Integration **Date** 25.01.2024 68 Elsworthy Road Energy & Sustainability Statement ### Document status | Drainet no | | Project | Client | In conjunction with: | |-------------------|------------|--|---|--| | Project no
793 | | 68 Elsworthy Road
London
NW3 3BP
United Kingdom | Mrs. S. Freeman
68 Elsworthy Road
London
NW3 3BP
United Kingdom | KSR Architects 14 Greenland Street Camden London NW1 0ND | | Revision | Date | Status | Prepared by | Checked by | | _ | 25.01.2024 | Issue | Natasha Sidhu | Alan Harries | ### Contents | EXECU | KECUTIVE SUMMARY | | | | |-------|------------------|--|----|--| | | Car | 'bon | 5 | | | | Sus | stainability | 6 | | | 1 | INT | INTRODUCTION | | | | | 1.1 | The Development Site | 7 | | | | 1.2 | Proposed Development Overview | 8 | | | | 1.3 | Energy and Sustainability Aspirations | 11 | | | 2 | POI | LICY REVIEW | 12 | | | | 2.1 | National Planning Policy Framework (NPPF – September 2023) | 12 | | | | 2.2 | London Plan 2021 | 12 | | | | 2.3 | Local Policy | 14 | | | 3 | DES | SIGN APPROACH - SUSTAINABILITY | 15 | | | | 3.1 | Water use | 15 | | | | 3.2 | Air Quality | 15 | | | | 3.3 | Noise | 15 | | | | 3.4 | Sustainable Materials & Minimising Waste | 15 | | | | 3.5 | Biodiversity | 16 | | | | 3.6 | Sustainable Transport | 16 | | | | 3.7 | Demand Side Response | 16 | | | 4 | DES | SIGN APPROACH - ENERGY | 17 | | | | 4.1 | The Energy Hierarchy | 17 | | | | 4.2 | Climate Analysis | 18 | | | | 4.3 | Building Fabric Performance & Insulation | 18 | | | | 4.4 | Air Tightness, Infiltration and Thermal Bridging | 18 | | | | 4.5 | Natural Ventilation & Thermal Mass | 19 | | | | 4.6 | Solar Exposure & Daylight | 19 | | | | 4.7 | Active Building Services Systems | 19 | | | | 4.8 | Cooling & Overheating | 19 | | | 5 | CAI | RBON EMISSIONS | 20 | | | | 5.1 | Baseline | 20 | | | | 5.2 | "Be Lean Emissions" | 71 | | | Energy & 25.01.2024 | | inability Statement | 4 | |---------------------|----------|-------------------------------------|----| | | | | | | | 5.3 | "Be Lean" Total Carbon Emissions | 21 | | | 5.4 | "Be Clean" Emissions | 22 | | | 5.5 | "Be Green" Emissions | 23 | | 6 | SUMMARY | | | | | 6.1 | Sustainability Summary | 24 | | | 6.2 | Carbon Emissions Summary | 24 | | | 6.3 | Future Proofing to 2050 Summary | 25 | | | 6.4 | Cost of Energy Summary | 25 | | APPENDI | IX A: TI | ECHNOLOGY FEASIBILITY STUDY SUMMARY | 26 | | APPENDI | IX B: P | SI VALUES | 27 | | APPENDI | IX C: S/ | AP AND GLA DATASHEETS | 28 | ### **Executive Summary** This Energy and Sustainability Statement has been prepared by Integration Consultancy Limited in support of the full planning application for the proposed development at 68 Elsworthy Road in the London Borough of Camden. The existing unlisted 3 storey house has fallen into a state of disrepair and the proposed development comprises the refurbishment of the property together with a rear extension, to align with the development at no. 66, and a new basement. #### **CARBON** The local policy targets include a minimum onsite contribution of 35% below Part L and the minimum energy efficiency ("Be Lean") onsite contribution is 10%. For a deep refurbishment, local policy state that "deep refurbishments should also meet the London Plan carbon reduction targets for new buildings". In relation to these targets, this development has been shown to have: - 56% total onsite improvement in carbon dioxide (CO₂) emissions over the Target Emission Rate (TER) outlined in the national Building Regulations 2021 compared to the target of 35%. - 11% dwelling energy efficiency (Be Lean) contribution to the improvement in carbon dioxide (CO₂) emissions over the Be Lean Target Emission Rate (TER) - compared to the target of 10%. The proposed design achieves this via the following strategies: #### High-Efficiency Building (Be Lean) The scheme uses high performance building fabric, passive low energy design and low energy building services systems such as mechanical ventilation with heat recovery (MVHR) and LED lighting. #### Local Renewable Energy (Be Green) Following a Low and Zero Carbon (LZC) Technology feasibility study it is proposed to provide: - · 2kWpeak of solar photovoltaic (PV) modules located at roof level. - · Space heating and hot water via ground source heat pumps which will be in part powered by the local solar PV array. The table below shows the overall regulated and unregulated energy use. | Carbon dioxide emissions (Tonnes CO ₂ per annum) | Regulated | Unregulated | | |---|-----------|-------------|--| | Baseline: Part L 2021 (Building Regulations) Compliance | 8.8 | 1.8 | | | After "Be Lean" (energy demand reduction) | 7.8 | 1.8 | | | After "Be Clean" (heat network / CHP) | 7.8 | 1.8 | | | After "Be Green" (renewable energy) | 3.9 | 1.8 | | Table 1: Summary of refurbishment carbon emissions This performance can be expressed as savings between each stage in the energy hierarchy. | Regulated carbon dioxide savings | (Tonnes CO ₂ per annum) | (%) | | |--|------------------------------------|-----|--| | Savings from "Be Lean" (energy demand reduction) | 1.0 | 11% | | | Savings from "Be Clean" (heat network / CHP) | 0 | 0% | | | Savings from "Be Green" (renewable energy) | 4.0 | 45% | | | Total cumulative on-site savings | 4.9 | 56% | | | Shortfall to 100% below Part L (annual) | 3.9 | | | | Shortfall over 30 years | 116 | | | | Carbon Offset Fund (@£95/tonne) | £ 11,036 | | | Table 2: Regulated CO2 emissions savings after each stage of the Energy Hierarchy #### **SUSTAINABILITY** In addition to the low energy performance set out above, the scheme benefits from several sustainability aspects. These include the use of water saving devices to achieve 105 litre per person per day. Health and wellbeing is supported by aspects such as high levels of fresh air provided by mechanical ventilation with heat recovery. In terms of sustainable travel, the dwelling is within walking distance from South Hempstead, Swiss Cottage and St John's Wood stations as well as local several bus stops. A residents' guide will be created to help residents reduce energy, water and waste, avoid overheating and keep air quality high. The development aims to support biodiversity e.g. through green roofs on the first floor extension and the garden room. The scheme is also demand side response (DSR) enabled through the provision of a large centralised electric-powered heat pump systems with large energy storage vessels located in the basement plantroom in order to work with National Grid signalling / time of use tariffs. This supports the transition to low carbon electricity and reduces energy costs for residents. ### 1 Introduction Integration Consultancy Limited has been appointed to undertake an Energy and Sustainability Statement in support of the full planning application for the proposed 68 Elsworthy Road refurbishment in the London Borough of Camden. The report is one of several that accompany the planning application and should be read in conjunction with these documents. The importance of developing a robust well-considered energy and sustainability strategy cannot be overstated. This strategy sets out the roadmap for the entire project and ultimately the success of the strategy will translate into the success of the building's performance on practical completion and throughout its lifecycle. Underpinning the energy strategy is the 'Be Lean', 'Be Clean 'and 'Be Green' design framework which has been adopted by the London Plan. - 'Be Lean' (energy demand minimisation through 'passive' and 'active' design measures) - · 'Be Clean' (efficient energy supply) - 'Be Green' (renewable energy generation) This report sets out the scheme's energy and sustainability aspirations and demonstrates, via the approved calculation methodologies, how these will be achieved through the detailed design and construction stages. As part of this exercise, the feasibility of implementing a variety of low carbon technologies and renewable energy systems is considered based on aspects such as site location and climate, potential carbon savings, economic viability, environmental impacts and practical aspects such as integration and maintenance considerations. #### 1.1 THE DEVELOPMENT SITE The site is located at 68 Elsworthy Road, South Hampstead, London, NW3 3BP. Figure 1: Site Location Figure 2: Aerial view of site #### 1.2 PROPOSED DEVELOPMENT OVERVIEW The existing building is an unlisted 3 storey house, situated within the Elsworthy conservation area, which has fallen into a state of disrepair. The proposed development comprises a deep refurbishment and an extension to the rear to align with the development at no. 66 and a new basement. The demolition is kept to a minimum, only taking place where necessary for the extension, and where the existing structure is compromised. Figure 3: Proposed and existing development scheme- front elevation Figure 4: Proposed and existing development scheme-rear elevation Figure 5: Proposed and existing development scheme- north elevation Figure 6: Proposed and existing development scheme- south elevation Figure 7: Proposed development scheme – new lower basement floor plan Figure 8: Proposed development scheme – new basement floor plan Figure 9: Proposed development scheme – Ground floor plan Figure 10: Proposed development scheme – First floor plan Figure 11: Proposed development scheme – Second floor plan #### 1.3 ENERGY AND SUSTAINABILITY ASPIRATIONS The scheme has adopted energy and sustainability targets in line with the national and local policy as detailed in section 2. These include: $\textbf{Zero
CO}_2 \, \textbf{emissions:} \, \text{Achieve zero carbon (100\% below Part L) with a minimum on-site contribution of 35\% below Part L.}$ $\textbf{Energy Efficient:} \ \textbf{Achieve a minimum energy efficiency ("Be Lean") on site contribution of 10\%}$ Low Water Use: The development aims to meeting the London Plan target of achieving at least 1051/p/d. Zero Fossil Fuels on site: In order to achieve zero carbon on-site by 2050 the scheme aims not to use any fossil fuels on site. **Biodiversity:** The development aims to support biodiversity e.g. through green roofs. ### 2 Policy Review #### 2.1 NATIONAL PLANNING POLICY FRAMEWORK (NPPF – SEPTEMBER 2023) #### **Sustainable Development** The NPPF is very clear on the importance of sustainable development with the first line of the first main chapter stating "The purpose of the planning system is to contribute to the achievement of sustainable development". Sustainable development meanina: - economic objective to help build a strong, responsive and competitive economy, by ensuring that sufficient land of the right types is available in the right places and at the right time to support growth, innovation and improved productivity; and by identifying and coordinating the provision of infrastructure; - a social objective to support strong, vibrant and healthy communities, by ensuring that a sufficient number and range of homes can be provided to meet the needs of present and future generations; and by fostering well-designed, beautiful and safe places, with accessible services and open spaces that reflect current and future needs and support communities' health, social and cultural well-being; and - an environmental objective to protect and enhance our natural, built and historic environment; including making effective use of land, improving biodiversity, using natural resources prudently, minimising waste and pollution, and mitigating and adapting to climate change, including moving to a low carbon economy. At the heart of the Framework is a presumption in favour of sustainable development. #### Meeting the Challenge of Climate Change Section 14 of the NPPF relates to the challenge of climate change. Paragraph 152 states: "The planning system should support the transition to a low carbon future in a changing climate, taking full account of flood risk and coastal change. It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure." The importance of renewable energy is also highlighted by paragraph 155 and 156. #### **National Carbon Targets** The UK government declared a Climate Emergency and amended the Climate Change Act in June 2019 to set a legally-binding carbon emission target for the UK of "at least 100% of 1990 levels by 2050" i.e. net zero carbon emissions¹. Around 20% of the UK's emissions come directly from residential energy use and government has set out a consultation process leading up to the Future Homes Standard which will define how the housing sector will respond to the emergency. This will replace Building Regulations in 2025. #### 2.2 **LONDON PLAN 2021** Regional policy in London is controlled by The Greater London Authority and is set out in The London Plan adopted on 2nd March 2021 which provides policy and guidance in the London context. One of the key overarching goals for London is to become a zero-carbon city by 2030. The plan states that all 'major' developments (greater than 1,000m² or 10 units or more) must achieve net zero carbon (100% below Part L). The remaining regulated carbon dioxide emissions to 100% can be off-set using a cash-in-lieu contribution to the local borough, to secure carbon dioxide savings elsewhere. ¹ Climate Change Act 2008 (c. 27) as amended by The Climate Change Act 2008 (2050 Target Amendment) Order 2019 [SI 2019 No. 1056] The details of the main London Plan policy requirement are given below: #### POLICY SI 2 - MINIMISING GREENHOUSE GAS EMISSIONS - a. Major development should be net zero-carbon. This means reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand in accordance with the following energy hierarchy: - · Be lean: use less energy and manage demand during operation - Be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly - · Be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site - · Be seen: monitor, verify and report on energy performance. - b. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy. - c. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either: - · through a cash in lieu contribution to the borough's carbon offset fund, or - · off-site provided that an alternative proposal is identified and delivery is certain. - d. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually. - e. Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions. #### POLICY SI 5 - WATER INFRASTRUCTURE - In order to minimise the use of mains water, water supplies and resources should be protected and conserved in a sustainable manner. - b. Development Plans should promote improvements to water supply infrastructure to contribute to security of supply. This should be done in a timely, efficient and sustainable manner taking energy consumption into account. - c. Development proposals should: - through the use of Planning Conditions minimise the use of mains water in line with the Optional Requirement of the Building Regulations (residential development), achieving mains water consumption of 105 litres or less per head per day (excluding allowance of up to five litres for external water consumption) - achieve at least the BREEAM excellent standard for the 'Wat 01' water category 160 or equivalent (commercial development) - incorporate measures such as smart metering, water saving and recycling measures, including retrofitting, to help to achieve lower water consumption rates and to maximise future-proofing. #### 2.3 LOCAL POLICY #### **Camden Relevant Policies** The borough of Camden emerging Local Plan comprises a number of policies related to sustainability such as CC1: Climate change mitigation, CC2: Adapting to climate change, CC4: Air quality and CC5: Policy D2: Heritage. Clarity on the local carbon policy is provided by the "Camden Planning Guidance Energy efficiency and adaptation" document dated January 2021. Table 2a, reproduced below, presents the energy reduction targets for domestic developments. As the scheme is >1000m² it has been assessed against the major scheme requirements highlighted yellow below. As such the Be Lean target for the new build elements is 10% below Part L1 and the overall carbon reduction targets are 35% below Part L1. Table 2a states that refurbishment areas should achieve the greatest possible carbon reduction. However, The "Key Messages" from section 7 "Energy Reduction" states that "deep refurbishments" should also meet the London Plan carbon reduction targets for <u>new buildings</u>. Therefore, the refurbished areas have also been assessed under Part L1 with the aim of achieving 10% below Part L for Be Lean and 35% below Part L overall. #### 7. Energy reduction #### KEY MESSAGES - All development in Camden is expected to reduce carbon dioxide emissions through the application of the energy hierarchy. - All new build major development to demonstrate compliance with London Plan targets for carbon dioxide emissions. - <u>Deep refurbishments</u> (i.e. refurbishments assessed under Building Regulations Part L1A/L2A) <u>should also meet the London Plan carbon reduction targets for new buildings</u>. - All new build residential development (of 1 9 dwellings) must meet 19% carbon dioxide reduction; and - Developments of five or more dwellings and/or more than 500sqm of any gross internal floorspace to achieve 20% reduction in carbon dioxide emissions from on-site renewable energy generation. #### Table 2a Energy reduction targets, domestic | Development should comply with these standards/provide this information | Residential New Build | inder L1A) | Residential Refurbishment (assessed under L1B) | | | | |--|--|--|---|---|---|---| | uns information | Major
