

DCL Consulting Engineers Ltd

3rd Floor, 6 Flitcroft Street Covent Garden, London, WC2H 8DJ T 020 7998 5868 E admin@dcl.engineering W www.dcl.engineering

Project Title: 26 and 27 Kings Mews

Project No.: 99737

Stage: STAGE 3 Issue Date/Revision: 03.05.2024_P1

Prepared By: WW

Introduction

The purpose of this letter is to set out the required groundwater mitigation measures required during the excavation of the basement for 26 Kings Mews.

Groundwater Conditions

During the excavation of a single borehole undertaken during Ground Engineering's site investigation water was struck at 4.00m bgl which then rose to 3.60m bgl within fifteen minutes.

Using a 7m deep standpipe the water level recorded after a 3-week period was 3.04m below ground level. This is 810mm above the final excavation level of the new basement, taking into consideration the thickness of the basement slab and blinding layer. Therefore, de-watering methods will need to be utilised during the construction of the proposed basement.

Construction of Underpins/Retaining Walls

To construct the front and rear underpins, temporary supports will be installed to the faces of the trenches. At the bottom of the trench a sump pump is to be installed to reduce the ground water level around the excavation (see figure 1). The pumped water will discharge into an observable v-notch tank which can then feed into a bowser or discharged at a low rate to the foul drainage system (control testing for contaminants and physical measurement of flow may prove necessary by local authority).

- To prevent boiling at the bottom of the trench the sheeting will be installed a minimum of 300mm below the foundation level of the excavation and an open pump surrounded by gravel will be used as the sump.
- To prevent the removal of fines from the soil, surround the suction inlet with a protected grade filter and reduce the flow rate through the soil, this is achieved by using an open pipe surrounded by gravel.
- The pumped water will be monitored taking water samples and checking proportion of fines being removed. If excessive fines are being continuously withdrawn or signs of trench instability sump pumping will be stopped.

26 and 27 Kings Mews

Figure 1 – Trench Sump Pump Section

Construction of Basement Slab

Once the retaining walls are cast and cured, the remainder of the basement excavation will take place. To control ground water levels during this stage a sump pump will again be used. The sump will be located in the corner of the excavation and drains leading to the sump will have a sufficient fall to prevent silting up and be cleaned out regularly.

A cage will be installed at the base of the sump and fill between the cage and the shaft with graded filter material.

- To prevent the removal of fines from the soil, surround the suction inlet with a protected grade filter.
- To prevent ground loss around the sumps install cage at base of sump and fill cage with well graded filter material, along with appropriately designed sump casing perforations.
- The pumped water will be monitored taking water samples and checking proportion of fines being removed if excessive fines are being continuously withdrawn.

Note: This report will need to be provided as part of the Tender document pack to the required contractors.

Prepared by:

Tr. window

William Wilding BEng (Hons) IEng MICE Design Engineer

Reviewed by:

Alex Ozegovic Meng (Hons) CEng MIStructE Director

Approved by:

Frank Bates BSc CEng MIStructE Managing Director

DCL Consulting Engineers Ltd Sheet No. 1 Rev. PI 3rd Floor, 6 Flitcroft Street Covent Garden, London, WC2H 8DJ 020 7998 5868 E admin@dcl.engineering www.dcl.engineering 99737 Project No. Calculation sheet Date Project 26/27 Kings Mews Calcs by Checked by AO hih Front Retaining Wall Design Site Investigation Data · Allowable soil bearing = 150 KN/m2 · Soil Condition: Made ground: 18kN/m3, C=0, Ø=28, 0-3m Lynch hill gravel : 21 KN/m3, C=0, \$\$=36, 3-6m London Clay: 20 KN/m3, C=0-2, \$=22, 6m+ -> Data from Ground Engineering SI -> Retaining wall designed and analysed on tekla tedds, calcs on following pages. b: Front Retaining Walk 10 Diagram. 3350 Ď GW :0 222 450 800 Production Provident 600 De GW analysed at Im bol as conservative calc.

DCL Consulting Engineers Ltd Sheet No. 2 Rev. PI 3rd Floor, 6 Flitcroft Street Covent Garden, London, WC2H 8DJ T 020 7998 5868 E admin@dcl.engineering www.dcl.engineering 99737 Project No. Calculation sheet Date Project 26/27 Kings Mews Checked by Calcs by WW AO Loading on Retaining Wall Surcharge Load · Vehicular road access provides surcharge to front retaining Wall. \rightarrow UDL = 20 Kd Kd = 1 - Sin(28) = 0.361+Sin(28) UDL = 20 × 0.36 = 7.2 KN/m2 Vertical load from Structure . From tekla model analysis: 450 KN (3 Column point loads on wall). · Length = 6.5 m -> Load spread = 4.50 = 69 kN/m $G_{K} = 39.8 \text{ kN/m}$ $Q_{K} = 10.6 \text{ kN/m}$ > Bearing Capacity analysis carried out on tekla designer.

