its lifetime.
- Identifying the impact of maintenance, repair and replacement over a building's life cycle which improves life-time resource efficiency and reduces life-cycle costs, contributing to the future proofing of asset value.
- Encouraging local sourcing of materials and short supply chains, with resulting carbon, social and economic benefits for the local economy.
- Encouraging durable construction and flexible design, both of which contribute to greater longevity, reduced obsolescence of buildings and avoiding carbon emissions associated with demolition and new construction.

LCA Software and Methodology 2.1

This WLC assessment has been undertaken using the 'OneClick LCA' software which has been developed to comply with the BS EN 15978: 2011 – Sustainability of construction works - Assessment of environmental performance of buildings - Calculation method requirements and RICS PS Whole Life Carbon assessment for the built environment scope (as outlined in Table 2).

The operational carbon emissions are calculated using energy and water consumption taken from the Energy Strategy and Sustainability Statement prepared by Whitecode Consulting Ltd, June 2023 and submitted with this application. Embodied carbon emissions are calculated within the OneClick LCA software by providing the following information:

- Type of material in each building element
- Quantity of each material per building element (kg or m3)

2.2 LCA Life Cycle Stages and Scope of Assessment

Table 2: WLC assessment, building elements (RICS PS).

The GLA's guidance references RICS PS and BS EN 15978 which requires the WLC assessment to be undertaken against the following four stages in the life of a typical building, referred to as 'modules':

- Module A1-A5 (Product sourcing and construction stage)
- Module B1 B7 (Use stage)
- Module C1 C4 (End of life stages)
- Module D (Benefits and loads beyond the system boundary).

A more detailed explanation of each module is provided in Table 1 below.

Table 1: Life cycle stages and scope of assessment in line with EN 15978: 2011

		P	ROJEC	T LIF	E CYC	LE IN	FORM	IOITA	N				SUPPLEMENTARY INFORMATION
A1 - A3 RODUCT STAGE A4 - A5 CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C4 END OF LIFE STAGE									D BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARY				
42	A3	A4	A5	B1	B2	В3	B4	B5	C1	C2	C3	C4	D
		VSPORT TO PROJECT SITE	CONSTRUCTION AND NSTALLATION PROCESS	CONSTRUCTION AND ISTALLATION PROCESS MAINTENANCE MAINTENANCE REPLACEMENT REPLACEMENT REFURBISHMENT REFURBISHMENT DECONSTRUCTION DECONSTRUCTION DECONSTRUCTION DECONSTRUCTION MASTE PROCESSING	DISPOSAL	REUSE, RECOVERY, RECYCLING POTENTIAL							
	2 LNP	ANT 2 A3 CATION CATION	A3 T STAGE CONST ON PR STA 2 A3 A4 2 A3 A4 UNOJECT SITE PROJECT SITE	A3 T STAGE 2 A3 A4 A5 2 A3 A4 A5 2 CONSTRUCTI ON PROCESS STAGE 2 A3 A4 A5 2 COLION AND COLION AND C	A3 T STAGE CONSTRUCTI ON PROCESS STAGE 2 A3 A4 A5 B1 CON brocess STAGE 2 A3 A4 A5 B1 B1 CON BUD CUION AND CUION AND CUI	A3 T STAGE CONSTRUCTI ON PROCESS STAGE CATION A CONSTRUCTI ON PROCESS STAGE CON BL CONSTRUCTI ON PROCESS STAGE CONSTRUCTI ON PROCESS STAGE CONSTRUCTI ON PROCESS STAGE CONSTRUCTI ON PROCESS STAGE CONSTRUCTI ON PROCESS STAGE CONSTRUCTI ON PROCESS STAGE CONSTRUCTI STAGE CONSTRUCTI ON PROCESS STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE CONSTRUCTI STAGE	A3 T STAGE CONSTRUCTI ON PROCESS STAGE USE STAGE 2 A3 A4 A5 B1 B2 B3 A44 A5 B1 B2 B3 USE STAGE A41 NLENANCE N B1 B2 B3 A44 A5 B1 B2 B3 A44 B5 B1 B2 B	A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE 2 A3 A4 A5 B1 B2 B3 B4 2 A3 A4 A5 B1 B2 B3 B4 1 0N brocess STAGE 0N brocess STAGE B1 B2 B3 B4 2 A3 A4 A5 B1 B2 B3 B4 1 0N brocess ON brocess GUION AND COLION AND COLI	A3 T STAGE CONSTRUCTI ON PROCESS STAGE USE STAGE 2 A3 A4 A5 B1 B2 B3 B4 B5 CCIION AND CCIION AND	A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE END 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 1 UNE S S S S S S S S 1 UN UN S S S S S S S 1 UN S S S S S S S S 1 UN S S S S S S S S 1 UN S S S S S S S S 1 UN S S S S S S S S S S 1 UN S S S S S S S S 1 UN S S S S S S S 1 UN S </td <td>A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C END OF LIFE 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2</td> <td>A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C4 END OF LIFE STAGE 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 1 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 1 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 1 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3</td> <td>A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C4 END OF LIFE STAGE 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 1 ULION AND SOCESSING NEEPIAR B1 B2 B3 B4 B5 C1 C2 C3 C4 0 DISPOSENT SCREPIAR B1 B2 B3 B4 B5 C1 C2 C3 C4 0 DISPOSENT SCREPIAR B1 B2 B3 B4 B5 C1 C2 C3 C4 0 NO NO<!--</td--></td>	A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C END OF LIFE 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2 1 DILTON ON B1 B2 B3 B4 B5 C1 C2	A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C4 END OF LIFE STAGE 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 1 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 1 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 1 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3 0 DISPOSAL B1 B2 B3 B4 B5 C1 C2 C3	A3 T STAGE CONSTRUCTI ON PROCESS STAGE B1 - B7 USE STAGE C1 - C4 END OF LIFE STAGE 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 2 A3 A4 A5 B1 B2 B3 B4 B5 C1 C2 C3 C4 1 ULION AND SOCESSING NEEPIAR B1 B2 B3 B4 B5 C1 C2 C3 C4 0 DISPOSENT SCREPIAR B1 B2 B3 B4 B5 C1 C2 C3 C4 0 DISPOSENT SCREPIAR B1 B2 B3 B4 B5 C1 C2 C3 C4 0 NO NO </td

This WLC assessment for Chalk Farm covers all building elements listed in Table 2 that are applicable to the project. The building elements are broken down according to the RICS New Rules of Measurement (NRM) classification system level 2 sub-elements. The unit of area measurement to be used is m² of Gross Internal Area (GIA).

	15	
	Building part/Element group	Building element
	Demolation	0.1 Toxic/Hazardous/Contaminated
	Demolition	0.2 Major Demolition Works
-		0.3 & 0.5 Temporary/Enabling Works
0	Facilitating works	0.4 Specialist groundworks
1	Substructure	1.1 Substructure
2	Superstructure	2.1 Frame 2.2 Upper floors Incl. balconies 2.3 Roof 2.4 Stairs and ramps
2	Superstructure	2.5 External Walls 2.6 Windows and External Doors
2	Superstructure	2.7 Internal Walls and Partitions 2.8 Internal Doors
3	Finishes	3.1 Wall finishes 3.2 Floor finishes 3.3 Ceiling finishes
4	Fittings, furnishings and equipment (FF&E)	4.1 Fittings, Furnishings & Equipme Incl. Building-related* and Non-build
5	Building services/MEP	5.1-5.14 Services Incl. Building-related* and Non-build
6	Prefabricated Buildings and Building Units	6.1 Prefabricated Buildings and Build
7	Work to Existing Building	7.1 Minor Demolition and Alteration
8	External works	8.1 Site preparation works 8.2 Roads, Paths, Pavings and Surfa 8.3 Soft landscaping, Planting and Ir 8.4 Fencing, Railings and Walls 8.5 External fixtures 8.6 External drainage 8.7 External Services

* Building-related items: Building-integrated technical systems and furniture, fittings and fixtures built into the fabric. Building-related MEP and FF&E typically include the items classified under Shell and core and Category A fit-out

** Non-building-related items: Loose furniture, fittings and other technical equipment like desks, chairs, computers, refrigerators, etc. Such items are usually part of Category B fit-out.

