# Structural Report

Apartment 3.10 St Pancras Chambers, Euston Road, London, NW1 2AR

Document: 2304-R01 Date: 06 December 2023 Revision: 00

# Client:

Nathan Roberts

## **Project Address:**

Apartment 3.10 St Pancras Chambers Euston Road London NW1 2AR

### **Revisions:**

| Revision | Date     | Description |
|----------|----------|-------------|
| 00       | 06/12/23 | First issue |
|          |          |             |
|          |          |             |

Prepared by:

Lloyd Evans MEng CPEng MIE(Aust)

#### Notes:

This document has been prepared by Spark Structures and is for the sole use of Spark Structures' client. Spark Structures do not accept any liability for the use of this document other than that by its client and only for the purposes intended. No professional liability or warranty is extended to other parties by Spark Structures unless prior written consent is given.

### 1.0 Introduction

Spark Structures was appointed by the Client to carry out a structural inspection and evaluation of the existing structure at apartment 3.10 St Pancras Chambers in relation to the proposed alterations to the existing bathroom partition wall and ceiling. The proposed works are shown on the architectural drawings by Pick Our Brains.

An inspection of the property was carried out on 23 November 2023 by Lloyd Evans (Spark Structures).

The purpose of this report is to assess the existing structural arrangement of the apartment and offer recommendations to accommodate the proposed alterations.

This report is based upon a non-intrusive visual inspection of the property. This report describes the findings and draws conclusions of a general nature and is not a detailed structural appraisal of the building. Whilst comments are made to satisfy the requirements of the brief, the report has, of necessity, not been exhaustive and cannot therefore constitute a warranty as to the soundness or otherwise of the property in areas hidden from visual inspection or not part of the brief.

This report has been prepared for the sole use of the Client.

#### 2.0 Overview

The apartment is located within the former Midland Grand Hotel building, with the conversion completed in 2009. The Grade I listed building falls within the Kings Cross St Pancras conservation area.

The third floor apartment comprises three former hotel rooms. The main dividing walls between the former hotel rooms running north west to south east in the apartment appear to be solid masonry, and studwork partitions have been installed within two of the three main spaces to form a separate hallway and bathroom.

All of the rooms have approximately 3.98m floor to ceiling height apart from the bathroom which has a false ceiling installed to form a storage and service void above. This storage and service void above the ceiling can be accessed via a ceiling hatch in front of the bathroom door.

The proposed works are indicated on the architectural drawings by Pick Our Brains and can be summarised as follows:

• Removal of the existing upper portion of the partition wall between the bedroom and bathroom, and installation of a new paddle stair to improve access to a loft storage void located above the bathroom false ceiling.

This report should be read in conjunction with all architectural drawings and reports produced by Pick Our Brains.

### 3.0 Observations and Discussion

Following the inspection the following items were noted regarding the existing structure and the proposed alterations:

- 1. Both the existing main building structure and the infill partitions and ceilings appear to be in good condition with no noticeable signs of structural distress or deterioration.
- 2. All of the proposed alterations are to non-structural partitions and false ceilings, and will have no impact on the structural stability and integrity of the main building. Refer to figure 1 and 4 below.
- 3. The proposed alterations would improve access to the space above the bathroom however due to the limited clearance to the main building ceiling above, the classification of the space as a ceiling void would remain the same, as would the 0.25kN/m2 design imposed loading for such a space as stipulated by BS6399 and EN1991. Therefore the overall design imposed load on the main building would remain unchanged.
- 4. It is proposed to install a new paddle stair to improve access to the ceiling void. Due to its lightweight nature and the spatial constraints imposed on the main floor space below the paddle stair could be considered akin to a moveable item of furniture. As such, the loading of the stair would account for a minor portion of the residential design imposed floor load allowance of the apartment and would not contribute to an increase in the overall design loading on the existing floor structure.
- 5. Removal of the hot water cylinder, and replacing of the existing partition wall above the false ceiling level with an open balustrade structure would contribute to a net reduction in design dead load on the existing floor structure. Refer to figure 1 and figure 3 below. A detailed breakdown of the loading calculations is provided in appendix B.
- 6. The false ceiling is exposed on top and as such this detailing is not suitable for access as it is unsafe to directly stand on. Replacement of the lightweight steel joists and installation of new boarding would cause a nominal increase in the ceiling dead load, but is still part of a net reduction in loading when considered as part of the whole works. Refer to the detailed breakdown of the loading calculations in appendix B.
- 7. The partition wall appears to be constructed from lightweight steel studs that are continuous from floor to ceiling. Removal of the top part of the partition would require some minor strengthening/modifications to retain its stability for the altered layout.
- 8. It is unclear whether the existing partition wall studs would be suitable for fixing and supporting the proposed timber paddle stair and balustrade. Although designed for the ceiling design imposed load noted in point 3, the robustness of the existing connection between the ceiling and partition wall studs is unknown. Replacing the partition with a lightweight timber framed partition would be preferable to allow a more robust fixing between the ceiling and partition and to accommodate the install of the paddle stair and balustrade.
- 9. Although the proposed works are not likely to exceed the current design loading condition of the main building structure, it should be noted that the building was previously operational as a hotel which has a much higher allowance for design imposed floor load compared with the typical domestic/residential use category. As a result it is likely that the main building structure could accommodate notable increases in design loading if required.

### 4.0 Conclusion and Recommendations

- 1. No modifications or strengthening works are required to the main building structure.
- The lightweight steel ceiling and partition wall should be replaced with a lightweight timber stud partition and ceiling to allow top boards to be added, improved access, and fixing of the paddle stair/balustrade.

Please refer to the drawings in Appendix B for details of the proposed structural specification and details.



Fig. 1: Photograph of the existing ceiling void viewed from the access hatch facing west with the exposed top surface of the ceiling visible, the top part of the partition wall on the right and the main building masonry party wall on the left.



Fig. 2: Photograph of the existing ceiling void viewed from the access hatch facing south with the services visible, the main building masonry corridor wall on the left and the main building masonry party wall on the right.



Fig. 3: Photograph of the existing hot water cylinder and support bracket within the ceiling void supported on the main building masonry corridor wall.



Fig. 4: Photographs of the existing partition wall viewed from the bedroom looking towards the bathroom/hallway. The proposed works include the removal of the upper portion of the partition.

# Appendix A - Loading Calculations

The total relevant loads have been distributed over the plan area of the ceiling void to allow the existing and proposed load conditions on the main building structure to be assessed.

Ceiling void plan area =  $6.8m^2$ 

#### Existing load Element $[kN/m^2]$ Notes 0.20 Ceiling: Lightweight I joists with no top boarding Includes 109kg hot water cylinder and framing Services: 0.20 Partition: Upper portion of lightweight partition 0.25 Imposed: 0.25 Eurocode standard for ceiling voids TOTAL: 0.90

## Proposed load

| Element     | [kN/m²] | Notes                                           |
|-------------|---------|-------------------------------------------------|
| Ceiling:    | 0.40    | Increased to allow for top boarding/finishes    |
| Services:   | 0.05    | Reduced following removal of hot water cylinder |
| Balustrade: | 0.15    | Replacing upper portion of partition            |
| Imposed:    | 0.25    | Eurocode standard for ceiling voids             |
| TOTAL:      | 0.85    |                                                 |

Appendix B - Structural Drawings





PROPOSED PLAN SCALE 1:50

| SDADK                                     | Project:                                                         | Stage:       | PRELIMIN       |
|-------------------------------------------|------------------------------------------------------------------|--------------|----------------|
|                                           | Apartment 3.10 St Pancras Chambers, Euston Road, London, NWI ZAR | Scale: NOTED | @ A3 Date:     |
| 21 COURT ROAD SOUTH, CAERPHILLY, CF83 2QW |                                                                  | Drawn:<br>LE | Checked:<br>LE |
| LLOYD@SPARKSTRUCTURES.COM<br>07367 079607 | PROPOSED PLANS                                                   | Drawing No:  | 2304-S-20      |



Appendix C - Structural Calculations

| SPARK STRUCTURES.   | Project<br>Apartment 3.10 | ) St Pancras Ch | Job no.<br>2304 |                         |             |               |
|---------------------|---------------------------|-----------------|-----------------|-------------------------|-------------|---------------|
| 21 Court Road South | Calcs for                 |                 |                 | Start page no./Revision |             |               |
| Caerphilly          | Partition Wall Studs      |                 |                 | 1                       |             |               |
|                     | Calcs by                  | Calcs date      | Checked by      | Checked date            | Approved by | Approved date |
|                     | LE                        | 06/12/2023      | LE              | 06/12/2023              | LE          | 06/12/2023    |

### TIMBER STUD ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex Tedds calculation version 1.0.07

Stud details

Description Restraint in plane of panel Stud spacing Stud height Panel height 47 x 75 C16 timber studs Dwangs (x 1) sstud = **400** mm Istud = **2200** mm IPanel = Istud + 2 × b =**2294** mm



#### Forces input on Stud

Permanent distributed load on top rail Imposed distributed load on top rail

#### Stud loading details

#### **Point loads**

Total vertical permanent point load (2200 mm) Total vertical imposed point load (2200 mm) Lg\_Stud= **0.60** kN/m Lq\_Stud= **3.60** kN/m

$$\begin{split} P_{G\_1} = L_{G\_Stud} \times \texttt{SStud} = \textbf{0.24 kN} \\ P_{Q\_1} = L_{Q\_Stud} \times \texttt{SStud} = \textbf{1.44 kN} \end{split}$$

| Member results summary | Unit              | Capacity | Maximum | Utilisation | Result |
|------------------------|-------------------|----------|---------|-------------|--------|
| Compressive stress     | N/mm <sup>2</sup> | 12.9     | 0.7     | 0.055       | PASS   |
| Column stability check |                   |          |         | 0.169       | PASS   |

### ANALYSIS

#### Loading

Self weight included (Permanent x 1)

Tedds calculation version 1.0.37

| Project              | Job no.                                                  |                                                                                                     |                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                |  |
|----------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Apartment 3.10       | St Pancras Ch                                            | 2304                                                                                                |                                                                                                                            |                                                                                                                                                     |                                                                                                                                                                                                                |  |
| Calcs for            |                                                          |                                                                                                     |                                                                                                                            |                                                                                                                                                     | Start page no./Revision                                                                                                                                                                                        |  |
| Partition Wall Studs |                                                          |                                                                                                     | 2                                                                                                                          |                                                                                                                                                     |                                                                                                                                                                                                                |  |
| Calcs by             | Calcs date                                               | Checked by                                                                                          | Checked date                                                                                                               | Approved by                                                                                                                                         | Approved date                                                                                                                                                                                                  |  |
| LE                   | 06/12/2023                                               | LE                                                                                                  | 06/12/2023                                                                                                                 | LE                                                                                                                                                  | 06/12/2023                                                                                                                                                                                                     |  |
|                      | Project<br>Apartment 3.10<br>Calcs for<br>Calcs by<br>LE | Project<br>Apartment 3.10 St Pancras Ch<br>Calcs for<br>Partition V<br>Calcs by<br>LE<br>06/12/2023 | Project<br>Apartment 3.10 St Pancras Chambers, Euston<br>Calcs for<br>Partition Wall Studs<br>Calcs by<br>LE 06/12/2023 LE | Project<br>Apartment 3.10 St Pancras Chambers, Euston Road, London,<br>Calcs for<br>Partition Wall Studs<br>Calcs by<br>LE 06/12/2023 LE 06/12/2023 | Project     Job no.       Apartment 3.10 St Pancras Chambers, Euston Road, London,     23       Calcs for     Partition Wall Studs       Calcs by     Calcs date     Checked by       LE     06/12/2023     LE |  |