The probability of the second second and the probability of the proba	DCL Consulting Engineers Ltd	Sheet No. 3	Rev. P
Example Statements Calculation street Project 2C/27 Kings Mews Leinfbreenent Cover Requirements · following Eurocade 1992-1-1 : C nom = Cmin + A C dev C dev = 10 mm C min = max (16; 25+0+0+0; 10) = 25mn ·> Exposure class = xC2	3rd Floor, 6 Flitcroft Street Covent Garden, London, WC2H 8DJ		
Calculation sheet Project 26/27 Kings Mews Image: All of the sheet experiments Project 26/27 Kings Mews Image: All of the sheet experiments Construction of the sheet experiments · following Eurocade 1992-1-1 : C now = Cmin + A C dev C dev = 10 mm C min = max (16; 25+0+0+0; 10) = 25mm · Exposure class = xc2 · Exposure class = xc2	T 020 7998 5868		
Calculation sheet Project 2C/27 Kings MeWs Project 2C/27 Kings MeWs $ \begin{array}{rcl} Project 2C/27 Kings MeWs \hline Date Date Date Date Date Date Date Date$	W www.dcl.engineering		
$\frac{1}{2de}$ $\frac{1}$	Calculation sheet	Project No. 997	27
Project 20127 Kings Mews Caes by Will Checked by AS Reinforcement Caver Requirements · following Eurocade 1992-1-1 : Cnom = Cmin + ACdey = 35mm Cdey = 10mm Cmin = max (16; 25+0+0+0; 10) = 25mn · Exposure class = xC2 · Structural class = S4		Date	21
Reinforcement Cover Requirements • following Eurocode 1992-1-1 : $C_{nom} = C_{min} + \Delta C_{dev} = 35mn$ $C_{dev} = 10mn$ $C_{min} = max (16; 25+0+0+0; 10) = 25mn$ $\rightarrow Exposure class = xC2 \rightarrow Structural class = 54$	Project 26/27 Kings Mews	Calcs by	Checked by
$\frac{\text{keinforcement Cover Requirements}}{\text{Chowing Eurocode 1992-1-1}:}$ $\frac{\text{Cnom} = \text{Cmin} + \Delta \text{Cdev} = \underline{35\text{mm}}}{\text{Cdev} = 10\text{mm}}$ $\frac{\text{Cdev} = 10\text{mm}}{\text{Cmin} = \text{max} (16; 25+0+0; 10) = 25\text{mm}}$ $\rightarrow \text{Exposure class} = \text{xc2} \rightarrow \text{Structural class}: 54$		1010	
keinforcement Cover Requirements • following Eurocade 1992-1-1 : $C_{nom} = C_{min} + AC_{dev} = 35mm$ $C_{dev} = 10mm$ $C_{min} = max (16; 25+0+0+0; 10) = 25mn$ $\rightarrow Exposure class = xC2 \rightarrow Structural class = 54$			
• Following Eurocade 1992-1-1 : $C_{nom} = C_{min} + \Delta C_{dev} = 35mm$ $C_{dev} = 10mm$ $C_{min} = max (16; 25+0+0+0; 10) = 25mn$ $\rightarrow Exposure class = xc2 \rightarrow Structural class = 54$	Reinforcement Cover Requirements		
• following Eurocade 1992-1-1 : Cnom = Cmin + $\Delta C dev$ = $35mm$ Cdev = 10mm Cmin = max (16; 25+0+0+0; 10) = $25mn$ \Rightarrow Exposure class = $xc2$ \Rightarrow Structural class = 54			
• Following Eurocode 1992-1-1 : $C_{nom} = C_{min} + \Delta C_{dev} = 35mm$ $C_{dev} = 10mm$ $C_{min} = max (16; 25+0+0+0; 10) = 25mm$ $\Rightarrow Exposure class = xc2 \Rightarrow Structural class = 54$			
$C_{nom} = C_{min} + \Delta C_{dev} = 35mm$ $C_{dev} = 10mm$ $C_{min} = max (16; 25+0+0+0; 10) = 25mn$ $\Rightarrow Exposure class = xc2 \Rightarrow Structural class = 54$	· Following Eurocode 1992-1-1:		
$C_{nom} = C_{min} + AC_{dev} = 35mm$ $C_{dev} = 10mm$ $C_{min} = max (16; 25+0+0+0; 10) = 25mn$ $\Rightarrow Exposure class = xC2 \Rightarrow Structural class = 54$		C	
$C_{dev} = 10 \text{ mm}$ $C_{min} = \max \left(16; 25 + 0 + 0; 10 \right) = 25 \text{ mm}$ $\Rightarrow E \times \text{posure class} = \times C2 \Rightarrow \text{Structural class} = 54$	Lnom = Lmin + Alder = =		
$C_{dev} = 10 \text{ mm}$ $C_{min} = \max \left(16; 25 + 0 + 0; 10 \right) = 25 \text{ mm}$ $\Rightarrow E \times \text{posure Class} = XC2 \Rightarrow \text{Structural Class} = 54$			
$C_{min} = max (16; 25 + 0 + 0; 10) = 25mn$ $\Rightarrow Exposure class = xc2 \Rightarrow Structural class = 54$	Class = 10mm		
$C_{min} = max (16; 25+0+0+0; 10) = 25mm$ $\Rightarrow Exposure class = xc2 \Rightarrow Structural class = 54$	Caley		
→ Exposure class = XC2 → Structural class = S4	$C_{min} = max (16: 25+0+0+0:10)$	= 25mm	
→ Exposure class = xc2 → Structural class = S4			
→ Exposure class = xc2 → Structural class = S4			

