Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	Pe-1
Job No. 16 440	

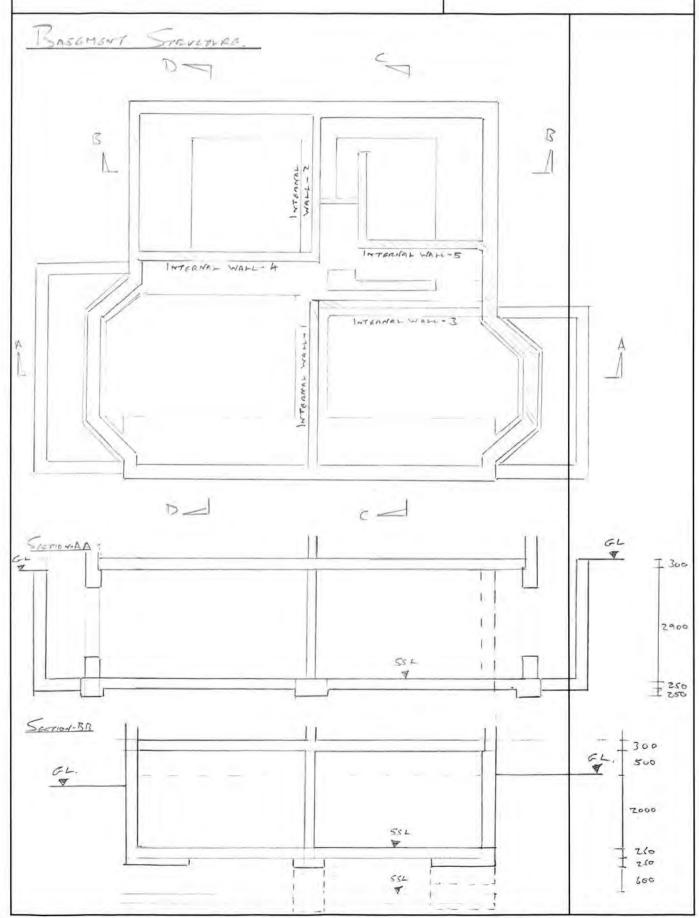
28 CANFIELD GARDINS

LUAD C	A525	_		
Exements.		<u></u>	<u> </u>	ToraL Lalm
PITCHED ROUTE		1.3.5	0.75	2.1
Frat Roof	3	1.05	0.75	1.8
Domastis LORY FreUR	:	0.50	1.50	2.0
STORAGE LURT FLOOR	2 :	0.50	0.50	1.0
Domestie Room Frank		0.70	1.50	22
Sto PARTITION EDIRECT) =	0.50		0.5
PLANNER PARTIEW		1.00	-	1.0
1 Projektork	2	7.50		2.5
225m Brichworth	5	4.80		4.8
330mm Brienwork	9	7.50		7.5
450mm Brienwork	0	9.80		9.8
COMMUNEL STAIRCASE	9	0.50	3.00	3.5

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk


Web: www.redstonassociates.co.uk

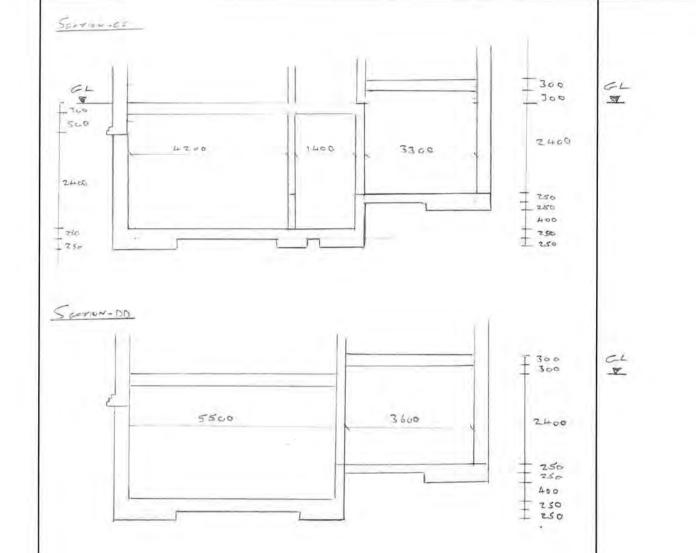
Date Sheet No.

Eng. PS ρ - 2

Job No. 16, 440

28 CAMPIELD GARDENS NWG.

Consulting Civil & Structural Engineers


Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	PC-3
Job No. 16.440	

28 CANFIELD GARDENS NWb.

By REFERENCE TO GEOLOGICAL SURVEY MAD EnounD. CONDITIONS ARE LONDON CLAY.

:. Basic Ground BEARING Pressure = 100 km/m2 e Surface Level

UNDERSIDE OF FOUNDATION DEPTH BETWEEN 2.9-3.7m BELOW GROUND SURFACE LEVEL.

- :. CLAY LILERY TO BE FIRM TO STIFF & WELL COMPACTED
- CONSERVATIVE GROUND BEARING PRESSURE
 RANGES 100-150 hu/m?

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	PC-4
Job No. 16 440	

28 CANFIELD GARDONS NWb.

lw:	WALLS !	+85 And Res	LOAD BEARING WA	ane Car	-ENHATED	
Load	Purpos	~5:		DL	LL	TOTAL
WALL	: VAL	· Spire WALL-1	= 540 SHEAT =	42.6		
			4 H H =		18.3	
		330mm Baire	= 7.5 x 2.9 =	21.8		
				64.4	18.3	82.7 lin/m
WALL Z	= VD1	= Spine WALL-?	= 560 Sugar = =		17.8	
		330mm Brien	= 7.54 2.7×0.85=	17.2		
				51.5	17.8	69-3 halm
NOTE -	- VOL	= Spine War 3	\$ 566 SHEST - =		74	
					21.0	
		330mm Back	= 7.5x 2.9x 0.85 =	77-2	23.0	100.2 kN/M

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date Sheet No.
Eng. ρ 5

Job No. 15,440

28 CANFIELD GARDENS NWG.

BU ROBINENCE TO GOLDWICK SURVEY MAD GROUD CONDITIONS ARE LONDON CLAY,

: BASIL GROWD BEARINE PRESUME = 100 hr/m

UNDERSIDE OF FOLKDATION DERTA BETWEEN 219-3.7m BETWEEN GROUND LOVEL.

