Integration

Date 25.01.2024

68 Elsworthy Road

Energy & Sustainability Statement

Document status

Drainet no		Project	Client	In conjunction with:
Project no 793		68 Elsworthy Road London NW3 3BP United Kingdom	Mrs. S. Freeman 68 Elsworthy Road London NW3 3BP United Kingdom	KSR Architects 14 Greenland Street Camden London NW1 0ND
Revision	Date	Status	Prepared by	Checked by
_	25.01.2024	Issue	Natasha Sidhu	Alan Harries

Contents

EXECU	KECUTIVE SUMMARY			
	Car	'bon	5	
	Sus	stainability	6	
1	INT	INTRODUCTION		
	1.1	The Development Site	7	
	1.2	Proposed Development Overview	8	
	1.3	Energy and Sustainability Aspirations	11	
2	POI	LICY REVIEW	12	
	2.1	National Planning Policy Framework (NPPF – September 2023)	12	
	2.2	London Plan 2021	12	
	2.3	Local Policy	14	
3	DES	SIGN APPROACH - SUSTAINABILITY	15	
	3.1	Water use	15	
	3.2	Air Quality	15	
	3.3	Noise	15	
	3.4	Sustainable Materials & Minimising Waste	15	
	3.5	Biodiversity	16	
	3.6	Sustainable Transport	16	
	3.7	Demand Side Response	16	
4	DES	SIGN APPROACH - ENERGY	17	
	4.1	The Energy Hierarchy	17	
	4.2	Climate Analysis	18	
	4.3	Building Fabric Performance & Insulation	18	
	4.4	Air Tightness, Infiltration and Thermal Bridging	18	
	4.5	Natural Ventilation & Thermal Mass	19	
	4.6	Solar Exposure & Daylight	19	
	4.7	Active Building Services Systems	19	
	4.8	Cooling & Overheating	19	
5	CAI	RBON EMISSIONS	20	
	5.1	Baseline	20	
	5.2	"Be Lean Emissions"	71	

Energy & 25.01.2024		inability Statement	4
	5.3	"Be Lean" Total Carbon Emissions	21
	5.4	"Be Clean" Emissions	22
	5.5	"Be Green" Emissions	23
6	SUMMARY		
	6.1	Sustainability Summary	24
	6.2	Carbon Emissions Summary	24
	6.3	Future Proofing to 2050 Summary	25
	6.4	Cost of Energy Summary	25
APPENDI	IX A: TI	ECHNOLOGY FEASIBILITY STUDY SUMMARY	26
APPENDI	IX B: P	SI VALUES	27
APPENDI	IX C: S/	AP AND GLA DATASHEETS	28

Executive Summary

This Energy and Sustainability Statement has been prepared by Integration Consultancy Limited in support of the full planning application for the proposed development at 68 Elsworthy Road in the London Borough of Camden. The existing unlisted 3 storey house has fallen into a state of disrepair and the proposed development comprises the refurbishment of the property together with a rear extension, to align with the development at no. 66, and a new basement.

CARBON

The local policy targets include a minimum onsite contribution of 35% below Part L and the minimum energy efficiency ("Be Lean") onsite contribution is 10%. For a deep refurbishment, local policy state that "deep refurbishments should also meet the London Plan carbon reduction targets for new buildings".

In relation to these targets, this development has been shown to have:

- 56% total onsite improvement in carbon dioxide (CO₂) emissions over the Target Emission Rate (TER) outlined in the national Building Regulations 2021 compared to the target of 35%.
- 11% dwelling energy efficiency (Be Lean) contribution to the improvement in carbon dioxide (CO₂) emissions over the Be Lean Target Emission Rate (TER) - compared to the target of 10%.

The proposed design achieves this via the following strategies:

High-Efficiency Building (Be Lean)

The scheme uses high performance building fabric, passive low energy design and low energy building services systems such as mechanical ventilation with heat recovery (MVHR) and LED lighting.

Local Renewable Energy (Be Green)

Following a Low and Zero Carbon (LZC) Technology feasibility study it is proposed to provide:

- · 2kWpeak of solar photovoltaic (PV) modules located at roof level.
- · Space heating and hot water via ground source heat pumps which will be in part powered by the local solar PV array.

The table below shows the overall regulated and unregulated energy use.

Carbon dioxide emissions (Tonnes CO ₂ per annum)	Regulated	Unregulated	
Baseline: Part L 2021 (Building Regulations) Compliance	8.8	1.8	
After "Be Lean" (energy demand reduction)	7.8	1.8	
After "Be Clean" (heat network / CHP)	7.8	1.8	
After "Be Green" (renewable energy)	3.9	1.8	

Table 1: Summary of refurbishment carbon emissions

This performance can be expressed as savings between each stage in the energy hierarchy.

