Site Analytical Services Ltd.

Units 14 + 15, River Road Business Park, 33 River Road, Barking, Essex IG11 OEA

Your Ref:

Directors: J. S. Warren, M.R.S.C., P. C. Warren, J. I. Pattinson, BSc (Hons). MSc Consultants: G. Evans, BSc., M.Sc., P.G. Dip., FGS., MIEnvSc. A. J. Kingston, BSc C.Eng. MIMM

F. J. Gibbs, F.I.B.M.S. F.I.F.S.T., F.R.S.H. K. J. Blanchette

Tel: 0208 594 8134
Fax: 0208 594 8072
E-Mail: services@siteanalytical.co.uk

16/25536-2 December 2016

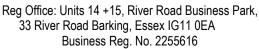
28 CANFIELD GARDENS LONDON, NW6 3LA

Our Ref:

BASEMENT IMPACT ASSESSMENT

Revised report – December 2019

Prepared for


Martin Redston Associates

Acting on behalf of

Kolyma Investments Limited

CONTENTS

1.0	Non-Technical Summary	2
1.1	Project Objectives	2
1.2	Desk Study Findings	
1.3	Ground Conditions	
1.4	Recommendations	2
2.0	Introduction	4
2.1	Project Objectives	4
2.2	Planning Policy Context	
3.0	Site Details	5
3.1	Site Location	
3.2	Site Layout and History	
3.3	Previous Reports	
3.4	Geology	
3.5	Hydrology and drainage	
3.6	Hydrogeological setting	
3.7	,	
3.8	Results of Basement Impact Assessment Screening	
3.9	Non-Technical Summary of Chapter 3.0	17
4.0	Scoping phase	19
4.1	Introduction	19
4.2	Non-Technical Summary of Chapter 4.0	
5.0	Site Investigation Data	21
5.1	Records of site investigation	21
5.2	Ground conditions	21
5.3	Groundwater	
5.4	In-Situ and Laboratory Testing	
5.5	Non-Technical Summary of Chapter 5.0	23
6.0	Foundation Design	23
6.1	Introduction	
6.2	Site Preparation Works	
6.3	Ground Model	
6.4	Basement Excavation	
6.5	Conventional Spread Foundations	
6.6	Piled Foundations	
6.7	Retaining Walls Chemical Attack on Buried Concrete	
6.8 6.9	Non-Technical Summary of Chapter 6.0	
7.0	Basement Impact Assessment / Conceptual Site Model	20
7.1	Summary	
7.1 7.2	Outstanding risks and issues	
7.2	Advice on Further Work and Monitoring	
7.3 7.4	Non-Technical Summary of Chapter 7.0	
8.0	References	າາ
5.0	1/6:6:6:1063	

1.0 NON-TECHNICAL SUMMARY

1.1 Project Objectives

At the request of Martin Redston Associates, working on behalf of Kolyma Investments Limited, a Basement Impact Assessment has been carried out at 28 Canfield Gardens, London, NW6 2LA in support of a planning application for a proposed development which includes the construction of a single storey basement beneath the current property. It is understood that the proposed basement is at a level of approximately 2.880 mOD.

1.2 Desk Study Findings

From historical map evidence it would appear that the site was first built on between 1871 and 1896, with minor changes taking place to the property since its construction. The surrounding area was initially used for agricultural and recreational uses, however this predominately changed to residential, although some industrial sites including a coal depot, warehouses and a food factory have been present within the area.

1.3 Ground Conditions

The boreholes revealed ground conditions that were consistent with the geological records and known history of the area and comprised Made Ground up to 2.40m in thickness resting on deposits of the London Clay formation. The Made Ground extended down to depths of between 0.60m and 2.40m (43.40mOD to 41.60mOD). The material generally comprised a surface layer of either concrete or slate chippings over a brown, black clayey gravelly sand with brick and concrete fragments underlying a brown, black silty sandy clay containing brick and concrete fragments. The London Clay formation was encountered below the Made Ground and consisted of stiff clay with occasional pockets and partings of silty fine sand and scattered gypsum crystals. These deposits extended down to the full depths of investigation of 15.00m below ground level in Borehole 1 and 10.00m below ground level in Borehole 2 (29.00 to 34.00 mOD). Following drilling operations, groundwater monitoring piezometers were installed in Boreholes 1 and 2 to approximately 8.00m and 8.50m depth.

Groundwater was encountered at respective depths of 5.78m and 0.53m within the standpipes in Boreholes 1 and 2 after a period of approximately four months.

1.4 Recommendations

A monitoring plan should be set out at design stage and should include a monitoring strategy, instrumentation and monitoring plans and action plans. Trigger levels on movements will need to be defined. Precise levelling or reflective survey targets should be installed at the garden walls and neighbouring buildings. It would be prudent to continue to monitor the standpipes for as long as possible in order to determine equilibrium level and the extent of any seasonal variations. The chosen contractor should also have a contingency plan in place to deal with any perched groundwater inflows as a precautionary measure.

The qualifications required by L. B. Camden are fulfilled as documented in Table A below. All assessors meet the qualification requirements of the council guidance.

Subject	Qualifications	Relevant persons and qualifications/experience		
	Required by CPG4	Name/Qualifications	Experience .	
Surface flow and flooding	A hydrologist or a Civil Engineer specialising in flood risk management and surface water drainage, with either: The 'CEng' (Chartered Engineer) qualification from the Engineering Council; or a Member of the	Mr Neil Smith Eur Ing, BSc (Eng), MSc, CEng, FICE, FGS	40+ years' experience in geotechnics and hydrogeology, British Geotechnical Association Member, International Society for Soil Mechanics and Geotechnical Engineering	
	Institution of Civil Engineers ('MICE') The CWEM	Mr Thomas Murray BSc(hons) MSc FGS	5.5+ years of hydrogeological experience	
	(Chartered Water and Environmental Manager) qualification from the Chartered Institution of Water and Environmental Management	Mr Andrew Garnham BSc(Hons) MSc FGS	10+ years of hydrogeological experience	
Subterra nean (ground water flow)	A hydrogeologist with the 'CGeol' (Chartered Geologist) qualification from the Geological Society of London	Mike Brice BSc MSc DIC CGeol	30+ years of hydrological/geotechnic al experience and Member British Geotechnical Association)	
Land Stability	A Civil Engineer with the 'CEng (Chartered Engineer) qualification from the Engineering Council or specialising in ground engineering; or A Member of the Institution of Civil Engineers ('MICE') and a Geotechnical Specialist as defined by the Site Investigation Steering Group	Mike Brice BSc MSc DIC CGeol	30+ years of hydrological/geotechnic al experience and Member British Geotechnical Association)	

Table A - Qualifications

2.0 INTRODUCTION

2.1 Project Objectives

At the request of Martin Redston Associates, working on behalf of Kolyma Investments Limited, a Basement Impact Assessment has been carried out at the above site in support of a planning application.

The purpose of this assessment is to consider the effects of a proposed basement construction on the local slope stability, surface water and groundwater regime at the existing residential property.

The recommendations and comments given in this report are based on the information contained from the sources cited and may include information provided by the Client and other parties, including anecdotal information. It must be noted that there may be special conditions prevailing at the site which have not been disclosed by the investigation and which have not been taken into account in the report. No liability can be accepted for any such conditions.

This report does not constitute a full environmental audit of either the site or its immediate environs.

2.2 Planning Policy Context

The information contained within this BIA has been produced to meet the requirements set out by Camden Planning Guidance – Basements and Lightwells (CPG4) including Camden Development Policies DP27 – Basements and Lightwells (Ref. 1) in order to assist London Borough of Camden with their decision making process.

As recommended by the Guidance for Subterranean Development (Ref. 1) the BIA comprises the following steps

- 1. **Initial screening** to identify where there are matters of concern
- 2. **Scoping** to further define the matters of concern
- 3. **Site Investigation and study** to establish baseline conditions
- 4. **Impact Assessment** to determine the impact of the basement on baseline conditions
- 5. **Review and Decision Making** (to be undertaken by LBC)

3.0 SITE DETAILS

(National Grid Reference: TQ261845)

3.1 Site Location

28 Canfield Gardens is a residential property, located on the northern side of Canfield Gardens, South Hampstead at approximate postcode NW6 3LA. The residential dwelling has three levels of accommodation; ground, first and second floor with rooms in the roof space and a lower ground floor. The residential property also comprises a front and rear garden. The site covers an approximate area of 0.03 Hectares with the general area being under the authority of the London Borough of Camden.

The site is located on the northern side of Canfield Gardens with residential properties to the north-east and south-west, with private gardens to the north-west and a roadway to the south-east.

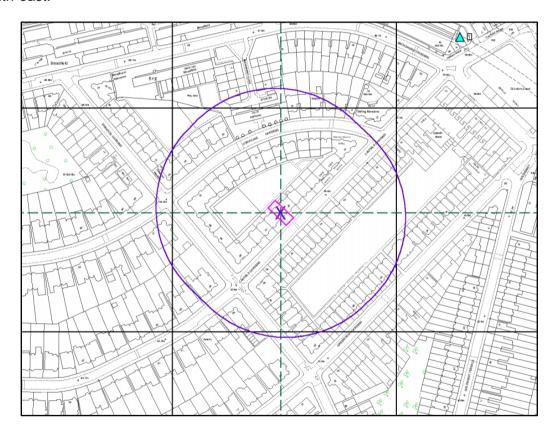


Figure 1. Site Location Plan

3.2 Site Layout and History

The site is accessed from Canfield Gardens located to the south and comprises of a three storey residential property, with front and rear garden areas.

The property is bound by Canfield Road to the south, with residential properties with residential properties to the north-east and south-west.

The property contains a brick paved pathway, with two medium trees on either side, leading up to the front door of the property.

With reference to available spot height data from Ordnance Survey (OS) mapping, an assumed ground level of approximately 43m AOD is anticipated at the site. Based on this level, it is understood that ground level at the site steps down from approximately 43mAOD at the front of the property to approximately 42.15mAOD at lowered rear garden level.

The site slopes very gently to the south-west. The slope angle is less than 7 degrees. Also with reference to the Camden Geological, Hydrogeological and Hydrological Study, (Figure 2 below), the neighbouring properties also have slopes less than 7 degrees.

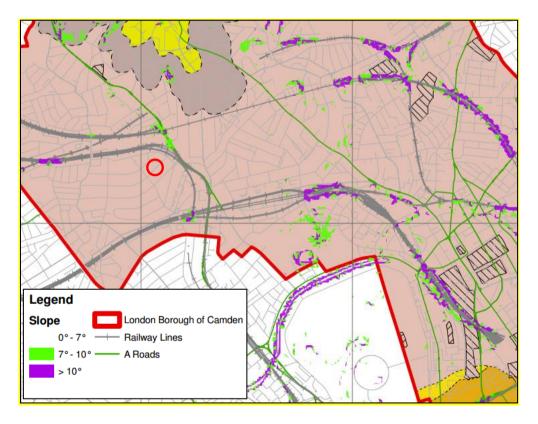


Figure 2. Exact from Figure 16 of the Camden CPG4 showing slope angles within the borough

From historical map evidence it would appear that the site was first built on between 1871 and 1896, with minor changes taking place to the property since its construction. The surrounding area was initially used for agricultural and recreational uses, however this predominately changed to residential, although some industrial sites, including a coal depot, warehouses and a food factory have been present within the area.

3.3 Previous Reports

A Phase 1 Preliminary Risk Assessment (PRA) (SAS Report Ref: 16/25536-1) and Phase 2 Site Investigation (SAS Report Ref: 16/25536) was undertaken across the site by Site Analytical Services Limited in August 2016 and the results are discussed in this BIA.

3.4 Geology

The 1:50000 Geological Survey of Great Britain (England and Wales) covering the area (Sheet 256, 'North London', Solid and Drift Edition) indicates the site to be underlain the London Clay Formation at depth.

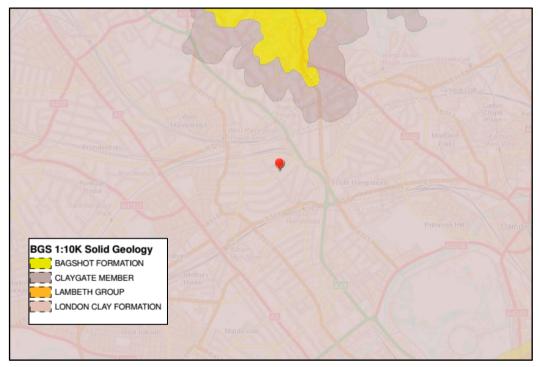


Figure 4. Geology of the Site (Ref. BGS Geoindex)

The British Geological Survey maintains an archive of historical exploratory borehole logs throughout the UK. SAS has searched the database and have found that there are 4 boreholes located within 150m of the site. These reveal Made Ground to a depth of 0.90m underlain the London Clay Formation to the full depth of excavation at 7m.

3.5 Hydrology and drainage

3.5.1 Surface Water

According to Mayes (1997) rainfall in the local area averages around 610mm and significantly less than the national average of around 900mm.

Evapotranspiration is typically 450mm/year resulting in about 160mm/year as 'hydrologically effective' rainfall which is available to infiltrate into the ground or run-off as surface water flow.

With reference to Camden Geological, Hydrogeological and Hydrological Study (1999), Talling (2011) and Barton (1992) a tributary of the 'lost rivers' River Westbourne was located approximately within 5m of the site (Figure 5).

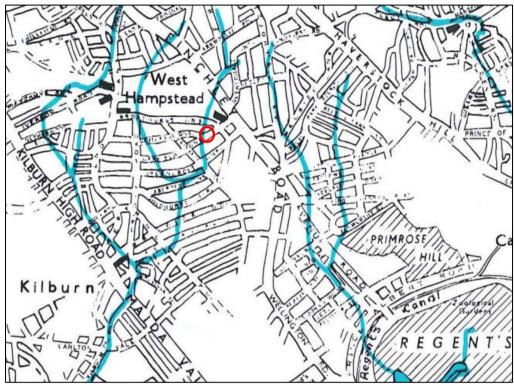


Figure 5. Location of site (circled) relative to the 'Lost Rivers' of London (Source: Barton, 1992)

The River Westbourne flowed in a southerly direction from West Hampstead. From the tributaries it flowed southwards towards Kilburn, across Bayswater Road and into Hyde Park, where it entered the Serpentine. From the Serpentine it flowed southwards under Knightsbridge before issuing into the River Thames within the grounds of Chelsea Hospital.

The watercourses have since been largely lost through a culverting system as the urban extent of the borough has grown over time.

Envirocheck indicates that the closest surface water feature is a drain located 691m east of the site.

The area located immediately around the site is highly developed with more than 80% of the surface covered with hardstanding. Most of the rainfall in the area will run-off hard surface areas and be collected by the local sewer network.

Surface drainage from the site is assumed to be directed to drains flowing downhill to the south-west along Canfield Road.

Further investigation into the 'lost river' using Ordnance survey maps taken from the Desk Top Study (Figure 6) indicate a small drainage ditch running between two field boundaries (1871) which is the only indication of a water source for the River Westbourne. By 1896 this ditch/stream has either been culverted and running beneath the roads, or has been removed as it is no longer needed.

Due to the small size of the ditch, any possible flooding that may have occurred is unlikely to have caused anything but very thin layers of Alluvium, but is unlikely to extend as far as No. 28 as such there is no influence on site.

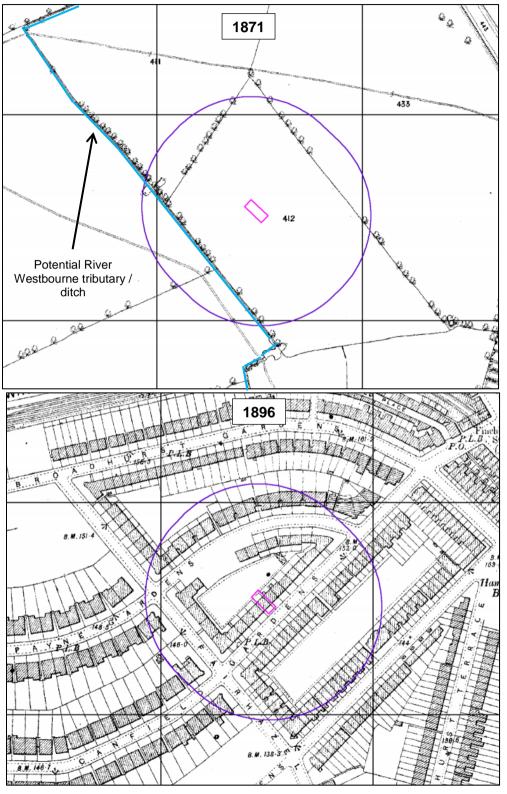


Figure 6. Location of site from Ordnance Survey Maps

3.5.2 Flood Risk

3.5.2.1 River or Tidal flooding

According to Environment Agency Flood maps there are no flood risk zones within 1 kilometre of the site. The EA's website also shows that this area does not fall within an area at risk of flooding from reservoirs. Based on this information a flood risk assessment will not be required.

3.5.2.2 Surface water flooding

Figure 7 shows that Canfield Gardens flooded during the 2002 event, but not in the 1975 flood event.

Figure 7. Exact from Figure 15 of the Camden CPG4 showing roads which flooded in 1975 (light blue), in 2002 (dark blue) and 'areas with potential to be at risk from surface water flooding' (wide light blue bands)

Further modelling of surface water flooding has been undertaken by the Environment Agency and was published on its website in January 2014; an extract from their model is presented in Figure 7. Whilst this map identifies four levels of risk (high, medium, low and very low) it is understood that it is based at least in part on depths of flooding. This modelling shows a 'Very Low' risk of flooding (the lowest category for the national background level of risk) for No.9 and the surrounding area.

A Flood Risk Assessment has been completed by Sandersons Associates which concludes that the site can be developed without increasing flood risk to the site itself and other sites in the vicinity with the implementation of suitable mitigation measures.

3.5.2.3 Sewer flooding

The London Regional Flood Risk Appraisal (2009) advises that foul sewer flooding is most likely to occur where properties are connected to the sewer system at a level below the hydraulic level of the sewage flow, which in general are often basement flats or premises in low lying areas. There is no record of sewer flooding having occurred at 28 Canfield Gardens and therefore the risk of sewer flooding is considered low.

3.6 Hydrogeological setting

The Environment Agency Groundwater Protection Policy uses aquifer designations that are consistent with the Water Framework Directive. These designations reflect the importance of aquifers in terms of groundwater as a resource (drinking water supply) and also their role in supporting surface water flows and wetland ecosystems.

The Bedrock geology underlying the site (London Clay) has been classified as Unproductive Strata; rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow.

Other hydrogeological data obtained from the Phase 1 Preliminary Risk Assessment (PRA) (SAS Report Ref: 16/25536) for the site include:

- The underlying soil classification of the site is of high leaching potential.
- The site is located 516m to the east of a Zone II (Outer Protection Zone) Source Protection Zone.
- There are 4 groundwater abstraction licences listed within one kilometre of the site. The closest is located 686m east of the site and relates to spray irrigation.

3.7 Proposed Development

It is proposed to extend the existing basement beneath the majority of the existing property to a depth of 2.70m below the existing ground level.

Within this report, the deepest level of excavation (47.52mSD) will be reference in relation to possible water levels encountered during site work.

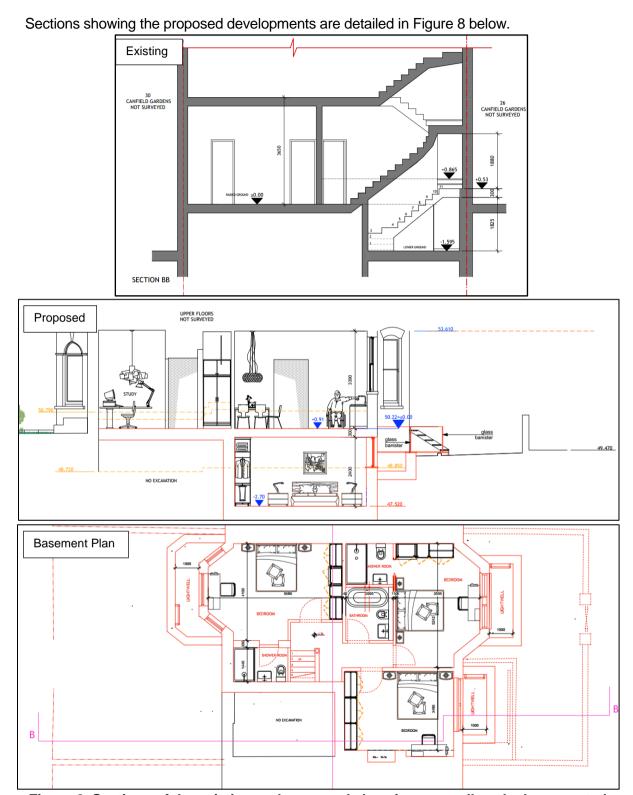


Figure 8. Sections of the existing and proposed elevations as well as the basement plan of the property.

3.8 Results of Basement Impact Assessment Screening

A screening process has been undertaken for the site and the results are summarised in Table 1 below:

Table 1: Summary of screening results

Item	Description	Response	Comment
Sub- terranean (Ground water	1a. Is the site located directly above an aquifer.	No	The site has been classified as being situated above an unproductive (negligibly permeable) formation (London Clay) that is generally regarded as containing insignificant quantities of groundwater.
Flow)	1b. Will the proposed basement extend beneath the water table surface?	Unknown – to be confirmed by Ground Investigation	Given the presence of a non-aquifer below the site it is unlikely that groundwater will be encountered during any excavations for the proposed basement, however this will be confirmed by the ground investigation.
	2. Is the site within 100m of a watercourse, well (used / disused) or potential spring line.	Yes	Envirocheck indicates that the closest surface water feature is a drain located 691m east of the site. With reference to Camden Geological, Hydrogeological and Hydrological Study (1999), Talling (2011) and Barton (1992) a tributary of the 'lost rivers' River Westbourne was located approximately within 5m of the site (Figure 5). From the British Geological Society 'Geoindex' the nearest water well is located approximately 2.37 km south of the site.
	3. Will the proposed basement development result in a change in the proportion of hard surfaced / paved areas.	Yes	The amount of hardstanding on-site will be substantially reduced.
	4. As part of site drainage, will more surface water (e.g. rainfall and run-off) than at present be discharged to the ground (e.g. via soakaways and/or SUDS).	No	Existing drainage paths are to be utilised where possible. Whether soakaways/SUDS are used on the proposed development is to be confirmed (beyond the scope of this report). An appropriately qualified engineer should be engaged to ensure mandatory requirements are met.
	5. Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond or spring line.	Yes	Envirocheck indicates that the closest surface water feature is a drain located 691m east of the site. With reference to Camden Geological, Hydrogeological and Hydrological Study (1999), Talling (2011) and Barton (1992) a tributary of the 'lost rivers' River Westbourne was located approximately within 5m of the site (Figure 5).
			From the British Geological Society 'Geoindex' the nearest water well is located approximately 2.37 km south of the site.

Slope Stability	1. Does the existing site include slopes, natural or man-made greater than 7 degrees (approximately 1 in 8).	No	There is a slight slope from north to south across the site, but is below 7 degrees.
	2. Will the proposed re-profiling of landscaping at the site change slopes at the property boundary to more than 7 degrees (approximately 1 in 8).	No	Re-profiling of landscaping at the site is not proposed.
	3. Does the development neighbour land, including railway cuttings and the like, with a slope greater than 7 degrees (approximately 1 in 8).	No	The surrounding area drops to the south-east, but from survey information and with reference to Figure 16 from Camden CPG 4, this is at angles of less than 7 degrees.
	4. Is the site within a wider hillside setting in which the general slope is greater than 7 degrees (approximately 1 in 8).	No	There is a general slope in the area towards the south down to the south-east, but this is at an angle of less than 7 degrees.
	5. Is the London Clay the shallowest strata at the site.	Yes	With reference to available BGS records, the London Clay formation is expected to be encountered from ground level.
	6. Will any trees be felled as part of the development and/or are any works proposed within any tree protection zones where trees are to be retained.	No	No trees are to be felled as part of the development. An arboricultural impact report (Ref: jc/aiams1/28cg) has been prepared which confirms that no basement development will intrude upon root protection areas.
	7. Is there a history of seasonal shrink-swell subsidence in the local area and/or evidence of such effects at the site.	Yes	The site lies above the London Clay formation well known as having a high tendency to shrink and swell.
	8. Is the site within 100m of a watercourse or a potential spring line.	Yes	Envirocheck indicates that the closest surface water feature is a drain located 691m east of the site. With reference to Camden Geological, Hydrogeological and Hydrological Study (1999), Talling (2011) and Barton (1992) a tributary of the 'lost rivers' River Westbourne was located approximately within 5m of the site (Figure 5).
	9. Is the site within an area of previously worked ground.	No	According to records from the BGS the site is not in the vicinity of any recorded areas of worked ground.

	10. Is the site within an aquifer. If so, will the proposed basement extend beneath the water table such that dewatering may be required during construction.	No	The site has been classified as being situated above an unproductive (negligibly permeable) formation (London Clay) that is generally regarded as containing insignificant quantities of groundwater.
	11. Is the site within 50m of the Hampstead Heath Ponds	No	With reference to the Camden Geological, Hydrogeological and Hydrological Study, the site is not within the catchment of the pond chains on Hampstead, nor the Golder's Hill Chain.
	12. Is the site within 5m of a highway or pedestrian right of way.	Yes	The site lies within 5m of Canfield Gardens.
	13. Will the proposed basement significantly increase the differential depth of foundations relative to neighbouring properties.	No	The development will increase the depths of foundation at the site, although this will not extend significantly below foundation depths of adjacent properties, indicated in the historic planning records.
	14. Is the site over (or within the exclusion zone of) any tunnels, e.g. railway lines.	No	A full statutory service search has been completed as part of this investigation and it is confirmed that no utilities will be affected by the proposed development.
Surface Water and Flooding	I. Is the site within the catchment of the ponds chains on Hampstead Heath	No	With reference to the Camden Geological, Hydrogeological and Hydrological Study, the site is not within the catchment of the pond chains on Hampstead, nor the Golder's Hill Chain.
	2. As part of the proposed site drainage, will surface water flows (e.g. volume of rainfall and peak run-off) be materially changed from the existing route.	No	No – any additional surface water generated from an increased hardstanding area will be attenuated to ensure they are not increased or altered. The basement will be beneath the footprint of the new dwelling therefore the 1m distance between the roof of the basement and ground surface as recommended by Chapter 5 of the Arup report, does not apply across these areas.
	3. Will the proposed basement development result in a change in the proportion of hard surfaced / paved external areas.	Yes	The proportion of hard-surface / paved areas will be reduced.

Will the proposed basement result in changes to the profile of the inflows (instantaneous and long-term) of surface water being received by adjacent properties or downstream watercourses.	All surface water for the site will be contained within the site boundaries and collected as described above; hence there will be no change from the development on the quantity or quality of surface water being received by adjoining sites. The basement will be beneath the footprint of the dwelling therefore the 1m distance between the roof of the basement and ground surface as recommended by Chapter 5 of the Arup report does not apply across these areas.
 Will the proposed basement result in changes to the quality of surface water being received by adjacent properties or downstream watercourses. 	The surface water quality will not be affected by the development, as in the permanent condition collected surface water will be generally be from roofs, domestic hard landscaping or collected from beneath the landscaping layer over the basement.
6. Is the site in an area known to be at risk from surface water flooding, such as South Hampstead, West Hampstead, Gospel Oak and King's Cross, or is it at risk from flooding, for example because the proposed basement is below the static water level of a nearby surface water feature	Canfield Gardens flooded during the 2002 flood event. According to modelling by the Environment Agency, there is a 'Very Low' risk of surface water flooding (the lowest category for the national background level of risk) for No.28 and the surrounding area.

3.9 Non-Technical Summary of Chapter 3.0

28 Canfield Gardens is a residential property, located on the northern side of Canfield Gardens, South Hampstead at approximate postcode NW6 3LA. The residential dwelling has three levels of accommodation; ground, first and second floor. The residential property also comprises a front and rear garden.

The property is constructed on very slightly sloping ground from north-east to south-west.

The 1:50000 Geological Survey of Great Britain (England and Wales) covering the area indicates the site to be underlain by the London Clay formation. The London Clay formation is classed as unproductive strata or a non-aquifer.

Envirocheck indicates that the closest surface water feature is a drain located 691m east of the site.

According to publications regarding Lost Rivers of London (Barton, 1992) and (Talling, 2011) and Stanford (1868) the site is located approximately 5m north-west of the site respectively (Figure 4).

According to Environment Agency Flood maps there are no flood risk zones within 1 kilometre of the site. The EA's website also shows that this area does not fall within an area at risk of flooding from reservoirs.

Based on this information a flood risk assessment will be required. Canfield Gardens flooded during the 2002 flood event. Modelling of surface water flooding by the Environment Agency shows a 'Very Low' risk of flooding (the lowest category for the national background level of risk) for No.28 and the surrounding area.

The Screening Exercise has identified the following potential issues which will be carried forward to the Scoping Phase

Subterranean Groundwater Flow

- Will the proposed basement extend beneath the water table surface?
- Is the site within 100m of a watercourse, well (used / disused) or potential spring line.
- Is the lowest point of the proposed excavation (allowing for any drainage and foundation space under the basement floor) close to, or lower than, the mean water level in any local pond or spring line.

Ref: 16/25536-2 September 2016

Slope Stability

- Is the London Clay the shallowest strata at the site?
- Is there a history of seasonal shrink-swell subsidence in the local area and/or evidence of such effects at the site?
- Is the site within 100m of a watercourse or a potential spring line?
- Is the site within 5m of a highway or pedestrian right of way?

Surface Water and Flooding

• Is the site in an area known to be at risk from surface water flooding, such as South Hampstead, West Hampstead, Gospel Oak and King's Cross, or is it at risk from flooding, for example because the proposed basement is below the static water level of a nearby surface water feature?

18

Ref: 16/25536-2 December 2016

0/2000-2

4.0 SCOPING PHASE

4.1 Introduction

This purpose of the scoping phase is to assess in more detail the factors to be investigated in the impact assessment. Potential impacts are assessed for each of the identified impact factors and recommendations are stated.

A conceptual ground model is usually complied at the scoping stage however, because the ground investigation has already been undertaken for this project, the conceptual ground model including the findings of the ground investigation is described under Chapter 4.

Subterranean (Groundwater Flow)

Potential Issue (Screening Question)		Potential impacts and actions	
1	Will the proposed basement extend beneath the water table surface?	Potential impact: Local restriction of groundwater flows (perched groundwater or below groundwater table). Action: Ground investigation required, the review.	
2	Is the site within 100m of a watercourse, well (used / disused) or potential spring line	Potential impact: The flow from a spring, well or watercourse may increase or decrease if the groundwater flow regime is affected by the proposed basement Action: Review hydrogeology of the site and undertake a ground investigation.	

Slope Stability

3	Is the London Clay the shallowest strata at the site?	Potential impact: The London Clay is prone to seasonal shrink-swell (subsidence and heave). Action: Ground investigation required, the review.
4	Is there a history of seasonal shrink-swell subsidence in the local area and/or evidence of such effects at the site?	Potential Impact: Ground movements will occur during and after the basement construction. Action: Ground investigation required, then review.
5	Is the site within 5m of a highway or a pedestrian right of way?	Potential impact: Excavation of basement causes loss of support to footway/highway and damage to the services beneath them. Action: Ensure adequate temporary and permanent support by use of best practice working methods.

6	Will the proposed basement substantially increase the differential depth of foundations relative to neighbouring properties?	Potential impact: Loss of support to the ground beneath the new foundations to neighbouring properties if basement excavations are inadequately supported.
		Action: Ensure adequate temporary and permanent support by use of best practice methods.

Surface Water and Flooding

Pote	ential Issue (Screening Question)	Potential impacts and actions
8	Is the site in an area known to be at risk from surface water flooding?	Potential impact: Flooding occurs during the excavation of the basement Action: A flood risk assessment should be carried out to assess whether a groundwater exception test should be carried out prior to any construction works.

These potential impacts have been further assessed through the ground investigation, as detailed in Section 4 below.

4.2 Non-Technical Summary of Chapter 4.0

The scoping exercise has reviewed the potential impacts for each of the items carried forward from Stage 1 screening, and has identified the following actions to be undertaken:

- A ground investigation is required (which has already been undertaken).
- Review of site's hydrogeology and groundwater control requirements.

All these actions are covered in Stage 4 or Stage 3 for the ground investigation.

5.0 SITE INVESTIGATION DATA

5.1 Records of site investigation

A site-specific ground investigation was undertaken by Site Analytical Services Limited (SAS) in July to December 2016 and included two continuous flight auger boreholes (Boreholes 1 and 2).

The factual findings from the investigation are presented in Appendix B, including a site plan, exploratory hole logs, groundwater monitoring and laboratory test results.

5.2 Ground conditions

The boreholes revealed ground conditions that were consistent with the geological records and known history of the area and comprised Made Ground up to 2.40m in thickness resting on deposits of the London Clay formation.

5.2.1 Made Ground

The Made Ground extended down to depths of between 0.60m and 2.40m in the boreholes 1 and 2 (40.60mOD to 41.55mOD). The material generally comprised a surface layer of either concrete or slate chippings over a brown, black clayey gravelly sand with brick and concrete fragments underlying a brown, black silty sandy clay containing brick and concrete fragments.

5.2.2 London Clay Formation

The London Clay formation was encountered below the Made ground and consisted of stiff clay with occasional pockets and partings of silty fine sand and scattered gypsum crystals. These deposits extended down to the full depths of investigation of 15.00m below ground level in Borehole 1 and 10.00m below ground level in Borehole 2 (28.00 to 32.15 mOD).

5.3 Groundwater

Groundwater was not encountered within the boreholes and the soils remained essentially dry throughout.

It must be noted that the speed of excavation is such that there may well be insufficient time for further light seepages of groundwater to enter the boreholes and hence be detected, particularly within more cohesive soils.

Isolated pockets of groundwater may also be present perched within any less permeable material found at shallower depth on other parts of the site especially within any Made Ground.

Ref: 16/25536-2 December 2016 21

Following drilling operations groundwater monitoring piezometers were installed in Boreholes 1 and 2 to approximately 8.00m and 8.50m depth respectively.

Groundwater encountered at a depth of 1.02mbgl (41.13mOD0 within Borehole 2 and was not encountered within Borehole 1 during September 2016. In November 2016 groundwater was encountered at respective depths of 5.78mbgl (37.22mOD) and 0.53mbgl (41.62mOD).

It should be noted that the comments on groundwater conditions are based on observations made at the time of the investigation (July to December 2016) and that changes in the groundwater level could occur due to seasonal effects and also changes in drainage conditions.

5.4 In-Situ and Laboratory Testing

The results of the laboratory and in-situ tests are presented in the factual report contained in Appendix A.

5.4.1 Hand Vane Tests

In the essentially cohesive natural soils encountered at the site, in-situ shear vane tests were made at regular depth increments in order to assess the undrained shear strength of the materials. The results indicate that the natural soils are of a generally high strength in accordance with BS 5930:2015.

5.4.2 Mackintosh Probe Tests

Mackintosh Probe tests were made at regular depth increments in order to assess the relative density of the soils encountered in the boreholes. The results can be interpreted using the generally accepted correlation for Mackintosh Probe Tests which is as follows:

Mackintosh N75 X 0.38 = SPT 'N' Value

or

Mackintosh N300 X 0.1 = SPT 'N' Value

5.4.3 Classification Tests

Atterberg Limit tests have been conducted on three selected samples taken from Boreholes 1 and 2, and showed the samples tested to fall into Class CH according to the British Soil Classification System.

These are fine grained silty clay soils of high plasticity and as such generally have a low permeability and a high susceptibility to shrinkage and swelling movements with changes in moisture content, as defined by the NHBC Standards, Chapter 4.2. The results indicated Plasticity Index values of between 41% and 43%, with all of the samples being above the higher 40% boundary between soils assessed as being of medium swelling and shrinkage potential and those assessed as being of high swelling and shrinkage potential.

5.4.4 Sulphate and pH Analyses

The results of the sulphate and pH analyses show the natural soil samples to have water soluble sulphate contents of up to 2.56g/litre associated with near neutral pH values.

5.5 Non-Technical Summary of Chapter 5.0

A site-specific ground investigation was undertaken by Site Analytical Services Limited (SAS) in July 2016 and included two continuous flight auger boreholes (Boreholes 1 and 2) drilled to 15m and 10m below ground level.

The boreholes revealed ground conditions that were consistent with the geological records and known history of the area and comprised Made Ground up to 2.40m in thickness resting on deposits of the London Clay Formation.

Following drilling operations groundwater monitoring piezometers were installed in Boreholes 1 and 2 to approximately 8.00m and 8.50m depth.

Groundwater encountered at a depth of 1.02mbgl (41.13mOD0 within Borehole 2 and was not encountered within Borehole 1 during September 2016. In November 2016 groundwater was encountered at respective depths of 5.78mbgl (37.22mOD) and 0.53mbgl (41.62mOD).

6.0 FOUNDATION DESIGN

6.1 Introduction

It is proposed to extend the existing basement beneath the majority of the existing property to a depth of 2.70m below the existing ground level.

It is understood that the proposed basement is at a level of approximately 47.52 mSD (2.70m below ground level).

6.2 Site Preparation Works

The main contractor should be informed of the site conditions and risk assessments should be undertaken to comply with the Construction Design Management (CDM) regulations. Site personnel are to be made aware of the site conditions. It is recommended that extensive searches of existing man-made services are undertaken over the site prior to final design works.

6.3 Ground Model

On the basis of the fieldwork, the ground conditions at the site can be characterised as follows:

- Made Ground extends to depths of between 0.60m to 2.40m depth below ground level (40.60mOD to 41.55mOD).
- The London Clay formation comprising stiff silty sandy clay with gypsum crystals to the full depths of investigation of 10.00m and 15.00m below ground level (28.00 to 32.15 mOD).
- Groundwater encountered at a depth of 1.02mbgl (41.13mOD0 within Borehole 2 and was not encountered within Borehole 1 during September 2016. In November 2016 groundwater was encountered at respective depths of 5.78mbgl (37.22mOD) and 0.53mbgl (41.62mOD).

6.4 Basement Excavation

Groundwater is not expected to be encountered in the basement excavation, but it would be prudent for the chosen contractor to have a contingency plan in place to deal with any perched groundwater inflows as a precautionary measure. Trial excavations to the proposed basement depth could be carried by the main contractor to confirm the stability of the soil and to further investigate the presence of any groundwater inflows.

6.5 Conventional Spread Foundations

A result of the inherent variability of uncontrolled fill, (Made Ground) is that it is usually unpredictable in terms of bearing capacity and settlement characteristics. Foundations should therefore, be taken through any Made Ground and either into, or onto a suitable underlying natural stratum of adequate bearing characteristics.

Based on the ground and groundwater conditions encountered in the boreholes, it should be possible to support the proposed new development on conventional strip or basement raft foundations taken down below the Made Ground and any weak superficial soils and placed in the natural stiff sandy silty clay deposits which occur at depths of between approximately 0.60m and 2.40m below ground level over the site. Foundations should be placed in the natural deposits at a minimum depth of 1.00m below final ground level in order to avoid the zone affected by seasonal moisture content changes.

Using theory from Terzaghi (1943), strip foundations placed within natural soils may be designed to allowable net bearing pressures of approximately 175kN/m² at 2.00m depth increasing to 250kN/m² at 4.00m depth in order to allow for a factor of safety of 2.5 against general shear failure. The actual allowable bearing pressure applicable will depend on the form of foundation, its geometry and depth in accordance with classical analytical methods, details of which can be obtained from "Foundation Design and Construction", Seventh Edition, 2001 by M J Tomlinson (see references) or similar texts.

Any soft or loose pockets encountered within otherwise competent formations should be removed and replaced with well compacted granular fill.

In addition, foundations may need to be taken deeper should they be within the zones of influence of both existing or recently felled trees and any proposed tree planting. The depth of foundation required to avoid the zone likely to be affected by the root systems of trees is shown in the recommendations given in NHBC Standards, Chapter 4.2, April 2010, "Building near Trees" and it is considered that this document is relevant in this situation.

6.6 Piled Foundations

In the event that the use of conventional spread foundations proves either impracticable or uneconomical due to the size and depth of foundation required, then a piled foundation will be required. In these ground conditions, it is considered that some form of bored and in-situ cast concrete piled foundation with reinforced concrete ground beams should prove satisfactory.

The construction of a piled foundation is a specialist activity and the advice of a reputable contractor, familiar with the type of soil and groundwater conditions encountered at this site should be sought prior to finalising the foundation design. The actual pile working load will depend on the particular type of pile chosen and method of installation adopted.

To achieve the full bearing value a pile should penetrate the bearing stratum by at least five times the pile diameter.

Where piles are to be constructed in groups the bearing value of each individual pile should be reduced by a factor of about 0.8 and a calculation made to check the factor of safety against block failure.

Driven piles could also be used and would develop much higher working loads approximately 2.5 to 3 times higher than bored piles of a similar diameter at the same depth. However, the close proximity of adjacent buildings will in all probability preclude their use due to noise and vibration.

6.7 Retaining Walls

Several methods of retaining wall construction could be considered. These may include retaining structures cast in an underpinning sequence, or the use of temporary or sacrificial works to facilitate the retaining structure's construction. The excavation of the basement must not compromise the integrity of adjacent structures.

The full design of temporary and permanent retaining structures is beyond the scope of this report. However, the following design parameters for each element of soil recorded in the relevant exploratory holes are provided in Table 2 below to assist the design of these structures.

Stratum	Depth to top (mOD)	Bulk Density (Mg/m3) (γ)	Effective Angle of Internal Friction (Φ)
Made Ground	43.40 to 41.60	2.00	28
London Clay Formation	34.00 to 29.00	2.00	23

Table 2. Retaining Wall Design Parameters

The designer should use these parameters to derive the active and passive earth pressure coefficients ka and kp. The determination of appropriate earth pressure coefficients, together with factors such as the pattern of the earth pressure distribution, will depend upon the type/geometry of the wall and overall design factors.

6.8 Chemical Attack on Buried Concrete

The results of the chemical analyses show the natural soil samples tested to have water soluble sulphate contents of up to 2.56g/litre associated with near neutral pH values.

In these conditions, it is considered that deterioration of buried concrete due to sulphate or acid attack is likely to occur. The final design of buried concrete according to Tables C1 and C2 of BRE Special Digest 1:2005 should be in accordance with Class DS-3 conditions.

In addition, segregations of gypsum were noted within the London Clay and also are well known to occur within London Clay deposits. Consequently, it is considered that any buried concrete at depth may be attacked by such sulphates in solution and that it would be prudent to design any such concrete in accordance with full Class DS-3 conditions.

6.9 Non-Technical Summary of Chapter 6.0

On the basis of the fieldwork, the ground conditions at the site can be characterised as follows: Made Ground extends to depths of between 0.60m to 2.40m depth below ground level (43.40 to 41.60 mOD), The London Clay formation extends to the full depth of investigation of 10.00m and 15.00m below ground level (34.00 to 29.00 mOD). Groundwater was encountered at respective depths of 5.78m and 0.53m within the standpipes in Boreholes 1 and 2 after a period of approximately four months.

Groundwater is not expected to be encountered in the basement excavation, but it would be prudent for the chosen contractor to have a contingency plan in place to deal with any perched groundwater inflows as a precautionary measure.

Several methods of retaining wall construction could be considered. These may include retaining structures cast in an underpinning sequence, or the use of temporary or sacrificial works to facilitate the retaining structure's construction. The excavation of the basement must not compromise the integrity of adjacent structures.

Based on the water soluble sulphate tests carried out as part of these works, it is considered that deterioration of buried concrete due to sulphate or acid attack is likely to occur. The final design of buried concrete according to Tables C1 and C2 of BRE Special Digest 1:2005 should be in accordance with Class DS-3 conditions.

In addition, segregations of gypsum were noted within the London Clay and also are well known to occur within London Clay deposits. Consequently, it is considered that any buried concrete at depth may be attacked by such sulphates in solution and that it would be prudent to design any such concrete in accordance with full Class DS-3 conditions.

7.0 BASEMENT IMPACT ASSESSMENT / CONCEPTUAL SITE MODEL

7.1 Summary

The screening identified a number of potential impacts. The table below summarises the previously identified potential impacts and the additional information that is now available from the site investigation in consideration of each impact.

Potential Impact	Site Investigation conclusions	Impact sufficiently addressed without further justification?
The proposed basement extends beneath the water table surface.	Groundwater encountered at a depth of 1.02mbgl (41.13mOD0 within Borehole 2 and was not encountered within Borehole 1 during September 2016. In November 2016 groundwater was encountered at respective depths of 5.78mbgl (37.22mOD) and 0.53mbgl (41.62mOD).	Yes
	It is likely that the water encountered within the standpipes is not representative of the true groundwater level and is likely caused by perched water from the Made Ground or surface water infiltration	
The site is within 100m of a watercourse, well (used / disused) or potential spring line	According to the Camden Geological, Hydrogeological and Hydrological Study (1999), Talling (2011) and Barton (1992) a tributary of the 'lost rivers' River Westbourne was located approximately within 5m	No – see below for further details.
The lowest point of the proposed excavation is close to, or lower than, the mean water level in any local pond or spring line	Ordnance survey maps indicate a small drainage ditch running between two field boundaries (1871) which is the only indication of a water source for the River Westbourne. By 1896 this ditch/stream has either been culverted and running beneath the roads, or has been removed as it is no longer needed.	
	Due to the small size of the ditch, any possible flooding that may have occurred is unlikely to have caused anything but very thin layers of Alluvium, but is unlikely to extend as far as No. 28 as such there is no influence on site.	
There a history of seasonal shrink-swell subsidence in the local area and/or evidence of such effects at the site.	The London Clay was proven below the site and was recorded as having a high susceptibility to shrinkage and shrinkage. However, the base of proposed basement will extend well below the potential depth of root action.	Yes
The site is within 5m of a highway or pedestrian right of way.	The proposed basement is not to be extended below Canfield Gardens and therefore it is suggested that the impact on these access roads is likely to be minimal.	Yes.
	There is nothing unusual in the proposed development that would give rise to any concerns with regard to the stability of public highways.	

The site is in an area	There is a potential risk of surface water following the	Yes
known to be at risk from	construction. However a Flood Risk Assessment has	
surface water flooding.	been completed by Sandersons Associates which	
	concludes that the site can be developed without	
	increasing flood risk to the site itself and other sites in the	
	vicinity with the implementation of suitable mitigation	
	measures.	

7.2 Outstanding risks and issues

The site is within 100m of a watercourse, well (used / disused) or potential spring line & the lowest point of the proposed excavation is close to, or lower than, the mean water level in any local pond or spring line

As noted, there are no watercourses in the vicinity of the site.

Ordnance survey maps taken from the Desk Top Study (Figure 6) indicate a small drainage ditch running between two field boundaries (1871) which is the only indication of a water source for the River Westbourne. By 1896 this ditch/stream has either been culverted and running beneath the roads, or has been removed as it is no longer needed.

Due to the small size of the ditch, any possible flooding that may have occurred is unlikely to have caused anything but very thin layers of Alluvium, but is unlikely to extend as far as No. 28 as such there is no influence on site.

The site is within a densely developed urban area, with a number of barriers to overland flow created by the existing residential development (i.e. the building footprint and the walls around the perimeter of the site).

Current information suggests that 28 Canfield Road marks the route of the River Westbourne, a former watercourse that has become lost through culverting and urban development of the catchment.

Assuming the watercourse exists in the area within a culverted section, this would flow southwards towards Kilburn, across Bayswater Road and into Hyde Park, where it entered the Serpentine. From the Serpentine it flowed southwards under Knightsbridge before issuing into the River Thames within the grounds of Chelsea Hospital. In an extreme flood event, the highway provides an open - and largely unobstructed - flow route.

The Utilities survey carried out by Groundwise note the presence of a storm release sewer in the vicinity of the site, which may possibly carry the culverted River Westbourne and / or its tributaries.

The proposed basement development is located under existing property and would be outside the extent of any such flow route. As such, no overland pathways to or from this feature exist across the site.

The proposed basement will significantly increase the differential depth of foundations relative to neighbouring properties.

The excavation and construction of the basement at the site has the potential to cause some movements in the surrounding ground if not properly managed. However, it is understood that ground movements and/or instability will be managed through the proper design and construction of mitigation measures during the works. This will require close collaboration with the appointed contractor's temporary works coordinator.

The Party Wall Act (1996) will apply to this development because neighbouring houses lie within a defined space around the proposed building works. The party wall process should be followed and adhered to during this development.

The historic plans of the adjacent properties supplied indicate that the neighbouring properties have basement layouts similar to the existing basement at No. 28.

A ground movement assessment was carried out at the site by Fairhurst under the instruction of Site Analytical Services Limited (Report Reference 117401/R1). The report is provided as Appendix B to this report and concludes that providing that good workmanship and construction sequences are used along with appropriate support during excavations, and groundwater management, the proposed basement construction is unlikely to cause significant damage to the surrounding structures. Based on the predicted ground movements, the adjacent structures are not expected to suffer any damage greater than CIRIA C580 Damage Category 1 (Very Slight).

A monitoring plan should be set out at design stage and should include a monitoring strategy, instrumentation and monitoring plans and action plans. Trigger levels on movements will need to be defined. Precise levelling or reflective survey targets should be installed at the garden walls and neighbouring buildings. Monitoring should take place in advance of the proposed works as a base-line survey, during the works and for a period following the completion of the works, to understand the long term effects.

The site is in an area known to be at risk from surface water flooding.

Canfield Gardens flooded during either the 2002 flood event. According to modelling by the Environment Agency, there is a 'Very Low' risk of surface water flooding (the lowest category for the national background level of risk) for No.28 and the surrounding area.

A Flood Risk Assessment has been completed by Sandersons Associates which concludes that the site can be developed without increasing flood risk to the site itself and other sites in the vicinity with the implementation of suitable mitigation measures.

The proposed development will not increase flood risk at the site or the surrounding area. Also since the development is on already developed land, it will not adversely impact the Council's sustainability objectives.

7.3 Advice on Further Work and Monitoring

A monitoring plan should be set out at design stage and should include a monitoring strategy, instrumentation and monitoring plans and action plans. Trigger levels on movements will need to be defined. Precise levelling or reflective survey targets should be installed at the garden walls and neighbouring buildings. Monitoring should take place in advance of the proposed works as a base-line survey, during the works and for a period following the completion of the works, to understand the long term effects.

An indicative temporary works scheme is required for the lightwell and sequencing and propping to be outlined. Contingencies for encountering softer Alluvium (which is very unlikely as proven in the site investigation) should be considered.