## Load combination factors

| Load combination         | Permanent | Imposed | mous | Wind |
|--------------------------|-----------|---------|------|------|
| 1.35G + 1.50Q (Strength) | 1.35      | 1.50    | 0.00 | 0.00 |
| 1.00G + 1.00Q (Service)  | 1.00      | 1.00    | 0.00 | 0.00 |

### Member Loads

| Member | Load case | Load Type  | Orientation | Description      |
|--------|-----------|------------|-------------|------------------|
| Member | Permanent | Point load | GlobalZ     | 0.24 kN at 2.2 m |
| Member | Imposed   | Point load | GlobalZ     | 1.44 kN at 2.2 m |

# Results

**Total deflection** 

# 1.35G + 1.50Q (Strength) - Total deflection

€

| 21               | K STRUCTUI<br>Court Road Sout<br>Caerphilly | RES.<br>h - | Calcs for     | Partition                | Wall Studs       | on Road, London,           | Z<br>Start page no./F | Revision                    |
|------------------|---------------------------------------------|-------------|---------------|--------------------------|------------------|----------------------------|-----------------------|-----------------------------|
|                  | Caerphilly                                  | -           | Calcs for     | Partition                | Wall Studs       |                            | Start page no./F      | Revision<br>3               |
|                  |                                             | -           | Calcs by      | r                        |                  |                            |                       | -                           |
|                  |                                             |             | LE            | Calcs date<br>06/12/2023 | Checked by<br>LE | Checked date<br>06/12/2023 | Approved by<br>LE     | Approved date<br>06/12/2023 |
|                  |                                             |             | 1.00G +       | 1.00Q (Service           | ) - Total defle  | ction                      |                       |                             |
| Node c<br>Load c | leflections<br>ombination:                  | 1.35G + 1.5 | 0Q (Strength) | 1<br>Y                   |                  |                            |                       |                             |
| Node             | Defle                                       | ction       | Rotation      | Co-ordinate<br>system    |                  |                            |                       |                             |
|                  | X<br>(mm)                                   | Z<br>(mm)   | (0)           |                          |                  |                            |                       |                             |
| 1                | (mm)                                        | (mm)        | (*)           |                          |                  |                            |                       |                             |
| 2                | 0                                           | 02          | 0             |                          |                  |                            |                       |                             |
|                  | U                                           | 0.2         |               |                          |                  |                            |                       |                             |
| Node             | Defle<br>X                                  | ction       | Rotation      | Co-ordinate<br>system    |                  |                            |                       |                             |
|                  | (mm)                                        | (mm)        | (°)           |                          |                  |                            |                       |                             |
| 1                | 0                                           | 0           | 0             |                          |                  |                            |                       |                             |
| 2                | 0                                           | 0.1         | 0             |                          |                  |                            |                       |                             |
| Total b          | ase reaction                                | s           |               |                          |                  |                            |                       |                             |
| Load             | case/combin                                 | ation       | Force         | e<br>E7                  |                  |                            |                       |                             |
|                  |                                             |             | (kN)          | (kN)                     |                  |                            |                       |                             |
|                  |                                             |             | 0             | 2.5                      |                  |                            |                       |                             |
| 1.35G            | + 1.50Q (Stre                               | enatni      |               |                          |                  |                            |                       |                             |
|                  |                                             |             | (kN)          | (kN)<br>2.5              |                  |                            |                       |                             |

| SPARK STRUCTURES.                 | Project<br>Apartment 3.10 | Job no.<br>2304              |                  |                            |                   |                             |
|-----------------------------------|---------------------------|------------------------------|------------------|----------------------------|-------------------|-----------------------------|
| 21 Court Road South<br>Caerphilly | Calcs for                 | Start page no./Revision<br>4 |                  |                            |                   |                             |
|                                   | Calcs by<br>LE            | Calcs date<br>06/12/2023     | Checked by<br>LE | Checked date<br>06/12/2023 | Approved by<br>LE | Approved date<br>06/12/2023 |

### **Element end forces**

## Load combination: 1.35G + 1.50Q (Strength)

| Element | Length<br>(m) | Nodes<br>Start/End | Axial force<br>(kN) | Shear force<br>(kN) | Moment<br>(kNm) |
|---------|---------------|--------------------|---------------------|---------------------|-----------------|
| 1       | 2.2           | 1                  | -2.5                | 0                   | 0               |
|         |               | 2                  | 0                   | 0                   | 0               |

## Load combination: 1.00G + 1.00Q (Service)

| Element | Length<br>(m) | Nodes<br>Start/End | Axial force<br>(kN) | Shear force<br>(kN) | Moment<br>(kNm) |
|---------|---------------|--------------------|---------------------|---------------------|-----------------|
| 1       | 2.2           | 1                  | -1.7                | 0                   | 0               |
|         |               | 2                  | 0                   | 0                   | 0               |

Forces

## Strength combinations - Moment envelope (kNm)

#### Member results

### **Envelope - Strength combinations**

| Member | Position | Shear | force | Mon | nent |
|--------|----------|-------|-------|-----|------|
|        | (m)      | (k    | N)    | (kN | lm)  |
| Member | 0        | 0     |       | 0   |      |

# Member - Span 1

## Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3 γм = **1.300** 

# Member details

Load duration - cl.2.3.1.2

Short-term

Tedds calculation version 2.2.20

|                                                                        | Project           |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>D</b>                                                                                                                                                                                                                                                                                                                          | Job no.            | 2004           |
|------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
| SPARK STRUCTURES.                                                      | Apartment 3.1     | 0 St Pancras Cr                                                                                                                                                                                                                                                                                                    | ambers, Eusto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Road, London,                                                                                                                                                                                                                                                                                                                   | 2                  | 2304           |
| 21 Court Road South<br>Caerphilly                                      | Calcs for         | Partition                                                                                                                                                                                                                                                                                                          | Mall Stude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                   | Start page no./I   | Revision<br>5  |
|                                                                        | O al a a hui      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   | A                  |                |
|                                                                        | LE                | 06/12/2023                                                                                                                                                                                                                                                                                                         | LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 06/12/2023                                                                                                                                                                                                                                                                                                                        | LE                 | 06/12/2023     |
| Service class - cl 2 3 1 3                                             | •                 | 1                                                                                                                                                                                                                                                                                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                                                                                                                                                                                                                                                                                                 | •                  | -              |
| Timber section details                                                 |                   | I                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Number of timber sections in m                                         | ember             | N – <b>1</b>                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Breadth of sections                                                    |                   | h = <b>47</b> mm                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Depth of sections                                                      |                   | h = <b>75</b> mm                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Timber strength class - EN 338:                                        | 2016 Table 1      | C16                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| 47                                                                     |                   |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
|                                                                        |                   | Cross-section<br>Section modu<br>Section modu<br>Second mome<br>Radius of gyra<br>Radius of gyra<br>Timber stren<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Characteristic<br>Mean modulu<br>Fifth percentili<br>Shear modulu<br>Characteristic<br>Mean density. | al area, A, 3525 mm <sup>2</sup><br>lus, W, 44062.5 mm <sup>3</sup><br>us, W, 27613 mm <sup>3</sup><br>ent of area, I, 1652344<br>ent of area, I, 648894 n<br>titon, I, 21.7 mm<br>titon, I, 13.6 mm<br>gth class C16<br>bending strength, f <sub>mb</sub> , 3.2<br>compression strength (<br>compression strength (<br>compression strength (<br>compression strength (<br>s of elasticity, E <sub>comm</sub> , 84<br>e modulus of elasticity,<br>s of elasticity, G <sub>max</sub> , 310 kg/m <sup>3</sup><br>p <sub>max</sub> , 370 kg/m <sup>3</sup> | mm <sup>4</sup><br>mm <sup>4</sup><br>16 N/mm <sup>2</sup><br>2 N/mm <sup>2</sup><br>parallel to grain, f <sub>cmx</sub> , 17 N/<br>perpendicular to grain, f <sub>cm</sub><br>el to grain, f <sub>cm</sub> , 8.5 N/mm <sup>2</sup><br>000 N/mm <sup>2</sup><br>E <sub>cor</sub> , 5400 N/mm <sup>2</sup><br>20 N/mm <sup>2</sup> | mm=<br>, 2.2 N/mmi |                |
| Span details<br>Bearing length<br><u>Consider Combination 1 - 1.35</u> | 5G + 1.50Q (Str   | L₀ = <b>100</b> m<br>rength <u>)</u>                                                                                                                                                                                                                                                                               | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Modification factors                                                   |                   |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Duration of load and moisture co                                       | ontent - Table 3  | 8.1 kmod = <b>0.9</b>                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Deformation factor - Table 3.2                                         |                   | kdef = <b>0.6</b>                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| System strength factor - cl.6.6                                        |                   | $K_{sys} = 1.1$                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Check compression parallel to                                          | o the grain - cl. | .6.1.4                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Design axial compression                                               |                   | Pd = <b>2.516</b>                                                                                                                                                                                                                                                                                                  | kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                 |                    |                |
| Design compressive stress                                              |                   | $\sigma_{c,0,d} = P_d /$                                                                                                                                                                                                                                                                                           | A = <b>0.714</b> N/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | m²                                                                                                                                                                                                                                                                                                                                |                    |                |
| Design compressive strength                                            |                   | $f_{c,0,d} = K_{mod}$                                                                                                                                                                                                                                                                                              | × Ksys × tc.0.k / γΜ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 = <b>12.946</b> N/mm <sup>2</sup>                                                                                                                                                                                                                                                                                               |                    |                |
| DAC                                                                    |                   | σc,0,d / fc,0,d :                                                                                                                                                                                                                                                                                                  | = 0.055                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ando docian na                                                                                                                                                                                                                                                                                                                    | rallal compr       | accion atraca  |
| PAS                                                                    | S - Design para   | allel compressio                                                                                                                                                                                                                                                                                                   | on strength ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ceeds design pa                                                                                                                                                                                                                                                                                                                   | rallel compr       | ession stress  |
| Check columns subjected to e                                           | either compres    | sion or combin                                                                                                                                                                                                                                                                                                     | ed compression                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on and bending                                                                                                                                                                                                                                                                                                                    | - cl.6.3.2         |                |
| Effective length for y-axis bendir                                     | ng                | $L_{e,y} = 0.9 \times$                                                                                                                                                                                                                                                                                             | 2200 mm = 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 980 mm                                                                                                                                                                                                                                                                                                                            |                    |                |
| Slenderness ratio                                                      |                   | $\lambda_y = L_{e,y} / i_y$                                                                                                                                                                                                                                                                                        | = 91.452                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Relative slenderness ratio - exp                                       | . 6.21            | $\lambda_{rel,y} = \lambda_y / \pi$                                                                                                                                                                                                                                                                                | τ × √(fc.0.κ / E0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ) = 1.633                                                                                                                                                                                                                                                                                                                         |                    |                |
| Effective length for z-axis bendir                                     | ng                | L <sub>e,z</sub> = <b>1100</b>                                                                                                                                                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Slenderness ratio                                                      |                   | $\lambda_z = L_{e,z} / i_z$                                                                                                                                                                                                                                                                                        | = 81.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Relative slenderness ratio - exp                                       | . 6.22            | $\lambda_{rel,z} = \lambda_z / z$                                                                                                                                                                                                                                                                                  | τ×√(fc.0.k / E0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | b) = <b>1.448</b>                                                                                                                                                                                                                                                                                                                 |                    |                |
|                                                                        |                   | Both <b>λ</b> rel                                                                                                                                                                                                                                                                                                  | ,y > 0.3 and <b>λ</b> re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | el,z > 0.3, column                                                                                                                                                                                                                                                                                                                | stability che      | ck is required |
| Straightness factor                                                    |                   | $\beta c = 0.2$                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                   |                    |                |
| Instability factors - exp.6.25, 6.2                                    | 6, 6.27 & 6.28    | $k_y = 0.5 \times ($                                                                                                                                                                                                                                                                                               | 1 + $\beta_c \times (\lambda_{rel,y} -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.3) + λrel,y <sup>2</sup> ) = <b>1.9</b>                                                                                                                                                                                                                                                                                         | 67                 |                |
|                                                                        |                   | $k_z = 0.5 \times ($                                                                                                                                                                                                                                                                                               | 1 + $\beta$ c $	imes$ ( $\lambda$ rel,z -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(0.3) + \lambda_{rel,z^2}) = 1.6$                                                                                                                                                                                                                                                                                                | 63                 |                |