Regulated carbon dioxide savings	(Tonnes CO ₂ per annum)	(%)	
Savings from "Be Lean" (energy demand reduction)	1.0	11%	
Savings from "Be Clean" (heat network / CHP)	0	0%	
Savings from "Be Green" (renewable energy)	4.0	45%	
Total cumulative on-site savings	4.9	56%	
Shortfall to 100% below Part L (annual)	3.9		
Shortfall over 30 years	116		
Carbon Offset Fund (@£95/tonne)	£ 11,036		

Table 2: Regulated CO2 emissions savings after each stage of the Energy Hierarchy

SUSTAINABILITY

In addition to the low energy performance set out above, the scheme benefits from several sustainability aspects. These include the use of water saving devices to achieve 105 litre per person per day. Health and wellbeing is supported by aspects such as high levels of fresh air provided by mechanical ventilation with heat recovery. In terms of sustainable travel, the dwelling is within walking distance from South Hempstead, Swiss Cottage and St John's Wood stations as well as local several bus stops. A residents' guide will be created to help residents reduce energy, water and waste, avoid overheating and keep air quality high. The development aims to support biodiversity e.g. through green roofs on the first floor extension and the garden room.

The scheme is also demand side response (DSR) enabled through the provision of a large centralised electric-powered heat pump systems with large energy storage vessels located in the basement plantroom in order to work with National Grid signalling / time of use tariffs. This supports the transition to low carbon electricity and reduces energy costs for residents.

1 Introduction

Integration Consultancy Limited has been appointed to undertake an Energy and Sustainability Statement in support of the full planning application for the proposed 68 Elsworthy Road refurbishment in the London Borough of Camden. The report is one of several that accompany the planning application and should be read in conjunction with these documents.

The importance of developing a robust well-considered energy and sustainability strategy cannot be overstated. This strategy sets out the roadmap for the entire project and ultimately the success of the strategy will translate into the success of the building's performance on practical completion and throughout its lifecycle.

Underpinning the energy strategy is the 'Be Lean', 'Be Clean 'and 'Be Green' design framework which has been adopted by the London Plan.

- 'Be Lean' (energy demand minimisation through 'passive' and 'active' design measures)
- · 'Be Clean' (efficient energy supply)
- 'Be Green' (renewable energy generation)

This report sets out the scheme's energy and sustainability aspirations and demonstrates, via the approved calculation methodologies, how these will be achieved through the detailed design and construction stages.

As part of this exercise, the feasibility of implementing a variety of low carbon technologies and renewable energy systems is considered based on aspects such as site location and climate, potential carbon savings, economic viability, environmental impacts and practical aspects such as integration and maintenance considerations.

1.1 THE DEVELOPMENT SITE

The site is located at 68 Elsworthy Road, South Hampstead, London, NW3 3BP.

Figure 1: Site Location

Figure 2: Aerial view of site

1.2 PROPOSED DEVELOPMENT OVERVIEW

The existing building is an unlisted 3 storey house, situated within the Elsworthy conservation area, which has fallen into a state of disrepair. The proposed development comprises a deep refurbishment and an extension to the rear to align with the development at no. 66 and a new basement. The demolition is kept to a minimum, only taking place where necessary for the extension, and where the existing structure is compromised.

Figure 3: Proposed and existing development scheme- front elevation

Figure 4: Proposed and existing development scheme-rear elevation

Figure 5: Proposed and existing development scheme- north elevation

Figure 6: Proposed and existing development scheme- south elevation

Figure 7: Proposed development scheme – new lower basement floor plan

Figure 8: Proposed development scheme – new basement floor plan

Figure 9: Proposed development scheme – Ground floor plan

Figure 10: Proposed development scheme – First floor plan

Figure 11: Proposed development scheme – Second floor plan

1.3 ENERGY AND SUSTAINABILITY ASPIRATIONS

The scheme has adopted energy and sustainability targets in line with the national and local policy as detailed in section 2. These include:

 $\textbf{Zero CO}_2 \, \textbf{emissions:} \, \text{Achieve zero carbon (100\% below Part L) with a minimum on-site contribution of 35\% below Part L.}$

 $\textbf{Energy Efficient:} \ \textbf{Achieve a minimum energy efficiency ("Be Lean") on site contribution of 10\%}$

Low Water Use: The development aims to meeting the London Plan target of achieving at least 1051/p/d.

Zero Fossil Fuels on site: In order to achieve zero carbon on-site by 2050 the scheme aims not to use any fossil fuels on site.