It would be prudent to continue to monitor the standpipes for as long as possible in order to determine equilibrium level and the extent of any seasonal variations. The chosen contractor should also have a contingency plan in place to deal with any perched groundwater inflows as a precautionary measure.

7.4 Non-Technical Summary of Chapter 7.0

The excavation and construction of the basement at the site has the potential to cause some movements in the surrounding ground if not properly managed. However, it is understood that ground movements and/or instability will be managed through the proper design and construction of mitigation measures during the works. It is not considered that the proposed basement would result in a significant change to the groundwater flow regime in the vicinity of the proposal. Also, given limited scope of the scheme and limited increase in impermeable areas, the scheme is also considered compliant with the surface water management and flood risk elements of NPPF and Camden policy.

Given good workmanship, the basement to No. 28 Canfield Gardens can be constructed without imposing more than negligible damage on the adjoining properties. The development is not likely to significantly affect the existing local groundwater regime.

It would be prudent to continue to monitor the standpipes for as long as possible in order to determine equilibrium level and the extent of any seasonal variations.

31

8.0 REFERENCES

- 1. CIRIA Special Publication 69, 1989. The engineering implications of rising groundwater levels in the deep aquifer beneath London
- 2. Environment Agency, 2006. Groundwater levels in the Chalk-Basal Sands Aquifer in the London Basin
- 3. Tomlinson, M J, 2001. "Foundation Design and Construction", Seventh Edition, Prentice Hall (ISBN 0-13-031180-4).
- 4. British Standards Institution, 2015. Code of Practice for Site Investigations, BS5930, BSI, London
- 5. British Standards Institution, 1986. Code of practice for foundations, BS 8004, BSI, London.
- 6. British Standards Institution, 2009. Code of Practice for Protection of Below Ground Structures Against Water from the Ground. BS 8102, BSI, London
- 7. CIRIA, 2000. Sustainable Urban Drainage Systems: Design Manual for England and Wales. CIRIA C522, Construction Industry Research and Information Association, London
- 8. Environment Agency Status Report 2010. Management of the London Basin Chalk Aquifer. Environment Agency
- 9. NHBC Standards, Chapter 4.1, "Land Quality managing ground conditions", September 1999.
- 10. NHBC Standards, Chapter 4.2, "Building near Trees", April 2010.

Appendix A. Ground Investigation Factual Report

Site Analytical Services Ltd.

Tel: 0208 594 8134

Fax: 0208 594 8072

E-Mail: services@siteanalytical.co.uk

Units 14 + 15, River Road Business Park, 33 River Road, Barking, Essex IG11 OEA

Directors: J. S. Warren, M.R.S.C., P. C. Warren, J. I. Pattinson, 85c (Hons), MSc. Consultants: B. Evans, BSc., M.Sc., P.G. Dip., FGS., MiEnvSc., A. J. Kingston, BSc C.Eng, MIMM

F. J. Globs, F.I.B.M.S. F.I.F.S.T., F.R.S.H. K. J. Blanchetta

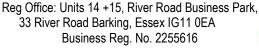
Your Ref: Dur Ref: Ref: 16/25536-1

December 2016

28 CANFIELD GARDENS, LONDON, NW6 3LA

FACTUAL REPORT ON A GROUND INVESTIGATION

Prepared for


Martin Redston Associates

Acting on behalf of

Kolyma Investments Limited

CONTENTS

1.0 Intr	roduction	1
1.1	Outline and Limitations of Report	. 1
2.0 Site	e Details	. 1
2.1 2.2 2.3	Site Location	. 1
3.0 Sc	ope of Work	2
3.1	Site Works	.2
3.2	Ground Conditions	
3.3	Groundwater	. 3
4.0 In-	Situ Testing and Laboratory Tests	4
4.1	Hand Vane Tests	. 4
4.2	Mackintosh Probe Tests	
4.3	Classification Tests	
4.4	Sulphate and pH Analyses	
4.5	Waste Acceptance Criteria Analysis	. 4
5.0 Ref	ferences	6

1.0 INTRODUCTION

1.1 Outline and Limitations of Report

At the request of Martin Redston Associates, working on behalf of Kolyma Investments Limited, a ground investigation was carried out in connection with a proposed residential basement development at the above site. A Phase 1 Preliminary Risk Assessment (Desk Study) is presented under separate cover in Site Analytical Services Limited Report Reference 16/25536.

The information was required for the design and construction of foundations and infrastructure for the proposed development at the existing site.

The recommendations and comments given in this report are based on the ground conditions encountered in the exploratory holes made during the investigation and the results of the tests made in the field and the laboratory. It must be noted that there may be special conditions prevailing at the site remote from the exploratory hole locations which have not been disclosed by the investigation and which have not been taken into account in the report. No liability can be accepted for any such conditions.

2.0 SITE DETAILS

(National Grid Reference: TQ261845)

2.1 Site Location

28 Canfield Gardens is a residential property, located on the northern side of Canfield Gardens, South Hampstead at approximate postcode NW6 3LA. The residential dwelling has three levels of accommodation; ground, first and second floor with rooms in the roof space and a lower ground floor. The residential property also comprises a front and rear garden. The site covers an approximate area of 0.03 Hectares with the general area being under the authority of the London Borough of Camden.

The site is located on the northern side of Canfield Gardens with residential properties to the north-east and south-west, with private gardens to the north-west and a roadway to the south-east.

2.2 Geology

The 1:50000 Geological Survey of Great Britain (England and Wales) covering the area (Sheet 256, 'North London', Solid and Drift Edition) indicates the site to be underlain by the London Clay formation.

The British Geological Survey maintains an archive of historical exploratory borehole logs throughout the UK. SAS Limited has searched the database and have found that there are 4 boreholes located within 150m of the site. These reveal Made Ground to a depth of 0.90m underlain the London Clay formation to the full depth of excavation at 7m.

Ref: 16/25536-1 December 2016

2.3 Previous Investigations

A Phase 1 Preliminary Risk Assessment (PRA) (SAS Report Ref: 16/25536, dated December 2016) has been undertaken across the site by Site Analytical Services Limited.

3.0 SCOPE OF WORK

3.1 Site Works

The exploratory investigation included for an inspection of the site and near surface soils in order to: -

- Determine the presence, extent and significance of potential contaminants in the subsurface strata associated with current and former activities at the site and surrounds identified during the Phase 1 PRA.
- Assess the significance of potential impacts on sensitive receptors at or adjacent to the site.
- Assess the potential environmental liabilities and consequences associated with the site.
- Identify requirements for further works, including the design of any additional investigative/monitoring works and remedial measures if deemed necessary.

The proposed scope of works was agreed by the client prior to the commencement of the investigations. To achieve this, the following works were undertaken:-

- The drilling of two continuous flight auger boreholes to depths of 10.00m and 15.00m below ground level (Boreholes 1 and 2).
- Sampling and in-situ testing as appropriate to the ground conditions encountered in the boreholes.
- Laboratory testing to determine the engineering properties of the soils encountered in the exploratory holes.
- Factual reporting on the results of the investigation.

3.2 Ground Conditions

The locations of the exploratory holes are shown on the site sketch plan, Figure 1.

The boreholes revealed ground conditions that were consistent with the geological records and known history of the area and comprised Made Ground up to 2.30m in thickness resting on deposits of the London Clay formation.

Ref: 16/25536-1 December 2016

These ground conditions are summarised in the following table. For detailed information on the ground conditions encountered in the boreholes, reference should be made to the exploratory hole records presented in Appendix A.

Strata	Depth to top of strata (mbgl)	Level to top of strata (mOD)	Depth to base of strata (mbgl)	Level to base of strata (mOD)	Description
Made Ground	0.00	43.00 to 42.15	0.60 to 2.40	41.55 to 40.60	Concrete or slate chippings over a brown, black clayey gravelly sand with brick and concrete fragments underlying a brown, black silty sandy clay containing brick and concrete fragments.
London Clay Formation	0.60 to 2.40	41.55 to 40.60	10.00/15.00 (base of BH's 1 & 2)	32.15 to 28.00	Stiff clay with occasional pockets and partings of silty fine sand and scattered gypsum crystals.

Table A: Summary of Ground Conditions in Exploratory Holes

3.3 Groundwater

Groundwater was not encountered within Boreholes 1 and 2 and the soils remained essentially dry throughout.

It must be noted that the speed of excavation is such that there may well be insufficient time for further light seepages of groundwater to enter the boreholes and hence be detected, particularly within more cohesive soils.

Isolated pockets of groundwater may also be present perched within any less permeable material found at shallower depth on other parts of the site especially within any Made Ground.

Groundwater was encountered at a depth of 1.02mbgl (41.13mOD0 within borehole 2 and was not encountered within Borehole 1 during September 2016. In November 2016 groundwater was encountered at respective depths of 5.78mbgl (37.22mOD) and 0.53mbgl (41.62mOD).

It should be noted that the comments on groundwater conditions are based on observations made at the time of the investigation (July to December 2016) and that changes in the groundwater level could occur due to seasonal effects and also changes in drainage conditions.

Ref: 16/25536-1 December 2016

4.0 IN-SITU TESTING AND LABORATORY TESTS

4.1 Hand Vane Tests

In the essentially cohesive natural soils encountered at the site, in-situ shear vane tests were made at regular depth increments in order to assess the undrained shear strength of the materials. The results indicate that the natural soils are of a generally high strength in accordance with BS 5930:2015.

4.2 Mackintosh Probe Tests

Mackintosh Probe tests were made within the Made ground in order to assess the relative density of the soils encountered in Borehole 1. The results can be interpreted using the generally accepted correlation for Mackintosh Probe Tests which is as follows:

Mackintosh N75 X 0.38 = SPT 'N' Value

or

Mackintosh N300 X 0.1 = SPT 'N' Value

4.3 Classification Tests

Atterberg Limit tests were conducted on three samples taken at depth in Boreholes 1 and 2 and showed the samples tested to fall into Class CH according to the British Soil Classification System.

The test results are given in Table 1, contained in Appendix B.

4.4 Sulphate and pH Analyses

The results of the sulphate and pH analyses made on five samples are presented on Table 2, contained in Appendix B.

4.5 Waste Acceptance Criteria Analysis

A sample of soil from 1.00m depth in BH1 was analysed using the 'Catwastesoil' assessment tool, which concluded that the sample from the site was not hazardous in nature.

The sample was analysed for Waste Acceptance Criteria Testing in order to classify soils for disposal purposes.

Ref: 16/25536-1 December 2016

For the purpose of waste disposal, the soil samples would be classified as follows:

Borehole 1 @ 1.00m

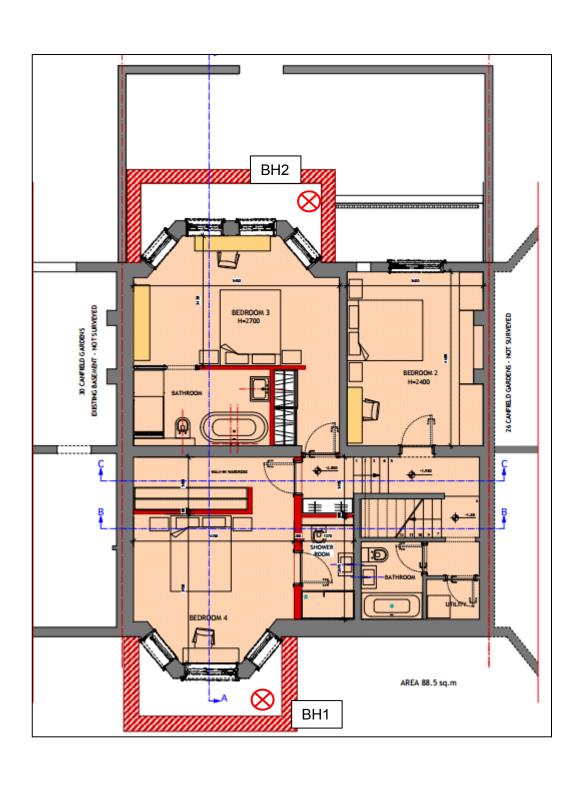
Inert Waste

p.p. SITE ANALYTICAL SERVICES LIMITED

T P Murray MSc BSc (Hons) FGS Geotechnical Engineer

Ref: 16/25536-1

December 2016


5.0 REFERENCES

- 1. British Standards Institution, 1986. Code of practice for foundations, BS 8004, BSI, London.
- 2. British Standards Institution, 1990. Methods for test for soils for civil engineering purposes, BS1377, BSI, London
- 3. British Standards Institution, 1994. Code of practice for earth retaining structures, BS8002, BSI, London
- 4. British Standards Institution, 20. Code of Practice for Site Investigations, BS5930: 2015, BSI, London
- 5. British Standards Institution, 2004. Geotechnical Design, BS EN 1997-1 BSI, London
- 6. Building Research Establishment Special Digest 1, 2005, "Concrete in Aggressive Ground Third Edition."
- 7. Driscoll, R (1983) "The influence of vegetation on the shrinking and swelling of clay soils in Great Britain", Geo-technique 33, 93-107
- 8. Eurocode 1: Actions on structures BS EN 1991-1-1:2002: General actions Densities, self weight and imposed loads, BSI, London
- 9. NHBC Standards, Chapter 4.1, "Land Quality managing ground conditions", September 1999.
- 10. NHBC Standards, Chapter 4.2, "Building near Trees", April 2010.
- 11. Stroud M.A. and Butler F.G. (1975) Symposium on the Engineering Behaviour of Glacial Materials; the Midland Soil Mechanics and Foundation Engineering Society; pgs 124 et seq.
- 12. Tomlinson, M J, 2001. "Foundation Design and Construction", Seventh Edition, Prentice Hall (ISBN 0-13-031180-4).

Ref: 16/25536-1 December 2016

Site A	nalytical Ser	vices Ltd.	REF: 16/25536
LOCATION:	28 Canfield Gardens, Lond	don, NW6 3LA	FIG: 1
TITLE:	Site Sketch Plan	DATE: Dec 2016	SCALE: NTS

APPENDIX 'A'

Borehole Logs

Site	Analy	/tic	al S	Servic	es	Ltd.	Site 28 CANFIELD GARDENS,LONDON,NW6 3LA		Borehole Number BH1
Boring Metal CONTINUO AUGER		1	Diameter Omm case	ed to 0.00m	Ground	1 Level (mOD) 43.00	Client KOLYMA INVESTMENTS LIMITED		Job Number 1625536
		Locatio	on Q260845		Dates 2	1/07/2016	Engineer MARTIN REDSTON ASSOCIATES		Sheet 1/2
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Mater Water
0.25 0.50 0.75 1.00 1.00-1.30 1.50 1.50 2.00 2.00 2.50 2.50 2.50 2.50 4.00 4.00 4.50 4.50 4.50 5.00 5.00	D1 D2 D3 D4 M1 94/300 D5 V1 95 D6 V2 117 D7 V3 130+ D8 V4 130+ D9 V5 130+ D10 V6 130+ D11 V7 130+ D12 V8 130+				42.3C 41.8C	(0.50)	MADE GROUND: Slate chippings over dark brown slightly gravelly clayey sand with fragments of brick concrete rubble. Gravel is fine to coarse of sub-ang sub-rounded flint. MADE GROUND: Soft, brown silty sandy clay with fragments of brick and concrete rubble. MADE GROUND: Stiff, light brown silty sandy clay with gragments of brick and concrete rubble. Stiff, brown sandy silty CLAY.	jular to	
6.00	D13 V9 130+								x
7.00 7.00	D14 V10 130+				35.80	7.20	Stiff, brown blue sandy silty CLAY.		× × × × × × × × × × × × × × × × × × ×
8.00 8.00	D15 V11 130+					(2.80)			×
9.00 9.00	D16 V12 130+								x
Remarks D= Disturbe M= Makintos	sh Probe - Blows/Per	netration ((mm)					Scale (approx)	Logged By
Groundwate	st - Result in kPa r was not encounter from 0.00m to 1.00m	ed during for 1 hou	boring/exor.	cavation				1:50	EW
								Figure N 16255	o. 536.BH!

Site	Analy	ytic	al S	Servic	es l	Lt	d.	Site 28 CANFIELD GARDENS,LONDON,NW6 3LA		Boreh Numb	er
Boring Met CONTINUC AUGER			Diameter	ed to 0.00m		Leve 43.00	el (mOD)	Client KOLYMA INVESTMENTS LIMITED		Job Numb 16255	
		Locatio	o n Q260845		Dates 21	1/07/2	2016	Engineer MARTIN REDSTON ASSOCIATES		Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	(Thi	Depth (m) ckness)	Description		Legend	Water
10.00 10.00	D17 V13 130+				33.00		10.00	Stiff, brown blue sandy silty CLAY.		× × × × × × × × × × × × × × × × × × ×	-
11.00 11.00	D18 V14 130+									× · · · · · · · · · · · · · · · · · · ·	4 · · · · · · · · · · · · · · · · · · ·
12.00 12.00	D19 V15 130+						(5.00)			× × × × × × × × × × × × × × × × × × ×	
13.00 13.00	D20 V16 130+									× × × × × × × × × × × × × × × × × × ×	4
14.00 14.00	D21 V17 130+									× × × × × × × × × × × × × × × × × × ×	- - - - -
15.00	D22 V18 130+				28.00		15.00	Complete at 15.00m			
Remarks D= Disturbe M= Makinto	ed Sample sh Probe - Blows/Pe st - Result in kPa	netration (mm)						Scale (approx)	Logge By	.d
Groundwate	er was not encounter	ed during	boring/ex	cavation					1:50	EW	
									Figure N 1625	lo. 536.BH!	

		nal	ytic	al Servi	ces	Lto	d.	Site 28 CANFI	ELD GAI	RDENS,L	ONDON,	NW6 3LA	A		Borehole Number BH1
Installation Single Ins			Dimensi Interna Diame	ons al Diameter of Tube [A] = 5 eter of Filter Zone = 100 mr	0 mm n			Client KOLYMA	INVESTI	MENTS L	IMITED				Job Number 1625536
			Location TQ260			Level (m		Engineer MARTIN F	REDSTO	N ASSO	CIATES				Sheet 1/1
Legend ×	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	ater Strik	es Durin	g Drilling]		
		()	()				Depth Struck	Casing				Read	lings		Depth.
				Bentonite Seal	Date	Time	Struck (m)	Casing Depth (m)	Inflo	w Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
		42.00	1.00												
× · · · · · ·															
× × ×								Gr	oundwa	ter Ohse	rvations	During D	rillina		
× × ×											1				
× × ×					Date			Start of S Casing Depth	Water	Water Level		Depth Hole	Casing Depth		Water
××				Slotted Standpipe		Time	Depth Hole (m)	Deptñ (m)	Depth (m)	(mOD)	Time	Höle (m)	Deptñ (m)	Depth (m)	Level (mOD)
×															
× × · · ·															
× × ×															
××															
××															
××								Instru	ıment G	roundwa	iter Obse	ervations			
× × ×		35.00	8.00		Inst.	[A] Type	: Slotte	d Standpip	е						
× × × × × × × × × × × × × × × × × × ×				Bentonite Seal		Ins	trument	t [A]							
× × ×		34.00	9.00		Date	Time	Depth (m)	Level (mOD)				Rema	arks		
× × · · ·							(,	(62)							
××															
×. ×.															
× × ×															
××				General Backfill											
××				General Backilli											
× × · · ·															
× × ×															
××															
×															
×															
× × ·		28.00	15.00												
Remarks Lockable	cover set	in cemen	t		'			1							

Site	Analy	/tic	al S	Servic	es l	Ltd	-	Site 28 CANFIELD GARDENS,LONDON,NW6 3LA	Borehole Number BH2
Boring Met CONTINUO AUGER		_	Diameter Omm case	ed to 0.00m		Level (m 42.15	OD)	Client KOLYMA INVESTMENTS LIMITED	Job Number 1625536
		Locatio	n)260845		Dates 21	1/07/2016		Engineer MARTIN REDSTON ASSOCIATES	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Dept (m) (Thickne	h ess)	Description	Legend Lagran
0.25 0.50 0.75 1.00 1.50 1.50 2.00 2.50 2.50 3.00 3.50 3.50 4.00 4.50 4.50 4.50 5.00 6.00 6.00 7.00 7.00 9.00 9.00 9.00	D1 D2 D3 D4 V1 70 D5 V2 81 D6 V3 87 D7 V4 93 D8 V5 101 D9 V6 113 D10 V7 122 D11 V8 127 D12 V9 130+ D13 V10 130+ D14 V11 130+ D15 V12 130+ D16 V13 130+ D17				42.10 42.08 41.65 41.55	0 0 (0. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	90) 50	MADE GROUND: Concrete slab MADE GROUND: Black silty sandy clay with fragments of brick and concrete rubble. MADE GROUND: Brown silty sandy clay with fragments of brick and concrete rubble. Firm becoming stiff, brown sandy silty CLAY Stiff, dark blue grey sandy silty CLAY with occasional gypsum crystals.	
10.00 10.00 Remarks	V14 130+				32.15	10	0.00		× ×
D= Disturbe M= Makintos V= Vane Tes	sh Probe - Blows/Per st - Result in kPa			cavation				Scale (approx	Logged By
Excavating	er was not encountere from 0.00m to 1.00m	for 1 hour	boring/ext	Javauon				1:50 Figure	No.
								162	5536.BH2

Sit	te	PΑ	nal	ytic	al Servi	ces	Ltc	J.	Site 28 CANFI	ELD GAF	RDENS,L	ONDON.	NW6 3LA	Ą	N	Borehole Number BH2
Installa Single		n Type tallation		Dimensi Interna Diame	ons al Diameter of Tube [A] = 50 ter of Filter Zone = 100 mn) mm 1			Client KOLYMA	INVESTM	MENTS L	IMITED			l l	Job Number 1625536
				Location TQ260			Ground Level (mOD) 42.15			REDSTO	N ASSOC	CIATES			S	Sheet 1/1
Legend	Water	Instr (A)	Level (mOD)	Depth (m)	Description				G	roundwa	iter Strik	es Durin	g Drilling)		
	•					Date	Time	Depth Struck	Casing Depth (m)	Inflo	w Rate	Readings 5 min 10 min 15 min 20			Depth Sealed (m)	
× × × × × × × × × × × × × × × × × × ×		25 (1975) 1975 (19	41.15	.15 1.00	Bentonite Seal			(m)	(III)			311111	10 min	15 min	20 min	(111)
× × ×											er Obse	rvations	During D			
×						Date		Depti Hole	Start of S	hift Water Depth	Water		Depth Hole	Casing Depth		Water
× × ·							Time	Höle (m)	Deptñ (m)	Depth (m)	Level (mOD)	Time	Höle (m)	Deptñ (m)	Water Depth (m)	(mOD)
× · · · · · · · · · · · · · · · · · · ·																
× × ×					Slotted Standpipe				Instru	ument G	roundwa	ter Obse	ervations			
×						Inst.	[A] Type	: Slotte	d Standpip	е						
×							Ins	trumen	t [A]							
× × × × × × × × × × × × × × × × × × ×						Date	Time	Depti (m)	Level (mOD)				Rema	arks		
× × ×			33.65	8.50	Bentonite Seal											
× ×																
× × × × × × × × × × × × × × × × × × ×			32.65	9.50	General Backfill											
Remarl	ke		32.15	10.00												

APPENDIX 'B'

Laboratory Test Data

Ref: 16/25536-1

PLASTICITY INDEX & MOISTURE CONTENT DETERMINATIONS

LOCATION 28 Canfield Gardens, London, NW6 3LA

BH/TP No.	Depth m	Natural Moisture %	Liquid Limit %	Plastic Limit %	Plasticity Index %	Passing 425 μm %	Class
BH1	3.50	30	65	24	41	100	СН
	4.00	31	64	22	42	100	СН
BH2	4.00	32	69	26	43	100	СН

Ref: 16/25536-1

SULPHATE & pH DETERMINATIONS

LOCATION 28 Canfield Gardens, London, NW6 3LA

BH/TP No.	DEPTH BELOW	SOIL SULPHATES AS SO ₄	WATER SULPHATES AS SO ₄	рН	CLASS	SOIL - 2mm
	GL m	TOTAL WATER SOL % g/l	g/l			%
BH1	8.00	2.25		6.2	DS-3	100
	13.00	2.23		6.3	DS-3	100
BH2	5.00	2.56		6.2	DS-3	100
	7.00	1.09		6.6	DS-2	100
	9.00	0.81		6.7	DS-2	100

Classification – Tables C1 and C2 : BRE Special Digest 1 : 2005

River Road Business Park

33 River Road

Barking

IG11 0EA

Essex

QTS Environmental Ltd

Unit 1
Rose Lane Industrial Estate
Rose Lane
Lenham Heath
Kent
ME17 2JN
t: 01622 850410

russell.jarvis@qtsenvironmental.com

QTS Environmental Report No: 16-47575

Site Reference: 28 Canfield Gardens London, NW6 3LA

Project / Job Ref: 16\25536

Order No: 22973

Sample Receipt Date: 03/08/2016

Sample Scheduled Date: 04/08/2016

Report Issue Number: 1

Reporting Date: 10/08/2016

Authorised by:

Kevin Old

Associate Director of Laboratory

Authorised by:

Russell Jarvis

Associate Director of Client Services

Soil Analysis Certificate									
QTS Environmental Report No: 16-47575	Date Sampled	None Supplied							
Site Analytical Services Ltd	Time Sampled	None Supplied							
Site Reference: 28 Canfield Gardens London, NW6	TP / BH No	BH1							
3LA									
Project / Job Ref: 16\25536	Additional Refs	D4							
Order No: 22973	Depth (m)	1.00							
Reporting Date: 10/08/2016	QTSE Sample No	220895							

Determinand	Unit	RL	Accreditation		
Asbestos Screen	N/a	N/a	ISO17025	Not Detected	d d
pH	pH Units	N/a	MCERTS	8.1	1
Total Cyanide	mg/kg	< 2	NONE	< 2	2
Complex Cyanide	mg/kg	< 2	NONE	< 2	2
Free Cyanide	mg/kg	< 2	NONE	< 2	2
Total Sulphate as SO ₄	mg/kg	< 200	NONE	669	9
Total Sulphate as SO ₄	%	< 0.02	NONE	0.07	7
W/S Sulphate as SO ₄ (2:1)	mg/l	< 10	MCERTS	256	5
W/S Sulphate as SO ₄ (2:1)	g/l	< 0.01	MCERTS	0.26	5
Sulphide	mg/kg	< 5	NONE	< 5	5
Organic Matter	%	< 0.1	MCERTS	1.7	7
Total Organic Carbon (TOC)	%	< 0.1	MCERTS	1	1
Arsenic (As)	mg/kg	< 2	MCERTS	15	5
W/S Boron	mg/kg	< 1	NONE	< 1	1
Cadmium (Cd)	mg/kg	< 0.2	MCERTS	< 0.2	2
Chromium (Cr)	mg/kg	< 2	MCERTS	49	
Chromium (hexavalent)	mg/kg	< 2	NONE	< 2	2
Copper (Cu)	mg/kg	< 4	MCERTS	26	5
Lead (Pb)	mg/kg	< 3	MCERTS	108	3
Mercury (Hg)	mg/kg	< 1	NONE	< 1	1
Nickel (Ni)	mg/kg	< 3	MCERTS	18	3
Selenium (Se)	mg/kg	< 3	NONE	< 3	
Zinc (Zn)	mg/kg	< 3	MCERTS	77	7
Total Phenols (monohydric)	mg/kg	< 2	NONE	< 2	2

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Analysis carried out on the dried sample is corrected for the stone content

The samples have been examined to identify the presence of asbestiform minerals by polarising light microscopy and dispersion staining technique to In-House Procedures QTSE600 Determination of Asbestos in Bulk Materials; Asbestos in Soils/Sediments (fibre screening and identification)

This report refers to samples as received, and QTS Environmental Ltd, takes no responsibility for the accuracy or competence of sampling by others.

 $The \ material \ description \ shall \ be \ regarded \ as \ tentative \ and \ is \ not \ included \ in \ our \ scope \ of \ UKAS \ Accreditation.$

Opinions and interpretations expressed herein are outside the scope of UKAS Accreditation.

Asbestos Analyst: Javeed Malik

RL: Reporting Limit
Pinch Test: Where pinch test is positive it is reported "Loose Fibres - PT" with type(s).

Subcontracted analysis $^{\rm (S)}$

Soil Analysis Certificate - Speciated PAHs									
QTS Environmental Report No: 16-47575	Date Sampled	None Supplied							
Site Analytical Services Ltd	Time Sampled	None Supplied							
Site Reference: 28 Canfield Gardens London,	TP / BH No	BH1							
NW6 3LA									
Project / Job Ref: 16\25536	Additional Refs	D4							
Order No: 22973	Depth (m)	1.00							
Reporting Date: 10/08/2016	QTSE Sample No	220895							

Determinand	Unit	RL	Accreditation				
Naphthalene	mg/kg	< 0.1	MCERTS	< 0.1			
Acenaphthylene	mg/kg	< 0.1	MCERTS	< 0.1			
Acenaphthene	mg/kg	< 0.1	MCERTS	< 0.1			
Fluorene	mg/kg	< 0.1	MCERTS	< 0.1			
Phenanthrene	mg/kg	< 0.1	MCERTS	< 0.1			
Anthracene	mg/kg	< 0.1	MCERTS	< 0.1			
Fluoranthene	mg/kg	< 0.1	MCERTS	0.32			
Pyrene	mg/kg	< 0.1	MCERTS	0.27			
Benzo(a)anthracene	mg/kg	< 0.1	MCERTS	0.17			
Chrysene	mg/kg	< 0.1	MCERTS	0.15			
Benzo(b)fluoranthene	mg/kg	< 0.1	MCERTS	0.15			
Benzo(k)fluoranthene	mg/kg	< 0.1	MCERTS	< 0.1			
Benzo(a)pyrene	mg/kg	< 0.1	MCERTS	< 0.1			
Indeno(1,2,3-cd)pyrene	mg/kg	< 0.1	MCERTS	< 0.1			
Dibenz(a,h)anthracene	mg/kg	< 0.1	MCERTS	< 0.1			
Benzo(ghi)perylene	mg/kg	< 0.1	MCERTS	< 0.1			
Coronene	mg/kg	< 0.1	NONE	< 0.1			
Total Oily Waste PAHs	mg/kg	< 1	MCERTS	< 1			
Total Dutch 10 PAHs	mg/kg	< 1	MCERTS	< 1	•		
Total EPA-16 PAHs	mg/kg	< 1.6	MCERTS	< 1.6			
Total WAC-17 PAHs	31 3		NONE	< 1.7			

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - TPH CWG Banded	l			
QTS Environmental Report No: 16-47575	Date Sampled	None Supplied		
Site Analytical Services Ltd	Time Sampled	None Supplied		
Site Reference: 28 Canfield Gardens London,	TP / BH No	BH1		
NW6 3LA				
Project / Job Ref: 16\25536	Additional Refs	D4		
Order No: 22973	Depth (m)	1.00		
Reporting Date: 10/08/2016	QTSE Sample No	220895		

Determinand	Unit	RL	Accreditation			
Aliphatic >C5 - C6	mg/kg	< 0.01	NONE	< 0.01		
Aliphatic >C6 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aliphatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aliphatic >C12 - C16	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aliphatic >C21 - C34	mg/kg	< 10	MCERTS	< 10		
Aliphatic (C5 - C34)	mg/kg	< 21	NONE	< 21		
Aromatic >C5 - C7	mg/kg	< 0.01	NONE	< 0.01		
Aromatic >C7 - C8	mg/kg	< 0.05	NONE	< 0.05		
Aromatic >C8 - C10	mg/kg	< 2	MCERTS	< 2		
Aromatic >C10 - C12	mg/kg	< 2	MCERTS	< 2		
Aromatic >C12 - C16	mg/kg	< 2	MCERTS	< 2		
Aromatic >C16 - C21	mg/kg	< 3	MCERTS	< 3		
Aromatic >C21 - C35	mg/kg	< 10	MCERTS	< 10		
Aromatic (C5 - C35)		< 21	NONE	< 21		
Total >C5 - C35	mg/kg	< 42	NONE	< 42		

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Soil Analysis Certificate - BTEX / MTBE						
QTS Environmental Report No: 16-47575	Date Sampled	None Supplied				
Site Analytical Services Ltd	Time Sampled	None Supplied				
Site Reference: 28 Canfield Gardens London,	TP / BH No	BH1				
NW6 3LA						
Project / Job Ref: 16\25536	Additional Refs	D4				
Order No: 22973	Depth (m)	1.00				
Reporting Date: 10/08/2016	QTSE Sample No	220895				

Determinand	Unit	RL	Accreditation	
Benzene	ug/kg	< 2	MCERTS	< 2
Toluene	ug/kg	< 5	MCERTS	< 5
Ethylbenzene	ug/kg	< 2	MCERTS	< 2
p & m-xylene	ug/kg	< 2	MCERTS	< 2
o-xylene	ug/kg	< 2	MCERTS	< 2
MTBE	ug/kg	< 5	MCERTS	< 5

Analytical results are expressed on a dry weight basis where samples are assisted-dried at less than 30°C

Tel: 01622 850410

QTS Environmental Report No	: 16-47575	Date Sampled	None Supplied			Landfill Wast	te Acceptance (Criteria Limit
Site Analytical Services Ltd		Time Sampled	None Supplied					
Site Reference: 28 Canfield G London, NW6 3LA	ardens	TP / BH No	BH1				Stable Non-	
Project / Job Ref: 16\25536		Additional Refs	D4			Inert Waste	reactive HAZARDOUS	Hazardou Waste
Order No: 22973		Depth (m)	1.00			Landfill	waste in non- hazardous Landfill	Landfill
Reporting Date: 10/08/2016		QTSE Sample No	220895					
Determinand	Unit	MDL						
TOC ^{MU}	%	< 0.1	1			3%	5%	6%
Loss on Ignition	%	< 0.01	6.40					10%
BTEX ^{MU}	mg/kg	< 0.05	< 0.05			6		-
Sum of PCBs	mg/kg	< 0.1	< 0.1			1		
Mineral Oil ^{MU}	mg/kg	< 10	< 10			500		
Total PAH ^{MU}	mg/kg	< 1.7	< 1.7			100		
pH ^{MU}	pH Units	N/a	8.1				>6	
Acid Neutralisation Capacity	mol/kg (+/-)	< 1	< 1				To be	To be
,	. 3 () /			ı	Cumulative	Limit values	evaluated for compliance	evaluated
Eluate Analysis			2:1	8:1	10:1		ior compliance N 12457-3 at L	
Litate Analysis			mg/l	mg/l	mg/kg	using by t	(mg/kg)	./3 10 1/ kg
Arsenic ^U	I		< 0.01	< 0.01	< 0.2	0.5	2	25
Barium ^U			0.04	< 0.02	0.2	20	100	300
Cadmium ^U			< 0.0005	< 0.0005	< 0.02	0.04	1	5
Chromium ^U			< 0.005	< 0.005	< 0.20	0.5	10	70
Copper ^U			< 0.01	< 0.01	< 0.5	2	50	100
Mercury ^U			< 0.005	< 0.005	< 0.01	0.01	0.2	2
Molybdenum ^U			0.009	0.008	< 0.1	0.5	10	30
Nickel ^U			< 0.007	< 0.007	< 0.2	0.4	10	40
Lead ^U			< 0.005	< 0.005	< 0.2	0.5	10	50
Antimony ^U			0.008	0.006	< 0.06	0.06	0.7	5
Selenium ^U			< 0.005	< 0.005	< 0.1	0.1	0.5	7
Zinc ^U			< 0.005	< 0.005	< 0.2	4	50	200
Chloride ^U			4	1	12	800	15000	25000
Fluoride ^U			1.1	1	9.7	10	150	500
Sulphate ^U			16	3	31	1000	20000	50000
TDS			121	66	679	4000	60000	100000
Phenol Index	_		< 0.01	< 0.01	< 0.5	1	-	-
DOC			11.6	6.6	67.9	500	800	1000
Leach Test Information						1		
						I		
						ĺ		
						1		
						Í		
Sample Mass (kg)			0.21			Í		
Dry Matter (%)			84.6			1		
Moisture (%)			18.2					
Stage 1						I		
Volume Eluate L2 (litres)			0.32					
Cit Cl /C1 / (it)			0.06	l I		I		
Filtered Eluate VE1 (litres)			0.00			4		

Results are expressed on a dry weight basis, after correction for moisture content where applicable
Stated limits are for guidance only and QTS Environmental cannot be held responsible for any discrepencies with current legislation
M Denotes MCERTS accredited test
U Denotes ISO17025 accredited test

Soil Analysis Certificate - Sample Descriptions	
QTS Environmental Report No: 16-47575	
Site Analytical Services Ltd	
Site Reference: 28 Canfield Gardens London, NW6 3LA	
Project / Job Ref: 16\25536	
Order No: 22973	
Reporting Date: 10/08/2016	

QTSE Sample No	TP / BH No	Additional Refs	Depth (m)	Moisture Content (%)	Sample Matrix Description
^ 220895	BH1	D4	1.00	15.4	Light brown clay

Moisture content is part of procedure E003 & is not an accredited test Insufficient Sample $^{\text{I/S}}$ Unsuitable Sample $^{\text{I/S}}$ ^ no sampling date provided; unable to confirm if samples are within acceptable holding times

Soil Analysis Certificate - Methodology & Miscellaneous Information QTS Environmental Report No: 16-47575
Site Analytical Services Ltd

Site Reference: 28 Canfield Gardens London, NW6 3LA
Project / Job Ref: 16\25536
Order No: 22973
Reporting Date: 10/08/2016

Matrix	Analysed On	Determinand	Brief Method Description	Method No
Soil	D	Boron - Water Soluble	Determination of water soluble boron in soil by 2:1 hot water extract followed by ICP-OES	E012
Soil	AR		Determination of BTEX by headspace GC-MS	E001
Soil	D		Determination of cations in soil by aqua-regia digestion followed by ICP-OES	E002
Soil	D		Determination of chloride by extraction with water & analysed by ion chromatography	E009
Soil	AR	Chromium - Hexavalent	Determination of hexavalent chromium in soil by extraction in water then by acidification, addition of	E016
Soil	AR	Cyanide - Compley	Determination of complex cyanide by distillation followed by colorimetry	E015
Soil	AR		Determination of complex symmetry distillation followed by colorimetry	E015
Soil	AR		Determination of total cyanide by distillation followed by colorimetry	E015
Soil	D		Gravimetrically determined through extraction with cyclohexane	E011
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID	E004
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of saturated calcium sulphate followed by electrometric measurement	E022
Soil	AR	Electrical Conductivity	Determination of electrical conductivity by addition of water followed by electrometric measurement	E023
Soil	D	Elemental Sulphur	Determination of elemental sulphur by solvent extraction followed by GC-MS	E020
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
Soil	AR		Determination of acetone/hexane extractable hydrocarbons by GC-FID	E004
			Determination of acetone/hexane extractable hydrocarbons by GC-FID for C8 to C40. C6 to C8 by	
Soil	AR	C12-C16, C16-C21, C21-C40)		E004
Soil	D		Determination of Fluoride by extraction with water & analysed by ion chromatography	E009
Soil	D	FOC (Fraction Organic Carbon)	Determination of fraction of organic carbon by oxidising with potassium dichromate followed by titration with iron (II) sulphate	E010
Soil	D	Loss on Ignition @ 450oC	Determination of loss on ignition in soil by gravimetrically with the sample being ignited in a muffle furnace	E019
Soil	D		Determination of water soluble magnesium by extraction with water followed by ICP-OES	E025
Soil	D	Metals	Determination of metals by aqua-regia digestion followed by ICP-OES	E002
Soil	AR	Mineral Oil (C10 - C40)	Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge	E004
Soil	AR		Moisture content; determined gravimetrically	E003
Soil	D	Nitrate - Water Soluble (2:1)	Determination of nitrate by extraction with water & analysed by ion chromatography	E009
Soil	D	Organic Matter	iron (11) suipnate	E010
Soil	AR	PAH - Speciated (EPA 16)	Determination of PAH compounds by extraction in acetone and hexane followed by GC-MS with the use of surrogate and internal standards	E005
Soil	AR		Determination of PCB by extraction with acetone and hexane followed by GC-MS	E008
Soil	D	Petroleum Ether Extract (PEE)	Gravimetrically determined through extraction with petroleum ether	E011
Soil	AR		Determination of pH by addition of water followed by electrometric measurement	E007
Soil	AR		Determination of phenols by distillation followed by colorimetry	E021
Soil	D		Determination of phosphate by extraction with water & analysed by ion chromatography	E009
Soil	D		Determination of total sulphate by extraction with 10% HCl followed by ICP-OES	E013
Soil	D		Determination of sulphate by extraction with water & analysed by ion chromatography	E009
Soil	D AD		Determination of water soluble sulphate by extraction with water followed by ICP-OES	E014
Soil Soil	AR D		Determination of sulphide by distillation followed by colorimetry	E018 E024
Soil	AR	Supriur - Total	Determination of total sulphur by extraction with aqua-regia followed by ICP-OES Determination of semi-volatile organic compounds by extraction in acetone and hexane followed by	E024 E006
Soil	AR	Thiocyanate (as SCN)	GC-MS Determination of thiocyanate by extraction in caustic soda followed by acidification followed by	E017
Soil	D	, , ,	addition of ferric nitrate followed by colorimetry Gravimetrically determined through extraction with toluene	E011
Soil	D	Total Organic Carbon (TOC)	Determination of organic matter by oxidising with potassium dichromate followed by titration with	E010
3011			iron (II) sulphate	F010
Soil	AR		Determination of hexane/acetone extractable hydrocarbons by GC-FID fractionating with SPE cartridge for C8 to C35. C5 to C8 by headspace GC-MS	E004
Soil	AR	aro: C5-C7, C7-C8, C8-C10, C10-C12, C12-C16, C16-C21, C21-C35, C35-C44)		E004
Soil	AR		Determination of volatile organic compounds by headspace GC-MS	E001
Soil	AR	VPH (C6-C8 & C8-C10)	Determination of hydrocarbons C6-C8 by headspace GC-MS & C8-C10 by GC-FID	E001

D Dried **AR As Received**

Appendix B. Ground Movement Assessment

Ref: 16/25536-2 December 2016

28 Canfield Gardens, London NW6 3LA

Ground Movement Assessment

January 2020

FAIRHURST

CONTROL SHEET

CLIENT: SITE ANALYTICAL SERVICES LIMITED

PROJECT TITLE: 28 CANFIELD GARDENS, LONDON NW6 3 LA

REPORT TITLE: GROUND MOVEMENT ASSESSMENT

PROJECT REFERENCE: 117401

DOCUMENT NUMBER: 117401/R1

STATUS: FINAL

le		Name	Signature	Date
Schedule	Prepared by	Olivier Colas		30.11.16
& Approval	Checked by	Andrew Smith	Afri	01.12.16
Issue {	Approved by	Heather Bourne	LUB	05.12.16

	Rev.	Date	Status	Description		Signature	
p		Updated GMA in		Ву	th 758		
Record	1	January 2020	FINAL	accordance with recent proposed development plans	FINAL accordance with recent	Check	HU
					Approve	Afri	
Revision					Ву		
&					Check		
					Approve		

This document has been prepared in accordance with procedure OP/P02 of the Fairhurst Quality and Environmental Management System

This document has been prepared in accordance with the instructions of the client, Site Analytical Services Ltd, for the client's sole and specific use. Any other persons who use any information contained herein do so at their own risk.

FAIRHURST

CONTENTS

1.0	INTRODUCTION	4
	BASELINE CONDITIONS	
3.0	GROUND INVESTIGATION AND MONITORING	8
4.0	PREDICTION OF GROUND MOVEMENTS	10

FIGURES

Figure 1	Site Location Plan
Figure 2	Surrounding Property Plan
Figure 3	Casagrande Plot
Figure 4	Undrained Shear Strength vs Depth Plot
Figure 5	Young's Modulus vs Depth Plot
Figure 6	Wall Plan Used for XDISP Analysis

APPENDIX

Appendix A	Architects Existing and Proposed Drawings
Appendix B	Site Analytical Service Limited Site Investigation Data (ref: 16/25536; July 2016)
Appendix C	Martin Redston Associate Engineers Load drawing (ref: 16.440-TL-01; 17/10/16)
Appendix D	Stage 1 – PDISP Undrained unloading heave movements
Appendix E	Stage 2 – PDISP Undrained reloading heave movements
Appendix F	Stage 3 – PDISP Drained reloading heave movements
Appendix G	XDISP Analysis

1.0 INTRODUCTION

1.1 Background

Fairhurst has been commissioned by Site Analytical Services Limited (SASL) to complete a Ground Movement Assessment (GMA) in connection with a proposed residential development at 28 Canfield Gardens, London, NW6 3LA. The purpose of this assessment is to determine what effects the proposed basement construction at the site may have upon nearby structures.

A site specific Phase II Ground Investigation has previously been carried out by SASL in July 2016. The ground investigation was designed by SASL and the results have been used in the derivation of parameters utilised in this assessment. Fairhurst cannot be held responsible for any inaccuracy in the factual data provided.

It is understood that this report will be included as part of a planning application to be submitted to the London Borough of Camden (LBC) by the client.

1.2 Proposed Development

With reference to the proposed development plans provided by the client and presented as Appendix A, it is understood that the property owner is intending to excavate a basement under the footprint of the majority of the building including the excavation of three new proposed lightwells at the front and back of the property.

The proposed basement extension is split into three different areas with various depths of excavation:

- 1. An area below the north eastern section of the existing building adjacent to No. 26 Canfield Gardens which will be extended to 3.00m below ground level or 1.175m below existing basement level (circa 47.22m AOD).
- 2. An area below the south western section of the existing building adjacent to No. 30 Canfield Gardens which will extend to 3.00m below ground level (circa 47.22m AOD).
- 3. Lightwells at the front and rear of the site which are proposed to extend to depths of 1.50m bgl (48.72m AOD).

1.3 Limitations

The conclusions and recommendations made in this report are made on the basis of the site specific ground investigations undertaken by SASL undertaken in July 2016. The ground investigation was designed by SASL and the results of the work should be viewed in the context of the range of data sources consulted and the information provided, the number of locations where the ground was sampled and the number of samples tested. No liability can be accepted for inaccuracies in the factual data, information in other data sources or conditions not revealed by the sampling or testing.

In addition to this SASL have recommended the use of third party data where appropriate, it is assumed that reliance on that data used in this report has been agreed by SASL.

2.0 BASELINE CONDITIONS

2.1 Site Description

The site is located at 28 Canfield Gardens, London, NW6 3LA located in the London Borough of Camden at approximate grid reference 526099, 184507. A site location plan is presented as Figure 1. The site currently comprises a four storey terraced residential house with an existing basement level along with front and rear garden areas.

Information provided by the Architect (Drawing ref. 28CanfieldBasement@Camden16052016) and assuming a 0.30m thick lower ground floor slab, it is assumed that the existing basement extends to a depth of 1.825mbgl (48.395mAOD).

With reference to the proposed section plan provided by Architecture Ltd. (ref. 10 – PROPOSED SECTIONS A-A Rev 00) the ground level of the site is approximated to be 50.22mAOD. Based on this level, it is understood that ground level at the site steps down from approximately 50.22mAOD at the front of the property to approximately 49.37mAOD at lowered rear garden level.

The ground in the surrounding area generally slopes slightly to the south along Broadhurst Gardens, approximately 150m north of the site, to the intersection between Greencroft and Fairhazel Gardens 150m south of the site.

The surrounding area is generally residential. Details of the buildings located adjacent to the site are described below in Table 1 and highlighted on Figure 2.

Table 1. Summary of Structures Surrounding the Site

Structure Name	Description	Estimated Height (m)	Distance from the site
No. 30 Canfield Gardens	4 storey terraced residential dwelling with basement	14	Connected by party wall, directly south west of the property.
No. 26 Canfield Gardens	4 storey terraced residential dwelling with basement	14	Connected by party wall, directly north east of the property.

2.2 Geology

The British Geological Survey (BGS) map of the area (North London, Sheet 256) indicates that the site is underlain by the London Clay Formation with no superficial deposits directly mapped at the site. However Head Deposits (Prodensity) are indicated to be present approximately 30m north-west of the site. These deposits have not been formally mapped by the BGS and have been interpreted from slope analyses and borehole data only.

Superficial Head Deposits generally comprise clays, silts, sands and gravels and were formed up to 3 million years ago in the Quaternary Period in a local environment previously dominated by subaerial slopes.

The London Clay Formation is detailed by the BGS to comprise blue clay which becomes brown when weathered with occasional bands of fine silty sand and nodular lumps of pyrite and selenite. These soils were formed approximately 34 to 56 million years ago in the Palaeogene Period in a local environment previously dominated by deep seas.

There are 7 No. historical BGS Boreholes close to the site (BGS references: TQ28SE514 to TQ28SE521) related to the construction of residential properties on Broadhurst Gardens approximately 100m to 200m north of the site in the 1950s. The boreholes indicate up to 4m thickness of Made Ground overlying deposits typical of the London Clay Formation. Groundwater seepages are generally recorded within Made Ground at depths of between 3 and 4mbgl.

2.3 Adjacent Ground Investigations

Review of the LBC planning portal indicates that several recent planning applications have been made for basement extensions at various properties within 150m of the site. Ground investigation works were carried out as part of the associated planning applications which are summarised in Table 2 below.

Table 2. Summary of Adjacent Basement Construction and Ground investigation

Site address (distance from site)	Planning application reference	Planning application status	Ground investigation details	Scope of works
No. 44 Canfield Gardens (110m south west from site)	2010/3616/P	Granted 23- 11-2010	Herts and Essex Investigation Ltd (Report Ref: MRS/9764A dated 18 th October 2010)	 2 No. cable percussive boreholes to 6m maximum depth; 7 No. hand excavated trial pits to 1.4m maximum depth to expose buildings foundations.
No. 50 Canfield Gardens (150m south west from site)	2012/2812/P	Granted 04- 03-2013	Land Science Ltd (Report Ref: LS048 dated from 2 nd of May 2012)	 2 No window sampler boreholes to 8m maximum depth; 4 No. hand excavated trial pits to 1.5m maximum depth to expose buildings foundations.
No. 29 Compayne Gardens (140m west from site)	2016/0320/P	Granted 17- 06-2016	Chelmer Site Investigation Ltd (Report Ref: FACT/6028 dated from 3 rd of November 2015)	 2 No. continuous flight auger boreholes to 8m maximum depth; 4 No. hand excavated trial pits to 2.17m maximum depth to expose buildings foundations.

The section below provides a brief summary of the findings of the above ground investigations although reference should be made to the original reports for full details of the findings. Approximate ground level elevations for the investigation works have been taken from spot heights on available OS maps.