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Project         |                                        |                                                                               |                                                     | loh no          |               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|----------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------|-----------------|---------------|--|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SPARK STRUCTURES.                   | Apartment 3.1   | 0 St Pancras Ch                        | ambers, Euston                                                                | Road, London,                                       | 23              | 04            |  |
| Calcs by<br>Calcs by<br>LECalcs date<br>06/12/20236Key = 1 / (ky + $\sqrt{(ky^2 - \lambda_{rely}^2)}) = 0.326$<br>(kez = 1 / (kz + $\sqrt{(kx^2 - \lambda_{rely}^2)}) = 0.326$<br>(kez = 1 / (kz + $\sqrt{(kx^2 - \lambda_{rely}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0d} / (k_{cy} \times f_{c,0d}) = 0.169$<br>$\sigma_{c,0d} / (k_{cy} \times f_{c,0d}) = 0.137$ PASS - Column stability is acceptableCheck columns subjected to either compression or combined compression and bending - cl.6.3.2Effective length for y-axis bending<br>Slenderness ratio $\lambda_{xy} = 0.9 \times 2200$ mm = 1980 mmSlenderness ratio $\lambda_{y} = L_{xy} / iy = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rely} = \lambda_y / \pi \times \sqrt{(f_{c,0,k} / E_{0,0,0)}) = 1.633$ Effective length for z-axis bending<br>Slenderness ratio - exp. 6.22 $\lambda_{rely} = \lambda_y / \pi \times \sqrt{(f_{c,0,k} / E_{0,0,0)}) = 1.448$ Both $\lambda_{rely} > 0.3$ and $\lambda_{rely} > 0.3$ and $\lambda_{rely} > 0.3$ , column stability check is required<br>$\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rely} - 0.3) + \lambda_{rely}^2) = 1.967$<br>$k_x = 0.5 \times (1 + \beta_c \times (\lambda_{rely} - 0.3) + \lambda_{rely}^2) = 1.663$<br>$k_{cy} = 1 / (k_x + \sqrt{(k_x^2 - \lambda_{rely}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{cy} \times f_{c,0,d}) = 0.169$<br>$\sigma_{c,d} / (k_{cy} \times f_{c,0,d}) = 0.137$                                         | 21 Court Road South                 | Calcs for       |                                        |                                                                               | Start page no./Revision                             |                 |               |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Caerphilly                          |                 | Partition V                            | Partition Wall Studs                                                          |                                                     |                 | 6             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | Calcs by        | Calcs date                             | Checked by                                                                    | Checked date                                        | Approved by     | Approved date |  |
| $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y}^2)}) = 0.326$ $k_{c,z} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,z}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$ PASS - Column stability is acceptable Check columns subjected to either compression or combined compression and bending - cl.6.3.2 Effective length for y-axis bending $L_{e,y} = 0.9 \times 2200 \text{ mm} = 1980 \text{ mm}$ Slenderness ratio $\lambda_y = L_{e,y} / i_y = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c,0,k} / E_{0.05})} = 1.633$ Effective length for z-axis bending $L_{e,z} = 1100 \text{ mm}$ Slenderness ratio $\lambda_z = L_{e,z} / i_z = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c,0,k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is required Straightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y^2}) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,y^2}) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y^2})}) = 0.326$ $k_{c,x} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y^2})}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = 0.137$ |                                     | LE              | 06/12/2023                             | LE                                                                            | 06/12/2023                                          | LE              | 06/12/2023    |  |
| $k_{cy} = 1 / (k_y + \sqrt{k_y^2} - \lambda_{rely^2}) = 0.326$ $k_{cz} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rely^2})}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{cy} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{cy} \times f_{c,0,d}) = 0.137$ PASS - Column stability is acceptable Check columns subjected to either compression or combined compression and bending - cl.6.3.2 Effective length for y-axis bending $L_{ey} = 0.9 \times 2200 \text{ mm} = 1980 \text{ mm}$ Slenderness ratio $\lambda_y = L_{ey} / i_y = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rely} = \lambda_y / \pi \times \sqrt{(f_{c,0,k} / E_{0,0,k})} = 1.633$ Effective length for z-axis bending $L_{ez} = 1100 \text{ mm}$ Slenderness ratio $\lambda_z = L_{e,z} / i_z = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{relz} = \lambda_z / \pi \times \sqrt{(f_{c,0,k} / E_{0,0,k})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is required Straightness factor Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.663$ $k_{cy} = 1 / (k_x + \sqrt{(k_x^2 - \lambda_{rel,y}^2)}) = 0.326$ $k_{cy} = 1 / (k_x + \sqrt{(k_x^2 - \lambda_{rel,y}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{cy} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{cy} \times f_{c,0,d}) = 0.169$                                |                                     |                 |                                        |                                                                               | 0.000                                               |                 |               |  |
| $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$ PASS - Column stability is acceptable Check columns subjected to either compression or combined compression and bending - cl.6.3.2 Effective length for y-axis bending $L_{e,y} = 0.9 \times 2200 \text{ mm} = 1980 \text{ mm}$ Slenderness ratio $\lambda_y = L_{e,y} / iy = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c,0,k} / E_{0.05})} = 1.633$ Effective length for z-axis bending $L_{e,z} = 1100 \text{ mm}$ Slenderness ratio $\lambda_z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c,0,k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is required Straightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.663$ $k_{c,y} = 1 / (k_x + \sqrt{(k_x^2 - \lambda_{rel,z}^2)}) = 0.326$ $k_{c,y} = 1 / (k_x + \sqrt{(k_x^2 - \lambda_{rel,z}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.169$                                                                                                                                                                  |                                     |                 | $K_{c,y} = 1 / (K_y)$                  | + $\mathcal{N}(\mathbf{K}\mathbf{y}^2 - \lambda \mathrm{rel}, \mathbf{y}^2))$ | = 0.326                                             |                 |               |  |
| Column stability checks - exp. 6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.169$<br>$\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$ PASS - Column stability is acceptableCheck columns subjected to either compression or combined compression and bending - cl.6.3.2Effective length for y-axis bending $L_{e,y} = 0.9 \times 2200 \text{ mm} = 1980 \text{ mm}$ Slenderness ratio $\lambda_y = L_{e,y} / iy = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c,0,k} / E_{0,05})} = 1.633$ Effective length for z-axis bending $L_{e,z} = 1100 \text{ mm}$ Slenderness ratio $\lambda_z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} > 0.3 \text{ and } \lambda_{rel,z} > 0.3, \text{ column stability check is required}$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp. 6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_0 \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y^2}) = 1.967$ $k_z = 0.5 \times (1 + \beta_0 \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y^2}) = 1.663$ $k_{c,x} = 1 / (k_x + \sqrt{(k_x^2 - \lambda_{rel,x^2})}) = 0.403$ Column stability checks - exp. 6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                         |                                     |                 | $k_{c,z} = 1 / (k_z)$                  | + $\sqrt{(kz^2 - \lambda_{rel,z^2})}$                                         | = 0.403                                             |                 |               |  |
| $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$ PASS - Column stability is acceptable PASS - Column stability is acceptable Check columns subjected to either compression or combined compression and bending - cl.6.3.2 Effective length for y-axis bending Sienderness ratio $\lambda_{y} = L_{e,y} / i_{y} = 0.9 \times 2200 \text{ mm} = 1980 \text{ mm}$ Sienderness ratio $\lambda_{y} = L_{e,y} / i_{y} = 91.452$ Relative sienderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_{y} / \pi \times \sqrt{(f_{c,0,k} / E_{0,05})} = 1.633$ Effective length for z-axis bending Sienderness ratio $\lambda_{z} = L_{e,z} / i_{z} = 81.075$ Relative sienderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_{z} / \pi \times \sqrt{(f_{c,0,k} / E_{0,05})} = 1.448$ Both $\lambda_{rel,z} > 0.3$ , column stability check is required Straightness factor Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_{y} = 0.5 \times (1 + \beta_{c} \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^{2}) = 1.967$ $k_{z} = 0.5 \times (1 + \beta_{c} \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^{2}) = 1.663$ $k_{c,z} = 1 / (k_{z} + \sqrt{(k_{z}^{2} - \lambda_{rel,z}^{2})}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$ DASS. Column stability is acceptable                                                                                                                                                                                                                                                                                     | Column stability checks - exp.6     | .23 & 6.24      | $\sigma_{c,0,d} / (k_{c,y} >$          | < f <sub>c,0,d</sub> ) = <b>0.169</b>                                         |                                                     |                 |               |  |
| PASS - Column stability is acceptableCheck columns subjected to either compression or combined compression and bending - cl.6.3.2Effective length for y-axis bendingLe.y = 0.9 × 2200 mm = 1980 mmSlenderness ratio $\lambda_y = L_{e,y} / iy = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c.0.k} / Eo.05)} = 1.633$ Effective length for z-axis bendingLe.z = 1100 mmSlenderness ratio $\lambda_z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c.0.k} / Eo.05)} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,y}^2) = 1.663$ $k_{c,z} = 1 / (k_x + \sqrt{(k_{c,2} - \lambda_{rel,x}^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$ DASE                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                 | $\sigma_{c,0,d} / (k_{c,z} >$          | < f <sub>c,0,d</sub> ) = <b>0.137</b>                                         |                                                     |                 |               |  |