Biodiversity: The development aims to support biodiversity e.g. through green roofs.

2 Policy Review

2.1 NATIONAL PLANNING POLICY FRAMEWORK (NPPF – SEPTEMBER 2023)

Sustainable Development

The NPPF is very clear on the importance of sustainable development with the first line of the first main chapter stating "The purpose of the planning system is to contribute to the achievement of sustainable development". Sustainable development meanina:

- economic objective to help build a strong, responsive and competitive economy, by ensuring that sufficient land of the
 right types is available in the right places and at the right time to support growth, innovation and improved productivity;
 and by identifying and coordinating the provision of infrastructure;
- a social objective to support strong, vibrant and healthy communities, by ensuring that a sufficient number and range
 of homes can be provided to meet the needs of present and future generations; and by fostering well-designed, beautiful
 and safe places, with accessible services and open spaces that reflect current and future needs and support communities'
 health, social and cultural well-being; and
- an environmental objective to protect and enhance our natural, built and historic environment; including making
 effective use of land, improving biodiversity, using natural resources prudently, minimising waste and pollution, and
 mitigating and adapting to climate change, including moving to a low carbon economy.

At the heart of the Framework is a presumption in favour of sustainable development.

Meeting the Challenge of Climate Change

Section 14 of the NPPF relates to the challenge of climate change. Paragraph 152 states:

"The planning system should support the transition to a low carbon future in a changing climate, taking full account of flood risk and coastal change. It should help to: shape places in ways that contribute to radical reductions in greenhouse gas emissions, minimise vulnerability and improve resilience; encourage the reuse of existing resources, including the conversion of existing buildings; and support renewable and low carbon energy and associated infrastructure."

The importance of renewable energy is also highlighted by paragraph 155 and 156.

National Carbon Targets

The UK government declared a Climate Emergency and amended the Climate Change Act in June 2019 to set a legally-binding carbon emission target for the UK of "at least 100% of 1990 levels by 2050" i.e. net zero carbon emissions¹. Around 20% of the UK's emissions come directly from residential energy use and government has set out a consultation process leading up to the Future Homes Standard which will define how the housing sector will respond to the emergency. This will replace Building Regulations in 2025.

2.2 **LONDON PLAN 2021**

Regional policy in London is controlled by The Greater London Authority and is set out in The London Plan adopted on 2nd March 2021 which provides policy and guidance in the London context. One of the key overarching goals for London is to become a zero-carbon city by 2030.

The plan states that all 'major' developments (greater than 1,000m² or 10 units or more) must achieve net zero carbon (100% below Part L). The remaining regulated carbon dioxide emissions to 100% can be off-set using a cash-in-lieu contribution to the local borough, to secure carbon dioxide savings elsewhere.

¹ Climate Change Act 2008 (c. 27) as amended by The Climate Change Act 2008 (2050 Target Amendment) Order 2019 [SI 2019 No. 1056]

The details of the main London Plan policy requirement are given below:

POLICY SI 2 - MINIMISING GREENHOUSE GAS EMISSIONS

- a. Major development should be net zero-carbon. This means reducing greenhouse gas emissions in operation and minimising both annual and peak energy demand in accordance with the following energy hierarchy:
 - · Be lean: use less energy and manage demand during operation
 - Be clean: exploit local energy resources (such as secondary heat) and supply energy efficiently and cleanly
 - · Be green: maximise opportunities for renewable energy by producing, storing and using renewable energy on-site
 - · Be seen: monitor, verify and report on energy performance.
- b. Major development proposals should include a detailed energy strategy to demonstrate how the zero-carbon target will be met within the framework of the energy hierarchy.
- c. A minimum on-site reduction of at least 35 per cent beyond Building Regulations is required for major development. Residential development should achieve 10 per cent, and non-residential development should achieve 15 per cent through energy efficiency measures. Where it is clearly demonstrated that the zero-carbon target cannot be fully achieved on-site, any shortfall should be provided, in agreement with the borough, either:
 - · through a cash in lieu contribution to the borough's carbon offset fund, or
 - · off-site provided that an alternative proposal is identified and delivery is certain.
- d. Boroughs must establish and administer a carbon offset fund. Offset fund payments must be ring-fenced to implement projects that deliver carbon reductions. The operation of offset funds should be monitored and reported on annually.
- e. Major development proposals should calculate and minimise carbon emissions from any other part of the development, including plant or equipment, that are not covered by Building Regulations, i.e. unregulated emissions.