CHAY LINGLY TO BE FIRM TO STIEF & WILL COMPASSED & ZONO PODITIONEL STRENGTH FACTOR

: GBP = 120 KN/m2.

WALL-1: 82-7 = 0-689 m WIDTH PERM PUN.

WALL . Z: 69.3 = 0.538 MIOTA PAR MIRW.

WALL-3: 10017 = 0.835m MIDTH POR M RUV.

CONCRETE STRIP FOUNDATION

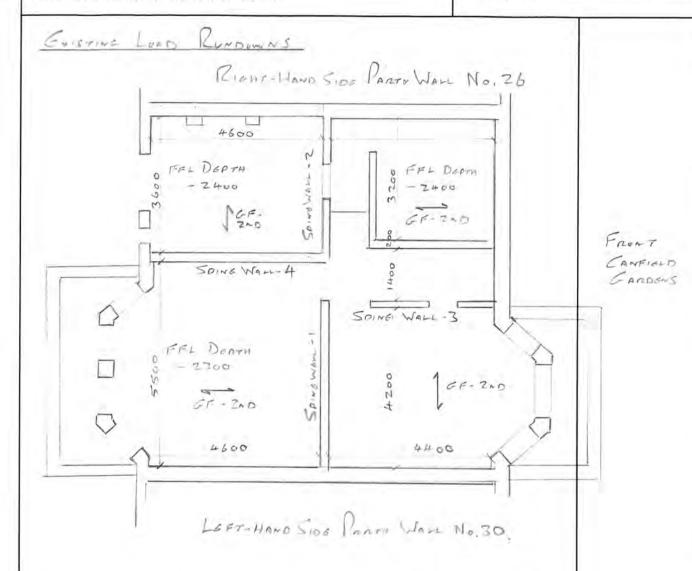
WALL-3 TO HAVE 900 MM WIDE CONCRETE STRIP FOUNDATION

ALL CONCRETE TO BE MINIMUM C-35 (SR) GRADE & SOOME DEEP. FOR DOADS TO WALL - Z TO STAP DOWN WITH ZNO TRANSITION BASES TO SAME LEVAL AS INTERNAL WALL-H RETAINING WALL BASE.

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk


Web: www.redstonassociates.co.uk

 Date
 Sheet No.

 Eng. P ≤
 P ∠ - Ь

 Job No. 15 + 40
 P

28 CANDIELD GARDENS NWG.

300 FLOOR STRUCTURE SPANS FRONT TO BACK (RAFTERS, Froon JOSTS STE) BEARING ONTO INTERMEDIATE FLOOR BEAMS WHICH SPAN SIDE TO SIDE.

PROPERTY LAYOUT TO 26, 28 & 30 ARE THE SAME (EXCEPT FOR LOFF EXTENSION)

: ONLY FLOOR Span From ONE PROPORTY Spans ON GARA PARTY WATE

& Roofs From 26 & 30 Span Front to BACK Bearing ON THEIR OWN INTERNAL WALLS

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. $\rho \leq$	PC-7
Job No. 13.440	

28 CANFIELD GARDANS

1					
LOADS TO G	nound Lever		DL	1 1	TOTAL
PARTY = VDL WATE (FRINT)	= Roof = 1.35 x . (VIA From Brand) = 0.75 x	4.8 =		0.8	
	320 From 3 0.50 x	-	1.2	3.6	
	1.50 x 3		1. 2	3.6	
	COMMUNAL STAIR = 5 (0.50 x				
	3 (3.0, x			5.4	
	Enumo - 200 = 3 (0.70x	= (2+4	4.4		
	3 (1.50*	4.2		9.5	
	BLANDER PARTITION = 3 (1.00 x)	2			
	325m Hon : 48x 1				
	330mm Wars : 3.5 x 3				
			78.5	20.3	98.8 4.1m
PAZEN : VOL	: Room = 1.35 x 3	<u>. 6</u> =	2.4		
Plants (Nearl)	0.75 = 3	7		154	
	3 no From = 0.50 x 3	-	0.9		
	L-W BLANKST = 0:50 x 3	Ć.	0.9	2,7	
	FRUVED 1572 = 3 (070 x	4			
	3 (1.50 x)			8.1	
	Branker Partitions = 3 (1.00 x	316) =	5.4		
		FAL		12.2	-

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. P <	PZ-8
Job No. 161440	

28 CANFISHS GARDENS NW6

			DL	1 44	TOTAL
0		: > /			
WARTY - WOL	YAR TOPAL	= See Lase Susar =			
RIMIT (NEAR)				1202	
CONTINUED	225 - CAROL	= 4.8 × 2.8 × = =	6.7		N.
	27 mm War	= 4.8 × 6.2 =	79,8		
	330mm Ware	= 7.5 2 4.3 =	32.3		
			82-7	12.2	94.4 LN/N
Facre - VDL	= Pirenen Rook	= 1.35 x 1.0 =	0.7		7 7 7
WALL		0.75 x 1.0 =		0.4	
	Lury Stonath	= 0.50 × 1.0 =	0.3		
		0.50 × 1.0 =		0.3	
	Cours - 200 Fluors	= 3 (0.70 × 2.2)=	2.3	5.0	
	BLANDER PROVIDE	3 (1.5 × 7.12)=		3.0	
	225m Warn	: 4.8 x 6.2 x 0.85=	75.3		
	330 mm WALL	: 75x35x0.85=	21.0		
			52.9	5-7	58.6 hulm
Front : VDL	: Pironen Rook	: 1.35 % 1.1 =	0.7		
BAY		0.73 × 1.1 =		0.4	
	Lost Stunder	: 0.50 × 111 =			
	Q	0.50 × 1/1 =		0.3	
	Froms	= (0.70x 111) =	1. 2	215	
		3 (1.50 × 1.1) =	7.7	3.2	5.4 LINIM