(10+ units or >1,000 sqm
new floor space) | Medium
(5-9
units,
>500sq.m
and <1,000
sqm new
floor space) | Minor All new dwellings (up to 4 units and <500 sqm new floor space) | Major
(10+ units
or >1,000
sqm) | Medium
(5-9 units,
>500sq.m
and <1,000
sqm) | Minor
(up to 4 units
and <500
sqm) | | Energy and carbon reduction targe | ts | | | | | | | Overall carbon reduction targets: | Zero Carbon, minimum 35% reduction beyond Part L Building Regulations on site, with 10% reduction through on-site energy efficiency measures). | 19% below
Part L of 2013
Building
Regulations
(Local Plan | 19% below
Part L of 2013
Building
Regulations
(Local Plan | Greatest
possible
reduction -
meeting Part
L1B for
retained
thermal | Greatest
possible
reduction -
meeting Part
L1B for
retained
thermal | Greatest
possible
reduction -
meeting Part
L1B for
retained
thermal | | | (London Plan, Local Plan
CC1) | CC1) | CC1) | elements
(London Plan
5.4, Local
Plan CC1) | elements
(London Plan
5.4, Local
Plan CC1) | elements
(London Plan
5.4, Local
Plan CC1) | | Reduction in CO2 from onsite
renewables (after all other energy
efficiency measures have been
incorporated) | 20% (London Plan, Local
Plan CC1) | 20% (London
Plan, Local
Plan CC1) | Incorporate
renewables
where
feasible | 20% (London
Plan 5.4, 5.7,
Local Plan
CC1) | 20% (London
Plan 5.4, 5.7,
Local Plan
CC1) | Incorporate
renewables
where
feasible | Table 3: Camden reduction targets (Table 2a, Camden Planning Energy Guidance Energy efficiency and adaptation) ### 3 Design Approach - Sustainability #### 3.1 WATER USE For accommodation areas the development adopts equipment specification in line with the higher water use standard of 105 l/p.day. | Fitting | Water Consumption | |-----------------|---------------------------| | WC | 4/26 litres dual flush | | Shower | 8 litres / minute | | Washbasin | 5 litres/minute | | Kitchen sink | 6 litres / minute | | Dishwasher | 1.25 litres/place setting | | Washing machine | 8.17 litres/kg | Table 4: Minimum water fitting standards for units. #### 3.2 AIR QUALITY Air quality is a priority for London and Policy SI 1 "Improving Air" states that developments proposals must be at least Air Quality Neutral. The scheme supports air quality by: - The use of ground-source heat pumps for all space heating and hot water means no fossil fuel combustion on site. - Mechanical ventilation with heat recovery (MVHR) offers a means for occupants to filter fresh air. - Construction environmental management plan (CEMP) to incorporate best practice for air quality and dust control. #### 3.3 NOISE Quality of life is improved by reducing the number of people adversely affected by noise and promoting more quiet and tranquil spaces. The scheme supports low noise impacts through high air tightness and MVHR reduces external noise ingress for occupants. #### 3.4 SUSTAINABLE MATERIALS & MINIMISING WASTE New materials will be sustainably procured and using local supplies where feasible, following the BRE Green Guide to Specification². The construction build-up for each element can be rated from A+ to E where A+ is least likely to affect the environment and E is the likely to have the most impact. The materials for the new extension will aim to achieve a rating between A to C. All timber used during the site preparation and construction will be Forest Stewardship Council (FSC) certified or Programme for the Endorsement of Forestry Certification (PEFC) and all nontimber materials to be sourced from organisations with an environmental management system such as ISO 14001 or BES 6001. This standard enables construction product manufacturers to ensure and then prove that their products have been made with constituent materials that have been responsibly sourced. The standard describes a framework for the organisational governance, supply chain management and environmental and social aspects that must be addressed in order to ensure the responsible sourcing of construction products. A construction waste recycling requirement will be included in the contractor specification to ensure a construction waste management plan is in place. This will include ways to design out waste, reduce amounts of packaging and to participate in https://www.bregroup.com/greenguide/podpage.jsp?id=2126 packaging take back schemes as well as ensuring that all waste is sent to private local dedicated construction waste plants with high landfill diversion rates. The scheme has dedicated waste storage and segregation area. #### 3.5 BIODIVERSITY The scheme has green roofs on both the first floor extension and the garden room. Figure 12: Proposed development scheme-roof plan #### 3.6 SUSTAINABLE TRANSPORT In terms of sustainable travel, the dwelling is within walking distance from South Hempstead, Swiss Cottage and St John's Wood stations as well as several local bus stops. #### 3.7 DEMAND SIDE RESPONSE Demand-side response / flexibility initiatives are encouraged by the London Plan, as referred to in Policy SI 2 Minimising greenhouse gas emissions. Demand side flexibility refers to the ability of a system to reduce or increase energy consumption for a period of time in response to an external driver (e.g. energy prices or signals from network managers). Smart buildings have been identified and acknowledged as key enablers of future energy systems for which there will be a larger share of distributed and renewable power and heat generation. Demand-side flexibility can allow demand/supply matching and make best use of existing network connections and local renewable energy generation capacity. The scheme facilitates the use of Demand Side Response and reduces peak energy demand by: - The use of electrical equipment such as heat pumps which can be turned up/down. - A large central energy store integrated into the centralised heat pumps system - Additional energy storage capacity via exposed thermal mass. - The installation of smart meters - The use of on-site generation, solar PV. ### 4 Design Approach - Energy #### 4.1 THE ENERGY HIERARCHY The energy hierarchy, as referred to in the London Plan and illustrated below, sets out a hierarchical approach to strategic decision-making for the reduction of energy and associated greenhouse gas emissions. The evaluation of the scheme's carbon emissions, as presented in the subsequent sections, follows this structure. Figure 13: Energy Hierarchy Methodology #### **BE LEAN - Minimise Energy Demand** Passive design such as optimising form, orientation and site layout, natural ventilation with thermal mass, daylight and solar shading as well as active design measures such as LED lighting and efficient mechanical ventilation with heat recovery. #### BE CLEAN - Deliver Energy Efficiently Efficient energy provision for space heating and cooling infrastructure e.g. high efficiency cooling plant, combined heat and power (CHP) or, if available, connection to a district heating/cooling network. #### **BE GREEN - Use Renewable Energy** Energy supply derived from local renewable resources including solar irradiation, wind energy, hydropower and local heat sources such as geothermal energy. Provision of non-local options can also be considered. #### 4.2 CLIMATE ANALYSIS The London climate is heating dominated, hence the key passive measure to be implemented are high levels of insulation and air-tightness. Temperatures in the summer can occasionally rise above comfortable levels and this will tend to intensify as a consequence of climate change and further urbanisation. The diurnal temperature variations are high with an average daily temperature swing of 8-10°C even during peak summer. This creates potential for passive summertime cooling using night-time cooling via openable windows or mechanical ventilation. Figure 14: Average historic climate data for London #### 4.3 BUILDING FABRIC PERFORMANCE & INSULATION High levels of insulation are proposed as summarised later in this section. The thermal performance of all exposed elements equals or exceeds the minimum requirements for Building Regulations 2021. This will significantly reduce energy consumption and ensure optimum occupant comfort all year round by retaining heat in the winter and reducing heat gains in the summer. This is particularly relevant for glazed surfaces that can be a cause of overheating in summer or overcooling and condensation formation in winter. As such all glazing will be replaced with high-performance unit. This will also improve occupant comfort by reducing radiant temperature asymmetry which can be a comfort issue especially during the winter months. #### 4.4 AIR TIGHTNESS, INFILTRATION AND THERMAL BRIDGING A high target air-permeability rate has been selected as summarised later in this section. The key to achieving high levels of airtightness is the build quality of construction. Minimising thermal bridging is an important aspect of the design. The approach to limiting thermal bridging is to implement a level similar to Accredited Details³ where possible. $^{^{3} \} www.planningportal.co.uk/info/200135/approved_documents/74/part_L-_conservation_of_fuel_and_power/6$ #### 4.5 NATURAL VENTILATION & THERMAL MASS Daytime natural ventilation can assist in removing excess heat during the mid-season and summer months and enables the provision of high air quality. When used in combination with exposed thermal mass, natural ventilation will reduce high internal daily temperature fluctuations and minimise the overheating risk in the summer. Therefore, occupant comfort can be maintained with reduced reliance on mechanical cooling systems. The summer ventilation strategy includes large openable areas for windows/doors to allow for good natural ventilation. Secure openable windows allow for night ventilation to pre-cool thermal mass. #### 4.6 SOLAR EXPOSURE & DAYLIGHT
Maximising exposure to solar energy and daylight is essential to reduce reliance on artificial lighting, reducing winter daytime heating requirements and to contribute to the general wellbeing of occupants. The site has access to solar energy and natural daylight. This makes the development roof suitable for solar energy harvestina. Fenestration on the facades maximises natural daylight to provide amenity and reduce artificial lighting energy use. Internal shading can be incorporated to minimise the risk of overheating and glare without overly compromising daylight availability. #### 4.7 ACTIVE BUILDING SERVICES SYSTEMS Space heating and hot water will be provided via a high-efficiency ground-source heat pump system in conjunction with underfloor heating. The GSHP will be located in the basement supported by eight boreholes 6m apart. Energy use associated with domestic hot water (DHW) will be minimised by the use of water efficient fittings together with optimised hot water temperatures. High-efficiency mechanical ventilation will be used with heat recovery. The system will have a summer bypass to support night-time free cooling of thermal mass. Low-energy fixed lighting, generally comprising of high-efficiency LED fittings, will be installed throughout the development. All building services systems will be in accordance with and exceed the efficiency requirements outlined in the Building Service Compliance Guide. #### 4.8 COOLING & OVERHEATING The cooling and overheating strategies are summarised in the table below using the cooling hierarchy which has been applied to the design. | Hierarchy Measure | Application to proposed development | |---|--| | 1. Minimise Internal Heat Gains | - Low energy LED lighting. | | 2. Minimise External Heat Gains | -High level of insulation | | | -Low G-value windows (0.5 for windows and 0.4 for rooflights) | | | -Green roof to minimise solar gains through the roof and add to green mass
(external greenery) which helps creates a cool microclimate through
evapotranspiration. | | | -Internal blinds with light coloured external facing surfaces (with relatively high reflective properties). | | 3 & 4 Heat Management and Passive Ventilation | -High openable window area with general high exposure to prevailing south-
westerly winds | | | -Night time ventilation strategy | | 5. Mechanical Ventilation | - Mechanical Ventilation with Heat Recovery (MVHR) is specified. | | 6. Active Cooling | -No active cooling | | Ensuring they are the lowest carbon options | | Table 5: Cooling hierarchy ### 5 Carbon Emissions #### 5.1 BASELINE Energy demand and annual carbon emissions are calculated using BRE accredited energy compliance SAP 10.2 software. The amount of carbon emission reductions achieved by the proposed scheme is compared to the notional Target Emission Rate (TER) which forms the baseline comparison target. This notional building/dwelling is produced by the energy model and intends to replicate the actual building in terms of area, form, orientation and usage. The fabric parameters and system efficiencies for this notional building meets and, in some parts, exceeds the minimum requirements for compliance with Part L of the 2021 Building Regulations as summarised in the table below. For dwellings, within Part L1 of the Building Regulations (2021), the Target Fabric Energy Efficiency (TFEE) sits alongside the TER. The TFEE is the minimum fabric energy performance requirement for a new dwelling. The Dwelling Fabric Energy Efficiency (DFEE) rate is the actual fabric energy performance of the new dwelling. The DFEE must not exceed the TFEE. It is expressed as the amount of energy demand in kWh/(m².year). The notional dwelling is not prescriptive, and specifications can be varied provided that the TFEE and TER rate is achieved or bettered. To prevent poor performance of individual elements, limiting fabric values set out in approved document Part L1 and limiting building services efficiencies set out in the Domestic Building Services Compliance Guide, have been followed. The Notional Building baseline values, which apply to new build residential areas, are: #### **Building Regulations 2021** | Element | U Value (W/m2K) | G Value | | | | |---------------------------------|---|--|--|--|--| | External Walls | 0.18 | - | | | | | Floor | 0.13 | - | | | | | Roof | 0.11 | - | | | | | Windows | 1.2 | 0.63 (0.4) | | | | | External opaque doors | 1.0 | - | | | | | External glazed doors | 1.2 | - | | | | | Air tightness | 5.0 m³/m²/h @50Pa | | | | | | Liner thermal transmittance | Standardised psi values SAP Apper | ndix R | | | | | Ventilation type | Natural with intermittent extract fo | Natural with intermittent extract fans | | | | | Air-conditioning | None | None | | | | | Heating source | Mains Gas (89.5% SEDBUK 2009) | Mains Gas (89.5% SEDBUK 2009) | | | | | Heating emitters and controls | Radiators. Time and temperature z | one control. Weather compensation. Boiler interlock. | | | | | Hot water storage | If cylinder, declared loss factor = 0.8 in litres. Separate time control. | If cylinder, declared loss factor = 0.85 $^{'}$ $(0.2 + 0.051 V2/3) kWh/day$ where V is the volume of the cylinder in litres. Separate time control. | | | | | Wastewater heat recovery (WWHR) | All showers connected to WWHR, in efficiency utilisation of 0.98. | All showers connected to WWHR, including showers over baths. Instantaneous WWHR with 36% recovery efficiency utilisation of 0.98. | | | | | Lighting | 100% low energy lighting, (80lm/W | 100% low energy lighting, (80lm/W) | | | | | Photovoltaic (PV) system | For houses: kWp = 40% of ground floor area, including unheated spaces / 6.5 | | | | | | | For flats: kWp = 40% of dwelling flo | or area / (6.5 ´ number of storeys in block) | | | | | | System facing south-east or south- | west | | | | Table 6: Notional Dwelling (Building) Specification (Table 4 SAP 10.2) #### 5.2 "BE LEAN EMISSIONS" As part of the "Be Lean" approach, seeking to minimise energy demand, the building fabric has been specified to meet or exceed the minimum fabric parameters outlined in Part L of the Building Regulation 2021 as per table below. | Element | Proposed residential development | |-----------------------------|--| | External walls U value | 0.15 W/m²/°C for new elements | | | Minimum of 0.30 W/m ² /°C for existing elements | | Floor U value | 0.13 W/m²/°C | | Roof U value | 0.11 W/m²/°C | | Windows U value | 1.0 W/m²/°C | | | 0.5 G-value | | Roof light U Value | 1.0 W/m²/°C | | | 0.4 G-value | | Doors | 1.0 W/m²/°C | | Air tightness | 3.0 m³/m²/h @50Pa | | Ventilation type | MVHR (0.77 SFP, heat recovery 87%) | | Heating | Central gas-fired boiler | | | Note 'Be Green' use a GSHP | | Hot water | Central gas-fired boiler | | | Note 'Be Green' uses a GSHP | | Lighting | 100% low energy lighting | | Liner thermal transmittance | See psi values in Appendix B | Table 7: Proposed residential development and baseline comparison "Notional" building – Be Lean #### 5.3 "BE LEAN" TOTAL CARBON EMISSIONS The "Be Lean" CO_2 emissions associated with regulated energy consumption; the Dwelling Emissions Rate (DER) are given below in relation to the baseline TER (Target Emission Rate). Using the GLA spreadsheet which removes the solar PV component from the notional building the result is a 11% saving. | Unit type | Area (m²) | TER
(kg.CO ₂ /m²/yr.) | DER