DCL Consulting Engineers Ltd 3rd Floor, 6 Flitcroft Street Covent Garden, London, WC2H 8DJ T 020 7998 5868 E admin@dcl.engineering W www.dcl.engineering	Sheet No. 4 Rev. D
Calculation sheet	Project No. 99737
Project 26/27 Kings Mews	Calcs by WW Checked by AO
147.1kN/m ² 133.8 120.5 107.2 93.8 80.5 67.2 53.8 40.5 27.2 13.8kN/m ²	
Scaring Messure Diagram	

	Project 26&27 Kings Mews				Job no. 99737	
DCL Consulting Engineers Ltd	Calcs for Front Retaining Wall Design			Start page no./Revision $\chi 5$		
	Calcs by WW	Calcs date 03/05/2024	Checked by AO	Checked date 02/05/2024	Approved by AO	Approved date 02/05/2024

RETAINING WALL ANALYSIS

In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the UK National Annex incorporating Corrigendum No.1

Tedds calculation version 2.9.21

Retaining wall details	
Stem type	Propped cantilever
Stem height	h _{stem} = 3550 mm
Prop height	h _{prop} = 3550 mm
Stem thickness	t _{stem} = 250 mm
Angle to rear face of stem	α = 90 deg
Stem density	$\gamma_{\text{stem}} = 25 \text{ kN/m}^3$
Toe length	l _{toe} = 1450 mm
Base thickness	t _{base} = 600 mm
Base density	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$
Height of retained soil	h _{ret} = 3550 mm
Angle of soil surface	$\beta = 0 \deg$
Depth of cover	d _{cover} = 0 mm
Height of water	h _{water} = 2550 mm
Water density	γ w = 9.8 kN/m ³
Retained soil properties	
Moist density	γ _{mr} = 18 kN/m ³
Saturated density	γ_{sr} = 18 kN/m ³
Characteristic effective shear resistance angle	φ'r.k = 28 deg
Characteristic wall friction angle	$\delta_{r,k} = 14 \text{ deg}$
Base soil properties	
Soil type	Medium dense fine or silty sand
Soil density	$\gamma_{b} = 21 \text{ kN/m}^{3}$
Characteristic effective shear resistance angle	$\phi'_{b,k} = 36 \deg$
Characteristic wall friction angle	$\delta_{b,k} = 18 \text{ deg}$
Characteristic base friction angle	$\delta_{bb,k} = 20 \text{ deg}$
Presumed bearing capacity	P _{bearing} = 300 kN/m ²
Loading details	
Variable surcharge load	Surchargeo = 7.2 kN/m ²
Vertical line load at 1575 mm	P _{G1} = 39.8 kN/m
	$P_{01} = 10.6 \text{ kN/m}$
Calculate retaining wall geometry	a Statistical description
Base length	$l_{hase} = l_{toe} + t_{stem} = 1700 \text{ mm}$
Saturated soil beight	$h_{sat} = h_{water} + d_{cover} = 2550 \text{ mm}$
Moist soil height	$h_{moist} = h_{ret} - h_{water} = 1000 \text{ mm}$
Length of surcharge load	$I_{sur} = I_{heel} = 0 mm$
- Distance to vertical component	$x_{sur_v} = I_{base} - I_{heel} / 2 = 1700 \text{ mm}$
Effective height of wall	h _{eff} = h _{base} + d _{cover} + h _{ret} = 4150 mm
- Distance to horizontal component	x _{sur_h} = h _{eff} / 2 = 2075 mm
Area of wall stem	$A_{stem} = h_{stem} \times t_{stem} = 0.888 \text{ m}^2$
- Distance to vertical component	x _{stem} = I _{toe} + t _{stem} / 2 = 1575 mm
17 17	