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	P2-9
Job No. 16-440	

28 CAMPIGHD GARDENS

			DL	1	TUPAL
FROM: S NOL BAY CONTINED	= FOR TAME	· See Previous SHORT	712	3.2	
35% Renveran		1 4.8x 6.2x0.65=			
WILLDOW NOIDS	330mm Ware	7.50 71340155=	21.5	16.1	40.8 kv/m
FRONT : VDL	- PITEMAN ROOK	1 135 x 111 =	0.7		
(Entrance)		0.75 4 111 =		0.4	
	Lury Stunger	0150 × 111 =	0.3	0.3	
	= 157 = Zno Frans	= 7 (0.20 × 414) =	3-1		
	2 2	7 (1.50 x 4.4) =	1,5	6.6	
	COMMUNAL COMMUNAL	3.00 × 4.4 =	1,5	6.6	
		+ 3 (10 × 414) =			
	330mm WAR	: 4,8 x 5.2 x 6,85 =			
		A CALL PARTY STATE	58.5	13.9	72.4 Lev/m

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	PC-10
Job No. 16-440	

28 CANFIGLD GARDENS NWG.

LOADS TO GA	orns Lever		DL	1 44	TOTAL
PARTY : VOL	(VIA FACUR BEAMS)	= 1.35 × 4.2 =	2.8		11-11-11
Fair		0.75 × 4.2 =		1.6	
	(VIA FLOOR BOARD)	: 0.50 × 4.7 =	1.1	3.2	
	. 0	1.50 % 11.7 =	2.0	3.2	
		1 0.50 × 4.2 =			
	Group-2nd Floury	$3\left(0.30 \times \frac{4.2}{2}\right) = 3\left(1.50 \times 4.2\right) =$		9.5	
	Beariet Partition	= 3 (1.00 × 4.2) =			
	275 CARLO	418×218× =	6.7		
	275mm Wars	2 418 × 612 =	29.8		
	330 - WALL	7.5x 3.3 =_			
			77.0	14.3	91.3 lan/m
PORTU : VOL	(VIA Free-BOAT)	: 1135 × 515 =	3.7		
(Rina)		0175 x 5.5 =		2.1	
**: -59	300 From Bonn)	0.50 x 5.5 =			
		1.50 x 5.5 =		4.1	
	PARTITIONS	: 0.50 × 5.5 =			
	Froms (ADSOININE)	3 (0.70 × 3.6) =	3.8		
		3 (1.50 x 3.6)=		8.1	
	BLANGET PARTITION	$= 3\left(1.0\times\frac{3.6}{2}\right) =$	5.4		
	225mm CABLS &	6.7 + 29.8 =	36.5		
	330mm War	7.5 × 4.3 =_			
			84.5	14.3	98.8 Live

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. (25	PZ-11
Job No. 1 6 440	

28 CANFIELD GARDENS NWG.

		DL	1-1-	POTAL
PHENOR ROOM	= 1.75 + 1.0 =	0.7		
			0.4	
Lerr Sport	2			
	-		0.3	
The Man	2			
330mm MOTT	2.5 x 415 x 0.85		0.7	54.4 Lev/m
FLAT ROOF	: 1.05 + 1.1 =	0.6		
			0.4	
Grown . 240				
Fronts			7.5	
			2.3	
	*			
330min WARL	115 x 43 x0165 =	70.77	7.9	45.0 hulm
		4 6 1		43.0 mili
	ZZS WALL ZZS WALL ZZS WALL ZZS WALL ZZS WALL	Lerr Spand = 0.50 x 1.0 = 0.50 x 1.0 = 0.50 x 1.0 = 225 - Wall = 4.8x 6.2x0.85 = 330 - Wall = 7.5 x 4.3 x 0.85 = - 1.05 x 1.1 = 0.75 x 1.1 = 0	PITCHON ROOM = 1.35 × 1.0 = 0.7 0.35 × 1.0 = 1.05 × 1.0 = 0.50 × 1.0 = 0.3 0.50 × 1.0 = 0.3 0.50 × 1.0 = 0.3 130 mm Wart = 4.8 × 6.7 × 0.85 = 72.4 53.7 FLAT ROOM = 1.05 × 1.1 = 0.6 0.75 × 1.1 = 0.75 × 1.1 = 1.2 1.50 × 1.1 = 1.2 3 (1.50 × 1.1) = 1.2 3 (1.50 × 1.1) = 1.2 330 mm Wart = 4.8 × 6.2 × 0.65 = 21.0 42.1	PHENOR ROOM = 1.35 × 1.0 = 0.7 0.35 × 1.0 = 0.3 0.50 × 1.0 = 0.3 0.50 × 1.0 = 0.3 225 - Ware = 4.8 × 6.2 × 0.85 = 25.3 330 - Ware = 1.05 × 1.1 = 0.6 0.75 × 1.1 = 0.6 0.75 × 1.1 = 0.4 From - 2 × D = 3 (0.70 × 1.1) = 1.2 From S = 1.50 × 1.1 = 0.5 3 (1.50 × 1.1) = 1.2 2.5 230 - Ware = 4.8 × 6.2 × 0.65 = 19.3 330 - Ware = 7.5 × 43 × 0.65 = 21.0

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. P≤	PC-12
Job No. 16-440	

28 CANFIGED GARDENS NWG.

MTERNAL WALL	5 7		DL	1	TOTAL
SPING VOL	Place Baote	= 1,35 x 7.0 =		2.6	
	3 RD FLOOR	2 0.50 × 7.0 =			
		1150 x 7.0 =		5.3	
		0 30 x 7.0 =			
	Churche (REAR)	$= 3\left(0.7 \times \frac{4.6}{2}\right) =$ $3\left(1.5 \times \frac{4.6}{2}\right) =$		10.4	
	BLANCE PRATITION	= 3 (10 × 46) =			
	STEN WALLS ZURE	0.525.020.85=	211		
		7.5 × 313 × 0185 =			
	225mm BANNAPAM	= 4-8 × 3.3 × 0.85 =	42.6	18.3	60.9 LWM
	= Piremin Rose	: 1:35 x 7:0 =	4.7	12.5	
-lart		0.75 x 7.0 =	- 2	2.6	
	300 From	1.50 x 7.0 =	1.8	5.3	
	Law Porreions	2	1.8		
	STAIRCASK	$= 3\left(0.5 \times \frac{2.2}{2}\right) =$	1.7		
	SEED WALLS ZOD	$3\left(\frac{3\cdot 0\times \frac{2\cdot 2}{2}}{2}\right) =$	2.5	9.9	
	1320 112mm Brich Work		8.3		
		1 418 x 313 x 0185=	13.5		1
			34.3	17.8	52.1 LNM