(kg.CO ₂ /m²/yr.) | GLA adjusted DER (kg.CO ₂ /m²/yr.) | GLA adjusted saving | |-------------------|-----------|-------------------------------------|-------------------------------------|---|---------------------| | 68 Elsworthy Road | 1149 | 7.67 | 7.74 | 6.82 | 11% | Table 8: Be Lean regulated Emissions for dwellings #### 5.4 "BE CLEAN" EMISSIONS #### 5.4.1 Connection to Third Party Heat Networks Heat networks are encouraged by the London Plan The London Heat Map tool⁴ shows that the site is within the heat network priority area and that it is over 1.5km from the nearest potential heat network area. Therefore, currently a connection to third party heat networks is not considered viable for this development. Figure 15: London Heat Map tool showing the heat network priority areas in relation to the proposed scheme Figure 16: London Heat Map tool showing live networks (red), proposed heat networks (purple) and potential heat supply sites (orange) #### 5.4.2 CHP Combined Heat and Power The London Plan limits the role of CHP to low-emission CHP and only in instances where it can support the delivery of an area-wide heat network at large, strategic sites, according to the Energy Assessment Guidance Greater London Authority guidance on preparing energy assessments as part of planning applications. Therefore, CHP has not been adopted. ⁴ https://www.london.gov.uk/what-we-do/environment/energy/london-heat-map/view-london-heat-map #### 5.5 "BE GREEN" EMISSIONS A renewable energy feasibility exercise has been carried out in order to determine the most viable option(s) for the development (see Appendix A). The viable technology options, ground source heat pumps and solar PV, are presented below. #### 5.5.1 Ground Source Heat Pumps Ground source heat pumps (GSHP) extract heat energy from the ground and can create around 3-4 kW of renewable energy for every 1kW of electrical power it consumes, which makes it one of the lowest carbon reliable heating technologies
available. Heat pumps are most efficient when used in conjunction with low temperature heat delivery systems such as underfloor heating. As such the proposed heat pump will work well with the proposed underfloor heating system. #### 5.5.2 Photovoltaic (PV) panels The image below shows the amount of roof that is available within the development and that will be used to install photovoltaic modules. Total installed capacity of the system: 2 (kWp) Panel inclination: 15° Panel orientation: South Energy generation: 1727.24 kWh/a Carbon emission reduction: 0.23 tonnes of CO₂/y Local shading is considered to be very low. Figure 17: Indicative Solar PV layout #### 5.5.3 "Be Green" Total Carbon Emissions The CO_2 emissions associated with regulated energy consumption are given below. | Unit type | Area (m²) | TER (kg.CO ₂ /m ² /yr.) | DER (kg.CO ₂ /m ² /yr.) | |-------------------|-----------|---|---| | 68 Elsworthy Road | 1149 | 7.64 | 2.36 | Table 9: Be Green Carbon Emissions ### 6 Summary #### 6.1 SUSTAINABILITY SUMMARY In addition to the low energy performance set out below, the scheme benefits from several sustainability aspects. These include the use of water saving devices to achieve 105 litre per person per day. Health and wellbeing is supported by aspects such as high levels of fresh air provided by mechanical ventilation with heat recovery. In terms of sustainable travel, the dwelling is within walking distance from South Hempstead, Swiss Cottage and St John's Wood stations as well as local several bus stops. A residents' guide will be created to help residents reduce energy, water and waste, avoid overheating and keep air quality high. The development aims to support biodiversity e.g. through green roofs on the first floor extension and the garden room. The scheme is also demand side response (DSR) enabled through the provision of a large centralised electric-powered heat pump systems with large energy storage vessels located in the basement plantroom in order to work with National Grid signalling / time of use tariffs. This supports the transition to low carbon electricity and reduces energy costs for residents. #### 6.2 CARBON EMISSIONS SUMMARY The predicted total annual CO_2 emissions of the proposed development following the introduction of energy efficiency measures, passive and active design (Be Lean), Low carbon supply technologies (Be Clean) and renewable energy systems (Be Green) are summarised below in the format recommended by the GLA. The table below shows the total regulated and unregulated energy use. | Carbon dioxide emissions (Tonnes CO_2 per annum) | Regulated | Unregulated | |---|-----------|-------------| | Baseline: Part L 2021 (Building Regulations) Compliance | 8.8 | 1.8 | | After "Be Lean" (energy demand reduction) | 7.8 | 1.8 | | After "Be Clean" (heat network / CHP) | 7.8 | 1.8 | | After "Be Green" (renewable energy) | 3.9 | 1.8 | Table 10: Summary of new build carbon emissions for new build dwelling areas This performance can be expressed as savings between each stage in the energy hierarchy. | Regulated carbon dioxide savings | (Tonnes CO ₂ per annum) | (%) | | |--|------------------------------------|-----|--| | Savings from "Be Lean" (energy demand reduction) | 1.0 | 11 | | | Savings from "Be Clean" (heat network / CHP) | 0 | 0 | | | Savings from "Be Green" (renewable energy) | 4.0 | 45 | | | Total cumulative on-site savings | 4.9 | 56 | | | Shortfall to 100% below Part L (annual) | 3.9 | | | | Shortfall over 30 years | 116 | | | | Carbon Offset Fund (@£95/tonne) | £11,036 | | | Table 11: Residential regulated CO₂ emissions savings after each stage of the Energy Hierarchy Figure 18: Summary of target and energy savings for each stage of the energy hierarchy #### 6.3 FUTURE PROOFING TO 2050 SUMMARY The site has been future proofed to achieve zero carbon on-site emissions by 2050 through several mechanisms. The main strategy is by avoiding fossil fuels on site and use electricity for 100% of energy requirements. This means that as the UK electricity grid continues its decarbonisation towards the 2050 goal of net zero, the scheme will be able supplied by zero carbon electricity. #### 6.4 COST OF ENERGY SUMMARY The scheme aims to protect the consumer from high prices by: - · Reducing energy demands. - · Generating energy onsite via solar PV. - Monitoring energy demand. - Creating building user guides to help occupants to reduce energy bills. - Promoting the use of smart energy tariff such to provide cheaper electricity during non-peak times. This means buffer vessel energy stores can be charged at night by the heat pump when electricity costs are much lower. ### Appendix A: Technology Feasibility Study Summary The overall summary of the feasibility exercise is presented below. Technology Assessment/Viability Wind Power Wind turbine installed on the roof of the Due to the high cost per kW for smaller buildingmounted turbines and the impacts in terms of development. visual, noise and shadow flicker, wind turbines are not considered a viable technology for the CONCLUSION: NOT CONSIDERED FEASIBLE Ground Source Heat Pumps Open or closed loop GSHP system requiring Ground-source heat pumps are one of the lowest extraction of ground water and / or deep carbon methods of providing reliable low-carbon heat and require low maintenance. The new boreholes basement allows space for bore holes CONCLUSION: CONSIDERED FEASIBLE Air Source Heat Pumps Electric powered external plant serving each unit Air-source heat pumps are one of the lowest providing heating and hot water carbon methods of providing reliable low-carbon heat. They require low maintenance. However, they can raise noise concerns and impact the external view of the building. CONCLUSION: NOT CONSIDERED FEASIBLE Roof-mounted solar thermal panels providing hot are some potential for solar thermal water heating are leading to the solar thermal panels providing hot are some potential for solar thermal water heating are solar thermal panels providing hot are some potential for solar thermal water heating are solar thermal panels providing hot than the panels providing hot are solar than the panels panel Solar Thermal Collectors heat pump would result is a complex system. Therefore, solar PV is preferred over solar thermal technology. CONCLUSION: NOT CONSIDERED FEASIBLE Solar Photovoltaic Panels The roof has some potential for solar PV. This Roof mounted Photovoltaic panels (PV) provide electricity directly to the scheme, exporting any technology also supports air source heat pumps. surplus production to the grid. CONCLUSION: CONSIDERED FEASIBLE Combined Heat & Power (CHP) Gas powered turbine generating electricity on site. Carbon offsetting potential of CHP is significantly reduced now that the UK's electricity grid is much Waste heat is also made available for on-site use cleaner after the increase in renewable energy deployment and decrease in coal generation. CONCLUSION: NOT CONSIDERED FEASIBLE **Energy Storage** Energy Storage e.g. batteries Battery scheme is not considered beneficial as the proposed solar array is relatively small in relation daytime energy use on site. CONCLUSION: NOT CONSIDERED FEASIBLE Biomass Heating Biomass-fired community heating system. Biomass heating is an established technology but has high maintenance requirements, fuel storage and delivery issues and is a source of increase in pollution, notably particulates (PM10), SO2 and NOX emissions. CONCLUSION: NOT CONSIDERED FEASIBLE Table A1: Summary of Low and Zero Carbon Study Analysis Results ### Appendix B: Psi Values | Junction | Junction Name | Psi Value (W/mK) | |----------|--------------------------------------|--| | E2 | Lintels | 0.3 | | E3 | Sill | 0.04 | | E4 | Jamb | 0.05 | | E5 | Ground Floor | 0.07, for new junctions, 0.32 for existing junctions | | E20 | Exposed Floor | 0.32 | | E21 | Exposed Floor (inverted) | 0.32 | | E22 | Basement Floor | 0.07 | | E6 | Intermediate floor within a dwelling | 0.07 | | E24 | Eaves | 0.04 | | E14 | Flat roof | 0.16 | | E15 | Flat roof with parapet | 0.3 | | E16 | Corner (normal) | 0.09 | | E17 | Corner (inverted) | 0 | | R1 | Head of roof window | 0.24 | | R2 | Sill of roof window | 0.24 | | R3 | Jamb of roof window | 0.24 | | R4 | Ridge (vaulted ceiling) | 0.08 | | R5 | Ridge (inverted) | 0.04 | | R7 | Flat ceiling | 0.04 | | R9 | Roof to wall | 0.04 | Table B1: Summary of Psi Values ### Appendix C: SAP and GLA Datasheets This appendix contains the SAP datasheets for both 'Be Lean' and 'Be Green' and the GLA spreadsheet, which has been used to calculate the carbon emissions. | | | | | | | | | RESIDEN | TIAL CO₂ ANA | LYSIS (PART L | .1) | | | | | | | | | |---|----------------|-------------------------|--|---|--|--|--|-----------------|-----------------------------|---------------|---------------------|---------------|--|--------------|---------------|--|--------------|---------------------------|--------------| | | | | Baseline | | 'Be Lean' | 'Be Clean' | 'Be Green' | Fabric Energy I | Efficiency (FEE) | Baseline | | | Be Leas' | | | 'Be Clean' | | Be (| ireen' | | Unit
identifier
(e.g. plot
number,
dwelling | | represented
by model | TER | saving/generat
ion
technologies (-
) | | DER | | Efficiency | Fabric
Énergy
Efficiency | CO2 emissions | ion
technologies | CO2 emissions | CO2 emissions
with Notional
PY savings
included | - | CO2 emissions | CO2 emissions
with Motional
PY savings
included | | CO ₂ emissions | - | | | (Row 4) | (=') | (kgCO ₂ / m ²)
(Row 273) | (kgCO ₂ p.s.)
(Row 263) | (kgCO ₂ / m ²)
(Row 273 or
384) | (kgCO ₂ / m ²)
(Row 273 or
384) | (kgCO ₂ / m ²)
(Row 273 or
384) | (LUL/L-) | (EVIDE') | (kgCOz p.a.) | (kgCOz p.a.) | (kgCOz p.a.) | (kgCO ₂ p.s.) | (kgCOz p.a.) | (kgCOz p.a.) | (kgCOz p.a.) | (kgCOz p.a.) | (kgCO ₂ p.a.) | (kgCOz p.a.) | | 68 Elswort | Ly 1149 | 1149 | 7.67 | -1057.27 | 7.74 | 7.74 | 3.37 | | | 8,813 | -1,057 | 8,893 | 7,836 | 977 | 8,893 | 7,836 | 0 | 3,872 | 3,364 | Table C1: GLA spreadsheet part L outputs $\textbf{Table 1:} \ \mathsf{Carbon\,Dioxide\,Emissions\,after\,each\,stage\,of\,the\,Energy\,Hierarchy\,for\,residential\,buildings$ | | Carbon Dioxide Emissions for residential buildings (Tonnes CO ₂ per annum) | | | | | | | |---|---|-------------|--|--|--|--|--| | | Regulated | Unregulated | | | | | | | Baseline: Part L 2021 of
the Building Regulations
Compliant Development | 8.8 | 1.8 | | | | | | | After energy demand reduction (be lean) | 7.8 | 1.8 | | | | | | | After heat network connection (be clean) | 7.8 | 1.8 | | | | | | | After renewable energy
(be green) | 3.9 | 1.8 | | | | | | $\textbf{Table 2:} \ \mathsf{Regulated} \ \mathsf{Carbon} \ \mathsf{Dioxide} \ \mathsf{savings} \ \mathsf{from} \ \mathsf{each} \ \mathsf{stage} \ \mathsf{of} \ \mathsf{the} \ \mathsf{Energy} \ \mathsf{Hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{buildings} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{buildings} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{buildings} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{hierarchy} \ \mathsf{for} \mathsf{fo$ | | Regulated resident | | |---|---------------------|---------------------| | | onnes CO₂ per annur | (%) | | Be lean: savings from
energy demand
reduction | 1.0 | 11% | | Be clean: savings from
heat network | 0.0 | 0% | | Be green: savings from
renewable energy | 4.0 | 45% | | Cumulative on site
savings | 4.9 | 56% | | Annual savings from off-
set payment | 3.9 | - | | | (Tonne | s CO ₂) | | Cumulative savings
for off–set payment | 116 | - | | Cash in-lieu
contribution (£) | 11,036 | | carbon price is based on GLA recommended price of £95 per tonne of carbon dioxide unless Local Planning Authority price is inputted in the Table C2: GLA Summary tables | Property Reference | | | Elsworthy Road | d
 | | | | | | Issue | d on Da | ate | 18/01/2024 | | |--|--|---|-------------------------|--|--------------------------------------|---|--|--|--|---|------------------------------|--|--|---| | Assessment Refe | rence | | Lean | .1 | | | | Prop Type R | tet | | | | | | | Property | | 68 | Elsworthy Road | 3 | | | | | | | | | | | | SAP Rating | | | | | 89 B | | DER | 7.7 | 74 | | TER | | 7.67 | | | Environmental | | | | | 90 B | | % DER < TER | | | | | | -0.91 | | | CO ₂ Emissions (t/ | | | | | 7.65 | | DFEE | | .08 | | TFEE | | 36.64 | | | Compliance Chec | :k | | | | See BREL | | % DFEE < TF | | | | | | 1.52 | | | % DPER < TPER | | | | | -9.90 | | DPER | 44 | .69 | | TPEF | ₹ | 40.66 | | | Assessor Details | | Dr. Alan I | Harries | | | | | | | | Asse | ssor ID | BC24-00 | 01 | | SAP 10 WORKSHEE:
CALCULATION OF I | | uild (As De | esigned) | | | 2022) | | | | | | | | | | 1. Overall dwell | | | | | | | |
Area | | orey he | | | Volume | | | Basement floor
Ground floor
First floor
Second floor
Third floor
Total floor area
Dwelling volume | a TFA = (1a) |)+(1b)+(1c) | +(1d)+(1e) | (1n) | 114 | 9.0300 | | (m2)
165.3300
389.0000
295.5000
191.4000 | (1a) x
(1b) x
(1c) x
(1d) x | 1.
2.
2.
2. | 5000
6700
0500
3500 | (2a) = (2b) = (2c) = (2d) = (2e) = | 972.5000
788.9850
392.3700
361.1300 | (1a) - (3a
(1b) - (3k
(1c) - (3c
(1d) - (3c
(1e) - (3e
(4)
(5) | | Number of open of Number of open of Number of chimne Number of flues Number of flues Number of inter Number of passif Number of flues of flues of passif Number of flues fl | chimneys flues eys / flues attached to attached to ed chimneys mittent ext: we vents | o solid fue
o other hea
ract fans | el boiler | ire | | | | | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 35 =
0 * 20 =
0 * 10 =
0 * 10 =
0 * 40 = | m3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 | (6b)
(6c)
(6d)
(6e)
(6f)
(7a)
(7b) | | Infiltration due
Pressure test
Pressure Test Me
Measured/design
Infiltration rat
Number of sides | ethod
AP50
te | ys, flues a | and fans = | = (6a)+(6b) | +(6c)+(6d)+(| 6e)+(6f)+ | (6g)+(7a)+(| 7b)+(7c) = | | C | .0000 | / (5) = | es per hour
0.0000
Yes
Blower Door
3.0000
0.1500 | (8) | | Shelter factor
Infiltration rat | te adjusted | to include | e shelter fa | actor | | | | | (20) = 1 | | | (19)] =
x (20) = | 0.8500
0.1275 | | | Wind speed
Wind factor
Adj infilt rate | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | | | 3000
0750 | Nov
4.5000
1.1250 | Dec
4.7000
1.1750 | | | Balanced mechan | 0.1626 | 0.1594
lation with | 0.1562
n heat recov | 0.1403
very | 0.1371 | 0.1211 | 0.1211 | 0.1179 | 0.1275 | 0. | 1371 | 0.1434 | 0.1498 | (22b) | | If mechanical ve
If exhaust air h
If balanced with | entilation
neat pump us | sing Append | dix N, (23b) |) = (23a) x | | | | | 3a) | | | | 0.5000
0.5000
69.6000 | (23b) | | Effective ac | 0.3146 | 0.3114 | 0.3082 | 0.2923 | 0.2891 | 0.2731 | 0.2731 | 0.2699 | 0.2795 | 0. | 2891 | 0.2954 | 0.3018 | (25) | | 3. Heat losses a | and heat los | ss paramete | er | | | | | | | | | | | | | Clement door Window (Uw = 1.0 Basement Skyligh dining room Skylight Heatloss Floor : Basement GF 1F | 00)
nt
light | | 2:
1:
1: | Gross
m2
11.0000
72.0000
12.0000 | Openings
m2
51.1000
35.5700 | Net
2.
83.
4.
3.
0.
389.
211.
120.
76. | TArea m2 .7700 .9000 .1400 .7800 .8000 .0000 .0000 .9000 .4300 | U-value
W/m2K
1.0000
0.9615
0.9615
0.9615
0.1300
0.1500
0.1500
0.1500 | 2.77
80.67
3.96
3.63
0.76
50.57
31.65
18.13 | 7/K
700
731
808
846
892
700
800
850 | 11
11
11
11 | 0.0000
0.0000
0.0000
0.0000
0.0000 | A x K
kJ/K
42790.0000
23210.0000
13299.0000
8407.3000 | (26)
(27)
(27a)
(27a)
(27a)
(27a)
(28)
(29a)
(29a)
(29a) | | Dormer windows
2f | | | 2 | 26.3000
56.9900 |
 26. | .3000 | 0.1500
0.1500 | 3.94
8.54 | 150 | 11 | 0.0000 | 2893.0000
6268.9000 | (29a) | SAP 10 Online 2.13.2 Page 1 of 8 | lower basement GF Old wall 1F Old wall 2f old wall Roof GF roof Total net area of external elements Aum Fabric heat loss, W/K = Sum (A x U) | 81.0000
80.1000
94.8000
53.0100
107.8000
54.8100 | 4.9400
3.7800 | 80.
94.
53.