*** New build projects assessed are considered to commence their development on a cleared, flat site for consistency purposes. Demolition works are often decoupled from new construction projects, hence the responsibility for any emissions arising from demolition is not necessarily solely attributable to the new build project.

Material treatment
S
nt ding-related**
ding-related**
ding Units
Works
icings rrigation Systems

2.3 Data Benchmarks

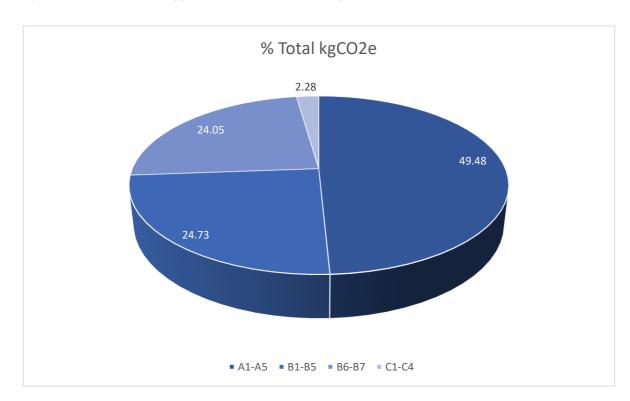
GLA suggests a baseline WLC benchmark for residential developments of <850 kgCO2e/m²GIA with the aspirational at <500 kgCO2e/m²GIA for modules A1-A5, while for modules B-C, excluding B6 and B7, the baseline suggested values <350 kgCO2e/m²GIA and aspirational targets are <300 kgCO2e/m²GIA.

The GLA's total suggested benchmark for Stages A-C (excluding B6 & B&) is <1200 kgCO2e/m²GIA and aspirational benchmark is <800 kgCO2e/m²GIA.

3. Key Assumptions

The below table presents the key assumptions used to assess the lifecycle of the baseline building:

Environmental Indicator	Lifecycle carbon CO2eq
Study Period	60 years in line with GLA guidance
Functional Unit	The Functional Unit for embodied carbon is shown in kgCO2eq per m2 of floor area (GIA) A total GIA of 13,406m ² was used as confirmed by DSDHA
System Boundary	In accordance with BS EN 1579:2011 shown in Table 1
Software Tools	OneClick LCA
Assessment Scope	All buildings and external areas
Elements Considered	In accordance with RICS PS shown in Table 2
Materials Specification	Structural material quantities as provided by Pells Frischmann. Substructure RC was assumed to contain 20% recycled content. External landscape quantities provided by BBUK Studios. Superstructure quantities as provided by DSDHA. DSDHA specified the use of Rock Wool Duo Slap and Rock Wool Flexi insulation and Dulux paint which have been used for the calculations. Services quantities provided by MEP consultants WCL Generic (industry standard) data has been used where product specification was not available.
Expected Lifespan	OneClick LCA default lifespans have been used
Refrigerant Leakage	Refrigerant type R290 has been confirmed by WCL for ASHP's. OneClick LCA default annual leakage rate of 2% and 99% end of life recovery rate has been used
Operational Energy Consumption	The anticipated annual energy consumption both regulated and unregulated has been taken from the Energy Strategy produced by Whitecode Consulting
Water Consumption	Annual water consumption is based on 105 litres per day per person. Based on Crib sheet provided by Gerald Eve, 355 residents in 294 dwellings.
Construction Scenarios	OneClick LCA's average site impact temperate climate (North) has been used
CO2eq Emission Factors	CO2eq Emissions from consuming electricity and water were calculated by OneClick LCA


4. Detailed Planning Stage WLC Emissions

The following table presents the breakdown of the emissions by lifecycle for the development. It should be noted that module D is excluded from the total kgCO2e number as per the GLA's WLC guidance requirements.

Result category	A1-A3	A4	A5	B1	B2	B3	B4-B5	B6	B7	C1	C2	C3	C4	TOTAL kg CO2e	D
0.2 Demolition	_	_	_	-	_	-	-	-	-	18,496	_	_	_	18,496	-
1 Substructure	872,875	45,785	42,958	-	10,048	2,512	-	-	-	-,	29,257	32,852	-	1,036,288	-204,403
2.1 Frame	85,723	4,238	3,947	-	10,048	2,512	-	-	-		3,242	277	-	109,988	-19,396
2.2 Upper Floors	877,678	51,277	39,107	-	10,048	2,512	-	-	-		25,711	2,625	-	1,008,958	-215,402
2.3 Roof	98,127	6,481	4,704	-	10,048	2,512	268	-	-	-	3,362	6,384	44	131,930	-22,450
2.4 Stairs & Ramps	37,793	2,699	1,735	-	10,048	2,512	-	_	-	_	1,353	138	-	56,278	-9,916
2.5 Ext. Walls	3,991,198	20,468	168,556	-	10,048	2,512	76,089	_		_	59,039	72,039	220	4,335,136	-5,753,245
2.6 Windows & Ext. Doors	117,147	244	0	-	10,048	2,512	119,317	_	-	_	1,877	27	21	251,195	-34,735
2.7. Int. Walls & Partitions	173,343	1,016	16,627	-	10,048	2,512	107,709.61	_		_	8,204	290	31	319,781	-43,158
2.8 Int. Doors	15,643	78	0	-	10,048	2,512	15,952	_	-	_	60	29,048	8	44,465	-
3 Finishes	243,567	3,407	32,497	-	10,048	2,512	1,278,285	_	-	_	6,294	73,032	11	1,649,654	-338,759
4 Fittings, furnishings & equipment	80,705	2,781	3,775	-	10,048	2,512	132,418			_	4,828	7,495	31	244,593	-
5 Services (MEP)	1,529,189	2,982	26,780	227	10,048	2,512	2,430,472	_	-	_	10,928 kg	968	161	8,229,559	-1,158,782
6 Prefabricated	-	-	-	-	-	-	-	_	-	_			-	-	
7 Existing bldg	-	-	-	-	-	-	-	_		_			-	-	-
8 Ext. works	28,181	388	1,834	-	10048	2,512	10,317	_		_	491	58	_	53,830	-8,297
Other	-	_	38,175	-	-	_	-	-	-	-	-	-	-	38,175	-
	8,151,170	141,845	380,694	227	130,630	32,656	4,170,828	4,199,29	15,999	18,496	154,647	225,234	527	17,528,326	-7,808,543
TOTAL kg CO2e															

4.1 Results by Life Cycle Stages

The graph below presents the embodied carbon emissions breakdown attributed to stages A to C. The total carbon emissions are dominated by A1-A5 Stages which are associated with material production, transportation and site operations. This is the biggest contributor accounting for 54% of the total WLC emissions.

5. Comparison with GLA Benchmarks

The table below shows that the development within the GLA benchmark for Stages A1-A5 and Stages B-C.

Overall, the development sits comfortably within the WLC benchmark for Stages A-C.

Stages	WLC Benchmark	Aspirational Benchmark	Chalk Farm WLC
		kgCO ₂ e/m ² GIA	
Stages A1-A5	<850	<500	647
Stages B-C (excl. B6 & B7)	<350	<300	353
Stages A-C (excl. B6 & B7)	<1200	<800	993

A schedule of specified materials and quantities are provided in the schedule in Appendix A.

6. Factors Contributing to Embodied carbon Savings

This section outlines decisions made to reduce whole life cycle carbon and brief recommendations on potential measures that could be implemented to further reduce the scheme's embodied carbon emissions.