	i loject	26&27 Ki	ngs Mews		99	9737
	Calcs for	Front Retainin	g Wall Design		Start page no./F	evision 26
DCL Consulting Engineers Ltd	Calcs by WW	Calcs date 03/05/2024	Checked by AO	Checked date 02/05/2024	Approved by AO	Approved date 02/05/2024
Area of wall base		A _{base} = I _{base}	× t _{base} = 1.02 m	2		
- Distance to vertical componer	nt	$x_{base} = I_{base}$	2 = 850 mm			
Using Coulomb theory					• 5 5 5	
Active pressure coefficient		$K_A = sin(\alpha - $	$(\phi'_{r.k})^2 / (\sin(\alpha)^2)$	$\times \sin(\alpha - \delta_{r,k}) \times [$	1 + √[sin(¢'r.k ·	+ $\delta_{r.k}$) × sin($\phi'_{r.k}$
		- β) / (sin(α	$-\delta_{r.k}$ × sin(α +	β))]] ²) = 0.326		
Passive pressure coefficient		K _P = sin(90	- φ' _{b.k}) ² / (sin(90) + δ _{b.k}) × [1 - √[s	in(φ' _{b.k} + δ _{b.k}) :	< sin(¢' _{b.k}) /
		(sin(90 + δ _b	.k))]] ²) = 8.022			
Bearing pressure check ->	Refer to	bearing p	ressure di	iagram f	rom tsp	(page 4).
Wall stem		F _{stem} = A _{sten}	$\times v_{\text{stem}} = 22.2$	«N/m		
Wall base		Fhase = Ahas	$x \gamma_{\text{base}} = 25.5 $	<n m<="" td=""><td></td><td></td></n>		
Line loads		$F_{P,v} = P_{G1}$	+ Po1 = 50.4 kN	/m		
Total		$F_{total_v} = F_{ste}$	em + F _{base} + F _{P_v}	+ F _{water_v} = 98.1	kN/m	
Horizontal forces on wall						
Surcharge load		F _{sur_h} = K _A :	× cos(δ _{r.k}) × Sur	charge _Q × h _{eff} = 9	9.5 kN/m	
Saturated retained soil		$F_{sat_h} = K_A$	× cos(δ _{r.k}) × (γsr	- γw) × (h _{sat} + h _{bas}	_{se}) ² / 2 = 12.9	kN/m
Water		$F_{water_h} = \gamma_w$	× (h _{water} + d _{cover}	$(+ h_{base})^2 / 2 = 48$	3.7 kN/m	
Moist retained soil		F _{moist_h} = K	$A \times \cos(\delta_{r.k}) \times \gamma_{m}$	r × ((h _{eff} - h _{sat} - h _t	$(h_{et})^2 / 2 + (h_{et})^2$	f - h _{sat} - h _{base}) >
		(h _{sat} + h _{base})) = 20.8 kN/m			
Base soil		F _{pass_h} = -K	$P \times COS(\delta_{b,k}) \times \gamma_{i}$	$b \times (d_{cover} + h_{base})$	²/2 = -28.8 k	:N/m
Total		F _{total_h} = F _{su}	ur_h + Fsat_h + Fwa	ater_h + Fmoist_h + F	_{pass_h} = 63 kN	l/m
Moments on wall						
Wall stem		M _{stem} = F _{ste}	m × X _{stem} = 34.9	kNm/m		
Wall base		$M_{base} = F_{ba}$	$x_{base} = 21.7$	kNm/m		
Surcharge load		$M_{sur} = -F_{sur}$	$h \times X_{sur_h} = -19.$	6 kNm/m		
Line loads		M _P = (P _{G1} -	+ P _{Q1}) × p ₁ = 79	.4 kNm/m		
Saturated retained soil		M _{sat} = -F _{sat}	$h \times X_{sat_h} = -13.$	5 kNm/m		
Water		M _{water} = -F _v	vater_h × Xwater_h =	- 51.1 kNm/m		
Moist retained soil		M _{moist} = -F _r	noist_h × Xmoist_h =	-38.2 kNm/m		
Total		$M_{total} = M_{ste}$	em + Mbase + Msu	r + M _P + M _{sat} + M	water + Mmoist =	13.5 kNm/m
Check bearing pressure		_				
Propping force to stem		F _{prop_stem} =	17.5 kN/m			
Propping force to base		Fprop_base =	Ftotal_h - Fprop_ste	m = 43.4 KIN/III	n/m	
Distance to reaction			+ Mana) / Etata	= 879 mm	1/111	
Eccentricity of reaction		$\rho = \sqrt{-1}$	12 = 29 mm	- 013 11111		
Loaded length of base			= 1700 mm			
Bearing pressure at toe		$a_{toe} = F_{total}$	v / Ibase × (1 - 6	× e / I _{base}) = 51 .8	kN/m ²	
Bearing pressure at heel		Qheel = Ftota	$ v / _{base} \times (1 + 6)$	$5 \times e / l_{base} = 63.$	6 kN/m ²	
- same proceed at noon					na na sanara na sanafi ing bilan	
Factor of safetv		$FoS_{bp} = Pi$	pearing / max(dtoe.	q_{heel}) = 4.714		