0 102. | | 0.1500
0.3000
0.3000
0.3000
0.1100
0.1100 | 12.150
24.030
28.440
15.903
11.314
5.613 | 0 11
0 11
0 15
6 | 0.0000
0.0000
0.0000
0.0000
9.0000
9.0000 | 8910.0000
8811.0000
10428.0000
7951.5000
925.7400
459.2700 | (29a)
(29a)
(29a)
(30) | |---|--|---|---|--|--|--|--|---|---|---------------------------------| | Heat capacity Cm = Sum(A x k) Thermal mass parameter (TMP = Cm / TFA) List of Thermal Bridges K1 Element E5 Ground floor (normal) E6 Intermediate floor within a E22 Basement floor E15 Flat roof with parapet E14 Flat roof E24 Eaves (insulation at ceilin E16 Corner (normal) E17 Corner (inverted - internal R1 Head of roof window R2 Sill of roof window R3 Jamb of roof window R4 Ridge (waulted ceiling) R5 Ridge (inverted) R7 Flat ceiling (inverted) R9 Roof to wall (flat ceiling) E20 Exposed floor (normal) E21 Exposed floor (inverted) E16 Corner (normal) E17 Corner (inverted - internal E5 Ground floor (normal) E2 Other lintels (including oth E3 Sill E4 Jamb Thermal bridges (Sum(L x Psi) calculate | dwelling ing level - inverted area greater than area greater than er steel lintels) | external as | | | Let 49, 17, 30, 45, 46, 49, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40 | .6000
.5000
.2000
.2000
.3000
.3000
.8000
.8000
.8000
.8000
.8000
.9600
.0000
.6800
.3100
.4000
.5000
.0200
.8400
.2000
.33300 | si-value
0.0700
0.1400
0.0700
0.3000
0.1600
0.0900
0.0000
0.2400
0.2400
0.2400
0.0400
0.0400
0.0400
0.0400
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.3200
0.32 | Tot. 3.47 2.45 2.11 13.50 1.47 0.97 6.11 0.00 0.19 0.46 3.19 0.28 0.66 5.77 11.96 4.96 8.28 0.00 9.02 13.59 1.76 5.30 | 116.9279 a1 20 00 40 00 20 20 20 64 00 20 20 20 56 68 00 72 24 80 00 36 00 40 90 66 | (35) | | | y (38) m = 0.33 x (
Mar Apr
11.0002 266.4687 | 25)m x (5)
May
263.5624 | Jun
249.0308 | Jul
249.0308 | Aug
246.1245 | Sep
254.8435 | Oct
263.5624 | Nov
269.3750 | Dec
275.1876 | (38) | | Average = Sum(39)m / 12 = Jan Feb | Mar Apr 0.6008 0.5882 | 672.9220
May
0.5856 | Jun
0.5730 | Jul
0.5730 | Aug
0.5705 | Sep
0.5781 | 0ct
0.5856 | 0.5907 | 684.5472
675.1017
Dec
0.5958
0.5875 | | | Hot water usage for baths 41.0789 40.4688 3 Hot water usage for other uses | 87.7312
89.6097 38.0256
83.7888 51.6794 | | | | | 83.9743
36.5958
51.6794 | 87.5004
38.0032
53.7888 | 91.5766
39.6198
55.8981 | 4.2357
94.8736
40.9400
58.0075
178.6273 | (42a)
(42b)
(42c) | | Jan Feb
Daily hot water use | Mar Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | 194.3248 190.1741 18 Energy conte 307.7630 270.8054 28 Energy content (annual) Distribution loss (46)m = 0.15 x (45)m | 34.5226 242.9012 | 171.1958
230.4625 | 164.4872
202.2562 | 161.9101
195.8162 | 166.9424
206.7096 | 172.2496
212.4009 | | 187.0945
266.5505
um(45)m = | 193.8210
303.4769
2966.9631 | | | 46.1645 40.6208 4 Water storage loss: | | 34.5694 | 30.3384 | 29.3724 | 31.0064 | 31.8601 | 36.4947 | 39.9826 | 45.5215 | (46) | | Total
storage loss 0.0000 0.0000 If cylinder contains dedicated solar st | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (56) | | Primary loss 0.0000 0.0000 | 0.0000 0.0000
0.0000 0.0000
0.4991 0.5194 | 0.0000
0.0000
0.5647 | 0.0000 | 0.0000
0.0000
0.5707 | 0.0000
0.0000
0.5504 | 0.0000
0.0000
0.5092 | | | 0.0000
0.0000
0.4003 | (59) | | 308.1612 271.2120 28
WWHRS 0.0000 0.0000 | 35.0216 243.4206
0.0000 0.0000
0.0000 0.0000
0.0000 0.0000 | | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 207.2600
0.0000
0.0000
0.0000
0.0000 | 0.0000 | 0.0000
0.0000
0.0000 | 0.0000
0.0000
0.0000 | 303.8772
0.0000
0.0000
0.0000
0.0000 | (63a)
(63b)
(63c) | | 308.1612 271.2120 28 | 35.0216 243.4206 | 231.0272 | 202.8196 | 196.3869 | | 212.9102
er year (kWh | | | 2972.8838 | (64) | | 12Total per year (kWh/year) Electric shower(s) 0.0000 0.0000 | 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2973
0.0000 | | | Heat gains from water heating, kWh/mont 102.4307 90.1444 9 | :h | | | | | wer(s) (kWh/ | year) = Su | m(64a)m = | 0.0000 | (64a) | | (66)m 211.7834 211.7834 21
Lighting gains (calculated in Appendix
587.1589 650.0688 58
Appliances gains (calculated in Appendi
995.0542 1005.3797 97
Cooking gains (calculated in Appendix L | Mar Apr
1.7834 211.7834
L, equation L9 or
17.1589 606.7308
x L, equation L13
19.3596 923.9660
y, equation L15 or | May
211.7834
L9a), also:
587.1589
or L13a), ai
854.0416
L15a), also | Jun
211.7834
see Table 5
606.7308
lso see Tabl
788.3224
see Table 5 | Jul
211.7834
587.1589
e 5
744.4180 | Aug
211.7834
587.1589
734.0925 | 606.7308
760.1125 | 815.5061 | Nov
211.7834
606.7308
885.4306 | 587.1589
951.1497 | (67)
(68) | | 44.1783 44.1783 4
Pumps, fans 3.0000 3.0000 | | 44.1783
3.0000 | | 44.1783
0.0000 | | 44.1783
0.0000 | | | 44.1783
3.0000 | | SAP 10 Online 2.13.2 Page 2 of 8 | Losses e.g. e | vaporation | (negative v | values) (Tab | le 5) | | | | | | | | | | |--|-------------------------|--|--|--|--------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|------------------------|----------------------|--------------------------------|--------| | Water heating | -169.4268
gains (Tab | -169.4268
le 5) | -169.4268 | -169.4268 | -169.4268 | | | | -169.4268 | -169.4268 | -169.4268 | -169.4268 | (71) | | Total interna | l gains | 134.1435 | 127.3233 | 112.3535 | 103.1854 | 93.5987 | 87.7037 | 92.5652 | 98.2647 | 108.8992 | 123.2477 | 135.7609 | | | | 1809.4238 | 1879.1270 | 1783.3768 | 1732.5854 | 1633.9209 | 1575.1870 | 1505.8156 | 1500.3516 | 1551.6431 | 1601.0992 | 1704.9441 | 1763.6046 | (73) | | 6. Solar gain: | s | | | | | | | | | | | | | | (7) | | | | | | | | | nn. | 2 | | G-i | | | [Jan] | | | | m2 | Solar flux
Table 6a
W/m2 | Speci
or | g
fic data
Table 6b | Specific
or Tab | FF
: data
:le 6c | Acce
fact
Table | or | Gains
W | | | North | | | | | 10.6334 | | 0.5000 | | .8000 | 0.77 | | 3.5076 | | | East
South
West | | | | 500
900 | 19.6403
46.7521 | | 0.5000 | 0 | .8000
.8000
.8000 | 0.77
0.77
0.77 | 00 | 273.5751
12.8301 | (78) | | East | | | 8.7 | | 19.6403
26.0000 | ·
 | 0.5000
0.4000 | | .8000 | 1.00 | | 171.3315
65.2954 | | | Solar gains
Total gains | | | | | | | | | | 1229.1149
2830.2141 | | | | | 7. Mean inter | | | | | | | | | | | | | | | Temperature d | uring heati | ng periods | in the livi | ng area fro | m Table 9, | | | | | | | 21.0000 | (85) | | tau | Jan
53.6081 | | Mar
54.0595 | | | Jun
56.6844 | Jul
56.6844 | Aug
56.9357 | Sep
56.1884 | Oct
55.4603 | Nov
54.9854 | Dec
54.5185 | | | alpha
util living a | | 4.5889 | 4.6040 | 4.6815 | 4.6974 | 4.7790 | 4.7790 | 4.7957 | 4.7459 | 4.6974 | 4.6657 | 4.6346 | | | MIT | 0.9995 | 0.9984 | 0.9949 | 0.9770 | 0.9175 | 0.7733 | 0.6099 | 0.6834 | 0.9129 | 0.9915 | 0.9988 | 0.9996
19.1849 | | | Th 2
util rest of 1 | 20.4247 | 20.4270 | 20.4293 | 20.4407 | 20.4429 | 20.4544 | 20.4544 | 20.4567 | 20.7302 | 20.1790 | 20.4384 | 20.4338 | | | MIT 2 | 0.9994
18.6970 | 0.9982
18.8988 | 0.9939
19.2336 | 0.9726
19.7232 | 0.9009
20.1260 | 0.7303
20.3795 | 0.5440
20.4401 | 0.6190
20.4313 | 0.8889
20.2411 | 0.9894
19.6942 | 0.9986
19.1300 | | (90) | | Living area f: | 18.7230 | 18.9247 | 19.2594 | 19.7487 | 20.1521 | 20.4064 | 20.4680 | 20.4587 | | Living are | | 0.0522
18.7199
0.0000 | | | Temperature acadjusted MIT | | 18.9247 | 19.2594 | 19.7487 | 20.1521 | 20.4064 | 20.4680 | 20.4587 | 20.2669 | 19.7195 | 19.1554 | 18.7199 | (93) | | | | | | | | | | | | | | | | | 8. Space heat | ing require | ment | | | | | | | | | | | | | | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation
Useful gains
Ext temp. | 0.9990
2333.6888 | 0.9972 | 0.9914 | 0.9658 | 0.8908 | 0.7263 | 0.5457 | 0.6192 | 0.8795 | 0.9856 | 0.9978 | 0.9993 | (95) | | | 10040.8773 | 9722.8257 | 8808.5669 | 7331.8608 | 5687.5915 | 3822.8865 | 2546.6382 | 2660.4053 | 4096.0942 | 6136.7357 | 8182.4265 | 9939.5481 | (97) | | Space heating
Space heating
Solar heating | 5734.1483
requiremen | | 3974.9963
ber year (kW | | 1093.9535 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2490.3403 | 4194.3122 | 5762.1980
30156.6204 | (98a) | | Solar heating | 0.0000
contributi | 0.0000
on - total | 0.0000
per year (| 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating
Space heating | 5734.1483 | | 3974.9963
ar contribu | | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 2490.3403 | 4194.3122 | 5762.1980
30156.6204 | (98c) | | Space heating | | | | | | | | | | (980 | :) / (4) = | 26.2453 | (99) | | 9a. Energy re | | | | | | | | | | | | | | | Fraction of s | | | | | | | | | | | | 0.0000 | (201) | | Fraction of sp
Efficiency of
Efficiency of | main space | heating sy | stem 1 (in | | | | | | | | | 1.0000 | (206) | | Efficiency of | | | | | | | | | | | | 0.0000 | | | Space heating | Jan
requiremen | Feb
t | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 5734.1483
efficiency | 4581.7825
(main heat | | 1) | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 5762.1980 | | | Space heating | | | 84.0000
vstem)
4732.1384 | 84.0000 | 84.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 84.0000 | 84.0000
4993.2288 | 84.0000
6859.7595 | | | Space heating | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | fuel (main 0.0000 | heating sy 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | fuel (seco
0.0000 | ndary)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | | t. | | | | | | | | | | | | | Efficiency of | 308.1612 | 271.2120 | 285.0216 | 243.4206 | 231.0272 | 202.8196 | 196.3869 | 207.2600 | 212.9102 | 243.7957 | 266.9917 | 303.8772
83.8000 | | | (217)m
Fuel for wate | 88.7192
r heating, | 88.6924
kWh/month | 88.6320 | 88.4796 | 88.0474 | 83.8000 | 83.8000 | 83.8000 | 83.8000 | 88.5103 | 88.6707 | 88.7242 | (217) | | Space cooling | | rement | 321.5786 | 275.1149 | 262.3897 | 242.0282 | 234.3520 | 247.3270 | 254.0694 | 0.0000 | 301.1047
0.0000 | 342.4964 | | | (221)m Pumps and Fa Lighting Electricity ge | | 0.0000
255.4850
122.2792
PVs (Apper | 0.0000
282.8584
110.0989
ndix M) (nec | 0.0000
273.7339
80.6632
ative quant | 0.0000
282.8584
62.3066 | 0.0000
273.7339
50.9050 | 0.0000
282.8584
56.8381 | 0.0000
282.8584
73.8803 | 0.0000
273.7339
95.9633 | 282.8584
125.9090 | 273.7339
142.2139 | 0.0000
282.8584
156.6591 | (231) | | (233a)m
Electricity g | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000
ty) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (233a) | SAP 10 Online 2.13.2 Page 3 of 8 | (234a)m | 0.0 0.0 (n) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | 0000 0
0000 0
0000 0 | .0000 | 0.000
0.000
0.000
0.000
0.000 | 0.0000
0.0000
00 0.0000
00 0.0000
00 0.0000 |
(235a
(235c
(233b
(234b
(235c
(211))
(213)
(215)
(219)
(221)
(230a
(230a
(230a
(231)
(231)
(235c
(231)
(235c
(230a
(230a
(230a
(231)
(235c
(231)
(235c
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a
(230a | (a) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d | |---|---|----------------------------------|---|--|--|--|--| | | 77 Primary Primary 77 93 | 0 0 0 0 0 v energy f kg CO 1 1 1 | 2/kWh
.2100
.2100
.1387
.1443 | | Emissions kg Co2/year 7539,1551 0.0000 715.8979 8255.0530 461.9716 177.5471 8894.5718 7.7400 simary energy kWh/year 40567.8346 0.0000 3852.2126 44420.0473 5038.2731 1886.8289 51345.1496 44.6900 | (261)
(373)
(264)
(265)
(267)
(272)
(273)
(273)
(273)
(274)
(275)
(473)
(278)
(279)
(281)
(282)
(286) | | | Ground floor 389.000 First floor 295.50 Second floor 191.400 | ea 22) 000 (1a) 000 (1b) 000 (1c) 000 (1d) 000 (1e) | x 1
x 2
x 2
x 2 | (m)
.5000
.5000
.6700
.0500 | (2b) = (2c) = (2d) = (2e) = | 392.3700
361.1300 | (1a)
(1b)
(1c)
(1d)
(1e)
(4) | - (3b)
- (3c)
- (3d) | | Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys | | | | 0 * 80 =
0 * 20 =
0 * 10 =
0 * 20 =
0 * 35 =
0 * 20 = | = 0.0000
= 0.0000
= 0.0000 | (6a)
(6b)
(6c)
(6d)
(6e) | | SAP 10 Online 2.13.2 Page 4 of 8 | Number of intern
Number of passi
Number of fluel | ve vents | | | | | | | | | | 4 * 10 =
0 * 10 =
0 * 40 = | 40.0000
0.0000
0.0000 | (7b) | |---
--|--|---|--|--|---|---|--|--|---|--|---|--| | Infiltration du
Pressure test
Pressure Test M
Measured/design
Infiltration ra
Number of sides | ethod
AP50
te | eys, flues | and fans | = (6a) + (6b) |)+(6c)+(6d)+ | (6e) + (6f) + | (6g)+(7a)+(| 7b)+(7c) = | | 40.0000 | Air changes
) / (5) =
Bl | 0.0145
Yes
ower Door
5.0000
0.2645 | (17) | | Shelter factor
Infiltration ra | te adjusted | d to includ | de shelter : | factor | | | | | (20) = 1 - (2 | | x (19)] =
x (20) = | 0.8500
0.2248 | | | Wind speed
Wind factor | Jan
5.1000
1.2750 | Feb
5.0000
1.2500 | Mar
4.9000
1.2250 | Apr
4.4000
1.1000 | May
4.3000
1.0750 | Jun
3.8000
0.9500 | Jul
3.8000
0.9500 | Aug
3.7000
0.9250 | | Oct
4.3000
1.0750 | | Dec
4.7000
1.1750 | | | Adj infilt rate
Effective ac | 0.2866
0.5411 | 0.2810
0.5395 | 0.2754
0.5379 | 0.2473
0.5306 | 0.2417
0.5292 | 0.2136
0.5228 | 0.2136
0.5228 | 0.2079
0.5216 | | 0.2417
0.5292 | | 0.2641
0.5349 | | | 3. Heat losses | | | | | | | | | | | | | | | Element | | | | Gross
m2 | Openings
m2 | | tArea
m2 | U-value
W/m2K | A x
W/ | | K-value
kJ/m2K | A x K
kJ/K | | | TER Opaque door TER Opening Typ Basement Skylight Heatloss Floor Basement GF 1F Dormer windows 2f lower basement GF Old wall 1F Old wall 2f old wall Roof GF roof Total net area of | e (Uw = 1.2
hight
1
of external | l elements | : | 211.0000
172.0000
112.0000
26.3000
56.9900
81.0000
94.8000
53.0100
107.8000
54.8100 | 51.1000
35.5700
4.9400
3.7800 | 2
83
4
3
0
389
211
120
76
26
56
81
80
94
53 | .7700 .9000 .9000 .1400 .7800 .8000 .0000 .0000 .9000 .3000 .9000 .1000 .8000 .0100 .8600 .0300 .8100 | 1.0000
1.1450
2.0221
2.0221
2.0221
0.1300
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1800
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100
0.1100 | 2.77C
96.068
8.371
7.642
1.617
50.57C
37.98C
21.762
13.757
4.734
10.258
14.58C
14.418
17.064
9.541
11.314
5.613 | 0
7
3
4
6
6
0
0
0
0
0
4
4
0
2
2
0
0
0
0
0
0
0
0
0
0 | ACT MAIN | XO/ X |
(26)
(27)
(27a)
(27a)
(27a)
(28)
(29a)
(29a)
(29a)
(29a)
(29a)
(29a)
(29a)
(30)
(30)
(31)
(33) | | Thermal mass pa | rameter (TM | MP = Cm / 5 | FFA) in kJ/r | n2K | | | | | | | | 116.9279 | (35) | | E6 Inte E22 Bass E15 Fla E14 Fla E14 Fla E24 Eav. E16 Cor. E17 Cor. R1 Head R2 Sill R3 Jamb R4 Ridg R5 Ridg R7 Flat R9 Roof E20 Exp E21 Exp E16 Cor. E17 Cor. E5 Grou. | ent mnd floor (r rmediate fi ement floor) troof with troof es (insulat ner (invert of roof wi of roof wi of roof wi to wall (t to wall (t osed floor ner (invert ceiling (f to wall (f osed floor rer (invert rosed floor fr (invert cinvert ceiling (f soult ceiling (f soult soul | loor within r h parapet tion at ce: l) ted - inter indow indow ceiling) d) inverted) flat ceilir (normal) (inverted) l) ted - inter normal) (including | ng)
)
rnal area g:
other stee: | - inverted reater than | external ar | | | 49
17
30
45
9
24
67
14
0
0
1
14
35
7
16
14
46
32
28
45
44 | 3.6000 1.5000 1.2000 1.2000 1.2000 1.2000 1.3000 1.3000 1.9600 1.8000 1.8000 1.8000 1.9600 1. | si-value
0.1600
0.0000
0.0700
0.5600
0.2400
0.0900
-0.0900
0.0800
0.0800
0.0800
0.0800
0.0400
0.0400
0.3200
0.3200
0.0900
-0.0900
-0.0900
0.0500
0.0500 | Tota 7,936 0.000 2.114 25.200 0.736 5.832 6.116 -1.333 0.064 0.048 0.155 3.196 0.280 0.667 5.772 11.968 4.960 4.141 -2.955 4.512 2.266 2.207 5.305 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | | | Ventilation hear | | | | | | | | | | | | | | | Heat transfer c | | | Mar
490.4656
907.7193 | Apr
483.7697
901.0234 | May
482.5169
899.7706 | Jun
476.6850
893.9387 | Jul
476.6850
893.9387 | Aug
475.6050
892.8588 | Sep
478.9313
896.1851 | Oct
482.5169
899.7706 | Nov
485.0512
902.3050 | Dec
487.7008