Where the required level detailed material specification was absent, average industry standard practice assumptions have been used as per RICS PS's default specifications at this stage. There are opportunities for improvements beyond the RICS PS recommended specifications to reduce the embodied carbon of key materials.

Stages A1-A5 Product and Construction Process Stages

The results show that the development is comfortably within GLA's Benchmark for Stage A1-A5. This has been achieved by implementing the following carbon saving solutions:

Decisions Implemented	WLC reduction potential (kg			
	CO ₂ e/m ² GIA)			
30% GGBS in superstructure concrete	9.39			
Specification of products with EPD's	13.6			
Use of R290 Refrigerant	2.1			
Reuse of existing terrazzo tiling	0.09			

Stages B Use Stage

Carbon emissions, associated with use, maintenance, repair and refurbishment/replacement accounts for around 24% of the overall carbon emissions. Due to lack of appropriate data, maintenance (B2) has been estimated at 10kgCO₂/m² GIA and Repair (B3) have been estimated at 25% of B2 emissions in line with RICS PS. Once project specific data is available, e.g maintenance strategy reports, O&M manuals, the WLC can be updated. Where specific project data in respect refurbishment/ replacement is not available, OneClick LCA uses assumptions.

Carbon associated with regulated operational energy contributes 24% to the overall whole life carbon emissions for the development. The regulated and unregulated energy for the development has been taken from the *Energy Strategy* prepared by Whitecode Consulting, January 2024 and submitted with this application, which follows the London Plan 2021's energy hierarchy Be Lean, Be Clean, Be Green in reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand. Several passive measures have been considered including significantly improved fabric 'U' values; improved air tightness; and minimised cold bridging which have all contributed to reducing operational energy. High efficiency heat pumps and PV have been proposed to further reduce carbon emissions. At this stage, all feasible options for reducing carbon in Stage B6 and B7 have been included in the assessment.

Stages C1 – C4 End of Life Carbon

Carbon associated with the End of Life stages account for around 2% of the overall carbon. Options for deconstruction, waste management and disposal have been addressed in the *Circular Economy Assessment* (CE) prepared by Whitecode Consulting, January 2024 and submitted with this application. The end of life scenarios highlighted in the CE report have been included in this WLC assessment.

7. Opportunities for Further Reducing Embodied Carbon

To improve the results even further, the design team could consider the following:

Opportunities	WLC reduction potential (kg CO2e/m2 GIA)
50% GGBS in sub-structure	14.19
Structural steel in external wall containing recycled steel	57.29
Composite frame windows instead of aluminium frame	1.66
Plasterboard with an EPD (Etex)	4.86

Additionally, RICS default distances have been used for this assessment. Consideration should be given to using materials which are manufactured as locally to the site as possible.

Procuring more materials with a certified Environmental Product Declaration (EPD) would ensure that these materials perform better, in terms of embodied carbon, than a generic material.

8. Conclusion

As a GLA referrable development, a Whole Life Cycle Carbon Assessment has been undertaken for the Chalk Farm development, as required in the London Plan 2021's policy SI 2.

The results from the assessment indicate that the development is within the GLA benchmark for Stages A1-A5 with emissions totalling 647 kgCO2e/m² GIA.

The results for Stage B-C (excluding B6 & B7) indicate that the development is also within the GLA benchmark with emissions totalling 353 kgCO2e/m² GIA.

Overall, the development is comfortably within the WLC benchmark for Stages A-C with emissions totalling 998 kgCO2e/m².

By selecting products with lower embodied carbon, as described in Section b, the development has achieved a saving of 25.18 kgCO₂/m² when compared to a Notional baseline.

Further opportunities for reducing embodied carbon have been provided in Section 7 and will be investigated further during detailed design. Due to lack of specific data regarding repair and maintenance, assumptions have been made for stages B2 and B3 in line with GLA WLC guidance and RICS PS. It is therefore likely that once accurate information is available, emissions associated with these stages will reduce to within the GLA benchmark.

By undertaking a WLC, and engaging with Circular Economy, Chalk Farm development has demonstrated that every option for reducing carbon emissions has been considered and implemented where feasible at this stage.

Section	Resource	Quantity	Unit	Comment	Service life	EOL Process	Construction	Data Source
.1.1 Standard Foundations	Ready-mix concrete, normal-strength, generic, C40/50 (5800/7300 PSI), 20% recycled binders in cement (400 kg/m3 / 24.97 lbs/ft3)	3245000	kg	Piles and Pile Caps	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement	Ready-mix concrete for structures (beams,	One Click LCA
	Reinforcement steel (rebar), generic, 97% recycled content (typical), A615	208000	kg	Piles and Pile Caps	60	400 kg / m3 Steel recycling	columns. piling) Reinforcement for concrete (rebar)	One Click LCA
	Ready-mix concrete, normal-strength, generic, C30/37 (4400/5400 PSI), 20% GGBS content in cement (300 kg/m3 / 18.72 lbs/ft3) (One Click LCA)	1420000	kg	Lowest Floor	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement	Ready-mix concrete, high strength	One Click LCA
1.1.3 Lowest Floor	Reinforcement steel (rebar), generic, 97% recycled content (typical), A615	70000	kg	Lowest Floor	60	400 kg / m3 Steel recycling	Reinforcement for concrete (rebar)	One Click LCA
Construction	EPS insulation panels, graphite, L= 0.037 W/mK, R= 2.7 m2K/W, 100 mm, 1.5 kg/m2, 15 kg/m3, compressive strength 85kPa, 45% recycled polystyrene, Lambda=0.037 W/(m.K) (One Click LCA)	2929.5	kg	Lowest Floor	60	Plastic-based material incineration	EPS (expanded polystyrene) insulation	One Click LCA
	Ready-mix concrete, normal-strength, generic, C30/37 (4400/5400 PSI), 20% GGBS content in cement (300 kg/m3 / 18.72 lbs/ft3) (One Click LCA)	1022000	kg	Basement floor and walls	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement 500 kg / m3	Ready-mix concrete for external walls and floors	One Click LCA
.1.5 Basement Retaining Walls	Bentonite membrane for waterproofing of underground walls and foundations, 5.98 kg/m2, Membrane bentonitique pour l`étanchéité et	11678.94	kg	Basement floor and walls	60	Plastic-based material incineration	Plastic membranes	One Click LCA
	l`imperméabilisation Reinforcement steel (rebar), generic, 97% recycled content (typical), A615	50000	kg	Basement floor and walls	60	Steel recycling	Reinforcement for concrete (rebar)	One Click LCA
2.1 Frame	Ready-mix concrete, normal-strength, generic, C40/50 (5800/7300 PSI), 30% recycled binders in cement (400 kg/m3 / 24.97 lbs/ft3)	519000	kg	Concrete Columns	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement 500 kg / m3	Ready-mix concrete, high strength	One Click LCA
	Reinforcement steel (rebar), generic, 97% recycled content (typical), A615	45000	kg	Concrete Columns	60	Steel recycling	Reinforcement for concrete (rebar)	One Click LCA
2.2 Upper Floors	Ready-mix concrete, normal-strength, generic, C40/50 (5800/7300 PSI), 30% recycled binders in cement (400 kg/m3 / 24.97 lbs/ft3)	6478700	kg	Beams and floors	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement 500 kg / m3	Ready-mix concrete, high strength	One Click LCA
	Reinforcement steel (rebar), generic, 97% recycled content (typical), A615	176360	kg	Beams and floors	60	Steel recycling Concrete crushed to aggregate (for	Reinforcement for concrete (rebar) Ready-mix concrete for	One Click LCA
	Ready-mix concrete, normal-strength, generic, C30/37 (4400/5400 PSI), 30% recycled binders in cement (300 kg/m3 / 18.72 lbs/ft3)	810000) kg	Roof slab - Pells	60	sub-base layers), Portland Cement 400 kg / m3	structures (beams, columns, piling)	One Click LCA
2.3 Roofs	Reinforcement steel (rebar), generic, 97% recycled content (typical), A615 EPS insulation panels, graphite, L= 0.037 W/mK, R= 2.7 m2K/W, 100 mm,	24300) kg	Roof slab - Pells Roof - area confirmed	60	Steel recycling	Reinforcement for concrete (rebar)	One Click LCA
	1.5 kg/m2, 15 kg/m3, compressive strength 85kPa, 45% recycled polystyrene, Lambda=0.037 W/(m.K) (One Click LCA) Bitumen root waterprooting system, muiti- iayer, tuily torcned, top: 3.8	2929.5	5 kg	by RK Roof - area confirmed	60	Plastic-based material incineration	EPS (expanded polystyrene) insulation	One Click LCA ביט רופאוסופ שונעומים Sneets for Koot
	mm, 4.8 kg/m2, bottom: 3.1 mm, 3.9 kg/m2 (European Waterproofing Association	16991.1	1 kg	by RK	30	Landfilling (for inert materials)	Bitumen and other roofing	Waterproofing European Waterproofing Association (EWA)
	Reinforcement steel (rebar), generic, 90% recycled content, A615	9282	kg	5% of floor slab as per	60	Steel recycling	Reinforcement for	One Click LCA
2.4.Stairs and ramps	Ready-mix concrete, normal-strength, generic, C30/37 (4400/5400 PSI), 10% (typical) recycled binders in cement (300 kg/m3 / 18.72 lbs/ft3)	340970	kg	email from Pells 5% of floor slab as per email from Pells	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement 300 kg / m3	concrete (rebar) Ready-mix concrete for external walls and floors	One Click LCA