		Project	Project				Job no.	
		26&27 Kings Mews				99737		
		Calcs for				Start page no./Revision		
	Front Retaining Wall Design			3" 7				
		Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	DCL Consulting Engineers Ltd	WW	03/05/2024	AO	02/05/2024	AO	02/05/2024	

RETAINING WALL DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the UK National Annex incorporating National Amendment No.1

Tedds calculation version 2.9.21

Concrete details - Table 3.1 - Strength and deformation characteristics for concrete

Concrete strength class	C35/45
Characteristic compressive cylinder strength	f _{ck} = 35 N/mm ²
Characteristic compressive cube strength	f _{ck,cube} = 45 N/mm ²
Mean value of compressive cylinder strength	$f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 43 \text{ N/mm}^2$
Mean value of axial tensile strength	f_{ctm} = 0.3 N/mm ² × (f_{ck} / 1 N/mm ²) ^{2/3} = 3.2 N/mm ²
5% fractile of axial tensile strength	$f_{ctk,0.05} = 0.7 \times f_{ctm} = 2.2 \text{ N/mm}^2$
Secant modulus of elasticity of concrete	E _{cm} = 22 kN/mm ² × (f _{cm} / 10 N/mm ²) ^{0.3} = 34077 N/mm ²
Partial factor for concrete - Table 2.1N	γc = 1.50
Compressive strength coefficient - cl.3.1.6(1)	α _{cc} = 0.85
Design compressive concrete strength - exp.3.15	$f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 19.8 \text{ N/mm}^2$
Maximum aggregate size	h _{agg} = 20 mm
Ultimate strain - Table 3.1	ε _{cu2} = 0.0035
Shortening strain - Table 3.1	ε _{cu3} = 0.0035
Effective compression zone height factor	$\lambda = 0.80$
Effective strength factor	η = 1.00
Bending coefficient k1	K ₁ = 0.40
Bending coefficient k ₂	$K_2 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Bending coefficient k ₃	K ₃ =0.40
Bending coefficient k ₄	$K_4 = 1.00 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$
Reinforcement details	
Characteristic yield strength of reinforcement	f _{yk} = 500 N/mm ²
Modulus of elasticity of reinforcement	E _s = 200000 N/mm ²
Partial factor for reinforcing steel - Table 2.1N	γs = 1.15
Design yield strength of reinforcement	f _{yd} = f _{yk} / γ _S = 435 N/mm ²
Cover to reinforcement	
Front face of stem	c _{sf} = 35 mm
Rear face of stem	c _{sr} = 35 mm
Top face of base	C _{bt} = 35 mm
Bottom face of base	с _{ьь} = 35 mm
Check stem design at base of stem	
Depth of section	h = 250 mm
Rectangular section in flexure - Section 6.1	
Design bending moment combination 1	M = 131.8 kNm/m
Depth to tension reinforcement	d = h - c _{sr} - φ _{sr} / 2 = 202 mm
	$K = M / (d^2 \times f_{ck}) = 0.092$
	$K' = (2 \times \eta \times \alpha_{cc} / \gamma_{C}) \times (1 - \lambda \times (\delta - K_{1}) / (2 \times K_{2})) \times (\lambda \times (\delta - K_{1}) / (2 \times K_{2}))$
	K' = 0.207
	K' > K - No compression reinforcement is required
Lever arm	z = min(0.5 + 0.5 × (1 - 2 × K / ($\eta \times \alpha_{cc}$ / γ_c)) ^{0.5} , 0.95) × d = 184 mm