904.9546 | | | Average = Sum(3 | 9)m / 12 =
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 901.0174
Dec | | | HLP (average)
Days in mont | 0.7925 | 0.7912 | 0.7900 | 0.7842 | 0.7831 | 0.7780 | 0.7780 | 0.7771 | 0.7799 | 0.7831 | 0.7853 | 0.7876
0.7842
31 | (40) | | 4. Water heating Assumed occupange Hot water usage Hot water usage Hot water usage Average daily he | g energy re | showers
93.8072
40.4688
uses
55.8981 | 91.7216
39.6097
53.7888 |) | | | | | 83.9743
36.5958
51.6794 | 87.5004
38.0032
53.7888 | 91.5766
39.6198
55.8981 | 4.2357
94.8736
40.9400
58.0075
178.6273 | (42a)
(42b)
(42c) | | Daily hot water | | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | | 194.3248
307.7630 | | 185.1200
284.5226 | | 171.1958
230.4625 | 164.4872
202.2562 | 161.9101
195.8162 | 166.9424
206.7096 | | 179.2923
243.2980 | | 193.8210
303.4769 | | SAP 10 Online 2.13.2 Page 5 of 8 | Energy conten | + (annual) | | | | | | | | | Total = 9 | Sum(45)m = | 2966.9631 | | |--|--|---|--|--|--|--|--|---
---|---|---|---|--| | Distribution | | | (45) m
42.6784 | 36.4352 | 34.5694 | 30.3384 | 29.3724 | 31.0064 | 31.8601 | 36.4947 | 39.9826 | 45.5215 | (46) | | Water storage
Total storage | loss: | | | | | | | | | | | | (, | | If cylinder c | | | ar storage | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Primary loss | 0.0000
0.0000
50.9589 | 0.0000
0.0000
46.0274 | 0.0000
0.0000
50.9589 | 0.0000
0.0000
49.3151 | 0.0000
0.0000
50.9589 | 0.0000
0.0000
49.3151 | 0.0000
0.0000
50.9589 | 0.0000
0.0000
50.9589 | 0.0000 | 0.0000
0.0000
50.9589 | 0.0000
0.0000
49.3151 | 0.0000 | (59) | | Combi loss
Total heat re | quired for | water heati | | | n month | | 246.7751 | 257.6685 | 49.3151 | | 315.8655 | 50.9589
354.4358 | | | WWHRS
PV diverter | -43.5390
-0.0000 | -38.5063
-0.0000 | -40.3216
-0.0000 | -33.3879
-0.0000 | -31.1163
-0.0000 | -26.6264
-0.0000 | -24.9580
-0.0000 | -26.5404
-0.0000 | | -32.4769
-0.0000 | -36.7924
-0.0000 | | (63a) | | Solar input
FGHRS | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Output from w | | 278.3265 | 295.1599 | 258.8285 | 250.3051 | 224.9448 | 221.8171 | | 234.1673
er year (kW | | | | | | 12Total per y
Electric show | | ar) | | | | | | TOTAL P | er year (xw | 11/ year) - 3 | um(04)m - | 3162 | | | | 0.0000 | 0.0000 | | 0.0000
Tot | 0.0000
al Energy u | 0.0000
sed by inst | 0.0000
antaneous e | 0.0000
lectric sho | 0.0000
wer(s) (kWh | 0.0000
/year) = Su | 0.0000
um(64a)m = | | | | Heat gains fr | | | /month
107.3435 | 93.0934 | 89.3685 | 79.5789 | 77.8486 | 81.4707 | 82.9521 | 93.6363 | 100.9568 | 113.6458 | (65) | | | | | | | | | | | | | | | | | 5. Internal g | | | | | | | | | | | | | | | Metabolic gai | ns (Table 5 |), Watts | | | | | | | | | | - | | | (66)m
Lighting gain | 211.7834 | | 211.7834 | 211.7834 | | | 211.7834 | Aug
211.7834 | Sep
211.7834 | Oct
211.7834 | Nov
211.7834 | Dec
211.7834 | (66) | | Appliances ga | 602.8057 | 667.3920 | 602.8057 | 622.8992 | 602.8057 | 622.8992 | 602.8057 | 602.8057 | 622.8992 | 602.8057 | 622.8992 | 602.8057 | (67) | | Cooking gains | 995.0542
(calculate | 1005.3797
d in Append | 979.3596
dix L, equat | 923.9660
ion L15 or | 854.0416
L15a), also | 788.3224
see Table | 744.4180
5 | 734.0925 | 760.1125 | 815.5061 | 885.4306 | 951.1497 | | | Pumps, fans | 3.0000 | 3.0000 | 44.1783
3.0000 | 3.0000 | | 44.1783
0.0000 | 44.1783
0.0000 | 44.1783
0.0000 | 44.1783
0.0000 | 44.1783
3.0000 | 44.1783
3.0000 | 44.1783
3.0000 | | | Losses e.g. e | -169.4268 | -169.4268 | values) (Tab
-169.4268 | | -169.4268 | -169.4268 | -169.4268 | -169.4268 | -169.4268 | -169.4268 | -169.4268 | -169.4268 | (71) | | Water heating
Total interna | 154.6652 | | 144.2789 | 129.2964 | 120.1190 | 110.5263 | 104.6352 | 109.5036 | 115.2112 | 125.8553 | 140.2178 | 152.7497 | (72) | | | | 1913.4223 | 1815.9792 | 1765.6967 | 1666.5012 | 1608.2830 | 1538.3940 | 1532.9367 | 1584.7580 | 1633.7021 | 1738.0826 | 1796.2402 | (73) | | | | | | | | | | | | | | | | | 6. Solar gain | | | | | | | | | | | | | | | [Jan] | | | | irea | Solar flux | | g | | FF | Acce | :88 | Gains | | | | | | | m2 | Table 6a | Speci | fic data | Specific | data | fact | or | W | | | | | | | | W/m2 | or | fic data
Table 6b | or Tab | le 6c | Table | 6d | | | | North | | | 1.1 | .900 | 10.6334 | | 0.6300 | 0 | .7000 | Table
0.77 | 6d
'00 | 3.8671
301.6166 | | | North | | | 1.1
50.2
0.9
31.4 | .900 | 10.6334 | | 0.6300
0.6300
0.6300
0.6300 | 0 0 0 | .7000
.7000
.7000 | Table
0.77
0.77
0.77
0.77 | 6d
700
700
700 | 301.6166
14.1452
188.8930 | (76)
(78)
(80) | | North
East
South | | | 1.1
50.2
0.9
31.4 | .900 | | | | 0 0 0 | .7000 | Table
0.77 | 6d
700
700
700 | 301.6166
14.1452 | (76)
(78)
(80) | | North
East
South
West
East | 598.5071 | 1176.9895 | 1.1
50.2
0.9
31.4
8.7 | 900
500
900
700
2200 | 10.6334
19.6403
46.7521
19.6403
26.0000 | 3646.0628 | 0.6300
0.6300
0.6300
0.6300
0.6300 | 0
0
0
0
0
0 | .7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 1.00 | 6d 00 00 00 00 00 00 747.3572 | 301.6166
14.1452
188.8930
89.9852 | (76)
(78)
(80)
(82) | | North East South West East | 598.5071 | 1176.9895 | 1.1
50.2
0.9
31.4
8.7 | 900
500
900
700
2200 | 10.6334
19.6403
46.7521
19.6403
26.0000 | 3646.0628 | 0.6300
0.6300
0.6300
0.6300
0.6300 | 0
0
0
0
0 | .7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 1.00 | 6d 00 00 00 00 00 00 747.3572 | 301.6166
14.1452
188.8930
89.9852 | (76)
(78)
(80)
(82) | | North
East
South
West
East
Solar gains
Total gains | 598.5071
2440.5671 | 1176.9895
3090.4118 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267 | 900
500
900
700
200
2877.3356
4643.0323 | 10.6334
19.6403
46.7521
19.6403
26.0000 | 3646.0628
5254.3457 | 0.6300
0.6300
0.6300
0.6300
0.6300
 | 2961.1555
4494.0922 | .7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 1.00 | 6d 00 00 00 00 00 00 747.3572 | 301.6166
14.1452
188.8930
89.9852 | (76)
(78)
(80)
(82) | | North East South West East | 598.5071
2440.5671
nal tempera | 1176.9895
3090.4118 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267 | 900
1500
1900
7700
200
2877.3356
4643.0323 | 10.6334
19.6403
46.7521
19.6403
26.0000
3550.8893
5217.3905 | 3646.0628
5254.3457 | 0.6300
0.6300
0.6300
0.6300
0.6300
3466.6281
5005.0220 | 0
0
0
0
0
0
2961.1555
4494.0922 | .7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 1.00 | 6d 00 00 00 00 00 00 747.3572 | 301.6166
14.1452
188.8930
89.9852 |
(76)
(78)
(80)
(82)
(83)
(84) | | North East South West East Solar gains Total gains Total gains Temperature d Utilisation f | 598.5071
2440.5671
 | 1176.9895
3090.4118
ture (heati-
ng periods
(ains for li
Feb | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
ing season)
in the livi | 900
1500
1900
200
2877.3356
4643.0323 | 10.6334
19.6403
46.7521
19.6403
26.0000
3550.8893
5217.3905 | 3646.0628
5254.3457
Th1 (C)
Jun | 0.6300
0.6300
0.6300
0.6300
0.6300
3466.6281
5005.0220 | 2961.1555
4494.0922 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 | 6d 100 00 00 00 00 00 747.3572 2485.4398 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383 | (76)
(78)
(80)
(82)
(83)
(84) | | North East South West East Solar gains Total gains Total gains 7. Mean inter Temperature d Utilisation f tau alpha | 598.5071
2440.5671
nal tempera
uring heati
actor for g
Jan
40.9845
3.7323 | 1176.9895
3090.4118
ture (heati- | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
ing season)
in the livi
iving area,
Mar
41.1146 | 900
900
900
700
200
2877.3356
4643.0323 | 10.6334
19.6403
46.7521
19.6403
26.0000
3550.8893
5217.3905
0m Table 9,
Table 9a)
May
41.4778 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484 | 0.6300
0.6300
0.6300
0.6300
0.6300
3466.6281
5005.0220 | 2961.1555
4494.0922 | .7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 1.00 | 6d 00 00 00 00 00 00 747.3572 2485.4398 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383
21.0000
Dec
41.2402 | (76)
(78)
(80)
(82)
(83)
(84) | | North East South West East | 598.5071
2440.5671
nal tempera
uring heati
actor for g
Jan
40.9845
3.7323 | 1176.9895
3090.4118
.ture (heati-
ng periods
lains for li
Feb
41.0501 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
ing season)
in the livi
iving area,
Mar
41.1146 | 900
500
900
700
200
2877.3356
4643.0323
 | 10.6334
19.6403
46.7521
19.6403
26.0000
3550.8893
5217.3905
om Table 9,
Table 9a)
May
41.4778
3.7652 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484 | 0.6300
0.6330
0.6330
0.6330
0.6330
3466.6281
5005.0220 | 2961.1555
4494.0922 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
2281.8057
3866.5636 | Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 | 00
00
00
00
00
00
00
00
747.3572
2485.4398
Nov
41.3613
3.7574 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383
21.0000
Dec
41.2402
3.7493 | (76)
(78)
(80)
(82)
(83)
(84) | | North East South West East Solar gains Total gains Total gains Total gains Temperature d Utilisation f tau alpha util living a | 598.5071
2440.5671
 | 1176.9895
3090.4118
ture (heati-
ng periods
ains for li
Feb
41.0501
3.7367 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
1954.5475
3770.5267
10 the livi
iving area,
Mar
41.1146
3.7410
0.9933
19.2896 | 900
1500
1900
200
2877.3356
4643.0323
 | 10.6334
19.6403
46.7521
19.6403
26.0000
3550.8893
5217.3905
om Table 9,
Table 9a)
May
41.4778
3.7652
0.9289
20.3589 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484
3.7832 | Jul
41.7484
3.7832 | 2961.1555
4494.0922
Aug
41.7989
3.7866
0.7541
20.8689 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 | 00
00
00
00
00
00
00
747.3572
2485.4398
Nov
41.3613
3.7574
0.9982
19.1695 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383
21.0000
Dec
41.2402
3.7493
0.9993
18.6518 | (76)
(78)
(80)
(82)
(83)
(84)
(85) | | North East South West East | 598.5071
2440.5671
nal tempera
uring heati
actor for g
Jan
40.9845
3.7323
rea
0.9991
18.6828
20.2598
house
0.9989 | 1176.9895
3090.4118
.ture (heati-
ng periods
tains for li
Feb
41.0501
3.7367
0.9976
18.9023
20.2609 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
ing season)
in the livi
iving area,
Mar
41.1146
3.7410
0.9933
19.2896
20.2620
0.9921 | 900
900
900
900
700
220
2877.3356
4643.0323
ng area frc
nil,m (see
Apr
41.4201
3.7613
0.9764
19.8408
20.2671 | 10.6334
19.6403
46.7521
19.6403
26.0000
3550.8893
5217.3905
0m Table 9,
Table 9a)
May
41.4778
3.7652
0.9289
20.3589
20.2680
0.9120 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484
3.7832
0.8232
20.7454
20.2724
0.7766 | 0.6300
0.6300
0.6300
0.6300
0.6300
3466.6281
5005.0220
Jul
41.7484
3.7832
0.6870
20.9098
20.2724
0.6031 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 |
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89) | | North East South West East Solar gains Total gains 7. Mean inter Temperature d Utilisation f tau alpha util living a MIT Th 2 util rest of MIT 2 Living area f | 598.5071
2440.5671
 | 1176.9895
3090.4118
.ture (heati-
ng periods
ains for li
Feb
41.0501
3.7367
0.9976
18.9023
20.2609
0.9972
17.7254 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
1954.5475
3770.5267
10 season)
in the livitiving area,
Mar
41.1146
3.7410
0.9933
19.2896
20.2620
0.9921
18.2223 | 900
900
900
900
200
2877.3356
4643.0323
 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 DM Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484
3.7832
0.8232
20.7454
20.2724
0.7766
20.0407 | Jul
41.7484
3.7832
0.6031
0.6031
20.2106 | Aug
41.7989
3.7866
0.7541
20.8689
20.2733
0.6775
20.1764 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
ea / (4) = | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91) | | North East South West East Solar gains Total gains Total gains 7. Mean inter Temperature d Utilisation f tau alpha util living a MIT Th 2 util rest of | 598.5071 2440.5671 | 1176.9895
3090.4118
iture (heating periods agains for life and the second of seco | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
1954.5475
3770.5267
1954.5475
1954.5475
1970.5267
19933
19.2896
20.2620
0.9921
18.2223
18.2780 | 900
900
900
900
700
220
2877.3356
4643.0323
ng area frc
nil,m (see
Apr
41.4201
3.7613
0.9764
19.8408
20.2671 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484
3.7832
0.8232
20.7454
20.2724
0.7766 | 0.6300
0.6300
0.6300
0.6300
0.6300
3466.6281
5005.0220
Jul
41.7484
3.7832
0.6870
20.9098
20.2724
0.6031 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 |
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
2a / (4) = 18.1289 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383
21.0000
Dec
41.2402
3.7493
0.9993
18.6518
20.2641
0.9992
17.4062
0.0522
17.4713
0.0000 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | North East South West East Total gains Timperature d Utilisation f tau alpha util living a MIT Th 2 util rest of MIT 2 Living area f MIT Temperature a | 598.5071 2440.5671 | 1176.9895
3090.4118
iture (heating periods agains for life and the second of seco | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
1954.5475
3770.5267
1954.5475
1954.5475
1970.5267
19933
19.2896
20.2620
0.9921
18.2223
18.2780 | 900
900
900
900
2877.3356
4643.0323
 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484
3.7832
20.7454
20.2724
0.7766
20.0407
20.0775 | Jul
41.7484
3.7832
0.6870
20.9998
20.2724
20.22471 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
18.1289 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383
21.0000
Dec
41.2402
3.7493
0.9993
18.6518
20.2641
0.9992
17.4062
0.0522
17.4713
0.0000 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | North East South West East | 598.5071
2440.5671
nal tempera
actor for g
Jan
40.9845
3.7323
rea
0.9991
18.6828
20.2598
house
0.9989
17.4433
raction
17.5081
djustment
17.5081 | 1176.9895
3090.4118
ture (heati-
 | 1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 | 900
900
900
900
200
2877.3356
4643.0323
ang area frc
nil,m (see
Apr
41.4201
3.7613
0.9764
19.8408
20.2671
0.9715
18.9285
18.9761 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 om Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 | Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775 | Jul
41.7484
3.7832
0.6630
0.6300
0.6300
0.6300
3466.6281
5005.0220 | Aug
41.7989
3.7866
0.7541
20.8689
20.2733
0.6775
20.1764
20.2126 |
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
18.1289 | 301.6166
14.1452
188.8930
89.9852
491.4981
2287.7383
21.0000
Dec
41.2402
3.7493
0.9993
18.6518
20.2641
0.9992
17.4062
0.0522
17.4713
0.0000 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | North East South West East | 598.5071 2440.5671 | 1176.9895
3090.4118
.ture (heati-
ng periods
ains for li
Feb
41.0501
3.7367
0.9976
18.9023
20.2609
0.9972
17.7254
17.7869 | 1.1
50.2
0.9
31.4
8.7
1954.5475
3770.5267
1954.5475
3770.5267
1 the livitiving area,
Mar
41.1146
3.7410
0.9933
19.2896
20.2620
0.9921
18.2223
18.2780 | 900
900
900
900
2877.3356
4643.0323
 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 | 3646.0628
5254.3457
Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775 | Jul
41.7484
3.7832
0.6870
20.9098
20.2724
20.2471
20.2471 | Aug
41.7989
3.7866
0.7541
20.8689
20.2733
0.6775
20.1764
20.2126 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7028
.7762
.0.9288
.20.5275
.20.2707
.9049
.19.7956
.f.LA = 19.8338
.19.8338 | Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
ta / (4) = 18.1289 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92) | | North East South West East | 598.5071 2440.5671 | 1176.9895 3090.4118 Lture (heati- ang periods lains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609 17.7254 17.7869 17.7869 Lains for li Feb 0.9949 | 1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 | 900