	Cement bonded wood particle board, 10 mm, 13.5 kg/m2, 1350 kg/m3, CENTRIS-Basic (CIDEM Hranice)	80946	kg	Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	30	Wood incineration	Particleboard	Environmental Product Declaration Cement- bondede particleboards CETRIS
	Facing clay bricks,	140688.83	kg	החסח Loadbearing Brickwork Wall -	60	Brick/stone crushed to aggregate (for sub-base layers)	Brick, common clay brick	FDES
	Gypsum board, windproofing, 9.5 mm, 7.2 kg/m2, 757.89 kg/m3, Windliner-X/Utvendig-X type EH2 (GU-X) (Norgips)	56804.21	kg	DSDHA Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	30	Gypsum recycling	Specialty gypsum board	EPD Norgips Windliner-X/Utvendig-X type EH2 (GU-X)Norgips Norge AS
	Gypsum interior plaster, gross density: 900.0 kg/m3	16189.2	kg	חרחם Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	30	Gypsum recycling	Gypsum plaster (interior applications)	ÖKOBAUDAT 2021-II (25.06.2021)
	Polyethylene vapour barrier membrane, 0.15 mm, 0.14 kg/m2 (One Click LCA)	1119.26	kg	חחחר Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	30	Plastic-based material incineration	Plastic membranes	One Click LCA
2.5.External walls	Reinforcement steel (rebar), generic, 97% recycled content (typical), A615 (One Click LCA)	117000	kg	חחפח External Walls from Pells	60	Steel recycling	Reinforcement for concrete (rebar)	One Click LCA
	Ready-mix concrete, normal strength, generic, C32/40 (4600/5800 PSI) with CEM II/B-V, 30% GGBS content in cement (300 kg/m3; 18.7 lbs/ft3	1688000	kg	External Walls from Pells	60	Concrete crushed to aggregate (for sub-base layers), Portland Cement	Ready-mix concrete for external walls and floors	One Click LCA
	total cement) (One Click LCA) Rock wool insulation panels, L=0.035 W/mK, R=4.29 m2k/W, 150 mm, 9 kg/m2, 60 kg/m3, Lambda=0.035 W/(m.K), Rainscreen Duo Slab 150mm (ROCKWOOL,	48899.52	kg	Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	60	300 kg / m3 Landfilling (for inert materials)	Rock wool insulation	EPD ROCKWOOL® stone wool product: FLEX 1200x600x100
	Rock wool insulation panels, L=0.037 W/mK, R=2.63 m2k/W, 100 mm, 3.3 kg/m2, 33 kg/m3, Lambda=0.037 W/(m.K), FLEXI 1200x600x100 (ROCKWOOL, UK	35859.65	kg	חרחא Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	60	Landfilling (for inert materials)	Rock wool insulation	EPD ROCKWOOL® stone wool product: FLEX 1200x600x100
	Steel purlins and framing, 7850 kg/m3 (Voestalpine Metsec plc)	1118389.5	kg	חחח Loadbearing Brickwork Wall & Metsec SFS Infill Wall -	60	Steel recycling	Structural steel and steel profiles	EPD Purlins and Framing Voestalpine Metsec plc
	Structural steel profiles, generic, 60% recycled content, I, H, U, L, and T sections, S235, S275 and S355	146245.5	kg	חרחס Metsec SFS Infill Wall - DSDHA	60	Steel recycling	Structural steel and steel profiles	One Click LCA
	Aluminium extrusion mill finished profiles (Hydro Extrusion Italy srl)	358506	kg	Extruded fin		Aluminium recycling	Aluminium	EPD ALUMINIUM PROFILES IMPLEMENTED WITH HYDRO RESTORE INNOVATIVE, FELTRE BILLET PRODUCED BY HYDRO EXTRUSION
					60			ITALY SRL ORNAGO AND FELTRE SITESEPD ALUMINIUM PROFILES IMPLEMENTED WITH HYDRO RESTORE INNOVATIVE, FELTRE BILLET PRODUCED BY HYDRO EXTRUSION ITALY SRL
	Ceramic tiles, 20 kg/m2 (RAK Ceramics P.J.S.C)	16220	kg	Glazed Tile rain screen	10	Brick/stone crushed to aggregate (for sub-base layers)	Wall and floor tiles	EPD Ceramic & Porcelain Tiles
2.5.3.Solar / Rain screening	Terracotta façade panel, 35 kg/m2, Zéphir Evolution 20, Zéphir Evolution 25, Zéphir Evolution 30 (yc modline 1 et modline 2), Zéphir Evolution 40 (TERREAL)	145110	kg	Profiled terracotta panels	10	sub-base layers) Brick/stone crushed to aggregate (for sub-base layers)	Wall and floor tiles	FDES
2.6.1.External Windows	Aluminium frame window triple glazed, non-operable, 0% recycled aluminium, 1.48 m x 2.18 m, 30.7 kg/m2 (One Click LCA	40317.76	kg	DSDHA	30	Glass-containing product recycling (80 % glass)	Aluminium frame windows	One Click LCA