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	PC-13
Job No. 161440	

28 CANFIELD FARRENS NWb.

		1		r -
		DL	1-1-	Toral
Spins = UDL	PHONO CONT = 1735 x 912 =	62		
3	0.752 913 =		3.5	
	300 From (AV) = 0.5 x 9. = =	213		
	1.5 2 9.2 =		6.9	
	LW PARTHUM = 0.5 = 913 =	213		
	Ensure - 240 = 3 (0.7 x 516) =	5.9		
	3 (115 x 5.6) =		12.6	
	Brancas Partitions = 3 (110 x 516) =	8.4		
	Greg WALL 300 : 0.5x2.3x0.85=	1.0		
	112mm Back 200 = 2.5x2.2x0.85=	5.7		
	775- BANG 15+ + 4.8x6.6x0.85=			/
		58.7	23.0	81.7 haby
Spine = UDI	= Pirenin Rook = 1.35 x 912 =	6.2		
4	= 0,75 x 9,2 =		3.5	
	3 An From (AV) = 0150 x 9,2 =	2,3		
	= 1.50 × 917 =		6.9	
	L-W PARTITIONS - 0,50 x 9,2 =			
	Greun - 200 Frons: 3 (0.7 x 3.6) =	3.8		
	3 (1.5 x 3.6) =		8,1	
	BLANGE PARTITION= 3 (1.0 x 3.6) =	5.4		
	WALLS TO MATOR : 1.0+5.7,126.9 = _		10 -	72.11.1
	P. 100	53.6	18.5	72.1 Lr/n

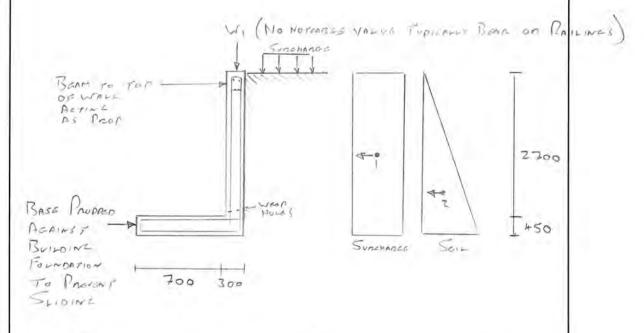
Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. PS	PC-14
Job No. 16.440	7


28 CANFIELD GARDENS NWG.

EXTERNAL LICHTWELL REVANING WALL DESIGN.

SURCHARGE + SIMILAR TO OTHER EXTERNAL WALLS. LOAD CASES

FRONT (VALLES ANDER) = 10.0 km/m²
REAR (CARDEN) = 5.0 km/m²

WATER : LINCO WEER HOLDS ARE TO BE FORMED PRESCURE NEAR THE BASE OF THE WATER WATER TO RUN INTO DRAINAGE (EX OTERNE) IN THE BASE OF THE HEATWELLS.

PROBLET & ASSUMINE:

- + 6-35(LR) GRADE CONERSTE
- · H-16 BARS 2 ZOOM ELE TOP & BOTTOM TO BASE.
- HIL BARS @ ZOOMACK TO BOTH FACES IN WALL VERTICALLY.
- * HIZ BANS @ 250 mm ch To BOTHFACE: IN WALL HONIZONTALLY

4 Edward Square London N1 OSP

Project	
-	28 CANFIELD GARDENS, LONDON

Calcs date

22/12/2016

Calcs for LIGHTWELL RETAINING WALL SECTION (front)

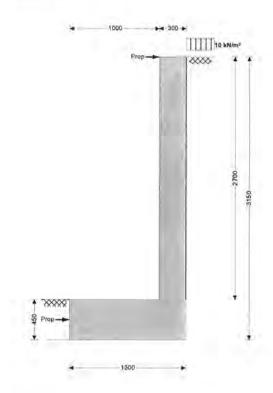
Checked by

Start page no./Revision

Job no.

Checked date

DC-15 Approved by Approved date


16.440

RETAINING WALL ANALYSIS (BS 8002:1994)

Calcs by

PS

TEDDS calculation version 1.2.01.06

Wall	4-1	:	1-
vvali	OP:	rai	

Loading details

Vertical dead load

Surcharge load

- C. 1 TALL TO TO TO THE				
Retaining wall type	Cantilever			
Height of wall stem	h _{stem} = 2700 mm	Wall stem thickness	$t_{\text{wall}} = 300 \text{ mm}$	
Length of toe	l _{toe} = 1000 mm	Length of heel	I _{heel} = 0 mm	
Overall length of base	l _{base} = 1300 mm	Base thickness	t _{base} = 450 mm	
Height of retaining wall	h _{wall} = 3150 mm			
Depth of downstand	d _{ds} = 0 mm	Thickness of downstand	t _{ds} = 450 mm	
Position of downstand	l _{ds} = -250 mm			
Depth of cover in front of wall	d _{cover} = 0 mm	Unplanned excavation depth	d _{exc} = 0 mm	
Height of ground water	hwater = 0 mm	Density of water	$\gamma_{\text{water}} = 9.81 \text{ kN/m}^3$	
Density of wall construction	$y_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$	
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	h _{eff} = 3150 mm	
Mobilisation factor	M = 1.5			
Moist density	$\gamma_{\rm m}$ = 18.0 kN/m ³	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$	
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg	
Design shear strength	$\phi'_b = 24.2 \text{ deg}$	Design base friction	δ_{b} = 18.6 deg	
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	$P_{\text{bearing}} = 100 \text{ kN/m}^2$	
Using Coulomb theory				
Active pressure	Ka =0.419	Passive pressure	$K_p = 4.187$	
At-rest pressure	$K_0 = 0.590$			

Vertical live load

 $W_{live} = 0.0 \text{ kN/m}$

Surcharge = 10.0 kN/m²

 $W_{dead} = 0.0 \text{ kN/m}$

4 Edward Square London N1 OSP

Project		
	28 CANFIELD GARDENS, I	ONDON

LIGHTWELL RETAINING WALL SECTION (front)

Job no.