POLICY SI 5 - WATER INFRASTRUCTURE

- In order to minimise the use of mains water, water supplies and resources should be protected and conserved in a sustainable manner.
- b. Development Plans should promote improvements to water supply infrastructure to contribute to security of supply. This should be done in a timely, efficient and sustainable manner taking energy consumption into account.
- c. Development proposals should:
 - through the use of Planning Conditions minimise the use of mains water in line with the Optional Requirement of the Building Regulations (residential development), achieving mains water consumption of 105 litres or less per head per day (excluding allowance of up to five litres for external water consumption)
 - achieve at least the BREEAM excellent standard for the 'Wat 01' water category 160 or equivalent (commercial development)
 - incorporate measures such as smart metering, water saving and recycling measures, including retrofitting, to help to achieve lower water consumption rates and to maximise future-proofing.

2.3 LOCAL POLICY

Camden Relevant Policies

The borough of Camden emerging Local Plan comprises a number of policies related to sustainability such as CC1: Climate change mitigation, CC2: Adapting to climate change, CC4: Air quality and CC5: Policy D2: Heritage.

Clarity on the local carbon policy is provided by the "Camden Planning Guidance Energy efficiency and adaptation" document dated January 2021.

Table 2a, reproduced below, presents the energy reduction targets for domestic developments. As the scheme is >1000m² it has been assessed against the major scheme requirements highlighted yellow below. As such the Be Lean target for the new build elements is 10% below Part L1 and the overall carbon reduction targets are 35% below Part L1.

Table 2a states that refurbishment areas should achieve the greatest possible carbon reduction. However, The "Key Messages" from section 7 "Energy Reduction" states that "deep refurbishments" should also meet the London Plan carbon reduction targets for <u>new buildings</u>. Therefore, the refurbished areas have also been assessed under Part L1 with the aim of achieving 10% below Part L for Be Lean and 35% below Part L overall.

7. Energy reduction

KEY MESSAGES

- All development in Camden is expected to reduce carbon dioxide emissions through the application of the energy hierarchy.
- All new build major development to demonstrate compliance with London Plan targets for carbon dioxide emissions.
- <u>Deep refurbishments</u> (i.e. refurbishments assessed under Building Regulations Part L1A/L2A) <u>should also meet the London Plan carbon reduction targets for new buildings</u>.
- All new build residential development (of 1 9 dwellings) must meet 19% carbon dioxide reduction; and
- Developments of five or more dwellings and/or more than 500sqm of any gross internal floorspace to achieve 20% reduction in carbon dioxide emissions from on-site renewable energy generation.

Table 2a Energy reduction targets, domestic

Development should comply with these standards/provide this information	Residential New Build	inder L1A)	Residential Refurbishment (assessed under L1B)			
uns information	Major (10+ units or >1,000 sqm new floor space)	Medium (5-9 units, >500sq.m and <1,000 sqm new floor space)	Minor All new dwellings (up to 4 units and <500 sqm new floor space)	Major (10+ units or >1,000 sqm)	Medium (5-9 units, >500sq.m and <1,000 sqm)	Minor (up to 4 units and <500 sqm)
Energy and carbon reduction targe	ts					
Overall carbon reduction targets:	Zero Carbon, minimum 35% reduction beyond Part L Building Regulations on site, with 10% reduction through on-site energy efficiency measures).	19% below Part L of 2013 Building Regulations (Local Plan	19% below Part L of 2013 Building Regulations (Local Plan	Greatest possible reduction - meeting Part L1B for retained thermal	Greatest possible reduction - meeting Part L1B for retained thermal	Greatest possible reduction - meeting Part L1B for retained thermal
	(London Plan, Local Plan CC1)	CC1)	CC1)	elements (London Plan 5.4, Local Plan CC1)	elements (London Plan 5.4, Local Plan CC1)	elements (London Plan 5.4, Local Plan CC1)
Reduction in CO2 from onsite renewables (after all other energy efficiency measures have been incorporated)	20% (London Plan, Local Plan CC1)	20% (London Plan, Local Plan CC1)	Incorporate renewables where feasible	20% (London Plan 5.4, 5.7, Local Plan CC1)	20% (London Plan 5.4, 5.7, Local Plan CC1)	Incorporate renewables where feasible

Table 3: Camden reduction targets (Table 2a, Camden Planning Energy Guidance Energy efficiency and adaptation)

3 Design Approach - Sustainability

3.1 WATER USE

For accommodation areas the development adopts equipment specification in line with the higher water use standard of 105 l/p.day.

Fitting	Water Consumption
WC	4/26 litres dual flush
Shower	8 litres / minute
Washbasin	5 litres/minute
Kitchen sink	6 litres / minute
Dishwasher	1.25 litres/place setting
Washing machine	8.17 litres/kg

Table 4: Minimum water fitting standards for units.