2.6.2.External doors	Aluminium framed double glazed doors, per m2, 79.5% glass, 15.7% aluminium, 2.2% steel, 44 kg/m2, width:1.23m, height:2.18m, 6mm toughened and 8.8mm laminated glass. Edge Symmetry (Optima)	8712	kg	DSDHA	30	Glass-containing product recycling (80 % glass)	Aluminium-framed g doors
	Glass wool insulation panels, unfaced glass Tupe Symmetry (Chinna) Glass wool insulation panels, unfaced, generic, L = 0.031 W/mK, R = 3.23 m2K/W (18 ft2°Fh/BTU), 25 kg/m3 (1.56 lbs/ft3), (applicable for densities: 0-25 kg/m3 (0-1.56 lbs/ft3)), Lambda=0.031 W/(m.K)	5928.75	kg	Metsec C Stud Independent Twin Frame Partition - Party walls & Common Walls - DSDHA	60	Landfilling (for inert materials)	Glass wool insulation
	Glass wool/mineral wool insulation, acoustic partition roll, L = 0.039W/mK T: 50-65 mm, 18 kg/m3, APR1200 (Isover)	, 5994	kg	Metsec Studwork Frame. Internal dwelling walls -	60	Landfilling (for inert materials)	Glass wool insulation
2.7.Internal walls and partitions	Gypsum interior plaster, gross density: 900.0 kg/m3	55582.2	kg	NSDHA Metsec C Stud Independent Twin Farme Partition - Party walls; Common walls; Metsec Studwork Frame. Internal dwelling walls -	30	Gypsum recycling	Gypsum plaster (inte
partitions	Gypsum plaster board, regular, generic, 6.5-25 mm (0.25-0.98 in), 10.725 kg/m2 (2.20 lbs/ft2) (for 12.5 mm/0.49 in), 858 kg/m3 (53.6 lbs/ft3)	30072	kg	Metsec C Stud Independent Twin Farme Partition - Party walls; Common walls; Metsec Studwork Frame. Internal dwelling walls -	30	Gypsum recycling	Regular gypsum boa
	Structural steel profiles, generic, 60% recycled content, I, H, U, L, and T sections, S235, S275 and S355	28480.73	kg	Metsec C Stud Independent Twin Farme Partition - Party walls; Common walls; Metsec Studwork Frame. Internal dwelling walls -	60	Steel recycling	Structural steel and profiles
2.8 Internal doors	Doors with wooden frame, interior, Portes intérieures de communication avec huisserie bois (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)	15756	kg	55mm thick, Solidcore timber doorset.	30	Wood-containing product incineration (80% wood)	Wood-framed glass doors
	Ceramic floor tile, 10 mm, average density 2000 kg/m3 (Mosa)	1088	kg	Floor type 03 - Tile Floor	10	Brick/stone crushed to aggregate (for sub-base layers)	- Wall and floor tiles
	Gypsum plasterboard, 12.5 mm, 8.985 kg/m2 (average product weight) (Etex Building Performance)	69716.41	kg	Knauf Metal Furring (MF) Suspended Ceiling system. Faced in 15mm Knauf	30	Gypsum recycling	Regular gypsum boa
	Metal ceiling membranes with acoustic fleece, 0.5 mm, 3.62 kg/m2 (Knauf Ceiling Solutions GmbH & Co. KG)	23406.92	kg	Plastorboard Knauf Metal Furring (MF) Suspended Ceiling system. Faced in 15mm Knauf Plastorboard	30	Steel recycling	Suspended ceiling systems

glass EPD Aluminium Framed Double Glazed Doors

tion One Click LCA

tion EPD Acoustic Partition Roll (APR1200) 50 and 65 mm, Isover Saint Gobain 2015

nterior ÖKOBAUDAT 2021-II (25.06.2021)

ooard One Click LCA

nd steel One Click LCA

ss MDEGD_FDES s EPD Vloertegelcollectie Koninklijke Mosa poard EPD GTEC Plasterboard

EPD Metal Ceiling Membranes (0.5 mm, with acoustic fleece)

3.Internal finishes	Self-levelling screed, 1 mm, 2.25 kg/m2, Gyvlon® EXCELIO (Anhydritec)	1252575	kg	Floor type 01 - Painted Screed; Floor type 02 - Clay Sets to Lobby; Floor type 03 - Tile Floor; Floor type 04 -		Cement/mortar use in a backfill	Leveling screeds (for floors)
	Water-based epoxy floor paint, 1.44 kg/l, 6 m2/l, 0.48 kg/m2, Dulux Trade	980.34	kg	Floor type 01 - Painted	10	Landfilling (for inert materials)	Paints, coatings and
	High Performance Floor Paint (AkzoNobel) Emulsion for interior use with recycled paint content, 0.168 kg/m2, 1.4 kg/l, Dulux Trade Evolve Matt (AkzoNobel, plant Prudhoe)	1553.83	kg	Screed Walls	15	Landfilling (for inert materials)	lacquers Paints, coatings and lacquers
	Waterproof, protective, flexible coating, 1.5 kg/l, Lastogum (PCI Augsburg)	1641	kg	Floor type 02 - Clay Sets to Lobby; Floor type 03 - Tile Floor	10	Landfilling (for inert materials)	Sealants (silicone and others)
	Tile mortar, for interior floors and walls, 0.45 kg/m2, Weberbond lino comfort, Weberbond contact, Weberbond LVT, Weberbond grip,	492.3	kg	Floor type 02 - Clay Sets to Lobby; Floor	10	Cement/mortar use in a backfill	Tile adhesive
	Weberbond primo Tufted carpet tile with nylon 6.6 pile material and bitumen backing, 4.4 kg/m2, maximum surface pile weight 400 g/m2 (One Click LCA)	35098.8	kg	tvpe 03 - Tile Floor Floor type 04 - Carpet Floor	7	Plastic-based material incineration	Carpet flooring
	Wall bricks slips, 240 x 71 x 14 mm, 24 kg/m2, 2100 kg/m3 (Bundesverband der Deutschen Ziegelindustrie)	17236.8	kg	Floor type 02 - Clay Sets to Lobby	60	Brick/stone crushed to aggregate (for sub-base layers)	Brick, common clay bric
	Acrylic bathtub, 14.5 kg/unit, Allibert, Aquarine (NEW BATH)	1305	kg	Bath - assume one	20	Landfilling (for inert materials)	Sanitary ware
	Acrylic shower tray, 32 kg/unit 120x90 cm, Receveur de douche acrylique [Long. 120 cm Larg. 90 cm] (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)	13856	kg	per private resi Shower tray - assume one per dwelling plus additional for 2 and 3 bed	20	Landfilling (for inert materials)	Sanitary ware
	Air handling unit, with heat recovery through plate heat exchanger, 10 000 m3/h (5885.8 ft3/min), 1256 kg/unit (2769 lbs/unit	4274.27	kg		25	Metal-containing product recycling (90 % metal)	HVAC components and equipment
	Air/air heat pump, ducted, 61.5 kg/unit, P= 5 kW, PAC air air gainable [P=5kW] (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)	307.5	kg	Student Cores: CLADE ROWAN PROPANE - 1x SN/150, 2x SN/225 Resi Core: CLADE ROWAN PROPANE -	15	Metal-containing product recycling (90 % metal)	HVAC equipment with refrigerant
	Corrugated plastic pipes, 0.138 kg/m, FFKuS-EM-F-105 co2ntrol (Fränkische Rohrwerke Gebr. Kirchner GmbH & Co.)	7237.44	kg		20	Plastic-based material incineration	Pipes (water, heating, sewage)
	District heat distribution center, per 1kW	3893.58	kg		30	Metal-containing product recycling (90 % metal)	HVAC components and equipment
	Drinking water supply piping network, per m2 GIFA (residential buildings)	3389.6	kg		25	Metal-containing product recycling (90 % metal)	Pipes (water, heating, sewage)
	Electric operated passenger elevator, 320 tkm life cycle, 7395 kg/unit,	44370	kg		20	Metal-containing product recycling	Elevators and escalators
	rated load 907-2268 kg, MonoSpace® 500 DX (Kone) Electricity distribution system, cabling and central, for all building types,	51408.72	kg		30	(90 % metal) Metal-containing product recycling	HVAC components and
	per m2 GFA Emergency evacuation lighting, 0.604 kg/unit, 0 The environmenal data is representative of the following products : <cat.number list=""> (LEGRAND)</cat.number>	178.88	kg		15	(90 % metal) Metal-containing product recycling (90 % metal)	equipment Electrification components and syster
	Fluorescent lamp, T8-18W, 0.07 kg/unit	56.21	kg		15	Metal-containing product recycling (90 % metal)	Lighting
	Heat distribution piping network, per m2 heated area, all building types	2402.97	kg		30	Metal-containing product recycling (90 % metal)	Pipes (water, heating, sewage)
	Interior LED projector, P= 14 à 30 W, Projecteur intérieur LED (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)	3743.69	kg		15	Metal-containing product recycling (90 % metal)	Lighting

