

Five Guys

156 West End Lane London NW6 1SD

Plant Noise Impact Assessment

On behalf of

Project Reference: 90960 | Revision: 04 | Date: 12th August 2022

Revised: 26th April 2024

T: 01252 519881

W: noisesolutions.co.uk

E: <u>hello@noisesolutions.co.uk</u>

Document Information

Project Name : Five Guys West End Lane

Project Reference : 90960

Report Title : Noise Impact Assessment

Doc Reference : 90960/NIA/Rev3
Date : 12th August 2022

	Name	Qualifications	Initials	Date
Prepared by:	James Taylor		JT	12 th August 2022
Reviewed by:	Nigel Chandler	BSc(Hons), MIOA	NAC	23 rd August 2022
Approved by:	Jon Stump	BSc(Hons), MIOA	JS	24 th August 2022

For and on behalf of Noise Solutions Ltd

Revision	Date	Description	Prepared	Reviewed/ Approved
1	30/1/2024	Include client comments	ACM	NAC
2	7/2/2024	Update roof plan	ACM	NAC
3	22/04/2024	Include client comments	DMB	NAC
4	26/04/2024	Include client comments	DMB	JS

Noise Solutions Ltd (NSL) disclaims any responsibility to the Client and others in respect of any matters outside the scope of this report. This report has been prepared with reasonable skill, care and diligence within the terms of the Contract with the Client and generally in accordance with the appropriate ACE Agreement and taking account of the manpower, resources, investigations and testing devoted to it by agreement with the Client. This report is confidential to the Client and NSL (Noise Solutions Ltd) accepts no responsibility of whatsoever nature to third parties to whom this report or any part thereof is made known. Any such party relies upon the report at their own risk.

© Noise Solutions Ltd (NSL) 2024

Reg no. 3483481 Trading office Unit 5, Oriel Court, Omega Park, Alton, Hampshire, GU34 2YT

Contents

1.0	Introduction	1
2.0	Details of development proposals	1
	Nearest noise sensitive receptors	
4.0	Plant noise emission criteria	2
5.0	Plant noise assessment	2
6.0	Summary	4

Appendices

Appendix A Acoustic terminology
 Appendix B Site and surrounding area
 Appendix C Equipment Manufacturer's Noise Data
 Appendix D Predicted Noise Levels Calculation
 Appendix E Unit Layout

1.0 Introduction

- 1.1. Noise Solutions Ltd (NSL) has been commissioned by Chapman Ventilation to provide a Noise Impact Assessment for new plant serving a Five Guys restaurant located at the new development site at 156 West End Lane. West Hampstead, London, NW6 1SD.
- 1.2. This report forms part of the submission to discharge Condition 39 'A3 Odour Mitigation' of planning permission dated 21st February 2024 (ref: 2023/1716/P).
- 1.3. Condition 39 states: "Prior to commencement of any A3 use on site, details of odour mitigation and ventilation systems including an accompanying acoustic report with details of any necessary acoustic isolation and sound attenuation measures shall be submitted to and approved in writing by the Local Planning Authority. All odour and acoustic mitigation measures shall be implemented in accordance with the details thus approved and shall thereafter be retained and maintained in accordance with the manufacturers' recommendations".
- 1.4. The cumulative plant noise level has been predicted at the nearest noise-sensitive receptors and assessed against the requirements of The London Borough of Camden.
- 1.5. A glossary of acoustic terminology is given in Appendix A. An in-depth glossary of acoustic terms can be viewed online at www.acoustic-glossary.co.uk.

2.0 Details of development proposals

- 2.1. The commercial (A3) unit is located within the ground floor of the west building, facing West End Lane.
- 2.2. The proposed ventilation system comprises a supply Air Handling Unit (AHU1) and three smaller ancillary duct fans (EF2, EF3 and EF4), which are located within the commercial unit, terminating within the loading bay to the rear of the unit. Three air conditioning units (CU1, CU2, CU3) and a condenser unit (CC1) will be located at high level within the loading bay; and one kitchen extract fan (EF1) will be located on the roof of the west building.
- 2.3. An odour mitigation system is located within the unit and comprises two ESP units (ESP1 and ESP2), two UV-C units (UV1 and UV2) and four MFU units (MFU1, MFU2, MFU3, MFU4). It is understood that minimal noise will be generated by the odour mitigation system and, therefore, no assessment of noise emissions is required.
- 2.4. Manufacturer noise data for the proposed ventilation systems are detailed within **Appendix E** of this report. Full details of the ventilation systems and odour mitigation systems are detailed in

the accompanying Equipment Schedule and the Odour Mitigation Report prepared by Purified Air.