900
900
900
2200
2877.3356
4643.0323
4643.0323
 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 | 3646.0628
5254.3457
Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775 | Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031 20.2471 20.2471 Jul 0.5999 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010 | Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 | Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.1289 18.1289 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93) | | North East South West East | 598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081 Jan 0.9979 2435.5095 4.3000 | 1176.9895 3090.4118 Lture (heati- ang periods lains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609 17.7254 17.7869 17.7869 Lains for li Feb 0.9949 | 1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livi iving area,
Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 | 900
900
900
900
2200
2877.3356
4643.0323
4643.0323
 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 m Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 | 3646.0628
5254.3457
Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775 | Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031 20.2471 20.2471 Jul 0.5999 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010
.7010 | Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 | Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.1289 18.1289 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 | (76)
(776)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93) | | North East South West East | 598.5071 2440.5671 nal tempera uring heati actor for g | 1176.9895 3090.4118 Lture (heating periods ains for life periods ains for life periods ains for life periods ains for life periods according to the life periods at peri | 1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 | 900
900
900
900
200
2877.3356
4643.0323
A643.0323
A643.0323
0.9764
19.8408
20.2671
0.9715
18.9285
18.9761
18.9761
Apr
0.9591
4453.1236
8.9000 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 | 3646.0628
5254.3457
Th1 (C) Jun 41.7484 3.7832 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775 | Jul 41.7484 3.7832 0.6870 20.2106 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.70288
.20.5275
.20.2707
.9049
.19.8338
.19.8338
.19.8338
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8862
.20.8 | Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831 18.9831 | Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 18.1289 18.1289 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93) | | North East South West East | 598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081 | 1176.9895 3090.4118 Lture (heating periods ains for life | 1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 18.2780 Mar 0.9868 3720.7083 6.5000 10691.1621 5186.0176 | 900
900
900
900
200
2877.3356
4643.0323
4643.0323
 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 May 40.8929 4658.8098 11.7000 7125.5333 | 3646.0628
5254.3457
Th1 (C) Jun 41.7484 3.7832 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775 | Jul 41.7484 3.7832 0.6870 20.2106 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126 |
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 18.9831 Oct 0.9804 2974.8755 10.6000 7542.8893 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
18.1289
Nov
0.9952
475.2676
7.1000 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 | (76)
(78)
(80)
(82)
(83)
(84)
(85)
(86)
(87)
(88)
(89)
(91)
(92)
(93)
(94)
(95)
(96)
(97) | | North East South West East | 598.5071 2440.5671 all tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081 djustment 17.5081 | 1176.9895 3090.4118 Lture (heating periods lains for life | 1.1 50.2 0.9 31.4 8.7 1.954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 Mar 0.9868 3720.7083 6.5000 10691.1621 5186.0176 per year (kW 0.0000 | 900 900 900 900 900 900 900 900 900 900 | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 May 40.8929 4658.8098 11.7000 7125.5333 | 3646.0628
5254.3457
Th1 (C)
Jun
41.7484
3.7832
20.7454
20.2724
0.7766
20.0407
20.0775
20.0775
Jun
0.7622
4004.7580
14.6000
4896.5570 | Jul
41.7484
3.7832
0.6870
20.9098
20.2724
0.6031
20.2471
20.2471
Jul
0.5999
3002.5525
16.6000
3260.2827 | Aug
41.7989
3.7866
0.7541
20.8689
20.2733
0.6775
20.1764
20.2126
20.2126 | .7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000 | Table 0.77 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 18.9831 Oct 0.9804 2974.8755 10.6000 7542.8893 | Nov
41.3613
3.7574
0.9982
19.1695
20.2661
0.9978
18.0716
18.1289
Nov
0.9952
475.2676
7.1000 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 Dec 0.9984 2284.0420 4.2000 12009.8859 7236.0279 39312.4507 | (76)
(778)
(80)
(82)
(83)
(84)
(85)
(85)
(86)
(87)
(88)
(89)
(90)
(91)
(92)
(93)
(94)
(95)
(96)
(97)
(98a) | | North East South West East | 598.5071 2440.5671 | 1176.9895 3090.4118 Lture (heating periods ains for life at | 1.1 50.2 0.9 31.4 8.7 1.954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 Mar 0.9868 3720.7083 6.5000 10691.1621 5186.0176 per year (kW 0.0000 | 900
900
900
900
900
200
2877.3356
4643.0323
4643.0323
9764
19.8408
20.2671
0.9764
19.8408
20.2671
18.9285
18.9761
18.9761
18.9761
18.9761
18.9761
18.9761
18.9761
0.9591
4453.1236
8.9000
9078.8081
3330.4928
th/year)
0.0000
Wh/year) | 10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 May 41.7700 7125.5333 1835.2423 | 3646.0628
5254.3457
Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775 4004.7580 14.6000 4896.5570 0.0000 | Jul 41.7484 3.7832 0.6870 20.9098 20.2724 120.2106 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000 3260.2827 0.0000 | Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126 |
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.7000
.9288
.20.5275
.20.2707
.9049
.19.8338
.19.8338
.19.8338
.19.8338
.19.8338
.19.8338
.10000
.10000
.10000
.10000
.10000 | Table 0.77 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831 18.9831 Oct 0.9804 2974.8755 10.6000 7542.8893 3398.6023 | Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0728 18.1289 18.1289 Nov 0.9959 2475.2676 7.1000 9951.4557 5382.8555 0.0000 | 301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 Dec 0.9984 2284.0420 4.2000 12009.8859 7236.0279 39312.4507 | (76) (776) (778) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98a) (98b) | SAP 10 Online 2.13.2 Page 6 of 8 Space heating per m2 (98c) / (4) = 34.2136 (99) | 9a. Energy requirements - Individual heating s | ystems, inc | luding micr | o-CHP | | | | | | | | |---|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------------------|-----------------------------|------------------------------|------------------------------|---|-------------------------| | Fraction of space heat from secondary/suppleme Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in Efficiency of main space heating system 2 (in Efficiency of secondary/supplementary heating | ntary syste
%)
%) | | | | | | | | 0.0000
1.0000
92.4000
0.0000
0.0000 | (202)
(206)
(207) | | Jan Feb Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requirement 7136.2561 5806.9563 5186.0176 | - | = | 0.0000 | 0.0000 | 0.0000 | _ | 3398.6023 | 5382.8555 | 7236.0279 | (98) | | Space heating efficiency (main heating system 92.4000 92.4000 92.4000 | | 92.4000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.4000 | 92.4000 | 92.4000 | | | Space heating fuel (main heating system)
7723.2208 6284.5848 5612.5732 | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 7831.1990 | | | Space heating efficiency (main heating system 0.0000 0.0000 0.0000 | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating fuel (main heating system 2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | | | Space heating fuel (secondary) | | | | | | | | 0.0000 | 0.0000 | | | 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (213) | | Water heating requirement | 250 0205 | 250 2051 | 224 0440 | 221 0171 | 221 1201 | 224 1672 | 261 7000 | 270 0721 | 211 7020 | (64) | | 315.1829 278.3265 295.1599
Efficiency of water heater | 258.8285 | 250.3051 | 224.9448 | 221.8171 | 231.1281 | 234.1673 | 261.7800 | 279.0731 | 311.7030
80.3000 | (216) | | (217)m 88.4991 88.4667 88.3902
Fuel for water heating, kWh/month | 88.2187 | 87.7718 | 80.3000 | 80.3000 | 80.3000 | 80.3000 | 88.2243 | 88.4332 | 88.5085 | | | 356.1425 314.6118 333.9282
Space cooling fuel requirement | 293.3941 | 285.1772 | 280.1305 | 276.2355 | 287.8308 | 291.6155 | 296.7211 | 315.5752 | 352.1729 | | | (221)m 0.0000 0.0000 0.0000 Pumps and Fa 7.3041 6.5973 7.3041 Lighting 125.2511 100.4811 90.4721 | 0.0000
7.0685
66.2837 | 0.0000
7.3041
51.1995 | 0.0000
7.0685
41.8304 | 0.0000
7.3041
46.7059 | 0.0000
7.3041
60.7100 | 0.0000
7.0685
78.8563 | 0.0000
7.3041
103.4638 | 0.0000
7.0685
116.8621 | 0.0000
7.3041
128.7322 | (231) | | Electricity generated by PVs (Appendix M) (neg (233a)m -155.5531 -219.6397 -315.7679 | -354.4734 | -380.9005 | | -349.0761 | -329.9947 | -296.4940 | -250.3656 | -170.8869 | -134.3886 | (233a) | | Electricity generated by wind turbines (Append (234a)m 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234a) | | Electricity generated by hydro-electric genera (235a)m 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235a) | | Electricity used or net electricity generated (235c)m 0.0000 0.0000 0.0000 | by micro-CH
0.0000 | P (Appendix 0.0000 | N) (negati
0.0000 | ve if net g
0.0000 | eneration)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235c) | | Electricity generated by PVs (Appendix M) (neg (233b)m -86.5226 -182.2850 -363.1416 | | | -729.9862 | -722.0784 | -611.0274 | -446.9263 | -261.9386 | -115.8542 | -68.4515 | (233b) | | Electricity generated by wind turbines (Append (234b)m 0.0000 0.0000 0.0000 | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (234b) | | Electricity generated by hydro-electric genera (235b)m 0.0000 0.0000 0.0000 | tors (Appen
0.0000 | dix M) (neg
0.0000 | ative quant 0.0000 | ity)
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235b) | | Electricity used or net electricity generated (235d)m 0.0000 0.0000 0.0000 | | | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Annual totals kWh/year
Space heating fuel - main system 1 | | | | | | | | | 42545.9424 | | | Space heating fuel - main system 2
Space heating fuel - secondary | | | | | | | | | 0.0000 | (213) | | Efficiency of water heater
Water heating fuel used | | | | | | | | | 80.3000
3683.5353 | | | Space cooling fuel | | | | | | | | | 0.0000 | | | Electricity for pumps and fans:
Total electricity for the above, kWh/year
Electricity for lighting (calculated in Append | ix L) | | | | | | | | 86.0000
1010.8482 | | | Energy saving/generation technologies (Appendi PV generation | ces M ,N an | d Q) | | | | | | | -8171.8495 | (233) | | Wind generation Hydro-electric generation (Appendix N) | | | | | | | | | 0.0000 | (234) | | Electricity generated - Micro CHP (Appendix N) Appendix Q - special features | | | | | | | | | 0.0000 | | | Energy saved or generated | | | | | | | | | -0.0000
0.0000 | | | Energy used
Total delivered energy for all uses | | | | | | | | | 39154.4764 | 12a. Carbon dioxide emissions - Individual hea | | | | | | P | | | Post and and | | | Space heating - main quater 1 | | | | | Energy
kWh/year
42545.9424 | | ion factor
kg CO2/kWh | k | Emissions
cg CO2/year | | | Space heating - main system 1 Total CO2 associated with community systems | | | | | | | 0.2100 | | 8934.6479
0.0000 | (373) | | Water heating (other fuel)
Space and water heating | | | | | 3683.5353 | | 0.2100 | | 773.5424
9708.1903 | (265) | | Pumps, fans and electric keep-hot
Energy for lighting | | | | | 86.0000
1010.8482 | | 0.1387
0.1443 | | 11.9293
145.8966 | | | Energy saving/generation technologies | | | | | 2211 6700 | | 0.1045 | | 445 0100 | | | PV Unit electricity used in dwelling
PV Unit electricity exported | | | | | -3311.6782
-4860.1713 | | 0.1346
0.1258 | | -445.9132
-611.3600 | | | Total CO2, kg/year | | | | | | | | | -1057.2732
8808.7430 | (272) | | EPC Target Carbon Dioxide Emission Rate (TER) | | | | | | | | | 7.6700 | (2/3) | | | | | | | | | | | | | | 13a. Primary energy - Individual heating syste | ms includin | g micro-CHP | | | | | | | | | | | | | | | Energy | | rgy factor | | nary energy | | | Space heating - main system 1 | | | | | kWh/year
42545.9424 | | kg CO2/kWh
1.1300 | | kWh/year
48076.9149 | (275) | | Total CO2 associated with community systems Water heating (other fuel) | | | | | 3683.5353 | | 1.1300 | | 0.0000
4162.3949 | (278) | | Space and water heating
Pumps, fans and electric keep-hot | | | | | 86.0000 | | 1.5128 | | 52239.3098
130.1008 | (281) | | Energy for lighting | | | | | 1010.8482 | | 1.5338 | | 1550.4728 | (282) | | Proray saying/gonoration tochnologies | | | | | | | | | | | SAP 10 Online 2.13.2 Page 7 of 8 Energy saving/generation technologies 1.4976 0.4617 -4959.7125 -2244.0750 -7203.7875 (283) 46716.0958 (286) 40.6600 (287) PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER) -3311.6782 -4860.1713 SAP 10 Online 2.13.2 Page 8 of 8 | Assessment Reference Be Green Prop Type Ref | |
--|---| | SAP Rating | | | SAP Rating | | | Environmental 96 A % DER < TER 55.89 | | | CO.Emissions (typear) 3.33 DPEE 36.08 TFEE 36.64 | | | See BREL W. DFEE < TFEE | | | Massessor Details Dr. Alan Harries H | | | Assessor Details | | | Client C | | | Client C | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 1. Overall dwelling characteristics Area (m2) (m) (m3) Basement floor (m2) (m3) Cround floor (m3) (m3) x 1.5000 (2a) = 247.9950 (75.000 (7 | | | | b) - (3k
c) - (3c
d) - (3c
e) - (3e
) | | 2. Ventilation rate m3 per hour | | | Number of open chimneys 0 * 80 = 0.0000 (Number of open flues 0 * 20 = 0.0000 (Number of chimneys / flues attached to closed fire 0 * 10 = 0.0000 (Number of flues attached to solid fuel boiler 0 * 20 = 0.0000 (Number of flues attached to other heater 0 * 35 = 0.0000 (Number of blocked chimneys 0 * 20 = 0.0000 (Number of intermittent extract fans 0 * 10 = 0.0000 (Number of passive vents 0 * 10 = 0.0000 (Number of flueless gas fires 0 * 40 = 0.0000 (| b)
c)
d)
e)
f)
a)
b) | | Air changes per hour Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)+(7c)$ = 0.0000 / (5) = 0.0000 (| ١ | | Yes | 7)
8) | | Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.8500 \text{ (21)} = (18) \times (20) = 0.1275 \text{ (22)}$ | | | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3.8000 3.7000 4.0000 4.3000 4.7000 0.900 Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 0.9250 1.0000 1.0750 1.1250 1.1750 0.9500 | | | Adj infilt rate 0.1626 0.1594 0.1562 0.1403 0.1371 0.1211 0.1211 0.1179 0.1275 0.1371 0.1434 0.1498 (| 2b) | | Balanced mechanical ventilation with heat recovery If mechanical ventilation 0.5000 (| 3a) | | If exhaust air heat pump using Appendix N, (23b) = (23a) x Fmv (equation (N5)), otherwise (23b) = (23a) 0.5000 (If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 69.6000 (| | | Effective ac 0.3146 0.3114 0.3082 0.2923 0.2891 0.2731 0.2731 0.2699 0.2795 0.2891 0.2954 0.3018 (| | | Effective ac 0.3146 0.3114 0.3082 0.2923 0.2891 0.2731 0.2731 0.2699 0.2795 0.2891 0.2954 0.3018 (| >) | | 3. Heat losses and heat loss parameter | | | Element Gross Openings NetArea U-value A x U K-value A x K | | | m2 | 9a)
9a)