(for EPD Gyvlon EXCELIO Flowing Screed

and and	EPD DULUX TRADE HIGH PERFORMANCE FLOOR PAINT EPD RTS EPD, Water-borne interior paints
ie and	Oekobau.dat 2017-I, EPD Wasserdichte, flexible Schutzschicht PCI Lastogum unter Keramikbelägen in Dusche und Bad PCI Augshurg GmbH EPD WEBERBOND
	One Click LCA
clay brick	EPD Riemchen
	FDES
	MDEGD_FDES
ents and	One Click LCA
nt with	MDEGD_FDES
eating,	EPD FFKuS-EM-F-105 co2ntrol® FRÄNKISCHE Rohrwerke Gebr. Kirchner GmbH & Co. KG
ents and	One Click LCA
eating,	One Click LCA
scalators	EPD KONE MonoSpace® 500 DX for North
ents and	America One Click LCA
id systems	PEP
	ÖKOBAUDAT 2021-II (25.06.2021)
eating,	One Click LCA
	MDEGD_FDES

BM Processing and the set of the		Interior projector LED 14 W, Projecteur intérieur LED 14W (DONNEE	590.2	kg		15	Metal-containing product recycling	Lighting	MDEGD_FDES
Automatical and the set of the s		Junction box, 0.154 kg/unit, IP55 100x100 (B05534), B05534, B05546	315.35	kg		15	Metal-containing product recycling		
Normal Control Control Number Lander Control Control <td< td=""><td></td><td>Lighting management sensors, 0.31 kg/unit, 0 488 06 (LEGRAND)</td><td>1004.65</td><td>kg</td><td></td><td>15</td><td></td><td></td><td></td></td<>		Lighting management sensors, 0.31 kg/unit, 0 488 06 (LEGRAND)	1004.65	kg		15			
Protocol ac conjunction Protocol ac co		basse tension 0,6/1kV (DONNEE ENVIRONNEMENTALE GENERIQUE PAR	21397.7	kg		15		Cables	MDEGD_FDES
Autorial Reservation Construction Construction Construction Material Construction Material Autorial Construction Construction Construction Construction Construction PE Construction Construction Construction Construction Construction Construction Construction Construction <td></td> <td>Photovoltaic polycrystalline panel, per m2, 14.5 kg/m2, 210 Wp (One Click</td> <td>< 2552</td> <td>kg</td> <td></td> <td>20</td> <td></td> <td>0, 1</td> <td>One Click LCA</td>		Photovoltaic polycrystalline panel, per m2, 14.5 kg/m2, 210 Wp (One Click	< 2552	kg		20		0, 1	One Click LCA
Desires Research as for electrical ejugament. 2013 [guint. EAX 101348 EXX. 11736] Value Value of the electrical ejugament. 2013 [guint. EAX 101348 EXX. 11736] Value of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response of the electrical ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response ejugament. 2014 [GV and the electrical ejugament. 2014] Performance product response ejugament. 2014 [GV and the electrical ejugament. 2014]		Power cable connectors, Connecteur permettant de rassembler des	1017.1	kg		15	Metal-containing product recycling	Electrification	
Shirtery verse of reducing watchases rates, daramading 1970 No No Wicker watchasing 2000 Definiting for instrumetable Shirtery verse of reducing watchases PD Suntary verse watchases PD Suntary verse watchases	5.0 Services	Recessed box for electrical equipment, 0.031 kg/unit, EMX 101340 EMX	210.64	kg			Metal-containing product recycling	Electrification	PEP
Sewage water durange op in provided, por m2 (EA/PT 01.4 - PD3) (LSG NAMP)293.8 kg2928Metal containing product registingPDS (No.20, Tealling, No.20, T		Sanitary ceramics including washbasins, toilets, urinals, cisterns and	17709	kg					
Sector Sector <td></td> <td>Sewage water drainage piping network, per m2 GIFA (residential</td> <td>2393.88</td> <td>kg</td> <td>assume i per dwelling</td> <td></td> <td>01 , 0</td> <td></td> <td>One Click LCA</td>		Sewage water drainage piping network, per m2 GIFA (residential	2393.88	kg	assume i per dwelling		01 , 0		One Click LCA
Ventation ducting, par milinar, D. 62 mm (2.48 m) 9630.42 kg 40 Metal containing product require (90 % metal) Metal-containing product require (90 % metal) FMC Components and equipment One Click LCA equipment Water discustion radiator, per 1W/ unit 67855.91 kg 10 Metal-containing product require (90 % metal) M		· ·	2320.22	kg		15	Metal-containing product recycling	Electrification	
Water diculation radiator, per 1WV / unit9786.531kg30Meal-containing product regyling (40 % meta)Meal-containing product regyling (40 % meta)MDFGL_PDFSWater proof lighting, F=18.W. Linnia me Banche 10754 (DONNFF102.66kg15Meal-containing product regyling (40 % meta)ExtrificationPEPBVMRONNEMENTALE GENERQUE PAR DEFAUT450.35kg15Meal-containing product regyling (40 % meta)ExtrificationPEP000250 (support mecanisme) (7078011 (plaque)/ (40 spars) de signation to (40 spars)0.83kg15Meal-containing product regyling (40 % meta)ExtrificationMDFGL_PDFSPlastance = DISCW (100NNEE ENVERONNEMENTALE GENERIQUE PAR Enverting junction box, vogans de signation to (40 % meta)MEdel containing product regyling (40 % meta)ExtrificationMDFGL_PDFSOuts and voice, 0.328 /g/unit, TYM60E (Hagor SS)17.05kg15Meal-containing product regyling (40 % meta)ExtrificationMDFGL_PDFSENVERONNEMENTALE GENERQUE PAR DEFAUT Outs and voice, 0.328 /g/unit, TYM60E (Hagor SS)17.05kg15Meal-containing product regyling (40 % meta)ExtrificationMDFGL_PDFSENVERONNEMENTALE GENERQUE PAR DEFAUT Commonation cable, 0.234 /g/unit, TYM60E (Hagor SS)17.05kg16Meal-containing product regyling (40 % meta)ExtrificationMDFGL_PDFSENVERONNEMENTALE GENERQUE PAR DEFAUT Commonation cable, 0.234 /g/unit, MINTERE DE EXTRIFICE PAR (20 % meta)23.63kg30Landhiling (for inert material)Sonatai water commonation cable 0.234 /g/uni		Ventilation ducting, per m linear, D: 63 mm (2.48 in)	3630.42	kg		40			
Wreeproof lighting. P-13 W. Luminaire éanche IP>54 (JODNEE 1024.64 kg 15 Meal-containing product regoling (90 % metal) Lighting MDEGD.FDES Light switch, 0.113 kg/unit, 0770011 - (072011 - 072011		Water circulation radiator, per 1kW / unit	67865.91	kg		30			One Click LCA
ENVRONMENTALE GENERQUE PAR DEFAUT) (90 % meta) (90 % meta) (90 % meta) (90 % meta) Light switch, 0113 kg/unit, 077001 L, 079101 L,		Waterproof lighting, P=18 W, Luminaire étanche IP>54 (DONNEE	1024.66	kg		15			MDEGD FDES
08/0250 (support) mécanisme : 077001L - 079201L - 07920		ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)		-			(90 % metal)		
Puissance = 0.035WJ (DONNEE ENVIRONNÉMENTALE CENERIQUE PAR Electrical junction tox, French average, Bothe de dérivation (DONNEE Electrical junction tox, French average, Bothe de dérivation (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) Output device, 0.382 kg/unit, TYA606E TYA606E (Hager SE) 17.05 kg 15 Metal-containing product recycling (90 % metal) Electrification MDEGD_FDES Smoke detector, French average, Détecteurs de lumée (DONNEE 1205.19 kg 15 Metal-containing product recycling (90 % metal) Electrification MDEGD_FDES Communication cable, 0.231 kg/unit, Cable PTT 288 (14 paires) - DONNEE 2577.78 kg 15 Metal-containing product recycling (90 % metal) Components and systems ENVIRONNEMENTALE GENERIQUE PAR DEFAUT Communication cable, 0.231 kg/unit, 2811600 AX flexible de douche tradiague 160000 XR flexible de douche 1250mm 223.63 kg 30 Landfilling (for inert materials) Sanitary ware FDES Manometers, 2.702 kg/unit, Manomètre (DONNEE ENVIRONNEMENTALE CENRIQUE PAR DEFAUT 278.99 kg 30 Landfilling (for inert materials) Water heating and MDEGD_FDES MDEGD_FDES CONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT() 278.99 kg 30 Landfilling (for inert materials) Water heating and MDEGD_FDES MDEGD_FDES CONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) 278.99 <td< td=""><td></td><td></td><td>450.35</td><td>кg</td><td></td><td>15</td><td></td><td></td><td></td></td<>			450.35	кg		15			
Electrical junction box, French average, Bolte de dérivation (DONNEE 2.6 kg 15 Metal-containing product recycling (90 % metal) Electrification MDEGD_FDES ENVIRONNEMENTALE GENERIQUE PAR DÉFAUT) 00 Metal-containing product recycling (90 % metal) Electrification PE Smoke detector, French average, Détecteurs de fumée (DONNEE 1205.19 kg 15 Metal-containing product recycling (90 % metal) Electrification MDEGD_FDES Communication cable, 0.231 kg/m, Cibale PTT 288 [14 paires] - DONNEE 2577.78 kg 15 Metal-containing product recycling (90 % metal) Cables MDEGD_FDES Communication cable, 0.231 kg/m, Cibale PTT 288 [14 paires] - DONNEE 227.78 kg 30 Landfilling (for inert materials) Santary ware FDES Retaile Show hose, 0.3 kg/unit, 28116000 AX flexible de douche 22.8.53 kg 30 Landfilling (for inert materials) Santary ware FDES RONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT 20.1 kg 30 Landfilling (for inert materials) MDEGD_FDES CONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT 20.1 kg 30 Metal-containing product recycling handling equipment Manometers, 2.702 kg/unit, diameter 20-100 nm, Y			0.83	kg		15		Lighting	MDEGD_FDES
Output device, 0.382 kg/unit, TYA606E TYA606E (Hager SE) 17.05 kg 15 Metal-containing product recycling (90 % metal) Electrification PEP Smoke detector, French average, Détecteurs de fumée (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) 205.19 kg Metal-containing product recycling (90 % metal) Electrification MDEGD_FDES Communication cable, 0.231 kg/m, Gable PTT 288 [14 paires] - DONNEE 257.78 kg 15 Metal-containing product recycling (90 % metal) Components and systems Fixible shower hose, 0.3 kg/unit, 28116000 AX flexible de douche metallique 1600mm 28127000 AX flexible de douche 1250mm 223.63 kg 30 Landfilling (for inert materials) Santary ware FDES GENERIQUE PAR DEFAUT (NUST MAMORÉTYRE DE L'ENVIRONNEMENTALE Cast ron globe valves, DN = 50 mm, 15kg, Robinet à soupage en for Cast ron globe valves, DN = 50 mm, 15kg, Robinet à soupage en for Cast ron globe valves, DN = 50 mm, 15kg, Robinet à soupage en for Cast ron globe valves, DN = 50 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 50 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 50 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15kg, Robinet A soupage en for Cast ron globe valves, DN = 00 mm, 15k		Electrical junction box, French average, Boîte de dérivation (DONNEE	2.6	kg		15	Metal-containing product recycling		