2.5. The catering condenser will run at all times. All other plant will run between 07.00 hours and 01:00 hours.

3.0 Nearest noise sensitive receptors

- 3.1. The area surrounding the site is mixed residential and commercial in nature. The nearest noise sensitive receptor has been identified as a residence to the north on Lymington Road (Receptor R1) approximately 27m from the plant.
- 3.2. **Appendix B** contains an aerial photograph showing the site and surrounding area, including the locations of the receptor identified above.

4.0 Plant noise emission criteria

4.1. Planning permission dated 21st February 2024 (ref: 2023/1716/P) included the discharge of Condition 38 'Plant Noise Assessment'. A Noise Impact Assessment produced by Ian Sharland Limited¹ was submitted in support of the discharge of the condition and Table 5.1 of the report details the plant noise egress limits for all mechanical plant. The proposed limits at 1m from the Lymington Road residential windows are:

Table 1 Proposed plant noise emissions level limits at noise sensitive residential receptor (Lymington Road).

Period	Cumulative plant noise level at Lymington Road residence, dB(A)
Daytime (07.00 – 23.00 hours)	37
Night-time (23.00 – 07.00 hours)	29

4.2. It is understood that these plant noise limits have been set in order that the London Borough of Camden's requirements are achieved, with plant noise levels being at least 5dB below the existing background sound level at the nearest noise-sensitive receptor.

5.0 Plant noise assessment

5.1. The cumulative plant noise level at the closest noise sensitive receptor has been predicted. The assessment has taken into consideration distance attenuation and directivity corrections as well

¹ Report M4758 23rd December 2021 for Astir Living Ltd

as screening due to the building envelope at receptor R1. Predictions are inclusive of the losses due to the following (plant locations in **Appendix E**):

Table 2 Attenuation (dBA) for inclusive mitigation.

Mitigation	Attenuation (dBA)
Acoustic enclosure or screen around CU1, CU2 and CU3	-10
Acoustic enclosure or screen around CC1	-10

5.2. Predictions are also inclusive of the losses due to atmospheric-side attenuators with the following acoustic performance:

Table 3 Insertion losses(dB) for attenuators at octave band centre frequencies (Hz)

Attenuator		0	ctave ba	nd cent	re frequ	ency (H	z)	
Attenuator	63	125	250	500	1 k	2k	4k	8k
Supply (AHU1) - atmospheric	7	15	31	45	45	45	45	41
Kitchen Extract (EF1) - atmospheric	10	20	36	40	40	36	31	26
General Extract (EF2) – atmospheric	2	4	6	16	26	19	17	13
WC Extract (EF3) - atmospheric	2	2	4	15	26	19	19	13
Refuse Extract (EF4) - atmospheric	2	2	4	18	30	27	22	14

- 5.3. It should be noted that the proposed plant, with the exception of the catering condensing unit, will operate between 07.00 and 01.00 hours only and is not anticipated to exhibit any tonal or impulsive characteristics provided it is well maintained. All proposed external plant will be inverter driven and, therefore, will gently ramp up and down depending on the demands on the various systems.
- 5.4. Table 4, below, summarises the results of the assessment at the nearest receptor. All other receptors benefit from increased distance/screening to the plant. The full set of calculations can be found in **Appendix D**. The predictions have been based on the proposed plant operating simultaneously at full capacity between 07.00 and 01.00 hours and the catering condensing unit operating at all times throughout day and night.

Table 4 Assessment of predicted noise levels at nearest receptors

Receptor	Period	Predicted rating level at receptor, LAeq (dB)	Proposed design criterion (dB)	Difference (dB)
R1	Daytime hours (07.00 – 23.00 hours)	29	37	-8
KI	Night-time (23.00 – 01.00 hours)	29*	29	0
	Night-time (01.00 – 07.00 hours)	15	29	-14

^{*}The rating level above is representative of all plant items operating at night between 23.00 – 01.00 hours. It must be noted that only refrigeration will operate between 01.00 and 07.00 hours.

5.5. The above assessment demonstrates that noise from the proposed plant will result in noise levels at or below the proposed limits and should therefore be acceptable to the London Borough of Camden.