3.2 AIR QUALITY

Air quality is a priority for London and Policy SI 1 "Improving Air" states that developments proposals must be at least Air Quality Neutral.

The scheme supports air quality by:

- The use of ground-source heat pumps for all space heating and hot water means no fossil fuel combustion on site.
- Mechanical ventilation with heat recovery (MVHR) offers a means for occupants to filter fresh air.
- Construction environmental management plan (CEMP) to incorporate best practice for air quality and dust control.

3.3 NOISE

Quality of life is improved by reducing the number of people adversely affected by noise and promoting more quiet and tranquil spaces. The scheme supports low noise impacts through high air tightness and MVHR reduces external noise ingress for occupants.

3.4 SUSTAINABLE MATERIALS & MINIMISING WASTE

New materials will be sustainably procured and using local supplies where feasible, following the BRE Green Guide to Specification².

The construction build-up for each element can be rated from A+ to E where A+ is least likely to affect the environment and E is the likely to have the most impact. The materials for the new extension will aim to achieve a rating between A to C.

All timber used during the site preparation and construction will be Forest Stewardship Council (FSC) certified or Programme for the Endorsement of Forestry Certification (PEFC) and all nontimber materials to be sourced from organisations with an environmental management system such as ISO 14001 or BES 6001. This standard enables construction product manufacturers to ensure and then prove that their products have been made with constituent materials that have been responsibly sourced. The standard describes a framework for the organisational governance, supply chain management and environmental and social aspects that must be addressed in order to ensure the responsible sourcing of construction products.

A construction waste recycling requirement will be included in the contractor specification to ensure a construction waste management plan is in place. This will include ways to design out waste, reduce amounts of packaging and to participate in

https://www.bregroup.com/greenguide/podpage.jsp?id=2126

packaging take back schemes as well as ensuring that all waste is sent to private local dedicated construction waste plants with high landfill diversion rates.

The scheme has dedicated waste storage and segregation area.

3.5 BIODIVERSITY

The scheme has green roofs on both the first floor extension and the garden room.

Figure 12: Proposed development scheme-roof plan

3.6 SUSTAINABLE TRANSPORT

In terms of sustainable travel, the dwelling is within walking distance from South Hempstead, Swiss Cottage and St John's Wood stations as well as several local bus stops.

3.7 DEMAND SIDE RESPONSE

Demand-side response / flexibility initiatives are encouraged by the London Plan, as referred to in Policy SI 2 Minimising greenhouse gas emissions. Demand side flexibility refers to the ability of a system to reduce or increase energy consumption for a period of time in response to an external driver (e.g. energy prices or signals from network managers).

Smart buildings have been identified and acknowledged as key enablers of future energy systems for which there will be a larger share of distributed and renewable power and heat generation. Demand-side flexibility can allow demand/supply matching and make best use of existing network connections and local renewable energy generation capacity.

The scheme facilitates the use of Demand Side Response and reduces peak energy demand by:

- The use of electrical equipment such as heat pumps which can be turned up/down.
- A large central energy store integrated into the centralised heat pumps system
- Additional energy storage capacity via exposed thermal mass.
- The installation of smart meters
- The use of on-site generation, solar PV.

4 Design Approach - Energy

4.1 THE ENERGY HIERARCHY

The energy hierarchy, as referred to in the London Plan and illustrated below, sets out a hierarchical approach to strategic decision-making for the reduction of energy and associated greenhouse gas emissions. The evaluation of the scheme's carbon emissions, as presented in the subsequent sections, follows this structure.

Figure 13: Energy Hierarchy Methodology

BE LEAN - Minimise Energy Demand

Passive design such as optimising form, orientation and site layout, natural ventilation with thermal mass, daylight and solar shading as well as active design measures such as LED lighting and efficient mechanical ventilation with heat recovery.

BE CLEAN - Deliver Energy Efficiently

Efficient energy provision for space heating and cooling infrastructure e.g. high efficiency cooling plant, combined heat and power (CHP) or, if available, connection to a district heating/cooling network.

BE GREEN - Use Renewable Energy

Energy supply derived from local renewable resources including solar irradiation, wind energy, hydropower and local heat sources such as geothermal energy. Provision of non-local options can also be considered.

4.2 CLIMATE ANALYSIS

The London climate is heating dominated, hence the key passive measure to be implemented are high levels of insulation and air-tightness. Temperatures in the summer can occasionally rise above comfortable levels and this will tend to intensify as a consequence of climate change and further urbanisation.

The diurnal temperature variations are high with an average daily temperature swing of 8-10°C even during peak summer. This creates potential for passive summertime cooling using night-time cooling via openable windows or mechanical ventilation.