| Check columns subjected to either compression or combined compression and bending - cl.6.3.2Effective length for y-axis bendingLe, y = 0.9 × 2200 mm = 1980 mmSlenderness ratio $\lambda y = Le, y / iy = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda rel, y = \lambda y / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.633$ Effective length for z-axis bendingLe, z = 1100 mmSlenderness ratio $\lambda z = Le, z / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda rel, z > \lambda / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.448$ Both $\lambda rel, y > 0.3$ and $\lambda rel, z > 0.3$ , column stability check is requiredStraightness factor $\beta c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $ky = 0.5 \times (1 + \beta c \times (\lambda rel, y - 0.3) + \lambda rel, y^2) = 1.967$ $k_z = 0.5 \times (1 + \beta c \times (\lambda rel, z - 0.3) + \lambda rel, z^2) = 1.663$ $k_{c, z} = 1 / (k_z + \sqrt{(k_c^2 - \lambda rel, z^2)}) = 0.403$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c, x} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     |                 |                                        |                                                                               | PASS - Colu                                         | mn stability is | s acceptable  |  |
| Effective length for y-axis bendingLe, $y = 0.9 \times 2200 \text{ mm} = 1980 \text{ mm}$ Slenderness ratio $\lambda y = L_{e,y} / iy = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda rel, y = \lambda_y / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.633$ Effective length for z-axis bendingLe, $z = 1100 \text{ mm}$ Slenderness ratio $\lambda z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda rel, z > 1.448$ Both $\lambda rel, z > 0.3$ and $\lambda rel, z > 0.3$ , column stability check is requiredStraightness factor $\beta c = 0.2$ Instability factors - exp. 6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta c \times (\lambda rel, y - 0.3) + \lambda rel, y^2) = 1.967$ $k_z = 0.5 \times (1 + \beta c \times (\lambda rel, z - 0.3) + \lambda rel, z^2) = 1.663$ $k_{c,y} = 1 / (k_x + \sqrt{(k_c^2 - \lambda rel, z^2)}) = 0.326$ $k_{c,z} = 1 / (k_z + \sqrt{(k_c^2 - \lambda rel, z^2)}) = 0.403$ $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Check columns subjected to          | either compres  | sion or combine                        | ed compressio                                                                 | n and bending                                       | - cl.6.3.2      |               |  |
| Slenderness ratio $\lambda_y = L_{e,y} / i_y = 91.452$ Relative slenderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.633$ Effective length for z-axis bending $L_{e,z} = 1100 \text{ mm}$ Slenderness ratio $\lambda_z = L_{e,z} / i_z = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp. 6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,z}^2)}) = 0.326$ $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}) = 0.403$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Effective length for y-axis bendi   | ng              | $L_{e,y} = 0.9 \times$                 | 2200 mm = <b>198</b>                                                          | 8 <b>0</b> mm                                       |                 |               |  |
| Relative slenderness ratio - exp. 6.21 $\lambda_{rel,y} = \lambda_y / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.633$ Effective length for z-axis bending $L_{e,z} = 1100 \text{ mm}$ Slenderness ratio $\lambda_z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} > \lambda_z / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y^2}) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z^2}) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y^2})}) = 0.326$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Slenderness ratio                   |                 | $\lambda_y = L_{e,y} / i_y$            | = 91.452                                                                      |                                                     |                 |               |  |
| Effective length for z-axis bendingLe,z = 1100 mmSlenderness ratio $\lambda_z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y^2}) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z^2}) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,z^2})}) = 0.326$ Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,x} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relative slenderness ratio - exp    | 0. 6.21         | $\lambda_{rel,y} = \lambda_y / \pi$    | $x \times \sqrt{(f_{c.0.k} / E_{0.05})}$                                      | = 1.633                                             |                 |               |  |
| Slenderness ratio $\lambda_z = L_{e,z} / iz = 81.075$ Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y}^2)}) = 0.326$ $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}) = 0.403$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$ DASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Effective length for z-axis bendi   | ng              | L <sub>e,z</sub> = <b>1100</b>         | mm                                                                            |                                                     |                 |               |  |
| Relative slenderness ratio - exp. 6.22 $\lambda_{rel,z} = \lambda_z / \pi \times \sqrt{(f_{c.0.k} / E_{0.05})} = 1.448$ Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y}^2)}) = 0.326$ $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}) = 0.403$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Slenderness ratio                   |                 | $\lambda_z = L_{e,z} / i_z$            | = 81.075                                                                      |                                                     |                 |               |  |
| Both $\lambda_{rel,y} > 0.3$ and $\lambda_{rel,z} > 0.3$ , column stability check is requiredStraightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y}^2)}) = 0.326$ $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,y}^2)}) = 0.403$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$ $\rho_{c,0,d} = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Relative slenderness ratio - exp    | . 6.22          | $\lambda_{rel,z} = \lambda_z / \pi$    | :×√(fc.0.k / E0.05)                                                           | = 1.448                                             |                 |               |  |
| Straightness factor $\beta_c = 0.2$ Instability factors - exp.6.25, 6.26, 6.27 & 6.28 $k_y = 0.5 \times (1 + \beta_c \times (\lambda_{rel, y} - 0.3) + \lambda_{rel, y}^2) = 1.967$ $k_z = 0.5 \times (1 + \beta_c \times (\lambda_{rel, z} - 0.3) + \lambda_{rel, z}^2) = 1.663$ $k_{c,y} = 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel, z}^2)}) = 0.326$ $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel, z}^2)}) = 0.403$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$ DASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                 | Both <b>A</b> rel,                     | y > 0.3 and <b>λ</b> rel,z                                                    | > 0.3, column                                       | stability chec  | k is required |  |
| Instability factors - exp.6.25, 6.26, 6.27 & 6.28<br>$k_{y} = 0.5 \times (1 + \beta_{c} \times (\lambda_{rel,y} - 0.3) + \lambda_{rel,y}^{2}) = 1.967$ $k_{z} = 0.5 \times (1 + \beta_{c} \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^{2}) = 1.663$ $k_{c,y} = 1 / (k_{y} + \sqrt{(k_{y}^{2} - \lambda_{rel,y}^{2})}) = 0.326$ $k_{c,z} = 1 / (k_{z} + \sqrt{(k_{z}^{2} - \lambda_{rel,z}^{2})}) = 0.403$ Column stability checks - exp.6.23 & 6.24<br>$\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = 0.169$ $\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Straightness factor                 |                 | $\beta c = 0.2$                        |                                                                               |                                                     |                 |               |  |
| $\begin{aligned} k_z &= 0.5 \times (1 + \beta_c \times (\lambda_{rel,z} - 0.3) + \lambda_{rel,z}^2) = \textbf{1.663} \\ k_{c,y} &= 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y}^2)}) = \textbf{0.326} \\ k_{c,z} &= 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}) = \textbf{0.403} \\ \hline \sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = \textbf{0.169} \\ \sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = \textbf{0.137} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Instability factors - exp.6.25, 6.2 | 26, 6.27 & 6.28 | $k_y = 0.5 \times (1)^{-1}$            | $1 + \beta c \times (\lambda_{rel,y} - 0)$                                    | .3) + λ <sub>rel,y<sup>2</sup></sub> ) = <b>1.9</b> | 67              |               |  |
| $\begin{aligned} k_{c,y} &= 1 / (k_y + \sqrt{(k_y^2 - \lambda_{rel,y}^2)}) = \textbf{0.326} \\ k_{c,z} &= 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z}^2)}) = \textbf{0.403} \\ \\ \sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = \textbf{0.169} \\ \\ \sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = \textbf{0.137} \end{aligned}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                 | $k_z = 0.5 \times (2)$                 | $1 + \beta c \times (\lambda rel, z - 0)$                                     | .3) + λ <sub>rel,z<sup>2</sup></sub> ) = <b>1.6</b> | 63              |               |  |
| Column stability checks - exp.6.23 & 6.24 $k_{c,z} = 1 / (k_z + \sqrt{(k_z^2 - \lambda_{rel,z^2})}) = 0.403$<br>$\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = 0.169$<br>$\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                     |                 | $k_{c,y} = 1 / (k_y)$                  | + $\sqrt{(k_y^2 - \lambda_{rel,y^2})}$                                        | = 0.326                                             |                 |               |  |
| Column stability checks - exp.6.23 & 6.24 $\sigma_{c,0,d} / (k_{c,y} \times f_{c,0,d}) = 0.169$<br>$\sigma_{c,0,d} / (k_{c,z} \times f_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                 | k <sub>c,z</sub> = 1 / (k <sub>z</sub> | + $\sqrt{(k_z^2 - \lambda_{rel,z^2})}$                                        | = 0.403                                             |                 |               |  |
| $\sigma_{c,0,d} / (\mathbf{k}_{c,z} \times \mathbf{f}_{c,0,d}) = 0.137$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Column stability checks - exp.6     | .23 & 6.24      | $\sigma$ c,0,d / (kc,y >               | < f <sub>c,0,d</sub> ) = 0.169                                                |                                                     |                 |               |  |
| DASS Column stability is assertable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     |                 | $\sigma_{c,0,d} / (k_{c,z})$           | < f <sub>c,0,d</sub> ) = <b>0.137</b>                                         |                                                     |                 |               |  |
| PASS - Column stability is acceptable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     |                 |                                        | -                                                                             | PASS - Colu                                         | mn stability is | s acceptable  |  |