2.3.1 Ground Conditions

The exploratory holes recorded ground conditions that were generally consistent with the geological records and known history of the area with between 0.40m to 1m of Made Ground overlying deposits typical of the London Clay Formation. A summary of the ground conditions encountered is presented in Table 3 below:

Table 3. Summary of Adjacent Ground Investigation

Strata	Depth (mbgl)		Maximum Thickness	Description			
	Тор	Bottom	(m)				
Fill/Made Ground	GL	0.4 to 1.0	1	Generally described as a dark brown, slightly sandy, silty CLAY, with occasional gravel, brick and clinker fragments			
London Clay Formation	0.4 to 1.0	6 to 8	8.5*	Generally described as grey and then blue firm becoming stiff, slightly sandy, silty CLAY, with partings of brown and orange silt and fine sand and occasional selenite crystals			

^{*}Maximum thickness of London Clay Formation not proven in any of the ground investigations

Groundwater was not generally encountered as part of the Ground Investigation works and the boreholes and trial pits remained essentially dry throughout. However a slight seepage was recorded within a trial pit at 50 Canfield Road at depth of 0.75 to 1.10mbgl.

The results of groundwater monitoring carried out following drilling is summarised below:

- No post field work groundwater monitoring data is provided within the Herts and Essex Report at No. 44 Canfield Gardens;
- At 50 Canfield Gardens, a monitoring standpipe was installed by Land Science to a depth of 5.00m and subsequently monitored on 19th April 2012 recording a water depth of 0.70mbgl within the London Clay Formation;
- At 29 Compayne Gardens monitoring standpipes were installed by Chelmer to 8.0m bgl in both
 of the boreholes drilled at the site, and water level readings were taken on 10th and 20th
 November 2015. During this period of monitoring, the water level in BH1 rose from 2.60m to
 1.26m bgl, whereas the water level in BH2 fell from 6.25m to 7.96m bgl.

2.3.2 In Situ and Laboratory Testing

In-situ and laboratory testing was carried out as part of the ground investigation works described above and the full results are contained in the relevant factual reports.

In summary, 28 No. samples of the London Clay formation were tested for Atterberg limits tests as part of the adjacent ground investigations. The results indicate Plasticity Index (PI) varying between 27 and 56%. The results are indicative of Class CI and CV according to the British Soil Classification System which are representative of fine grained clays of intermediate to very high plasticity and as such generally have a medium to high susceptibility to shrinkage and swelling movements with changes in moisture content, as defined by the NHBC Standards, Chapter 4.2.

Furthermore, 46 No. in-situ Hand Shear Vane (HSV) tests were undertaken within the London Clay Formation with recorded undrained shear strengths varying between 44 and 168kN/m² (generally increasing with depth), with an average of 107kN/m². The results are indicative of a medium to very high strength material at depth and are within the expected range for the London Clay Formation.

3.0 GROUND INVESTIGATION AND MONITORING

3.1 Records of Site Investigations

A site specific ground investigation was undertaken by Site Analytical Services Limited (SASL) in July 2016. The site works undertaken at the site comprised the following:

- 2 No. boreholes using hollow stem auger methods, one to 15m bgl at the front of the property (BH1) and one to 10m bgl at the rear garden of the property (BH2) with in-situ hand shear vane tests completed at regular intervals in both holes;
- · Collection of disturbed soil samples for geotechnical laboratory testing;
- Installation of 2 No. 50mm internal diameter groundwater monitoring wells in BH1 and BH2 to depths of 8.00m to 8.50m bgl respectively;
- Two rounds of groundwater level monitoring following the site works on 2nd September and the 22nd of November 2016.

The factual information describing the results of the investigation dated July 2016 is presented in Appendix B.

3.2 Ground Conditions

The boreholes recorded ground conditions that were generally consistent with the geological records, known history of the area and the findings from the nearby historical ground investigations with up to 2.40m thickness of Made Ground encountered overlying the London Clay Formation to the full depths of drilling of 12.0m bgl. A summary of the ground conditions encountered is presented in Table 4 below:

Table 4. Summary of the Site Specific Ground Investigation (2016)

Strata	Depth mbgl (mAOD)		Maximum Thickness	Description			
	Тор	Bottom	(m)				
Made Ground	GL (50.22)	0.5 to 2.4 (49.72 to 47.82)	2.4	Slate chippings over dark brown black slightly gravelly clayey SAND with fragments of brick and concrete rubble. Gravel is fine to coarse of sub-angular to sub-rounded flint. Soft to stiff brown silty sandy clay with fragments of brick and concrete rubble.			
London Clay Formation	0.5 to 2.4 (49.72 to 47.82)	10 to 15 (40.22 to 35.22)	12.6*	Stiff brown sandy silty CLAY overlying stiff brown blue sandy silty CLAY.			

^{*}Maximum thickness of London Clay Formation not proven

3.3 Groundwater

Groundwater was not encountered as part of the Ground Investigation works and the boreholes remained dry. Monitoring standpipes were installed in BH1 and BH2 to 8.00 and 8.50mbgl respectively, and water level readings were taken on the 2nd of September 2016, as summarised in Table 5 overleaf.

Table 5. Monitoring Summary

Date	Borehole ID	Ground Level	Response Zone			Groundwater Level	
		m AOD	m bgl	m AOD	(Strata)	m bgl	m AOD
02/09/2016	BH1	50.22	1.00 to 8.00	49.22 – 42.22	MG/LC	DRY	DRY
	BH2	50.22	1.00m to 8.50	49.22 - 41.72	LC	1.00	49.22
22/11/2016	BH1	50.22	1.00 to 8.00	49.22 - 42.22	MG/LC	5.78	44.44
	BH2	50.22	1.00m to 8.50	49.22 – 41.72	LC	0.53	49.69

The results of the ground water monitoring carried out at the site indicate that groundwater levels are above the maximum proposed excavation depth of 3.00mbgl (47.22m AOD) in BH2 at a maximum level of 49.69mAOD.

It should be noted that the above comments on groundwater conditions are based on two monitoring visits at the site undertaken in the September 2016 and relate to observations made at that time. Changes in the groundwater level could occur due to seasonal effects and also changes in drainage conditions. It is considered prudent to continue ground water monitoring for as long as possible prior to construction.

3.4 In-Situ and Laboratory Testing

The results of the laboratory and in-situ tests are presented within the SASL factual information dated from July 2016 and presented in Appendix B.

3.4.1 Atterberg Limit Tests

Atterberg Limit tests have been conducted on 3No. selected samples of the London Clay Formation. The results indicate moisture contents varying between 30% and 32% and Plasticity Index values (PI) of between 41% and 43% indicating materials of Class CH according to the British Soil Classification System. These are representative of fine grained CLAY of high plasticity and as such generally have a high susceptibility to shrinkage and swelling movements with changes in moisture content, as defined by the NHBC Standards, Chapter 4.2 (2015).

The Atterberg limit tests results have been plotted on a Casagrande plot, and are presented on Figure 3 of the report along with the results of the historical investigations.

3.4.2 Shear Vane Testing

In the London Clay Formation, in-situ shear vane tests were undertaken at regular depth intervals to assess the undrained shear strength profile of the materials. The testing has recorded undrained shear varying from 70kPa up to 130kPa which is the limiting value of the shear vane apparatus. This correlates to cohesive materials of medium to (at least) high strength which is in keeping with the historical laboratory testing results at the adjacent sites. The results of the shear vane tests are presented on Figure 4 along with the results of the historical investigations.

4.0 PREDICTION OF GROUND MOVEMENTS

4.1 Introduction

In connection with the planning requirements of the proposed basement construction from LBC a ground movement and damage assessment has been undertaken at the site. The purpose of this assessment is to determine the effects of the proposed basement construction upon the neighbouring structures.

The calculations provided in this ground movement and damage assessment are specific to the proposed development and the advice herein should be reviewed if the development proposals are amended.

4.2 Adjacent Properties

The properties or structures more likely to be affected by ground movements associated with the proposed basement construction are detailed on Figure 2 and summarised below:

- No. 30 Canfield Gardens located to the south west;
- No. 26 Canfield Gardens located to the north east;

4.3 Ground Model

The stratigraphic sequence utilised in this assessment is based on the site specific ground investigation undertaken by SASL at the site. This comprises Made Ground to a depth of 2.40m bgl overlying the London Clay Formation.

To increase accuracy of the analyses, the in-situ and laboratory results from the nearby historical boreholes described in section 2.3 have been used in combination with the site specific investigation. It should be noted that no liability can be accepted for inaccuracies in the factual data of the nearby historical investigation and it is understood that reliance on this data has been sought by SASL.

4.3.1 Model parameters

The method of Ground Movement Analyses undertaken requires soils stiffness parameters to be used. In accordance with BS8004:2015 section 4.3.1.6 'Soil Stiffness' it is acknowledged that both the drained and undrained stiffness moduli of soils (E', Eu) are highly strain dependent. The change in axial strain will directly influence the resultant stiffness of the soil, and in turn the stiffness of the soil will influence the strain exhibited.

Therefore in order to define a stiffness modulus applicable to the engineering problem considered, it is necessary to assess the magnitude of axial strain which the soil will be subjected to. In accordance with the recommendations made in BS8004:2015 the strain generally applicable to foundations design is in the range of 0.075 to 0.2%. The material stiffness values used for the analysis of the ground movements have been interpreted as follows.

Made Ground

The Made Ground was described in the borehole logs as clayey gravelly sand/soft to stiff brown silty sandy clay. For the purposes of this assessment, a conservative approach has been taken and the Made Ground will be treated as a soft clay. The Elastic modulus values for a soft clay typically range from 2 to 7MPa (short term, Eu) and 1 to 5MPa (long term, E') based on Table 11.7, Handbook of Geotechnical Investigation and Design Tables, Look (2007).

Poisson's ratio for soft clays are typically 0.50 (short term) and 0.40 (long term) based on Industrial Floors and Pavement Guidelines (1999).

In the absence of laboratory test results, a bulk unit weight of 16kN/m² has been adopted for design.

London Clay

Based on the maximum (i.e. most conservative) axial strain of 0.2% prescribed in BS8004:2015, the following correlation has been used to determine the Young's Modulus (Eu) of the London Clay. The relation has been taken from ICE manual of geotechnical engineering (2012), Volume II, chapter 53.7

and matches ratio of Eu/Cu at 0.2% axial strain recommended in Tomlinson (7th, 2001) based on works by Jardine et al. (1986):

$$Eu = 330Cu (kN/m^2)$$

The ratio of end of construction (Undrained) settlement to total settlement (fully drained) was taken as taken as 60% as specified in ICE manual of geotechnical engineering (2012), Volume II, chapter 53.6.

Therefore:

$$Eu = 200Cu (kN/m^2)$$

Utilising a plasticity index of 43% a drained (v') and undrained (v) poisson's ratio of 0.40 and 0.45 respectively were utilised based on Industrial Floors and Pavement Guidelines (1999). A plot of Young's modulus versus depth is presented as Figure 5 to this report.

A summary of the stiffness values utilised in this analysis is presented in Table 6 below based on the trendline presented on Figure 5:

i able 6. Soil Stra	tigraphy and	Stiffness	Parameters	Adopted

Strata	Level at top	Bulk Unit Weight Y	Short-term (undrained)			Long-term (drained)		
	(mbgl) (kN/m³)	Тор	Bottom	Poisson's Ratio (υ)	Тор	Bottom	Poisson's Ratio (v')	
		E _u kPa	E _u kPa	Ratio (0)	E' kPa	E' kPa	Ratio (0)	
Made Ground	GL	16	5000	5000	0.50	2500	2500	0.40
London Clay Formation	2.4	20	23000	43000	0.45	13000	26000	0.40

4.4 Basement Foundation and Load Case

With reference to development plans provided (Appendix A) and Martin Redston Associates Ltd load drawings (Appendix C), it is understood that the walls to No. 30 and No. 26 Canfield Gardens will be underpinned. The proposed lightwells to the front and back of the property will be constructed with a reinforced concrete retaining wall excavated and cast in 1m sections with a traditional hit and miss sequence.

It is understood that the retaining wall will be cast with an eccentric base section. The base will be placed against the un-excavated soil to prevent sliding and the top of the wall will be propped to resist overturning.

In the permanent condition, the loads of the structure above the newly constructed basement will be transferred to the underlying soils via a ground bearing raft foundation with an average unfactored gross Uniformly Distributed Load (UDL) of 95kN/m² being applied at the base of the foundation.

The assessment presented in Section 4.5 is specific to the construction sequence and load case described above and should be updated in accordance with any changes made to the proposed developments at the site.

4.5 Ground Movements inside the Area of the New Basement.

Following excavation of the basement area the soil at this level and along the boundary of the excavation will tend to heave upwards due to vertical stress relief. The magnitude and distribution of ground movements inside the excavated area are a function of the excavation size and shape along with the stiffness of the underlying soils.

The stress conditions and resultant settlement/heave have been assessed using the Boussinesq's method and geotechnical software PDISP. The software calculates vertical strains on the basis of the calculated stress changes and then integrated to obtain vertical movements.

Three stages of the redevelopment have been modelled as follows:

1. A first stage simulating excavation across the site with unloading due to the removal of soil. Assuming that no delays occur during the construction process, this stage has been simulated using short term soil parameters only (i.e. undrained conditions).

The proposed excavation levels are as follows (assuming existing ground level to be at 50.01 m AOD, or front garden level):

- 3.00m bgl (relative to existing external ground levels) within the main proposed basement footprint. The undrained removal of the overburden will therefore cause an unloading pressure of approximately -50.4kN/m² in this area;
- 1.50m below the formation level of existing lower ground floor (equal to 3.00mbgl relative to existing external ground levels) within the southern portion of the property. Unloading pressure is calculated as -26.4kN/m² in this area;
- 1.50mbgl within proposed lightwells. An unloading pressure is calculated as -24kN/m² for proposed lightwell footprints.

The PDISP analysis outputs for the basement (including main basement and southern basement) and lightwells are presented in Appendix D.

- 2. A second stage simulating the conditions at the end of the construction phase when the site is to be re-loaded with the pressures from the proposed structures has also been analysed.
 - The new loads are to be transferred via a ground bearing raft with a gross UDL of $95kN/m^2$. A nominal load of $5kN/m^2$ has been applied to the lightwells as these will not comprise load bearing structures. The PDISP analysis outputs at main basement and lightwells for this stage are presented in Appendix E.
- 3. A final third stage simulates a long term condition after construction, when the stress conditions within the soil have been allowed to equilibrate under the new pressures (i.e fully drained conditions). The PDISP analysis outputs at basement and lightwells for this stage are presented in Appendix F.

The elastic parameters for the soil have been chosen as appropriate for the short and long term conditions. Undrained parameters have been used for the short term analyses whilst fully drained parameters have been used for the long term assessments. The vertical boundary of the model has been fixed at 15 mbgl where the effective vertical stress due to foundation unloading decreases to approximately 20% of the effective overburden as required in EC7.

The results of the PDISP analysis indicate movement beyond the site boundaries as shown on the output models. The modelling is based on an unrestrained excavation and is therefore unable to take account of the mitigating effect of the retaining wall supporting the excavation sides, which in reality will combine to restrict these movements within the basement excavation. The movements predicted at or just beyond the site boundaries are unlikely to be fully realised and should not therefore have a detrimental impact upon any nearby structures as long as temporary works measures and design are robust in nature.

PDISP Results

The PDISP results were presented in Table 7 with the results detailed in Appendix C to Appendix J. Simplified construction stages have therefore been considered taking into account the net ground displacements at formation level.

Table 7: PDISP results

Load case	Settlement/Heave (mm)*	
Load Case	Basement	Lightwells
Excavation (Undrained)	-7	-5
Re-loading (Drained)	<u>22</u>	<u>12</u>
Net Movement (Drained)	<u>15</u>	<u>7</u>

^{*}Heave is denoted by -vet sign convention

The load cases in Table 7 have been modelled in isolation without consideration to the combined and/or net effects from both heave and settlement (i.e. interaction between load cases).

Conclusions and recommendations

The results show that initially upon excavation and before construction the ground is expected to heave upwards by a maximum of 7mm in the basement and 5mm in the lightwells. In the long term, a maximum settlement of 15mm is expected in the basement, whilst the ground underlying the lightwells is expected to settle by 7mm.

PDISP uses individual layer properties to calculate the displacements resulting from applied stresses. The heave values are considered to be overestimated and therefore conservative. It should be noted, Bowles in his text (Foundation Analysis and Design-Fifth Edition, 1995, page 542) states that "In general, where heave is involved, considerable experience and engineering judgement are necessary in estimating probable soil response, for currently there are no reliable theories for the problem".

Final designs for the basement retaining walls, basement slabs and internal load-bearing basement walls and columns should be designed to support ground movements. These movements should be taken into account particularly at party walls where additional loadings are proposed. Any proposed drainage system or pipe works within the vicinity should be designed to accommodate the predicted movements.

4.6 Ground Movements Outside the Area of the New Basement.

4.6.1 Approach and assumptions

Ground movements due to basement excavations are typically estimated based on guidance given in the CIRIA publication C580 (now updated as CIRIA C760). This is based on the behaviour of deep excavations supported by embedded walls at numerous sites in the London area.

As detailed in section 4.4 the main basement box is to be constructed using an underpin type sequence towards No. 30 and No. 26 Canfield Gardens. The proposed lightwells at the front and back of the property will be constructed with a reinforced concrete retaining wall excavated and cast in 1m sections with a traditional hit and miss sequence.

For conservatism the excavation (including the existing lower ground floor) and lightwells have been modelled together as excavations from ground level to the maximum proposed excavation depth (3.0m) below the property. The CIRIA C760 ground movement curves for "excavation in front of a high stiffness wall in stiff clay" along with "installation of contiguous bored pile wall In stiff clay" (to an assumed pile toe depth of 3 m bgl) have been used together in order to replicate the excavation and underpinning.

It is understood that the walls will be propped before significant excavation is undertaken, ensuring that the wall behaviour in response to excavation is stiff. Good quality workmanship and attention to the detailed design during the excavation sequence is assumed in the predictions given in this report.

4.6.2 Results

Ground movements have been analysed using XDISP and a building damage assessment has been undertaken based on the results of the predicted ground movements. Contours of vertical and horizontal ground movement and full tabular output of the analysis are presented in Appendix G. Summary tables are provided in Section 4.7 below.

4.7 Building Damage Assessment

4.7.1 General

The building damage assessment was carried out on the relevant adjacent structures, as detailed in Figure 6 and summarised below in Table 8.

Table 8: Summary of Structures

Structure	Structure ID (As specified on Figure 6)	Assumed structural Height (m)
	Wall 1	14
	Wall 2	14
No. 30 Canfield Gardens	Wall 3	14
	Wall 4	14
	Wall 5	14
	Wall 6	14
No. 26 Canfield Gardens	Wall 7	14
	Wall 8	14

4.7.2 Results

Table 9 presents the damage assessments for the structures listed above. The table also presents the CIRIA C580 approximate crack widths corresponding to the damage categories. The full tabular output for the basement and sub-basement is presented as Appendix G.

Table 9: Ground Movement Summary

Structure ID (Figure 6)	Maximum settlement (mm)	Maximum Tensile Strain (%)	Minimum Radius of Curvature (m)	Damage Category ⁽¹⁾	Approximate Crack Width (mm) (CIRIA C580)
Wall 1	1.75	0.045	4384	Negligible	<0.1mm
Wall 2	2.27	0.026	82676	Negligible	<0.1mm
Wall 3	3.13	0.064	1620	Very Slight	<1mm
Wall 4	2.39	0.000	92517	Negligible	<0.1mm
Wall 5	3.14	0.063	1812	Very Slight	<1mm
Wall 6	2.51	0.037	3219	Negligible	<0.1mm
Wall 7	4.10	0.025	1048	Negligible	<0.1mm
Wall 8	3.03	0.060	475	Very Slight	<1mm

⁽¹⁾ After Burland et al, 1977, Boscardin and Cording, 1989; and Burland, 2001

Based on these predicted ground movements, the properties surrounding the site are not expected to suffer any damage greater than CIRIA C580 Damage Category 1 (Very Slight).

4.8 Summary of Ground Movement Assessment and Advice on Further Monitoring

Providing that good workmanship and construction sequences are used along with appropriate support during excavations, and groundwater management, the proposed basement construction is unlikely to

cause significant damage to the surrounding structures. Based on the predicted ground movements, the adjacent structures are not expected to suffer any damage greater than CIRIA C580 Damage Category 1 (Very Slight).

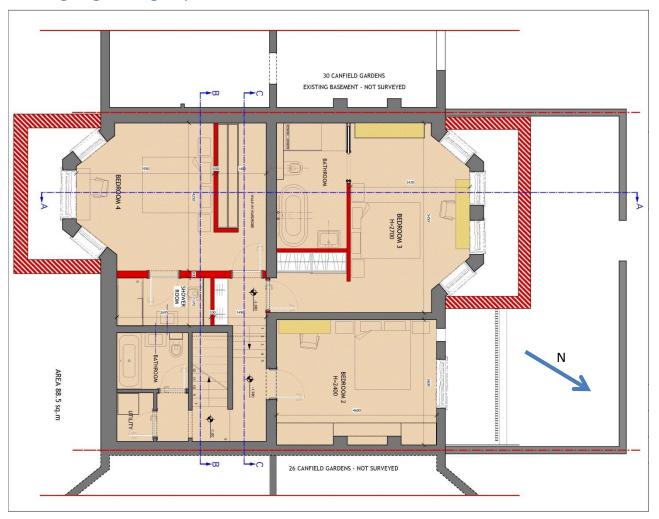
Despite the predicted low level of damage, it is recommended that movement monitoring of the walls to the neighbouring buildings is carried out and a ground movement sensitivity monitoring plan is set out at design stage which should include a movement monitoring strategy, instrumentation and action plans. More specifically trigger levels on movements will need to be defined and this should be done by way of precise levelling or reflective survey targets being installed at the neighbouring buildings. The temporary and permanent works will need to be designed to limit eventual movement.

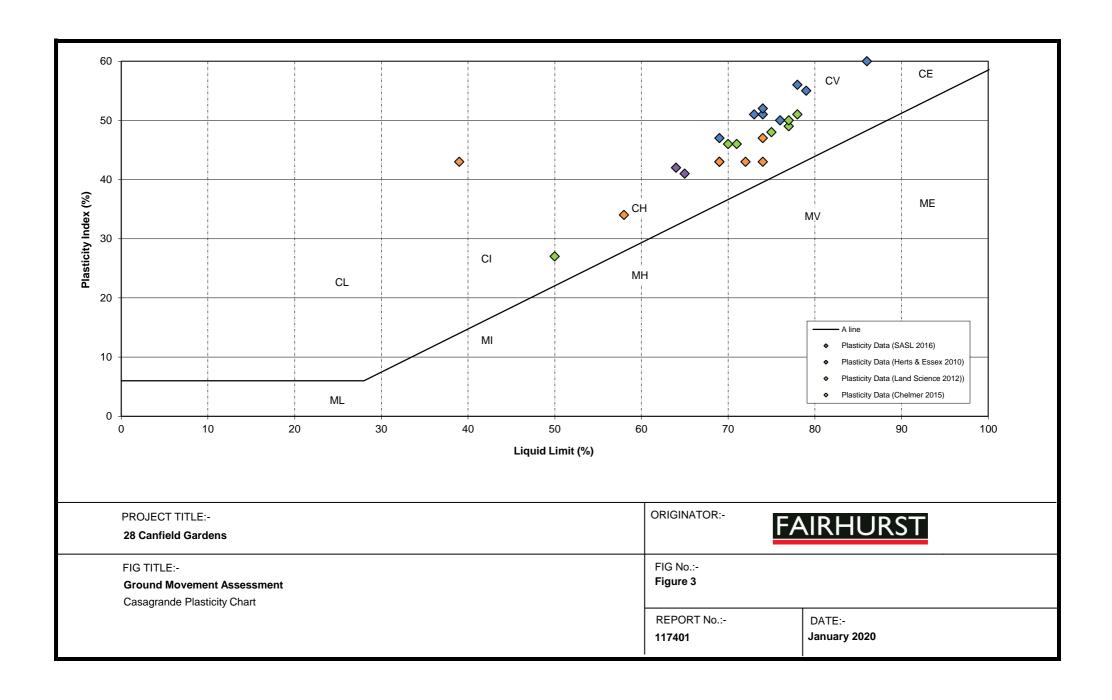
Open excavations and underpinning, even in cohesive materials, can result in significant ground movements when not properly retained/managed. The magnitude of movement is almost entirely a function of the standard of the workmanship which is assumed to be of sufficient quality in this analysis.

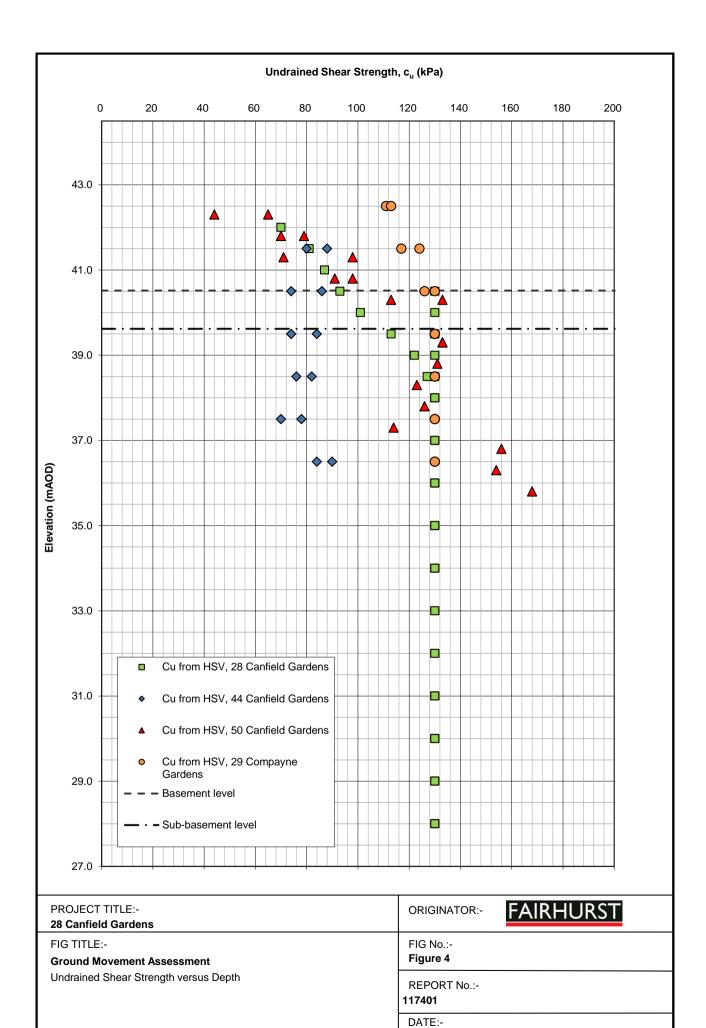
Additionally, observations made during post ground investigation ground water monitoring, indicate that the groundwater levels at the site is likely to be at c. 0.53mbgl (41.62mAOD), perched within the Made Ground overlying the London Clay Formation which will be above the depths of excavation. The chosen contractor should have a comprehensive plan in place to deal with groundwater when encountered to ensure stability of the excavations.

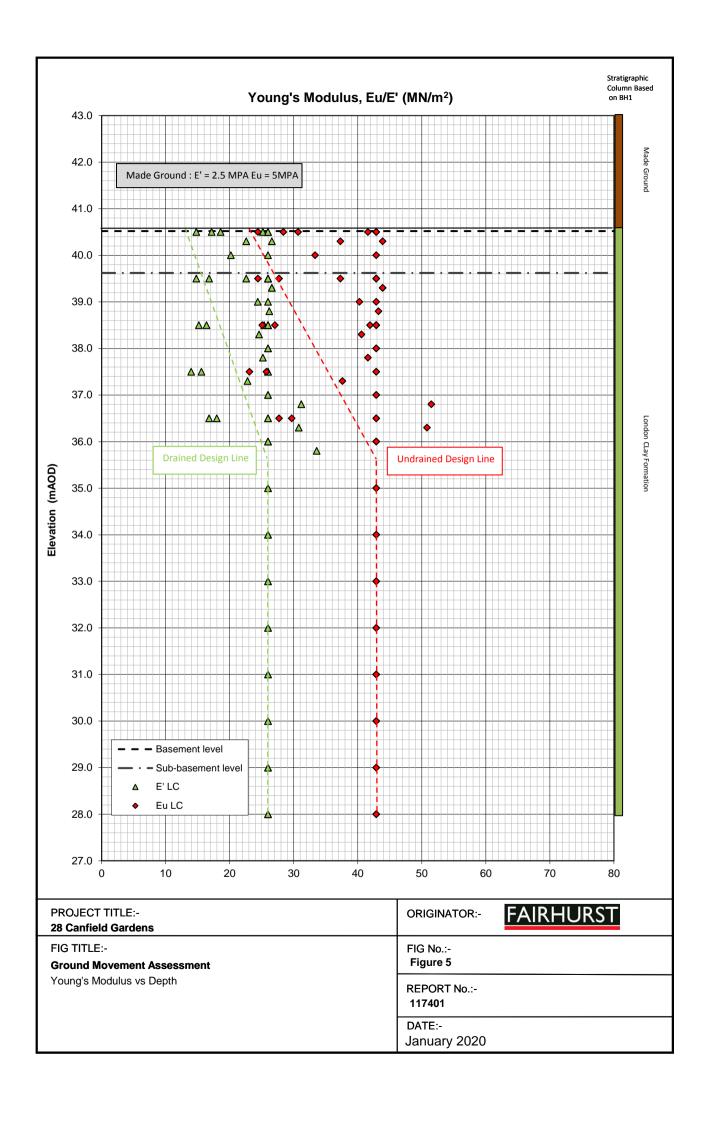
It is recommended to continue monitoring the ground water levels prior to construction works, to provide a better understanding of the ground water conditions at the site.

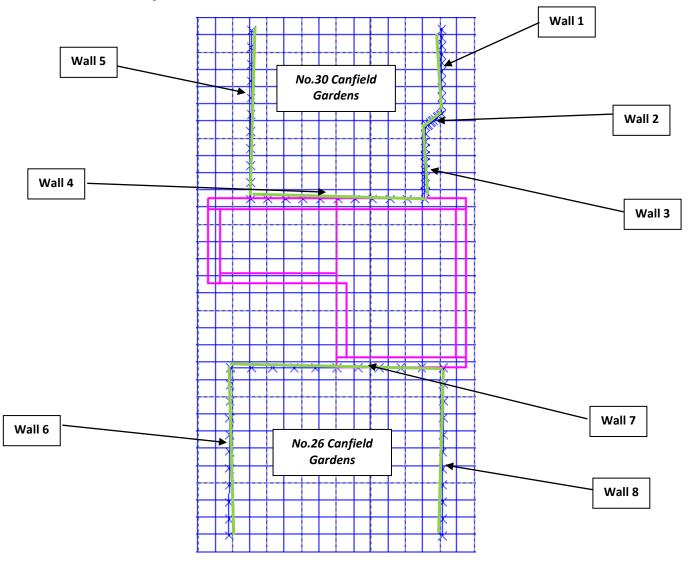
FAIRHURST


Figure 1 – Site Location Plan




Copyright. Ordnance Survey 2016


Figure 2 – Site Plan Showing Neighbouring Properties to the Site



January 2020

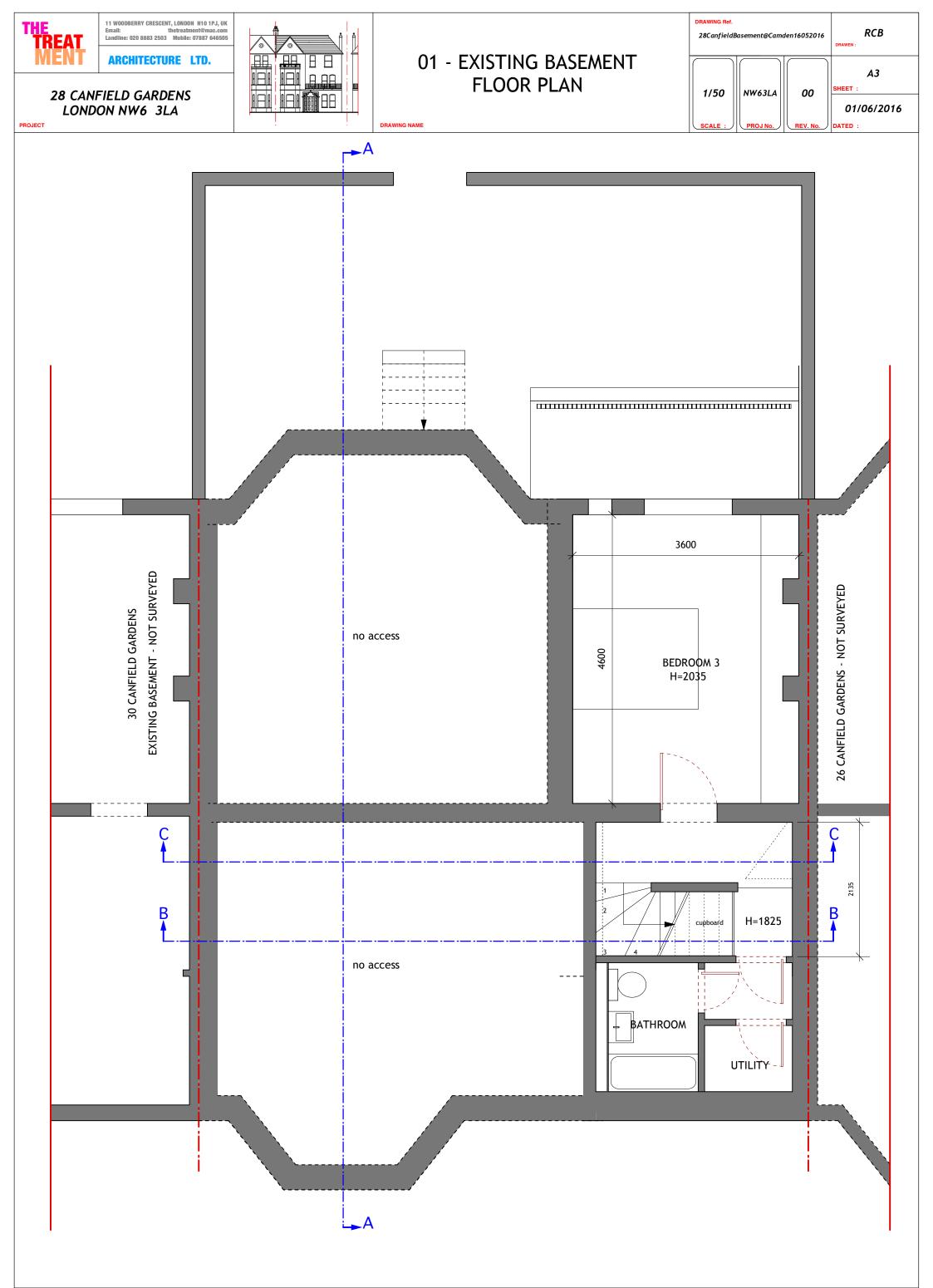
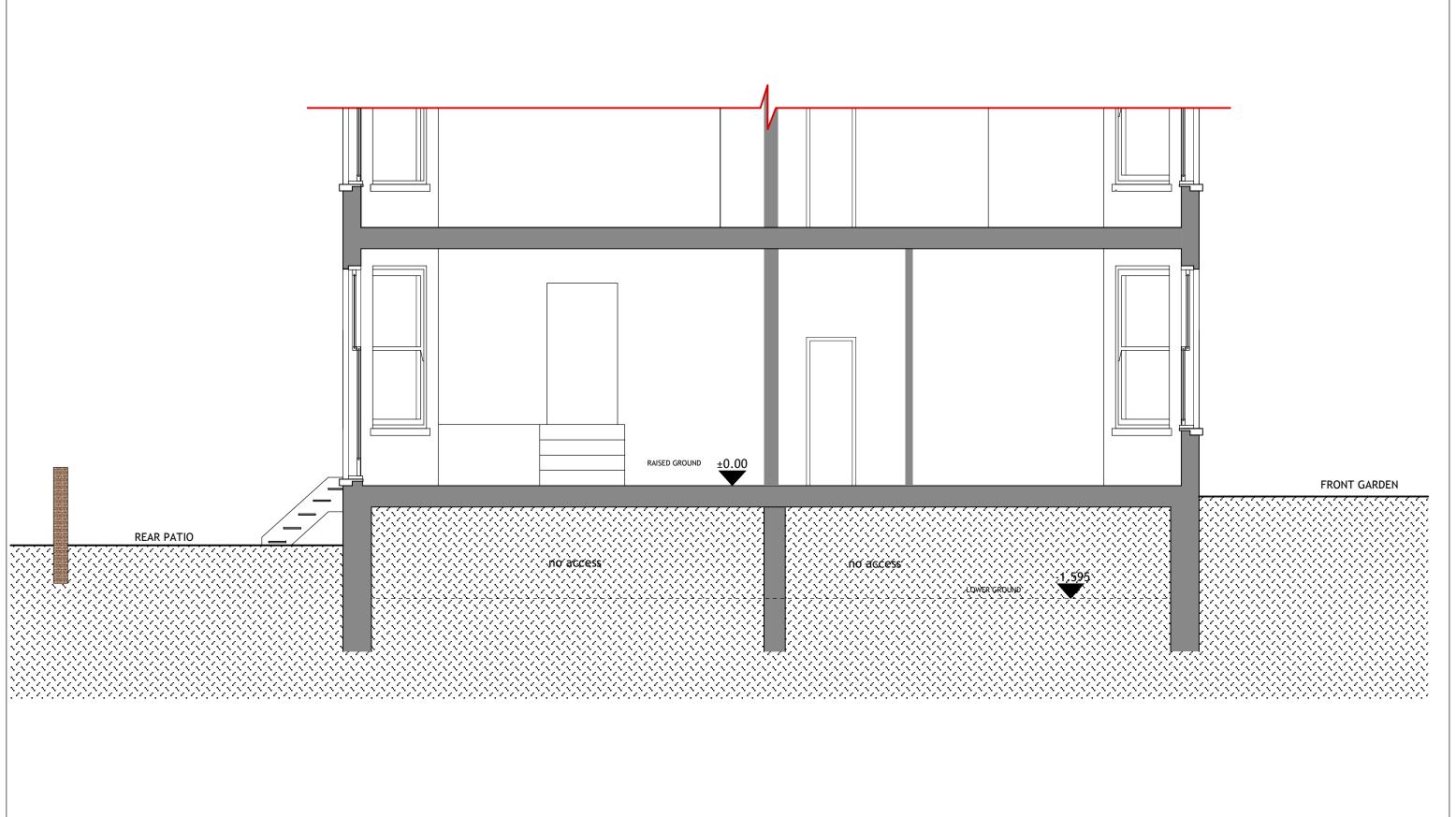
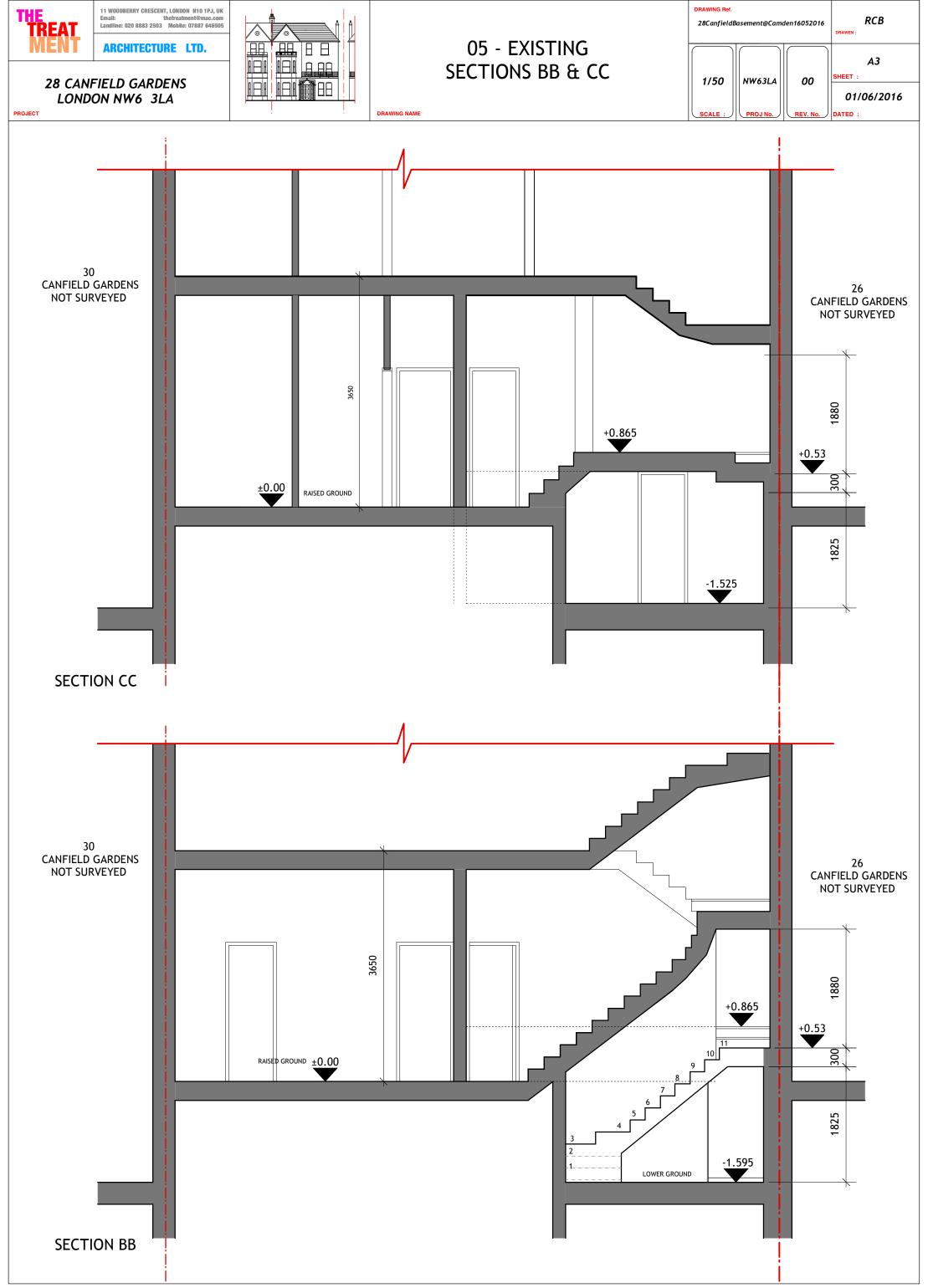

FAIRHURST

Figure 6 – Wall Plan used for XDISP Analysis

Appendix A – Architects Existing and Proposed Drawings

11 WOODBERRY CRESCENT, LONDON N10 1PJ, UK Email: thetreatment@mac.com Landline: 020 8883 2503 Mobile: 07887 646505


ARCHITECTURE LTD.


28 CANFIELD GARDENS LONDON NW6 3LA

RCB 28CanfieldBasement@Camden16052016 A3 NW63LA 00 01/06/2016 LEGENDE:

04 - EXISTING SECTION AA 1/50

11 WOODBERRY CRESCENT, LONDON N10 1PJ, UK Email: thetreatment@mac.com Landline: 020 8883 2503 Mobile: 07887 646505

ARCHITECTURE LTD.

28 CANFIELD GARDENS

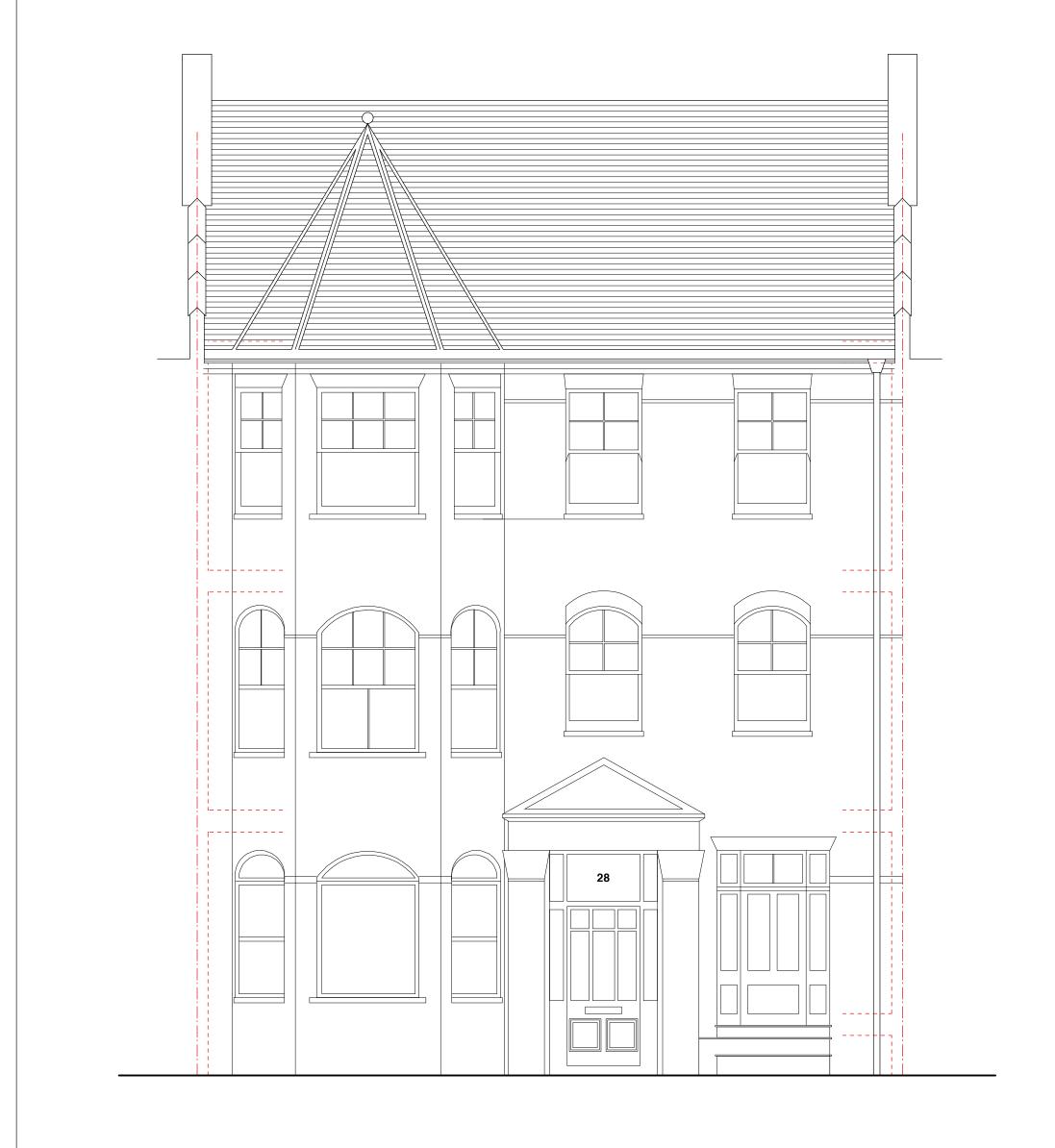
LONDON NW6 3LA

06 - EXISTING FRONT ELEVATION

DRAWING Ref.

28CanfieldBasement@Camden16052016

RCB


DRAWEN:

A3

SHEET:

01/06/2016

DRAWING NAME

11 WOODBERRY CRESCENT, LONDON N10 1PJ, UK Email: thetreatment@mac.com Landline: 020 8883 2503 Mobile: 07887 646505

ARCHITECTURE LTD.