6.0 **Summary**

- 6.1. Noise Solutions Ltd (NSL) has been commissioned by Chapman Ventilation to provide a Noise Impact Assessment for new plant serving a Five Guys restaurant located at the new development site at 156 West End Lane West Hampstead, London, NW6 1SD.
- 6.2. The cumulative plant noise level has been predicted at the nearest noise-sensitive receptors and assessed against the plant noise limits set out in the 2021 Ian Sharland report. When attenuated as described in this report, plant noise levels will comply with the approved limits and should therefore be acceptable to the London Borough of Camden.
- 6.3. The following mitigation measures are required;
 - Acoustic enclosure or screen around CU1, CU2 and CU3 providing an overall loss of 10dBA to the nearest noise sensitive receptors.
 - Acoustic enclosure or screen around CC1 providing an overall loss of 10dBA to the nearest noise sensitive receptors.
 - Atmospheric-side attenuators as per the specification provided in Table 3.

Appendix A Acoustic terminology

Parameter	Description
Ambient Noise Level	The totally encompassing sound in a given situation at a given time, usually composed of a sound from many sources both distant and near ($L_{Aeq,T}$).
Decibel (dB)	A scale for comparing the ratios of two quantities, including sound pressure and sound power. The difference in level between two sounds s1 and s2 is given by 20 \log_{10} (s1/s2). The decibel can also be used to measure absolute quantities by specifying a reference value that fixes one point on the scale. For sound pressure, the reference value is $20\mu Pa$. The threshold of normal hearing is in the region of 0 dB and 140 dB is the threshold of pain. A change of 1 dB is only perceptible under controlled conditions.
dB(A), L _{Ax}	Decibels measured on a sound level meter incorporating a frequency weighting (A weighting) which differentiates between sounds of different frequency (pitch) in a similar way to the human ear. Measurements in dB(A) broadly agree with people's assessment of loudness. A change of 3 dB(A) is the minimum perceptible under normal conditions, and a change of 10 dB(A) corresponds roughly to halving or doubling the loudness of a sound. The background noise in a living room may be about 30 dB(A); normal conversation about 60 dB(A) at 1 metre; heavy road traffic about 80 dB(A) at 10 metres; the level near a pneumatic drill about 100 dB(A).
Fast Time Weighting	Setting on sound level meter, denoted by a subscript F, that determines the speed at which the instrument responds to changes in the amplitude of any measured signal. The fast time weighting can lead to higher values than the slow time weighting when rapidly changing signals are measured. The average time constant for the fast response setting is 0.125 (1/8) seconds.
Free-field	Sound pressure level measured outside, far away from reflecting surfaces (except the ground), usually taken to mean at least 3.5 metres
Façade	Sound pressure level measured at a distance of 1 metre in front of a large sound reflecting object such as a building façade.
L _{Aeq,T}	A noise level index called the equivalent continuous noise level over the time period T. This is the level of a notional steady sound that would contain the same amount of sound energy as the actual, possibly fluctuating, sound that was recorded.
L _{max,T}	A noise level index defined as the maximum noise level recorded during a noise event with a period T. L_{max} is sometimes used for the assessment of occasional loud noises, which may have little effect on the overall L_{eq} noise level but will still affect the noise environment. Unless described otherwise, it is measured using the 'fast' sound level meter response.
L _{10,T}	A noise level index. The noise level exceeded for 10% of the time over the period T. L ₁₀ can be considered to be the "average maximum" noise level. Generally used to describe road traffic noise. L _{A10,18h} is the A –weighted arithmetic average of the 18 hourly L _{A10,1h} values from 06:00-24:00.
L _{90,T}	A noise level index. The noise level that is exceeded for 90% of the measurement time interval, T. It gives an indication of the lower levels of fluctuating noise. It is often used to describe the background noise level and can be considered to be the "average minimum" noise level and is a term used to describe the level to which non-specific noise falls during quiet spells, when there is lull in passing traffic for example.