| SPARK STRUC                                                                                                                                                                                                                                                            | TURES.                                                                                                    | Apartment    | : 3.10 S                     | St Pano                                                                                                                                                | cras Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | namber                                                                                                                  | s, Eusto                                                                                | on Road, London.                                                                                                                                                                                                           | Job no.                                                          | 2304                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|
| 21 Court Road S                                                                                                                                                                                                                                                        | South                                                                                                     | Calcs for    |                              |                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         |                                                                                         |                                                                                                                                                                                                                            | Start page no./                                                  | Revision                                          |
| Caerphilly                                                                                                                                                                                                                                                             |                                                                                                           |              |                              | Pa                                                                                                                                                     | artition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wall St                                                                                                                 | uds                                                                                     |                                                                                                                                                                                                                            |                                                                  | 7                                                 |
|                                                                                                                                                                                                                                                                        |                                                                                                           | Calcs by     | Ca                           | alcs date                                                                                                                                              | е                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Checke                                                                                                                  | ed by                                                                                   | Checked date                                                                                                                                                                                                               | Approved by                                                      | Approved                                          |
|                                                                                                                                                                                                                                                                        |                                                                                                           | LE           |                              | 06/12/                                                                                                                                                 | /2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                         | LE                                                                                      | 06/12/2023                                                                                                                                                                                                                 | LE                                                               | 06/12/2                                           |
| In accordance we values Joist details Description Joist spacing Forces input on Vertical permaner Vertical imposed Joist loading det                                                                                                                                   | Joist<br>Ioad on joi<br>oad on joist<br>ails                                                              | 1-1:2004 + A | 2:2014                       | 47 x<br>SJoist<br>—24<br>Fc_J<br>Fo_J                                                                                                                  | poratir<br>( 100 C<br>= <b>400</b><br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16 timt<br>mm<br>35 kN/m<br>25 kN/m                                                                                     | igendu<br>ber joists                                                                    | m June 2006 and                                                                                                                                                                                                            | I the recomm                                                     | nended                                            |
|                                                                                                                                                                                                                                                                        | it load on joi                                                                                            | st           |                              | р <u></u> =                                                                                                                                            | FG_Jois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | t × <b>S</b> Joist                                                                                                      | = 0.14 k                                                                                | ۸/m                                                                                                                                                                                                                        |                                                                  |                                                   |
| Vertical imposed                                                                                                                                                                                                                                                       | oad on joist                                                                                              | st           | Unit                         | pg =<br>pg =                                                                                                                                           | FG_Jois<br>FQ_Jois                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t × SJoist<br>t × SJoist                                                                                                | = 0.14 k<br>= 0.10 k                                                                    | kN/m<br>kN/m                                                                                                                                                                                                               | ilisation                                                        | Result                                            |
| Vertical imposed Member results                                                                                                                                                                                                                                        | oad on joist                                                                                              | st           | Unit<br>N/mr                 | pg =<br>pq =<br><b>Ca</b><br>n <sup>2</sup> 1.                                                                                                         | FG_Jois<br>FQ_Jois<br>Apacity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t × SJoist<br>t × SJoist                                                                                                | = 0.14 k<br>= 0.10 k<br>Max                                                             | xN/m<br>xN/m<br>iimum Ut                                                                                                                                                                                                   | ilisation                                                        | Resul                                             |
| Vertical imposed<br>Member results s<br>Bearing stress<br>Bending stress                                                                                                                                                                                               | oad on joist                                                                                              | st           | Unit<br>N/mm                 | pg =<br>pq =<br><b>Ca</b><br>n <sup>2</sup> 1.7<br>n <sup>2</sup> 13                                                                                   | FG_Jois<br>FQ_Jois<br>apacity<br>7<br>3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | t × SJoist<br>t × SJoist                                                                                                | = 0.14 k<br>= 0.10 k<br>Max<br>0.1<br>3.3                                               | KN/m<br>KN/m<br>iimum Ut<br>0.<br>0.                                                                                                                                                                                       | t <b>ilisation</b><br>068<br>249                                 | Resul<br>PASS<br>PASS                             |
| Vertical imposed<br>Member results<br>Bearing stress<br>Bending stress<br>Shear stress                                                                                                                                                                                 | oad on joist                                                                                              | st           | Unit<br>N/mm<br>N/mm         | pg =<br>pa =                                                                                                                                           | FG_Jois<br>FQ_Jois<br><b>apacity</b><br>7<br>3.2<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | t × SJoist<br>t × SJoist                                                                                                | = 0.14 k<br>= 0.10 k<br>Max<br>0.1<br>3.3<br>0.2                                        | KN/m<br>KN/m<br>iimum Ut<br>0.<br>0.<br>0.                                                                                                                                                                                 | t <b>ilisation</b><br>068<br>249<br>084                          | Resul<br>PASS<br>PASS<br>PASS                     |
| Vertical imposed<br>Member results<br>Bearing stress<br>Bending stress<br>Shear stress<br>Deflection                                                                                                                                                                   | oad on joist                                                                                              | st           | Unit<br>N/mm<br>N/mm<br>N/mm | pg =<br>pq =<br><b>Ca</b><br>n <sup>2</sup> 1.<br>n <sup>2</sup> 13<br>n <sup>2</sup> 2.4<br>6.                                                        | = F <sub>G_Jois</sub><br>= F <sub>Q_Jois</sub><br>= <b>F</b> Q_Jois<br>= <b>P</b><br>= <b>P</b><br><b>P</b><br>= <b>P</b><br><b>P</b><br><b>P</b><br><b>P</b><br><b>P</b><br><b>P</b><br><b>P</b><br><b>P</b><br><b>P</b><br><b>P</b> | t × SJoist<br>t × SJoist                                                                                                | = 0.14 k<br>= 0.10 k<br>0.1<br>3.3<br>0.2<br>5.0                                        | <n m<br=""><n m<br="">&lt;a href="https://www.sciencescomescomescomescomescomescomescomesco&lt;/th&gt;<th>t<b>ilisation</b><br/>068<br/>249<br/>084<br/>750</th><th>Resul<br/>PASS<br/>PASS<br/>PASS<br/>PASS</th></n></n> | t <b>ilisation</b><br>068<br>249<br>084<br>750                   | Resul<br>PASS<br>PASS<br>PASS<br>PASS             |
| Vertical imposed I<br>Member results a<br>Bearing stress<br>Bending stress<br>Shear stress<br>Deflection<br>ANALYSIS<br>Loading<br>Self weight includ<br>Load combination                                                                                              | ed (Permano                                                                                               | ent x 1)     | Unit<br>N/mm<br>N/mm<br>M/mm | pg =<br>pa =<br><b>Ca</b><br>n <sup>2</sup> 1.3<br>n <sup>2</sup> 2.4<br>6.7                                                                           | FG_Jois<br>FQ_Jois<br>apacity<br>7<br>3.2<br>4<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t × SJoist<br>t × SJoist                                                                                                | = 0.14 k<br>= 0.10 k<br>0.1<br>3.3<br>0.2<br>5.0                                        | <n m<br="">&lt;<u>iimum Ut</u><br/>0.<br/>0.<br/>0.<br/>0.<br/>0.</n>                                                                                                                                                      | t <b>illisation</b><br>068<br>249<br>084<br>750<br>Tedds calcula | Result<br>PASS<br>PASS<br>PASS                    |
| Vertical imposed I<br>Member results =<br>Bearing stress<br>Bending stress<br>Shear stress<br>Deflection<br>ANALYSIS<br>Loading<br>Self weight includ<br>Load combinatio<br>Load                                                                                       | ed (Permano<br>n factors                                                                                  | ent x 1)     | Unit<br>N/mm<br>N/mm<br>N/mm | pg =<br>pa =<br><b>Ca</b><br>n <sup>2</sup> 1.1<br>n <sup>2</sup> 1.3<br>n <sup>2</sup> 2.4<br>6.7<br><b>4</b><br><b>5</b><br><b>6</b><br><b>1</b> .35 | E FG_Jois<br>E FQ_Jois<br>apacity<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | t × SJoist<br>t × SJoist                                                                                                | = 0.14 H<br>= 0.10 H<br>0.1<br>3.3<br>0.2<br>5.0                                        | xN/m<br>xN/m<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                 | tillisation<br>068<br>249<br>084<br>750<br>Tedds calcula         | Resul<br>PASS<br>PASS<br>PASS                     |
| Vertical imposed I<br>Member results =<br>Bearing stress<br>Bending stress<br>Deflection<br>ANALYSIS<br>Loading<br>Self weight includ<br>Load combinatio<br>Load<br>Load<br>GG + 1.50Q (Strent<br>0G + 1.00Q (Servit                                                   | ed (Permand<br>n factors                                                                                  | ent x 1)     | Unit<br>N/mr<br>N/mr<br>M/mr | pg =<br>pq =<br>Pq =<br>Pq =<br>Pq =<br>Pq =<br>1.3<br>Cz<br>1.3<br>6.7                                                                                | E FG_Jois<br>E FQ_Jois<br>Apacity<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>1.50<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t × SJoist<br>t × SJoist<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | = 0.14   <br>= 0.10   <br>Max<br>0.1<br>3.3<br>0.2<br>5.0<br>5.0                        | <n <="" m="" td="">   imum Ut   0.1   0.2   0.3   0.4   0.5   0.6</n>                                                                                                                                                      | t <b>ilisation</b><br>068<br>249<br>084<br>750<br>Tedds calcula  | Resul<br>PASS<br>PASS<br>PASS                     |
| Vertical imposed I<br>Member results =<br>Bearing stress<br>Bending stress<br>Shear stress<br>Deflection<br>ANALYSIS<br>Loading<br>Self weight includ<br>Load combinatio<br>Load<br>5G + 1.50Q (Stren<br>0G + 1.00Q (Servi<br>0G + w21.00Q (Qui                        | ed (Permano<br>n factors<br>combinatio<br>gth)<br>ce)<br>asi)                                             | ent x 1)     | Unit<br>N/mr<br>N/mr<br>mm   | pg =<br>pq =<br>pq =<br>1.35<br>1.00<br>1.00<br>1.00                                                                                                   | E FG_Jois<br>E FQ_Jois<br>apacity<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t × SJoist<br>t × SJoist<br>7                                                                                           | = 0.14 k<br>= 0.10 k<br>0.1<br>3.3<br>0.2<br>5.0<br>5.0                                 | <n <p="" m="">imum       imum     Ut       0.     0.       0.1     0.       0.2     0.       0.3     0.</n>                                                                                                                | t <b>illisation</b><br>068<br>249<br>084<br>750<br>Tedds calcula | Resul<br>PASS<br>PASS<br>PASS                     |
| Vertical imposed I<br>Member results :<br>Bearing stress<br>Bending stress<br>Shear stress<br>Deflection<br>ANALYSIS<br>Loading<br>Self weight includ<br>Load combinatio<br>Load<br>5G + 1.50Q (Stren<br>0G + 1.00Q (Servi<br>0G + ψ21.00Q (Qu                         | ed (Permand<br>oad on joist<br>summary<br>ed (Permand<br>on factors<br>combination<br>gth)<br>ce)<br>asi) | ent x 1)     | Unit<br>N/mm<br>N/mm<br>mm   | pg =<br>pq =<br>pq =<br>Ca<br>n <sup>2</sup> 1.3<br>n <sup>2</sup> 2.4<br>6.7<br>6.7<br>1.35<br>1.00<br>1.00                                           | E FG_Jois<br>FQ_Jois<br>Apacity<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>1.50<br>1.00<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t × SJoist<br>t × SJoist<br>7<br>0.00<br>0.00<br>0.00                                                                   | = 0.14 k<br>= 0.10 k<br>0.1<br>3.3<br>0.2<br>5.0<br>5.0                                 | xN/m<br>xN/m<br>0.<br>0.<br>0.<br>0.<br>0.                                                                                                                                                                                 | tilisation<br>068<br>249<br>084<br>750<br>Tedds calcula          | Result<br>PASS<br>PASS<br>PASS                    |
| Vertical imposed<br>Member results =<br>Bearing stress<br>Bending stress<br>Shear stress<br>Deflection<br>ANALYSIS<br>Loading<br>Self weight includ<br>Load combinatio<br>Load<br>5G + 1.50Q (Stren<br>0G + 1.00Q (Servi<br>0G + ψ21.00Q (Qu<br>Member Loads<br>Member | ed (Permano<br>n factors<br>combinatio<br>gth)<br>ce)<br>asi)                                             | ent x 1)     | Unit<br>N/mr<br>N/mr<br>mm   | pg =<br>pq =<br>pq =<br>1.3<br>1.35<br>1.00<br>1.00                                                                                                    | E FG_Jois<br>FQ_Jois<br>7<br>3.2<br>4<br>7<br>7<br>7<br>3.2<br>4<br>7<br>7<br>3.2<br>4<br>7<br>7<br>1.50<br>1.50<br>1.00<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t × SJoist<br>t × SJoist<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>,<br>, | = 0.14 k<br>= 0.10 k<br>0.1<br>3.3<br>0.2<br>5.0<br>5.0<br>0.00<br>0.00<br>0.00<br>0.00 | <pre>sN/m simum Ut</pre>                                                                                                                                                                                                   | tilisation<br>068<br>249<br>084<br>750<br>Tedds calcula          | Result<br>PASS<br>PASS<br>PASS<br>ation version 1 |