28 CANFIELD GARDENS

LONDON NW6 3LA

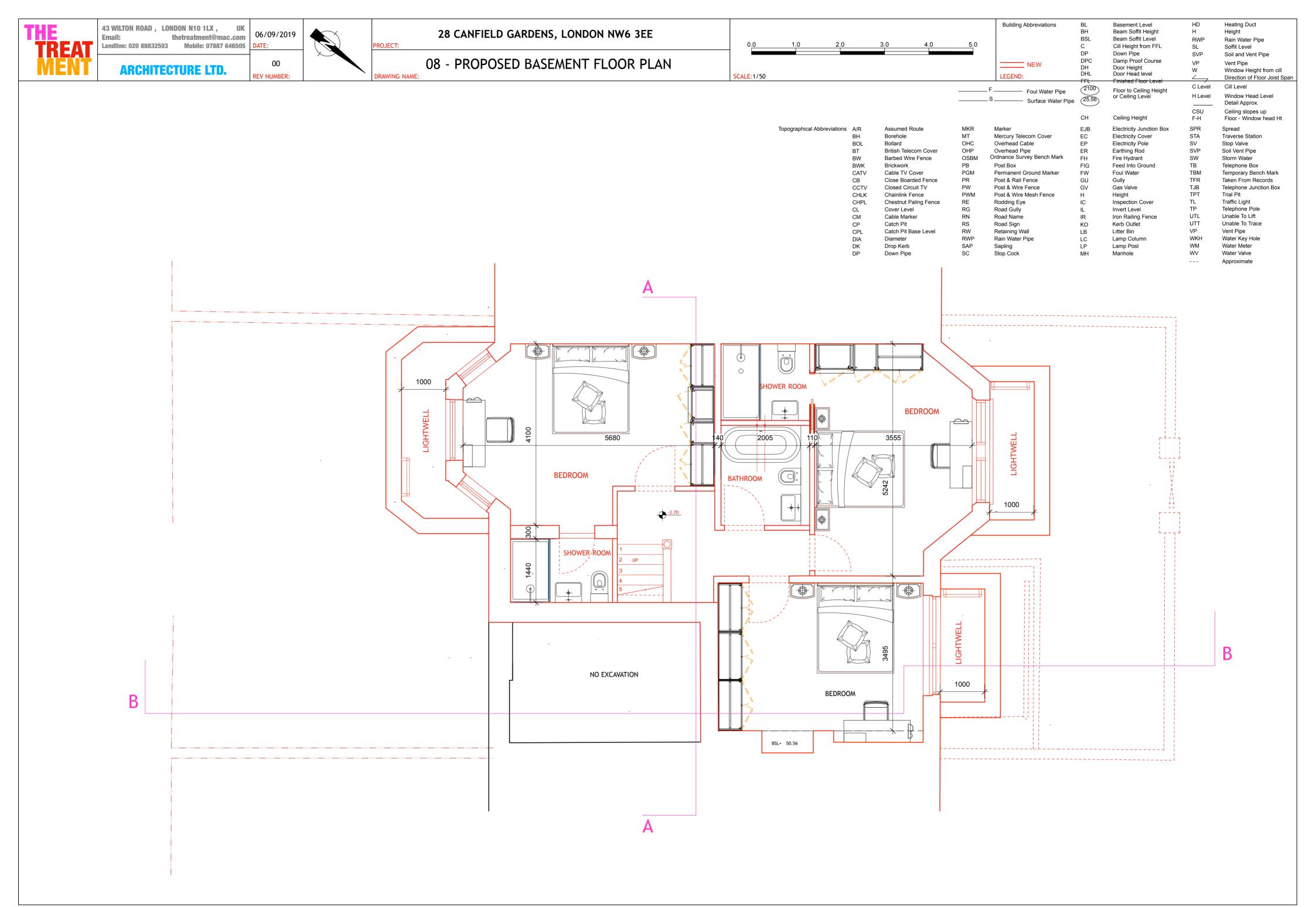
07 - EXISTING REAR ELEVATION

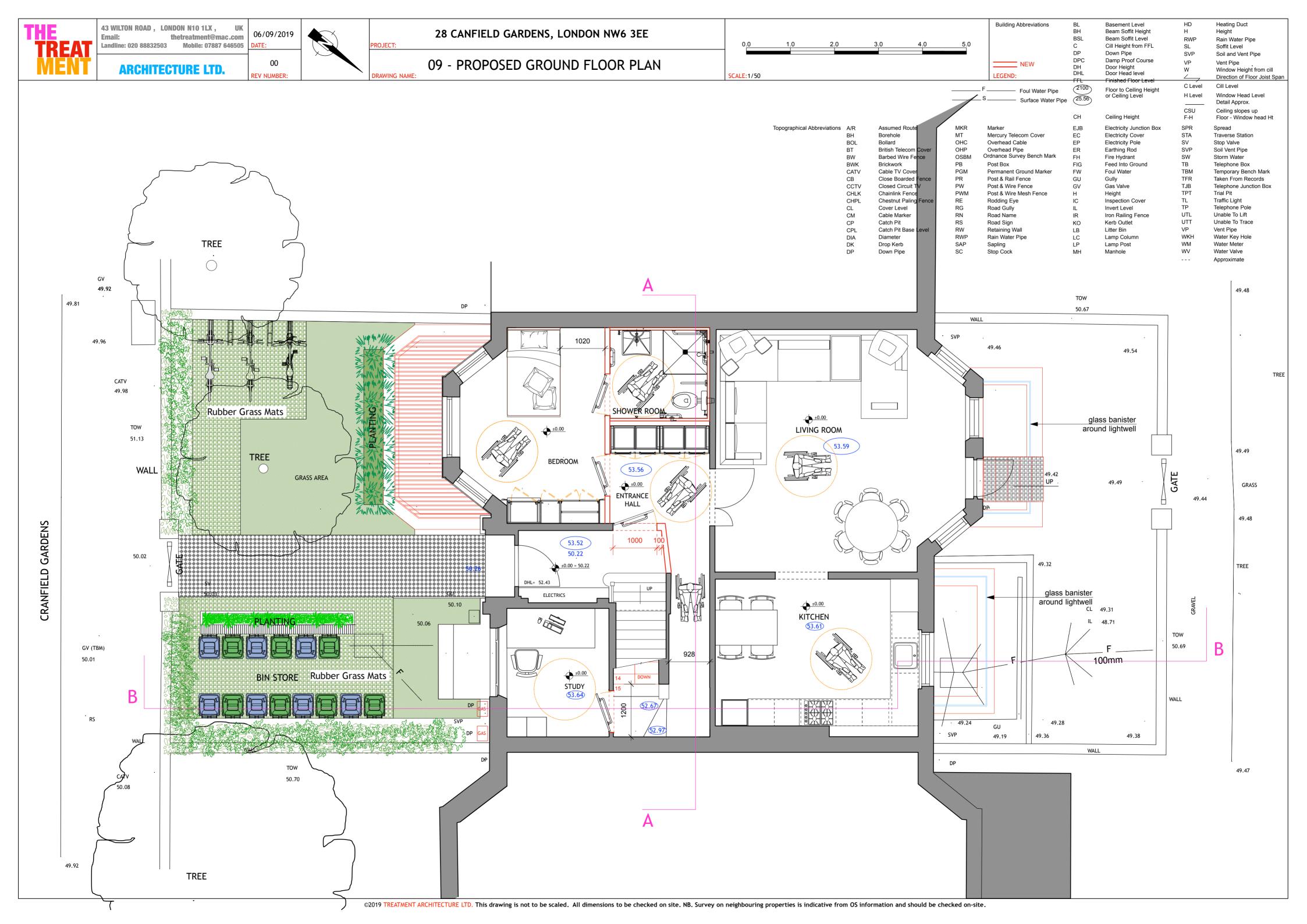
DRAWING Ref.

28CanfieldBasement@Camden16052016

RCB

DRAWEN:


A3

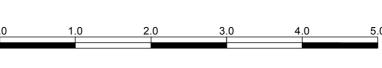

SHEET:

01/06/2016

DRAWING NAME

43 WILTON ROAD, LONDON N10 1LX, Landline: 020 88832503

06/09/2019 thetreatment@mac.com Mobile: 07887 646505


ARCHITECTURE LTD.

PROJECT:

28 CANFIELD GARDENS, LONDON NW6 3EE

SCALE:1/50

Topographical Abbreviations A/R

Building Abbreviations

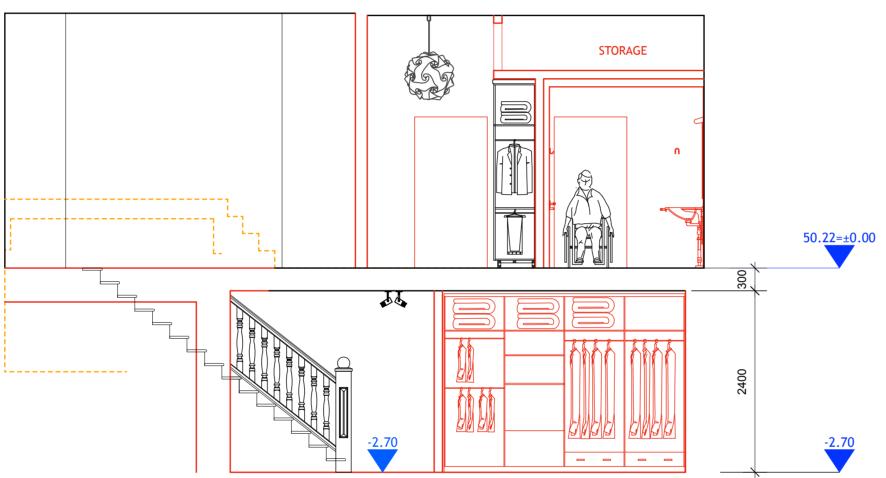
Basement Level Beam Soffit Height HD BH BSL Beam Soffit Level Cill Height from FFL Down Pipe SVP Damp Proof Course Door Height Door Head level DH DHL

Finished Floor Lev

Height Rain Water Pipe Soffit Level Soil and Vent Pipe Vent Pipe Window Height from cill Direction of Floor Joist Span

Heating Duct

Approximate

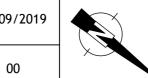

10 - PROPOSED SECTIONS A-A 00 **REV NUMBER:** DRAWING NAME:

LEGEND: (2100) _____ F ____ Foul Water Pipe Surface Water Pipe (25.56)

Floor to Ceiling Height or Ceiling Level H Level Window Head Level Detail Approx. CSU F-H Ceiling slopes up CH Ceiling Height Floor - Window head Ht SPR Marker Electricity Junction Box MT Mercury Telecom Cover EC **Electricity Cover** STA Traverse Station OHC Overhead Cable EP Electricity Pole SV Stop Valve OHP Overhead Pipe SVP Soil Vent Pipe Earthing Rod Ordnance Survey Bench Mark FH OSBM SW Fire Hydrant Storm Water Telephone Box Post Box FIG Feed Into Ground TB FW TBM Temporary Bench Mark PGM Permanent Ground Marker Foul Water

Borehole Bollard BOL BT British Telecom Cover Barbed Wire Fence BW BWK Brickwork CATV Cable TV Cover GU GV Close Boarded Fence Post & Rail Fence TFR Taken From Records CCTV Closed Circuit TV Post & Wire Fence Gas Valve TJB Telephone Junction Box Post & Wire Mesh Fence CHLK Chainlink Fence Height TPT CHPL Chestnut Paling Fence RE Rodding Eye Inspection Cover Traffic Light CL CM CP Road Gully Telephone Pole Cover Level Invert Level UTL Unable To Lift Road Name Iron Railing Fence Cable Marker UTT Unable To Trace Catch Pit RS Road Sign Kerb Outlet Catch Pit Base Level VP Vent Pipe Retaining Wall Litter Bin LC LP WKH RWP Rain Water Pipe Lamp Column Water Key Hole Drop Kerb SAP Sapling Lamp Post WM Water Meter SC Down Pipe Stop Cock Manhole WV Water Valve

UPPER FLOORS NOT SURVEYED


DATUM 46.00m

43 WILTON ROAD, LONDON N10 1LX, thetreatment@mac.com Mobile: 07887 646505 Landline: 020 88832503

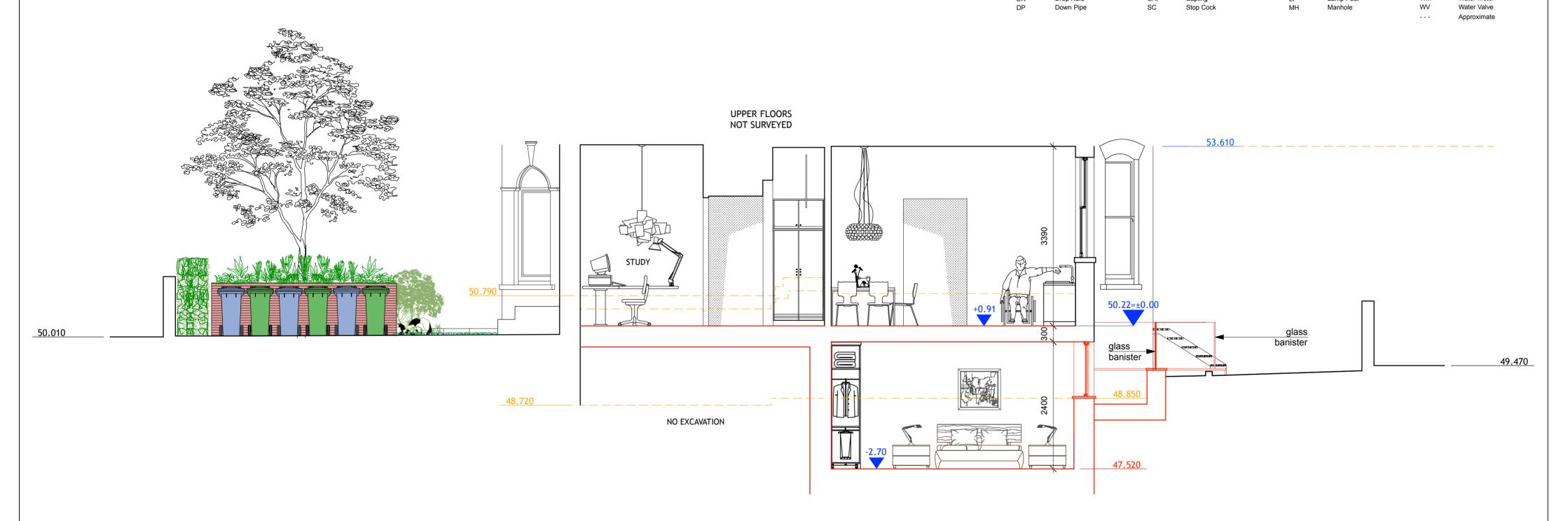
ARCHITECTURE LTD.

06/09/2019

REV NUMBER:

28 CANFIELD GARDENS, LONDON NW6 3EE PROJECT:

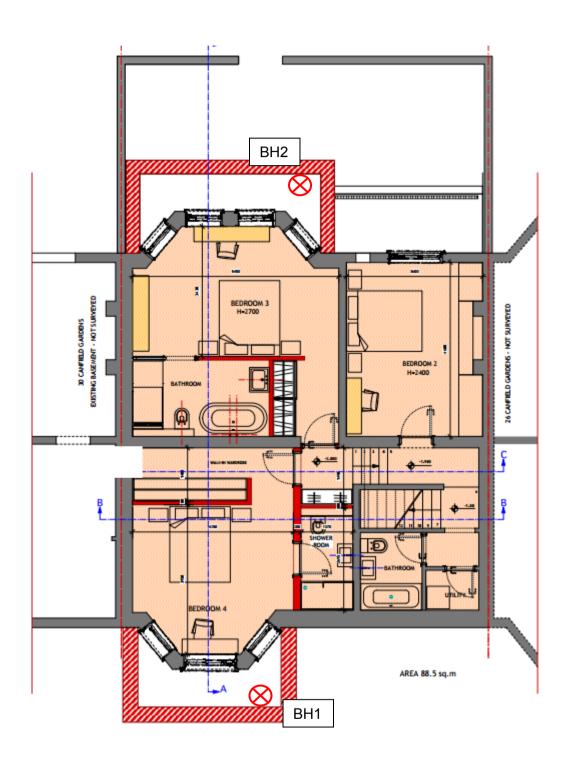
DRAWING NAME:


11 - PROPOSED SECTION B-B

SCALE:1/50

Basement Level Beam Soffit Height **Building Abbreviations** Heating Duct HD BH BSL Height Beam Soffit Level Rain Water Pipe Cill Height from FFL Soffit Level Down Pipe Soil and Vent Pipe Damp Proof Course Vent Pipe Door Height Door Head level DH DHL Window Height from cill LEGEND: Direction of Floor Joist Span

(2100)


Floor to Ceiling Height or Ceiling Level H Level Window Head Level Surface Water Pipe (25.56) Detail Approx. CSU F-H Ceiling slopes up CH Ceiling Height Floor - Window head Ht SPR Topographical Abbreviations A/R Electricity Junction Box Borehole MT Mercury Telecom Cover EC **Electricity Cover** STA Traverse Station Bollard OHC Overhead Cable EP Electricity Pole SV Stop Valve BOL ER FH FIG FW OHP SVP Soil Vent Pipe BT British Telecom Cover Overhead Pipe Earthing Rod Ordnance Survey Bench Mark Barbed Wire Fence OSBM SW BW Fire Hydrant Storm Water Telephone Box BWK Post Box Feed Into Ground TB Brickwork CATV TBM Temporary Bench Mark Cable TV Cover PGM Permanent Ground Marker Foul Water Close Boarded Fence Post & Rail Fence Taken From Records CCTV Closed Circuit TV Post & Wire Fence Gas Valve Telephone Junction Box CHLK Chainlink Fence Post & Wire Mesh Fence Height TPT CHPL Chestnut Paling Fence Rodding Eye Inspection Cover Traffic Light CL CM CP Telephone Pole Cover Level Road Gully Invert Level Iron Railing Fence UTL Unable To Lift Road Name Cable Marker UTT Unable To Trace Catch Pit Road Sign Kerb Outlet Catch Pit Base Level Vent Pipe Retaining Wall Litter Bin WKH RWP Rain Water Pipe Lamp Column Water Key Hole Drop Kerb SAP Lamp Post WM Water Meter

DATUM 46.00m

Appendix B – Site Analytical Service Limited Site Investigation Data

11 WOODBERRY CRESCENT, LONDON NIG 1FJ UK Email Betreamenté wac.com Landéne: 020 8883 2503 Mobile: 07867 646505 THE TREAT MENT RCB ARCHITECTURE LTD. 01 - EXISTING BASEMENT A3 FLOOR PLAN 00 1/50 28 CANFIELD GARDENS NW63LA 01/06/2016 LONDON NW6 3LA LIFF FLOORSOADS EXISTING BASEMENT - NOT SURVEYED 26 CANFIELD GARDENS - NOT SURVEYED BrannorT 30 CANFIELD GARDENS no access BEDROOM 3 H=2035 no access BATHROOM

Continuous FLIGHT 100mm cased to 0.00m Collect MARTIN REDSTON Martin REDSTON Number of the collection TG260845 TG260	hole ber
Depth (m) Sample / Tests Casing Depth (m) Field Records Level (mOD) Depth (m) (Thickness) 0.25 D1 0.70 Depth (m) Depth (m) Description Legel (mOD) MADE GROUND: Slate chippings over dark brown black slightly gravelly clayey sand with fragments of brick and concrete rubble. Gravel is fine to coarse of sub-angular to sub-rounded flint.	
0.25 D1 MADE GROUND: Slate chippings over dark brown black slightly gravelly clayey sand with fragments of brick and concrete rubble. Gravel is fine to coarse of sub-angular to sub-rounded flint.	e t /2
0.25 D1 concrete rubble. Gravel is fine to coarse of sub-angular to sub-rounded flint.	Water
2.50 D7 2.50 V3 130+ 3.00 D8 3.00 V4 130+ 3.50 D9 3.50 V5 130+ 4.00 D10 4.00 V6 130+ 4.50 D11 4.50 D11 4.50 D12 5.00	
3.50 D9 3.50 V5 130+ 4.00 D10 4.00 V6 130+ 4.50 D11 4.50 V7 130+ 5.00 D12 5.00 V8 130+	₩
4.50 V7 130+ 5.00 D12	× × × × × × × × × × × × × × × × × × ×
	× × ·
6.00 D13	×
7.00 7.00 V10 130+ Stiff, brown blue sandy silty CLAY.	×
7.00 P14 P10 130+ Stiff, brown blue sandy silty CLAY. 8.00 D15 P11 130+ P15	
9.00 D16 V12 130+	×
Remarks D= Disturbed Sample M= Makintosh Probe - Blows/Penetration (mm) V= Vane Test - Result in kPa Scale (approx) By	
Groundwater was not encountered during boring/excavation Excavating from 0.00m to 1.00m for 1 hour. Figure No. 1:50 EV Figure No.	

Site	Analy	ytic	al S	Servic	es l	Ltd.	Site 28 CANFIELD GARDENS,LONDON,NW6 3LA		Boreho Numbo	er
Boring Met CONTINUO AUGER			Diameter	r ed to 0.00m	Ground	Level (mOD)	Client MARTIN REDSTON		Job Number 16255	
		Locatio	on Q260845		Dates 21	1/07/2016	Engineer		Sheet 2/2	
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
10.00 10.00	D17 V13 130+					10.00	Stiff, brown blue sandy silty CLAY.		× × × × × × × × × × × × × × × × × × ×	
11.00 11.00	D18 V14 130+					(5.00)			X X X	
12.00 12.00	D19 V15 130+					(5.00)			x x x x x x x x x x x x x x x x x x x	
13.00 13.00	D20 V16 130+								x x x x x x x x x x x x x x x x x x x	
14.00 14.00	D21 V17 130+								X X X X X X X X X X X X X X X X X X X	
15.00	D22 V18 130+					15.00	Complete at 15.00m			
Remarks D= Disturbe M= Makinto	sh Probe - Blows/Pe	netration (mm)					Scale (approx)	Logge By	d
Groundwate	st - Result in kPa er was not encounter	red during	boring/ex	cavation				1:50	EW	
								Figure N 1625	lo. 536.BH!	

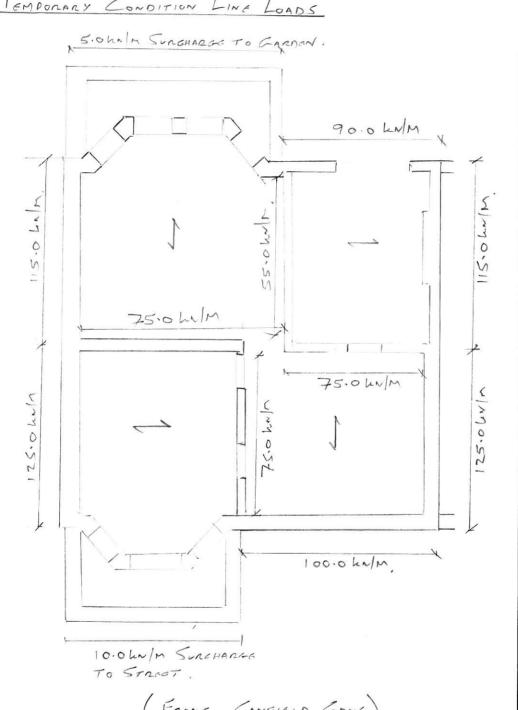
Site	e Analy	/tic	al S	Servic	es l	Ltd.	Site 28 CANFIELD GARDENS,LONDON,NW6 3LA	Borehole Number BH2
Boring Met		Casing	Diamete			Level (mOD)	Client MARTIN REDSTON	Job Number 1625536
		Locatio	o n Q260845		Dates 21	1/07/2016	Engineer	Sheet 1/1
Depth (m)	Sample / Tests	Casing Depth (m)	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend Nate
0.25 0.50 0.75 1.00 1.00 1.50 1.50 2.00 2.50 2.50 3.00 3.50 3.50 4.00 4.50 4.50 4.50 5.00 6.00 7.00 7.00 7.00 9.00 9.00	D1 D2 D3 D4 V1 70 D5 V2 81 D6 V3 87 D7 V4 93 D8 V5 101 D9 V6 113 D10 V7 122 D11 V8 127 D12 V9 130+ D13 V10 130+ D14 V11 130+ D15 V12 130+ D16 V13 130+ D16 D17					0.05 0.07 (0.43) 0.50 0.60	MADE GROUND: Concrete slab MADE GROUND: Thin layer of concrete MADE GROUND: Black silty sandy clay with fragments of brick and concrete rubble. MADE GROUND: Brown silty sandy clay with fragments of brick and concrete rubble. Firm becoming stiff, brown sandy silty CLAY Stiff, dark blue grey sandy silty CLAY with occasional gypsum crystals.	
Remarks	V14 130+					10.00	Scale	Logged
M= Makinto V= Vane Te	ed Sample osh Probe - Blows/Pe ost - Result in kPa er was not encounter from 0.00m to 1.00m			cavation			(approx 1:50	EW
⊨xcavating	rrom 0.00m to 1.00m	itor 1 houi	r.				Figure	No. 5536.BH2

Site		nal	ytic Dimensi	cal Servi	ces	Lto	. k	Site 28 CANFII	ELD GAF	RDENS,L	ONDON	NW6 3LA	4	1	Borehole Number BH1
Single Ins				al Diameter of Tube [A] = 5 eter of Filter Zone = 100 mr	0 mm n			Client MARTIN F	REDSTO	N				1	Job Number 1625536
			Location TQ26		Ground	Level (m	iOD)	Engineer	Engineer						Sheet 1/1
-egend [⊗]	Instr (A)	Level (mOD)	Depth (m)	Description		Groundwater Strikes During Drilling									
				Bentonite Seal	Date	Time	Depth Struck (m)	Casing Depth (m)	Inflo	v Rate	5 min	Read		20 min	Depth Sealed (m)
	900 Bases		1.00												
x										01		<u> </u>			
×								Start of S		er Obse	rvations	During D		.:64	
× ×				Slotted Standpipe	Date	Time	Depti Hole	1	Water Depth (m)	Water Level	Time	Depth Hole	Casing Depth (m)	Water Depth (m)	Water
× ×				Siotted Standpipe			(m)	(m)	(ṁ)	(mOD)		(m)	(ṁ)	(ṁ)	(mOD)
×															
× ×															
× × ×															
× × ×								Instru	ıment Gı	roundwa	iter Obse	ervations			
×			8.00		Inst.	[A] Type	: Slotte	ed Standpip	е						
× ×				Bentonite Seal		Ins	trumen	t [A]				Rema			
× ×			9.00		Date	Time	Depti (m)	h Level (mOD)				Kema	arks		
×															
<u>×</u> ×															
x															
x				General Backfill											
x															
<u>×</u>															
×															
× ×															
× × ×			15.00												
Remarks	cover set	in cement	<u> </u>	I		1	1								

Sit	te	A (nal	ytic	al Servi	ces	Lto	ı.	Site 28 CANFI	ELD GAF	RDENS,L	ONDON	,NW6 3L	A		Borehole Number BH2
Installa Single		n Type tallation		Dimension Interna Diame	ons al Diameter of Tube [A] = 5 eter of Filter Zone = 100 mr	0 mm n			Client MARTIN F	REDSTO	N				1	Job Number 1625536
				Location TQ260		Ground	Level (m	iOD)	Engineer							Sheet 1/1
.egend	Water	Instr (A)	Level (mOD)	Depth (m)	Description			1	G	Groundwater Strikes During Drilling						
								Depth	Casing			Readings				Depth
			 		Bentonite Seal	Date	Time	Depth Struc (m)	Casing k Depth (m)	Inflo	w Rate	5 min	10 min	15 min	20 min	Depth Sealed (m)
×			i l													
<u>×</u>		5 % 3 P& 42 P	ļ 1	1.00												
×	Engu u v		 													
×	F 0 V = 10		i l													
	00000		i l													
<u>×</u>	O MONU S		 						Gr	oundwat	er Obse	rvations	During [Orilling		
x	0.00		 						Start of S	1				End of Sh	nd of Shift	
x	0 0 0 0		 			Date	Time	Dept Hole	ch Casing Depth	Water Depth	Water Level	Time	Depth Hole	Casing Depth	Water Depth (m)	Water Level
×	0 4000		 					(m)	(m)	(ṁ)	(mOD)		(m)	(ṁ)	(111)	(mOD)
<u>×</u>	000															
× ×	1000000		i l													
x	0.0 40.00															
	200 500															
×	000 000				Slotted Standpipe											
×	5 0 0 = O o								Instr	ument G	roundwa	iter Obse	ervations	;		
×	0000					Inst. [A] Type: Slotted Standpipe										
× ×	HOND II OU NA						Ins	trumer	nt [A]							
×	0 4000 0000					Date	Time	Dept (m)	h Level (mOD)				Rem	arks		
×	0.0 4000							(111)	(IIIOD)							
×	0.00															
<u> </u>	Engu e vo		 													
× ×	- 0 0 m		i l													
×	0 0 00 0		 													
<u>. </u>	0 4000 4		i l													
×	00 200															
x	000 000		 	8.50												
×	ĺ		i l		Bentonite Seal											
× .			 													
<u>×</u>	200	XXXXXX	 	9.50	General Backfill											
×	2000		 	10.00												
Remark		XXXXXX														

Ref: 16/25536

PLASTICITY INDEX & MOISTURE CONTENT DETERMINATIONS


LOCATION 28 Canfield Gardens, London, NW6 3LA

BH/TP No.	Depth	Natural Moisture	Liquid Limit	Plastic Limit	Plasticity Index	Passing 425 μm	Class
	m	%	%	%	%	%	
BH1	3.50	30	65	24	41	100	СН
	4.00	31	64	22	42	100	СН
BH2	4.00	32	69	26	43	100	CH

Appendix C – Martin Redston Associate Engineers Load Drawing

Sheet No. Date 17/10/16 Martin Redston Associates PS Eng. T1-01 Consulting Civil & Structural Engineers Job No. 16.440 3 Edward Square, London N1 0SP Tel: 020 7837 5377 Fax: 020 7837 3211 28 CANFIELD GARDENS NW6. 6 Hale Lane, London NW7 3NX Tel: 020 8959 1666 Fax: 020 8906 8503 Email: martin@redston.org TEMPORARY CONDITION LINE LOADS 5.0 hr m Sunghazas To Garner.

(FRONT, CANFIELD GONS)

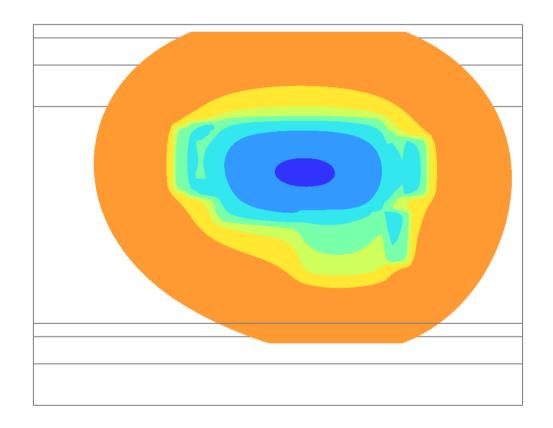
PERMANENT CONDITION

WALL LOADS SPREAD INTO BASE SLAB TO GIVE AN AVERAGE LOAD OF APPROXIMATELY 95.0KM/M2. (UNEQUITORE)

11 WOODBERRY CRESCENT, LONDON NIG 1FJ UK Email Betreamenté wac.com Landéne: 020 8883 2503 Mobile: 07867 646505 THE TREAT MENT RCB ARCHITECTURE LTD. 01 - EXISTING BASEMENT A3 FLOOR PLAN 00 1/50 28 CANFIELD GARDENS NW63LA 01/06/2016 LONDON NW6 3LA LIFF FLOORSOADS EXISTING BASEMENT - NOT SURVEYED 26 CANFIELD GARDENS - NOT SURVEYED BrannorT 30 CANFIELD GARDENS no access BEDROOM 3 H=2035 no access BATHROOM

Appendix D - Stage 1 - PDISP Undrained unloading settlement movements

W A FAIRHURST AND PARTNERS - GLASGOW


28 Canfield Gardens

Ground Movement Assessment Heave analysis

 Job No.
 Sheet No.
 Rev.

 117401
 Image: Checked HB
 Image: Checked HB

Displacement - Z - Elastic
-7.000 : -6.000 mm
-6.000 : -5.000 mm
-5.000 : -4.000 mm
-4.000 : -3.000 mm
-3.000 : -2.000 mm
-2.000 : -1.000 mm
-1.000 : 0 mm

WAFAIRHURST AND PARTNERS - GLASGOW

28 Canfield Gardens

Ground Movement Assessment

Heave analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		-
Made by HB	Date	Checked

Titles

Job No.: 117401 Job Title: 28 Canfield Gardens Sub-title: Ground Movement Assessment Calculation Heading: Heave analysis Initials:

AS Checker: Date Saved:

15 Jan 2020 Date Checked:

Notes: File Name:

117401 - 28 Canfield Gardens Stage 1 HB - Lightwell.pdd X:\a_PROJECTS\117401 - 28 Canfield Gardens, NW6\Geotech\Model\PDisp File Path:

History

Date	Time	By	Notes
28-Nov-2016	17:03	ocolas	
28-Nov-2016	17:09	ocolas	
28-Nov-2016	17:11	ocolas	
28-Nov-2016	17:21	ocolas	
29-Nov-2016	10:09	ocolas	
29-Nov-2016	12:09	ocolas	
12-Dec-2019	15:20	hbrock	
12-Dec-2019	15:25	hbrock	
12-Dec-2019	15:37	hbrock	
12-Dec-2019	15:50	hbrock	
18-Dec-2019	12:42	tjanusz	
18-Dec-2019	16:46	tjanusz	
20-Dec-2019	10:47	asmith	
20-Dec-2019	11:22	asmith	
03-Jan-2020	14:04	hbrock	
03-Jan-2020	14:36	hbrock	
08-Jan-2020	12:18	hbrock	
15-Jan-2020	09:43	hbrock	Open

Analysis Options

General

Global Poisson's ratio: 0.50
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -15.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data: No

Elastic

Elastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

Layer ref.		Name		Level top		Number of intermediate displacement levels			Poissons ratio	Non-linear curve
				[mOD]			[kN/m ²]	[kN/m ²]		
1 N	Made Ground			(0.0	6	5000.0	5000.0	0.50000	None
2 I	London Clay	Formation		-2.40	000	10	23000.	43000.	0.45000	None
3 1	London Clay	Formation	(hace)	-7 40	000	16	43000	43000	0.45000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain Factor

Soil Zones

Joli Zories											
Zone	Name	x	min	X max	Y min	Y max	Profile				
			[m]	[m]	[m]	[m]					
1	Soil Zone	#	0.0	28.850	0.0	18.600	Soil Profile				

Polygonal Load Data

W A FAIRHURST AND PARTNERS - GLASGOW

28 Canfield Gardens

Ground Movement Assessment

Heave analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

Load ref.	Name	: Level	Position : Polygon : Coords.	Position No. of : Polygon Rectangles : Rect. tolerance	(local z)
		[m]	[m]	[%]	[kN/m²]
	Main Basement Lower GF Excavation	-3.00000	(10.7,13.3) (20.4,13.3) (20.8,13.3) (20.8,12.7) (21.9,11.9) (21.9,8.71) (22.8,7.86) (20.8,7.41) (15.7,7.48) (15.7,6.71) (10.6,6.76) (10.6,8.82) (9.62,9.6) (9.63,11.9) (10.7,7.23) (20.8,7.36) (10.7,7.23) (20.8,7.36) (10.7,7.33) (15.7,3.34)	10.000 8	
3 1	Lightwell (Front)	-1.50000	(10.7,13) (9.01,13.1)	10.000 8	-24.000
	((8.29,12.5) (8.3,8.97) (9.01,8.39) (10.8,8.39) (10.7,8.74) (9.61,9.6) (9.61,11.8) (10.7,12.7)		
4	Lightwell (Rear, NW)	-1.50000	(21.6,12.1) (23.3,12.1) (23.3,8.44) (21.6,8.45) (21.9,8.71) (21.9,11.8)	10.000 3	-24.000
5 1	Lightwell (Rear, NE)	-1.50000	(20.9,7.51) (22.2,7.51)	10.000 1	-24.000
			(22.2,4.22) (20.8,4.23)		

Polygonal Loads' Rectangles

Polygonal Loads Reclangles									
No.	Centre :	Centre :	Angle of	Width x	Depth y				
	x	У	local x						
			from						
			global X						
	[m]	[m]	[Degrees]	[m]	[m]				
Load	1 : Main	Basement							
(Edge	13 optim	al)							
	9.87739	10.76101	-0.46723	0.50304	2.7197				
2	10.38031	10.74414	-0.46723	0.50304	3.4642				
3	13.21792	10.01174	-0.46723	5.0002	6.5529				
4	18.03957	10.36514	-0.46723	4.6370	5.8358				
5	20.58466	10.36015	-0.46723	0.45307	5.8924				
6	21.11367	10.27832	-0.46723	0.51700	4.4338				
7	21.63064	10.27361	-0.46723	0.51700	3.6144				
	21.90855		-0.46723	0.051570	1.6024				
Load	2 : Lower	GF Excava	ation						
	2 optima								
	18.25062			4.0263					
2	19.51539	7.33246	-90.465	0.066033	2.5400				
Load	3 : Light	well (From	nt)						
	1 optima								
	10.54303		179.41	0.36750					
	10.17400		179.41	0.36750	0.77165				
	9.80497		179.41	0.36750	1.0719				
	9.31959		179.41	0.56627	4.6659				
5		10.74655	179.41	0.66936					
	10.54083		179.41	0.37463					
7		8.77876	179.41	0.37463					
8			179.41	0.37463	1.0667				
	4 : Light		r, NW)						
	2 optima								
	22.59820		-90.388	3.1355					
2	22.52580		-90.388	0.26418					
3		11.95651	-90.388	0.22372	1.4740				
	5 : Light		r, NE)						
	2 optima								
1	21.49379	5.86991	-90.000	3.2708	1.3540				

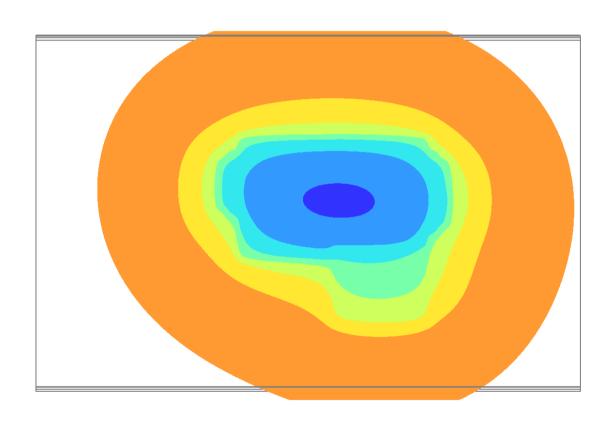
Displacement Grids

Name	Extrusion: Direction	х1	¥1	Z1	Х2	¥2	Z2	Intervals Along Line	Extrusion: Distance	Extrusion: Intervals Along	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]		
Grid 1	Global Y	-0.19545	-0.71666	-1.50000	29.46441	-	-1.50000	100	19.36605	100	Yes	No

Warnings

(1) The displacement location of Grid 1 at (-0.195, -0.717, -1.500)m lies wide of all soil zones. The first soil profile will be used. There are more displacement locations for which this warning applies. Only one is detailed here.

(2) The load at (15.709, 10.208, -3.000)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.



28 Canfield Gardens

Ground Movement Assessment Settlement analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	·
Made by HB	Date	Checked

Displacement - Z - Elastic
-7.000 : -6.000 mm
-6.000 : -5.000 mm
-5.000 : -4.000 mm
-4.000 : -3.000 mm
-3.000 : -2.000 mm
-2.000 : -1.000 mm
-1.000 : 0 mm

28 Canfield Gardens

Ground Movement Assessment Settlement analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

Titles

Job No.: 117401 Job Title: 28 Canfield Gardens Sub-title: Ground Movement Assessment Calculation Heading: Settlement analysis Initials: Checker: Date Saved: Date Checked: Notes: 117401 - 28 Canfield Gardens Stage 1 HB - Main Excavation.pdd X:\a_PROJECTS\117401 - 28 Canfield Gardens, NW6\Geotech\Model\PDisp File Name: File Path:

History

Date	Time	Ву	Notes
28-Nov-2016	17:03	ocolas	
28-Nov-2016	17:09	ocolas	
28-Nov-2016	17:11	ocolas	
28-Nov-2016	17:21	ocolas	
29-Nov-2016	10:09	ocolas	
29-Nov-2016	12:09	ocolas	
12-Dec-2019	15:20	hbrock	
12-Dec-2019	15:25	hbrock	
12-Dec-2019	15:37	hbrock	
12-Dec-2019	15:50	hbrock	
18-Dec-2019	12:42	tjanusz	
18-Dec-2019	16:46	tjanusz	
20-Dec-2019	10:47	asmith	
20-Dec-2019	11:22	asmith	
03-Jan-2020	14:04	hbrock	
03-Jan-2020	14:40	hbrock	
08-Jan-2020	12:20	hbrock	
15-Jan-2020	15:13	hbrock	Open

Analysis Options

General

Global Poisson's ratio: 0.50
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -15.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data: No

Elastic

Elastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Consolidation : No

Soil ProfilesSoil Profile 1

Layer ref.		Name		Level top		Number of intermediat displacement levels	e	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
				[mOD]	1			[kN/m ²]	[kN/m ²]		
1 Ma	ade Ground			(0.0		6	5000.0	5000.0	0.50000	None
2 Lo	ondon Clay	Formation		-2.40	000		10	23000.	43000.	0.45000	None
3 1	andon Class	Formation	(haca)	-7 40	000		16	43000	43000	0.45000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain Factor [%]

Soil Zones

Zone	N	ame	X	min	X max	Y	min	Y	max	I	rofile	
				[m]	[m]		[m]		[m]			
1	Soil	Zone	#	0.0	28.850	0	0.	0	18.600	Soil	Profile	1

Profile

28 Canfield Gardens

Ground Movement Assessment Settlement analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

Polygonal Load Data				
Load Name ref.	: Level	Position : Polygon : Coords.	Position No. of : Polygon Rectangles : Rect. tolerance	Value : Normal (local z)
	[m]	[m]	[%]	[kN/m ²]
1 Main Basement	-3.00000	(10.7,13.3) (20.4,13.3) (20.8,12.7) (21.9,11.9) (21.9,8.71) (20.8,7.86) (20.8,7.41) (15.7,7.48) (15.7,6.71) (10.6,6.76) (10.6,8.82) (9.62,9.6) (9.63,11.9) (10.7,12.7)	10.000 8	-50.400
2 Lower GF Excavation	-3.00000	(15.7,7.33) (20.8,7.36) (20.8,3.33) (15.7,3.34) (15.7,7.41)	10.000 0	-26.400
3 Lightwell (Front)	-1.50000		10.000 8	-24.000
4 Lightwell (Rear, NW)	-1.50000	(21.6,12.1) (23.3,12.1) (23.3,8.44) (21.6,8.45) (21.9,8.71) (21.9,11.8)	10.000 3	-24.000
5 Lightwell (Rear, NE)	-1.50000	(20.9,7.51) (22.2,7.51) (22.2,4.22) (20.8,4.23) (20.8,7.51)	10.000 1	-24.000

Polygonal Loads' Rectangles

			cottangio		
No.	Centre :	Centre :	Angle of	Width x	Depth y
	x	У	local x		
			from		
			global X		
	[m]	[m]	[Degrees]	[m]	[m]
Load	1 : Main :	Basement			
(Edge	13 optim	al)			
1		10.76101	-0.46723	0.50304	2.7197
		10.74414			
	13.21792		-0.46723	5.0002	6.5529
	18.03957		-0.46723	4.6370	
	20.58466		-0.46723		5.8924
6	21.11367		-0.46723		4.4338
7			-0.46723		3.6144
	21.90855			0.051570	1.6024
		GF Excava	ation		
	2 optima				
	18.25062			4.0263	
		7.33246		0.066033	2.5400
		well (From	nt)		
	1 optima				
	10.54303		179.41	0.36750	0.47138
	10.17400		179.41	0.36750	0.77165
	9.80497		179.41	0.36750	1.0719
	9.31959		179.41	0.56627	
	8.65386		179.41	0.66936	4.0913
	10.54083		179.41	0.37463	0.49088
7		8.77876	179.41	0.37463	0.77880
8			179.41	0.37463	1.0667
		well (Rea:	r, NW)		
	2 optima				
	22.59820		-90.388		
	22.52580		-90.388	0.26418	1.5083
	22.52814		-90.388	0.22372	1.4740
		well (Rea:	r, NE)		
	2 optima				
1	21.49379	5.86991	-90.000	3.2708	1.3540

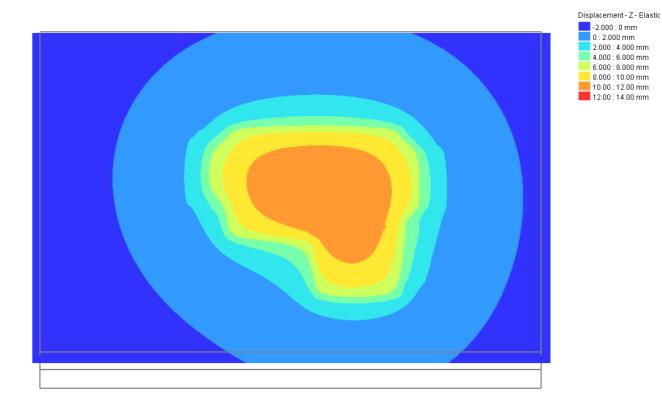
Displacement Grids

Name	Extrusion: Direction	X 1	¥1	Z1	Х2	Y2	Z2	Intervals Along Line	Extrusion: Distance	Extrusion: Intervals Along	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]		
Grid 1	Global Y	-0.42348	-0.65151	-3.00000	29.22009	_	-3.00000	100	19.52893	100	Yes	No

Warnings

(1) The displacement location of Grid 1 at (-0.423, -0.652, -3.000)m lies wide of all soil zones. The first soil profile will be used. There are more displacement locations for which this warning applies. Only one is detailed here.

(2) The load at (15.709, 10.208, -3.000)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.


Appendix E- Stage 2 – PDISP Undrained reloading settlement movements

28 Canfield Gardens

Ground Movement Assessment Heave analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by OC	Date	Checked

Page

28 Canfield Gardens

WAFAIRHURST AND PARTNERS - GLASGOW

117401

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		-
Made by	Date	Checked

Titles

Job No.:
Job Title:
Sub-title:
Calculation Heading:
Initials:
Checker:
Date Saved:
Date Checked:
Notes:
File Name:
File Path:

28 Canfield Gardens Ground Movement Assessment Heave analysis OC

117401 - 28 Canfield Gardens Stage 2 HB - Lightwell.pdd X:\a_PROJECTS\117401 - 28 Canfield Gardens, NW6\Geotech\Model\PDisp\SS

History

Date	Time	By	
28-Nov-2016	17:03	ocolas	
28-Nov-2016	17:09	ocolas	
28-Nov-2016	17:11	ocolas	
28-Nov-2016	17:21	ocolas	
29-Nov-2016	10:09	ocolas	
29-Nov-2016	12:09	ocolas	
12-Dec-2019	15:20	hbrock	
12-Dec-2019	15:25	hbrock	
12-Dec-2019	15:37	hbrock	
12-Dec-2019	15:50	hbrock	
18-Dec-2019	12:42	tjanusz	
18-Dec-2019	16:46	tjanusz	
20-Dec-2019	10:47	asmith	
20-Dec-2019	11:22	asmith	
03-Jan-2020	14:04	hbrock	
03-Jan-2020	14:08	hbrock	
03-Jan-2020	15:45	hbrock	
08-Jan-2020	09:25	hbrock	
08-Jan-2020	09:48	hbrock	
08-Jan-2020	12:24	hbrock	
15-Jan-2020	11:11	hbrock	

Analysis Options

Global Poisson's ratio: 0.50
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -15.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data : No

Elastic

Elastic: Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

2011	Profiles50i	i Profile	ı							
Layer ref.		Name	1	top	at	Number of intermediate displacement levels	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
				[mOD]			[kN/m ²]	[kN/m ²]		
1	l Made Ground			0	0.0	6	5000.0	5000.0	0.50000	None
2	2 London Clay	Formation		-2.40	000	10	23000.	43000.	0.45000	None
3	B London Clay	Formation	(base)	-7.40	000	16	43000.	43000.	0.45000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain

Soil Zones

Zone	N	ame	2	K min	X max	Y min	Y max	I	Profile	
				[m]	[m]	[m]	[m]			
1	Soil	Zone	#	0.0	28.850	0.0	18.600	Soil	Profile	1

Polygonal Load Data

ref.		Position : Level	Position : Polygon : Coords.	Position No. of : Polygon Rectangl : Rect. tolerance		Value : Normal (local z)
		[m]	[m]	[%]		[kN/m ²]
	1 Main Basement	-3.00000	(10.7,13.3) (20.4,13.3) (20.8,12.7) (21.9,11.9) (21.9,8.71) (20.8,7.86) (20.8,7.41) (15.7,7.48) (15.7,6.71) (10.6,6.76) (10.6,8.82) (9.62,9.6) (9.63,11.9) (10.7,12.7)	10.000	8	95.000
	2 Lower GF Excavation	-3.00000	(15.7,7.33) (20.8,7.36) (20.8,3.33) (15.7,3.34) (15.7,7.41)	10.000	0	95.000
	3 Lightwell (Front)	-1.50000	(10.7,13) (9.01,13.1) (8.29,12.5) (8.3,8.97) (9.01,8.39) (10.8,8.39) (10.7,8.74) (9.61,9.6) (9.61,11.8) (10.7,12.7)	10.000	8	5.0000
	4 Lightwell (Rear, NW)	-1.50000	(21.6,12.1) (23.3,12.1) (23.3,8.44) (21.6,8.45) (21.9,8.71) (21.9,11.8)	10.000	3	5.0000
	5 Lightwell (Rear, NE)	-1.50000	(20.9,7.51) (22.2,7.51) (22.2,4.22) (20.8,4.23) (20.8,7.51)	10.000	1	5.0000

Polygonal Loads' Rectangles

	0440			
No. Centro	e : Centre :	Angle of	Width x	Depth y
x	У	local x from global X		
[m]	[m]	[Degrees]	[m]	[m]
Load 1 : Ma		[Degrees]	[]	[111]
(Edge 13 op				
1 9.87	739 10.76101	-0.46723	0.50304	2.7197
2 10.38	031 10.74414	-0.46723	0.50304	3.4642
3 13.21	792 10.01174	-0.46723	5.0002	6.5529
4 18.03	957 10.36514	-0.46723	4.6370	5.8358
5 20.58	466 10.36015	-0.46723	0.45307	5.8924
6 21.11	367 10.27832	-0.46723	0.51700	4.4338
7 21.63	064 10.27361	-0.46723	0.51700	3.6144
8 21.90	855 9.49030	-0.46723	0.051570	1.6024
Load 2 : Lo	wer GF Excav	ation		
(Edge 2 opt:	imal)			
1 18.25	062 5.36252	-90.465	4.0263	5.0818

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		

Checked

Date

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

No.	Centre :	Centre :	Angle of local x from global X	Width x	Depth y
2	19.51539	7.33246	-90.465	0.066033	2.5400
Load	3 : Light:	well (Fro	nt)		
	1 optima:				
1		12.80692	179.41	0.36750	0.47138
2	10.17400	12.66059	179.41	0.36750	0.77165
3	9.80497	12.51425	179.41	0.36750	1.0719
4	9.31959	10.72219	179.41	0.56627	4.6659
5	8.65386	10.74655	179.41	0.66936	4.0913
6	10.54083	8.63481	179.41	0.37463	0.49088
7	10.16767	8.77876	179.41	0.37463	0.77880
8	9.79450	8.92271	179.41	0.37463	1.0667
Load	4 : Light	well (Rea	r, NW)		
(Edge	2 optima:	1)			
1	22.59820	10.27641	-90.388	3.1355	1.3486
2	22.52580	8.57703	-90.388	0.26418	1.5083
3	22.52814	11.95651	-90.388	0.22372	1.4740
Load	5 : Light	well (Rea	r, NE)		
(Edge	2 optima:	1)			
1	21.49379	5.86991	-90.000	3.2708	1.3540

Displacement Grids

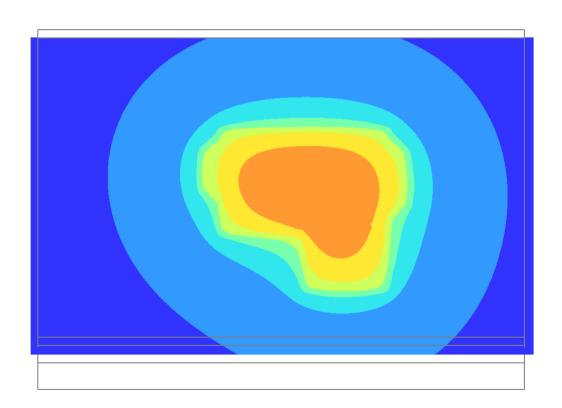
Displace	mem anas											
Name	Extrusion: Direction	х1	Y1	Z1	Х2	¥2	Z2	Along	Extrusion: Distance	Intervals	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	Line [No.]	[m]	Along [No.]		
Grid 1	Clobal V	_0 42349 -	0 42349	_1 50000	20 30026	_	_1 50000	100	10 10600	100	Voc	No

Warnings

(1) The displacement location of Grid 1 at (-0.423, -0.423, -1.500)m lies wide of all soil zones. The first soil profile will be used. There are more displacement locations for which this warning applies. Only one is detailed here.