F	Project				Job no.		
		26&27 Ki	ngs Mews		99	9737	
	Calcs for	Front Retainir	ıg Wall Design		Start page no./F	Revision 48	
DCL Consulting Engineers Ltd	Calcs by WW	Calcs date 03/05/2024	Checked by AO	Checked date 02/05/2024	Approved by AO	Approved date 02/05/2024	
Depth of neutral axis		x = 2.5 × (d	– z) = 45 mm				
Area of tension reinforcement rec	uired	Asr.reg = M /	$(f_{yd} \times z) = 1644$	1 mm²/m			
Tension reinforcement provided		25 dia.bars	@ 200 c/c				
Area of tension reinforcement pro	ovided	$A_{sr.prov} = \pi >$	$\langle \phi_{sr}^2 / (4 \times s_{sr}) \rangle$	= 2454 mm²/m			
Minimum area of reinforcement -	exp.9.1N	A _{sr.min} = ma	$x(0.26 \times f_{ctm} / f_{y})$	_{/k} , 0.0013) × d = 3	338 mm²/m		
Maximum area of reinforcement	cl.9.2.1.1(3)	$A_{sr,max} = 0.0$)4 × h = 10000	mm²/m			
		max(Asr reg.	Asr.min) / Asr.prov	= 0.67			
F	PASS - Area o	f reinforcement	provided is g	reater than area	of reinforce	ment required	
Deflection control - Section 7.4							
Reference reinforcement ratio		$\rho_0 = \sqrt{f_{ck}} / r$	1 N/mm²) / 100	0 = 0.006			
Required tension reinforcement	atio	$\rho = A_{stree} /$	d = 0.008				
Required compression reinforcer	ment ratio	$\rho' = A_{sr,2} r_{sr,2}$	$/ d_2 = 0.000$				
Structural system factor - Table 7	7 4N	р 7.(si.z.req Кь = 1	7 42 0.000				
Peinforcement factor - evo 7 17		$K_{a} = \min(5)$	$00 \text{ N/mm}^2 / (f_{\text{wk}})$	× Astron / Astrony)	1.5) = 1.493		
Limiting span to depth ratio - exp	716 h	min/K _a × K	50 Minin / (iyk	$\sqrt{f_{ek} / 1 \text{ N/mm}^2}$	(0)/(0-0') +	$\sqrt{f_{ck}}/1$	
	.7.10.0	$N/mm^2) \times 1$	$\sqrt{(0' / 00)} / (12)$	$10 \times K_{\rm b} = 26.1$	(pu) (p p)		
Actual span to dopth ratio		$h_{m}/d = 1$	τζ, - 1 75	$(0 \times 100) = 20.1$			
Actual spart to deptit ratio		PASS	- Snan to den	oth ratio is less t	han deflectio	on control limit	
		1400	opun to dop				
Crack control - Section 7.3							
Limiting crack width		$W_{max} = 0.3$	mm				
Variable load factor - EN1990 -	Table A1.1	$\psi_2 = 0.6$	Ich Inn /ma				
Serviceability bending moment		$ V _{s s} = 88.4$	$(\Lambda - \dots - 1) = 1$	05 2 N/mm ²			
l ensile stress in reinforcement		$\sigma_s = V _{s s} / 1$	$(Asr.prov \times Z) = 1$	95.3 N/IIIII-			
Load duration		Long term					
Eload duration factor	ion	$A_{r,r} = \min\{2.5 \times (h - d), (h - x)/3, h/2\}$					
Effective area of concrete in term	51011	Ac.eff = 11111	$(2.0 \times (11 - 0)), (12 - 0), (12 - $	11 - x) / 3, 11 / 2)			
Moon value of concrete tensile s	trength	$A_{c.eff} = 000$	$= 3.2 \text{ N/mm}^2$				
Poinforcoment ratio	alengar	$R_{ct.eff} = R_{ctm}$	- 0.2 (V/1111)	36			
Medular ratio		$\rho_{\text{p.ell}} = F_{\text{s}} / F_{\text{s}}$					
Read property coefficient			.cm - 3.003				
Strain distribution coefficient		$k_1 = 0.5$					
Strain distribution coemclent		$k_2 = 3.4$					
		k4 = 0.425	5				
Maximum crack spacing - exp.7	.11	$s_{r,max} = k_3$	\times C _{sr} + k ₁ \times k ₂ >	$(k_4 \times \phi_{sr} / \rho_{p.eff} = 2)$	237 mm		
Maximum crack width - exp.7.8		Wk = Sr max	$\times \max(\sigma_s - k_t)$	< (f _{ct.eff} / _{Dp.eff}) × (1	$+ \alpha_{e} \times \rho_{p,eff}$	0.6 × σs) / Es	
		w _k = 0.18	mm	(9999-1275 (1016) (2017) - 041 (1019-12236)	
		w _k / w _{max} =	= 0.601				
		PAS	S - Maximum	crack width is le	ss than limit	ing crack width	
Rectangular section in shear	Section 6.2						
Design shear force	0001011 0.2	V = 97 9 k	«N/m				
Bedign andar forde		$C_{\text{Rd}c} = 0$	$18 / \gamma_{\rm C} = 0.120$				
		$k = \min\{1\}$	+ √(200 mm /	d) 2) = 1 994			
Longitudinal rainforcement ratio		$\alpha = \min(\Lambda)$	/ d 0 02)	= 0.012			
		$p_i = \min(P_i)$	$35 \text{ M}^{1/2}/\text{mm} \sim k$	$3/2 \times f_{ab} 0.5 = 0.522$	N/mm ²		
		vmin – 0.0.					