Smoke detector, French average, Détecteurs de fumée (DONNEE 1205.19 kg 15 Metal-containing product recycling (90 % metal) Electrification MDEGD_FDES ENVIRONNEMENTALE GENERIQUE PAR DEFAUT 2577.8 kg 15 Metal-containing product recycling (90 % metal) Cables MDEGD_FDES ENVIRONNEMENTALE PAR DEFAUT (MINISTERE DE L'ENVIRONNEMENT, Flexible shower hose, 0.3 kg/unit, 28116000 AX flexible de douche 223.63 kg 30 Landfilling (for inert materials) Sanitary ware FDES Manometers, 2.702 kg/unit, Manometer (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) 2.11 kg 30 Landfilling (for inert materials) Mater heating and handling equipment handling equipment CODONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) 278.99 kg 30 Metal-containing product recycling (90 % metal) MDEGD_FDES Cast ion globe valves, DN = 50 mm, 15kg, Robinet à soupape en font gense quarter-turn valve, 6 kg/unit, diameter: 20 100 mm, Vanne quart- tour en laiton (DN de 20 a 100mm] (DONNEE ENVIRONNEMENTALE for une naiton (DN de 20 a 100mm] (DONNEE ENVIRONNEMENTALE for une naiton (DN e2 0a 100mm] (DONNEE ENVIRONNEMENTALE for une naiton (DN e2 0			17.05	kg		15	Metal-containing product recycling	Electrification	PEP
Communication cable, 0.231 kg/m, Câble PTT 288 [14 paires] - DONNEE2577.78kg15Metal-containing product recycling (00 % metal)CablesMDEGD_FDESENVIRONNEENTLE PAR DEFAUT (MINISTERE DE L'ENVIRONNEMENT, Flexible shower hose, 0.3 kg/unit, 28116000 AX flexible de douche 28127000 AX flexible de douche 1250m223.63kg30Landfilling (for inert materials)Sanitary wareFDESManometers, 2.702 kg/unit, Manomètre (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)20.1kg30Landfilling (for inert materials)Water heating and MDEGD_FDESGast ion globe valves, DN = 50 mm, 15kg, Robinet à soupape en fonte (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)278.99kg30Landfilling (for inert materials)Water heating and MDEGD_FDESBrass quarter-turn valve, 6 kg/unit, diameter: 20-100 mm, Vanne quart (DONNEE ENVIRONNEMENTALE (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 6.3 kg/unit, diameter: 20-100 mm, Vanne quart (DONNEE ENVIRONNEMENTALE (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 6.3 kg/unit, diameter: 20-100 mm, Vanne quart (DONNEE ENVIRONNEMENTALE (DONNEE ENVIRONNEMENTALE (Brass quarter-turn valve, 6.3 kg/unit, diameter: 20-100 mm, Vanne quart (DONNEE ENVIRONNEMENTALE (DONNEE ENVIRONNEMENTALE GENERIQUE (DONNEE ENVIRONNEMENTALE G		-	1205.19	kg		15	Metal-containing product recycling	Electrification	MDEGD_FDES
Flexible shower hose, 0.3 kg/unit, 28116000 AX flexible de douche223.63kg30Landfilling (for inert materials)Sanitary wareFDESManometers, 2.702 kg/unit, Manomètre (DONNEE ENVIRONNEMENTALE20.1kg30Landfilling (for inert materials)Water heating and MDEGD_FDESMDEGD_FDESGENERIQUE PAR DEFAUTI Castor ong obe valves, DN = 50 mm, 15kg, Robinet à soupape en fonte (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)278.99kg30Landfilling (for inert materials)Water heating and MDEGD_FDESMDEGD_FDESBrass quarter-turn valve, 6 kg/unit, diameter: 20-100 mm, Vanne quart- de-tour en laiton [DN de 20 à 100mm] (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 0.3 kg/unit, diameter: 20-100 mm, Vanne quart- tour en laiton [DN 200mm] (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 0.3 kg/unit, diameter: 20-100 mm, Vanne quart- tour en laiton [DN 200mm] (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 0.3 kg/unit, diameter: 20-100 mm, Vanne quart- tour en laiton [DN 42 0 à 100mm] (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 0.3 kg/unit, diameter: 20-100 mm, Vanne quart- tour en laiton [DN 200mm] (DONNEE ENVIRONNEMENTALE Steel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube237.4kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDESSteel pipes for heating and cooling system, DN=55mm, 6.63 kg/m, Tube a cier noir pour usage en chauffage et climatisation (DONNEE set pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube set pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube246.97.830Metal-containing product recycling (90 % metal)Pipes (water, heating,			2577.78	kg		15			
Manometers, 2.702 kg/unit, Manomètre (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) Cast iron globe valves, DN = 50 mm, 15kg, Robinet à soupape en fonte Cast iron globe valves, DN = 50 mm, 15kg, Robinet à soupape en fonte Paras quarter-turn valve, 6 kg/unit, diameter: 20-100 mm, Vanne quart de-tour en laiton [DN = 20mm] (DONNEE ENVIRONNEMENTALE Brass quarter-turn valve, 0.3 kg/unit, diameter: 20-100 mm, Vanne quart- de tour en laiton [DN = 20mm] (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)Kg30Landfilling (for inert materials) Auditing product recycling (90 % metal)MDEGD_FDES handling equipment handling equipment brass quarter-turn valve, 0.3 kg/unit, diameter: 20-100 mm, Vanne quart- de tour en laiton [DN = 20mm] (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)12.52kg30Metal-containing product recycling (90 % metal)Water heating and handling equipment brandling equipment sewage)Brass quarter-turn valve, 0.3 kg/unit, diameter: 20 nm, Vanne quart-de tour en laiton [DN = 20mm] (DONNEE ENVIRONNEMENTALE GENERIQUE12.5kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, MDEGD_FDES sewage)Steel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube en acier noir pour usage en chauffage et climatisation (DONNEE Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, TubeSteel Steel Steel Steel Steel Steel Steel Pipes for heating and cooling system, DN=125mm, 13.5 kg/m, TubeSteel Steel Steel Steel Steel Steel Steel Pipes for heating and cooling system, DN=125mm, 13.5 kg/m, TubeSteel Steel Steel Steel Steel Steel Steel Steel Pipes Steel Pip			223.63	kg		30		Sanitary ware	FDES
GENERIQUE PAR DEFAUT) handling equipment Cast iron globe valves, DN = 50 mm,15kg, Robinet à soupape en fonte 278.99 kg 30 Landfilling (for inert materials) Water heating and MDEGD_FDES (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT) Brass quarter-turn valve, 6 kg/unit, diameter: 20-100 mm, Vanne quart- 120.52 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES) de-tour en laiton [DN de 20 à 100mm] (DONNEE ENVIRONNEMENTALE 120.52 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES) Brass quarter-turn valve, 0.3 kg/unit, diameter: 20 mm, Vanne quart-de- 12.5 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES) Steel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube 237.4 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES) en acier noir pour usage en chauffage et climatisation (DONNEE 2377.4 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES) en acier noir pour usage en chauffage et climatisation (DONNEE 2377.4 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES) Steel pipes for heating and cooling system, DN			20.1	kg		30	Landfilling (for inert materials)	Water heating and	MDEGD EDES
Image: Construct of the co		GENERIQUE PAR DEFAUT)					-	handling equipment	
de-tour en laiton [DN de 20 à 100mm] (DONNEE ENVIRONNEMENTALE(90 % metal)sewage)Brass quarter-turn valve, 0.3 kg/unit, diameter: 20 mm, Vanne quart-de- tour en laiton [DN = 20mm] (DONNEE ENVIRONNEMENTALE GENERIQUE12.5kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDESSteel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube en acier noir pour usage en chauffage et climatisation (DONNEE2377.4kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDESSteel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube25469.78kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDESSteel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube25469.78kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDES		(DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)	278.99	кд			-	handling equipment	
Brass quarter-turn valve, 0.3 kg/unit, diameter: 20 mm, Vanne quart-de- tour en laiton [DN = 20mm] (DONNEE ENVIRONNEMENTALE GENERIQUE30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDESSteel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube en acier noir pour usage en chauffage et climatisation (DONNEE Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube (25469.7830Metal-containing product recycling (90 % metal)Pipes (water, heating, MDEGD_FDES sewage)MDEGD_FDES MDEGD_FDES sewage)Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube (25469.7825469.78kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, sewage)MDEGD_FDES MDEGD_FDESSteel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube (25469.7825469.78kg30Metal-containing product recycling (90 % metal)Pipes (water, heating, MDEGD_FDES			120.52	kg		30		· · ·	MDEGD_FDES
Steel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube2377.4kg30Metal-containing product recyclingPipes (water, heating,MDEGD_FDESen acier noir pour usage en chauffage et climatisation (DONNEE(90 % metal)sewage)Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube25469.78kg30Metal-containing product recyclingPipes (water, heating,MDEGD_FDESMDEGD_FDESSteel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube25469.78kg30Metal-containing product recyclingPipes (water, heating,MDEGD_FDES				kg		30			MDEGD_FDES
Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube 25469.78 kg 30 Metal-containing product recycling Pipes (water, heating, MDEGD_FDES		Steel pipes for heating and cooling system, DN=65mm, 6.63 kg/m, Tube		kg		30	Metal-containing product recycling	Pipes (water, heating,	MDEGD_FDES
		Steel pipes for heating and cooling system, DN=125mm, 13.5 kg/m, Tube	25469.78	kg		30	Metal-containing product recycling	Pipes (water, heating,	MDEGD_FDES