Made by

НВ


(2) The load at (15.709, 10.208, -3.000)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

28 Canfield Gardens

Ground Movement Assessment Heave analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		-
Made by HB	Date	Checked

Titles

Job No.: 117401 28 Canfield Gardens Sub-title: Ground Movement Assessment Calculation Heading: Settlement Analysis Initials: Checker: Date Saved: Date Checked: Notes: 117401 - 28 Canfield Gardens Stage 2 HB - Main Excavation.pdd X:\a_PROJECTS\117401 - 28 Canfield Gardens, NW6\Geotech\Model\PDisp File Name:

Notes

History

File Path:

Date	Time	Ву
28-Nov-2016	17:03	ocolas
28-Nov-2016	17:09	ocolas
28-Nov-2016	17:11	ocolas
28-Nov-2016	17:21	ocolas
29-Nov-2016	10:09	ocolas
29-Nov-2016	12:09	ocolas
12-Dec-2019	15:20	hbrock
12-Dec-2019	15:25	hbrock
12-Dec-2019	15:37	hbrock
12-Dec-2019	15:50	hbrock
18-Dec-2019	12:42	tjanusz
18-Dec-2019	16:46	tjanusz
20-Dec-2019	10:47	asmith
20-Dec-2019	11:22	asmith
03-Jan-2020	14:04	hbrock
03-Jan-2020	14:08	hbrock
03-Jan-2020	15:43	hbrock
08-Jan-2020	09:28	hbrock
08-Jan-2020	09:50	hbrock
08-Jan-2020	12:26	hbrock
15-Jan-2020	11:41	hbrock

Analysis Options

General

Global Poisson's ratio: 0.50
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -15.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data: No

Elastic

Elastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Consolidation : No

Soil ProfilesSoil Profile 1

Layer ref.	Name	Level at top	Number of intermediate displacement levels	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
		[mOD]		[kN/m ²]	[kN/m ²]		
1	. Made Ground	0.0	6	5000.0	5000.0	0.50000	None
2	London Clay Formation	-2.4000	10	23000.	43000.	0.45000	None
3	B London Clay Formation (b	oase) -7.4000	16	43000.	43000.	0.45000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Point Strain Factor [%]

Soil Zones

X min X max Y min Y max Profile Zone Name [m] [m] [m] [m]

Profile

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

1 Soil Zone # 0.0	28.850	0.0 18.600 Soil Profile	1	
Polygonal Load Data				
Load Name ref.	: Level	Position : Polygon : Coords.	Position No. of : Polygon Rectangles : Rect. tolerance	Value : Normal (local z)
	[m]	[m]	[%]	[kN/m ²]
1 Main Basement 2 Lower GF Excavation	-3.00000 -3.00000	(20.8,13.3) (20.8,12.7) (21.9,11.9) (21.9,11.9) (21.9,8.71) (20.8,7.86) (20.8,7.41) (15.7,7.48) (15.7,6.71) (10.6,6.76) (10.6,8.82) (9.62,9.6) (9.63,11.9) (10.7,12.7)	10.000 8	95.000
0.21.1. 12.42		(15.7,7.41)	40.000	
3 Lightwell (Front)	-1.50000	(10.7,13) (9.01,13.1) (8.29,12.5) (8.3,8.97) (9.01,8.39) (10.8,8.39) (10.7,8.74) (9.61,9.6) (9.61,11.8) (10.7,12.7)	10.000 8	5.0000
4 Lightwell (Rear, NW)		(21.6,12.1) (23.3,12.1) (23.3,8.44) (21.6,8.45) (21.9,8.71) (21.9,11.8)	10.000 3	5.0000
5 Lightwell (Rear, NE)	-1.50000	(20.9,7.51) (22.2,7.51) (22.2,4.22) (20.8,4.23) (20.8,7.51)	10.000 1	5.0000

Polygonal Loads' Rectangles

No.	Centre :	Centre :	Angle of	Width x	Depth y
	×	У	local x		
			from		
			global X		
	[m]	[m]	[Degrees]	[m]	[m]
	1 : Main E				
	13 optima				
1		10.76101	-0.46723	0.50304	
2			-0.46723	0.50304	3.4642
3			-0.46723	5.0002	6.5529
	18.03957		-0.46723	4.6370	
5			-0.46723		5.8924
	21.11367		-0.46723	0.51700	4.4338
- 7	21.63064		-0.46723	0.51700	3.6144
	21.90855	9.49030	-0.46723	0.051570	1.6024
	2 : Lower		ation		
	2 optimal				
1		5.36252			
	19.51539	7.33246		0.066033	2.5400
	3 : Light		nt)		
	1 optimal				
1			179.41	0.36750	0.47138
	10.17400		179.41	0.36750	0.77165
	9.80497		179.41	0.36750	1.0719
	9.31959		179.41	0.56627	4.6659
	8.65386		179.41	0.66936	4.0913
	10.54083		179.41	0.37463	0.49088
- 7	10.16767		179.41	0.37463	0.77880
8	9.79450	8.92271	179.41	0.37463	1.0667
Load 4		vell (Rea:	r, NW)		
	2 optimal				
1			-90.388	3.1355	1.3486
2		8.57703	-90.388	0.26418	1.5083
3			-90.388	0.22372	1.4740
	5 : Light		r, NE)		
	2 optimal				
1	21.49379	5.86991	-90.000	3.2708	1.3540

Displacement Grids

Name	Extrusion: Direction	Х1	Y1	Z1	X2	Y2	Z2	Intervals Along Line	Extrusion: Distance	Extrusion: Intervals Along	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]		
Grid 1	Global Y	-0.42348	-0.42348	-3.00000	29.39926	-	-3.00000	100	19.18688	100	Yes	No

Warnings

(1) The displacement location of Grid 1 at (-0.423, -0.423, -3.000)m lies wide of all soil zones. The first soil profile will be used. There are more displacement locations for which this warning applies. Only one is detailed here.

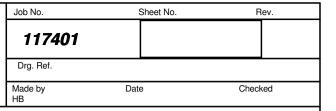
(2) The load at (15.709, 10.208, -3.000)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

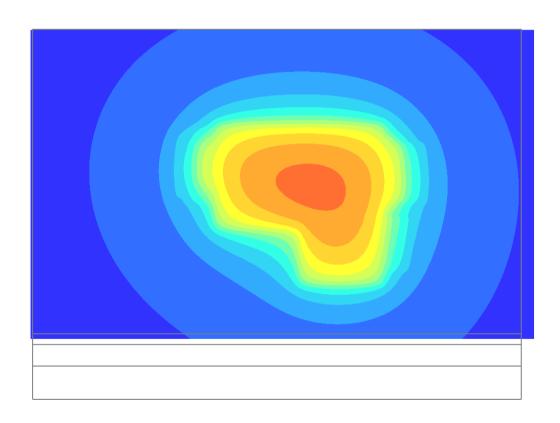
28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	-
Made by HB	Date	Checked

Name	Extrusion:	X1	Y1	Z1	X2	Y2	Z2	Intervals	Extrusion:	Extrusion:	Calculate Detaile	d
	Direction							Along	Distance	Intervals	Results	,
								Line		Along		




Appendix F - Stage 3 – PDISP Drained reloading settlement movements

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	·	
Made by HB	Date	Checked

Titles

Job No.: 117401 Job Title: 28 Canfield Gardens Sub-title: Ground Movement Assessment Calculation Heading: Settlement Analysis Initials: Checker: Date Saved: Date Checked: Notes: 117401 - 28 Canfield Gardens Stage 3 HB - Lightwell.pdd X:\a_PROJECTS\117401 - 28 Canfield Gardens, NW6\Geotech\Model\PDisp File Name: File Path:

History

Date	Time	Ву	Notes
28-Nov-2016	17:03	ocolas	
28-Nov-2016		ocolas	
28-Nov-2016	17:11	ocolas	
28-Nov-2016		ocolas	
29-Nov-2016	10:09	ocolas	
29-Nov-2016	12:09	ocolas	
12-Dec-2019	15:20	hbrock	
12-Dec-2019	15:25	hbrock	
12-Dec-2019	15:37	hbrock	
12-Dec-2019		hbrock	
18-Dec-2019	12:42	tjanusz	
18-Dec-2019	16:46	tjanusz	
20-Dec-2019	10:47	asmith	
20-Dec-2019		asmith	
03-Jan-2020	14:04	hbrock	
03-Jan-2020	14:08	hbrock	
03-Jan-2020	14:15	hbrock	
03-Jan-2020	15:29	hbrock	
08-Jan-2020	09:33	hbrock	
08-Jan-2020	09:53	hbrock	
08-Jan-2020	12:28	hbrock	
08-Jan-2020	12:33	hbrock	
15-Jan-2020	11:46	hbrock	

Analysis Options

Global Poisson's ratio: 0.50
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -15.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data: No

Elastic

Elastic : Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

ref.		Name	Le	top	at	Number of intermediate displacement levels		Youngs Modulus : Top		Poissons ratio	Non-linear curve	
				mOD]			[kN/m ²]	[kN/m ²]			
1	Made Ground			-	0.0		6	2500.0	2500.0	0.40000	None	
2	London Clay	Formation		2.4	000	1	.0	13000.	26000.	0.40000	None	
3	London Clau	Formation	(hacol .	7 11	000	1	6	26000	26000	0 40000	None	

Soil Zones

X min X max Y min Y max Profile

Non-linear Curve Coordinates - Non-linear Curve 1 Point Strain Factor

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

	[m]	[m]	[m]	[m]
1 Soil Zone #	0.0	28.850	0.0	18.600 Soil Profile 1

Polygonal Load Data

Load ref.	Name	Position : Level	Position : Polygon : Coords.	Position No. : Polygon Rectan : Rect. tolerance	gles	Value : Normal (local z)	
		[m]	[m]	[%]		[kN/m ²]	
1	Lightwell (Front)	-1.50000	(10.7,13) (9.01,13.1)	10.000	8	5.0000	
			(8.29,12.5) (8.3,8.97) (9.01,8.39) (10.8,8.39) (10.7,8.74) (9.61,9.6) (9.61,11.8) (10.7,12.7)				
2	Lightwell (Rear, NW)	-1.50000	(21.6,12.1) (23.3,12.1) (23.3,8.44) (21.6,8.45) (21.9,8.71) (21.9,11.8)	10.000	3	5.0000	
3	Lightwell (Rear, NE)		-1.50000 (2	(20.9,7.51) (22.2,7.51)	10.000	1	5.0000
			(22.2,4.22) (20.8,4.23) (20.8,7.51)				
4	i Main Basement		(10.7,13.3) (20.4,13.3) (20.8,13.3) (20.8,12.7) (21.9,11.9) (21.9,8.71) (20.8,7.86) (20.8,7.41) (15.7,7.48) (15.7,6.71) (10.6,6.76) (10.6,8.82) (9.62,9.6) (9.63,11.9) (10.7,12.7)	10.000	8	95.000	
5	Lower GF Excavation	-3.00000	(15.7,7.33) (20.8,7.36)	10.000	0	95.000	
			(20.8,3.33) (15.7,3.34) (15.7,7.41)				

Polygonal Loads' Rectangles

			ootangio		B 1
NO.			Angle of	width x	рерти у
	×	У	local x		
			from		
			global X		
	[m]	[m]	[Degrees]	[m]	[m]
	1 : Light		nt)		
	1 optima:				
	10.54303		179.41	0.36750	0.47138
2	10.17400	12.66059	179.41	0.36750	0.77165
3	9.80497		179.41	0.36750	1.0719
4			179.41	0.56627	4.6659
5	8.65386	10.74655	179.41	0.66936	4.0913
6	10.54083	8.63481	179.41	0.37463	0.49088
7	10.16767	8.77876	179.41	0.37463	0.77880
8	9.79450	8.92271	179.41	0.37463	1.0667
Load 2	2 : Light	well (Rear	c, NW)		
(Edge	2 optima:	1)			
1	22.59820	10.27641	-90.388	3.1355	1.3486
2	22.52580	8.57703	-90.388	0.26418	1.5083
3	22.52814	11.95651	-90.388	0.22372	1.4740
Load :	3 : Light	well (Rear	r, NE)		
	2 optima:				
1	21.49379	5.86991	-90.000	3.2708	1.3540
Load 4	4 : Main 1	Basement			
(Edge	13 optima	al)			
	9.87739		-0.46723	0.50304	2.7197
2	10.38031	10.74414	-0.46723	0.50304	3.4642
3	13.21792	10.01174	-0.46723	5.0002	6.5529
4	18.03957	10.36514	-0.46723	4.6370	5.8358
5	20.58466	10.36015	-0.46723	0.45307	5.8924
		10.27832	-0.46723	0.51700	4.4338
7	21.63064	10.27361	-0.46723	0.51700	3.6144
8	21.90855	9.49030	-0.46723	0.051570	1.6024
Load !	5 : Lower	GF Excava	ation		
	2 optima:				
	18.25062		-90.465	4.0263	5.0818
	19.51539			0.066033	2.5400

Displacement Grids

Name	Extrusion: Direction	X1	Y1	Z1	X2	Y2	Z2	Intervals Along Line	Extrusion: Distance	Extrusion: O Intervals Along	Detailed Results	
		[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]		

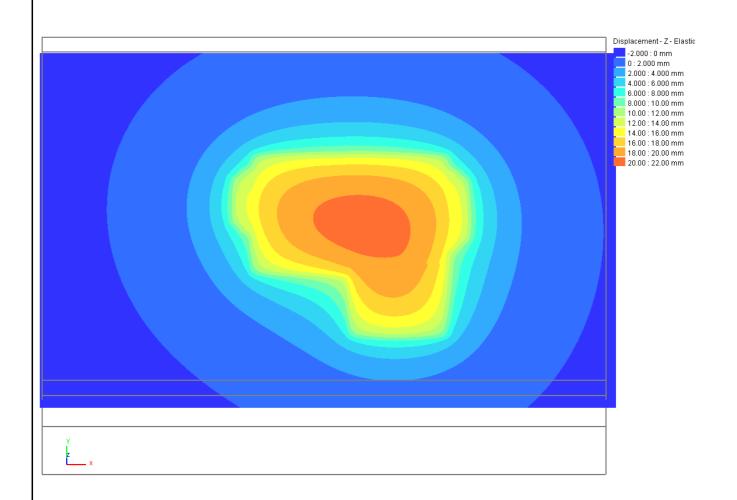
Warnings

(1) The displacement location of Grid 1 at (-0.130, 0.098, -1.500)m lies wide of all soil zones. The first soil profile will be used. There are more displacement locations for which this warning applies. Only one is detailed here.

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked


Name	Extrus: Direct:		X1	Y1	Z1	Х2	¥2	Z2				Calculate Detailed Results			
									Line		Along				
			[m]	[m]	[m]	[m]	[m]	[m]	[No.]	[m]	[No.]				
21 Tho	load at	19 237	10 721	-1	5001m lies	wide of a	ll coil	70000	Dienlacemen	te at ite	centre have	heen remiested The	first soil prof	ile will be need	

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by HB	Date	Checked

117401

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	-	-
Made by HB	Date	Checked

Titles

Job No.:
Job Title:
Sub-title:
Calculation Heading:
Initials:
Checker:
Date Saved:
Date Checked:
Notes:
File Name:

117401 - 28 Canfield Gardens
Ground Movement Assessment
Settlement Analysis
HB

117401 - 28 Canfield Garder
Excavation.pdd

117401 - 28 Canfield Gardens Stage 3 HB - Main Excavation.pdd X:\a_PROJECTS\117401 - 28 Canfield Gardens, NW6\Geotech\Model\PDisp

History

File Path:

Date	Time	Ву	
28-Nov-2016	17:03	ocolas	
28-Nov-2016	17:09	ocolas	
28-Nov-2016	17:11	ocolas	
28-Nov-2016	17:21	ocolas	
29-Nov-2016	10:09	ocolas	
29-Nov-2016	12:09	ocolas	
12-Dec-2019	15:20	hbrock	
12-Dec-2019	15:25	hbrock	
12-Dec-2019	15:37	hbrock	
12-Dec-2019	15:50	hbrock	
18-Dec-2019	12:42	tjanusz	
18-Dec-2019	16:46	tjanusz	
20-Dec-2019	10:47	asmith	
20-Dec-2019	11:22	asmith	
03-Jan-2020	14:04	hbrock	
03-Jan-2020	14:08	hbrock	
03-Jan-2020	14:09	hbrock	
03-Jan-2020	14:18	hbrock	
03-Jan-2020	15:39	hbrock	
03-Jan-2020	16:06	hbrock	
08-Jan-2020	09:56	hbrock	
08-Jan-2020	12:31	hbrock	
15-Jan-2020	11:52	hbrock	

Analysis Options

Global Poisson's ratio: 0.50
Maximum allowable ratio between values of E: 1.5
Horizontal rigid boundary level: -15.00 [m OD]
Displacements at load centroids: Yes
GSA piled raft data : No

Elastic

LIGGIVE Elastic: Yes Analysis: Boussinesq Stiffness for horizontal displacement calculations: Weighted average Using legacy heave correction factor: No

Consolidation

Soil ProfilesSoil Profile 1

Layer ref.		Name		el a	t Number of intermediat displacemen levels	e	Youngs Modulus : Top	Youngs Modulus : Btm.	Poissons ratio	Non-linear curve
			[n	OD]			[kN/m ²]	[kN/m ²]		
	1 Made Ground			0.	0	6	2500.0	2500.0	0.40000	None
	2 London Clay	Formation	-2	.400	0	10	13000.	26000.	0.40000	None
	3 London Clay	Formation	(baco) -	400	0	16	26000	26000	0 40000	None

Non-linear Curve Coordinates - Non-linear Curve 1

Soil Zones

Zone	Name	X min	X max	Y min	Y max	Profile
		[m]	[m]	[m]	[m]	
1	Soil Zone	# 0.0	28.850	0.0	18.600	Soil Profile 1

Polygonal Load Data

Load ref.	Name	: Level	Position : Polygon : Coords.	: Polygon : Rect. tolerance	No. of Rectangles	Value : Normal (local z)
		[m]	[m]	[%]		[kN/m ²]
	l Main Basement	-3.00000	(10.7,13.3) (20.4,13.3) (20.8,13.3) (20.8,12.7) (21.9,11.9) (21.9,8.71) (20.8,7.86) (20.8,7.41) (15.7,7.48) (15.7,6.71) (10.6,6.76) (10.6,8.82) (9.62,9.6) (9.63,11.9) (10.7,12.7)	10.000	8	95.000
:	2 Lower GF Excavation	-3.00000	(15.7,7.33) (20.8,7.36) (20.8,3.33) (15.7,3.34) (15.7,7.41)	10.000	0	95.000
	3 Lightwell (Front)	-1.50000	(10.7,13) (9.01,13.1) (8.29,12.5) (8.3,8.97) (9.01,8.39) (10.8,8.39) (10.7,8.74) (9.61,9.6) (9.61,11.8) (10.7,12.7)	10.000	8	5.0000
	4 Lightwell (Rear, NW)	-1.50000	(21.6,12.1) (23.3,12.1) (23.3,8.44) (21.6,8.45) (21.9,8.71) (21.9,11.8)	10.000	3	5.0000
	Lightwell (Rear, NE)	-1.50000	(20.9,7.51) (22.2,7.51) (22.2,4.22) (20.8,4.23)	10.000	1	5.0000

Polygonal Loads' Rectangles

No.	Centre :	Centre :	Angle of local x from global X	Width x	Depth y
	[m]	[m]	[Degrees]	[m]	[m]
Load :	1 : Main 1	Basement			
(Edge	13 optim				
1	9.87739	10.76101	-0.46723	0.50304	2.7197
2	10.38031	10.74414	-0.46723	0.50304	3.4642
3	13.21792	10.01174	-0.46723	5.0002	6.5529
4	18.03957	10.36514	-0.46723	4.6370	5.8358
5	20.58466	10.36015	-0.46723	0.45307	5.8924
6	21.11367	10.27832	-0.46723	0.51700	4.4338
7	21.63064	10.27361	-0.46723	0.51700	3.6144
8	21.90855	9.49030	-0.46723	0.051570	1.6024

Job No. Sheet No. Rev. 117401 Drg. Ref.

28 Canfield Gardens

Ground Movement Assessment Settlement Analysis

Made by	Date	Checked
HB		

No.	Centre :	Centre : y	Angle of local x from global X	Width x	Depth y
Load :	2 : Lower	GF Excava	tion		
(Edge	2 optima:	1)			
1	18.25062	5.36252	-90.465	4.0263	5.0818
2	19.51539	7.33246	-90.465	0.066033	2.5400
Load	3 : Light	well (Fron	t)		
(Edge	1 optima:	1)			
1	10.54303	12.80692	179.41	0.36750	0.47138
2	10.17400	12.66059	179.41	0.36750	0.77165
	9.80497		179.41	0.36750	1.0719
4	9.31959	10.72219	179.41	0.56627	4.6659
5	8.65386	10.74655	179.41	0.66936	4.0913
6	10.54083	8.63481	179.41	0.37463	0.49088
7	10.16767	8.77876	179.41	0.37463	0.77880
8	9.79450	8.92271	179.41	0.37463	1.0667
Load	4 : Light	well (Rear	, NW)		
(Edge	2 optima:	1)			
1	22.59820	10.27641	-90.388	3.1355	1.3486
2	22.52580	8.57703	-90.388	0.26418	1.5083
3	22.52814	11.95651	-90.388	0.22372	1.4740
Load !	5 : Light	well (Rear	, NE)		
(Edge	2 optima:	1)			
1	21.49379	5.86991	-90.000	3.2708	1.3540

Displacement Grids

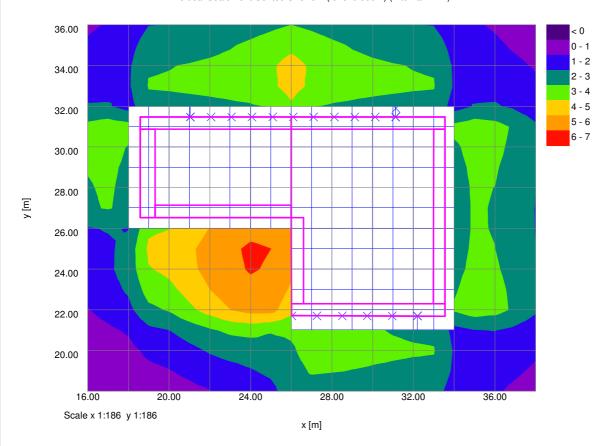
Name	Extrusion: Direction	X1	Y1	Z1	Х2	¥2	Z2	Along		Extrusion: Intervals	Calculate	Detailed Results
		[m]	[m]	[m]	[m]	[m]	[m]	Line [No.]	[m]	Along [No.]		
C=14 1	Clabal V	0 12020	0 47224	2 00000	20 25040		2 00000	100	10 22575	100	Vee	Ma

Warnings

(1) The displacement location of Grid 1 at (-0.130, -0.472, -3.000)m lies wide of all soil zones. The first soil profile will be used. There are more displacement locations for which this warning applies. Only one is detailed here.

(2) The load at (15.709, 10.208, -3.000)m lies wide of all soil zones. Displacements at its centre have been requested. The first soil profile will be used.

Appendix G - XDISP Analysis


FAIRHURST

Canfield Gardens, NW6

Ground Movement Assessment Damage Impact Assessment

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by TJ	Date 14-Jan-2020	Checked

Vertical Settlement Contours: Grid 1 (level 0.000m) (Interval 1mm)

FAIRHURST

Canfield Gardens, NW6

Ground Movement Assessment Damage Impact Assessment

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		-
Made by TJ	Date 14-Jan-2020	Checked

Problem Type

Problem Type : Tunnelling and Embedded Wall Excavations

Displacement Data

Type	Name	Direction of extrusion		Point/	Line/Line	for ext			No. of intervals across extrusion/line	Extrusion depth	No. of intervals along extrusion	Calculate	Surface type for tunnels
			F	irst point	:	Se	econd poi	nt					
			x	Y	Z(level)	x	Y	Z(level)					
			[m]	[m]	[m]	[m]	[m]	[m]		[m]			
Grid	Grid 1	Global X	10.00000	0.00000	0.00000	-	50.00000	0.00000	50	30.00000	30	Yes	Surface
Line	No.30_1	-	32.11050	41.32417	0.00000	32.09042	36.41190	0.00000	10	-	-	Yes	Surface
Line	No.30_2	-	32.09042	36.41190	0.00000	31.15768	35.66880	0.00000	10	-	-	Yes	Surface
Line	No.30_3	-	31.15768	35.66880	0.00000	31.11906	31.47646	0.00000	10	-	-	Yes	Surface
Line	No.30_4	-	31.11906	31.47646	0.00000	21.04214	31.47646	0.00000	10	-	-	Yes	Surface
Line	No.30_5	-	21.04214	31.47646	0.00000	21.07171	41.25273	0.00000	10	-	-	Yes	Surface
Line	No.26_1	-	19.79055	11.95090	0.00000	19.87833	21.70409	0.00000	10	-	-	Yes	Surface
Line	No.26_2	-	19.87833	21.70409	0.00000	32.19559	21.69694	0.00000	10	-	-	Yes	Surface
Line	No.26_3	-	32.19559	21.69694	0.00000	32.15596	11.92815	0.00000	10	-	-	Yes	Surface

Vertical Ground Movement Curves (Excavations)

Curve Name: Coordinates:	No vertical ground movement [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Settlement / wall depth or max. excavation depth (z) (%) [0.000, 0.000, 0.000] [1.000, 0.000] [0.000, 0.000] [1.000, 0.000] [1.000, 0.000]
Curve Fitting Method:	Polynomial
x Order: v Order:	1 0
Polynomial: z =	
Determination:	-2147483648.E+2147483647

Curve Name:
Coordinates:

Coordinates:

Coordinates:

Coordinates:

Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (x), Settlement / wall depth or max.

Curve Name: Excavation in front of high stiffness wall in stiff clay (CIRIA 580 Fig. 2.11(b) [0] instance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (x) (S)]

[0.000,0.000,0.039][0.100,0.000,0.049][0.200,0.000,0.056][0.300,0.000,0.062][0.400,0.000,0.067][0.500,0.000,0.000,0.072][0.700,0.000,0.072][0.700,0.000,0.073][0.800,0.000,0.000][0.800]

[3.600,0.000,0.002][3.700,0.000][3.800,0.000,0.001][3.900,0.000,0.000]
[4.000,0.000,0.000]

Method:
x Order:
y Order:
0
Polynomial: z = -2.6455E-3x⁴ + 2.8495E-2x³ - 1.0051E-1x² + 1.0569E-1x + 3.8990E-2
9.9991E-1

Horizontal Ground Movement Curves (Excavations)

Curve Name: Coordinates:	No horizontal ground movement [Distance from wall / wall depth or max. excavation depth (x), Depth / wall depth or max. excavation depth (y), Horizontal movement / wall depth or max. excavation depth (z) (%) [0.000,0.000] [0.000,0.000] [0.000,0.000] [1.000,0.000] [1.000,0.000]
Curve Fitting Method: x Order: y Order: Polynomial: z = Coeff. of Determination:	Polynomial 0 0 0 0 0 -2147483648.E+2147483647

Curve Name:

Coordinates:

Coo

Polygonal Excavations

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by	Date 14-Jan-2020	Checked

[m] [m] [m] 1 19.302 27.141 -3.0000	[m] [%] [%] [m] [%] [%] Yes 0.0 67.000 25.000 0.0 67.000 25.000 Yes 0.0 67.000 25.000 0.0 67.000 25.000
2 26.005 27.144 -3.0000	Yes 0.0 67.000 25.000 0.0 67.000 25.000 Yes 0.0 67.000 25.000 0.0 67.000 25.000 Yes 0.0 67.000 25.000 0.0 67.000 25.000
Side Corner 1 Corner x y x	er 2 Ground Movement Curve y Vertical Horizontal
[m] [m] [m] [m] 1 19.302 27.141 26.005 2 26.005 26.543 19.302	[m] 27.144 No vertical ground movement No horizontal ground movement 26.543 No vertical ground movement
Excavation Name: Surface level [m]: Contribution: Enabled:	Install #2 (No.30) 0.0 Positive Yes
Corner x y Base Sti	ffened Previous Side Next Side d p1 p2* d p1 p2*
[m] [m] [m] 1 33.565 31.476 -3.0000 2 33.565 30.876 -3.0000 3 18.584 30.876 -3.0000 4 18.589 31.476 -3.0000	Yes 0.0 67.000 25.000 0.0 67.000 25.000
Side Corner 1 Corner 2	er 2 Ground Movement Curve y Vertical Horizontal [m]
1 33.565 31.476 33.565	30.876 Installation of contiguous Installation of contiguous bored pile wall in stiff clay (CIRIA 580 Fig. 2.8(b)) (CIRIA 580 Fig. 2.8(b)) (CIRIA 580 Fig. 2.8(a))
4 18.589 31.476 33.565	31.476 Installation of contiquous bored pile wall in stiff clay (CIRIA 580 Fig. 2.8(b)) (CIRIA 580 Fig. 2.8(c)) (CIRIA 580 Fig. 2.8(a)) 31.476 Installation of contiquous bored pile wall in stiff clay (CIRIA 580 Fig. 2.8(a)) (CIRIA 580 Fig. 2.8(b)) (CIRIA 580 Fig. 2.8(a))
Excavation Name: Surface level [m]: Contribution: Enabled:	Install #3 (Rear Wall)] 0.0 Positive Yes
[m] [m] [m] 1 33.565 30.876 -3.0000 2 33.565 22.295 -3.0000 3 32.985 22.295 -3.0000	d p1 p2* d p1 p2*
Side Corner 1 Corner x y x	er 2 Ground Movement Curve y Vertical Horizontal
[m] [m] [m] 1 33.565 30.876 33.565 2 33.565 22.295 32.985	[m] 22.295 Installation of contiguous Installation of contiguous bored pile wall in stiff clay (CIRIA 580 Fig. 2.8(b)) (CIRIA 580 Fig. 2.8(a)) 22.295 No vertical ground movement No rizontal ground movement
4 32.993 30.876 33.565	30.876 No vertical ground movement No horizontal ground movement No horizontal ground movement
Excavation Name:	
Surface level [m]: Contribution: Enabled:	Install #4 (Front Wall) 0.0 Positive Yes
Surface level [m]: Contribution: Enabled: Corner x y Base Level [m] [m] [m] [m] 1 19.302 30.876 -3.0000 2 18.587 30.876 -3.0000 3 18.588 26.541 -3.0000	0.0 Positive Yes ffened Previous Side Next Side d pl p2* d pl p2* [m] [%] [%] [m] [%] [%]
Surface level [m]: Contribution: Enabled: Corner x y Base Level Level [m] [m] [m] [m] [m] Stines 1 19.302 30.876 -3.0000 2 18.587 30.876 -3.0000 3 18.588 26.541 -3.0000 4 19.302 26.541 -3.0000 Stide Corner 1 Corner	0.0 Positive Yes ffened d pl p2* d pl p2* [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]
Surface level [m]: Contribution: Enabled: Corner x y Base Sti	O.0 Positive Previous Side Mext Side
Surface level [m]: Contribution: Enabled: Corner x y Base Sti	Previous Side
Surface level [m]: Contribution: Enabled: Corner x y Base Sti [m] [m] [m] [m] 1 19,302 30.876 -3.0000 2 18.587 30.876 -3.0000 3 18.588 26.541 -3.0000 Side x y x y [m] [m] [m] [m] 1 19.302 26.541 -3.0000 Side x 1 30.876 -18.587 2 18.587 30.876 18.588 3 18.588 26.541 19.302 4 19.302 26.541 19.302 Excavation Name: Surface level [m]: Contribution: Enabled: Corner x y Base Sti	O
Surface level [m]: Contribution: Enabled: Corner x y Base Sti	Second
Surface level [m]:	Free
Surface level [m]: Corner x y Base Sti Level [m] m m m m m m m m m	O. 0
Surface level [m]:	Ground Movement Stream Store S
Surface level [m]: Contribution: Enabled: Corner x y Base Sti	Previous Side
Surface level [m]: Contribution: Enabled: Corner x y Base Sti	Previous Side
Surface level [m]: Contribution: Enabled: Corner x y Base Sti	Second Movement Second Mov
Surface level [m]: Contribution: Enabled: m	Second Movement Second Mov

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		<u> </u>
Made by TJ	Date 14-Jan-2020	Checked

Side Corner 1 C					
() (m) (m)	Corner 2 y [m]	Ground Move Vertical	rement Curve Horizontal		
	.565 22.295 No	vertical ground movement	No horizontal ground movement		
2 33.565 22.295 33.	bor	allation of contiguous d pile wall in stiff clay RIA 580 Fig. 2.8(b))	Installation of contiguous bored pile wall in stiff clay (CIRIA 580 Fig. 2.8(a))		
3 33.565 21.693 26.	.006 21.715 Ins	allation of contiguous ed pile wall in stiff clay	Installation of contiguous bored pile wall in stiff clay		
4 26.006 21.715 26.	(CI:	RIA 580 Fig. 2.8(b))	(CIRIA 580 Fig. 2.8(a)) Installation of contiguous		
		ed pile wall in stiff clay RIA 580 Fig. 2.8(b))	bored pile wall in stiff clay (CIRIA 580 Fig. 2.8(a))		
cavation Name:		(Internal Underpin)			
rface level [m]: entribution: abled:	0.0 Positive Yes				
rner x y Base	Stiffened Prev.	ous Side Next Side			
[m] [m] [m] [m] 1 26.005 26.542 -3.0000	[m]		2* %] .000		
2 26.611 26.542 -3.0000 3 26.611 22.291 -3.0000	Yes 0.0 6	7.000 25.000 0.0 67.000 25 7.000 25.000 0.0 67.000 25	.000		
4 26.006 22.291 -3.0000 de Corner 1 C	Yes 0.06 Corner 2	7.000 25.000 0.0 67.000 25 Ground Move	rement Curve		
x y x [m] [m]		Vertical	Horizontal		
2 26.611 26.542 26.	.611 22.291 No	vertical ground movement vertical ground movement vertical ground movement	No horizontal ground movement No horizontal ground movement No horizontal ground movement		
4 26.006 22.291 26.	.005 26.542 Ins	allation of contiguous d pile wall in stiff clay	Installation of contiguous bored pile wall in stiff clay		
	(CI	RIA 580 Fig. 2.8(b))	(CIRIA 580 Fig. 2.8(a))		
cavation Name: rface level [m]:	Excavation 0.0	ı - Rear			
ntribution: abled:	Positive Yes				
Level	d	ous Side Next Side p1 p2* d p1 p2			
[m] [m] [m] 1 33.565 31.476 -3.0000 2 26.003 31.476 -3.0000	[m] Yes 0.06		%] .000		
3 26.005 26.542 -3.0000 4 26.010 21.715 -3.0000	Yes 0.0 6 Yes 0.0 6	7.000 25.000 0.0 67.000 25 7.000 25.000 0.0 67.000 25	.000		
5 33.565 21.693 -3.0000	Yes 0.0 6	7.000 25.000 0.0 67.000 25	.000		
de Corner 1 C	Corner 2 y [m]	Ground Move Vertical	ement Curve Horizontal		
1 33.565 31.476 26.	.003 31.476 Exc	evation in front of high finess wall in stiff clay	Excavation in front of high stiffness wall in stiff clay		
	.005 26.542 No	RIA 580 Fig. 2.11(b) vertical ground movement evation in front of high	(CIRIA 580 Fig. 2.11(a)) No horizontal ground movement Excavation in front of high		
	sti (CI	fness wall in stiff clay RIA 580 Fig. 2.11(b)	stiffness wall in stiff clay (CIRIA 580 Fig. 2.11(a))		
4 26.010 21.715 33.	sti	evation in front of high finess wall in stiff clay RIA 580 Fig. 2.11(b)	Excavation in front of high stiffness wall in stiff clay (CIRIA 580 Fig. 2.11(a))		
5 33.565 21.693 33.	.565 31.476 Exc.	evation in front of high fness wall in stiff clay RIA 580 Fig. 2.11(b)	Excavation in front of high stiffness wall in stiff clay (CIRIA 580 Fig. 2.11(a))		
	(Negligible) 1 (to (Very Slight) 2	Very Slight) 2 (Slight) to to (Slight) 3 (Moderate)	3 (Moderate) to 4 (Severe)		
ourland Strain Limits	0.0	500.00E-6 750.00E-6			
pecific Structures - Geometry					
	re Displacement Line	Distance Distance Offset	tical Vertical Damage Cat- ts from Displacement e for Limit	egory Strains Poisson's E/G Ratio	
ructure Name Sub-Structur Name		Line Line Vert	tical Sensitivity		
Name		Move Calcu:	lations [m] [mm]		
Name 0.30 .30	1 No.30_1 2 No.30_2 3 No.30_3	Move Calcui [m]	[m] [mm] 0.0 0.10000 Burland Str 0.0 0.10000 Burland Str	ain Limits 0.20000 2.6000	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.30	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5	[m] [m] (a.91200 (b.91200 (b.9	[m] [mm] 0.0 0.10000 Burland Str. 0.0 0.10000 Burland Str. 0.0 0.10000 Burland Str. 0.0 0.10000 Burland Str. 0.0 0.10000 Burland Str.	ain Limits 0.20000 2.6000 ain Limits 0.20000 2.6000 ain Limits 0.20000 2.6000 ain Limits 0.20000 2.6000	
.30 .30 .30 .30 .30 .30 .26	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2	Movo [m]	[m] [mm] 0.0 0.10000 Burland Str.	ain Limits 0.20000 2.6000	
Name 3.30 3.30 3.30 3.30 3.30 3.26 3.26	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3	Movo [m]	[mm] [mm] 0.0 0.10000 Burland Str. 0.10000 Burland Str. 0.10000 Burland Str. 0.10000 Burland Str.	ain Limits 0.20000 2.6000	
Name 3.30 3.30 3.30 3.30 3.30 3.30 3.26 3.26 3.26 3.26 pecific Structures - Bending Pal	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3	Move Calculum Move Calculum	[m] [mm] 0.0 0.10000 Burland Str.	ain Limits 0.20000 2.6000	
Name 3.30 3.30 3.30 3.30 3.30 3.26 2.26 2.26 2.26 2.26 2.26 2.26 2.26	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3	Movo Calcular	[m] [mm] 0.0 0.10000 Burland Str.	ain Limits 0.20000 2.6000	
Name 3.30 3.30 3.30 3.30 3.20 3.26 3.26 becific Structures - Bending Pai	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3 rameters	Move (a) (a) (b) (c) (c)	[m] [mm] 0.0 0.10000 Burland Str. 0.0 Sagging Distance 2nd Moment of N.A. of Area of Bending from Edge (per unit Strain f	ain Limits 0.2000 2.6000 Distance of N.A. com Edge	
Name 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.2	2 No.30_2 3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3 rameters re Height Defau Proper:	Move [m]	[m] [mm] 0.0 0.10000 Burland Str. 0.0 Distance of Bending from Edge (per unit Strain fof Beam in width) from N.A. o Tension	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26 0.26 Decific Structures - Bending Pal tructure Name Sub-Structur Name	2 No.30_2 2 No.30_3 No.30_3 4 No.30_4 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 rameters re Height Defau Proper [m] 1 14.000 Yes 2 14.000 Yes	Move m	[m] [mm] [mm] 0.0 Burland Str. 0.0 0.10000 Bur	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26 Decific Structures - Bending Pal Executure Name Sub-Structur Name 0.30 0.30 0.30 0.30 0.30	2 No.30_2 3 No.30_3 4 No.30_3 4 No.30_5 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3 rameters re Height Defau Proper [m] 1 14.000 Yes 2 14.000 Yes 3 14.000 Yes 3 14.000 Yes 4 14.000 Yes	Move	[m] [mm] [mm] 0.0 0.10000 Burland Str. 0.0 0 0.10000 Burland Str. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	ain Limits	
Name	2 No.30_2 3 No.30_3 4 No.30_3 4 No.30_5 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3 rameters re Height Proper [m] 1 14.000 Yes 2 14.000 Yes 4 14.000 Yes 5 14.000 Yes 1 14.000 Yes 2 14.000 Yes 2 14.000 Yes 2 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 5 14.000 Yes 1 14.000 Yes 1 14.000 Yes	Move Calcus	[m]	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26 pecific Structures - Bending Parturuture Name Sub-Structure Name 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	2 No.30_2 3 No.30_3 4 No.30_3 4 No.30_5 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 **rameters** Te Height Defau Proper [m] 1 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 5 14.000 Yes 5 14.000 Yes 5 14.000 Yes 6 1 14.000 Yes 7 1 14.000 Yes 7 1 14.000 Yes 8 1 14.000 Yes 9 1 14.000 Yes 9 1 14.000 Yes 9 1 14.000 Yes	Move	[m] [mm] 0.0 0.10000 Burland Str. 0.0 0.10000	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.2	2 No. 30_2 2 No. 30_3 4 No. 30_3 4 No. 30_3 5 No. 30_5 1 No. 26_1 2 No. 26_2 3 No. 26_2 3 No. 26_3 rameters re Height Defau Proper 1 14_000 Yes 2 14_000 Yes 3 14_000 Yes 4 14_000 Yes 5 14_000 Yes 5 14_000 Yes 2 14_000 Yes 2 14_000 Yes 3 14_000 Yes 3 14_000 Yes 5 14_000 Yes 3 14_000 Yes 2 14_000 Yes 3 14_000 Yes	Move Calcus	[m]	ain Limits	
Name Name	2 No.30_2 2 No.30_3 4 No.30_3 4 No.30_3 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 **rameters** Tellor Height Defau Proper: 114,000 Yes	Move Calcus	[m] [mm] [mm] 0.0 10000 Burland Str. 0.0 0.10000 Burland Str. 0.0 0.1	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	2 No.30_2 2 No.30_3 3 No.30_3 4 No.30_3 4 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 rameters The Height Defau Proper 1 14,000 Yes 2 14,000 Yes 3 14,000 Yes 4 14,000 Yes 5 14,000 Yes 2 14,000 Yes 5 14,000 Yes 6 1 14,000 Yes 7 1 14,000 Yes	Move Calcui	[m]	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	2 No.30_2 2 No.30_3 3 No.30_3 4 No.30_3 4 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 **rameters** The Height Defau Proper* 1 14,000 Yes 2 14,000 Yes 3 14,000 Yes 14,000 Yes 2 14,000 Yes 3 14,000 Yes 2 14,0	Move Calcui	[m]	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.27 0.28 0.29 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.3	2 No.30_2 3 No.30_3 4 No.30_3 4 No.30_3 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_3 rameters re Height Defau Proper 1 14.000 Yes 2 14.000 Yes 4 14.000 Yes 5 14.000 Yes 1 14.000 Yes 2 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 6 14.000 Yes 7 14.000 Yes	Move Calcui	[m]	ain Limits	
Name 3.30 3.30 3.30 3.30 3.30 3.30 3.26 3.27 3.28 Decific Structures - Bending Pai ructure Name Sub-Structur Name 3.30 3.30 3.30 3.30 3.30 3.30 3.30 3.	2 No.30_2 2 No.30_3 3 No.30_3 4 No.30_3 4 No.30_5 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 rameters The Height Defau Proper [m] 1 14.000 Yes 2 14.000 Yes 3 14.000 Yes 2 14.000 Yes 2 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 No.26_2 5 No.26_3 6 No.26_3 6 No.26_3 7 No.	Move Calcui	[m]	ain Limits	
Name 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.	2 No.30_2 2 No.30_3 3 No.30_3 4 No.30_3 4 No.30_5 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 rameters re Height Defau Proper [m] 1 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 2 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 6 14.000 Yes 7 14.000	Move	[m]	ain Limits	
Name 3.30 3.30 3.30 3.30 3.30 3.30 3.26 3.26 3.27 3.27 3.30 3.30 3.30 3.30 3.30 3.30 3.30 3.3	2 No.30_2 2 No.30_3 3 No.30_3 4 No.30_3 4 No.30_5 5 No.30_5 1 No.26_1 2 No.26_2 3 No.26_2 3 No.26_3 rameters re Height Defau Proper [m] 1 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 2 14.000 Yes 2 14.000 Yes 3 14.000 Yes 4 14.000 Yes 6 14.000 Yes 7 14.000	Move	[m]	ain Limits	

FAIRHURST

Canfield Gardens, NW6

Ground Movement Assessment Damage Impact Assessment

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by TJ	Date 14-Jan-2020	Checked

Structure Name Sub-Structure Vertical Offset from Segment Start Length Curvature Combined Name Offset from Line for Vertical excavations (e.g. overlapping zones of influence or 'shielding' of one excavation by another).

2 Embedded Wall Excavation PEI: Install #1 (Internal Underpin) intersects PE4: Install #4 (Front Wall), PE5: Excavation - Front, PE7: Install #6 (Internal Underpin), and PE8: Excavation - Rear.

3 Embedded Wall Excavation PE2: Install #2 (No.30) intersects PE3: Install #3 (Rear Wall)), PE4: Install #4 (Front Wall), PE5: Excavation - Front, and PE8: Excavation - Rear.

4 Embedded Wall Excavation PE3: Install #3 (Rear Wall)] intersects PE2: Install #2 (No.30), PE6: Install #5 (No.26), and PE8: Excavation - Front, and PE8: Excavation - Front, PE7: Install #1 (Internal Underpin), PE2: Install #1 (Front Wall) intersects PE1: Install #1 (Internal Underpin), PE7: Install #1 (Internal Underpin), PE7: Install #1 (Front Wall) intersects PE1: Install #1 (Front Wall), PE7: Install #1 (Internal Underpin), and PE8: Excavation - Front, PE7: Install #3 (Rear Wall)), PE7: Install #6 (Internal Underpin), and PE8: Excavation - Rear.