		Project	26&27 Ki	Job no. 99737					
		Calcs for	Front Retainir	ng Wall Design	1	Start page no./I	Revision		
		Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date		
[OCL Consulting Engineers Ltd	WW	03/05/2024	AO	02/05/2024	AO	02/05/2024		
	Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max V _{Rd.c} = 169 V / V _{Rd.c} = 0	$V_{Rd,c} = \max(C_{Rd,c} \times k \times (100 \text{ N}^2/\text{mm}^4 \times \rho_I \times f_{ck})^{1/3}, v_{min}) \times d$ $V_{Rd,c} = 169 \text{ kN/m}$ $V / V_{Rd,c} = 0.579$					
			PAS	S - Design she	ar resistance e	xceeds desig	gn shear force		
Check stem design at propDepth of sectionh = 250 mm									
	Rectangular section in shear	- Section 6.2							
	Design shear force	00000000	V = 7.9 kN	/m					
			$C_{Rd,c} = 0.18$	8 / γc = 0.120					
			k = min(1 +	⊦ √(200 mm / d),	2) = 1.994				
	Longitudinal reinforcement ratio		$\rho_l = min(A_s$	r1.prov / d, 0.02) =	0.005				
			v _{min} = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	× f _{ck} ^{0.5} = 0.583 N	l/mm²			
	Design shear resistance - exp.6	.2a & 6.2b	V _{Rd.c} = max	$k(C_{Rd.c} \times k \times (100))$	$0 \text{ N}^2/\text{mm}^4 \times \rho_1 \times \text{f}$	$(c_{ck})^{1/3}, V_{min}) \times C$	i		
			V _{Rd.c} = 125	.5 kN/m					
			$V / V_{Rd.c} =$	0.063					
			PAS	SS - Design she	ear resistance e	xceeds desi	gn shear force		
	Horizontal reinforcement para	allel to face of s	tem - Section	9.6					
	Minimum area of reinforcement	A _{sx.req} = ma	$ax(0.25 \times A_{sr.prov})$	$0.001 \times t_{stem}) = 0$	614 mm²/m				
	Maximum spacing of reinforcen	nent – cl.9.6.3(2) dod	S _{sx_max} = 4(00 mm					
	Area of transverse reinforcement provi	aea nt provided		$A_{max} = \pi \times h_{m}^{2} / (A \times s_{m}) = 754 \text{ mm}^{2}/\text{m}$					
	Alea of transverse reinforceme	PASS - Area of	reinforcemen	t provided is a	reater than area	of reinforce	ement required		
	Oharda hara da sinn at ta s	7 400 - 4700 07	rennoroennen	t provided io g					
	Depth of section		h = 600 m	m					
	Rectangular section in flexur	e - Section 6.1							
	Design bending moment combi	nation 1	M = 148.3	kNm/m					
	Depth to tension reinforcement		$d = h - C_{bb}$	$-\phi_{bb}/2 = 557 \text{ n}$	ım				
			K = M / (d	$x^{2} \times f_{ck}$ = 0.014)) () (S Z			
			K' = (2 × η K' = 0.207	× α _{cc} /γc)×(1 - λ	$\times (0 - K_1)/(2 \times K_2)$	2))×(λ × (0 - K	1)/(Z × K2))		
				K' > K - 1	No compressio	n reinforcen	ient is required		
	Lever arm		z = min(0.	5 + 0.5 × (1 - 2 :	× K / (η × α_{cc} / γ_{c}	$))^{0.5}, 0.95) \times 0$	d = 529 mm		
	Depth of neutral axis		x = 2.5 × (d – z) = 70 mm					
	Area of tension reinforcement r	required	Abb.req = M	/ (f _{yd} \times z) = 645	mm²/m				
	Tension reinforcement provide	d	16 dia.bar	s @ 200 c/c					
	Area of tension reinforcement	provided	$A_{bb,prov} = \pi$	$x \times \phi_{bb}^2 / (4 \times s_{bb})$) = 1005 mm²/m				
	Minimum area of reinforcemen	t - exp.9.1N	$A_{bb.min} = m$	$hax(0.26 \times f_{ctm} / 1)$	_{yk} , 0.0013) × d =	930 mm²/m			
	Maximum area of reinforcemer	nt - cl.9.2.1.1(3)	$A_{bb,max} = 0$	0.04 × h = 24000	mm²/m				
			max(A _{bb.re}	q, Abb.min) / Abb.pro	$v_{\rm V} = 0.925$	a of rainford	amont required		
		rass - Area 0	reinforcemei	n proviaea is g	neater than are	Library item: Rec	tangular single output		
	Crack control - Section 7.3								
	Limiting crack width		w _{max} = 0.3	3 mm					
	Variable load factor - EN1990	- Table A1.1	ψ2 = 0.6						
	Serviceability bending moment	t	M _{sls} = 99.	9 kNm/m					