Figure 14: Average historic climate data for London

4.3 BUILDING FABRIC PERFORMANCE & INSULATION

High levels of insulation are proposed as summarised later in this section. The thermal performance of all exposed elements equals or exceeds the minimum requirements for Building Regulations 2021. This will significantly reduce energy consumption and ensure optimum occupant comfort all year round by retaining heat in the winter and reducing heat gains in the summer.

This is particularly relevant for glazed surfaces that can be a cause of overheating in summer or overcooling and condensation formation in winter. As such all glazing will be replaced with high-performance unit. This will also improve occupant comfort by reducing radiant temperature asymmetry which can be a comfort issue especially during the winter months.

4.4 AIR TIGHTNESS, INFILTRATION AND THERMAL BRIDGING

A high target air-permeability rate has been selected as summarised later in this section. The key to achieving high levels of airtightness is the build quality of construction.

Minimising thermal bridging is an important aspect of the design. The approach to limiting thermal bridging is to implement a level similar to Accredited Details³ where possible.

 $^{^{3} \} www.planningportal.co.uk/info/200135/approved_documents/74/part_L-_conservation_of_fuel_and_power/6$

4.5 NATURAL VENTILATION & THERMAL MASS

Daytime natural ventilation can assist in removing excess heat during the mid-season and summer months and enables the provision of high air quality. When used in combination with exposed thermal mass, natural ventilation will reduce high internal daily temperature fluctuations and minimise the overheating risk in the summer. Therefore, occupant comfort can be maintained with reduced reliance on mechanical cooling systems.

The summer ventilation strategy includes large openable areas for windows/doors to allow for good natural ventilation. Secure openable windows allow for night ventilation to pre-cool thermal mass.

4.6 SOLAR EXPOSURE & DAYLIGHT

Maximising exposure to solar energy and daylight is essential to reduce reliance on artificial lighting, reducing winter daytime heating requirements and to contribute to the general wellbeing of occupants.

The site has access to solar energy and natural daylight. This makes the development roof suitable for solar energy harvestina.

Fenestration on the facades maximises natural daylight to provide amenity and reduce artificial lighting energy use. Internal shading can be incorporated to minimise the risk of overheating and glare without overly compromising daylight availability.

4.7 ACTIVE BUILDING SERVICES SYSTEMS

Space heating and hot water will be provided via a high-efficiency ground-source heat pump system in conjunction with underfloor heating. The GSHP will be located in the basement supported by eight boreholes 6m apart.

Energy use associated with domestic hot water (DHW) will be minimised by the use of water efficient fittings together with optimised hot water temperatures.

High-efficiency mechanical ventilation will be used with heat recovery. The system will have a summer bypass to support night-time free cooling of thermal mass.

Low-energy fixed lighting, generally comprising of high-efficiency LED fittings, will be installed throughout the development.

All building services systems will be in accordance with and exceed the efficiency requirements outlined in the Building Service Compliance Guide.

4.8 COOLING & OVERHEATING

The cooling and overheating strategies are summarised in the table below using the cooling hierarchy which has been applied to the design.

Hierarchy Measure	Application to proposed development
1. Minimise Internal Heat Gains	- Low energy LED lighting.
2. Minimise External Heat Gains	-High level of insulation
	-Low G-value windows (0.5 for windows and 0.4 for rooflights)
	 -Green roof to minimise solar gains through the roof and add to green mass (external greenery) which helps creates a cool microclimate through evapotranspiration.
	-Internal blinds with light coloured external facing surfaces (with relatively high reflective properties).
3 & 4 Heat Management and Passive Ventilation	-High openable window area with general high exposure to prevailing south- westerly winds
	-Night time ventilation strategy
5. Mechanical Ventilation	- Mechanical Ventilation with Heat Recovery (MVHR) is specified.
6. Active Cooling	-No active cooling
Ensuring they are the lowest carbon options	

Table 5: Cooling hierarchy

5 Carbon Emissions

5.1 BASELINE

Energy demand and annual carbon emissions are calculated using BRE accredited energy compliance SAP 10.2 software.

The amount of carbon emission reductions achieved by the proposed scheme is compared to the notional Target Emission Rate (TER) which forms the baseline comparison target. This notional building/dwelling is produced by the energy model and intends to replicate the actual building in terms of area, form, orientation and usage. The fabric parameters and system efficiencies for this notional building meets and, in some parts, exceeds the minimum requirements for compliance with Part L of the 2021 Building Regulations as summarised in the table below.