5 Embedded Wall Excavation PE6: Install #6 (Internal Underpin) intersects PE1: Install #3 (Rear Wall)), PE7: Install #6 (Internal Underpin), PE5: Excavation - Feont, PE6: Install #6 (Rear Wall)), PE7: Install #6 (Internal Underpin), PE7: Install #6 (Internal Underpin), PE6: Install #6 (Internal Underpin), PE7: Install #6 (Internal Underpin), PE6: Install #6 (Internal Underpin

Errors

None

Displacement and Strain Results

тĀБ	e/No.	C	oordinates				Displacem			Angle o
Name	Dist.	×	У	z	×	У	z	displacement	Horizontal displacement perpendicular	to x Ax
	[m]	[m]	[m]	[m]	[mm]	[mm] 0.0	[mm] 0.0	[mm]	to Line	[°]
Grid 1	Grid 1	10.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		11.00000	0.00000	0.00000	0.0	0.0	0.0	_	_	_
		13.00000	0.00000	0.00000	0.0	0.0	0.0		-	-
		14.00000 15.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	_
		17.00000 18.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		19.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		20.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		21.00000	0.00000	0.00000	0.0	0.0	0.0	-	_	-
		23.00000	0.00000	0.00000	0.0	0.0	0.0		-	-
		24.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		25.00000 26.00000	0.00000	0.00000	0.0	0.0	0.0	_	_	_
		27.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		28.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		30.00000	0.00000	0.00000	0.0	0.0	0.0	-	_	-
		31.00000	0.00000	0.00000	0.0	0.0		-	-	-
		32.00000 33.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	_
		34.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		35.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		36.00000 37.00000	0.00000	0.00000	0.0	0.0	0.0	-	_	-
		38.00000	0.00000	0.00000	0.0	0.0	0.0	-	-	-
		39.00000	0.00000	0.00000	0.0	0.0	0.0		_	-
		10.00000	1.00000	0.00000	0.0	0.0		-	-	-
		11.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		12.00000	1.00000	0.00000	0.0	0.0	0.0	_	-	-
		14.00000	1.00000	0.00000	0.0	0.0	0.0		-	-
		15.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000 17.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	_
		18.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		19.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		20.00000	1.00000	0.00000	0.0	0.0	0.0	_	_	_
		22.00000	1.00000	0.00000	0.0	0.0	0.0		-	-
		23.00000 24.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		25.00000	1.00000	0.00000	0.0	0.0	0.0	-		-
		26.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		27.00000 28.00000	1.00000	0.00000	0.0	0.0	0.0	-		-
		29.00000	1.00000	0.00000	0.0	0.0	0.0	-	_	_
		30.00000	1.00000	0.00000	0.0	0.0		-	-	-
		31.00000	1.00000	0.00000	0.0	0.0	0.0	-	_	
		33.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		34.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		35.00000 36.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		37.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		38.00000	1.00000	0.00000	0.0	0.0	0.0	-	-	-
		40.00000	1.00000	0.00000	0.0	0.0	0.0	_	-	-
		10.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		11.00000	2.00000	0.00000	0.0	0.0	0.0	=	-	-
		13.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		14.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		15.00000 16.00000	2.00000	0.00000	0.0	0.0	0.0	-	_	
		17.00000	2.00000	0.00000	0.0	0.0	0.0		-	-
		18.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		19.00000	2.00000	0.00000	0.0	0.0	0.0		_	_
		21.00000	2.00000	0.00000	0.0	0.0	0.0		-	-
		22.00000 23.00000	2.00000	0.00000	0.0	0.0	0.0	_	-	-
		24.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	
		25.00000	2.00000	0.00000	0.0	0.0	0.0		-	-
		26.00000 27.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		28.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		29.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		30.00000	2.00000	0.00000	0.0	0.0	0.0	_	_	
		32.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		33.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		34.00000 35.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		36.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		37.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		38.00000	2.00000	0.00000	0.0	0.0	0.0	-	_	-
		40.00000	2.00000	0.00000	0.0	0.0	0.0	-	-	-
		10.00000	3.00000	0.00000	0.0	0.0	0.0		-	-
		11.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
		13.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
		14.00000	3.00000	0.00000	0.0	0.0	0.0	-	_	-

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	<u> </u>
Made by	Date	Checked

Type/No.	Coo	rdinates			Di-	splacemen	nt e		Angle of
						-			Line
Name Dist.	×	У	z	x	У	z		Horizontal displacement	to x Axis
		3.00000	0.00000	0.0	0.0	0.0	-	-	-
	17.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
	19.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
	20.00000	3.00000	0.00000	0.0	0.0	0.0	-	_	-
	22.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
	24.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
	25.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
	27.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
		3.00000	0.00000	0.0	0.0	0.0	-	_	-
		3.00000	0.00000	0.0	0.0	0.0	-	-	-
	32.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
		3.00000	0.00000	0.0	0.0	0.0	_	_	-
	35.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	
	37.00000	3.00000	0.00000	0.0	0.0	0.0	-	-	-
		3.00000	0.00000	0.0	0.0	0.0	-	_	-
		3.00000 4.00000	0.00000	0.0	0.0	0.0	_	_	-
	11.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
		4.00000	0.00000	0.0	0.0	0.0	-	_	-
	14.00000 15.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	16.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
		4.00000	0.00000	0.0	0.0	0.0	-	_	-
	19.00000	4.00000	0.00000	0.0	0.0	0.0	-	_	-
	21.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	23.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	24.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	26.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	28.00000	4.00000	0.00000	0.0	0.0	0.0	_	-	-
	29.00000	4.00000	0.00000	0.0	0.0	0.0	_	-	-
	31.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	33.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	34.00000 35.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	36.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	38.00000	4.00000	0.00000	0.0	0.0	0.0	-	-	-
	39.00000 40.00000	4.00000	0.00000	0.0	0.0	0.0	-	_	-
	10.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	12.00000	5.00000	0.00000	0.0	0.0	0.0	-	_	-
	13.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	15.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	17.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	18.00000	5.00000	0.00000	0.0	0.0	0.0	-	_	-
	20.00000	5.00000	0.00000	0.0	0.0	0.0	_	-	-
	22.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	23.00000 24.00000	5.00000	0.00000	0.0	0.0	0.0	-		-
	25.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	27.00000	5.00000	0.00000	0.0	0.0	0.0	_	_	-
	28.00000	5.00000	0.00000	0.0	0.0	0.0	_	_	-
	30.00000	5.00000	0.00000	0.0	0.0	0.0	_	-	-
	32.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	33.00000 34.00000	5.00000	0.00000	0.0	0.0	0.0	-	_	-
	35.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	37.00000	5.00000	0.00000	0.0	0.0	0.0	-	-	-
	38.00000	5.00000	0.00000	0.0	0.0	0.0	=	_	-
	40.00000	5.00000	0.00000	0.0	0.0	0.0	-	_	-
	11.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	13.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	14.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	16.00000	6.00000	0.00000	0.0	0.0	0.0	-		-
	18.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	19.00000	6.00000	0.00000	0.0	0.0	0.0	_	-	-
	21.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	23.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	24.00000 25.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	26.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	28.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	30.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	31.00000	6.00000	0.00000	0.0	0.0	0.0	-	_	-
	33.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
		6.00000	0.00000	0.0	0.0	0.0	-	-	-
	36.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	38.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	40.00000	6.00000	0.00000	0.0	0.0	0.0	-	-	-
	10.00000	7.00000	0.00000	0.0	0.0	0.0	_	-	-
	12.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		7.00000 7.00000	0.00000	0.0	0.0	0.0	-	-	-
	15.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
	17.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
	19.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		7.00000	0.00000	0.0	0.0	0.0	-	-	-
	22.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		7.00000 7.00000	0.00000	0.0	0.0	0.0	-	-	-
	25.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
	27.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
	28.00000 29.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
	30.00000 31.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
Dua aus ma Vallan	Verslen 4	0.4.0.4	0 Com		10				_

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	<u> </u>	
Made by	Date	Checked

Type	/No.		Coordinates				Displacem	ents		Angle of
	Dist.				_	_	•			Line
Name	Dist.	x	У	z	x	У	z	Horizontal displacement	Horizontal displacement	to x Axis
		32.00000 33.00000	7.00000	0.00000	0.0	0.0	0.0		_	-
		34.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		35.00000 36.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		37.00000 38.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		39.00000	7.00000	0.00000	0.0	0.0	0.0	-	-	-
		10.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	_
		11.00000	8.00000	0.00000	0.0	0.0	0.0	_	_	-
		13.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		15.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		18.00000 19.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		20.00000	8.00000	0.00000	0.0	0.0	0.0	-	=	_
		21.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		23.00000	8.00000	0.00000	0.0	0.0	0.0		_	-
		25.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		26.00000 27.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		28.00000	8.00000	0.00000	0.0	0.0	0.0	_	_	-
		30.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		31.00000 32.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		33.00000 34.00000	8.00000	0.00000	0.0	0.0	0.0		=	_
		35.00000 36.00000	8.00000	0.00000	0.0	0.0	0.0	_		-
		37.00000	8.00000	0.00000	0.0	0.0	0.0	-	-	-
		38.00000	8.00000	0.00000	0.0	0.0		-	-	-
		40.00000	8.00000 9.00000	0.00000	0.0	0.0	0.0	-	=	-
		11.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		13.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		14.00000 15.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000 17.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	_
		18.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		19.00000 20.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		21.00000 22.00000	9.00000	0.00000	0.0	0.0	0.0		-	-
		23.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		24.00000 25.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		26.00000 27.00000	9.00000	0.00000	0.0	0.0	0.0		_	-
		28.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		30.00000	9.00000	0.00000	0.0	0.0	0.0	-		-
		31.00000 32.00000	9.00000	0.00000	0.0	0.0	0.0			_
		33.00000 34.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		35.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		36.00000 37.00000	9.00000	0.00000	0.0	0.0	0.0	-	_	_
		38.00000	9.00000	0.00000	0.0	0.0	0.0		-	-
		40.00000	9.00000	0.00000	0.0	0.0	0.0	-	-	-
		10.00000	10.00000	0.00000	0.0	0.0	0.0	-	-	-
		12.00000 13.00000	10.00000	0.00000	0.0	0.0	0.0		_	-
		14.00000 15.00000	10.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000	10.00000	0.00000	0.0	0.0	0.0	-	=	=
		17.00000 18.00000	10.00000	0.00000	0.0	0.0	0.0		-	-
		19.00000	10.00000	0.00000	0.0	0.0	0.0		_	_
		21.00000	10.00000	0.00000	0.0	0.0	0.0	-	-	-
		22.00000	10.00000	0.00000	0.0	0.0	0.0	-	-	-
		24.00000 25.00000	10.00000	0.00000	0.0023499 0.0025723	0.024778	0.0069685	-	-	-
		26.00000	10.00000	0.00000	314.64E-6	0.10682	0.021892	-	-	-
		27.00000 28.00000	10.00000	0.00000	317.89E-6 321.15E-6	0.10903	0.022063	-	-	-
		29.00000 30.00000	10.00000	0.00000	324.40E-6 327.65E-6	0.11014	0.022405	_	_	-
		31.00000	10.00000	0.00000	330.91E-6 334.16E-6	0.11234	0.022744		-	-
		33.00000	10.00000	0.00000	337.41E-6	0.11455	0.023082	-	-	-
		34.00000 35.00000	10.00000	0.00000	-0.0012131 -0.0031165	0.072586 0.049532	0.014991 0.011515	-	-	_
		36.00000 37.00000	10.00000	0.00000	-0.0013583 0.0	0.011765	0.0042802		-	-
		38.00000	10.00000	0.00000	0.0	0.0	0.0	-	-	-
		40.00000	10.00000	0.00000	0.0	0.0	0.0	-		-
		10.00000	11.00000	0.00000	0.0	0.0	0.0	-	_	_
		12.00000 13.00000	11.00000	0.00000	0.0	0.0	0.0		-	-
		14.00000 15.00000	11.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000	11.00000	0.00000	0.0	0.0	0.0	-	-	-
		17.00000 18.00000	11.00000	0.00000	0.0	0.0	0.0	-	-	-
		19.00000	11.00000	0.00000	0.0	0.0	0.0	-	-	-
		21.00000	11.00000	0.00000	0.0090186	0.028158	0.0085831	-		-
		22.00000	11.00000	0.00000	0.024119 0.028786	0.17150	0.021374	-	-	-
		24.00000	11.00000	0.00000	0.024734 0.014365	0.23593	0.036177	_	-	_
		26.00000 27.00000	11.00000	0.00000	0.0014192	0.48182 0.48292	0.064374	-	-	-
		28.00000	11.00000	0.00000	0.0014257	0.48403	0.064489	-	-	-
		29.00000 30.00000	11.00000	0.00000	0.0014289 0.0014322	0.48513 0.48624	0.064719	-	=	-
		31.00000 32.00000	11.00000	0.00000	0.0014354	0.48734	0.064949	-	-	-
		33.00000	11.00000	0.00000	0.0014387	0.48845	0.065065	-	-	-
		34.00000 35.00000	11.00000 11.00000	0.00000	-0.0058060 -0.018842	0.31426 0.27076	0.042789	-	-	-
		36.00000 37.00000	11.00000	0.00000	-0.027251 -0.028265	0.21231		-	-	-
		38.00000	11.00000	0.00000	-0.019751	0.072750	0.017193	-	-	-
		39.00000 40.00000	11.00000	0.00000	-285.40E-6 0.0	798.96E-6 0.0	0.0	-	-	-
		10.00000 11.00000	12.00000	0.00000	0.0	0.0	0.0		-	-
		12.00000	12.00000	0.00000	0.0	0.0	0.0	-	-	-
		14.00000	12.00000	0.00000	0.0	0.0	0.0	-	-	-
		15.00000 16.00000	12.00000	0.00000	0.0	0.0	0.0	-	_	-
		17.00000	12.00000	0.00000	0.0	0.0	0.0	-	-	-
	Vellen				or minist @					

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by	Date 14len-2020	Checked

Type/No.	Coordinates				Displacem	ents		Angle of
		_			•			Line
Name Dist.	х у	z	x	У	z	displacement	Horizontal displacement	to x Axis
	18.00000 12.00000 19.00000 12.00000	0.00000	0.0 0.0014875	0.0			-	-
	20.00000 12.00000	0.00000	0.038331	0.081118	0.020274	-	-	-
	21.00000 12.00000 22.00000 12.00000	0.00000	0.061187	0.25843	0.031963	-	-	_
	23.00000 12.00000 24.00000 12.00000	0.00000	0.066326 0.051449	0.35078	0.054244		_	-
	25.00000 12.00000	0.00000	0.028479	0.51645	0.075442	-	-	-
	27.00000 12.00000	0.00000	0.0025270	0.85792	0.12041	-	-	-
	28.00000 12.00000 29.00000 12.00000	0.00000	0.0025302 0.0025335	0.85902	0.12090 0.12114	-	-	-
	30.00000 12.00000	0.00000	0.0025367	0.86123	0.12138	-	=	-
	31.00000 12.00000 32.00000 12.00000	0.00000	0.0025400	0.86234	0.12162 0.12186	-	_	-
	33.00000 12.00000	0.00000	0.0025465	0.86455	0.12211	-	-	-
	34.00000 12.00000 35.00000 12.00000	0.00000	-0.011424 -0.037817	0.55419 0.48614	0.079958	-	-	-
	36.00000 12.00000 37.00000 12.00000	0.00000	-0.058225 -0.069197	0.40323	0.061557	-	-	-
	38.00000 12.00000	0.00000	-0.068234		0.038317		=	-
	39.00000 12.00000 40.00000 12.00000	0.00000	-0.053848 -0.025459	0.048649	0.014309		_	-
	10.00000 13.00000 11.00000 13.00000	0.00000	0.0	0.0	0.0		_	-
	12.00000 13.00000	0.00000	0.0	0.0	0.0	-	-	-
	13.00000 13.00000 14.00000 13.00000	0.00000	0.0	0.0	0.0		-	-
	15.00000 13.00000	0.00000	0.0	0.0	0.0	-	-	-
	16.00000 13.00000 17.00000 13.00000	0.00000	0.0	0.0	0.0	-	-	=
	18.00000 13.00000 19.00000 13.00000	0.00000	0.014529 0.066264	0.016750	0.0073149	-	_	-
	20.00000 13.00000	0.00000	0.10243	0.18489	0.037603	-	-	-
	21.00000 13.00000 22.00000 13.00000	0.00000	0.12206 0.12484	0.28682	0.053839	_	_	-
	23.00000 13.00000 24.00000 13.00000	0.00000	0.11144	0.51510	0.10163 0.12787	-	-	_
	25.00000 13.00000	0.00000	0.045699	0.73876	0.14930	-	-	-
	26.00000 13.00000 27.00000 13.00000	0.00000	0.0036283 0.0036315	1.2318	0.24026	_	_	_
	28.00000 13.00000	0.00000	0.0036348	1.2340 1.2351	0.24122	-	_	-
	30.00000 13.00000		0.0036413	1.2362		-	-	-
	31.00000 13.00000 32.00000 13.00000	0.00000	0.0036445 0.0036478	1.2373 1.2384	0.24266		-	_
	33.00000 13.00000	0.00000	0.0036510	1.2395	0.24363	-	-	-
	34.00000 13.00000 35.00000 13.00000	0.00000	-0.018420 -0.061125	0.69372	0.15915 0.14249	-	-	-
	36.00000 13.00000 37.00000 13.00000	0.00000	-0.095870 -0.11829	0.58150 0.46430	0.11812	-	_	_
	38.00000 13.00000	0.00000	-0.12549	0.34948	0.066216	-	-	-
	39.00000 13.00000 40.00000 13.00000	0.00000	-0.11604 -0.089745	0.24219	0.046571	_	-	-
	10.00000 14.00000	0.00000	0.0	0.0	0.0	-	-	-
	11.00000 14.00000 12.00000 14.00000	0.00000	0.0	0.0	0.0	-	_	-
	13.00000 14.00000 14.00000 14.00000	0.00000	0.0	0.0			_	-
	15.00000 14.00000	0.00000	0.0	0.0	0.0	-	-	-
	16.00000 14.00000 17.00000 14.00000	0.00000	0.0	0.0	0.0		_	-
	18.00000 14.00000	0.00000	0.085973	0.080801	0.024814	-	-	-
	20.00000 14.00000	0.00000	0.17628		0.060896	-	_	-
	21.00000 14.00000 22.00000 14.00000	0.00000	0.19368	0.38200 0.51493	0.094082		_	-
	23.00000 14.00000	0.00000	0.16658	0.65959	0.18889		-	-
	24.00000 14.00000 25.00000 14.00000	0.00000	0.12411	0.80919	0.23864	_	_	-
	26.00000 14.00000 27.00000 14.00000	0.00000	0.0047328	1.6068 1.6079	0.45063	-	-	-
	28.00000 14.00000	0.00000	0.0047393	1.6090	0.45216	-	-	-
	29.00000 14.00000 30.00000 14.00000	0.00000	0.0047426	1.6101 1.6112	0.45292	-	_	-
	31.00000 14.00000	0.00000	0.0047491	1.6123 1.6134		-	-	-
	33.00000 14.00000	0.00000	0.0047523 0.0047556	1.6145	0.45522 0.45599	-	-	-
	34.00000 14.00000 35.00000 14.00000	0.00000	-0.027330 -0.090385	1.0261 0.89059	0.29728	-	-	-
	36.00000 14.00000	0.00000	-0.14249	0.74273	0.21981	-	-	-
	37.00000 14.00000 38.00000 14.00000	0.00000	-0.17804 -0.19380	0.59449	0.16830 0.11925		_	-
	39.00000 14.00000 40.00000 14.00000	0.00000	-0.18871	0.32857	0.079030	-	-	-
	10.00000 15.00000	0.00000	-0.16328 0.0	0.21877	0.050665	-	-	-
	11.00000 15.00000	0.00000	0.0	0.0	0.0	-	-	-
	13.00000 15.00000	0.00000	0.0	0.0	0.0	-	-	-
	14.00000 15.00000 15.00000 15.00000	0.00000	0.0	0.0	0.0	-	-	-
	16.00000 15.00000 17.00000 15.00000	0.00000	0.0045443	0.035753	0.0093111	-	-	_
	18.00000 15.00000	0.00000	0.17554	0.23662	0.059274		-	-
	19.00000 15.00000 20.00000 15.00000	0.00000	0.22553 0.26156	0.38232	0.092474	-	-	-
	21.00000 15.00000 22.00000 15.00000	0.00000	0.27853	0.61867 0.77348	0.19126 0.26636	-	_	-
	23.00000 15.00000	0.00000	0.23525	0.94905	0.34965	-	-	-
	24.00000 15.00000 25.00000 15.00000	0.00000	0.17518 0.094832	1.1384	0.43055	-	-	-
	26.00000 15.00000	0.00000	0.0057967	2.1534	0.78594	-	-	-
	27.00000 15.00000 28.00000 15.00000	0.00000	0.0058176 0.0058291	2.0800 2.0462	0.76952		-	-
	29.00000 15.00000 30.00000 15.00000	0.00000	0.0058435	2.0002 1.9862	0.76224 0.75885	-	-	-
	31.00000 15.00000	0.00000	0.0058536	1.9873	0.75987	-	-	-
	32.00000 15.00000 33.00000 15.00000	0.00000	0.0058569	1.9884 1.9895	0.76089	-	_	_
	34.00000 15.00000	0.00000	-0.039006 -0.12812	1.2556	0.49554	-	-	_
	36.00000 15.00000	0.00000	-0.20152	1.0722 0.88036	0.44230		-	-
	37.00000 15.00000 38.00000 15.00000	0.00000	-0.25197 -0.27619	0.69600 0.52924	0.28413	-	-	-
	39.00000 15.00000	0.00000	-0.27406	0.38488	0.13331	-		-
	40.00000 15.00000 10.00000 16.00000	0.00000	-0.24744	0.26395	0.081527	-	_	_
	11.00000 16.00000 12.00000 16.00000	0.00000	0.0	0.0	0.0	-	-	_
	13.00000 16.00000	0.00000	0.0040574	0.010705	0.0044321	-	-	-
	14.00000 16.00000 15.00000 16.00000	0.00000	0.024690 0.033867	0.085128 0.16043	0.019423	-	-	-
	16.00000 16.00000	0.00000	0.10279	0.26205	0.054360	-	-	-
	17.00000 16.00000 18.00000 16.00000	0.00000	0.20783	0.50692	0.078735	-	-	-
	19.00000 16.00000 20.00000 16.00000	0.00000	0.33810 0.36728	0.78977 0.88516	0.17168	-	-	-
	21.00000 16.00000	0.00000	0.37965	1.0199	0.31948	=	=	-
	22.00000 16.00000 23.00000 16.00000	0.00000	0.36839 0.32268	1.1952 1.4041	0.43005 0.55055	-	-	-
	24.00000 16.00000	0.00000	0.24208	1.6411	0.66773	-	=	-
	25.00000 16.00000 26.00000 16.00000	0.00000	0.13168 0.0068125	1.8913 2.9034	0.79137 1.2607	-		-
	27.00000 16.00000 28.00000 16.00000	0.00000	0.0068676	2.6858 2.6306	1.2341	-	-	_
	29.00000 16.00000	0.00000	0.0069034	2.5638	1.2234	-	-	-
	30.00000 16.00000 31.00000 16.00000	0.00000	0.0069242	2.4909 2.4166	1.2170	-	-	-
	32.00000 16.00000 33.00000 16.00000	0.00000	0.0069614	2.3634	1.1999	-	-	-
	34.00000 16.00000	0.00000	-0.054896	1.4780	0.77725		-	-
	Varalan 10 1 0 1							

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	•
Made by	Date	Checked

Type	/No.		Coordinates			Displacements		Angle of		
Name	Dist	×		z	×		z	Horizontal	Horizontal	Line to x Axis
Name	DISC.		У			У		displacement	displacement	CO A HAIS
		36.00000	16.00000 16.00000	0.00000	-0.17849 -0.27830	1.2311 0.98415	0.67388 0.54925	_	_	-
		37.00000 38.00000	16.00000 16.00000	0.00000	-0.34511 -0.37649	0.75839 0.56429	0.42863 0.31065	-	-	-
		39.00000 40.00000	16.00000 16.00000	0.00000	-0.37455 -0.36067	0.40430 0.29356	0.20732 0.13379	-	-	_
		10.00000	17.00000	0.00000	0.0	0.0	0.0	-	_	-
		12.00000	17.00000	0.00000	0.029260	0.052755 0.13673	0.015387	-		_
		14.00000 15.00000	17.00000 17.00000	0.00000	0.075586 0.081423	0.22799 0.32463	0.039830	-	_	-
		16.00000	17.00000	0.00000	0.21957	0.46822 0.61370	0.095325	-	-	-
		18.00000	17.00000	0.00000	0.40999	0.75576	0.17744	-	=	-
		19.00000	17.00000 17.00000	0.00000	0.47177 0.51528	1.1746	0.29149 0.38371	_	_	-
		21.00000	17.00000 17.00000	0.00000	0.51264 0.49091	1.3858	0.49036 0.62664	-	_	-
		23.00000	17.00000	0.00000	0.43680 0.33317	1.8056 2.0984	0.82825 1.0477	-	_	-
		25.00000 26.00000	17.00000 17.00000	0.00000	0.18340 0.0078284	2.4272 3.6534	1.2269	-	_	-
		27.00000 28.00000	17.00000 17.00000	0.00000	0.0079185	3.2873 3.2067	1.8787 1.8660	-	-	-
		29.00000	17.00000	0.00000	0.0079411 0.0079662 0.0079922	3.1155 3.0205	1.8524	-	-	-
		31.00000	17.00000	0.00000	0.0080177	2.9274 2.8398	1.8310	=	=	-
		32.00000	17.00000	0.00000	0.0080642	2.7605	1.8232 1.8138	=	=	-
		34.00000 35.00000	17.00000 17.00000	0.00000	-0.077670 -0.24879	1.6886 1.3540	1.1689	_	_	-
		36.00000 37.00000	17.00000 17.00000	0.00000	-0.38138 -0.46459	1.0376 0.76658	0.82329 0.60046	_	=	-
		38.00000	17.00000	0.00000	-0.49942 -0.52160	0.54834	0.42738 0.31025	-	_	_
		40.00000	17.00000 18.00000	0.00000	-0.50312 0.0	0.30239	0.20736	_	_	-
		11.00000	18.00000	0.00000	0.049877 0.095148	0.060728 0.14496	0.018827	-	-	_
		13.00000	18.00000 18.00000	0.00000	0.12399 0.13556	0.24216 0.35112	0.047633	-	-	-
		15.00000 16.00000	18.00000 18.00000	0.00000	0.20068	0.48392 0.64757	0.11234	-	-	-
		17.00000	18.00000	0.00000	0.46313	0.81586	0.16538	-	-	-
		18.00000	18.00000	0.00000	0.54990	0.98169 1.5352	0.30277	-	-	-
		20.00000	18.00000 18.00000	0.00000	0.69352 0.71233	1.6251 1.7383	0.62186 0.76467	-	-	-
		22.00000	18.00000 18.00000	0.00000	0.66441	1.8826 2.1290	0.95874 1.2203	-	_	-
		24.00000 25.00000	18.00000 18.00000	0.00000	0.47100 0.27233	2.5026 2.9788	1.4821	-	-	-
		26.00000 27.00000	18.00000 18.00000	0.00000	0.0092823 0.0093880	4.5446 4.0249	2.6360 2.5254	-	-	-
		28.00000	18.00000 18.00000	0.00000	0.0094195	3.9138 3.7943	2.4957	-	_	-
		30.00000 31.00000	18.00000 18.00000	0.00000	0.0094865	3.6749 3.5617	2.4361 2.4151	-	-	-
		32.00000	18.00000	0.00000	0.0095481	3.4589	2.4014	=	=	-
		33.00000 34.00000	18.00000	0.00000	0.0095748	3.3685 1.9931	2.3926 1.5368	=	=	-
		35.00000 36.00000 37.00000	18.00000 18.00000	0.00000	-0.36418 -0.52751	1.4611	1.3440	-	-	_
		37.00000 38.00000	18.00000 18.00000	0.00000	-0.62019 -0.69647	0.69917 0.51432	0.83074	-	_	-
		39.00000 40.00000	18.00000 18.00000	0.00000	-0.71303 -0.67111	0.38532	0.43499	_	_	-
		10.00000	19.00000	0.00000	0.060970 0.12288	0.049115	0.018779	-	_	_
		12.00000	19.00000	0.00000	0.17023 0.19895	0.21299	0.050858	-	_	-
		14.00000 15.00000	19.00000	0.00000	0.20694	0.44926 0.61082	0.12282	-	_	-
		16.00000	19.00000	0.00000	0.48220	0.79648	0.28023	-	_	-
		17.00000	19.00000	0.00000	0.60611 0.70052	1.1842	0.37333 0.49182	=	=	-
		19.00000	19.00000 19.00000	0.00000	0.79563 0.90000	1.9476	0.79491 0.95877	-	-	-
		21.00000	19.00000	0.00000	0.95782 0.94631	2.0478 2.1832	1.1740	-	_	-
		23.00000 24.00000	19.00000	0.00000	0.85351 0.72084	2.3903 2.8094	1.6878	-	_	-
		25.00000 26.00000	19.00000	0.00000	0.44286	3.4613 4.3476	2.1749 2.5962	-	-	-
		27.00000 28.00000	19.00000 19.00000	0.00000	0.011033 0.011074	4.8134 4.6642	3.0954	-	=	-
		29.00000	19.00000 19.00000	0.00000	0.011116 0.011156	4.5104 4.3627	2.9761 2.9221	-	_	-
		31.00000 32.00000	19.00000	0.00000	0.011194 0.011227	4.2280 4.1098	2.8804	-	_	-
		33.00000 34.00000	19.00000	0.00000	0.011227	4.0094 2.3114	2.8365 1.8111	-	-	-
		35.00000	19.00000	0.00000	-0.58341	1.4950	1.5749			-
		36.00000 37.00000	19.00000	0.00000	-0.78325 -0.90647	0.90796	1.3051	-		-
		38.00000	19.00000	0.00000	-0.96427 -0.94187	0.44202	0.86284	-	-	-
		40.00000	19.00000	0.00000	-0.86145 0.14542	0.23680 0.093571	0.38917	-	-	-
		11.00000 12.00000	20.00000	0.00000	0.21517 0.25657	0.16824 0.25340	0.050849 0.081223	=	=	=
		13.00000 14.00000	20.00000	0.00000	0.28660 0.29272	0.37173 0.51546	0.13393	-	-	_
		15.00000 16.00000	20.00000	0.00000	0.46099 0.62467	0.69954	0.32247	-	-	-
		17.00000	20.00000	0.00000	0.75492 0.85557	1.1359	0.57389	=	-	_
		19.00000	20.00000	0.00000	0.97338	2.1854	1.1823	-	-	-
		21.00000 22.00000	20.00000	0.00000	1.2436	2.3129	1.7260	-	-	-
		23.00000	20.00000	0.00000	1.3146 1.3769 1.1952	2.4211 2.6089 2.9209	2.0960 2.3524 2.4182	-	-	-
		25.00000	20.00000	0.00000	0.77861	3.7006	2.5674	-	-	-
		26.00000	20.00000	0.00000	0.012412	5.0251 5.6409	2.8308	-	-	-
		28.00000	20.00000	0.00000	0.012882 0.012934	5.4436 5.2489	3.3699 3.2688	-	-	-
		30.00000 31.00000	20.00000	0.00000	0.012982 0.013026	5.0698 4.9133	3.1803 3.1117	-	-	-
		32.00000 33.00000	20.00000	0.00000	0.013063 0.013093	4.7816 4.6804	3.0647 3.0374	-	-	-
		34.00000 35.00000	20.00000	0.00000	-0.37596 -0.98137	2.4975 1.2730	1.9054 1.6474	-		-
		36.00000 37.00000	20.00000	0.00000	-1.3225 -1.3746	0.71189 0.46237	1.6021	-	-	-
		38.00000	20.00000	0.00000	-1.2896 -1.2006	0.46237 0.31451 0.22649	1.1323	-	-	
		40.00000	20.00000	0.00000	-1.0654	0.16355	0.47596	-	-	-
		10.00000	21.00000	0.00000	0.24260	0.12167	0.047346	-	-	-
		12.00000	21.00000	0.00000	0.37647	0.28298	0.13388	-	-	-
		14.00000 15.00000	21.00000 21.00000	0.00000	0.39664 0.60102	0.54073 0.74163	0.31120 0.46798	-	-	_
		16.00000 17.00000	21.00000	0.00000	0.77326	0.97950 1.2458	0.62462 0.83289	-	_	-
		18.00000 19.00000	21.00000	0.00000	1.0068 1.1455	1.5210 2.4833	1.1012	-	-	_
		20.00000	21.00000	0.00000	1.3555	2.5074	1.9895	-	-	-
	Vellen				or culculat @					

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	•
Made by TJ	Date 14-Jan-2020	Checked

Type/No.	Coordinates			n	isplacem	ent s		Angle of
					-			Line
Name Dist.	х у	z	x	У	z	Horizontal displacement		to x Axis
	21.00000 21.00000 22.00000 21.00000	0.00000	1.5490 1.7849	2.5409	2.4209		_	-
	23.00000 21.00000 24.00000 21.00000	0.00000	2.0700 2.1928	2.6916	3.1936	-	-	-
	25.00000 21.00000	0.00000	1.7589	3.3634	3.0769	-	=	-
	26.00000 21.00000 27.00000 21.00000	0.00000	0.027341 0.014861	5.8511 6.5297	3.1829 3.5344	-	_	-
	28.00000 21.00000 29.00000 21.00000	0.00000	0.014929	6.2703 6.0266	3.3462		-	-
	30.00000 21.00000 31.00000 21.00000	0.00000	0.015051 0.015100	5.8142 5.6380	3.0577	_	-	-
	32.00000 21.00000	0.00000	0.015138	5.5090	2.8967	-	-	-
	33.00000 21.00000 34.00000 21.00000	0.00000	0.015167 -0.97374	5.4155 2.0354	2.8581 1.6856	-	_	-
	35.00000 21.00000 36.00000 21.00000	0.00000	-2.0897 -2.1844	0.74086 0.38036	1.9569 2.0158	-	_	-
	37.00000 21.00000 38.00000 21.00000	0.00000	-1.9651 -1.6522	0.21251 0.13857	1.7702	-	-	-
	39.00000 21.00000	0.00000	-1.4698	0.098335	0.89946	-	-	-
	40.00000 21.00000 10.00000 22.00000	0.00000	-1.2676 0.35122	0.070512 0.13261	0.54298 0.068015	-	=	-
	11.00000 22.00000 12.00000 22.00000	0.00000	0.45170 0.52063	0.28791	0.12183	-	-	-
	13.00000 22.00000 14.00000 22.00000	0.00000	0.54900	0.39077 0.51619	0.31137	_	_	-
	15.00000 22.00000 16.00000 22.00000	0.00000	0.86710 1.1650	0.72786 0.99854	0.65514	_	_	-
	17.00000 22.00000	0.00000	1.4099	1.3220	1.3108	-	-	-
	19.00000 22.00000	0.00000	1.8707	1.6739 2.7993	2.7409	-	_	-
	20.00000 22.00000 21.00000 22.00000	0.00000	2.2457	2.7996	3.0819		-	-
	22.00000 22.00000 23.00000 22.00000	0.00000	3.1385 3.8211	2.8002 2.8006	4.4137 4.9751	_	-	-
	24.00000 22.00000	0.00000	4.5591	2.8010	5.3517	-	-	-
	25.00000 22.00000 26.00000 22.00000	0.00000	5.3539 5.7221	2.8014 2.8018	5.3402 4.2862	-	_ =	-
	27.00000 22.00000 28.00000 22.00000	0.00000		Point	lies wi	thin an excava thin an excava	tion.	
	29.00000 22.00000 30.00000 22.00000	0.00000		Point Point	lies wi lies wi	thin an excava thin an excava	tion.	
	31.00000 22.00000 32.00000 22.00000	0.00000		Point	lies wi	thin an excava	tion.	
	33.00000 22.00000	0.00000	E 2100	Point	lies wi	thin an excava	tion.	
	34.00000 22.00000 35.00000 22.00000	0.00000	-5.7196 -5.0120	0.17305 0.10740	3.0950 3.5225	-	-	-
	36.00000 22.00000 37.00000 22.00000	0.00000	-4.2357 -3.5253	0.052021 0.0048420	3.3296 2.8270	-	_	-
	38.00000 22.00000 39.00000 22.00000	0.00000	-2.8557 -2.4619	0.0	2.1608		-	-
	40.00000 22.00000 10.00000 23.00000	0.00000	-2.0869 0.46836	0.0	0.85460	-	-	-
	11.00000 23.00000	0.00000	0.59349	0.18889	0.17337	-	-	-
	12.00000 23.00000 13.00000 23.00000	0.00000	0.68857	0.36283	0.28963	-	_	-
	14.00000 23.00000 15.00000 23.00000	0.00000	0.74092 1.0333	0.48656	0.60213	-	-	-
	16.00000 23.00000 17.00000 23.00000	0.00000	1.3244	0.95660 1.4214	1.2238		_	-
	18.00000 23.00000	0.00000	1.6704	1.9952	2.1351	-	-	-
	19.00000 23.00000 20.00000 23.00000	0.00000	1.8710 2.2460	3.4550 3.4394	3.4172 3.7418	-	=	-
	21.00000 23.00000 22.00000 23.00000	0.00000	2.6210 3.1287	3.3927 3.3518	4.3652 4.9854	_	_	-
	23.00000 23.00000 24.00000 23.00000	0.00000	3.7937 4.4936	3.3492 3.3495	5.5132 5.8179		-	-
	25.00000 23.00000 26.00000 23.00000	0.00000	5.1905 5.7175	3.3498	5.7054 4.8346	-	-	-
	27.00000 23.00000	0.00000	3.7173		lies wi	thin an excava		
	28.00000 23.00000 29.00000 23.00000	0.00000		Point	lies wi	thin an excava thin an excava	tion.	
	30.00000 23.00000 31.00000 23.00000	0.00000		Point Point	lies wi lies wi	thin an excava thin an excava	tion.	
	32.00000 23.00000 33.00000 23.00000	0.00000		Point	lies wi	thin an excava	tion.	
	34.00000 23.00000	0.00000	-5.5242	0.16216	2.8949	-	-	-
	35.00000 23.00000 36.00000 23.00000	0.00000	-4.9042 -4.1910	0.10452 0.056787	3.3884 3.2598	-	_	-
	37.00000 23.00000 38.00000 23.00000	0.00000	-3.5070 -2.8504	0.016692	2.7902 2.1401		-	-
	39.00000 23.00000 40.00000 23.00000	0.00000	-2.4619 -2.0869	0.0	1.4213	-	-	-
	10.00000 24.00000	0.00000	0.58906	0.10444	0.12379	-	-	-
	11.00000 24.00000 12.00000 24.00000	0.00000	0.74523 0.87612	0.15408 0.21687	0.22820	-	_	-
	13.00000 24.00000 14.00000 24.00000	0.00000	0.97084	0.29840	0.55776	_	_	-
	15.00000 24.00000 16.00000 24.00000	0.00000	1.3493	0.56306	1.1531	_	_	-
	17.00000 24.00000	0.00000	1.7723	1.4126	1.8222	-	-	-
	18.00000 24.00000 19.00000 24.00000	0.00000	1.7783	2.2624 4.1589	2.4052 3.9370	-	=	-
	20.00000 24.00000 21.00000 24.00000	0.00000	2.2462 2.6212	4.1199 4.0263	4.2336 4.7615	-	-	-
	22.00000 24.00000 23.00000 24.00000	0.00000	3.0964 3.7252	3.9654 3.9319	5.3309 5.8185		-	-
	24.00000 24.00000 25.00000 24.00000	0.00000	4.3641 5.0256	3.9316 3.9319	6.0603	-	-	-
	26.00000 24.00000	0.00000	5.7160	3.9322	5.2394	-	-	-
	27.00000 24.00000 28.00000 24.00000	0.00000		Point	lies wi	thin an excava thin an excava	tion.	
	29.00000 24.00000 30.00000 24.00000	0.00000		Point	lies wi	thin an excava thin an excava	tion.	
	31.00000 24.00000 32.00000 24.00000	0.00000		Point	lies wi	thin an excava	tion.	
	33.00000 24.00000	0.00000	-5.4155		lies wi	thin an excava		
	34.00000 24.00000 35.00000 24.00000	0.00000	-4.7391	0.087299	2.7784	-	-	-
	36.00000 24.00000 37.00000 24.00000	0.00000	-4.0908 -3.4563	0.050200 0.019410	3.1069 2.6935	-	-	-
	38.00000 24.00000 39.00000 24.00000	0.00000	-2.8490 -2.4619	0.0	2.0816 1.3897	-	-	-
	40.00000 24.00000 10.00000 25.00000	0.00000	-2.0869 0.70602	0.0	0.85460	-	-	-
	11.00000 25.00000	0.00000	0.89833	0.10170	0.27785	-		
	12.00000 25.00000 13.00000 25.00000	0.00000	1.0736	0.14341	0.45724	-	-	-
	14.00000 25.00000 15.00000 25.00000	0.00000	1.3334	0.27670 0.40583	1.0410	-	-	-
	16.00000 25.00000 17.00000 25.00000	0.00000	2.1442 2.1883	0.64561 1.0753	1.6575	-	_	-
	18.00000 25.00000 19.00000 25.00000	0.00000	2.0187 1.8715	2.2853 4.9274	2.3914		-	-
	20.00000 25.00000	0.00000	2.2464	4.8333	4.4032		-	-
	21.00000 25.00000 22.00000 25.00000	0.00000	2.6214 3.0848	4.6715 4.6113	4.8241 5.3916		-	-
	23.00000 25.00000 24.00000 25.00000	0.00000	3.6734 4.3011	4.5799 4.5691	5.8619 6.1133	-	-	-
	25.00000 25.00000 26.00000 25.00000	0.00000	4.9724	4.5693	6.0011	-	-	
	27.00000 25.00000	0.00000	5.7159		lies wi	thin an excava		
	28.00000 25.00000 29.00000 25.00000	0.00000		Point	lies wi	thin an excava thin an excava	tion.	
	30.00000 25.00000 31.00000 25.00000	0.00000		Point	lies wi	thin an excava	tion.	
	32.00000 25.00000 33.00000 25.00000	0.00000		Point	lies wi	thin an excava thin an excava	tion.	
	34.00000 25.00000	0.00000	-5.3865	0.087879 0.058346	2.7365 3.0999	- excava	-	-
	35.00000 25.00000 36.00000 25.00000	0.00000	-4.6792 -4.0287	0.034542	3.0072	-	-	-
	37.00000 25.00000	0.00000	-3.4130	0.014956	2.6113	-	-	-
	Versien 10 1 0 1							

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	•
Made by TJ	Date 14-Jan-2020	Checked

Type/	/No.		Coordinates			D	isplacer	ments			Angle of
Name	Dist.	×	у	z	×	У	z	Horizonta	al Hori	zontal	Line to x Axis
- Nume	2200.		_			_		displaceme			00 H 11H15
		39.00000	25.00000 25.00000	0.00000	-2.4619	0.0	1.3589	9 –		-	-
		10.00000	25.00000 26.00000	0.00000	-2.0869 0.80994	0.025421	0.16978	3 -		_	-
		11.00000	26.00000	0.00000	1.0407	0.052584	0.31354	5 –		-	-
		13.00000	26.00000	0.00000	1.4805	0.073403	0.81138			_	-
		15.00000	26.00000	0.00000	2.3175 2.9120	0.15835	1.603	7 –		-	-
			26.00000	0.00000	3.3352 2.8850	0.49928 1.2915	2.0680) –		-	-
		19.00000	26.00000 26.00000	0.00000	1.8718	5.6703 5.4697	3.8253	3 -		-	_
		21.00000	26.00000	0.00000	2.6216	5.3458	4.4438	3 -		-	-
		22.00000	26.00000	0.00000	3.0850 3.6512	5.3107 5.2962	5.0200	1 -		-	-
		24.00000 25.00000		0.00000	4.2675 4.9483	5.2901 5.2904	5.7864	4 -		-	-
		26.00000 27.00000	26.00000	0.00000	5.7161	5.2906 Point	5.1152 lies wi	ithin an exc	cavation.	-	-
		28.00000	26.00000	0.00000		Point Point	lies wi	ithin an exc ithin an exc	cavation.		
		30.00000 31.00000	26.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		32.00000	26.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		34.00000 35.00000	26.00000	0.00000	-5.3745 -4.6487	0.032373 0.021590	2.7130	- 0		-	-
		36.00000	26.00000	0.00000	-3.9948	0.012949	2.9685	5 -		-	-
		37.00000 38.00000	26.00000	0.00000	-2.8490	0.0058686	2.5544	5 -		-	-
		40.00000	26.00000 26.00000	0.00000	-2.4619 -2.0869	0.0	1.3589	- C		_	-
		10.00000	27.00000	0.00000	1.6545	-133.49E-6 -172.62E-6	0.26166	5 -		-	-
		12.00000	27.00000 27.00000	0.00000	2.0295	-211.74E-6 -250.87E-6	1.2660	4 –		-	_
		14.00000	27.00000	0.00000	2.7795	-289.99E-6 -290.18E-6	1.872	7 –		-	-
		16.00000 17.00000		0.00000	3.8996	-280.80E-6 -309.82E-6	2.8981	1 -		-	-
		18.00000	27.00000 27.00000 27.00000	0.00000	5.2555	-253.70E-6	2.7838	3 -		-	-
		20.00000	27.00000	0.00000		Point	lies wi	ithin an exc ithin an exc ithin an exc	cavation.		
		21.00000		0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		23.00000 24.00000		0.00000		Point Point	lies wi	ithin an exc ithin an exc	cavation. cavation.		
		25.00000 26.00000	27.00000 27.00000	0.00000		Point Point	lies wi	ithin an exc ithin an exc	cavation. cavation.		
		27.00000	27.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		29.00000	27.00000 27.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		31.00000 32.00000	27.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		33.00000	27.00000	0.00000	-5.3732	Point	lies wi	ithin an ex			
		34.00000 35.00000	27.00000	0.00000	-4.6450	0.0	3.0614	4 -		-	-
		36.00000 37.00000	27.00000	0.00000	-3.9925 -3.4058	0.0	2.964	_		-	-
		38.00000	27.00000	0.00000	-2.8490 -2.4619	0.0	1.969	9 –		_	-
		40.00000	27.00000 28.00000	0.00000	-2.0869 1.2794	0.0 -133.49E-6	0.85460) – 5 –		_	-
		11.00000	28.00000 28.00000	0.00000	1.6544	-172.61E-6 -211.74E-6	0.48423	3 -		_	_
		13.00000 14.00000	28.00000 28.00000	0.00000	2.4044	-250.86E-6 -289.99E-6	1.2660	O –		_	-
		15.00000	28.00000	0.00000	3.3193	-290.16E-6	2.5170	O –		-	-
		16.00000 17.00000	28.00000 28.00000	0.00000	4.5694	-476.70E-6 -523.94E-6	2.9469 3.0925	5 -		-	-
		18.00000 19.00000		0.00000	5.2692	-356.18E-6 Point	2.8030 lies wi	ithin an exc	cavation.	_	_
		20.00000 21.00000		0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		22.00000	28.00000 28.00000	0.00000				ithin an exc ithin an exc			
		24.00000 25.00000	28.00000 28.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		26.00000	28.00000 28.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		28.00000	28.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		30.00000 31.00000	28.00000 28.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		32.00000		0.00000		Point	lies wi	ithin an ex	cavation.		
		34.00000	28.00000	0.00000	-5.3837	0.0	2.7125		cavation.	-	-
		35.00000 36.00000	28.00000 28.00000	0.00000	-4.6725 -4.0219	0.0	3.0828	4 -		_	_
		37.00000 38.00000	28.00000 28.00000	0.00000	-3.4070 -2.8490	0.0	2.5974			-	_
		39.00000 40.00000	28.00000	0.00000	-2.4619 -2.0869	0.0	1.3589			_	-
		10.00000	29.00000	0.00000		-133.48E-6 -172.61E-6	0.26163	3 -		_	_
		12.00000	29.00000	0.00000	2.0294	-211.73E-6 -250.86E-6	1.276			-	_
		14.00000 15.00000	29.00000	0.00000	2.7794	-289.99E-6 -537.68E-6	1.9684	4 -		-	-
		16.00000		0.00000	3.9793	-876.93E-6 -921.82E-6	3.0338	3 -		-	-
		18.00000	29.00000	0.00000	5.3005	-589.91E-6	2.8412	2 -		-	-
		19.00000	29.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		21.00000		0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		23.00000 24.00000		0.00000		Point Point	lies wi	ithin an exc ithin an exc	cavation. cavation.		
		25.00000 26.00000	29.00000 29.00000	0.00000		Point Point	lies wi	ithin an exc ithin an exc	cavation.		
		27.00000 28.00000	29.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		29.00000	29.00000 29.00000	0.00000		Point	lies wi	ithin an exc ithin an exc ithin an exc	cavation.		
		31.00000 32.00000	29.00000 29.00000	0.00000		Point	lies wi	ithin an exc ithin an exc ithin an exc	cavation.		
		33.00000	29.00000	0.00000	_E #00*	Point	lies wi	ithin an ex			
		34.00000	29.00000	0.00000	-5.4081 -4.7255	0.0	3.1501	1 -		-	-
		36.00000 37.00000	29.00000	0.00000	-4.0771 -3.4480	0.0	2.6750) –		-	-
		38.00000 39.00000	29.00000	0.00000	-2.8490 -2.4619	0.0	1.3836	5 -		-	-
		40.00000	29.00000 30.00000	0.00000	-2.0869 1.2793	0.0 -133.48E-6	0.85460) – 1 –		-	_
		11.00000	30.00000	0.00000	1.6543	-172.60E-6 -211.73E-6	0.48418	3 -		-	_
		13.00000		0.00000	2.4043	-250.86E-6 -289.98E-6	1.3064	4 -		-	_
		15.00000 16.00000	30.00000	0.00000	3.3975	-875.28E-6 -0.0015221	2.6790	- 0		-	-
		17.00000	30.00000	0.00000	4.7576	-0.0019320	3.3376	5 -		-	-
		18.00000	30.00000	0.00000	5.3991	-0.0013272 Point	2.9479 lies wi	ithin an exc	cavation.	-	_
		20.00000	30.00000	0.00000		Point	lies wi	ithin an exc ithin an exc	cavation.		
		22.00000	30.00000	0.00000				ithin an exc ithin an exc			
	Vallan I					000001					