	Steel pipes for heating and cooling system, DN=32mm, 3.17 kg/m, Tube en acier noir pour usage en chauffage et climatisation (DONNEE	21809.63	kg		30	Metal-containing product recycling (90 % metal)	Pipes (water, heating, sewage)	MDEGD_FDES
	Waterborne alkyd modified acrylic paint for industrial painting of metals, anti-corrosive, 1.2 kg/L, solids/weight 50%, spreading rate 5-10 m2/L,	410.66	kg		30	Landfilling (for inert materials)	Paints, coatings and lacquers	EPD FONTECRYL SC 50, FONTECRYL SC-EF 50 TIKKURILA GROUP
	Hot dip galvanized steel, 0.73 mm, 5.72 kg/m2	1082.37	kg		30	Steel recycling	Hot-dip galvanized/zinc coated steel	ÖKOBAUDAT 2021-II (25.06.2021)
	Stainless steel sheet, 7900.0 kg/m^3	1886.42	kg		30	Stainless steel recycling	Stainless steel	ÖKOBAUDAT 2021-II (25.06.2021)
	Fire sprinkler, 0.072 kg/unit, Sprinkler pendant (DONNEE ENVIRONNEMENTALE GENERIQUE PAR DEFAUT)	216.93	kg		30	Steel recycling	Other metals	MDEGD_FDES
	Marble products for flooring and cladding, 12 mm, 29.7 kg/m2, FLAIR LIN - POLARE product (QUARELLA)	E 1188	kg	Terrazo tiles - made from crushed brick or site	10	Brick/stone crushed to aggregate (for sub-base layers)	Wall and floor tiles	EPD Marble based products
8.0 External Works	Paving bricks and pavers, 200 x 100 x 52 mm, 52 mm, 98 kg/m2, 2000 kg/m3, Paver (Bundesverband der Deutschen Ziegelindustrie e.V.)	140088	kg	Confirmed in Mat 01 RFI	60	Brick/stone crushed to aggregate (for sub-base layers)	Brick, common clay brick	EPD Pflasterziegel und Pflasterklinker
	Cement mortar, gross density: 2000 kg/m3	27740	kg		30	Cement/mortar use in a backfill	Mortar (masonrv/bricklaving)	ÖKOBAUDAT 2021-II (25.06.2021)

Contact details:

Whitecode Consulting Ltd 26-27 The Hill Northfleet Gravesend Kent DA11 9EU

t: 01322 289977

e: design@whitecode.co.uk