16.440

Start page no./Revision

PC 16

Calcs by PS

Calcs for

Calcs date 22/12/2016 Checked by

Checked date

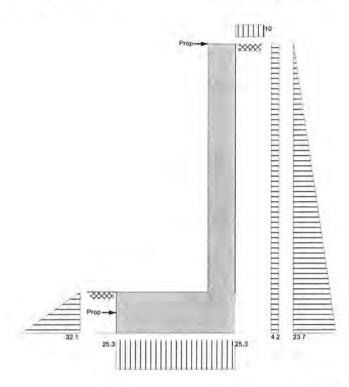
Approved by

Approved date

Horizontal dead load

Position of vertical load

Fdead = 0.0 kN/m


I_{load} = 0 mm

Horizontal live load

Height of horizontal load

 $F_{\text{five}} = 0.0 \text{ kN/m}$

hload = 0 mm

Loads shown in kN/m, pressures shown in kN/m2

Calculate propping force

Propping force

Fprop = 32.2 kN/m

Check bearing pressure

Total vertical reaction

R = 32.9 kN/m

Distance to reaction

xbar = 650 mm

Eccentricity of reaction

e = 0 mm

Reaction acts within middle third of base

Bearing pressure at toe

 $p_{toe} = 25.3 \text{ kN/m}^2$

Bearing pressure at heel

pheel = 25.3 kN/m2

PASS - Maximum bearing pressure is less than allowable bearing pressure

Calculate propping forces to top and base of wall

Propping force to top of wall

Fprop_top = 14.767 kN/m

Propping force to base of wall Fprop_base = 17.480 kN/m

4 Edward Square London N1 OSP

Project		Job no.
	28 CANFIELD GARDENS, LONDON	

Checked by

Calcs for LIGHTWELL RETAINING WALL SECTION (front)

Calcs date

22/12/2016

Start page no./Revision PC

16,440

Approved by

Checked date

17

Approved date

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1,2,01,06

Ultimate limit state load factors

Dead load factor

yf a = 1.4

Calcs by

PS

Live load factor

yr 1 = 1.6

Earth pressure factor

 $\gamma_{f,e} = 1.4$

Calculate propping force

Propping force

Fprop = 32.2 kN/m

Calculate propping forces to top and base of wall

Propping force to top of wall

 $F_{prop_top_f} = 31.931 \text{ kN/m}$

Propping force to base of wall Fprop base f = 45.947 kN/m

Design of reinforced concrete retaining wall toe (BS 8002:1994)

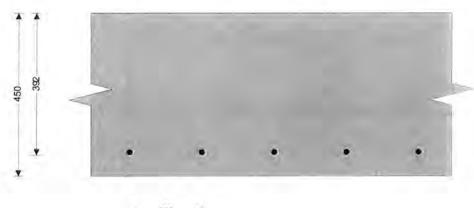
Material properties

Strength of concrete

fcu = 35 N/mm2

Strength of reinforcement

 $f_y = 500 \text{ N/mm}^2$


Base details

Minimum reinforcement

k = 0.13 %

Cover in toe

Ctoe = 50 mm

200

Design of retaining wall toe

Shear at heel

 $V_{toe} = 20.6 \text{ kN/m}$

Moment at heel

 $M_{toe} = 13.6 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided

16 mm dia.bars @ 200 mm centres

Area required

As_toe_req = 585.0 mm²/m

Area provided

 $A_{s_{toe_prov}} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall toe is adequate

Check shear resistance at toe

Design shear stress

vtoe = 0.053 N/mm2

Allowable shear stress

Vadm = 4.733 N/mm2

Vc_toe = 0.451 N/mm2 Concrete shear stress

PASS - Design shear stress is less than maximum shear stress

Vtoe < Vc_toe - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete

 $f_{cu} = 35 \text{ N/mm}^2$

Strength of reinforcement

 $f_y = 500 \text{ N/mm}^2$

Wall details

Minimum reinforcement

k = 0.13 %

4 Edward Square

Project		
	28 CANFIELD GARDENS.	LONDON

22/12/2016

Calcs for

LIGHTWELL RETAINING WALL SECTION (front)

16.440

Start page no./Revision

PC 18

London N1 OSP

Checked by Calcs by Calcs date

Checked date

Approved date

Cover in stem

Cstem = 45 mm

PS

Cover in wall

Cwall = 45 mm

Approved by

Job no.

200

200

Design of retaining wall stem

Shear at base of stem

V_{stem} = 57.4 kN/m

Moment at base of stem

M_{stem} = 33.2 kNm/m

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided

16 mm dia.bars @ 200 mm centres

Area required

As_stem_req = 390.0 mm²/m

Area provided

 $A_{s_stem_prov} = 1005 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress

v_{stem} = 0.233 N/mm²

Allowable shear stress

Vadm = 4.733 N/mm2

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress Vc stem = 0.591 N/mm2

vstem < vc_stem - No shear reinforcement required

Design of retaining wall at mid height

Moment at mid height

Mwall = 15.7 kNm/m

Compression reinforcement is not required

Reinforcement provided

12 mm dia.bars @ 200 mm centres

Area required

As wall reg = 390.0 mm²/m

Area provided

As wall prov = 565 mm²/m

PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Max span/depth ratio

ratiomax = 40.00

Actual span/depth ratio

ratioact = 10.93

PASS - Span to depth ratio is acceptable

4 Edward Square London N1 0SP

1 TOJCCI		
	28 CANFIELD GARDENS, LONDON	

Calcs date

22/12/2016

Calcs for LIGHTWELL RETAINING WALL SECTION (front)

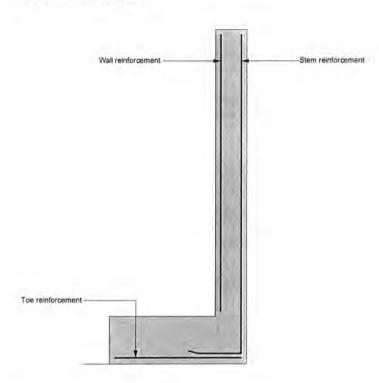
Checked by

Start page no./Revision

Job no.

Checked date

PC


19 Approved by Approved date

16.440

Indicative retaining wall reinforcement diagram

Calcs by

PS

Toe bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Wall bars - 12 mm dia.@ 200 mm centres - (565 mm²/m)

Stem bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date	Sheet No.
Eng. <i>P</i> ≤	P1-20
Job No. 1/ 440	123.5

28 CANFIELD GARDENS

10.1 WW/m

87.0 LN.

BEAM.