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by	Date 14-Jan-2020	Checked

Type/No.	Coordinates			D:	isplacements		Angle of Line
Name Dist.	x y	z	×	У		ontal Horizontal	to x Axis
	24.00000 30.00000	0.00000		Point	lies within ar	cement displacement excavation.	
	25.00000 30.00000 26.00000 30.00000	0.00000			lies within ar		
	27.00000 30.00000	0.00000		Point	lies within ar	excavation.	
	28.00000 30.00000 29.00000 30.00000	0.00000		Point Point	lies within ar lies within ar	excavation.	
	30.00000 30.00000	0.00000		Point	lies within ar	excavation.	
	31.00000 30.00000 32.00000 30.00000	0.00000		Point Point	lies within ar	excavation.	
	33.00000 30.00000 34.00000 30.00000	0.00000	-5.4905	Point 0.0	lies within ar	excavation.	
	35.00000 30.00000	0.00000	-4.8645	0.0	3.3243 -	-	_
	36.00000 30.00000 37.00000 30.00000	0.00000	-4.1722 -3.4985	0.0	3.2237 - 2.7704 -	- -	_
	38.00000 30.00000	0.00000	-2.8490	0.0	2.1307 -	-	-
	39.00000 30.00000 40.00000 30.00000	0.00000	-2.4619 -2.0869	0.0	1.4168 - 0.85460 -	-	_
	10.00000 31.00000 11.00000 31.00000	0.00000	1.2793	-133.48E-6 -172.60E-6	0.26159 -	_	_
	12.00000 31.00000	0.00000	2.0293	-211.73E-6	0.79919 -	-	_
	13.00000 31.00000 14.00000 31.00000	0.00000		-250.85E-6 -289.98E-6	1.3206 - 2.0581 -	-	_
	15.00000 31.00000 16.00000 31.00000	0.00000	3.4270	-0.0015422 -0.0030883	2.7460 - 3.2883 -	-	-
	17.00000 31.00000 18.00000 31.00000	0.00000	4.9294	-0.0050332	3.5608 -	-	_
	18.00000 31.00000 19.00000 31.00000	0.00000	5.7917	-0.0075977	3.3686 - lies within ar	- excavation	-
	20.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	21.00000 31.00000 22.00000 31.00000	0.00000			lies within ar		
	23.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	24.00000 31.00000 25.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	26.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	27.00000 31.00000 28.00000 31.00000	0.00000		Point	lies within ar lies within ar	excavation.	
	29.00000 31.00000 30.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	31.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	32.00000 31.00000 33.00000 31.00000	0.00000		Point	lies within ar	excavation.	
	34.00000 31.00000	0.00000	-5.9046	0.0	3.2608 -	excavacion.	-
	35.00000 31.00000 36.00000 31.00000	0.00000	-5.0583 -4.2528	0.0	3.5680 - 3.3505 -	-	
	37.00000 31.00000	0.00000	-3.5317	0.0	2.8406 -		-
	38.00000 31.00000 39.00000 31.00000	0.00000	-2.8568 -2.4619	0.0	2.1682 - 1.4331 -	_	-
	40.00000 31.00000	0.00000	-2.0869	0.0	0.85460 -	-	-
	10.00000 32.00000 11.00000 32.00000	0.00000	0.81175 1.0433	-0.024721 -0.036181	0.17001 - 0.31399 -	-	_
	12.00000 32.00000	0.00000	1.2688	-0.051095	0.51696 -		-
	13.00000 32.00000 14.00000 32.00000	0.00000	1.4853	-0.071297 -0.10020	0.84705 - 1.3362 -	-	_
	15.00000 32.00000	0.00000	2.0226	-0.15817	1.7702 -	-	-
	16.00000 32.00000 17.00000 32.00000	0.00000	2.3243 2.4208	-0.25910 -0.47600	2.0654 - 2.0896 -	-	_
	18.00000 32.00000	0.00000	1.5491	-1.2130	1.6183 -	-	-
	19.00000 32.00000 20.00000 32.00000	0.00000	0.0	-5.3448 -5.3626	2.7465 - 2.7590 -	-	_
	21.00000 32.00000	0.00000	0.0	-5.3873	2.7779 -	-	-
	22.00000 32.00000 23.00000 32.00000	0.00000	0.0	-5.4242 -5.4850	2.8056 - 2.8460 -	-	_
	24.00000 32.00000 25.00000 32.00000	0.00000	0.0	-5.6035 -5.9244	2.9131 - 3.0396 -	-	-
	26.00000 32.00000	0.00000	0.0	-8.1689	3.8213 -	-	_
	27.00000 32.00000 28.00000 32.00000	0.00000	0.0	-5.9279 -5.6042	3.0355 - 2.9091 -	-	-
	29.00000 32.00000	0.00000	0.0	-5.4850	2.8460 -	-	_
	30.00000 32.00000 31.00000 32.00000	0.00000	0.0	-5.4240 -5.3870	2.8055 - 2.7779 -	-	_
	32.00000 32.00000	0.00000	0.0	-5.3623	2.7589 -	_	_
	33.00000 32.00000 34.00000 32.00000	0.00000	0.0 -1.2312	-5.3446 -1.5812	2.7465 - 1.5803 -	-	-
	35.00000 32.00000	0.00000	-2.3862	-0.53005	2.0521 -	-	-
	36.00000 32.00000 37.00000 32.00000	0.00000	-2.3571 -2.0733	-0.27922 -0.16848	2.0887 - 1.8252 -	-	-
	38.00000 32.00000	0.00000	-1.7195	-0.10593	1.4070 -	-	-
	39.00000 32.00000 40.00000 32.00000	0.00000	-1.5172 -1.3026	-0.074966 -0.053719	0.92280 - 0.55250 -	-	_
	10.00000 33.00000	0.00000	0.70813	-0.068723	0.15108 -	-	-
	11.00000 33.00000 12.00000 33.00000	0.00000	0.90117 1.0774	-0.10080 -0.14214	0.27860 - 0.45849 -	-	_
	13.00000 33.00000	0.00000	1.2285	-0.19728	0.70224 -	-	-
	14.00000 33.00000 15.00000 33.00000	0.00000	1.3398	-0.27426 -0.41701	1.1192 - 1.4669 -	-	_
	16.00000 33.00000 17.00000 33.00000	0.00000	1.4736 1.1549	-0.65333 -1.0652	1.6646 - 1.6360 -	_	_
	18.00000 33.00000	0.00000	0.56892	-2.2171	1.8619 -	-	_
	19.00000 33.00000 20.00000 33.00000	0.00000	0.0	-4.7011 -4.7498	3.0457 - 3.0791 -	-	-
	21.00000 33.00000	0.00000	0.0	-4.8164	3.1295 -	_	-
	22.00000 33.00000 23.00000 33.00000	0.00000	0.0	-4.9125 -5.0613	3.2022 - 3.3052 -	-	-
	24.00000 33.00000	0.00000	0.0	-5.3135	3.4541 -	-	-
	25.00000 33.00000 26.00000 33.00000	0.00000	0.0	-5.9457 -7.2046	3.7804 - 4.4146 -	-	_
	27.00000 33.00000	0.00000	0.0	-5.9523	3.7837 -	-	-
	28.00000 33.00000 29.00000 33.00000	0.00000	0.0	-5.3155 -5.0622	3.4552 - 3.3058 -	-	
	30.00000 33.00000 31.00000 33.00000	0.00000	0.0	-4.9130	3.2025 -	-	-
	32.00000 33.00000	0.00000	0.0	-4.8166 -4.7499	3.1297 - 3.0793 -	- I	-
	33.00000 33.00000 34.00000 33.00000	0.00000	0.0 -0.43187	-4.7011 -2.4513	3.0458 - 1.9034 -	_	-
	35.00000 33.00000	0.00000	-1.0823	-1.1761	1.6425 -	-	-
	36.00000 33.00000 37.00000 33.00000	0.00000	-1.4510 -1.4713	-0.69791 -0.44318	1.6732 - 1.5074 -	_	-
	38.00000 33.00000	0.00000	-1.3517	-0.28875	1.1777 -	- -	-
	39.00000 33.00000 40.00000 33.00000	0.00000	-1.2485 -1.1024	-0.20734 -0.14949	0.76803 - 0.48990 -	-	-
	10.00000 34.00000	0.00000	0.59127	-0.10402	0.12428 -	-	-
	11.00000 34.00000 12.00000 34.00000	0.00000	0.74810 0.87976	-0.15344 -0.21595	0.22912 - 0.37908 -	_	_
	13.00000 34.00000	0.00000	0.97537	-0.29716	0.55992 -	-	-
	14.00000 34.00000 15.00000 34.00000	0.00000	1.0175 0.98437	-0.40600 -0.58024	0.86246 - 1.1456 -	-	_
	16.00000 34.00000	0.00000	0.86663	-0.86272	1.3091 -	-	-
	17.00000 34.00000 18.00000 34.00000	0.00000	0.68327	-1.4417 -2.2661	1.5742 - 1.8300 -	-	-
	19.00000 34.00000	0.00000	0.0	-4.1268	2.9255 -	-	-
	20.00000 34.00000 21.00000 34.00000	0.00000	0.0	-4.1994 -4.2954	2.9725 - 3.0429 -	-	-
	22.00000 34.00000	0.00000	0.0	-4.4266	3.1422 - 3.2770 -	-	-
	23.00000 34.00000 24.00000 34.00000	0.00000	0.0	-4.6124 -4.9630	3.5059 -	-	_
	25.00000 34.00000	0.00000	0.0	-5.5666	3.8731 -	-	-
	26.00000 34.00000 27.00000 34.00000	0.00000	0.0	-6.3167 -5.5714	4.3215 - 3.8760 -		-
	28.00000 34.00000 29.00000 34.00000	0.00000	0.0	-4.9662 -4.6138	3.5079 - 3.2780 -	-	-
	30.00000 34.00000	0.00000	0.0	-4.4275	3.1429 -	-	-
	31.00000 34.00000 32.00000 34.00000	0.00000	0.0	-4.2959 -4.1997	3.0433 - 2.9728 -	_	-
	33.00000 34.00000	0.00000	0.0	-4.1270	2.9257 -	-	-
	34.00000 34.00000 35.00000 34.00000	0.00000	-0.22375 -0.63750	-2.3981 -1.5475	1.8626 - 1.6124 -	-	-
	36.00000 34.00000	0.00000	-0.84249	-0.92325	1.3380 -	-	-
	37.00000 34.00000 38.00000 34.00000	0.00000	-0.97505 -1.0174	-0.61311 -0.42591	1.1776 - 0.91070 -	-	
	39.00000 34.00000	0.00000	-0.98574	-0.31173	0.58973 -	-	-
I	40.00000 34.00000	0.00000	-0.89702	-0.22697	0.40535 -	_	-

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by	Date 14- len-2020	Checked

Type	/No.		Coordinates				Displacem	ents		Angle of
Name	Dist.	×	v	z	×		z	Horizontal	Horizontal	Line to x Axis
Name	DISC.		У			У		displacement	displacement	CO A AAIS
		11.00000	35.00000 35.00000	0.00000	0.47054 0.59622	-0.18857	0.095035 0.17430	_	_	-
		12.00000	35.00000 35.00000	0.00000	0.69189	-0.26551 -0.36221	0.29115	-	_	_
		14.00000 15.00000	35.00000 35.00000	0.00000	0.74543	-0.48585 -0.66249	0.60618 0.83436	Ξ	=	-
		16.00000 17.00000	35.00000 35.00000	0.00000	0.58171 0.42859	-1.0115 -1.5074	1.1142	-	_	_
		18.00000	35.00000	0.00000	0.17815	-2.0968	1.5954	-	-	-
		20.00000	35.00000 35.00000	0.00000	0.0	-3.5872 -3.6750	2.5773	=	=	-
		21.00000	35.00000 35.00000	0.00000	0.0	-3.7864 -3.9301	2.6538 2.7595	_	-	-
		23.00000	35.00000 35.00000	0.00000	0.0	-4.1643 -4.5284	2.9241 3.1695	_	-	-
		25.00000 26.00000	35.00000 35.00000	0.00000	0.0	-4.9862 -5.4834	3.4681	-	-	-
		27.00000 28.00000	35.00000 35.00000	0.00000	0.0	-4.9898 -4.5312	3.4703	-	-	-
		29.00000	35.00000	0.00000	0.0	-4.1662	2.9255	=	-	-
		30.00000	35.00000 35.00000	0.00000	0.0	-3.9311 -3.7871	2.7603 2.6543	_	_	-
		32.00000	35.00000 35.00000	0.00000	0.0	-3.6755 -3.5876	2.5776	-	-	-
		34.00000 35.00000	35.00000 35.00000	0.00000	-0.13272 -0.39629	-2.1803 -1.5854	1.6202	_	=	-
		36.00000 37.00000	35.00000 35.00000	0.00000	-0.56452 -0.65292	-1.0732 -0.69848	1.1549	-	-	-
		38.00000	35.00000 35.00000	0.00000	-0.73885 -0.75058	-0.50774 -0.37918	0.64009	-	-	-
		40.00000	35.00000	0.00000	-0.70320	-0.27887	0.31186	=	-	-
		10.00000	36.00000 36.00000	0.00000	0.35325 0.45416	-0.13271 -0.20315	0.068423 0.12264	_	_	-
		12.00000 13.00000	36.00000 36.00000	0.00000	0.52351 0.55226	-0.28789 -0.39074	0.20660 0.31335	_	_	-
		14.00000 15.00000	36.00000	0.00000	0.52898	-0.51625 -0.73178	0.42711	-	-	-
		16.00000 17.00000	36.00000 36.00000	0.00000	0.42121 0.29052	-1.0498 -1.4294	0.84880	-	-	-
		18.00000	36.00000 36.00000	0.00000	0.11490	-1.8483	1.2472	-	-	-
		19.00000	36.00000	0.00000	0.0	-3.0545 -3.1493	1.9674	-	-	-
		21.00000 22.00000	36.00000 36.00000	0.00000	0.0	-3.2648 -3.4352	2.0853 2.1947	-	-	-
		23.00000 24.00000	36.00000	0.00000	0.0	-3.6822 -3.9859	2.3561 2.5572	=	-	-
		25.00000 26.00000	36.00000 36.00000	0.00000	0.0	-4.3319 -4.6807	2.7808	-	-	_
		27.00000	36.00000	0.00000	0.0	-4.3345 -3.9882	2.7825	-	_	-
		29.00000 30.00000	36.00000 36.00000	0.00000	0.0 0.0 0.0	-3.9882 -3.6840 -3.4366	2.3573 2.1956	-	-	-
		31.00000	36.00000	0.00000	0.0	-3.2656	2.0858	-		-
		32.00000 33.00000		0.00000	0.0	-3.1499 -3.0549	2.0150 1.9676	-	-	-
		34.00000 35.00000	36.00000 36.00000	0.00000	-0.085314 -0.26600	-1.9027 -1.4831	1.2658	-	=	-
		36.00000 37.00000	36.00000 36.00000	0.00000	-0.40452 -0.48996	-1.0968 -0.76988	0.88405 0.64221	-	-	-
		38.00000	36.00000 36.00000	0.00000	-0.52442	-0.54233 -0.40838	0.44767	-	-	-
		39.00000 40.00000	36.00000	0.00000	-0.55229 -0.53074	-0.30236	0.33083 0.22180	=	=	-
		10.00000	37.00000 37.00000	0.00000	0.24442	-0.19635	0.047645	-	-	-
		12.00000	37.00000	0.00000	0.37888	-0.28339 -0.38550	0.13495	-	_	_
		14.00000 15.00000	37.00000 37.00000	0.00000	0.39881	-0.54092 -0.73464	0.31314	_	_	-
		16.00000 17.00000	37.00000 37.00000	0.00000	0.30868	-0.99841 -1.3143	0.56989	-	-	_
		18.00000 19.00000	37.00000 37.00000	0.00000	0.081684	-1.6463 -2.6743	0.85535	-	-	-
		20.00000	37.00000	0.00000	0.0	-2.7698	1.3869	-	-	-
		21.00000 22.00000		0.00000	0.0	-2.9001 -3.0785	1.4494	-	_	-
		23.00000 24.00000	37.00000 37.00000	0.00000	0.0	-3.2934 -3.5400	1.6722	-	-	-
		25.00000 26.00000	37.00000 37.00000	0.00000	0.0	-3.8029 -4.0548	1.9783	-	_	-
		27.00000 28.00000	37.00000 37.00000	0.00000	0.0	-3.8049 -3.5419	1.9795	-	-	-
		29.00000	37.00000 37.00000	0.00000	0.0	-3.2950 -3.0797	1.6731	-	-	-
		31.00000	37.00000	0.00000	0.0	-2.9010	1.4499	=	=	-
		32.00000	37.00000 37.00000	0.00000	0.0	-2.7705 -2.6748	1.3872	-	-	-
		34.00000 35.00000	37.00000 37.00000	0.00000	-0.060594 -0.19093	-1.6857 -1.3552	0.86856	-	-	-
		36.00000 37.00000	37.00000 37.00000	0.00000	-0.29556 -0.36495	-1.0367 -0.76762	0.58908	_	-	-
		38.00000	37.00000 37.00000	0.00000	-0.39701 -0.39442	-0.56825 -0.40541	0.33118	-	-	-
		40.00000	37.00000	0.00000	-0.38365 0.14700	-0.29800 -0.094208	0.14512	-	-	-
		11.00000	38.00000	0.00000	0.21697	-0.16893	0.051245	-	-	-
		12.00000	38.00000	0.00000	0.25853 0.28836	-0.25418 -0.37238	0.081955 0.13503	-	-	-
		14.00000 15.00000	38.00000	0.00000	0.29450	-0.51643 -0.68502	0.20769 0.29397	-	-	-
		16.00000 17.00000	38.00000	0.00000	0.22466 0.15073	-0.87827 -1.1409	0.38565 0.47672	-	-	-
		18.00000	38.00000	0.00000	0.058545	-1.4077 -2.2711	0.54655	-		-
		20.00000	38.00000 38.00000	0.00000	0.0	-2.3737	0.88148	=	-	-
		22.00000	38.00000	0.00000	0.0	-2.5073 -2.6659	0.92876	-	-	-
		23.00000 24.00000	38.00000 38.00000	0.00000	0.0	-2.8473 -3.0447	1.0869	-	-	-
		25.00000 26.00000	38.00000	0.00000	0.0	-3.2449 -3.4288	1.2902	-	-	-
		27.00000 28.00000	38.00000	0.00000	0.0	-3.2465 -3.0462	1.2909	-	-	_
		29.00000	38.00000	0.00000	0.0	-2.8487 -2.6670	1.0875	-	-	-
		31.00000 32.00000	38.00000 38.00000	0.00000	0.0	-2.5082 -2.3744	0.92913 0.88171	-	-	-
		33.00000	38.00000	0.00000	0.0	-2.2717	0.85429	-	-	-
		34.00000 35.00000	38.00000	0.00000	-0.043408 -0.13751	-1.4366 -1.1722	0.55354	-	-	-
		36.00000 37.00000	38.00000	0.00000	-0.21479 -0.26770	-0.90901 -0.71288	0.39922	-	-	-
		38.00000	38.00000 38.00000	0.00000	-0.29304 -0.29095	-0.54075 -0.39286	0.22024	-	-	-
		40.00000	38.00000	0.00000	-0.26363	-0.26983 -0.049995	0.088465	-	-	-
		11.00000	39.00000	0.00000	0.062292	-0.12253	0.032822	-	-	-
		12.00000 13.00000	39.00000	0.00000	0.17167 0.20044	-0.21397 -0.32359	0.051260 0.081088	-	-	-
		14.00000 15.00000	39.00000	0.00000	0.20841	-0.45082 -0.59366	0.12401 0.17713	-	-	-
		16.00000 17.00000	39.00000	0.00000	0.15997	-0.74727 -0.92537	0.23395	-	-	_
		18.00000	39.00000	0.00000	0.041509	-1.1407 -1.8524	0.33672	-	-	-
		20.00000	39.00000	0.00000	0.0	-1.9546	0.54162	-	-	-
		21.00000	39.00000	0.00000	0.0	-2.0746 -2.2114	0.57063	-	-	-
		23.00000 24.00000	39.00000	0.00000	0.0	-2.3613 -2.5175	0.66910 0.73157	-	-	-
		25.00000 26.00000	39.00000	0.00000	0.0	-2.6692 -2.8028	0.79170 0.83807	-	-	-
	Vellen		10 4 0 1			00000				

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	•
Made by	Date	Checked

Type/No.	Coordi	nates			Displacem	ent s		Angle of
					•			Line
Name Dist.	ж у		x	У	z		Horizontal displacement	to x Axis
	27.00000 39.0 28.00000 39.0			-2.6704 -2.5187	0.79213	-	_	-
	29.00000 39.0 30.00000 39.0	0.0000	0.0	-2.3624 -2.2124	0.66952	-	-	-
	31.00000 39.0	0.0000 0.00000	0.0	-2.0755	0.57087	-	=	_
		0.0000	0.0	-1.8530	0.54176 0.52455	-	_	_
	34.00000 39.0 35.00000 39.0		-0.030772 -0.097655	-1.1618 -0.94919	0.34083	-	_	-
	36.00000 39.0 37.00000 39.0	0.0000	-0.15290	-0.77131 -0.61670	0.24246 0.18581	-	-	_
	38.00000 39.0	0.0000	-0.20769	-0.47181	0.13163	-	-	-
	39.00000 39.0 40.00000 39.0	0.0000	-0.17736		0.055001	_	_	-
	10.00000 40.0 11.00000 40.0			-0.061946	0.0	_		-
		0.0000	0.096383	-0.14636	0.032785	-	_	-
	14.00000 40.0	0.0000 0.00000	0.13677	-0.35313	0.069437	-	-	-
	15.00000 40.0 16.00000 40.0	0.0000	0.10884	-0.59408	0.097058 0.12767	-	_	-
	17.00000 40.0 18.00000 40.0			-0.71357 -0.85143	0.18274		_	-
	19.00000 40.0 20.00000 40.0	0.0000	0.0	-1.4134 -1.5055	0.28899		_	_
	21.00000 40.0	0.0000 0.00000	0.0	-1.6101	0.31467	-	-	-
	23.00000 40.0	0000 0.00000	0.0	-1.7252 -1.8467	0.33746	_		-
	24.00000 40.0 25.00000 40.0		0.0	-1.9685 -2.0819	0.40085 0.43263		_	-
	26.00000 40.0 27.00000 40.0	0.0000 0.00000	0.0	-2.1767	0.45604	-	_	-
	28.00000 40.0	0.0000 0.00000	0.0	-1.9694	0.40110	-	-	-
	29.00000 40.0 30.00000 40.0	0.0000	0.0	-1.7260	0.33764	-	_	-
	31.00000 40.0 32.00000 40.0	0000 0.00000	0.0	-1.6109 -1.5062	0.31480	_	_	-
	33.00000 40.0 34.00000 40.0	0.0000 0.00000	0.0		0.28905	-	_	-
	35.00000 40.0	0.0000	-0.066825	-0.73106	0.15984	-	-	-
	36.00000 40.0 37.00000 40.0	0.0000	-0.12851	-0.61282 -0.49020		-	_	-
	38.00000 40.0 39.00000 40.0	0000 0.00000	-0.13697 -0.12814	-0.37080 -0.25987	0.073320	-	_	-
	40.00000 40.0	0.0000	-0.10190	-0.16049	0.034853	-	-	-
		0.0000	0.0	0.0	0.0	-	_	-
	12.00000 41.0 13.00000 41.0	0000 0.00000	0.030312	-0.054492 -0.13873	0.015768		_	-
	14.00000 41.0 15.00000 41.0	0.0000	0.076580	-0.23033 -0.32626	0.040192 0.052741	-	-	_
	16.00000 41.0	0.0000	0.067516	-0.42200	0.066538	-	-	-
	17.00000 41.0 18.00000 41.0			-0.51145 -0.58724	0.079552	-		-
	19.00000 41.0 20.00000 41.0			-0.95085 -1.0314	0.14237	-	_	-
	21.00000 41.0 22.00000 41.0	0.0000	0.0	-1.1203	0.16309	-	-	-
	23.00000 41.0	0.0000	0.0	-1.3113	0.18826	-	_	-
	24.00000 41.0 25.00000 41.0			-1.4041 -1.4865	0.20384	_	_	-
	26.00000 41.0 27.00000 41.0	0.0000	0.0	-1.5506 -1.4872	0.22922		-	-
	28.00000 41.0	0.0000	0.0	-1.4048	0.20396		-	-
	29.00000 41.0 30.00000 41.0	0.0000 0.00000	0.0	-1.3120 -1.2155	0.18837	-	_	-
	31.00000 41.0 32.00000 41.0	0000 0.00000		-1.1209 -1.0320	0.16315 0.15352	_	_	-
	33.00000 41.0 34.00000 41.0	0.0000	0.0	-0.95134	0.14245	-	-	-
	35.00000 41.0	0.0000 0.00000	-0.042289	-0.52416	0.081302	-	=	-
	36.00000 41.0 37.00000 41.0	0.0000 0.00000	-0.064841 -0.077513	-0.34111	0.068653	-	_	-
	38.00000 41.0 39.00000 41.0		-0.077744 -0.064053	-0.24487 -0.15237	0.042005	-	_	-
	40.00000 41.0		-0.035907		0.018152	-	-	-
	11.00000 42.0	0.0000 0.00000	0.0	0.0	0.0		=	-
	12.00000 42.0 13.00000 42.0			-0.012971	0.00		_	-
	14.00000 42.0 15.00000 42.0	0000 0.00000	0.025505	-0.087706 -0.16337		-	-	-
	16.00000 42.0	0.0000	0.033481	-0.23591	0.036895	-	-	-
	17.00000 42.0 18.00000 42.0	0.0000 0.00000	0.0097386	-0.35048	0.047032	-	_	-
	19.00000 42.0 20.00000 42.0			-0.55367 -0.55367	0.072189	-	_	-
	21.00000 42.0 22.00000 42.0		0.0	-0.61007 -0.68577	0.083196	_	_	-
	23.00000 42.0	0.0000	0.0	-0.76015	0.10125	-	-	-
	24.00000 42.0 25.00000 42.0	0.0000	0.0	-0.82854 -0.88535	0.10890 0.11563	-	_	-
	26.00000 42.0 27.00000 42.0	0000 0.00000	0.0	-0.92447 -0.88576	0.12053 0.11568	-	-	-
	28.00000 42.0 29.00000 42.0	0.0000	0.0	-0.82902 -0.76067	0.10895 0.10131	-	-	-
	30.00000 42.0	0.0000 0.00000	0.0	-0.68629	0.093050	-	=	-
	31.00000 42.0 32.00000 42.0	0.0000 0.00000	0.0	-0.61057 -0.55367	0.083271	-	-	_
	33.00000 42.0 34.00000 42.0	0.0000 0.00000	-0.0072362	-0.55367 -0.35655	0.072189	-	-	-
	35.00000 42.0 36.00000 42.0	0.0000 0.00000	-0.022309	-0.30901 -0.24646	0.043642		-	_
	37.00000 42.0	0.0000	-0.035026	-0.17483	0.030724		-	-
	38.00000 42.0 39.00000 42.0	0.0000 0.00000	-0.0088689		0.021558	-	-	-
	40.00000 42.0 10.00000 43.0	0.0000 0.00000	0.0	0.0	0.0	-	-	-
	11.00000 43.0 12.00000 43.0	0.0000 0.00000	0.0	0.0	0.0	-	-	-
	13.00000 43.0	0.0000 0.00000	0.0	0.0	0.0	-	-	-
	14.00000 43.0 15.00000 43.0	0.0000	0.0	0.0	0.0	-	=	-
	16.00000 43.0 17.00000 43.0		0.0049936	-0.039174 -0.082237	0.0099792	-	-	-
	18.00000 43.0 19.00000 43.0	0.0000 0.00000	0.0028113				-	-
	20.00000 43.0	0.0000	0.0	-0.17867	0.032098	-	-	-
	21.00000 43.0 22.00000 43.0	0.0000 0.00000	0.0	-0.17867 -0.17867	0.032098	-	-	-
	23.00000 43.0 24.00000 43.0		0.0	-0.19699 -0.24447	0.037125	-	-	-
	25.00000 43.0	0.0000 0.00000	0.0	-0.27988	0.050760	-	-	-
	26.00000 43.0 27.00000 43.0	0.0000	0.0	-0.29833 -0.28008	0.050792	-	-	_
	28.00000 43.0 29.00000 43.0			-0.24476 -0.19733	0.045422	-	-	-
	30.00000 43.0 31.00000 43.0	0.0000	0.0	-0.17867 -0.17867	0.032098	-	-	_
	32.00000 43.0	0.0000 0.00000	0.0	-0.17867	0.032098	-	-	-
	33.00000 43.0 34.00000 43.0	0.0000 0.00000	-0.0021088	-0.17867 -0.11411	0.032098		-	-
	35.00000 43.0 36.00000 43.0	0.0000	-0.0057298 -0.0055185	-0.087724 -0.046509	0.017742	-	-	_
	37.00000 43.0 38.00000 43.0	0.0000	0.0	0.0	0.0	-	-	-
	39.00000 43.0	0.0000 0.00000	0.0	0.0	0.0	-	-	-
	40.00000 43.0 10.00000 44.0	0.0000 0.00000	0.0	0.0	0.0	-	-	-
	11.00000 44.0 12.00000 44.0			0.0	0.0	-	-	-
	Verelen 10 f	1010 00			1007.0			

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	<u> </u>
Made by TJ	Date 14-Jan-2020	Checked

									TJ
Type/No.	C	Coordinates			Di	splaceme	nts		Angle of Line
Name D	ist. x	У	z	×	У	z	Horizontal	Horizontal	to x Axis
		44.00000	0.00000	0.0	0.0	0.0	-	displacement -	-
	14.00000 15.00000	44.00000	0.00000	0.0	0.0	0.0	-	-	_
	16.00000 17.00000	44.00000	0.00000	0.0	0.0	0.0	-	-	-
	18.00000 19.00000	44.00000	0.00000	0.0	0.0	0.0	-	-	-
	20.00000	44.00000	0.00000	0.0	0.0	0.0	-	-	-
	21.00000 22.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	_	-
	23.00000 24.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	-	_
	25.00000 26.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	_	-
	27.00000 28.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	_	_	_
	29.00000 30.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	-	-
	31.00000	44.00000	0.00000	0.0	0.0	0.0	-	_	-
	32.00000 33.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	=	-
	34.00000 35.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	_	-
	36.00000 37.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	-	-
	38.00000 39.00000	44.00000 44.00000	0.00000	0.0	0.0	0.0	-	-	-
	40.00000 10.00000	44.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	-
	11.00000	45.00000	0.00000	0.0	0.0	0.0	-	=	-
	12.00000 13.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	_	-
	14.00000 15.00000	45.00000	0.00000	0.0	0.0	0.0	-	_	-
	16.00000 17.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	_
	18.00000 19.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	_
	20.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	-
	22.00000	45.00000	0.00000	0.0	0.0	0.0	-	-	-
	23.00000 24.00000		0.00000	0.0	0.0	0.0	-	-	-
	25.00000 26.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	-
	27.00000 28.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	-
	29.00000 30.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	-
	31.00000 32.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	-	-
	33.00000	45.00000	0.00000	0.0	0.0	0.0	-	-	-
	34.00000 35.00000	45.00000	0.00000	0.0	0.0	0.0	-	-	-
	36.00000 37.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	_	-
	38.00000 39.00000	45.00000 45.00000	0.00000	0.0	0.0	0.0	-	_	-
	40.00000	45.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	_
	11.00000 12.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	-
	13.00000	46.00000	0.00000	0.0	0.0	0.0	-	-	-
	14.00000 15.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	-
	16.00000 17.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	-	-
	18.00000 19.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	-
	20.00000 21.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	-	-
	22.00000 23.00000	46.00000	0.00000	0.0	0.0	0.0	-	-	-
	24.00000 25.00000	46.00000	0.00000	0.0	0.0	0.0	-	-	-
	26.00000	46.00000	0.00000	0.0	0.0	0.0	-	=	-
	27.00000 28.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	-	-
	29.00000 30.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	-
	31.00000 32.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	-
	33.00000 34.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	_	_	_
	35.00000 36.00000	46.00000 46.00000	0.00000	0.0	0.0	0.0	-	_	-
	37.00000 38.00000	46.00000	0.00000	0.0	0.0	0.0	_	-	-
	39.00000	46.00000	0.00000	0.0	0.0	0.0	-	-	-
	40.00000	46.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	11.00000 12.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	13.00000 14.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	15.00000 16.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	17.00000 18.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	19.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	21.00000 21.00000 22.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	=	-	-
	23.00000	47.00000	0.00000	0.0	0.0	0.0	-	-	-
	24.00000 25.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	26.00000 27.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	_	=	_
	28.00000 29.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	_	-	_
	30.00000 31.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	_	-	-
	32.00000	47.00000	0.00000	0.0	0.0	0.0	=		-
	33.00000 34.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	35.00000 36.00000 37.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	=	-	-
	38.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	39.00000 40.00000	47.00000 47.00000	0.00000	0.0	0.0	0.0	-	-	-
	10.00000 11.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	-
	12.00000 12.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	=	-	-
	14.00000	48.00000	0.00000	0.0	0.0	0.0	-	-	-
	15.00000 16.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	=	-	-
	17.00000 18.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	_
	19.00000 20.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	_	_	_
	21.00000 22.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	-
	23.00000 24.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	-
	25.00000 26.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0			-
	27.00000	48.00000	0.00000	0.0	0.0	0.0			-
	28.00000 29.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	-

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	•
Made by	Date	Checked

Туре	e/No.	C	Coordinates				Displaceme	ents		Angle of
Name	Dist.	×	у	z	x	У	z	Horizontal	Horizontal	Line to x Axis
			_			_			displacement	
			48.00000 48.00000	0.00000	0.0	0.0	0.0	-	_	-
		32.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	-
		34.00000	48.00000	0.00000	0.0	0.0	0.0	-	-	-
		36.00000	48.00000 48.00000	0.00000	0.0	0.0	0.0	-	-	-
		38.00000	48.00000	0.00000	0.0	0.0	0.0	=	=	-
		39.00000 40.00000	48.00000	0.00000	0.0	0.0	0.0	=	=	-
		10.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		12.00000 13.00000	49.00000	0.00000	0.0	0.0	0.0	=	_	-
		14.00000 15.00000	49.00000 49.00000	0.00000	0.0 0.0 0.0	0.0	0.0	_	-	_
		16.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		17.00000 18.00000	49.00000	0.00000	0.0 0.0 0.0	0.0	0.0	-	_	-
		19.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		21.00000	49.00000	0.00000	0.0	0.0	0.0	-	_	-
		23.00000 24.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		25.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		27.00000 28.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		29.00000	49.00000	0.00000	0.0	0.0	0.0		=	-
		30.00000	49.00000	0.00000	0.0	0.0	0.0	-	_	_
		33.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		34.00000 35.00000	49.00000	0.00000	0.0	0.0	0.0	_	-	_
		36.00000 37.00000	49.00000	0.00000	0.0	0.0		-	-	-
		38.00000	49.00000	0.00000	0.0	0.0	0.0	_	_	-
		40.00000	49.00000	0.00000	0.0	0.0	0.0	-	-	-
		10.00000	50.00000	0.00000	0.0	0.0		-	-	-
		12.00000 13.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		14.00000 15.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		16.00000 17.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		18.00000 19.00000	50.00000	0.00000	0.0 0.0 0.0	0.0	0.0	-	-	-
		20.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		22.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		23.00000 24.00000	50.00000	0.00000	0.0	0.0	0.0	-	_	-
		26.00000	50.00000	0.00000	0.0	0.0	0.0	-	_	_
		27.00000	50.00000	0.00000	0.0	0.0	0.0	-	_	_
		29.00000		0.00000	0.0	0.0	0.0	-	-	-
		31.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		32.00000	50.00000	0.00000		0.0	0.0	-	-	_
		34.00000 35.00000	50.00000	0.00000	0.0	0.0		-	-	-
		36.00000 37.00000	50.00000	0.00000	0.0	0.0	0.0	-	-	-
		38.00000	50.00000	0.00000	0.0	0.0	0.0		_	-
No.30_1	Line 1	40.00000	50.00000 41.32417	0.00000	0.0	-0.86480	0.0 0.12095	0.86479	0.0035365	269.77
	0.49123 0.98246	32.10850 32.10649	40.83294	0.00000	0.0	-1.1033 -1.3368	0.17119 0.23861	1.1033	0.0045119	269.77
	1.4737	32.10448	39.85049 39.35926	0.00000	0.0	-1.5646 -1.7863	0.32772	1.5646	0.0063981	269.77
	2.4562 2.9474	32.10247 32.10046 32.09845	38.86803	0.00000	0.0	-2.0012	0.57900	2.0012	0.0081838	269.77
	3.4386	32.09644	37.88558	0.00000	0.0	-2.2089 -2.4085	0.74042	2.4085	0.0098491	269.77
	3.9298 4.4211	32.09242	36.90313	0.00000	0.0	-2.6036 -2.7990	1.1365 1.4441	2.7989	0.010647 0.011446	269.77
No.30_2	Line 2	32.09042 32.09042	36.41190	0.00000	0.0	-2.9878 -2.9878	1.7544	2.9877 1.8617	2.3368	218.54
	0.11926	31.99714 31.90387	36.33759 36.26328	0.00000	0.0	-3.0254 -3.0630	1.8060 1.8578	1.8852 1.9086	2.3663 2.3957	218.54
	0.35777	31.81060 31.71732	36.18897 36.11466	0.00000	0.0	-3.1007 -3.1383	1.9097	1.9321 1.9555	2.4251	218.54
	0.59628 0.71553	31.62405	36.04035 35.96604	0.00000	0.0	-3.1760 -3.2162	2.0139	1.9790	2.4840	218.54
	0.83479	31.43750	35.89173 35.81742	0.00000	0.0	-3.2670 -3.3177	2.1180 2.1700	2.0357 2.0673		218.54
	1.0733	31.25096	35.74311	0.00000	0.0	-3.3686	2.2219	2.0990	2.6346	218.54
No.30_3	Line 3	31.15768 31.15768	35.66880 35.66880	0.00000	0.0	-3.4194 -3.4194	2.2736	3.4193	2.6744 0.031503	269.47
	0.41925 0.83850			0.00000	0.0	-3.6393 -3.8556	2.5113	3.6392 3.8554		269.47
	1.2578 1.6770	31.14609 31.14223	34.41110 33.99186	0.00000	0.0	-4.0700 -4.2846	2.9001 3.0338	4.0698 4.2844	0.037497	269.47
	2.0963 2.5155	31.13837 31.13451	33.57263 33.15340	0.00000	0.0	-4.5016 -4.7234	3.1146 3.1328	4.5014 4.7232	0.041473 0.043517	269.47
	2.9348 3.3540	31.13064	32.73416	0.00000	0.0	-4.9530 -5.1935	3.0782 2.9402	4.9528 5.1933	0.045632	269.47
	3.7733 4.1925	31.12292	31.89570	0.00000	0.0	-5.4484 -5.7219	2.7078	5.4482 5.7216	0.050196	269.47
No.30_4	Line 4 1.0077	31.11906	31.47646 31.47646	0.00000	0.0	-5.7219 -5.7219	2.3697	0.0	5.7219	180.00
	2.0154	29.10367 28.09598	31.47646	0.00000	0.0	-5.7219 -5.7219	2.3697	0.0	5.7219	180.00
	4.0308	27.08829	31.47646	0.00000	0.0	-5.7219	2.3697	0.0	5.7219	180.00
	5.0385 6.0462	26.08060 25.07290	31.47646	0.00000	0.0	-5.7219 -5.7223	2.3697 2.3815	0.0	5.7223	180.00
	7.0538 8.0615	24.06521 23.05752	31.47646	0.00000	0.0	-5.7222 -5.7222	2.3866	0.0	5.7222 5.7222	180.00
	9.0692 10.077	22.04983 21.04214	31.47646	0.00000	0.0	-5.7222 -5.7221	2.3699	0.0	5.7222 5.7221	180.00
No.30_5	Line 5 0.97763	21.04214 21.04509	31.47646 32.45409	0.00000	0.0	-5.7221 -5.1214	2.3698 3.0029	-5.7221 -5.1214	-0.017312 -0.015494	89.827
	1.9553			0.00000	0.0	-4.5925 -4.0935	3.1412	-4.5924 -4.0935	-0.013494 -0.013894	89.827
	3.9105	21.05397	35.38697	0.00000	0.0	-3.5934	2.4537	-3.5934	-0.010872	89.827
		21.05692	36.36460 37.34222	0.00000	0.0	-3.1364 -2.7801	1.8593 1.2357	-3.1364 -2.7801	-0.0094890 -0.0084109	89.827
	6.8434 7.8210			0.00000	0.0	-2.3817 -1.9476	0.80782 0.48507	-2.3817 -1.9476	-0.0072057 -0.0058923	89.827
	8.7987 9.7763	21.06875 21.07171	40.27510 41.25273	0.00000	0.0	-1.4849 -0.99938	0.26438 0.13888	-1.4849 -0.99937	-0.0044925 -0.0030235	89.827
No.26_1	Line 6	19.79055 19.79933	11.95090	0.00000	0.028820 0.091414	0.058464	0.016155 0.033684	0.058721 0.15991	-0.028292	89.484
	1.9507 2.9261	19.80811 19.81688	13.90154	0.00000	0.16292	0.23743 0.41512	0.053300	0.23889 0.41731	-0.16078 -0.24104	89.484
	3.9014	19.82566	15.85217	0.00000	0.34574	0.80829	0.20401	0.81137 1.1931	-0.33845 -0.47306	89.484
	5.8522	19.84322	17.80281	0.00000	0.64912	1.5419	0.54669	1.5477	-0.63522	89.484
	6.8275 7.8029	19.86078	18.77813	0.00000	0.84056 1.0519	1.8657	0.85112 1.2420	1.8731 2.1700	-0.82374 -1.0324	89.484
	8.7782 9.7536	19.86955	21.70409	0.00000	1.2701	2.4316 2.6883	1.7462	2.4429 2.7015	-1.4505	89.484
No.26_2	Line 7 1.2317	19.87833 21.11006	21.70409 21.70338	0.00000	1.4748	2.6883	2.5097 3.0623	1.4732 1.7820	2.6892 2.6899	

FAIRHURST

Displacements

Canfield Gardens, NW6

Ground Movement Assessment Damage Impact Assessment

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		
Made by	Date 14-Jan-2020	Checked

Name	Dist.	×	У	z	x	У	z		Horizontal displacement	Line to x Axis
	2.4635	22.34178	21.70266	0.00	000 2.275	2.6902	3.6135	2.2736	2.6915	
	3.6952 4.9269	23.57351 24.80524	21.70195 21.70123	0.00	000 2.879 000 3.491	08 2.6934 .8 2.7041	4.0387	2.8782 3.4902	2.6951 2.7061	359.97 359.97
	6.1586	26.03696	21.70052	0.00	000 0.01639	7.4988	3.5285	0.012039	7.4989	359.97
	7.3904 8.6221	27.26869 28.50041	21.69980 21.69909	0.00	000 0.01649 000 0.01658	7.1118 6.7358	3.2446 2.9386	0.012363 0.012678	7.1118 6.7358	359.97 359.97
		29.73214	21.69837	0.00	000 0.01667	0 6.4222	2.6864		6.4222	
	12.317	30.96387	21.69766 21.69694	0.00	000 0.01673	17 4.8282				
No.26_3	Line 8	32.19559 32.19163	21.69694	0.00	000 0.01317	17 4.8282	1.2572	-4.8282	-0.0064122	269.77
	1.9538	32.18766	19.74318	0.00	000 0.01257	78 4.5842	3.0346	-4.5842	-0.0060213	269.77
	2.9307 3.9076	32.18370	18.76630 17.78942		000 0.01082 000 0.009211		2.7607	-3.9374 -3.3057	-0.0051456 -0.0042005	269.77
	4.8844	32.17577	16.81254	0.00	000 0.007843	88 2.7343	1.7061	-2.7343	-0.0032500	269.77
	5.8613 6.8382	32.17181 32.16785	15.83566 14.85878	0.00	000 0.006780 000 0.005701	04 2.3020 .4 1.9357	1.1017	-2.3020 -1.9357	-0.0025594 -0.0021521	269.77 269.77
	7.8151	32.16388	13.88191	0.00		4 1.5693	0.42526	-1.5693	-0.0017448	269.77
		32.15596			000 0.002464		0.11613	-1.2030 -0.83667	-0.0013375 -930.21E-6	
Specific B	uilding Dama	ge Results - H	lorizonta	l Displac	ements					
tructure	: No.30 Su	b-structure	: 1							
Dist.	Coordi x y		x	y I	Displacements Horizontal					
	. ,	-		,	displacement	displacement				
					along the Line	perpendicular to Line				
[m]	[m] [m		[mm]	[mm]	[mm]	[mm]				
	2.11050 41.3 2.10850 40.8					0.0035365 0.0045119				
0.98246 3	2.10649 40.3	4172 0.0000	0.0	-1.3368	1.3367	0.0054665				
1.9649 3	2.10448 39.8 2.10247 39.3	5926 0.0000	0.0	-1.7863	1.7863	0.0073047				
2.4562 3	2.10046 38.8 2.09845 38.3	6803 0.0000 7681 0 0000	0.0	-2.0012 -2.2089	2.0012	0.0081838 0.0090328				
3.4386 3	2.09644 37.8	8558 0.0000	0.0	-2.4085	2.4085	0.0098491				
3.9298 3 4.4211 3	2.09443 37.3 2.09242 36.9	9435 0.0000 0313 0.0000	0.0	-2.6036 -2.7990	2.7989	0.011446				
	2.09042 36.4			-2.9878		0.012218				
Structure	: No.30 Su		: 2							
Dist.	Coordi x y		x		Displacements Horizontal					
	,	-		· ·	displacement along the	displacement perpendicular to Line				
[m]	[m] [m 2.09042 36.4			[mm]	[mm]	[mm]				
0.11926 3	1.99714 36.3	3759 0.0000	0.0 -	3.0254	1.8852	2.3663				
	1.90387 36.2 1.81060 36.1			3.0630	1.9086 1.9321	2.3957 2.4251				
0.47702 3	1.71732 36.1	1466 0.0000	0.0 -	3.1383	1.9555	2.4546				
0.71553 3	1.62405 36.0 1.53078 35.9	6604 0.0000	0.0 -	3.2162	2.0041	2.5155				
	1.43750 35.8				2.0357	2.5552				
1.0733 3	1.34423 35.8 1.25096 35.7	4311 0.0000	0.0 -	3.3177	2.0990	2.6346				
1.1926 3	1.15768 35.6	6880 0.0000	0.0 -	3.4194	2.1307	2.6744				
	: No.30 Su		: 3							
Dist.	Coordi x y	nates z	x	У	Displacements Horizontal	Horizontal				
	•					displacement				
			, .		Line	perpendicular to Line				
	[m] [m 1.15768 35.6	6880 0.0000	0.0 -	[mm] -3.4194	[mm] 3.4193	[mm] 0.031503				
0.41925 3	1.15382 35.2	4956 0.0000	0.0 -	3.6393	3.6392	0.033529				
1.2578 3	1.14996 34.8 1.14609 34.4	1110 0.0000	0.0 -							
1.6770 3	1.14223 33.9 1.13837 33.5	9186 0.0000	0.0 -	4.2846	4.2844	0.039474				
2.5155 3	1.13451 33.1	5340 0.0000	0.0 -	4.7234	4.7232	0.043517				
	1.13064 32.7 1.12678 32.3			-4.9530 -5.1935	4.9528 5.1933	0.045632 0.047848				
3.7733 3	1.12292 31.8 1.11906 31.4	9570 0.0000	0.0 -	5.4484	5.4482 5.7216	0.050196 0.052716				
)		0.0000	- 0.0		3.7210	0.002/10				
Structure	: No.30 Su	b-structure	: 4							
Dist.	Coordin				isplacements					
	х у	z	×		Horizontal isplacement o					
				u.	along the p	erpendicular				
[m]	[m] [m]	[m]	[mm] [mm 1	Line [mm]	to Line				
0.0 31	.11906 31.47	646 0.00000	0.0 -5	.7219	0.0	5.7219				
2.0154 29	.11136 31.47	646 0.00000	0.0 -5		0.0	5.7219 5.7219				
3.0231 28	.09598 31.47	646 0.00000	0.0 -5	.7219	0.0	5.7219				
4.0308 27 5.0385 26	.08829 31.47 .08060 31.47	646 0.00000 646 0.00000	0.0 -5		0.0	5.7219 5.7219				
5.0462 25	.07290 31.47	646 0.00000	0.0 -5	.7223	0.0	5.7223				
7.0538 24 8.0615 23	.06521 31.47 .05752 31.47	646 0.00000	0.0 -5	.7222	0.0	5.7222 5.7222				
9.0692 22	.04983 31.47	646 0.00000	0.0 -5	.7222	0.0	5.7222 5.7221				
U.U.I ZI	31.4/		0.0 -5		0.0	J. 1221				

Structure: No.26 | Sub-structure: 1

Displacements
y Horizontal Horizontal
displacement displacement
along the perpendicular
Line to Line

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	,	<u> </u>
Made by TJ	Date 14-Jan-2020	Checked

[m] 0.0 19	[m] .79055	[m] 11.95090	[m] 0.00000	[mm] 0.028820	[mm] 0.058464	[mm] 0.058721	[mm] -0.028292
0.97536 19	.79933	12.92622 13.90154	0.00000	0.091414	0.15910	0.15991	-0.089978
3.9014 19	.82566	15.85217	0.00000	0.34574	1.1888	0.81137 1.1931	-0.47306
5.8522 19 6.8275 19 7.8029 19 8.7782 19	.84322 .85200 .86078	17.80281 18.77813 19.75345	0.00000	0.64912 0.84056 1.0519 1.2701	1.5419 1.8657 2.1606	1.8731	-0.63522 -0.82374 -1.0324
8.7782 19 9.7536 19	.86955 .87833	20.72877	0.00000	1.2701	2.4316	2.4429 2.7015	-1.2482 -1.4505
Structure:	No.26	Sub-str	ucture:	2			
Dist.	Coo x	ordinates y	z	×	y Ho	lacements orizontal He splacement dis	orizontal
					a.l	long the per	rpendicular to Line
1.2317 21.	11006 2	21.70338 ([m] 0.00000 0.00000	1.7836 2	.6883	[mm] 1.4732 1.7820	2.6892
2.4635 22.	34178 2 57351 2	21.70266 (21.70195 (0.00000	2.2752 2	.6902 .6934	2.2736	2.6915 2.6951
6.1586 26. 7.3904 27. 8.6221 28.	03696 2 26869 2 50041 3	21.70052 (21.69980 (0.00000	0.016392 7 0.016492 7 0.016589 6	.4988 .1118 .7358	3.4902 0.012039 0.012363 0.012678 0.012942	7.4989 7.1118 6.7358
11.086 30.	96387 2	21.69766 (0.00000	0.016734 6	.1875	0.013142	6.4222 6.1875 4.8282
12.317 32.					.8282	0.010374	4.8282
Structure:	Co	ordinates	3		Dis	splacements	
	x	У	z	×	У	Horizontal displacement along the	Horizontal displacement perpendicular
[m]	[m]	[m]	[m]	[mm]	[mm]	Line [mm]	displacement perpendicular to Line [mm] -0.0064122 -0.0068727 -0.0060213
0.97689 32 1.9538 32	.19163	20.72006	0.00000	0.014534	5.2763 4.5842	-5.2763 -4.5842	-0.0068727 -0.0060213 -0.0051456
3.9076 32 4.8844 32	.18370 .17974 .17577	18.76630 17.78942 16.81254	0.00000	0.010829 0.0092115 0.0078438	3.3057 2.7343	-3.3057 -2.7343	-0.0051456 -0.0042005 -0.0032500
5.8613 32 6.8382 32	.17181	15.83566 14.85878	0.00000	0.0067804	2.3020 1.9357	-2.3020 -1.9357 -1.5693	-0.0025594 -0.0021521 -0.0017448
8.7920 32	.15992	12.90503	0.00000	0.0035434	1.2030	-1.2030 -0.83667	-0.0013375
Specific Bu	ilding D	amage Re	sults - Ve	ertical Displa	acements		
Structure:	No.30	Sub-str	ucture:	1			
Dist.	C c	ordinates y [m]	s z	Displ	acements		
[m] Vertical O			[m]	[mm]			
0.0 32 0.49123 32 0.98246 32	.11050	41.32417 40.83294	0.00000	0.17119			
1.4737 32	.10448	39.85049	0.00000	0.32772			
3.4386 32	.09845	38.37681	0.00000	0.74042			
3.9298 32 4.4211 32 4.9123 32	.09443 .09242 .09042	37.39435 36.90313 36.41190	0.00000 0.00000 0.00000	1.1365 1.4441 1.7544			
Structure:	No.30	Sub-str	ucture:	2			
Dist.	C x	oordinates Y [m]	s z	Displ	acements		
[m] Vertical O			[m]	[mm]			
0.0 32 0.11926 31	.09042	36.41190 36.33759	0.00000	1.7544 1.8060 1.8578			
0.35777 31 0.47702 31 0.59628 31	.81060	36.18897	0.00000	1.9097			
0.71553 31 0.83479 31	.53078	35.96604 35.89173	0.00000	2.0660			
0.95405 31 1.0733 31 1.1926 31	.34423 .25096 .15768	35.81742 35.74311 35.66880	0.00000 0.00000 0.00000	2.1700 2.2219 2.2736			
Structure:	No.30	Sub-str	ucture:	3			
Dist.	C c	oordinates Y [m]	s z	Displ	acements		
[m] Vertical O			[m]	[mm]			
0.0 31 0.41925 31	.15768 .15382	35.66880 35.24956	0.00000	2.2736 2.5113			
0.83850 31 1.2578 31 1.6770 31	14609	34 41110	0.00000	2 9001			
1.6770 31 2.0963 31 2.5155 31 2.9348 31	.13064	32.73416	0.00000	3.0782			
3.3540 31 3.7733 31 4.1925 31	.12678 .12292 .11906	32.31493 31.89570 31.47646	0.00000 0.00000 0.00000	2.9402 2.7078 2.3697			
Structure:							
		ordinates y [m]			cements		
			[m]	[mm]			
0.0 31. 1.0077 30. 2.0154 29.	11906 3	31.47646 (0.00000	2.3697			
3.0231 28. 4.0308 27.	09598 3 08829 3	31.47646 (31.47646 (0.00000	2.3697 2.3697			
5.0385 26. 6.0462 25. 7.0538 24.	08060 3 07290 3 06521 3	31.47646 (31.47646 (31.47646 (0.00000	2.3697 2.3815 2.3866			
8.0615 23. 9.0692 22. 10.077 21.	05752 3 04983 3	31.47646 (31.47646 (0.00000	2.3786 2.3699			
		'					