9a) | | Dormer windows 26.3000 26.3000 0.1500 3.9450 110.0000 2893.0000 (26.3000 0.1500 8.5485 110.0000 6268.9000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (| | SAP 10 Online 2.13.2 Page 1 of 8 | lower basement GF Old wall 1F Old wall 2f old wall Roof GF roof Total net area of external ex | | 81.0000
80.1000
94.8000
53.0100
107.8000
54.8100 | 4.940
3.780 | 80
94
53
0 102
0 51 | .0000
.1000
.8000
.0100
.8600
.0300
.8100
(26)(| 0.1500
0.3000
0.3000
0.3000
0.1100
0.1100
30) + (32) | 12.150
24.030
28.440
15.903
11.314
5.613 | 10 11
10 11
10 15
66 | 0.0000
0.0000
0.0000
0.0000
9.0000
9.0000 | 8910.0000
8811.0000
10428.0000
7951.5000
925.7400
459.2700 | (29a)
(29a)
(29a)
(30) | |--|--|---|---|---|--|---|---
---|---|---|---------------------------------| | Heat capacity Cm = Sum(A x k
Thermal mass parameter (TMP: | | √m2K | | | | (28). | (30) + (32 | (32a). | (32e) = 1 | 34353.7100
116.9279 | | | List of Thermal Bridges K1 Element E5 Ground floor (norn E6 Intermediate floo: E22 Basement floor E15 Flat roof with p. E14 Flat roof E24 Eaves (insulation E16 Corner (normal) E17 Corner (inverted R1 Head of roof wind R2 Sill of roof wind R3 Jamb of roof wind R4 Ridge (vaulted ce. R5 Ridge (inverted) R7 Flat ceiling (inverted) R7 Flat ceiling (inverted) E20 Exposed floor (n. E21 Exposed floor (n. E21 Exposed floor (n. E25 Ground floor (normal) E17 Corner (inverted E5 Ground floor (norn E2 Other lintels (inc. E3 Sill E4 Jamb Thermal bridges (Sum(L x Psi Point Thermal bridges | mal) r within a dwelling arapet n at ceiling leve - internal area ow ow cliling) erted) c ceiling) ormal) neverted) - internal area mal) cluding other ste | ng el - inverted greater than greater than greater than | external a | | | 49
177
300
455
9
24
677
144
0
0
1
399
7
166
144
377
155
466
322
288
455 | ength | Psi-value 0.0700 0.1400 0.0700 0.3000 0.1600 0.0900 0.0000 0.2400 0.2400 0.2400 0.0400 0.0400 0.0400 0.0400 0.0400 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 | Tot 3.47 2.45 2.11 13.50 1.47 0.97 6.11 0.00 0.19 0.19 0.46 3.19 0.28 0.66 5.77 11.96 4.96 8.28 0.00 9.02 13.59 1.76 5.30 | al
220
000
440
000
220
220
644
000
220
220
248
880
000
366
000
40
900
660 | | | Total fabric heat loss | | | | | | | (3 | (36) + (36) | | 409.3596 | (37) | | | ated monthly (38)
Feb Mar
3.9066 281.0002 | Apr | 25) m x (5)
May
263.5624 | Jun
249.0308 | Jul
249.0308 | Aug
246.1245 | Sep
254.8435 | Oct
263.5624 | Nov
269.3750 | Dec
275.1876 | (38) | | Heat transfer coeff
696.1725 69 | 3.2661 690.3598 | | 672.9220 | 658.3904 | 658.3904 | 655.4841 | 664.2031 | 672.9220 | 678.7346 | 684.5472 | | | | Feb Mar
0.6033 0.6008 | Apr
0.5882 | May
0.5856 | Jun
0.5730 | Jul
0.5730 | Aug
0.5705 | Sep
0.5781 | Oct
0.5856 | Nov
0.5907 | 675.1017
Dec
0.5958
0.5875 | (40) | | Days in mont 31 | 28 31 | . 30 | 31 | 30 | 31 | 31 | 30 | 31 | 30 | 31 | | | Hot water usage for baths | irements (kWh/yea | 87.7312 | | | | | 83.9743
36.5958 | 87.5004
38.0032 | 91.5766
39.6198 | 4.2357
94.8736
40.9400 | (42a) | | | 5.8981 53.7888 | 51.6794 | 49.5700 | 47.4607 | 47.4607 | 49.5700 | 51.6794 | 53.7888 | 55.8981 | 58.0075 | | | Average daily hot water use Jan | (litres/day)
Feb Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | 178.6273
Dec | (43) | | Daily hot water use | 0.1741 185.1200 | 177.4362 | 171.1958
230.4625 | 164.4872
202.2562 | 161.9101
195.8162 | 166.9424
206.7096 | 172.2496
212.4009 | 179.2923
243.2980 | 187.0945
266.5505
Sum (45) m = | 193.8210
303.4769 | | | Distribution loss (46)m = 0
46.1645 4 | .15 x (45)m
0.6208 42.6784 | 36.4352 | 34.5694 | 30.3384 | 29.3724 | 31.0064 | 31.8601 | | | 45.5215 | (46) | | Water storage loss:
Store volume
a) If manufacturer declared
Temperature factor from Tal
Enter (49) or (54) in (55) | | nown (kWh/d | lay): | | | | | | | 175.0000
2.0000
0.5400
1.0800 | (48)
(49) | | Total storage loss
33.4800 30 | 0.2400 33.4800 | | 33.4800 | 32.4000 | 33.4800 | 33.4800 | 32.4000 | 33.4800 | 32.4000 | 33.4800 | | | Primary loss 23.2624 23 | 0.2400 33.4800
1.0112 23.2624
0.0000 0.0000 | 32.4000
22.5120
0.0000 | 23.2624 | 22.5120 | 33.4800
23.2624
0.0000 | 33.4800
23.2624
0.0000 | | 33.4800
23.2624
0.0000 | 22.5120 | 33.4800
23.2624
0.0000 | (59) | | 364.5054 323
 WWHRS | 2.0566 341.2650
0.0000 0.0000
0.0000 -0.0000
0.0000 0.0000 | 297.8132
0.0000
-0.0000
0.0000 | 287.2049
0.0000
-0.0000
0.0000 | 257.1682
0.0000
-0.0000
0.0000
0.0000 | 252.5586
0.0000
-0.0000
0.0000
0.0000 | 263.4520
0.0000
-0.0000
0.0000
0.0000 | 267.3129
0.0000
-0.0000
0.0000
0.0000 | 300.0404
0.0000
-0.0000
0.0000
0.0000 | 0.0000 | 360.2193
0.0000
-0.0000
0.0000
0.0000 | (63a)
(63b)
(63c) | | Output from w/h 364.5054 32: | 2.0566 341.2650 | 297.8132 | 287.2049 | 257.1682 | 252.5586 | | 267.3129
er year (kWh | | | | | | 12Total per year (kWh/year)
Electric shower(s)
0.0000 | 0.0000 | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3635
0.0000 | (64)
(64a) | | Heat gains from water heating | g, kWh/month
1.0438 139.9977 | | | - | | | wer(s) (kWh/ | - | | 0.0000 | | | 111,1201 13. | ., 100.0011 | | | | 0.0020 | 1.1270 | | | | | ,, | | 5. Internal gains (see Table | 5 and 5a) | | | | | | | | | | | | Metabolic gains (Table 5), Wa | atts | | | | | | _ | | | _ | | | Lighting gains (calculated in | 1.7834 211.7834
n Appendix L, equ | 211.7834
ation L9 or | L9a), also | see Table 5 | | | | | | | | | 587.1589 650
Appliances gains (calculated | 0.0688 587.1589
in Appendix L, e | | | | | 587.1589 | 606.7308 | 587.1589 | 606.7308 | 587.1589 | (67) | SAP 10 Online 2.13.2 Page 2 of 8 | Cooking gains Pumps, fans Losses e.g. ev Water heating Total internal 6. Solar gain: [Jan] North East South West East | (calculated 44.1783 0.0000 vaporation -169.4268 gains (Tab. 198.5553 1 gains 1 867.3033 | d in Appent 44.1783 0.0000 (negative v-169.4268 le 5) 195.0056 | 44.1783
0.0000
values) (Tak
-169.4268
188.1689
1841.2225 | 100 L15 or 44.1783 0.0000 cle 5) -169.4268 173.1865 1790.4184 cle 8 m2 cle 900 | L15a), also 44.1783 0.0000 -169.4268 164.0090 1691.7445 | see Table 44.1783 0.0000 -169.4268 154.4164 1636.0047 Speci | 5
44.1783
0.0000
-169.4268
148.5253
1566.6372
 | 153.3936
1561.1800
 | 159.1013
1612.4796
FF
data
le 6c | Acce
fact
Table
0.77
0.77
0.77 | 184.1078
1762.8043
ss
or
6d
00
00
00 | 196.6398 | (69)
(70)
(71)
(72)
(73)
(74)
(76)
(78)
(80) | |---|---|--|---|--|---|--|--|---------------------------|--|---|---|--|--| | Solar gains
Total gains | | | | | | | | | | | | | | | 7. Mean internal temperature (heating season) | | | | | | | | | | | | | | | Temperature du | uring heating | ng periods | in the livi | ng area fro | m Table 9, | Th1 (C) | | | | | | 21.0000 | (85) | | tau alpha | Jan
53.6081
4.5739 | Feb
53.8328 | Mar
54.0595 | Apr
55.2218 | May
55.4603 | Jun
56.6844 | Jul
56.6844
4.7790 | | Sep
56.1884
4.7459 |
Oct
55.4603
4.6974 | | | | | util living a | rea | 0.9983 | | | 0.9144 | 0.7674 | 0.6031 | | 0.9083 | 0.9908 | 0.9987 | | (86) | | Living | | | | 20.3506 | 20.6586 | 20.8589 | 20.9165 | | 20.7427 | 20.3265 | 19.9050 | | (, | | Living
Non living
24 / 16 | 19.0697
0 | 19.2218
0 | 19.4735
0 | | 20.1445 | | 20.3794 | 0 | 20.2331 | 0 | 0 | 0 | | | 16 / 9 | 0 | 0 | 0 | 30 | 0 | 30
0 | 31 | 0 | 30
0 | 0 | 0 | | | | MIT
Th 2
util rest of h | | 21.0000
20.4270 | | 21.0000
20.4407 | 21.0000
20.4429 | 21.0000
20.4544 | 21.0000
20.4544 | 21.0000
20.4567 | 21.0000
20.4498 | | | | | | MIT 2 Living area fi | 0.9993
20.4247 | 0.9980
20.4270 | | 0.9713
20.4407 | 0.8974
20.4429 | 0.7240
20.4544 | 0.5376
20.4544 | 0.6115
20.4567 | 0.8835
20.4498 | 0.9885
20.4429
Living are | 0.9984 | | (90) | | MIT Temperature ac | 20.4548 | 20.4569 | 20.4591 | 20.4699 | 20.4720 | 20.4829 | 20.4829 | 20.4850 | 20.4785 | | | | | | adjusted MIT | | 20.4569 | 20.4591 | 20.4699 | 20.4720 | 20.4829 | 20.4829 | 20.4850 | 20.4785 | 20.4720 | 20.4677 | 20.4634 | (93) | | 8. Space heat: | ing requirer
 | ment

Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Utilisation Useful gains Ext temp. | 2392.2510
4.3000 | | 3530.9851 | 4183.4312 | | 3499.7248 | 2485.0561 | 2551.3735 | 3194.5724 | 2855.1522 | 2416.2327 | | (95) | | Heat loss rate
Space heating | 11246.4939 | 10785.0780 | 9636.7779 | 7819.2413 | 5902.8895 | 3873.2159 | 2556.4351 | 2677.6687 | 4236.6332 | 6643.1037 | 9073.1219 | 11133.0526 | (97) | | Space heating
Space heating
Solar heating | 6587.5567
requirement | | 4542.7098
per year (kW | | 1189.0091 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 2818.2360 | 4792.9602 | 6606.7551
34410.2052 | (98a) | | Solar heating
Solar heating
Space heating | 0.0000
contribution | 0.0000
on - total | | 0.0000
Wh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating | 6587.5567
requirement | | 4542.7098
lar contribu | | | 0.0000
(kWh/year) | 0.0000 | 0.0000 | 0.0000 | 2818.2360 | | 34410.2052 | | | Space heating | per mz | | | | | | | | | (980 |) / (4) = | 29.9472 | (99) | | | | | | | | | | | | | | | | | 9a. Energy red | | | | | | | | | | | | | | | Fraction of sp
Fraction of sp
Efficiency of
Efficiency of
Efficiency of | pace heat f:
main space
main space | rom main sy
heating sy
heating sy | ystem(s)
ystem 1 (in
ystem 2 (in | %)
%) | m (Table 11 |) | | | | | | 0.0000
1.0000
178.6713
0.0000
0.0000 | (202)
(206)
(207) | | Space heating | Jan
requirement | Feb
t | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating | 6587.5567
efficiency | 5255.1950
(main heat | | 1) | 1189.0091 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | 6606.7551 | (98) | | Space heating | 178.6713
fuel (main | 178.6713
heating sy | 178.6713
ystem) | 178.6713 | 178.6713 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 178.6713 | 178.6713 | 178.6713 | | | Space heating | 3686.9692
efficiency | 2941.2638
(main heat | 2542.4952
ting system | 2) | 665.4728 | 0.0000 | 0.0000 | 0.0000 | | 1577.3297 | | | | | Space heating | | | ystem 2) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating | | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Maka 3 11 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (215) | | Water heating
Water heating | requirement | t
322.0566 | 341.2650 | 297.8132 | 287.2049 | 257.1682 | 252.5586 | 263.4520 | 267.3129 | 300.0404 | 321.4625 | 360.2193 | (64) | | Efficiency of (217)m | water heat | | | 104.5200 | 104.5200 | 104.5200 | 104.5200 | 104.5200 | 104.5200 | 104.5200 | 104.5200 | 104.5200 | (216) | | . / | | | , | | | | | | | | | , | / | SAP 10 Online 2.13.2 Page 3 of 8 | Fuel for water heating, kWh/month 348.7423 308.1292 326.5069 284.9342 274.7846 246.0469 241. | .6367 252.05 | 39 255.75 | 287.0651 | 307.5607 | 344.6415 | (219) | |---|-----------------------------|------------|------------------------------|----------------------|---|--------------------------| | Pumps and Fa 275.5543 248.8877 275.5543 266.6654 275.5543 266.6654 275. | | 43 266.66 | 554 275.5543 | 0.0000
266.6654 | 0.0000
275.5543 | (231) | | Lighting 152.4228 122.2792 110.0989 80.6632 62.3066 50.9050 56.
Electricity generated by PVs (Appendix M) (negative quantity)
(233a)m -45.6699 -73.2609 -119.0570 -149.0712 -170.3854 -154.5450 -152. | | | | 142.2139
-52.9975 | 156.6591 | | | Electricity generated by wind turbines (Appendix M) (negative quantity) | .0000 0.00 | | | 0.0000 | -38.5148
0.0000 | | | Electricity generated by hydro-electric generators (Appendix M) (negative quantity) | | | | 0.0000 | 0.0000 | | | Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if | | n) | | 0.0000 | 0.0000 | | | Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -4.4166 -10.3191 -23.2893 -41.7008 -65.2973 -77.1687 -75. | .9371 -62.41 | 31 -43.81 | 122 -17.6900 | -6.4123 | -3.3991 | | | | .0000 0.00 | 0.00 | 0.0000 | 0.0000 | 0.0000 | (234b) | | | .0000 0.00 | | 0.0000 | 0.0000 | 0.0000 | (235b) | | | net generatio
.0000 0.00 | | 0.0000 | 0.0000 | 0.0000 | (235d) | | Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel | | | | | 19258.9411
0.0000
0.0000
104.5200
3477.8598
0.0000 | (213)
(215)
(219) | | Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.9625) mechanical ventilation fans (SFP = 0.9625) Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) | | | | | 3244.4293
3244.4293
1230.1394 | (231) | | Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N) | | | | | -1727.2394
0.0000
0.0000 | (234) | | Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used | | | | | 0.0000
-0.0000
0.0000 | (235) | | Total delivered energy for all uses | | | | | 25484.1302 | | | 12a. Carbon dioxide emissions - Individual heating systems including micro-CHP | | | | | | | | | Ener
kWh/ye | ar | nission factor
kg CO2/kWh | | Emissions
g CO2/year | | | Space heating - main system 1 Total CO2 associated with community systems | 19258.94 | | 0.1547 | | 2980.2476 | (373) | | Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot | 3477.85
3244.42 | | 0.1411 | | 490.5572
3470.8048 | (265) | | Energy for lighting | 1230.13 | | 0.1443 | | 450.0423
177.5471 | | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER) | -1295.38
-431.85 | | 0.1329
0.1197 | | -172.2200
-51.6899
-223.9098
3874.4845
3.3700 | (272) | | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | | | | | Ener | gy Primary | energy factor | | | | | Space heating - main system 1 Total CO2 associated with community systems | 19258.94 | 11 | kg CO2/kWh
1.5729 | | kWh/year
30292.6727
0.0000 | | | Water heating (other fuel) Space and water heating | 3477.85 | 98 | 1.5216 | | 5291.7886
35584.4613 | (278) | | Pumps, fans and electric keep-hot
Energy for lighting | 3244.42
1230.13 | | 1.5128
1.5338 | | 4908.1726
1886.8289 | (281) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total | -1295.38
-431.85 | | 1.4913
0.4389 | | -1931.7781
-189.5314
-2121.3095 | | | Total Primary energy kWh/year Dwelling Primary energy Rate (DPER) | | | | | 40258.1533
35.0400 | | | | | | | | | | | SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS | |
 | | | | | | 1. Overall dwelling characteristics | | | Storey height | | Volume | | | Basement floor | (m | | (m) | | (m3) | (1a) - (3a | | Ground floor
First floor | 389.00 | 00 (1b) | x 2.5000
x 2.6700 | (2b) = | 972.5000 | (1b) - (3b | | Second floor
Third floor | 191.40 | | x 2.0500 | | 392.3700 | (1d) - (3d
(1e) - (3e | SAP 10 Online 2.13.2 Page 4 of 8 Total floor area TFA = (1a) + (1b) + (1c) + (1d) + (1e) ... (1n) $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) = 2762.9800 (5)$ 2. Ventilation rate m3 per hour Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater 80 = 20 = 10 = 0.0000 (6b) 0.0000 (6c) 0.0000 (6d) 20 0.0000 (6e) Number of blocked chimnevs 20 = 0.0000 (6f) Number of intermittent extract fans Number of passive vents Number of flueless gas fires 40.0000 10 = 10 = 40 = 0.0000 (7c) Air changes per hour 40.0000 / (5) = 0.0145Infiltration due to chimneys, flues and fans = (6a) + (6b) + (6c) + (6d) + (6e) + (6f) + (6g) + (7a) + (7b) + (7c) = (6a) + (6b) + (6c) + (6d) (6Pressure test Pressure Test Method Yes Blower Door Measured/design AP50 Infiltration rate Number of sides sheltered 5 0000 (17) 45 (18) 2 (19) 0.2645 - [0.075 x (19)] (21) = (18) x (20) 0.8500 (20) 0.2248 (21) Shelter factor (20) = 1 -Infiltration rate adjusted to