Assess Fonces ON BACK OF WALL AS BEAM BEAM AS BORNE ONTO TOP REAM AS

JELEWSIAN 0.3 x 24 = 7.2 lev m pen +1 work.

SURCHARAS = 1 × 10 × 3.15 = 10.5 LW

Soi2 = \$x 2 x 18 x 3.15 = 59.3 LN.

(BS 8110 SARVER SARVER FALLER = 1.4)

Ton are

10.12.4 \$3.0 LW,

TOP 1575 525 1050 BASE.

MAX SPAN BOTWEEN RESTRAINTS = 410M. (INCLUDING)

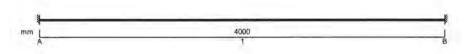
50.9 Lulm

101.8 Lan

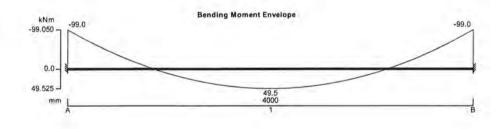
101.8 un M=w/3= 67.9 LNm.

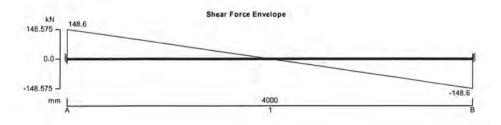
BEAM TO BE FORMED WITHIN BEVAINE WALL DEPTH (PROVISIONAL SIZE 300x 300mm)

ASSUMINE ZNO HZO BORS TO "TOP & BOTTOM"
& HIO LINKS AT REQUIRED CENTRES.



4 Edward Square London N1 0SP


Project	28 CANFIELD	Job no. 16-440			
Calcs for	LIGHTWEL	L TOP BEAM		Start page no./f	
Calcs by PS	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved date


RC BEAM ANALYSIS & DESIGN BS8110

TEDDS calculation version 2.1.12

Support conditions

Support A

Support B

Vertically restrained Rotationally restrained Vertically restrained

Rotationally restrained

Applied loading

Dead self weight of beam × 1 Dead full UDL 50.9 kN/m

N1 OSP

4 Edward Square London

Project	oject 28 CANFIELD GARDENS, NW6		W6	Job no. 16-440	
Calcs for	LIGHTW	ELL TOP BEAM		Start page no./	Revision
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date

Load	comb	oina	tions

Load combination 1 Support A Dead × 1.40

22/12/2016

PS

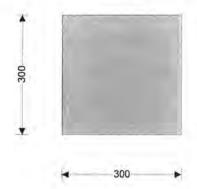
Imposed × 1.60

Span 1 Dead × 1.40

Imposed × 1.60

Support B Dead x 1.40

Imposed × 1.60


Analysis results

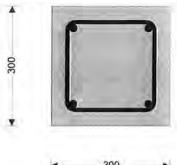
Maximum moment support A $M_{A_max} = -99 \text{ kNm}$ MA_red = -99 kNm Maximum moment span 1 at 2000 mm Ms1_max = 50 kNm Ms1_red = 50 kNm M_{B_max} = -99 kNm M_{B red} = -99 kNm Maximum moment support B Maximum shear support A VA max = 149 kN VA red = 149 kN Maximum shear support A span 1 at 250 mm VA_s1_max = 130 kN $V_{A_s1_{red}} = 130 \text{ kN}$ VB max = -149 kN VB red = -149 kN Maximum shear support B Maximum shear support B span 1 at 3750 mm VB s1 max = -130 kN VB s1 red = -130 kN

Maximum reaction at support A $R_A = 149 \text{ kN}$ Maximum reaction at support B $R_B = 149 \text{ kN}$

Rectangular section details

Section width b = 300 mm Section depth h = 300 mm

Material details


Concrete strength class C35/45 Char comp cube strength fcu = 45 N/mm2 Ec = 29000 N/mm2 hagg = 20 mm Modulus of elasticity of conc Maximum aggregate size $f_{yy} = 500 \text{ N/mm}^2$ Char yield strength of reinf $f_y = 500 \text{ N/mm}^2$ Char yield str of shear reinf Nominal cover to top reinf Cnom t = 35 mm Nominal cover to bottom reinf cnom_b = 35 mm Nominal cover to side reinf Cnom_s = 35 mm

Mid span 1

4 Edward Square London N1 OSP

Project	28 CANFIELD	Job no. 16-440			
Calcs for	LIGHTWEL	L TOP BEAM		Start page no./i	
Calcs by PS	Calcs date 22/12/2016	Checked by	Checked date	Approved by	Approved date

2 x 20¢ bars

2 x 10¢ shear legs at 150 c/c

2 x 20¢ bars

300

Design moment resistance of rectangular section (cl. 3.4.4)

Design bending moment

M = 50 kNm

z = 227 mm

Depth to tension reinf.

d = 245 mm

K = 0.061

K' = 0.156

K' > K - No compression reinforcement is required

Depth of neutral axis

x = 40 mm

Area of tension reinf reg'd

Lever arm

 $A_{s,req} = 501 \text{ mm}^2$

Tension reinf provided

2 × 20¢ bars

Area of tension reinf prov

As.prov = 628 mm2

Minimum area of reinf

 $A_{s,min} = 117 \text{ mm}^2$

Maximum area of reinf As.max = 3600 mm2

PASS - Area of reinforcement provided is greater than area of reinforcement required

Rectangular section in shear

Shear reinforcement provided 2 x 10¢ legs at 150 c/c

Area of shear reinf provided

 $A_{\text{sv,prov}} = 1047 \text{ mm}^2/\text{m}$

Minimum area of shear reinf

Asv,min = 276 mm2/m

PASS - Area of shear reinforcement provided exceeds minimum required

Max longitudinal spacing

Sylmax = 184 mm

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum

Spacing of reinforcement (cl 3.12.11)

Actual dist between bars

s = 170 mm

Min dist between bars

Smin = 25 mm

PASS - Satisfies the minimum spacing criteria

Design service stress

fs = 266.0 N/mm²

Max distance between bars

smax = 177 mm

Span to depth ratio (cl. 3.4.6)

Span to depth ratio (T.3.9)

span_to_depthbasic = 20.0

Service stress in tension rein

fs = 266.0 N/mm2

Modification for tension reinf

 $f_{tens} = 1.032$

Modification for comp reinf

 $f_{comp} = 1.222$

PASS - Satisfies the maximum spacing criteria

Modification for span > 10m

 $f_{long} = 1.000$

Allowable span to depth ratio

span_to_depthallow = 25.2

Actual span to depth ratio

span_to_depthactual = 16.3

PASS - Actual span to depth ratio is within the allowable limit

Consulting Civil & Structural Engineers

Tel: 020 7837 5377

Email: enquiries@redstonassociates.co.uk

Web: www.redstonassociates.co.uk

Date Sheet No.