UDL

GlobalZ

0.1 kN/m at 0 m to 2.4 m

Imposed

Member

| SDVE                     |                        |                    | Project<br>Apartment 3 | 10 St Pancras                       | Chambers                      | Fuston    | Road London                | Job no.           | 304                         |
|--------------------------|------------------------|--------------------|------------------------|-------------------------------------|-------------------------------|-----------|----------------------------|-------------------|-----------------------------|
| 2 <sup>′</sup>           | Court Road South       | Υ <u>L</u> Ο.<br>h | Calcs for              |                                     | Chambere                      | Lacton    |                            | Start page no./F  | Revision                    |
|                          | Caerphilly             |                    |                        | Partiti                             | on Wall Stu                   | ds        |                            |                   | 8                           |
|                          |                        |                    | Calcs by<br>LE         | Calcs date<br>06/12/202             | Checked<br>23 L               | by<br>.E  | Checked date<br>06/12/2023 | Approved by<br>LE | Approved date<br>06/12/2023 |
| <u>Result</u><br>Total o | $\frac{s}{leflection}$ |                    | 1.35G<br>1.00G         | + 1.50Q (Stree<br>+ 1.00Q (Serv<br> | ngth) - Tota<br>vice) - Total | I deflect | tion<br>                   | 2<br>—Å           |                             |
| Node                     | leflections            |                    |                        |                                     |                               |           |                            | A                 |                             |
| Load                     | ombination:            | 1.35G + 1.         | 50Q (Strength          | ı)                                  |                               |           |                            |                   |                             |
| Node                     | Defle                  | ction              | Rotation               | n Co-ordina                         | ite                           |           |                            |                   |                             |
|                          | x                      | z                  |                        | System                              |                               |           |                            |                   |                             |
|                          | (mm)                   | (mm)               | (°)                    |                                     |                               |           |                            |                   |                             |
| 1                        | 0                      | 0                  | 0.37737                | ,                                   |                               |           |                            |                   |                             |
| 2                        | 0                      | 0                  | -0.37737               | 7                                   |                               |           |                            |                   |                             |
| Load o                   | ombination:            | 1.00G + 1.         | 00Q (Service)          |                                     |                               |           |                            |                   |                             |
| Node                     | Defle                  | ction              | Rotation               | n Co-ordina<br>system               | ite                           |           |                            |                   |                             |
|                          | x                      | z                  |                        |                                     |                               |           |                            |                   |                             |
|                          | (mm)                   | (mm)               | (°)                    |                                     |                               |           |                            |                   |                             |
| 1                        | 0                      | 0                  | 0.26783                |                                     |                               |           |                            |                   |                             |
| 2                        | 0                      | 0                  | -0.26783               | 3                                   |                               |           |                            |                   |                             |
| Load o                   | ombination:            | 1.00G + ψ          | 21.00Q (Quasi          | )                                   | 1                             |           |                            |                   |                             |
| Node                     | Defle                  | ction              | Rotation               | n Co-ordina<br>system               | ite                           |           |                            |                   |                             |
|                          | X                      | Z                  |                        |                                     |                               |           |                            |                   |                             |
| 1                        | (mm)                   | (mm)               | (°)                    |                                     |                               |           |                            |                   |                             |
|                          | 0                      | 0                  |                        |                                     |                               |           |                            |                   |                             |
|                          |                        | •<br>•             | -0.1341                |                                     |                               |           |                            |                   |                             |
|                          | case/combin            | ation              | For                    | ce                                  |                               |           |                            |                   |                             |
| Luau                     |                        |                    | FX                     | FZ                                  |                               |           |                            |                   |                             |
|                          |                        |                    | (kN)                   | (kN)                                |                               |           |                            |                   |                             |
| 1.35G                    | + 1.50Q (Stre          | ength)             | 0                      | 0.9                                 |                               |           |                            |                   |                             |
| 1.000                    | 6 + 1.00Q (Ser         | vice)              | 0                      | 0.6                                 |                               |           |                            |                   |                             |