Appendix B Site and surrounding area

Appendix C Equipment Manufacturer's Noise Data

Reference	Make / Model	No.	Notes		Sou	nd level	s, dB, at	octave	band fr	equenc	ies (Hz)	
Reference	Make / Model	units	Notes	63	125	250	500	1K	2K	4K	8K	L _{Aeq} (dB)
AHU1	Systemair/MUB 100 630EC	1	Inlet L _w	84	87	83	83	80	77	74	67	85
AHOI	Multibox-20	_	Casing L _w	63	69	55	50	49	47	40	31	
EF1 FläktWoods/CVEQ - 036	FläktWoods/CVFO - 036	1	Discharge L _w	80	96	91	87	84	80	77	74	90
LII	Traktivious/CVLQ - 050	_	Casing L _w	63	79	65	49	45	50	45	35	
EF2 Systemair/Prio 250 E	Systemair/Prio 250 EC	1	Discharge L _w	66	71	63	68	70	68	58	47	74
EFZ	Systemati/Fito 230 EC	1	Casing L _w	36	42	43	52	55	50	35	22	
EF3	Systemair/Prio 200 EC	1	Discharge L _w	70	71	60	71	70	68	61	59	74
LIS	Systemati/Fitto 200 LC	T	Casing L _w	42	40	39	54	59	56	45	35	
EF4	Systemair/K 100 XL	1	Discharge L _w	83	81	71	67	67	58	49	40	71
EF4	Systemati/K 100 AL	1	Casing L _w	57	31	37	50	45	42	37	26	
CU1/CU2	Toshiba/RAV-GM1401 ATP-E	2	L _p at 1m									57 at 1 m
CU3	Toshiba/RAV-GM1101 ATP-E	1	L _p at 1m									57 at 1 m
CC1	Typical	1	L _p at 10m									35 at 10 m

Appendix D Predicted Noise Levels Calculation

AHU1 – Systemair/MUB 100 630EC Multibox

Description				Notes.		Soul	nd level (dB) at octave l	oand centre	frequencies ((Hz)		dBA
Description				notes.	63	125	250	500	1k	2k	4k	8k	UDA
Source noise level (unattenuated)				In-duct $L_{\rm w}$	84	87	83	83	80	77	74	67	85
System losses					-5	-3	-2	-3	-3	-3	-3	-3	
Atmospheric side attenuator				I.L.	-7	-15	-31	-45	-45	-45	-45	-41	
Sound power level leaving terminal					72	69	50	35	32	29	26	23	54
Receptor R1	V angle	H angle											
Directivity correction	Varigie	90	2000 :	x 1000 (0,90)	1	1	1	-4	-7	-7	-7	-7	
Distance correction	33	m		33 m	-38	-38	-38	-38	-38	-38	-38	-38	
Screening correction	Screened:		δ=	-33	0	0	0	0	0	0	0	0	
Surface corrections etc													
Resultant at Receptor R1			_	L _p	35	32	13	-7	-13	-16	-19	-22	17

EF1 - FläktWoods/CVEQ - 036

Description				Notes.		Soul	nd level (dB) at octave b	oand centre	frequencies	(Hz)		dBA
Description				notes.	63	125	250	500	1k	2k	4k	8k	
Source noise level (unattenuated)				In-duct L _w	80	96	91	87	84	80	77	74	90
System losses					-9	-4	-1	0	0	0	0	0	
Atmospheric side attenuator				I.L.	-10	-20	-36	-40	-40	-36	-31	-26	
Sound power level leaving terminal					61	72	54	47	44	44	46	48	58
Receptor R1 Directivity correction	V angle 90	H angle	600	× 600 (90,0)	0	0	0	0	-4	-7	-7	-7	
Distance correction	40	m		40 m	-40	-40	-40	-40	-40	-40	-40	-40	
Screening correction	Screened:		δ=	-40	0	0	0	0	0	0	0	0	
Surface corrections etc													
Resultant at Receptor R1				L _p	21	32	14	7	0	-3	-1	1	17

EF2 - Systemair/Prio 250EC

Description				Notes.		Soul	nd level (dB) at octave l	oand centre	frequencies	(Hz)		dBA
Description				notes.	63	125	250	500	1k	2k	4k	8k	UDA
Source noise level (unattenuated)				In-duct $L_{\rm w}$	66	71	63	68	70	68	58	47	74
System losses					-14	-10	-6	-3	-3	-6	-9	-9	
Atmospheric side attenuator				I.L.	-2	-4	-6	-16	-26	-19	-17	-13	
Sound power level leaving terminal					50	57	51	49	41	43	32	25	50
Receptor R1	V angle	H angle											
Directivity correction	0	0	25	0 x 250 (0,0)	1	2	3	4	5	6	6	6	
Distance correction	25	m		25 m	-36	-36	-36	-36	-36	-36	-36	-36	
Screening correction	Screened:		δ=	-25	0	0	0	0	0	0	0	0	
Surface corrections etc													
Resultant at Receptor R1				L _p	15	23	18	17	10	13	2	-5	19