Eng. P≤ P< - Z4

Job No. 16.440

28 CANFIELD GARDONS

EXTERNAL RETAINING WALL DELLEY.

SURCHARGE: THE SURENMENT TO THE HIGHER LOVEL LUAD GROWN BEHIND THE WALLS VARIES! CASES

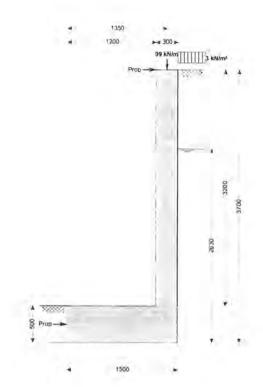
FRANK (VARICLE ANGLE) = 10.0 km/n²

REAR (GARDEN) = 5:0 km/n²

TEANES (DUNGSTH + PROTECTE) = 2:5 km/m²

WATER PREVIOUS EXPERIENCE IN THE SURROUNDING PRESSURE AREA INDICATES THAT THERE IS UNLINEAR TO BE ANY WATER FOR A MINIMUM OF 2.5M BELOW FROM LEVEL.

HOWERER ASSUME CONSERVATIVE WATER LEVEL OF 2/3 HEIGHT OF WALL, RISING TO 3/4
FOR TEMPORARY CONDITION.



4 Edward Square London N1 OSP

Project	28 CANFIELD	GARDENS, LON	IDON	Job no.	6.440
Calcs for LEFT-HA	ND PARTY WAL	L RETAINING	WALL SECTION	Start page no./	Revision C- 25
Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date

RETAINING WALL ANALYSIS (BS 8002:1994)

TEDDS calculation version 1.2.01.06

03/01/2017

PS

W	al	ı.	d	0	ta	il	S
4.4	aı	ъ.	u	c	La	ш	3

Vertical dead load

Wall details			
Retaining wall type	Cantilever		
Height of wall stem	h _{stem} = 3200 mm	Wall stem thickness	twall = 300 mm
Length of toe	l _{toe} = 1200 mm	Length of heel	Ineel = 0 mm
Overall length of base	l _{base} = 1500 mm	Base thickness	t _{base} = 500 mm
Height of retaining wall	h _{wall} = 3700 mm		
Depth of downstand	$d_{ds} = 0 \text{ mm}$	Thickness of downstand	t _{ds} = 500 mm
Position of downstand	lds = -250 mm		
Depth of cover in front of wall	dcover = 0 mm	Unplanned excavation depth	dexc = 0 mm
Height of ground water	hwater = 2630 mm	Density of water	$\gamma_{\text{water}} = 9.81 \text{ kN/m}^3$
Density of wall construction	$y_{\text{wall}} = 23.6 \text{ kN/m}^3$	Density of base construction	$\gamma_{\text{base}} = 23.6 \text{ kN/m}^3$
Angle of soil surface	β = 0.0 deg	Effective height at back of wall	heff = 3700 mm
Mobilisation factor	M = 1,5		
Moist density	$y_m = 18.0 \text{ kN/m}^3$	Saturated density	$\gamma_s = 21.0 \text{ kN/m}^3$
Design shear strength	φ' = 24.2 deg	Angle of wall friction	δ = 0.0 deg
Design shear strength	φ'b = 24.2 deg	Design base friction	$\delta_b = 18.6 \text{ deg}$
Moist density	$\gamma_{mb} = 18.0 \text{ kN/m}^3$	Allowable bearing	Phearing = 100 kN/m ²
Using Coulomb theory			
Active pressure	Ka =0.419	Passive pressure	$K_p = 4.187$
At-rest pressure	$K_0 = 0.590$		
Loading details			
Surcharge load	Surcharge = 2.5 kN/m ²		

Vertical live load

 $W_{live} = 14.3 \text{ kN/m}$

W_{dead} = 84.5 kN/m

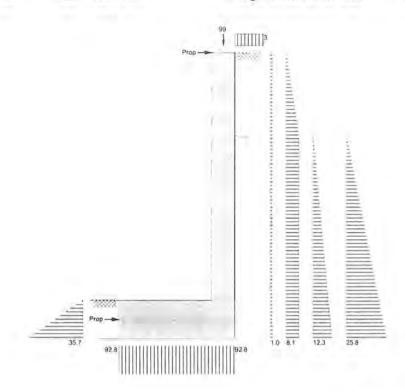
4 Edward Square London N1 OSP

28 CANFIELD GARDENS, LONDON	
20 CAM ILLO GANDLING, LONDON	

Calcs for LEFT-HAND PARTY WALL RETAINING WALL SECTION

Start page no./Revision PC-26

Calcs by Calcs date PS 03/01/2017


Checked by Checked date Approved by Approved date

16.440

Horizontal dead load Position of vertical load Fdead = 0.0 kN/m load = 1350 mm

Horizontal live load Height of horizontal load $F_{live} = 0.0 \text{ kN/m}$ hload = 0 mm

Job no

Loads shown in kN/m, pressures shown in kN/m2

Calculate propping force

Propping force

Fprop = 28.6 kN/m

Check bearing pressure

Total vertical reaction

R = 139.2 kN/m

Distance to reaction

xbar = 750 mm

Eccentricity of reaction

e = 0 mm

Reaction acts within middle third of base

PASS - Maximum bearing pressure is less than allowable bearing pressure

Bearing pressure at toe

 $p_{toe} = 92.8 \text{ kN/m}^2$

Bearing pressure at heel

pheel = 92.8 kN/m²

Calculate propping forces to top and base of wall

Propping force to top of wall

Fprop top = 9.030 kN/m

Propping force to base of wall Fprop_base = 19.531 kN/m

4 Edward Square London

Project		
	28 CANFIELD GARDENS, LONDON	

16.440

Job no

Calcs for

LEFT-HAND PARTY WALL RETAINING WALL SECTION

Start page no./Revision

N1 OSP

Calcs date Calcs by PS 03/01/2017

Checked by

Checked date

PC-27 Approved by Approved date

RETAINING WALL DESIGN (BS 8002:1994)