include shelter factor Aug 3.7000 0.9250 Jan 5.1000 May 4.3000 Jun 3.8000 Sep 4.0000 Oct 4.3000 Apr 4.4000 5.0000 Wind speed Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 1.0000 1.0750 1.1250 1.1750 (22a) Adj infilt rate 0.2810 0.2136 0.2641 (22b) 0.5349 (25) 0.5395 3. Heat losses and heat loss parameter K-value A x U Gross Openings NetArea U-value W/K 2.7700 96.0687 m2 2.7700 W/m2K kJ/m2K kJ/K 1.0000 (26) TER Opening Type (Uw = 1.20) Basement Skylight (27)(27a) (27a) 4.1400 2.0221 8.3713 7.6434 dining room Skylight roof Skylight Heatloss Floor 1 2.0221 211.0000 Basement 211.0000 0.1800 37.9800 21.7620 (29a) 172.0000 112.0000 26.3000 51 1000 120 9000 0.1800 (29a) 76.4300 26.3000 0.1800 (29a) (29a) Dormer windows 56.9900 56.9900 0.1800 10.2582 (29a) lower basement 81.0000 81.0000 0 1800 14 5800 (29a GF Old wall 1F Old wall 14.4180 94.8000 0.1800 (29a) 2f old wall Roof 53.0100 53.0100 0.1800 9.5418 (29a) (30) (30) (31) 4 9400 11 3146 51.0300 1438.8100 0.1100 5.6133 Total net area of external elements Aum(A, m2) (26)...(30) + (32) = 328.0644 Fabric heat loss, W/K = Sum (A x U) Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K116.9279 (35) List of Thermal Bridges K1 Element Length Psi-value Total E5 Ground floor (normal) E6 Intermediate floor within a dwelling 0.1600 7.9360 E22 Basement floor E15 Flat roof with parapet E14 Flat roof E24 Eaves (insulation at ceiling level - inverted) 30.2000 0.0700 2.1140 45 0000 0.5600 25 2000 9.2000 24.3000 0.7360 5.8320 0.0800 0.2400 E24 Eaves (institution at ceiling level - inverted) E16 Corner (normal) E17 Corner (inverted - internal area greater than external area) R1 Head of roof window R2 Sill of roof window R3 Jamb of roof window 67.9600 14.8200 0.0900 6.1164 -0.0900 0.0800 0.0600 -1.3338 0.0640 0.0480 0.8000 1.9400 0.0800 0.1552 R4 Ridge (vaulted ceiling) R5 Ridge (inverted) R7 Flat ceiling (inverted) R9 Roof to wall (flat ceiling) 39.9600 0.0800 3.1968 0.2800 16.6800 0.0400 144.3100 0.0400 5.7724 E20 Exposed floor (normal) E21 Exposed floor (inverted) 0.3200 11.9680 E16 Corner (normal) E17 Corner (inverted - internal area greater than external area) 46.0200 0.0900 4.1418 32.8400 -0.0900 -2.9556 E5 Ground floor (normal) E2 Other lintels (including other steel lintels) 28.2000 45.3300 0.1600 4.5120 2.2665 E3 Sill 44.1500 0.0500 2.2075 E4 Jamb 106 1000 0.0500 5.3050 Thermal bridges (Sum(L x Psi) calculated using Appendix K) Point Thermal bridges Total fabric heat loss 89.1894 (36) (36a) = (33) + (36) + (36a) =0.0000 417.2538 (37) Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan Feb Mar Apr May $(38)m \qquad 493.3455 \qquad 491.8911 \qquad 490.4656 \qquad 483.7697 \qquad 482.5169$ Dec 487.7008 (38) Sep 478.9313 Oct 482.5169 476.6850 476.6850 475.6050 485.0512 Heat transfer coeff 910.5993 Average = Sum(39)m / 12 909.1449 907.7193 901.0234 899.7706 893.9387 893.9387 892.8588 896.1851 899.7706 902.3050 904.9546 (39) May 0.7831 Jun 0.7780 Nov 0.7853 Jan 0.7925 Aug 0.7771 Dec 0.7876 (40) 0.7900 HLP (average) 0.7842 31 31 30 31 30 31 31 31 30 Days in mont 1149.0300 SAP 10 Online 2.13.2 Page 5 of 8 | 4. Water heating en |
nergy r | equirement | s (kWh/year | | | | | | | | | | | |--|------------------------------|------------------------------|------------------------------|-------------------------------------|---|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------------|-----------------------------------|--|--------------| | Assumed occupancy | | | | | | | | | | | | 4.2357 | (42) | | | .2385 | 93.8072 | 91.7216 | 87.7312 | 84.7863 | 81.5023 | 79.6356 | 81.7054 | 83.9743 | 87.5004 | 91.5766 | 94.8736 | (42a) | | Hot water usage for
41
Hot water usage for | .0789 | 40.4688 | 39.6097 | 38.0256 | 36.8395 | 35.5243 | 34.8138 | 35.6669 | 36.5958 | 38.0032 | 39.6198 | 40.9400 | (42b) | | | .0075 | 55.8981 | 53.7888
/day) | 51.6794 | 49.5700 | 47.4607 | 47.4607 | 49.5700 | 51.6794 | 53.7888 | 55.8981 | 58.0075
178.6273 | | | Jaily hot water use | an
e | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Energy conte 307
Energy content (and | .3248
.7630
nual) | 190.1741
270.8054 | 185.1200
284.5226 | 177.4362
242.9012 | 171.1958
230.4625 | 164.4872
202.2562 | 161.9101
195.8162 | 166.9424
206.7096 | 172.2496
212.4009 | 179.2923
243.2980
Total = S | 187.0945
266.5505
um(45)m = | 193.8210
303.4769
2966.9631 | | | Distribution loss
46
Water storage loss | .1645 | | 45)m
42.6784 | 36.4352 | 34.5694 | 30.3384 | 29.3724 | 31.0064 | 31.8601 | 36.4947 | 39.9826 | 45.5215 | (46) | | Store volume a) If manufacture: Temperature facto Enter (49) or (54) | r decla
or from
in (55 | Table 2b | actor is kn | own (kWh/d | day): | | | | | | | 175.0000
1.5263
0.5400
0.8242 | (48)
(49) | | Total storage loss
25
If cylinder contain | .5498 | 23.0773 | 25.5498 | 24.7257 | 25.5498 | 24.7257 | 25.5498 | 25.5498 | 24.7257 | 25.5498 | 24.7257 | 25.5498 | (56) | | Primary loss 23
Combi loss 0 | .5498
.2624
.0000 | 23.0773
21.0112
0.0000 | 25.5498
23.2624
0.0000 | 24.7257
22.5120
0.0000 | 25.5498
23.2624
0.0000 | 24.7257
22.5120
0.0000 | 25.5498
23.2624
0.0000 | 25.5498
23.2624
0.0000 | 24.7257
22.5120
0.0000 | 25.5498
23.2624
0.0000 | 24.7257
22.5120
0.0000 | 25.5498
23.2624
0.0000 | (59) | | | | 314.8939
-38.5063 | 333.3348
-40.3216 | ed for each
290.1389
-33.3879 | month
279.2747
-31.1163 | 249.4938
-26.6264 | 244.6285
-24.9580 | 255.5218
-26.5404 | 259.6386
-27.5487 | 292.1103
-32.4769 | 313.7881
-36.7924 | 352.2892
-42.7328 | | | Solar input 0
FGHRS 0 | .0000 | -0.0000
0.0000
0.0000 (63c) | | | .0362 | 276.3876 | 293.0133 | 256.7510 | 248.1585 | 222.8674 | 219.6705 | 228.9815
Total p | 232.0899
er year (kW | 259.6334
h/year) = S | 276.9957
um(64)m = | 309.5564
3137.1413 | (64) | | 12Total per year (1
Electric shower(s) | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (64a) | | Heat gains from wat | | | | | al Energy u | - | | | | - | | 0.0000 | | | 141 | .3810 | 125.3136 | 133.6536 | 118.5548 | 115.6786 | 105.0403 | 104.1587 | 107.7807 | 108.4134 | 119.9464 | 126.4182 | 139.9559 | (65) | | | | | | | | | | | | | | | | | 5. Internal gains | | | | | | | | | | | | | | | Ja | an | Feb | Mar
211.7834 | Apr
211.7834 | May
211.7834 | Jun
211.7834 | Jul
211.7834 | Aug
211.7834 | Sep
211.7834 | Oct
211.7834 | Nov
211.7834 | Dec
211.7834 | (66) | | | .8057 | 667.3920 | 602.8057 | 622.8992 | 602.8057 | 622.8992 | 602.8057 | 602.8057 | 622.8992 | 602.8057 | 622.8992 | 602.8057 | (67) | | | .0542 | 1005.3797 | 979.3596 | 923.9660 | 854.0416 | 788.3224 | 744.4180 | 734.0925 | 760.1125 | 815.5061 | 885.4306 | 951.1497 | (68) | | | .1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | 44.1783 | | | Losses e.g. evapora | | | | | 3.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3.0000 | 3.0000 | 3.0000 | | | Water heating gain: | s (Tabl | | 179.6419 | 164.6594 | 155.4820 | 145.8893 | -169.4268
139.9982 | 144.8666 | 150.5742 | 161.2183 | 175.5808 | -169.4268
188.1127 | | | Total internal gain | ns | | | | 1701.8642 | 6. Solar gains | [Jan] | | | | m2 | Solar flux
Table 6a
W/m2 | Speci
or | | | | Acce
fact
Table | or | Gains
W | | | North
East | | | 1.1
50.2 | 900
500 | 10.6334
19.6403
46.7521
19.6403
26.0000 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77
0.77
0.77 | 00 | 3.8671
301.6166 | | | South
West | | | 0.9
31.4 | 900
700 | 46.7521
19.6403 | | 0.6300
0.6300 | 0 | .7000
.7000 | 0.77
0.77 | 00 | 14.1452
188.8930 | (80) | | East | | | 8.7 | 200 | 26.0000 | | 0.6300 | 0 | .7000 | 1.00 | 00 | 89.9852 | (82) | | Solar gains 598
Total gains 2475 | 7. Mean internal to | | | | | | | | | | | | 21.0000 | (85) | | Utilisation factor | | ins for li | | nil,m (see | Table 9a) | Jun | Jul | Aug | Sen | Oct | Nov | 21.0000
Dec | (03) | | tau 40
alpha 3 | .9845 | 41.0501 | 41.1146 | 41.4201 | 41.4778
3.7652 | 41.7484 | 41.7484 | 41.7989 | 41.6437 | 41.4778 | 41.3613 | 41.2402 | | | util living area 0 | .9990 | 0.9975 | 0.9931 | 0.9759 | 0.9277 | 0.8208 | 0.6838 | 0.7507 | 0.9271 | 0.9898 | 0.9981 | 0.9993 | (86) | | Th 2 20 | | | 19.2959
20.2620 | 19.8466
20.2671 | | | 20.9112
20.2724 | | | 19.8494
20.2680 | | | | | MIT 2 17 | .9989
.4515 | | 0.9918
18.2303 | 0.9708
18.9358 | 0.9105
19.5842 | 0.7739
20.0437 | 0.5999
20.2117 | 0.6739
20.1782 | 19.8011 | 18.9436 | 18.0798 | 17.4144 | (90) | | | .5162 | 17.7949 | 18.2859 | 18.9833 | 19.6249 | 20.0805 | 20.2482 | 20.2144 | | Living are
18.9909 | | 17.4794 | (92) | | Temperature adjustr
adjusted MIT 17 | | 17.7949 | 18.2859 | 18.9833 | 19.6249 | 20.0805 | 20.2482 | 20.2144 | 19.8393 | 18.9909 | 18.1370 | 0.0000
17.4794 | | SAP 10 Online 2.13.2 Page 6 of 8 | 8. Space heating requirement | | | | | | | | | | |--|---------------------------------------|-----------------------------
---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|---|-------------------------| | Jan Feb Mar Apr Utilisation 0.9978 0.9947 0.9864 0.9583 Useful gains 2470.5474 3199.3345 3754.1776 4483.1693 Ext temp. 4.3000 4.9000 6.5000 8.9000 | May
0.8914
4682.0945
11.7000 | | Jul
0.5968
3008.0104
16.6000 | Aug
0.6668
3020.2407
16.4000 | Sep
0.8839
3449.0475
14.1000 | Oct
0.9797
3007.4831
10.6000 | Nov
0.9957
2510.0010
7.1000 | Dec
0.9983
2319.1485
4.2000 | (95) | | Heat loss rate W 12034.6271 11723.3532 10698.3016 9085.3113 | 7130.5853 | 4899.2627 | 3261.3076 | 3405.7060 | 5143.4635 | 7549.8449 | 9958.7446 | 12017.2367 | (97) | | Space heating kWh 7115.6753 5788.6206 5166.4283 3313.5423 Space heating requirement - total per year (kWh/year) | 1821.6772 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3379.5172 | 5363.0954 | 7215.3776
39163.9339 | (98a) | | Solar heating kWh 0.0000 0.0000 0.0000 0.0000 Solar heating contribution - total per year (kWh/year) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (98b) | | Space heating kWh 7115.6753 5788.6206 5166.4283 3313.5423 Space heating requirement after solar contribution - total Space heating per m2 | | | 0.0000 | 0.0000 | 0.0000 | | 5363.0954 | 7215.3776
39163.9339
34.0843 | | | | | | | | | | | | | | 9a. Energy requirements - Individual heating systems, inc | | | | | | | | | | | Fraction of space heat from secondary/supplementary system
Fraction of space heat from main system(s)
Efficiency of main space heating system 1 (in %)
Efficiency of main space heating system 2 (in %)
Efficiency of secondary/supplementary heating system, % | em (Table 1 | L) | | | | | | 0.0000
1.0000
92.3000
0.0000
0.0000 | (202)
(206)
(207) | | Jan Feb Mar Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | | | Space heating requirement 7115.6753 5788.6206 5166.4283 3313.5423 | 1821.6772 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3379.5172 | 5363.0954 | 7215.3776 | (98) | | Space heating efficiency (main heating system 1) 92.3000 92.3000 92.3000 92.3000 | 92.3000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 92.3000 | 92.3000 | 92.3000 | (210) | | Space heating fuel (main heating system) 7709.2907 6271.5283 5597.4304 3589.9700 | 1973.6481 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 3661.4488 | 5810.5042 | 7817.3105 | (211) | | Space heating efficiency (main heating system 2) 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (212) | | Space heating fuel (main heating system 2) 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Space heating fuel (secondary) 0.0000 0.0000 0.0000 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Water heating Water heating requirement | 040 1505 | 000 0074 | 010 6705 | 000 0015 | 000 0000 | 050 6004 | 076 0057 | 200 5564 | (64) | | 313.0362 276.3876 293.0133 256.7510
Efficiency of water heater | 248.1585 | 222.8674 | 219.6705 | 228.9815 | 232.0899 | 259.6334 | 276.9957 | 309.5564
79.8000 | (216) | | (217)m 88.3800 88.3459 88.2657 88.0856
Fuel for water heating, kWh/month | 87.6153 | 79.8000 | 79.8000 | 79.8000 | 79.8000 | 88.0912 | 88.3109 | 88.3899 | (217) | | 354.1936 312.8470 331.9672 291.4791 Space cooling fuel requirement | 283.2365 | 279.2825 | 275.2763 | 286.9442 | 290.8394 | 294.7325 | 313.6599 | 350.2169 | | | (221)m 0.0000 0.0000 0.0000 0.0000
Pumps and Fa 7.3041 6.5973 7.3041 7.0685
Lighting 125.2511 100.4811 90.4721 66.2837 | 0.0000
7.3041
51.1995 | 0.0000
7.0685
41.8304 | 0.0000
7.3041
46.7059 | 0.0000
7.3041
60.7100 | 0.0000
7.0685
78.8563 | 0.0000
7.3041
103.4638 | 0.0000
7.0685
116.8621 | 0.0000
7.3041
128.7322 | (231) | | Electricity generated by PVs (Appendix M) (negative quant (233a)m -155.5531 -219.6397 -315.7679 -354.4734 | | -354.1375 | -349.0761 | -329.9947 | -296.4940 | -250.3656 | -170.8869 | -134.3886 | (233a) | | Electricity generated by wind turbines (Appendix M) (nego (234a)m 0.0000 0.0000 0.0000 0.0000 | | ity) | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by hydro-electric generators (Apper (235a)m 0.0000 0.0000 0.0000 0.0000 | ndix M) (ne | gative quant | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity used or net electricity generated by micro-Cl | HP (Appendi: | k N) (negati | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | Electricity generated by PVs (Appendix M) (negative quant | tity) | | | | | | | | | | (233b)m -86.5226 -182.2850 -363.1416 -546.9107
Electricity generated by wind turbines (Appendix M) (nego | ative quant: | ity) | | | | | -115.8542 | -68.4515 | | | Electricity generated by hydro-electric generators (Appen | | gative quant | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235b)m 0.0000 0.0000 0.0000 0.0000
Electricity used or net electricity generated by micro-Cl | | k N) (negati | | | 0.0000 | 0.0000 | 0.0000 | 0.0000 | | | (235d)m 0.0000 0.0000 0.0000 0.0000
Annual totals kWh/year | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | (235d) | | Space heating fuel - main system 1
Space heating fuel - main system 2 | | | | | | | | 42431.1309
0.0000 | | | Space heating fuel - secondary
Efficiency of water heater | | | | | | | | 0.0000
79.8000 | | | Water heating fuel used
Space cooling fuel | | | | | | | | 3664.6750
0.0000 | | | Electricity for pumps and fans: | | | | | | | | 0.0000 | (221) | | Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L) | od 0) | | | | | | | 86.0000
1010.8482 | | | Energy saving/generation technologies (Appendices M , N as PV generation Wind generation | 14 Q) | | | | | | | -8171.8495 | | | Wind generation
Hydro-electric generation (Appendix N)
Electricity generated - Micro CHP (Appendix N) | | | | | | | | 0.0000
0.0000
0.0000 | (235a) | | Appendix Q - special features Energy saved or generated | | | | | | | | -0.0000 | | | Energy used
Total delivered energy for all uses | | | | | | | | 0.0000
39020.8047 | | | | | | | | | | | | | | 12a. Carbon dioxide emissions - Individual heating system | ns includin | g micro-CHP | | | | | | | | | | | | | Energy
kWh/year | | ion factor | , | Emissions | | | Space heating - main system 1 | | | | 42431.1309 | | 0.2100 | | 8910.5375 | (261) | | Total CO2 associated with community systems Water heating (other fuel) | | | | 3664.6750 | | 0.2100 | | 0.0000
769.5818 | (264) | | Space and water heating
Pumps, fans and electric keep-hot | | | | 86.0000 | | 0.1387 | | 9680.1193
11.9293 | (267) | | Energy for lighting | | | | 1010.8482 | | 0.1443 | | 145.8966 | (268) | | Energy saving/generation technologies | | | | | | | | | | SAP 10 Online 2.13.2 Page 7 of 8 PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) -3311.6782 -4860.1713 -445.9132 -611.3600 -1057.2732 (269) 8780.6720 (272) 7.6400 (273) | 13a. Primary energy - Individual heating systems including micro-CHP | | | | | |--|--|--|--|--------------------------| | Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting | Energy Prin
kWh/year
42431.1309
3664.6750
86.0000
1010.8482 | nary energy factor
kg CO2/kWh
1.1300
1.1300
1.5128
1.5338 | Primary energy
kWh/year
47947.1780 (27
0.0000 (47
4141.0828 (27
52088.2608 (27
130.1008 (28
1550.4728 (28 | 73)
78)
79)
31) | | Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER) | -3311.6782
-4860.1713 | 1.4976
0.4617 | -4959.7125
-2244.0750
-7203.7875 (28
46565.0468 (28
40.5300 (28 | 36) | SAP 10 Online 2.13.2 Page 8 of 8