For dwellings, within Part L1 of the Building Regulations (2021), the Target Fabric Energy Efficiency (TFEE) sits alongside the TER. The TFEE is the minimum fabric energy performance requirement for a new dwelling. The Dwelling Fabric Energy Efficiency (DFEE) rate is the actual fabric energy performance of the new dwelling. The DFEE must not exceed the TFEE. It is expressed as the amount of energy demand in kWh/(m².year). The notional dwelling is not prescriptive, and specifications can be varied provided that the TFEE and TER rate is achieved or bettered. To prevent poor performance of individual elements, limiting fabric values set out in approved document Part L1 and limiting building services efficiencies set out in the Domestic Building Services Compliance Guide, have been followed.

The Notional Building baseline values, which apply to new build residential areas, are:

Building Regulations 2021

Element	U Value (W/m2K)	G Value			
External Walls	0.18	-			
Floor	0.13	-			
Roof	0.11	-			
Windows	1.2	0.63 (0.4)			
External opaque doors	1.0	-			
External glazed doors	1.2	-			
Air tightness	5.0 m³/m²/h @50Pa				
Liner thermal transmittance	Standardised psi values SAP Apper	ndix R			
Ventilation type	Natural with intermittent extract fo	Natural with intermittent extract fans			
Air-conditioning	None	None			
Heating source	Mains Gas (89.5% SEDBUK 2009)	Mains Gas (89.5% SEDBUK 2009)			
Heating emitters and controls	Radiators. Time and temperature z	one control. Weather compensation. Boiler interlock.			
Hot water storage	If cylinder, declared loss factor = 0.8 in litres. Separate time control.	If cylinder, declared loss factor = 0.85 $^{'}$ $(0.2 + 0.051 V2/3) kWh/day$ where V is the volume of the cylinder in litres. Separate time control.			
Wastewater heat recovery (WWHR)	All showers connected to WWHR, in efficiency utilisation of 0.98.	All showers connected to WWHR, including showers over baths. Instantaneous WWHR with 36% recovery efficiency utilisation of 0.98.			
Lighting	100% low energy lighting, (80lm/W	100% low energy lighting, (80lm/W)			
Photovoltaic (PV) system	For houses: kWp = 40% of ground floor area, including unheated spaces / 6.5				
	For flats: kWp = 40% of dwelling flo	or area / (6.5 ´ number of storeys in block)			
	System facing south-east or south-	west			

Table 6: Notional Dwelling (Building) Specification (Table 4 SAP 10.2)

5.2 "BE LEAN EMISSIONS"

As part of the "Be Lean" approach, seeking to minimise energy demand, the building fabric has been specified to meet or exceed the minimum fabric parameters outlined in Part L of the Building Regulation 2021 as per table below.

Element	Proposed residential development
External walls U value	0.15 W/m²/°C for new elements
	Minimum of 0.30 W/m ² /°C for existing elements
Floor U value	0.13 W/m²/°C
Roof U value	0.11 W/m²/°C
Windows U value	1.0 W/m²/°C
	0.5 G-value
Roof light U Value	1.0 W/m²/°C
	0.4 G-value
Doors	1.0 W/m²/°C
Air tightness	3.0 m³/m²/h @50Pa
Ventilation type	MVHR (0.77 SFP, heat recovery 87%)
Heating	Central gas-fired boiler
	Note 'Be Green' use a GSHP
Hot water	Central gas-fired boiler
	Note 'Be Green' uses a GSHP
Lighting	100% low energy lighting
Liner thermal transmittance	See psi values in Appendix B

Table 7: Proposed residential development and baseline comparison "Notional" building – Be Lean

5.3 "BE LEAN" TOTAL CARBON EMISSIONS

The "Be Lean" CO_2 emissions associated with regulated energy consumption; the Dwelling Emissions Rate (DER) are given below in relation to the baseline TER (Target Emission Rate). Using the GLA spreadsheet which removes the solar PV component from the notional building the result is a 11% saving.

Unit type	Area (m²)	TER (kg.CO ₂ /m²/yr.)	DER (kg.CO ₂ /m²/yr.)	GLA adjusted DER (kg.CO ₂ /m²/yr.)	GLA adjusted saving
68 Elsworthy Road	1149	7.67	7.74	6.82	11%

Table 8: Be Lean regulated Emissions for dwellings

5.4 "BE CLEAN" EMISSIONS

5.4.1 Connection to Third Party Heat Networks

Heat networks are encouraged by the London Plan

The London Heat Map tool⁴ shows that the site is within the heat network priority area and that it is over 1.5km from the nearest potential heat network area. Therefore, currently a connection to third party heat networks is not considered viable for this development.