EF3 - Systemair/Prio 200EC

Description			Notes.	Sound level (dB) at octave band centre frequencies (Hz)									
Description			Notes.		63	125	250	500	1k	2k	4k	8k	dBA
Source noise level (unattenuated)	1			In-duct L _w	70	71	60	71	70	68	61	59	74
System losses					-15	-11	-6	-4	-3	-6	-9	-9	
Atmospheric side attenuator				I.L.	-2	-2	-4	-15	-26	-19	-19	-13	
Sound power level leaving terminal					53	58	50	52	41	43	33	37	52
Receptor R1	V angle	H angle								· ·			
Directivity correction			20	00 x 200 (0,0)	1	2	3	4	5	6	6	6	igspace
Distance correction	25	m		25 m	-36	-36	-36	-36	-36	-36	-36	-36	
Screening correction	Screened:		δ=	-25	0	0	0	0	0	0	0	0	
Surface corrections etc													
Resultant at Receptor R1				L_p	18	24	17	20	10	13	3	7	20

EF4 - Systemair/K 100 XL

Description			Notes.	Sound level (dB) at octave band centre frequencies (Hz)								
Description			Notes.	63	125	250	500	1k	2k	4k	8k	dBA
Source noise level (unattenuated)			In-duct L _w	83	81	71	67	67	58	49	40	71
System losses				-20	-15	-12	-7	-7	-8	-11	-11	
Atmospheric side attenuator			I.L.	-2	-2	-4	-18	-30	-27	-22	-14	
Sound power level leaving terminal				61	64	55	42	30	23	16	15	51
December D1	Vanala	II angla										
Receptor R1	V angle	H angle	100 100 (0.0)		2	2		-		6	-	
Directivity correction			100 x 100 (0,0)	1	2	3	4	5	6	6	6	
Distance correction	25	m	25 m	-36	-36	-36	-36	-36	-36	-36	-36	
Screening correction	Screened:	δ	-25	0	0	0	0	0	0	0	0	
Surface corrections etc												
Resultant at Receptor R1			L_p	26	30	22	10	-1	-7	-14	-15	17

90960 Noise Impact Assessment Five Guys West End Lane

Condensers R1

Unit	Make / Model	LpA	at / m	m	dB	Directivity	Screening	Attenuation	Result
CU 1	Toshiba/RAV-GM1401	57	1	28	-29	0	0	-10	18
CU 2	Toshiba/RAV-GM1401	57	1	29	-29	0	0	-10	18
CU 3	Toshiba/RAV-GM1101	57	1	30	-30	0	0	-10	17
CC 1	Catering Condenser	35	10	31	-10	0	0	-10	15

90960 Noise Impact Assessment Five Guys West End Lane

EF1 Casing

	Sound level (dB) at octave band centre frequencies (Hz)												
					63	125	250	500	1k	2k	4k	8k	
Source noise level (unattenuated)	Sound Pow	ver Level			63	79	65	49	45	50	45	35	64
Casing Lagging / Enclosure				I.L.	0	0	0	0	0	0	0	0	
Attenuated source noise level					63	79	65	49	45	50	45	35	64
Receptor R1													
Distance correction	40	m		40 m	-40	-40	-40	-40	-40	-40	-40	-40	
Screening correction	Screened:		δ=	-40	0	0	0	0	0	0	0	0	
Acoustic Panels													
Resultant at Receptor R1				L_p	23	39	25	9	5	10	5	-5	24

Cumulative plant noise levels at Receptor

	Receptor R1 dB(A)
AHU1 Inlet	17
EF1 Exhaust	17
EF1 Casing	24
EF2 Exhaust	19
EF3 Exhaust	20
EF4 Exhaust	17
CU 1	18
CU 2	18
CU 3	17
CC 1	15
Combined plant L _p (Day) All plant running	29
Combined plant L _p (23.00-01.00) All plant running	29
Combined plant L _p (01.00-07.00) CCU 1 Only running	15

Appendix E Unit Layout

Five Guys West End Lane