	Project	26&27 Ki	Job no. 99737				
	Calcs for	Front Retainir	ng Wall Desigr	1	Start page no./F	Revision 6 0	
DCL Consulting Engineers Ltd	Calcs by WW	Calcs date 03/05/2024	Checked by AO	Checked date 02/05/2024	Approved by AO	Approved date 02/05/2024	
Tensile stress in reinforcement		$\sigma_s = M_{sls} / ($	$A_{bb.prov} \times z) = 1$	87.8 N/mm ²			
Load duration		Long term					
Load duration factor		kt = 0.4					
Effective area of concrete in ten	ision	A _{c.eff} = min(2.5 × (h - d), (ł	n - x) / 3, h / 2)			
		Ac.eff = 107	500 mm²/m				
Mean value of concrete tensile	strength	$f_{ct.eff} = f_{ctm} =$	3.2 N/mm ²				
Reinforcement ratio		$\rho_{p.eff} = A_{bb.p}$	rov / A _{c.eff} = 0.00	09			
Modular ratio		$\alpha_e = E_s / E_c$	m = 5.869				
Bond property coefficient		k ₁ = 0.8					
Strain distribution coefficient		k ₂ = 0.5					
	k ₃ = 3.4						
		k ₄ = 0.425					
Maximum crack spacing - exp.7	'.11	$s_{r.max} = k_3 \times$	$c_{bb} + k_1 \times k_2 \times k_2$	$k_4 \times \phi_{bb} / \rho_{p.eff} = 4$	10 mm		
Maximum crack width - exp.7.8		Wk = Sr.max >	$<$ max(σ_s – k _t \times	(f _{ct.eff} / $\rho_{p.eff}$) × (1 +	$-\alpha_{e} \times \rho_{p.eff}$), 0	.6 × σs) / Es	
		w _k = 0.231 mm					
		$w_k / w_{max} =$	0.77				
		PASS	- Maximum c	rack width is les	s than limitir	ng crack width	
Rectangular section in shear	- Section 6.2						
Design shear force		V = 104.6	kN/m				
		$C_{Rd,c} = 0.13$	8 / γc = 0.120				
		k = min(1	√(200 mm / d	i), 2) = 1.599			
Longitudinal reinforcement ratio)	թլ = min(Aե	b.prov / d, 0.02)	= 0.002			
		v _{min} = 0.03	$5 \text{ N}^{1/2}/\text{mm} \times \text{k}^{3/2}$	^{/2} × f _{ck} ^{0.5} = 0.419 N	l/mm ²		
Design shear resistance - exp.6	6.2a & 6.2b	V _{Rd.c} = max	$k(C_{Rd.c} \times k \times (1))$	00 N ² /mm ⁴ × ρ_l × f	$(c_k)^{1/3}, V_{min}) \times C$	i	
		V _{Rd.c} = 233	.2 kN/m				
		$V / V_{Rd.c} =$	0.449				
		PAS	SS - Design sl	near resistance e	xceeds desi	gn shear force	
Secondary transverse reinfor	cement to base	- Section 9.3					
Minimum area of reinforcement	t – cl.9.3.1.1(2)	$A_{bx.req} = 0.2$	$2 \times A_{bb,prov} = 20$)1 mm²/m			
Maximum spacing of reinforcer	nent – cl.9.3.1.1(B) Sbx_max = 4	50 mm				
Transverse reinforcement prov	ided	12 dia.bar	s @ 150 c/c				
Area of transverse reinforceme	nt provided	$A_{bx.prov} = \pi$	$\times \phi_{bx}^2$ / (4 \times s _b	_x) = 754 mm²/m			
	PASS - Area of	reinforcemen	t provided is	greater than area	a of reinforce	ement required	

	Project				Job no.	
	26&27 Kings Mews				99737	
	Calcs for				Start page no./Revision	
	Front Retaining Wall Design			×11		
	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
DCL Consulting Engineers Ltd	WW	03/05/2024	AO	02/05/2024	AO	02/05/2024

Reinforcement details