| SPARK STRUCTURES       Apartment 3.10 St Pancras Chambers, Euston Road, London,       204         Start page no.Results       Start page no.Results       9         Calcs for       Partition Wall Studs       9         Calcs for       Calcs date       Off(12)2023       Approved by       Approved by         Le       Oe(12)2023       Calcs date       Off(12)2023       Approved by       Approved by         Load case/combination       FX       FZ       (kN)       (kN)       (kN)       Approved by       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | Job no.              |                  |              |               | Project        |                        |                               |         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------------|------------------|--------------|---------------|----------------|------------------------|-------------------------------|---------|
| $ \frac{21 \operatorname{Court Read South Casephily} }{2 \operatorname{Calcs Sor}} \frac{\operatorname{Calcs Sor} }{\operatorname{LE} } \frac{\operatorname{Calcs Calca Case } \operatorname{Court Case Case } \operatorname{Court Case } \operatorname{Court Case } \operatorname{Calca Case } $ |          | 2304                 | on Road, London, | ambers, Eust | St Pancras Ch | Apartment 3.10 | RES.                   | K STRUCTU                     | SPAR    |
| Image: Constraint of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on       | Start page no./Revis |                  | Vall Studs   | Partition \   | Calcs for      | h                      | Court Road Sout<br>Caerphilly | 21      |
| Image: Control table         Contro table         Control table         Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |                      | Chockod data     | Chockod by   |               | Calco by       |                        |                               |         |
| Load case/combination         FX         FZ           (KN)         (KN)         (KN)           1.00G + wr1.00Q (Quasi)         0         0.4   Element end forces Load combination: 1.365 et 1.50Q (Strength)           Load combination: 1.365 et 1.50Q (Strength)         Modes         Axial force         Shear force         Moment           1         2.4         1         0         0.4         0           Load combination: 1.00G + 1.00Q (Service)         Element         Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.3         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <td>6/12/202</td> <td>LE</td> <td>06/12/2023</td> <td>LE</td> <td>06/12/2023</td> <td>LE</td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6/12/202 | LE                   | 06/12/2023       | LE           | 06/12/2023    | LE             |                        |                               |         |
| FX       FZ         1.00 + w21.00Q (Quasi)       0         Determent       Determent         Determent       Determent         Determent       Construction:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                  |              |               | Force          | ation                  | case/combin                   | Load    |
| (kN)         (kN)           1.00G + yz1.00Q (Quasi)         0         0.4           Element end force         Edd combination: 1.55 + 1.50Q (Strength)         Edd combination: 1.55 + 1.50Q (Strength)           Element         Imp in Xodes         Xaial force         Shear force         Moment           1         2.4         1         0         0.4         0           1         2.4         1         0         0.4         0           1         2.4         1         0         0.4         0           1         2.4         1         0         0.4         0           Lod combination:         1.00G + Iwz1.00Q (Service)         Element         Moment         (KN)         0.03         0           Lod combination:         1.00G + wz1.00Q (Quasi)         Element         1         0.4         1         0         0.2         0           Lod combination:         1.00G + wz1.00Q (Quasi)         Element         1         0.4         1         0         0.2         0         0         0           Jos         Strength combinations - Moment envelope (kNm)         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                      |                  |              | FZ            | FX             |                        |                               |         |
| 1.00G + ψ21.00Q (Quasi)         0         0.4           Element end forces         Lod combination: 1.35G + 1.50Q (Strength)           Element         Nodes         Axial force         Moment           1         2.4         1         0         0.4           1         2.4         1         0         0.4           1         2.4         1         0         0.4           Length         Nodes         Axial force         Moment           1         2.4         1         0         0.4           Load combination: 1.00G + 1.00Q (Service)         Element         Modes         Axial force         Shear force         Moment           1         2.4         1         0         0.3         0           Load combination: 1.00G + ψ21.00Q (Quasi)         Element         Modes         Axial force         Shear force         Moment           1         2.4         1         0         -0.2         0         0           1         2.4         1         0         -0.2         0         0         0           Forces         Strength combinations - Moment envelope (kNm)         Moment         0.3         0         0           0.3         0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |                      |                  |              | (kN)          | (kN)           |                        |                               |         |
| Element forces         Indext for the function of the functio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                      |                  |              | 0.4           | 0              | Quasi)                 | + ψ21.00Q (C                  | 1.00G   |
| Lear combination: 1.35 + 1.500 (Strength)         intermative intermatinte intermative intermative intermative interm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |                      |                  |              |               |                |                        | nt end forces                 | Elemer  |
| Element         Length<br>(m)         Nodes         Axial force<br>(kN)         Shear force<br>(kNm)         Moment<br>(kNm)           1         2.4         1         0         -0.4         0           Load combination: 1.00G + 1.00Q (Service)         Element         Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.4         0           Load combination: 1.00G + 1.00Q (Service)         Element         Moment         (kN)         (kNm)           1         2.4         1         0         -0.3         0           1         2.4         1         0         -0.3         0           Load combination: 1.00G + w21.00Q (Quasi)         Element         K(N)         K(N)         (kN)           1         2.4         1         0         -0.2         0         -           1         2.4         1         0         -0.2         0         -         -           1         2.4         1         0         -0.2         0         -         -           5         5         3         -         -         -         -           1         0         - <td></td> <td></td> <td></td> <td></td> <td></td> <td>0Q (Strength)</td> <td>1.35G + 1.5</td> <td>ombination:</td> <td>Load c</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |                  |              |               | 0Q (Strength)  | 1.35G + 1.5            | ombination:                   | Load c  |
| (m)         Start/End         (kN)         (kN)         (kNm)           1         2.4         1         0         -0.4         0           Load combination: 1.00G + 1.00Q (Service)         Element         Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.4         0           Load combination: 1.00G + 1.00Q (Service)         Element         Length         Nodes         Axial force         Moment         (kN)         (kNm)         (kNm)         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                      |                  | Moment       | Shear force   | Axial force    | Nodes                  | Length                        | Element |
| 1       2.4       1       0       -0.4       0         Load combination: 1.00G + 1.00Q (Service)         Element       Length       Nodes       Axial force       Shear force       Moment         1       2.4       1       0       -0.3       0         1       2.4       1       0       -0.3       0         1       2.4       1       0       -0.3       0         Load combination: 1.00G + ψ21.00Q (Quasi)       Element       Kint/End       (KN)       (KN)       (KNm)         1       2.4       1       0       -0.2       0       0         1       2.4       1       0       -0.2       0       0         1       2.4       1       0       -0.2       0       0         1       2.4       1       0       -0.2       0       0         Forces       Strength combinations - Moment envelope (kNm)       0.3       0.3       0.3         0.3         0.3         0.3         0.4         0.3         0.3         0.3         <td colspan="</td> <td></td> <td></td> <td></td> <td>(kNm)</td> <td>(kN)</td> <td>(kN)</td> <td>Start/End</td> <td>(m)</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |                  | (kNm)        | (kN)          | (kN)           | Start/End              | (m)                           |         |
| Image: Load combination:         1.00G + 1.00Q (Service)           Element         Image: Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.3         0           1         2.4         1         0         -0.3         0           1         2.4         1         0         -0.3         0           Lead combination:         1.00G + w21.00Q (Quasi)         Image: Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.2         0         0         0           1         2.4         1         0         -0.2         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 </td <td></td> <td></td> <td></td> <td>0</td> <td>-0.4</td> <td>0</td> <td>1</td> <td>2.4</td> <td>1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                      |                  | 0            | -0.4          | 0              | 1                      | 2.4                           | 1       |
| Load combination: 1.00G + 1.00Q (Service)           Element         Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.3         0           2         0         -0.3         0         0           Load combination:         1.00G + ψ21.00Q (Quasi)              Element         Length         Nodes         Axial force         Shear force         Moment           (m)         Start/End         (kN)         (kN)         (kNm)            1         2.4         1         0         -0.2         0            1         2.4         1         0         -0.2         0             1         2.4         1         0         -0.2         0             Strength combinations - Moment envelope (kNm)           0.3         Other combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |                  | 0            | -0.4          | 0              | 2                      |                               |         |
| Element         Length<br>(m)         Nodes<br>Start/End         Axial force<br>(kN)         Shear force<br>(kNm)         Moment<br>(kNm)           1         2.4         1         0         -0.3         0           Load combination: 1.00G + ψ21.00Q (Quasi)           Element         Length<br>(m)         Nodes         Axial force         Shear force         Moment<br>(kNm)           1         2.4         1         0         -0.2         0           1         2.4         1         0         -0.2         0           1         2.4         1         0         -0.2         0           1         2.4         1         0         -0.2         0           Strength combinations - Moment envelope (kNm)           0           0           0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                      |                  |              |               | 0Q (Service)   | 1.00G + 1.0            | ombination:                   | Load c  |
| (m)         Start/End         (kN)         (kNm)           1         2.4         1         0         -0.3         0           2         0         -0.3         0         0         0           Load combination: 1.00G + ψ21.00Q (Quasi)           Element         Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.2         0         0           1         2.4         1         0         -0.2         0         0           1         2.4         1         0         -0.2         0         0           Forces   Strength combinations - Moment envelope (kNm)           0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      |                  | Moment       | Shear force   | Axial force    | Nodes                  | Length                        | Element |
| 1         2.4         1         0         -0.3         0           Load combination: 1.00G + ψ21.00Q (Quasi)           Element         Length         Nodes         Axial force         Shear force         Moment           1         2.4         1         0         -0.2         0           1         2.4         1         0         -0.2         0           1         2.4         1         0         -0.2         0   Forces Forces Strength combinations - Moment envelope (kNm)           03         03         03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |                  | (kNm)        | (kN)          | (kN)           | Start/End              | (m)                           |         |
| Load combination:       1.00G + ψ21.00Q (Quasi)         Element       Length       Nodes       Axial force       Shear force       Moment         1       2.4       1       0       -0.2       0         1       2.4       1       0       -0.2       0         Forces         Strength combinations - Moment envelope (kNm)         0.3         Strength combinations - Shear envelope (kN)         0.3         Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |                      |                  | 0            | -0.3          | 0              | 1                      | 2.4                           | 1       |
| Load combination: 1.00G + ψ21.00Q (Quasi)         Element       Length       Nodes       Axial force       Shear force       Moment         1       2.4       1       0       -0.2       0         1       2.4       1       0       -0.2       0         Forces         Strength combinations - Moment envelope (kNm)         0.3         Strength combinations - Shear envelope (kN)         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      |                  | 0            | -0.3          | 0              | 2                      |                               |         |
| Element       Length       Nodes       Axial force       Shear force       Moment         1       2.4       1       0       -0.2       0         Torces         Forces       Strength combinations - Moment envelope (kNm)         0.3         Strength combinations - Shear envelope (kN)         0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |                      |                  |              |               | I.00Q (Quasi)  | 1.00G + ψ <sup>2</sup> | ombination:                   | Load c  |
| Image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |                  | Moment       | Shear force   | Axial force    | Nodes                  | Length                        | Element |
| 1       2.4       1       0       -0.2       0         Forces         Strength combinations - Moment envelope (kNm)         0.3         Strength combinations - Shear envelope (kN)         0.3         Strength combinations - Shear envelope (kN)         0.4         0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |                  | (kNm)        | (kN)          | (kN)           | Start/End              | (m)                           | 4       |
| Forces<br>Strength combinations - Moment envelope (kNm)<br>0.3<br>Strength combinations - Shear envelope (kN)<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |                      |                  | 0            | -0.2          | 0              | 2                      | 2.4                           | 1       |
| Strength combinations - Moment envelope (kNm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                      |                  | 0            | -0.2          | 0              | 2                      |                               |         |
| Strength combinations - Moment envelope (kNm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |                      |                  |              |               |                |                        | i                             | Forces  |
| 0.3<br>Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      | ope (kNm)        | oment envel  | binations - M | Strength con   |                        |                               |         |
| 0.3<br>Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          | A                    |                  |              |               |                | _                      | 4                             |         |
| 0.3<br>Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      |                  |              |               |                |                        |                               |         |
| 0.3<br>Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |                      |                  |              | 0.2           |                |                        |                               |         |
| Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |                  |              | 0.5           |                |                        |                               |         |
| Strength combinations - Shear envelope (kN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |                      |                  |              |               |                |                        |                               |         |
| 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                      | ope (kN)         | Shear envelo | ombinations - | Strength co    |                        |                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |                  |              |               |                |                        | 0.4                           |         |
| Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                      |                  |              |               |                |                        |                               |         |
| Å Å                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |                      |                  |              |               |                |                        |                               |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          | æ                    |                  |              |               |                |                        | Å                             |         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |                      |                  |              |               |                |                        |                               |         |
| .0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | -0.4                 |                  |              |               |                |                        |                               |         |
| -0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          | -0.4                 |                  |              |               |                |                        |                               |         |
| <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |                      |                  |              |               |                |                        | -                             |         |

# **Envelope - Strength combinations**

| Member | Position | Shear         | r force | Мо        | ment |
|--------|----------|---------------|---------|-----------|------|
|        | (m)      | (k            | N)      | (k        | Nm)  |
| Member | 0        | 0.4 (max abs) |         | 0 (min)   |      |
|        | 1.2      | 0             |         | 0.3 (max) |      |
|        | 2.4      | -0.4          |         | 0 (min)   |      |
|        | •        |               |         |           |      |

Tedds calculation version 2.2.20

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                             |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | 1                 |                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| SPARK STRUCTURES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Project<br>Apartment 3.10                                                     | St Pancras Ch                                                                                                                                | ambers, Eusto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | on Road, London,                                                                                                                                                                         | Job no.<br>23     | 304                         |
| 21 Court Road South                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calcs for                                                                     |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          | Start page no./R  | evision                     |
| Caerphiliy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | Partition \                                                                                                                                  | Wall Studs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                          |                   | 10                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Calcs by<br>LE                                                                | Calcs date<br>06/12/2023                                                                                                                     | Checked by<br>LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Checked date<br>06/12/2023                                                                                                                                                               | Approved by<br>LE | Approved date<br>06/12/2023 |
| Member - Span 1<br>Partial factor for material prop<br>Partial factor for material proper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>perties and resis</b><br>ties - Table 2.3                                  | tances<br>γм = 1.300                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |                   |                             |
| Member details<br>Load duration - cl.2.3.1.2<br>Service class - cl.2.3.1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                               | Short-term<br>1                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |                   |                             |
| Timber section details<br>Number of timber sections in me<br>Breadth of sections<br>Depth of sections<br>Timber strength class - EN 338:<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07<br>47-07 | ember<br>2016 Table 1<br>→I                                                   | N = 1<br>b = 47 mm<br>h = 100 mm<br>C16                                                                                                      | n<br>ton<br>a, A, 4700 mm <sup>2</sup><br>, 78333.3 mm <sup>3</sup><br>, 36817 mm <sup>3</sup><br>area, I <sub>4</sub> , 3916667 mm <sup>3</sup><br>area, I <sub>4</sub> , 365192 mm <sup>4</sup><br>, 28.9 mm<br>, 13.6 mm<br>ass C16<br>ng strength, f <sub>1,4</sub> , 3.2 N/m<br>ression strength parallel to (<br>asticity, E <sub>0, man</sub> , 8000 h<br>ulus of elasticity, E <sub>0, add</sub><br>asticity, G <sub>mean</sub> , 500 N/<br>ty, p <sub>4</sub> , 310 kg/m <sup>3</sup><br>370 kg/m <sup>3</sup> | /mm²<br>m²<br>lei to grain, f <sub>c.8.4</sub> , 17 N/mm<br>endicular to grain, f <sub>c.86.4</sub> , 2.<br>grain, f <sub>c.8.4</sub> , 8.5 N/mm²<br>N/mm²<br>N/mm²<br>5400 N/mm²<br>mm² | ²<br>2 N/mm²      |                             |
| <b>Span details</b><br>Bearing length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                               | L <sub>b</sub> = <b>50</b> mm                                                                                                                | ı                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                          |                   |                             |
| Consider Combination 1 - 1.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5G + 1.50Q (Stre                                                              | ngth)                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |                   |                             |
| Modification factors<br>Duration of load and moisture c<br>Deformation factor - Table 3.2<br>Depth factor for bending - Major<br>Bending stress re-distribution fa<br>Crack factor for shear resistanc<br>System strength factor - cl.6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ontent - Table 3.<br>axis - exp.3.1<br>actor - cl.6.1.6(2)<br>e - cl.6.1.7(2) | 1 kmod = 0.9<br>kdef = 0.6<br>kh,m,y = min<br>km = 0.7<br>kcr = 0.67<br>ksys = 1.1                                                           | ((150 mm / h) <sup>0.</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>2</sup> , 1.3) <b>= 1.084</b>                                                                                                                                                       |                   |                             |
| Check design at start of span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                               |                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                          |                   |                             |
| Check compression perpendi<br>Design perpendicular compress<br>Effective contact length<br>Design perpendicular compress<br>Design perpendicular compress                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cular to the grai<br>ion - major axis<br>ive stress - exp.6<br>ive strength   | <b>n - cl.6.1.5</b><br>$F_{c,y,90,d} = 0.4$<br>$L_{b,ef} = L_{b} + 16$<br><b>5.4</b> $\sigma_{c,y,90,d} = F_{c}$<br>$f_{c,y,90,d} = K_{max}$ | <b>43 kN</b><br>min(Lb, 30 mm)<br>,y,90,d / (b × Lb,ef)<br>od × ksys × fc.90,k /                                                                                                                                                                                                                                                                                                                                                                                                                                        | ) = <b>80</b> mm<br>) = <b>0.114</b> N/mm²<br>/ γ <sub>M</sub> = <b>1.675</b> N/mm                                                                                                       | 1 <sup>2</sup>    |                             |
| PASS - Design pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rpendicular com                                                               | pression stre                                                                                                                                | $\operatorname{ngth}\operatorname{exceeds}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | design perpendi                                                                                                                                                                          | cular compre      | ession stress               |