FAIRHURST

Canfield Gardens, NW6

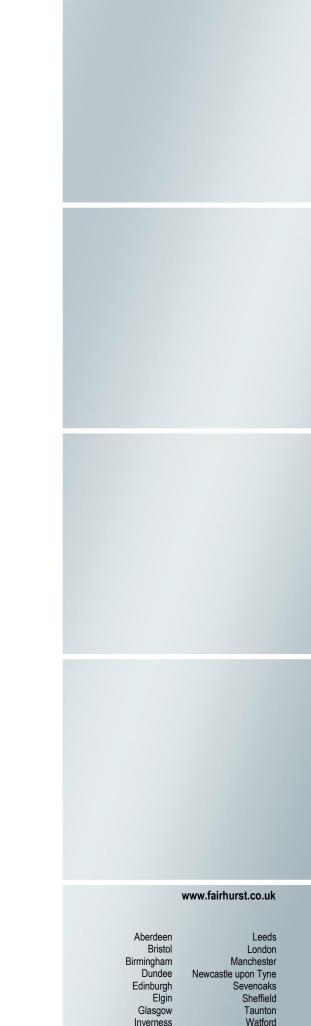
Job No.	Sheet No.	Rev.
117401		
Drg. Ref.		-
Made by	Date 14-Jan-2020	Checked

	COC	ordinates		Displ	lacement	s								
[m]	x [m]	y [m]	z [m]	z [mm]										
		Sub-str												
Dist.	×	oordinates y [m]	z	z	placemen	nts								
			[m]	[mm]										
Vertical 0.0 2	21.04214	31.47646	0.00000	2.3698										
0.97763 2 1.9553 2	21.04509	32.45409 33.43172	0.00000	3.0029										
2.9329 2 3.9105 2	21.05101	34.40934 35.38697	0.00000	2.9174										
4.8882 2	21.05692	36.36460	0.00000	1.8593										
6.8434 2 7.8210 2	21.06284	37.34222 38.31985 39.29747	0.00000	0.80782										
8.7987 2 9.7763 2	21.06875	40.27510 41.25273	0.00000	0.26438										
		Sub-sti												
Dist.	x Co	oordinates y [m]	z	Dis z	splaceme	ents								
[m]	[m]	[m]	[m]	[mm]										
Vertical	19.79055	11.95090	0.00000	0.016155	5									
0.97536 1	19.79933	12.92622 13.90154	0.00000	0.033684	4 0									
2.9261 1	19.81688	14.87685 15.85217	0.00000	0.11129	9									
4.8768 1	19.83444	16.82749 17.80281	0.00000	0.33646	6									
6.8275 1	19.85200	18.77813	0.00000	0.85112	2									
8.7782 1 9.7536 1	19.86955	19.75345 20.72877 21.70409	0.00000	1.7462	2 7									
		Sub-sti												
Dist.	X Cod	ordinates y [m]	z	Displ z	lacement	s								
	[m]	[m]	[m]	[mm]										
Vertical 0.0 19	9.87833 2	21.70409 (0.00000	2.5097										
2.4635 22	2.34178 2	21.70338 (21.70266 (0.00000	3.6135										
3.6952 23 4.9269 24	3.57351 2 4.80524 2	21.70195 (21.70123 (0.00000	4.0387 4.1030										
6.1586 26 7.3904 2	5.03696 2 7.26869 2	21.70052 (21.69980 (0.00000	3.5285										
9.8538 29	9.73214 2	21.69909 (21.69837 (0.00000	2.6864										
11.086 30 12.317 32	0.96387 2 2.19559 2	21.69766 (21.69694 (0.00000	2.5400 1.2572										
		Sub-sti												
Dist.	×	oordinates y [m]	z	z	placemen	its								
			[m]	[mm]										
Vertical 0.0	Offset 1 32.19559	1 21.69694 20.72006	0.00000	1.2572										
1.9538 3	32.18766	19.74318	0.00000	3.0346										
3.9076 3	32.18370	18.76630	0.00000	2.7607										
	32.17974	17.78942	0.00000	2.2854										
4.8844 3 5.8613 3	32.17577	16.81254 15.83566	0.00000 0.00000 0.00000	1.7061										
6.8382 3 7.8151 3	32.17577 32.17181 32.16785 32.16388	16.81254 15.83566 14.85878 13.88191	0.00000 0.00000 0.00000 0.00000	1.7061 1.1017 0.71274 0.42526										
6.8382 3 7.8151 3 8.7920 3	32.17577 32.17181 32.16785 32.16388 32.15992	16.81254 15.83566 14.85878	0.00000 0.00000 0.00000 0.00000 0.00000	1.7061 1.1017 0.71274 0.42526 0.22803										
6.8382 3 7.8151 3 8.7920 3 9.7689 3	32.17577 32.17181 32.16785 32.16388 32.15992 32.15596	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613										
6.8382 3 7.8151 3 8.7920 3 9.7689 3	32.17577 32.17181 32.16785 32.16388 32.15992 32.15596	16.81254 15.83566 14.85878 13.88191 12.90503	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613	ts									
6.8382 3 7.8151 3 8.7920 3 9.7689 3	32.17577 32.17181 32.16785 32.16388 32.15992 32.15596 Building E	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613	ts									
6.8382 3 7.8151 3 8.7920 3 9.7689 3 Specific E	32.17577 32.17181 82.16785 82.16785 82.16388 32.15992 32.15596 Building D Strand Control of the Control of th	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613		urvature			Max	Max Gradient	Max Gradient	Min	Damage	
6.8382 3 7.8151 3 8.7920 3 9.7689 3 Specific E Structure Vertical from Lir Vertic	32.17577 32.17181 32.16785 32.16388 32.16388 32.15992 32.15596 Building E : No.30 Offset ne for cal	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613		urvature		Average Horizontal Strain	Max L Tensile Strain	of Horizontal	of Vertical Displacement	Min Radius of Curvature	Damage Category	
6.8382 3 7.8151 3 8.7920 3 9.7689 3 Specific E Structure Vertical from Lir	32.17577 32.17181 32.16785 32.16388 32.15992 32.15596 Building E : No.30 Offset ne for cal	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613		urvature	Ratio	Horizontal	Max L Tensile Strain	Max Gradient of Horizontal Displacement Curve	of Vertical Displacement	Min Radius of Curvature		
6.8382 2 7.8151 3 8.7920 3 9.7689 3 Specific E Structure Vertical from Lir Vertic Moveme	32.17577 32.17181 32.17181 32.16785 32.16388 32.15992 32.15596 Building E E: No.30 Offset ne for the	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613				Horizontal Strain	Max L Tensile Strain	of Horizontal Displacement Curve	of Vertical Displacement Curve	Min Radius of Curvature [m] 4383.8	Category	
6.8382 3 7.8151 3 8.7920 3 9.7689 3 Specific E Structure Vertical from Lir Vertic Moveme Calculat	32.17577 32.17181 32.17181 32.16785 32.16388 32.15992 32.15596 Building E E: No.30 Offset ne for the	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler	mgth Cu [m] .6946 Ho	ogging	[%] 0.0069095	Strain [%] 0.043439	Tensile Strain [%] 0.045208	of Horizontal Displacement Curve	of Vertical Displacement Curve -631.31E-6	Radius of Curvature [m] 4383.8	Category (Negligible)	
Specific E Structure Vertical from Lir Vertic Moveme Calculat [m] 0.0	22.17577 22.17181 32.16785 32.16388 32.15596 Building E E: No.30 Offset ne for cal ent cions	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 1 tart Ler [m] 0.0 4.	[m] .6946 Ho	ogging	[%] 0.0069095	Norizontal Strain (%) 0.043435 0.038435	Tensile Strain [%] 0.045208	of Horizontal Displacement Curve -485.35E-6	of Vertical Displacement Curve -631.31E-6	Radius of Curvature [m] 4383.8	Category Output (Negligible)	
6.8382 f 7.8151 s 7.8	22.17577 22.17181 22.16785 32.16388 32.16388 32.15596 Building E : No.30 Offset ne for cal	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Segmen	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.11613 **I Segment** 1 tart Ler** [m]	[m] .6946 Ho	ogging	[%] 0.0069095	Norizontal Strain (%) 0.043435 0.038435	Tensile Strain [%] 0.045208	of Horizontal Displacement Curve -485.35E-6	of Vertical Displacement Curve -631.31E-6	Radius of Curvature [m] 4383.8	Category (Negligible)	
6.8382 f.78151 8.7920 9.7689 1 9.7689 1 Structure Structure Calculate [m] 0.60 Structure Structure	22.17577 22.17181 22.16785 22.16388 22.15596 32.15596	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re** Sub-str** Sub-str** Sub-str**	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.11613 1 tart Ler 0.0 4.	[m] .6946 Hd 21737 Nd	ogging one norizonta	[%] 0.0069095 0.0	Horizontal Strain (%) 0.043435 0.038435 are -ve.	Tensile Strain [%] 0.045208 5 0.038435	of Horizontal Displacement Curve -485.35E-6	of Vertical Displacement Curve -631.31E-6	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible)	
6.8382 f 7.8151 8.7920 9.7689 3 Specific E Structure Vertical from Lir Vertic Moveme Calculate Structure Vertical fm from Lir Calculate Vertical from Lir Structure	32.17577 32.17181 32.16785 32.17181 32.16785 32.15396 32.15596 32.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Segmen	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.11613 1 tart Ler 0.0 4.	[m] .6946 Hd 21737 Nd	ogging one norizonta	[%] 0.0069095 0.0 1 strains	Horizontal Strain [%] 0.043439 0.038439 are -ve.	Tensile Strain [%] 0.045208	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category	
6.8382 f 7.8151 s 7.920 g 9.7689 s 7.820 g 9.7689 s 7.720 g 9.7689 s 7.720 g 9.720 g 9.	22.17577 22.17181 22.16785 22.16388 22.15596 23.15096 23.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re** Sub-str** Sub-str** Sub-str**	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.11613 1 tart Ler 0.0 4.	[m] .6946 Hd 21737 Nd	ogging one norizonta	[%] 0.0069095 0.0 1 strains	Horizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacemen	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category	
6.8382 f 7.8151 s 7.920 g 9.7689 g 9.7680 g 9.7680 g 9.76	22.17577 22.17181 22.16785 22.16388 22.15596 22.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re** Sub-str** Sub-str** Sub-str**	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler 0.0 4 .6946 0.2 2 Start Le	[m] .6946 Ho essive h	ogging one norizonta Curvature	Ratio [%] 0.0069095 0.0 1 strains Deflection Ratio	Horizontal Strain [%] 0.043435 0.038435 are -ve. n Average Horizonta Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category	
6.8382 f 7.8151 s 7.920 s 9.7689 s 9.76	22.17577 22.17181 22.16785 22.16388 22.15596 22.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re** Sub-str** Sub-str** Sub-str**	0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 sults - Al	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler 0.0 4. .6946 0.2 e, compre 2 Start Le	[m] .6946 Hd .21737 Nd essive h	ogging one norizonta Curvature	Ratio [%] 0.0069095 0.0 1 strains Deflectio Ratio [%] 58.413E-	Horizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacemen Curve 6 -436.76E-	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category (Negligible)	
6.8382 f 7.8151 8.7920 9.7689 2 9.7689 2 Structure Vertical from Lin Movemen Calculat from Lin Wettin Movemen Calculat from Lin Wettin Movemen Calculat from Lin October 1 (m) Movemen Calculat Calculat Calculat Calculat Calculat October 1 (m) Movemen Calculat Calculate Cal	22.17577 22.17181 22.16785 22.16388 22.15996 22.15596 Building E E: No.30 Offset ne for sal norizonte E: No.30 Offset norizonte ions Offset norizonte ions I)	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str Segmen Sub-str Segmen Sub-str Segmen	0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.42526 1 tart Ler (m) 0.0 4. 6946 0.2 e, compre 2 Start Le	[m] .6946 Hc .21737 Nc essive h	ogging one norizonta Curvature dogging Sagging	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E-	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacemen Curve 6 -436.76E-	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category (Negligible)	
6.8382 f 7.8151 8.7920 9.7689 2 9.7689 2 Structure Vertical from Lin Movemen Calculat from Lin Wettin Movemen Calculat from Lin Wettin Movemen Calculat from Lin October 1 (m) Movemen Calculat Calculat Calculat Calculat Calculat October 1 (m) Movemen Calculat Calculate Cal	22.17577 22.17181 22.16785 22.16388 22.15996 22.15596 Building E E: No.30 Offset ne for sal norizonte E: No.30 Offset norizonte ions Offset norizonte ions I)	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str Segmen Sub-str Segmen Sub-str Segmen	0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.42526 1 tart Ler (m) 0.0 4. 6946 0.2 e, compre 2 Start Le	[m] .6946 Hc .21737 Nc essive h	ogging one norizonta Curvature dogging Sagging	Ratio [%] 0.0069095 0.0 1 strains Deflectio Ratio [%] 58.413E-	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacemen Curve 6 -436.76E-	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category (Negligible)	
6.8382 f 7.8151 s 7.920 s 9.7689 s 9.76	22.17577 22.17181 22.16785 22.16388 22.15596 Building E E: No.30 Offset ne for ral norizonta E: No.30 Offset ne for ral norizonta control offset ne for ral norizonta	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str Segmen Sub-str Segmen Sub-str Segmen	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler [m] 0.0 4. 6946 0.2 e, compre 2 Start Le [m] 0.0 0. 63219 0. e, compre	[m] .6946 Hc .21737 Nc essive h	ogging one norizonta Curvature dogging Sagging	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E-	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacemen Curve 6 -436.76E-	Radius of Curvature [m] 4383.8 12033.	Category (Negligible) (Negligible) Damage Category (Negligible)	
6.8382 f 7.8151 s 7.920 s 9.7689 s 9.76	22.17577 22.17181 22.16785 22.16388 22.15996 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 23.15596 23.15596 23.15596 24.15596 25.15596 26.15096 26.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re** Sub-str Sub-str	0.00000 0.00000 0.00000 0.000000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler 1 0.0 4. .6946 0.2 e, compre 2 Start Le	[m] 6946 Ho cassive h	orgging one Curvature dogging Gagging norizonta	Ratio [%] 0.0069095 0.0 1 strains Deflectio Ratio [%] 58.413E- 51.063E- 1 strains	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 5 -265.67E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve 6 -436.76E- 6 -436.76E-	Radius of Curvature	Category O (Negligible) O (Negligible) Damage Category O (Negligible) O (Negligible)	
6.8382 f 7.8151 s 7.920 s 9.7689 s 9.76	22.17577 22.17181 22.16785 22.16388 22.15996 22.15596 Building E E: No.30 Offset ne for cal citions Offset ne for cal	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.000000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler 1 0.0 4. .6946 0.2 e, compre 2 Start Le	[m] 6946 Ho cassive h	orgging one Curvature dogging Gagging norizonta	Ratio [%] 0.0069095 0.0 1 strains Deflectio Ratio [%] 58.413E- 51.063E- 1 strains	Horizontal Strain [%] 0.043435 0.038435 are -ve. n Average Horizonte Strain 6 0.01974 6 0.02572 are -ve.	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 5 -265.67E-6 ax Gradient Mod of cof Horizontal Displacement	of Vertical T Urve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve -436.76E- ax Gradient f Vertical R isplacement C	Radius of Curvature [m] 4383.8 12033. t Min Radius of Curvature [m] 82676.6 81380.	Category O (Negligible) O (Negligible) Damage Category O (Negligible) O (Negligible)	
6.8382 f 7.8151 s 7.920 s 9.7689 s 9.76	22.17577 22.17181 22.16785 22.16388 22.15996 22.15596 22.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.42526 1 1 tart Ler [m] 0.0 46946 0.2 2 Start Le [m] 0.0 063219 0. e, compre	[m] 6946 Ht. 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	orgging one Curvature dogging Gagging norizonta	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio [%) 58.413E- 51.063E- 1 strains	Horizontal Strain [%] [0.04343] 0.043433 are -ve. n Average Horizonta Strain [%] 0.01974 6 0.02572 are -ve. Average orizontal ?	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient Horizontal Displacement Curve 7 -210.07E-6 5 -265.67E-6 ax Gradient Mof 60	of Vertical T Urve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve -436.76E- ax Gradient f Vertical R isplacement C	Radius of Curvature [m] 4383.8 12033. t Min Radius of t Curvature [m] 82676.6 81380.	Category O (Negligible) O (Negligible) Damage Category O (Negligible) O (Negligible)	
6.8382 27.8151 28.7920 39.7689 27.8151 28.7920 39.7689 27.8151 28.7920 39.7689 27.8151 28.7920 39.7689 27.8151 28.7920 39.7689 27.8151 28.7920	22.17577 22.17181 22.16785 22.17181 22.16785 22.16388 22.15596 22.15596 32.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler 1 0.0 4. .6946 0.2 e, compre 2 Start Le	[m] [m] 6946 Hec (m) 6821737 No. (m) [m] [m] [m] 63219 F (m) 63219	ogging one corizonta corizonta dogging Sagging corizonta	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E- 1 strains flection Ratio H	Horizontal Strain [%] 0.043435 0.038435 are -ve. n Average Horizonta Strain [%] 0.01974 6 0.02572 are -ve. Average orizontal 1 Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient Gurve 7 -210.07E-6 5 -265.67E-6 ax Gradient Mof Of Octoorland Curve Of Octoorland Supplacement	of Vertical T Urve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve -436.76E- ax Gradient f Vertical R isplacement C	Radius of Curvature	Category (Negligible) (Negligible) Damage Category (Negligible) (Negligible) (Negligible)	
6.8382 f 7.8151 s 7.920 s 9.7689 s 9.76	22.17577 22.17181 22.16785 22.17181 22.16785 22.16388 22.15996 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 22.15596 23.15596 23.15596 23.15596 24.15596 25.15596 26.15096 26.	16.81254 15.8356 14.85878 13.88191 12.90503 11.92815 **Damage Re Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.71274 0.42526 0.22803 0.11613 1 tart Ler [m] 0.0 46946 0.; e, compre 2 Start Le [m] 0.0 063219 0. e, compre 3 tart Len [m] 0.0 4.	[m] [6946 Hec [6921] [6936 Hec [693]	ogging one norizonta Curvature dogging Sagging norizonta	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E- 1 strains flection Ratio H	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-1 5 -265.67E-1 ax Gradient M of of Horizontal D isplacement Curve Curve Curve Curve Accordance Curve Accordance Curve Accordance Curve Curve	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve -436.76E- 436.76E- ax Gradient f Vertical R isplacement C Curve	Radius of Curvature	Category Onegligible) Onegligible) Damage Category (Negligible) Onegligible)	
6.8382 f 7.8151 s 8.7920 s 9.7689 s 9.7	22.17577 22.17181 22.16785 22.17381 22.16785 22.16388 22.15996 22.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Segmen al strains Sub-str Segmen Sub-str Segmen al strains	0.00000 0.00000 0.00000 0.000000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.42526 0.22803 0.42526 0.0004 0.6946 0.2 Start Le [m] 0.0 4 0.6946 0.2 Start Le [m] 0.0 0.63219 0.0 e, compre	[m] [6946 Hec [6921] [6936 Hec [693]	ogging one norizonta Curvature dogging Sagging norizonta	Ratio 0.0069095 0.0 1 strains Deflectio Ratio [%] 58.413E- 51.063E- 1 strains flection Ratio H	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-1 5 -265.67E-1 ax Gradient M of of Horizontal D isplacement Curve Curve Curve Curve Accordance Curve Accordance Curve Accordance Curve Curve	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve -436.76E- 436.76E- ax Gradient f Vertical R isplacement C Curve	Radius of Curvature	Category (Negligible) (Negligible) Damage Category (Negligible) (Negligible) (Negligible)	
6.8382 2 7.8151 2 8.7920 3 9.7689 2 9.7	22.17577 22.17577 22.17181 22.16785 22.16388 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 23.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.42526 1	[m] [m] 6946 He (m)	one Curvature dogging adagging norizonta	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio [%) 58.413E- 51.063E- 1 strains flection Ratio H	Horizontal Strain Name Na	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 ax Gradient Mof of cof Horizontal Displacement Curve -651.75E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve 6 -436.76E- ax Gradient f Vertical R isplacement C Curve 805.98E-6	Radius of Curvature	Category (Negligible) (Negligible) Damage Category (Negligible) (Negligible) (Negligible) (veryight)	
6.8382 2 7.8151 2 8.7920 3 9.7689 2 9.7	22.17577 22.17181 22.16785 22.17181 22.16785 22.16388 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 23.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Segmen al strains Sub-str Segmen Sub-str Segmen al strains	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.42526 1	[m] [m] 6946 He (m)	one Curvature dogging adagging norizonta	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E- 1 strains flection Ratio H	Horizontal Strain [%] 0.043435 0.038435 are -ve. n Average Horizonts Strain 6 0.01974 6 0.02572 are -ve. Average Horizontal (%) 0.054914 0.054	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 ax Gradient Mof of Horizontal Displacement Curve -651.75E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical R Curve 6 -436.76E- ax Gradient f Vertical R Isplacement Curve 805.98E-6	Radius of Curvature [m] 4383.8 12033. b Min Radius of c Curvature [m] 82676.6 Min Cadius of Caurvature [m] 1620.0 1 1	Category (Negligible) (Negligible) Damage (Category (Negligible) (Negligible) (Negligible) (Negligible) Category (Very ight)	
6.8382 2 7.8151 2 8.7920 3 9.7689 2 9.7	22.17577 22.17181 22.16785 22.17181 22.16785 22.16388 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 23.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.42526 1 1 tart Ler [m] 0.0 46946 0.2 e, compre 2 Start Le [m] 0.0 063219 0. e, compre 3 tart Len 4	[m] [m] 6946 He (m)	one Curvature dogging adagging norizonta	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E- 1 strains flection Ratio H	Rorizontal Strain	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 ax Gradient M. of of Horizontal Displacement Curve -651.75E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve -436.76E- 436.76E- ax Gradient of Vertical R isplacement Curve 805.98E-6	Radius of Curvature [m] 4383.8 12033. b Min Radius of c Curvature [m] 82676.6 Min Cadius of Caurvature [m] 1620.0 1 1	Category (Negligible) (Negligible) Damage (Category (Negligible) (Negligible) (Negligible) (Negligible) Category (Very ight)	
6.8382 2 7.8151 2 8.7920 3 9.7689 2 9.7	22.17577 22.17181 22.16785 22.17181 22.16785 22.16388 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 23.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.42526 0.22803 0.11613 ### Segment 1 tart Ler [m]	[m] (6946 He	orgging one norizonta Curvature dogging Sagging norizonta vature De	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E- 1 strains flection Ratio H (%) 0.019097 1 strains	Rorizontal Strain Name Na	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 ax Gradient M of of cisplacement Curve -651.75E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve 6 -436.76E- ax Gradient f Vertical R isplacement Curve 805.98E-6	Radius of Curvature [m] 4383.8 12033. t Min Radius of t Curvature [m] 6 82676.6 81380. Min I Radius of Curvature [m] 1620.0 1 1620.0 1 Radius of Curvature	Category (Negligible) (Negligible) Damage Category (Negligible) (Negligible) (Negligible) (Negligible) Camage tegory (Very ight)	
6.8382 2 7.8151 28.7920 3 9.7689 2 1	22.17577 22.17181 22.16785 22.17181 22.16785 22.16388 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 22.15996 23.	16.81254 15.83566 14.85878 13.88191 12.90503 11.92815 Damage Re Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str Sub-str	0.00000 0.00000 0.00000 0.00000 0.000000	1.7061 1.1017 0.71274 0.42526 0.22803 0.11613 1 tart Ler (m) 0.0 4. 6946 0.2 e, compre 2 Start Le (m) 0.0 0. 63219 0. e, compre 3 tart Leng (m) 0.0 4.15 e, compre	[m] [6946 He (21737 Ne (21	orgging one norizonta Curvature logging Sagging norizonta vature De	Ratio (%) 0.0069095 0.0 1 strains Deflectio Ratio (%) 58.413E- 51.063E- 1 strains flection Ratio H (%) 0.019097 1 strains	Horizontal Strain Name Na	Tensile Strain	of Horizontal Displacement Curve -485.35E-6 -384.21E-6 Max Gradient of Horizontal Displacement Curve 7 -210.07E-6 5 -265.67E-6 Max Gradient M of of sisplacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6	of Vertical Displacement Curve -631.31E-6 -631.31E-6 -631.31E-6 t Max Gradien of Vertical Displacement Curve 6 -436.76E- ax Gradient f Vertical R isplacement Curve 805.98E-6	Radius of Curvature [m] 4383.8 12033. t Min Radius of t Curvature [m] 6 82676. 6 81380. Min Fadius of Curvature [m] 1620.0 1 S1	Category (Negligible) (Negligible) Damage (Category (Negligible) (Negligible) (Negligible) (Negligible) Category (Very ight)	

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	<u> </u>
Made by	Date	Checked


											10		14-Jan-2020
Vertical Offs from Line fo Vertical		ment S	tart L	ength	Curvature	Deflectio Ratio	n Average Horizontal Strain	Tensile Strain	of Horizontal	Max Gradient of Vertical Displacement	Radius of	Damage Category	
Movement		3 5	.5756 2	.6730	Sagging	373.40E-	6 0.0	369.97E-6	Oisplacement 0.0		121770.	0	
		4 8	.2486 1	.8274	Hogging	210.06E-	6 0.0	209.82E-6	0.0	8.6138E-6		(Negligible) 0 (Negligible)	
Tensile horiz	zontal stra	ins are +v	e, comp	ressiv	e horizont	al strain	s are -ve.					(Negligible)	
Structure: No	o.30 Sub-	structure:	5										
Vertical Offs from Line fo Vertical Movement	or	ment S	art L	ength	Curvature	Deflectio Ratio	n Average Horizontal Strain	Tensile Strain	of	Max Gradient of Vertical Displacement Curve	Radius of	Damage Category	
Calculations [m]	s		[m]	[m]		[%]	[%]	[%]	Curve		[m]		
0.0		1			Sagging	0.01990			-614.06E-6	-647.17E-6	1812.1 : 7550.2	1 (Very Slight)	
Tensile horiz	zontal stra						4 0.043726	0.045/14	-496.41E-6	637.67E-6		(Negligible)	
				10001		5024211	J 410 VC.						
Structure: No													
Vertical Offs from Line fo Vertical Movement Calculations	or				Curvature	Ratio	Horizontal Strain	Tensile Strain D	of	Max Gradient of Vertical Displacement Curve	Curvature	Damage Category	
[m] 0.0			[m] .9261 6	[m] .8269	Hogging	[%] 0.009212	[%] 4 0.033456	[%] 0.036860	-403.85E-6	-782.48E-6	[m] 3219.0	0 (Negligible)	
Tensile horiz	zontal stra	ins are +v	e, comp	ressiv	e horizont	al strain	s are -ve.					(megilgibie)	
Structure: No	o.26 Sub-	structure:	2										
Vertical Offs from Line fo Vertical Movement Calculations	or	ment :	Start :	Length	Curvatur	e Deflect Ratio	ion Average Horizonta Strain	Max al Tensile Strain	of	al Displaceme	al Radius o		
[m] 0.0	•	1	[m] 0.0	[m] 0.5854	10 None	[%]	[%] 0.0 0.02501	[%] 73 0.02507		E-6 -448.58E	[m] E-6 51315	5. 0	
-					31 Sagging		334 -0.02758					(Negligible)	
		3	5.4135	2.430	04 Sagging	295.19	E-6 25.490E-	-6 303.52E-	5 C	0.0 248.43E	E-6 20112		
		4	8.8439	3.473	31 Sagging	0.020	170 -67.694E-	-6 0.01983	2.2470E	E-6 0.00104	415 1048	(Negligible) .4 0 (Negligible)	
ensile horiz	zontal stra	ins are +v	e, comp	ressiv	e horizont	al strain	s are -ve.					(,-191016)	
Structure: No	o.26 Sub-	structure:	3										
Vertical Offs from Line fo Vertical		ment S	tart L	ength	Curvature	Deflection Ratio	n Average Horizontal Strain	Tensile Strain	of Horizontal	Max Gradient of Vertical Displacement		Damage Category	
Movement Calculations	s							D:	isplacement Curve	Curve			
			[m]	[m]		F %- 1	[&]	[&]					
[m] 0.0					Sagging	[%] 0.03392			-707.94E-6	-0.0017670		1 (Very Slight)	
0.0 Tensile horiz Specific Buildi		2 4	.7640 5	.0040 ressiv	Hogging re horizont	0.007511 al strain	2 0.039324 s are -ve.	0.041372		-0.0017670 618.38E-6	7511.1		
0.0 Tensile horiz Specific Buildi Structure: No Vertical	ling Damage	2 4 ins are +ve Results - Cr structure:	.7640 5 e, comp. itical Va 1 Max S.	.0040 ressiv	Hogging re horizont	0.007511 al strain ents within Max	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal	0.041372 cture Max Gradiof Vertice Displacem	-584.54E-6	618.38E-6 Min of Radius of re Curvature	7511.1	Slight) 0 (Negligible)	
O.0 Specific Buildi Structure: No Vertical Diffset from Line for Vertical Movement	o.30 Sub- Deflection Ratio	2 4 ins are +v. Results - Cr structure: Average Horizonta. Strain	.7640 5 .7640 5 .7640 5 .7640 5 .7640 5 .7640 5 .7640 5 .7640 5	.0040 ressiv	Hogging re horizont or All Segme Max Settlement	0.007511 al strain ents within Max Tensile	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve	o.041372 cture Max Gradin of Vertic. Displacem. Curve	-584.54E-6 ent Min al Radius c ent Curvatur (Hogging	Min of Radius of rec Curvature g) (Sagging)	7511.1	Slight) (Negligible)	
O.0 Specific Buildi Structure: No Vertical Dffset from Line for Vertical Movement Calculations [m] 0.0	o.30 Sub- Deflection Ratio	2 4 ins are +vo Results - Cr structure: Average Horizonta. Strain [%] 0.04343	.7640 5 e, comp itical Va Max S 1	.0040 ressiv	Hogging re horizont or All Segme Max Settlement	0.007511 al strain ents within Max Tensile Strain	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve	o.041372 cture Max Gradin of Vertic. Displacem. Curve	-584.54E-6 ent Min al Radius c ent Curvatur (Hogging	Min of Radius of rec Curvature g) (Sagging)	7511.1 Damage Cat	Slight) (Negligible)	
O.0 Sepecific Buildi Structure: No Vertical Diffset from Line for Vertical Movement Calculations [m] O.0 Vertical Offset from Vertical Diffset from Line for	Deflection Ratio [%] 0.0069095 o.30 Sub-	2 4 vins are +vo Results - Cr structure: Average Horizonta. Strain [%] 0.04343 structure:	.7640 5 a, comp itical Va Max S -631.	.0040 ressiv lues fo lope 31E-6	Hogging re horizont or All Segme Max Settlement	0.007511 al strain max Tensile Strain [%] 0.045208	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal	cture Max Gradi of Vertic Displacem Curve	ant Min al Radius cont (Hogging 2-6 4383.	Min of Radius of ce Curvature [m] Min of Radius of ce Curvature [m] Min of Radius of ce Curvature	7511.1 Damage Cat	Slight) (Negligible) tegory	
O.0 Sensile horiz Specific Buildi Structure: No Vertical Infest from O.0 Vertical in o.0 Vertical ffset from Uertical Structure: No Vertical Offset from Line for Vertical Movement Line for Vertical Movement Alculations [m]	ling Damage o.30 Sub- Deflection Ratio [%] 0.0069095 o.30 Sub- Deflection Ratio	2 4 Results - Cr Results - Cr structure: Average Horizonta. Strain [%] 0.04343 structure: Average Horizonta. Strain	.7640 5 e, comp Max S c d -631.	.0040 ressiv	Hogging re horizont or All Segme Max Settlement 1.7542 Max Settlement	0.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve	cture Max Gradio of Vertice Displacem Curve -631.31: Max Gradio of Vertice Displaceme Curve	=584.54E=6 ent Min sl Radius c ent Curvatus (Hogging == 4383. ent Min sl Radius c ent Min sl Radius c (Hogging (Hogging (Hogging (Hogging [m]	Min of Radius of the Curvature g) (Sagging) [m] Min of Radius of the Curvature g) (Sagging) [m]	Damage Cat Negligib:	O(Negligible) tegory tegory	
O.0 Sepecific Buildi Structure: No Vertical Movement alculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement Line for Vertical Movement Line for Line for Vertical Movement Line for Vertical Movement	ing Damage o.30 Sub- Deflection Ratio [%] 0.0069095 o.30 Sub- Deflection Ratio	2 4 Results - Cr Results - Cr Average Horizonta Strain [%] 0.04343 structure: Average Horizonta Strain	.7640 5 e, comp Max S c d -631.	.0040 ressiv	Hogging re horizont or All Segme Max Settlement 1.7542 Max Settlement	0.007511 al strain max Tensile Strain (%) 0.045208 Max Tensile Strain	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve	cture Max Gradi of Vertic Displacem Curve	=584.54E=6 ent Min sl Radius c ent Curvatus (Hogging == 4383. ent Min sl Radius c ent Min sl Radius c (Hogging (Hogging (Hogging (Hogging [m]	Min of Radius of the Curvature g) (Sagging) [m] Min of Radius of the Curvature g) (Sagging) [m]	7511.1 Damage Cat	O(Negligible) tegory tegory	
O.0 Sepecific Buildi Structure: No Vertical Pffset from Line for Vortical Movement Calculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement Calculations [m] O.0	Sub- Sub- Deflection Ratio	2 4 dins are +v. Results - Cr structure: Average Rorizonta. Strain [%] 0.04343* structure: Average Rorizonta. Strain [%] 0.02572	1 Max S Max Max S Max Max S Max Max S Max Max Max Max S Max Max Max Max S Max	.0040 ressiv	Hogging re horizont or All Segme Max Settlement 1.7542 Max Settlement	0.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve	cture Max Gradio of Vertice Displacem Curve -631.31: Max Gradio of Vertice Displaceme Curve	=584.54E=6 ent Min sl Radius c ent Curvatus (Hogging == 4383. ent Min sl Radius c ent Min sl Radius c (Hogging (Hogging (Hogging (Hogging [m]	Min of Radius of the Curvature g) (Sagging) [m] Min of Radius of the Curvature g) (Sagging) [m]	Damage Cat Negligib:	O(Negligible) tegory tegory	
O.0 Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement	Sub- Sub- 	2 4 ins are +v- Results - Cr structure: Average Horizonta. Strain [%] 0.04343 structure: Average Horizonta. Strain [%] 0.02572 structure: Average	1 Max S Max S Max S Max S	.0040 ressiv lues fo lope lope	Hogging re horizont or All Segme Max Settlement 1.7542 Max Settlement	0.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient Curve -265.67E-6	cture Max Gradie of Vertice Displacem Curve Max Gradie of Vertice Displacem Curve Max Gradie of Vertice Displacem Curve	ent Min 11 Radius c 12 (Hogging 2-6 4383. ent Min 12 Radius c 13 Radius c 14 Radius c 15 Radius c 16 Radius c 16 Radius c 16 Radius c	Min of Radius of	Damage Cat Negligibi	(Negligible) Legory Legory	
O.0 Sensile horiz Specific Buildi Structure: No Vertical Movement Lalculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement	Sub- Sub- 	2 4 ins are +v- Results - Cr structure: Average Horizonta. Strain [%] 0.04343 structure: Average Horizonta. Strain [%] 0.02572 structure: Average Horizonta. Strain	.7640 5 ≥, comp iitical Va 1 Max S → -631. 2 Max S 1 -436. 3	.0040 ressiv lues to lope 331E-6	Hogging re horizont or All Segme Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734	0.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725 Max Tensile Strain	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve -265.67E-6 Max Gradient of Horizontal Displacement Curve	cture Max Gradic of Vertice Displaceme: Curve	= 584.54E=6 ant Min Radius cent Curvatus (Hogging) ant Min Radius cent Min Radius cent Curvatus (Hogging) [m]	Min of Radius of the Curvature () (Sagging) Min of Radius of the Curvature () (Sagging) [m] [m] [m] 6. 81380. (Min f Radius of the Curvature () (Sagging)	Damage Cat O (Negligib) Damage Cat	Negligible) tegory le)	
O.0 Sepecific Buildi Structure: No Vertical Siffset from Line for Vertical Movement Constitutions Structure: No Vertical Movement Line for	Sub- Sub- 	2 4 Results - Cr Structure: Average Horizonta Strain [%] 0.04343 structure: Average Horizonta Strain (%) 0.02572 structure: Average Horizonta Strain (%) 0.02572	.7640 5 ≥, comp itical Va 1 Max S 3 Max S 1 4 805.9	.0040 ressiv lues to lope 331E-6	Hogging re horizont or All Segme Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734	0.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve -265.67E-6 Max Gradient of Horizontal Displacement Displacement Of Horizontal Displacement Displacement Of	cture Max Gradie of Vertice Displacem Curve Max Gradie of Vertice Displacem Curve Max Gradie of Vertice Displacem Curve	= 584.54E=6 ant Min Radius cent Curvatus (Hogging) ant Min Radius cent Min Radius cent Curvatus (Hogging) [m]	Min of Radius of the Curvature () (Sagging) Min of Radius of the Curvature () (Sagging) [m] [m] [m] 6. 81380. (Min f Radius of the Curvature () (Sagging)	Damage Cat Damage Cat Damage Cat Damage Cat	Negligible) tegory le)	
O.0 Sepecific Buildi Structure: No Vertical Offset from Line for Vertical Movement Constructure: No Constructure: N	Sub- Sub- 	2 4 Results - Cr Structure: Average Horizonta Strain [%] 0.04343 Structure: Average Horizonta Strain (%) 0.02572 Structure: Average Horizonta Strain (%) 0.02572 Structure: Strain (%) 0.02572 Structure: Strain (%) 0.05491	.7640 5 ≥, comp itical Va 1 Max S 3 Max S 1 1 4 805.9	.0040 ressiv lues fo lope 331E-6 lope s 88E-6	Max Settlement [mm] 2.2734 Max Settlement [mm] 3.1321	Max Tensile Strain Max Tensile Strain (%) 0.045208 Max Tensile Strain (%) 0.025725 Max Tensile Strain	2 0.039324 S are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient Curve -265.67E-6 Max Gradient Curve -265.67E-6	cture Max Gradio of Vertice	ant Min al Radius of the Min ant Curvature (Hogging) and Associated the Min al Radius of the Min al Radius of the Min and Curvature (Hogging) and Min	Min of Radius of ce Curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cat O (Negligib: Damage Cate (Very Slight	(Negligible) tegory tegory	
O.0 Sensile horiz Specific Buildi Structure: No Vertical Movement alculations [m] O.0 Structure: No Vertical Movement Alculations [m] O.0 Structure: No Vertical Movement Calculations [m] O.0 Overtical Movement	Sub- Sub- 	2 4 ins are +vv Results - Cr structure: Average Horizonta. Strain [%] 0.04343: structure: Average Horizonta. Strain [%] 0.02572 structure: Average Horizonta. Strain [%] 0.05491 structure: Average	1 Max S 1 -436. 3 Max S 4 805.9	.0040 ressiv lues fo lope 31E-6 lope S 8E-6	Hogging re horizont or All Segme Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734	0.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725 Max Tensile Strain [%] 0.063514	2 0.039324 S are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient Curve -265.67E-6 Max Gradient Curve -651.75E-6	cture Max Gradic of Vertic Displaceme: Curve Max Gradic of Vertic Curve Max Gradic of Vertic Curve Max Gradic of Vertic Curve 805.98E	ant Min Radius cent Curvatur (Hogging)	Min of Radius of ce Curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cate Damage Cate Damage Cate (Very Slight	(Negligible) tegory tegory	
O.0 Specific Buildi Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Calculations [m] O.0	Sub- Sub- 	2 4 ins are +v- Results - Cr Results - Cr Average Horizonta Strain [%] 0.04343 structure: Average Horizonta Strain [%] 0.02572 structure: Average Horizonta Strain (%) 0.05491 structure: Average Horizonta Strain (%) 0.05491	.7640 5 e, comp itical Va 1 Max S 4 Max S 4 Max S 4 Max S 4 Max S 1 1 1 1 1 1 1 1 1 1 1 1 1	.0040 ressiv lues fo lope lope 76E-6 s 88E-6	Hogging re horizont or All Segme Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734 Max Settlement [mm] 3.1321 Max Settlement	o.007511 al strain Max Tensile Strain (%) 0.045208 Max Tensile Strain (%) 0.025725 Max Tensile Strain (%) 0.063514	2 0.039324 s are -ve. Each Sub-Stru Max Gradient of Horizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve -265.67E-6 Max Gradient of Horizontal Displacement Curve -651.75E-6 Max Gradient of Horizontal Displacement Curve -651.75E-6 Max Gradient of Horizontal Displacement Curve	cture Max Gradic of Vertic Displaceme: Curve Max Gradic of Vertic Curve Max Gradic of Vertic Curve Max Gradic of Vertic Curve 805.98E	ent Min la Radius cent Curvatur (Hogging) E-6 [m] 82676 ant Min la Radius cent Curvatur (Hogging) ant Min la Radius cent Curvatur (Hogging) ant Min la Radius cent Curvatur (Hogging)	Min of Radius of ce Curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cate Damage Cate Damage Cate (Very Slight	Negligible) tegory le) tegory theyory theyory theyory	
O.0 Specific Buildi Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Line for Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Calculations [m] O.0 Structure: No Vertical Structure: No Vertical Offset from Structure: No Vertical Offset from Structure: No Vertical Offset from O.0 Structure: No Vertical Offset from	Sub- Sub- 	2 4 ins are +v- Results - Cr Structure: Average Horizonta Strain [%] 0.04343 structure: Average Horizonta Strain (%) 0.02572 structure: Average Horizonta Strain (%) 0.05491 structure: Average Horizonta Strain (%) 0.05491	1 Max S 1 -436. 3 Max S 4 805.9 4 Max S Max S	.0040 ressiv	Hogging re horizont or All Segme Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734 Max Settlement [mm] 3.1321 Max Settlement	o.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725 Max Tensile Strain [%] 0.063514 Max Tensile Strain [%] 0.063514	2 0.039324 s are -ve. Each Sub-Stru Max Gradient Grizontal Displacement Curve -485.35E-6 Max Gradient of Horizontal Displacement Curve -265.67E-6 Max Gradient of Horizontal Displacement Curve -651.75E-6 Max Gradient of Morizontal Curve -651.75E-6	Cture Max Gradio of Vertice. Displaceme:	ent Min Radius cont Curvatur (Hogging) ent Min Il Radius cont Curvatur (Hogging)	Min of Radius of ce Curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cat Damage Cat Negligib Negligib Damage Cat Very Sligh	Negligible) tegory le) tegory thick is a second to be a second	
O.0 Specific Buildi Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement Line for Vertical Movement Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Calculations [m] O.0	Sub-Deflection Sub-	2 4 ins are +v- Results - Cr Structure: Average Horizonta. Strain [%] 0.04343 structure: Average Horizonta. Strain (%) 0.02572 structure: Average Horizonta. Strain (%) 0.05491 structure: Average Horizonta. Strain (%) 0.05491 structure: Average Horizonta. Strain (%) 0.05491	1 Max S 1 -436. 3 Max S 4 805.9 4 Max S Max S	.0040 ressiv	Hogging Te horizont Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734 Max Settlement [mm] 3.1321 Max Settlement	o.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725 Max Tensile Strain [%] 0.063514 Max Tensile Strain [%] 0.063514	Z 0.039324 S are -ve. Each Sub-Stru Max Gradient Of Horizontal Displacement Curve -485.35E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve 6 0. Max Gradient Of Horizontal Displacement Curve 1 0. Max Gradient Of Horizontal Displacement Curve 1 0. Max Gradient Of Horizontal Displacement Curve	cture Max Gradio of Vertic. Displaceme Curve Max Gradie of Vertic. Displaceme Curve 805.98E th Max Grad of Vertic. Displaceme Curve 805.98E th Max Grad of Vertic. Displaceme Curve 1. 12. 2. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	ent Min sl Radius cont Curvatur (Hogging) and Min la Radius cont Curvatur (Hogging)	Min of Radius of curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cat O (Negligib: Damage Cat (Very Slight Damage Cat O (Negligih	Negligible) tegory le) tegory thick is a second to be a second	
O.0 Service bounds Service b	Sub-Deflection Sub-	2 4 ins are +v- Results - Cr structure: Average Horizonta. Strain [%] 0.04343 structure: Average Horizonta. Strain [%] 0.05572 structure: Average Horizonta. Strain (%) 0.05491 structure: Average Horizonta. Strain (%) 0.05291	.7640 5 2, comp itical Va 1	.0040 ressiv lues fo lope 331E-6 lope S 8E-6 lope 27E-6	Hogging Te horizont Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734 Max Settlement [mm] 3.1321 Max Settlement	o.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725 Max Tensile Strain [%] 0.063514 Max Tensile Strain [%] 0.063514	Z 0.039324 S are -ve. Each Sub-Stru Max Gradient Of Horizontal Displacement Curve -485.35E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve 6 0. Max Gradient Of Horizontal Displacement Curve 1 0. Max Gradient Of Horizontal Displacement Curve 1 0. Max Gradient Of Horizontal Displacement Curve	cture Max Gradiof Vertice Curve Max Gradiof Vertice Curve Max Gradiof Vertice Max Gradiof Vertice Max Gradiof Vertice Curve 805.98E Max Gradiof Vertice 1 Displacement Curve 1 Displacement Curve	ant Min al Radius cant Curvatur (Hogging) E-6 [m] -6 [m] -6 [m] -6 [m] -7E-6 [m] -7E-	Min of Radius of ce Curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cat O (Negligib: Damage Cat (Very Slight Damage Cat O (Negligih	(Negligible) (Negligible) tegory le) tegory ategory ble)	
O.0 Specific Buildi Structure: No Vertical Offset from Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Line for Vertical Movement Line for Vertical Movement Line for Vertical Movement Calculations [m] O.0 Structure: No Vertical Movement Calculations [m] O.0	Sub-Deflection Sub-	2 4 ins are +v- Results - Cr structure: Average Horizonta. \$\begin{array}{c} \begin{array}{c} arr	.7640 5 2, comp itical Va 1	.0040 ressiv lues fo lope 31E-6 lope 76E-6 lope 27E-6	Hogging Te horizont Max Settlement [mm] 1.7542 Max Settlement [mm] 2.2734 Max Settlement [mm] 3.1321 Max Settlement	o.007511 al strain Max Tensile Strain [%] 0.045208 Max Tensile Strain [%] 0.025725 Max Tensile Strain [%] 0.063514 Max Tensile Strain [%] 0.063514	Z 0.039324 S are -ve. Each Sub-Stru Max Gradient Of Horizontal Displacement Curve -485.35E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve -651.75E-6 Max Gradient Of Horizontal Displacement Curve 6 0. Max Gradient Of Horizontal Displacement Curve 1 0. Max Gradient Of Horizontal Displacement Curve 1 0. Max Gradient Of Horizontal Displacement Curve	cture Max Gradie of Vertic. Displacem Curve -631.31: Max Gradie of Vertic. Displaceme Curve 805.98E th Max Gradie of Vertic. Displaceme curve 805.98E th Max Gradie of Vertic. Displaceme curve	ant Min Radius cent Curvatur (Hogging)	Min of Radius of ce Curvature (Sagging) [m] [m] [m] [m] [m] [m] [m] [m	Damage Cate Damage Cate Damage Cate O (Negligib) Damage Cate O (Negligib) Damage Cate O (Negligib)	Negligible) Legory Legory Legory Legory Legory Legory	

FAIRHURST

Canfield Gardens, NW6

Job No.	Sheet No.	Rev.
117401		
Drg. Ref.	•	
Made by TJ	Date 14-Jan-2020	Checked

Line for		Strain			Strain			Displacement					
Vertical Movement						Displa Cur	cement	Curve	(Hogging)	(Sagging)			
[m] 0.0	[%] 0.0092124	[%] 0.033456	-782.48E-6	[mm] 2.5092	[%] 0.036860	-403	.85E-6	-782.48E-6	[m] 3219.0	[m] -	0 (Neglig	ible)	
Structure: No	.26 Sub-s	structure:	2										
Offset from Line for Vertical Movement	Deflection Ratio	Average Horizontal Strain		Max Settlement	Max Tensile Strain	of	ntal I	Max Gradient of Vertical Displacement Curve		Curvature	Damage C	ategory	
[m] 0.0	[%] 0.020170	[%] -0.027589	0.0010415	[mm] 4.1005	[%] 0.025073	0.00	28318	0.0010415	[m] -	[m] 1048.4	0 (Negligi	ble)	
Structure: No	.26 Sub-s	structure:	3										
Vertical Offset from Line for Vertical Movement Calculations	Deflection Ratio	Average Horizontal Strain		Max Settlement	Max Tensile Strain	Horiz	of contal cement	Max Gradient of Vertical Displacement Curve	Radius of Curvature			Category	
[m] 0.0	[%] 0.033925	[%] 0.042473	-0.0017670	[mm] 3.0331	[%] . 0.059721	L -707	.94E-6	-0.0017670	[m] 7511.1	[m] 474.56	1 (Very S	light)	
Specific Buildin	ng Damage F	Results - Cri	tical Segment	ts within Eac	ch Structui	re							
Structure Nam	e Param		Critical sub-Structure		. Start	End	Curvatı	ire Max Slope			Curvature (Hogging)		Damage Category
No.30	Max Slop	20		3 1	[m]	[m] 4.1920	Caggino	= 805.98E−6	[mm]	[%] 1 0.063514	[m]	[m]	(Very Slight)
10.50	Max Sett			5 1		4.8762				8 0.063258	-		(Very Slight)
	Max Tens			3 1		4.1920				1 0.063514	-		(Very Slight)
	Strain												
	Min Radi Curvatur (Hogging	e		1 1	. 0.0	4.6946	Hoggin	g 631.31E-6	1.616	9 0.045208	4383.8	- 0	(Negligible)
	Min Radi Curvatur (Sagging	us of e		3 1	0.0	4.1920	Saggin	g 805.98E-6	3.132	1 0.063514	-	1620.0 1	(Very Slight)
No.26	Max Slop			3 1	0.0	4.7640	Sagging	0.0017670	3.033	1 0.059721	-	474.56 1	(Very Slight)
	Max Sett	lement		2 2	0.58540	6.4135	Sagging	g 467.72E-6	4.100	5 0.011091	-	4080.4 0	(Negligible)
	Max Tens	sile		3 1		4.7640			3.033	1 0.059721	-	474.56 1	(Very Slight)
	Strain Min Radi Curvatur (Hogging	e		1 1	2.9261	9.7530	Hoggin	782.48E-6	2.509	2 0.036860	3219.0	- 0	(Negligible)
	Min Radi Curvatur (Sagging	e		3 1	0.0	4.7640	Sagging	g 0.0017670	3.033	1 0.059721	-	474 .56 1	(Very Slight)

Inverness

Watford