TEDDS calculation version 1.2.01.06

Ultimate limit state load factors

Dead load factor

yf d = 1.4

Live load factor

 $y_{f,i} = 1.6$

Earth pressure factor

 $y_{f_e} = 1.4$

Calculate propping force

Propping force

 $F_{prop} = 28.6 \text{ kN/m}$

Calculate propping forces to top and base of wall

Propping force to top of wall

Fprop_top_f = 13.254 kN/m

Propping force to base of wall Fprop_base_f = 53.981 kN/m

Design of reinforced concrete retaining wall toe (BS 8002:1994)

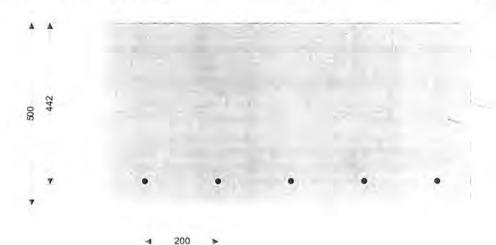
Material properties

Strength of concrete

fcu = 35 N/mm²

Strength of reinforcement

 $f_y = 500 \text{ N/mm}^2$


Base details

Minimum reinforcement

k = 0.13 %

Cover in toe

Ctoe = 50 mm

Design of retaining wall toe

Shear at heel

 $V_{toe} = 138.3 \text{ kN/m}$

Moment at heel

 $M_{toe} = 105.0 \text{ kNm/m}$

Compression reinforcement is not required

Check toe in bending

Reinforcement provided

16 mm dia.bars @ 200 mm centres

Area required

 $A_{s_toe_req} = 650.0 \text{ mm}^2/\text{m}$

Area provided

As_toe_prov = 1005 mm²/m

PASS - Reinforcement provided at the retaining wall toe is adequate

PASS - Design shear stress is less than maximum shear stress

Check shear resistance at toe

Design shear stress

Vtoe = 0.313 N/mm²

Allowable shear stress

Vadm = 4.733 N/mm²

Concrete shear stress Vc toe = 0.432 N/mm2

vtoe < vc_toe - No shear reinforcement required

Design of reinforced concrete retaining wall stem (BS 8002:1994)

Material properties

Strength of concrete

 $f_{cu} = 35 \text{ N/mm}^2$

Strength of reinforcement

 $f_v = 500 \text{ N/mm}^2$

N1 OSP

4 Edward Square London

0.1	
	28 CANFIELD GARDENS, LONDON

03/01/2017

Job no. 16.440

Calcs for

Start page no./Revision

LEFT-HAND PARTY WALL RETAINING WALL SECTION

PC-28

Calcs by Checked date Calcs date Checked by

Approved by Approved date

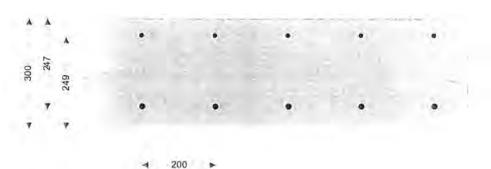
Wall details

Minimum reinforcement

k = 0.13 %

Project

Cover in stem


Cstem = 45 mm

PS

Cover in wall

Cwall = 45 mm

200

Design of retaining wall stem

Shear at base of stem

V_{stem} = 81.3 kN/m

Moment at base of stem

M_{stem} = 46.3 kNm/m

Compression reinforcement is not required

Check wall stem in bending

Reinforcement provided

16 mm dia.bars @ 200 mm centres

Area required

As_stem_req = 453.9 mm²/m

Area provided

As_stem_prov = 1005 mm²/m

PASS - Reinforcement provided at the retaining wall stem is adequate

Check shear resistance at wall stem

Design shear stress

vstem = 0.329 N/mm2

Allowable shear stress

Vadm = 4.733 N/mm2

PASS - Design shear stress is less than maximum shear stress

Concrete shear stress

Vc stem = 0.591 N/mm2

vstem < vc stem - No shear reinforcement required

Design of retaining wall at mid height

Moment at mid height

Mwall = 22.0 kNm/m

Compression reinforcement is not required

Reinforcement provided

12 mm dia.bars @ 200 mm centres

Area required

As wall req = 390.0 mm²/m

Area provided

 $A_{s_wall_prov} = 565 \text{ mm}^2/\text{m}$

PASS - Reinforcement provided to the retaining wall at mid height is adequate

Check retaining wall deflection

Max span/depth ratio

ratiomax = 40.00

Actual span/depth ratio

ratioact = 12.96

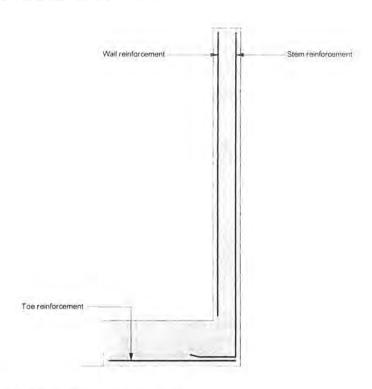
PASS - Span to depth ratio is acceptable

4 Edward Square London N1 0SP

Project		Job no.	
	28 CANFIELD GARDENS, LONDON	16.440	
Calcs for		Start page no./Revision	
LEFT-HAND PARTY WALL RETAINING WALL SECTION		PC- 29	

Checked date

Approved by


Approved date

Checked by

Indicative retaining wall reinforcement diagram

Calcs by

PS

Calcs date

03/01/2017

Toe bars - 16 mm dia.@ 200 mm centres - (1005 mm²/m)

Wall bars - 12 mm dia.@ 200 mm centres - $(565 \text{ mm}^2/\text{m})$ Stem bars - 16 mm dia.@ 200 mm centres - $(1005 \text{ mm}^2/\text{m})$