|                                                                                                                                                                                                                                  | Project                                                               |                                                                                                                                                                                                     |                                                                                                                               |                                                                                  | Job no.                                |               |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------|---------------|--|--|
| SPARK STRUCTURES.                                                                                                                                                                                                                | Apartment 3                                                           | 3.10 St Pancras Ch                                                                                                                                                                                  | 2304                                                                                                                          |                                                                                  |                                        |               |  |  |
| 21 Court Road South                                                                                                                                                                                                              | Calcs for                                                             |                                                                                                                                                                                                     | Start page no./Revision                                                                                                       |                                                                                  |                                        |               |  |  |
| Caerphilly                                                                                                                                                                                                                       |                                                                       | Partition                                                                                                                                                                                           | 11                                                                                                                            |                                                                                  |                                        |               |  |  |
|                                                                                                                                                                                                                                  | Calcs by                                                              | Calcs date                                                                                                                                                                                          | Checked by                                                                                                                    | Checked date                                                                     | Approved by                            | Approved date |  |  |
|                                                                                                                                                                                                                                  | LE                                                                    | 06/12/2023                                                                                                                                                                                          | LE                                                                                                                            | 06/12/2023                                                                       | LE                                     | 06/12/2023    |  |  |
| Chack chaor force Section                                                                                                                                                                                                        | 617                                                                   |                                                                                                                                                                                                     |                                                                                                                               |                                                                                  |                                        |               |  |  |
| Design shear force                                                                                                                                                                                                               | 10.1.7                                                                | F <sub>y,d</sub> = <b>0.43</b>                                                                                                                                                                      | kN                                                                                                                            |                                                                                  |                                        |               |  |  |
| Design shear stress - exp.6.6                                                                                                                                                                                                    | 0                                                                     | $\tau_{y,d} = 1.5 \times$                                                                                                                                                                           | $F_{y,d} / (k_{cr} \times b \times b)$                                                                                        | h) = <b>0.205</b> N/mm <sup>2</sup>                                              |                                        |               |  |  |
| Design shear strength                                                                                                                                                                                                            |                                                                       | $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_M = 2.437 \text{ N/mm}^2$                                                                                                               |                                                                                                                               |                                                                                  |                                        |               |  |  |
|                                                                                                                                                                                                                                  |                                                                       | $\tau_{y,d} / f_{v,y,d} =$                                                                                                                                                                          | 0.084                                                                                                                         |                                                                                  |                                        |               |  |  |
|                                                                                                                                                                                                                                  |                                                                       |                                                                                                                                                                                                     |                                                                                                                               |                                                                                  |                                        |               |  |  |
|                                                                                                                                                                                                                                  |                                                                       | PAS                                                                                                                                                                                                 | SS - Design s                                                                                                                 | near strength exc                                                                | eeas aesign                            | shear stress  |  |  |
| Check design 1200 mm alor                                                                                                                                                                                                        | ng span                                                               | PA                                                                                                                                                                                                  | SS - Design s                                                                                                                 | near strength exc                                                                | eeds design                            | shear stress  |  |  |
| <u>Check design 1200 mm alor</u><br>Check bending moment - Se                                                                                                                                                                    | ng span<br>ection 6.1.6                                               | PA:                                                                                                                                                                                                 | 55 - Design s                                                                                                                 | near strength exc                                                                | eeds design                            | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment                                                                                                                                                  | ng span<br>ection 6.1.6                                               | PA:<br>M <sub>y,d</sub> = <b>0.25</b>                                                                                                                                                               | 55 - Design s<br><b>3</b> kNm                                                                                                 | near strengtn exc                                                                | eeas aesign                            | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress                                                                                                                         | ng span<br>ection 6.1.6                                               | PA:<br>M <sub>y,d</sub> = <b>0.25</b><br>σ <sub>m,y,d</sub> = M <sub>y,d</sub>                                                                                                                      | 55 - Design s<br>3 kNm<br>/ Wy = 3.293                                                                                        | near strengtn exc<br>N/mm²                                                       | eeas aesign                            | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength                                                                                              | ng span<br>ection 6.1.6                                               | $M_{y,d} = 0.25i$<br>$\sigma_{m,y,d} = M_{y,d}$<br>$f_{m,y,d} = k_{h,m,y}$                                                                                                                          | 55 - Design s<br>8 kNm<br>/ Wy = <b>3.293</b><br>/ × kmod × ksys >                                                            | near strengtn exc<br>N/mm²<br>< fm.k / γM = <b>13.214</b>                        | eeas aesign<br>N/mm²                   | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength                                                                                              | ng span<br>ection 6.1.6                                               | $M_{y,d} = 0.254$ $\sigma_{m,y,d} = M_{y,d}$ $f_{m,y,d} = K_{h,m,y}$ $\sigma_{m,y,d} / f_{m,y,d}$                                                                                                   | 55 - Design s<br>8 kNm<br>/ Wy = <b>3.293</b><br>- × k <sub>mod</sub> × k <sub>sys</sub> ><br>= <b>0.249</b>                  | near strengtn exc<br>N/mm²<br>< fm.k / γм = <b>13.214</b>                        | eeas aesign<br>N/mm²                   | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength                                                                                              | ng span<br>ection 6.1.6                                               | PAS<br>$M_{y,d} = 0.25i$<br>$\sigma_{m,y,d} = M_{y,d}$<br>$f_{m,y,d} = k_{h,m,y}$<br>$\sigma_{m,y,d} / f_{m,y,d}$<br>PASS - E                                                                       | 55 - Design s<br>8 kNm<br>/ Wy = <b>3.293</b><br>/ × kmod × ksys ><br>= <b>0.249</b><br>Design bendir                         | near strength exc<br>N/mm²<br>< fm.k / γM = <b>13.214</b>  <br>ng strength excee | :eeas aesign<br>N/mm²<br>ds design be  | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength                                                                                              | ng span<br>ection 6.1.6                                               | PAS<br>$M_{y,d} = 0.254$<br>$\sigma_{m,y,d} = M_{y,d}$<br>$f_{m,y,d} = k_{h,m,y}$<br>$\sigma_{m,y,d} / f_{m,y,d}$<br>PASS - E                                                                       | 55 - Design s<br>8 kNm<br>/ Wy = <b>3.293</b><br>/ × k <sub>mod</sub> × k <sub>sys</sub> ×<br>= <b>0.249</b><br>Design bendir | near strength exc<br>N/mm²<br>fm.k / γм = <b>13.214</b> h<br>ng strength excee   | :eeas aesign<br>N/mm²<br>ds design be  | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength<br>Consider Combination 2 - 1.                                                               | ng span<br>ection 6.1.6<br>.00G + 1.00Q (\$                           | PAS<br>$M_{y,d} = 0.25i$<br>$\sigma_{m,y,d} = M_{y,d}$<br>$f_{m,y,d} = k_{h,m,y}$<br>$\sigma_{m,y,d} / f_{m,y,d}$<br>PASS - E<br><u>Service</u>                                                     | 55 - Design s<br><b>3 kNm</b><br>/ Wy = <b>3.293</b><br>/ × kmod × ksys ><br>= <b>0.249</b><br>Design bendir                  | near strength exc<br>N/mm²<br>< fm.k / γM = <b>13.214</b>  <br>ng strength excee | :eeas aesign<br>N/mm²<br>ds design be  | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength<br>Consider Combination 2 - 1.<br>Check design 1200 mm alor                                  | ng span<br>ection 6.1.6<br>.00G + 1.00Q (\$<br>ng span                | PAS<br>M <sub>y,d</sub> = <b>0.25</b><br>σ <sub>m,y,d</sub> = M <sub>y,d</sub><br>f <sub>m,y,d</sub> = k <sub>h,m,y</sub><br>σ <sub>m,y,d</sub> / f <sub>m,y,d</sub><br>PASS - E<br><u>Service)</u> | 3 kNm<br>/ Wy = <b>3.293</b><br>/ × k <sub>mod</sub> × k <sub>sys</sub> ×<br>= <b>0.249</b><br>Design bendir                  | near strengtn exc<br>N/mm²<br>fm.k / γм <b>= 13.214</b> h<br>ng strength excee   | :eeas aesign<br>N/mm²<br>ds design be  | shear stress  |  |  |
| Check design 1200 mm alor<br>Check bending moment - Se<br>Design bending moment<br>Design bending stress<br>Design bending strength<br>Consider Combination 2 - 1.<br>Check design 1200 mm alor<br>Check y-y axis deflection - S | ng span<br>ection 6.1.6<br>.00G + 1.00Q (\$<br>ng span<br>Section 7.2 | PA:<br>M <sub>y,d</sub> = <b>0.25</b><br>σ <sub>m,y,d</sub> = M <sub>y,d</sub><br>f <sub>m,y,d</sub> = k <sub>h,m,y</sub><br>σ <sub>m,y,d</sub> / f <sub>m,y,d</sub><br>PASS - [<br><u>Service)</u> | 55 - Design s<br>8 kNm<br>/ Wy = <b>3.293</b><br>/ × kmod × ksys ><br>= <b>0.249</b><br>Design bendir                         | near strength exc<br>N/mm²<br>< fm.k / γM = <b>13.214</b> h<br>ng strength excee | :eeas aesign<br>N/mm²<br>:ds design be | shear stress  |  |  |

Instantal leous deflection $\delta y = 3.6$  mmQuasi-permanent variable load factor $\psi_2 = 0.3$ Final deflection with creep $\delta_{y,Final} = 0.5 \times \delta_y \times (1 + k_{def}) + 0.5 \times \delta_y \times (1 + \psi_2 \times k_{def}) = 5$  mmAllowable deflection $\delta_{y,Allowable} = L_{m1_s1} / 360 = 6.7$  mm $\delta_{y,Final} / \delta_{y,Allowable} = 0.75$ 

PASS - Allowable deflection exceeds final deflection