Figure 15: London Heat Map tool showing the heat network priority areas in relation to the proposed scheme

Figure 16: London Heat Map tool showing live networks (red), proposed heat networks (purple) and potential heat supply sites (orange)

5.4.2 CHP Combined Heat and Power

The London Plan limits the role of CHP to low-emission CHP and only in instances where it can support the delivery of an area-wide heat network at large, strategic sites, according to the Energy Assessment Guidance Greater London Authority guidance on preparing energy assessments as part of planning applications. Therefore, CHP has not been adopted.

⁴ https://www.london.gov.uk/what-we-do/environment/energy/london-heat-map/view-london-heat-map

5.5 "BE GREEN" EMISSIONS

A renewable energy feasibility exercise has been carried out in order to determine the most viable option(s) for the development (see Appendix A). The viable technology options, ground source heat pumps and solar PV, are presented below.

5.5.1 Ground Source Heat Pumps

Ground source heat pumps (GSHP) extract heat energy from the ground and can create around 3-4 kW of renewable energy for every 1kW of electrical power it consumes, which makes it one of the lowest carbon reliable heating technologies available.

Heat pumps are most efficient when used in conjunction with low temperature heat delivery systems such as underfloor heating. As such the proposed heat pump will work well with the proposed underfloor heating system.

5.5.2 Photovoltaic (PV) panels

The image below shows the amount of roof that is available within the development and that will be used to install photovoltaic modules.

Total installed capacity of the system: 2 (kWp)

Panel inclination: 15°

Panel orientation: South

Energy generation: 1727.24 kWh/a

Carbon emission reduction: 0.23 tonnes of CO₂/y

Local shading is considered to be very low.

Figure 17: Indicative Solar PV layout

5.5.3 "Be Green" Total Carbon Emissions

The CO_2 emissions associated with regulated energy consumption are given below.

Unit type	Area (m²)	TER (kg.CO ₂ /m ² /yr.)	DER (kg.CO ₂ /m ² /yr.)
68 Elsworthy Road	1149	7.64	2.36

Table 9: Be Green Carbon Emissions

6 Summary

6.1 SUSTAINABILITY SUMMARY

In addition to the low energy performance set out below, the scheme benefits from several sustainability aspects. These include the use of water saving devices to achieve 105 litre per person per day. Health and wellbeing is supported by aspects such as high levels of fresh air provided by mechanical ventilation with heat recovery. In terms of sustainable travel, the dwelling is within walking distance from South Hempstead, Swiss Cottage and St John's Wood stations as well as local several bus stops. A residents' guide will be created to help residents reduce energy, water and waste, avoid overheating and keep air quality high. The development aims to support biodiversity e.g. through green roofs on the first floor extension and the garden room.

The scheme is also demand side response (DSR) enabled through the provision of a large centralised electric-powered heat pump systems with large energy storage vessels located in the basement plantroom in order to work with National Grid signalling / time of use tariffs. This supports the transition to low carbon electricity and reduces energy costs for residents.

6.2 CARBON EMISSIONS SUMMARY

The predicted total annual CO_2 emissions of the proposed development following the introduction of energy efficiency measures, passive and active design (Be Lean), Low carbon supply technologies (Be Clean) and renewable energy systems (Be Green) are summarised below in the format recommended by the GLA.

The table below shows the total regulated and unregulated energy use.

Carbon dioxide emissions (Tonnes CO_2 per annum)	Regulated	Unregulated
Baseline: Part L 2021 (Building Regulations) Compliance	8.8	1.8
After "Be Lean" (energy demand reduction)	7.8	1.8
After "Be Clean" (heat network / CHP)	7.8	1.8
After "Be Green" (renewable energy)	3.9	1.8

Table 10: Summary of new build carbon emissions for new build dwelling areas

This performance can be expressed as savings between each stage in the energy hierarchy.

Regulated carbon dioxide savings	(Tonnes CO ₂ per annum)	(%)	
Savings from "Be Lean" (energy demand reduction)	1.0	11	
Savings from "Be Clean" (heat network / CHP)	0	0	
Savings from "Be Green" (renewable energy)	4.0	45	
Total cumulative on-site savings	4.9	56	
Shortfall to 100% below Part L (annual)	3.9		
Shortfall over 30 years	116		
Carbon Offset Fund (@£95/tonne)	£11,036		

Table 11: Residential regulated CO₂ emissions savings after each stage of the Energy Hierarchy

Figure 18: Summary of target and energy savings for each stage of the energy hierarchy

6.3 FUTURE PROOFING TO 2050 SUMMARY

The site has been future proofed to achieve zero carbon on-site emissions by 2050 through several mechanisms. The main strategy is by avoiding fossil fuels on site and use electricity for 100% of energy requirements. This means that as the UK electricity grid continues its decarbonisation towards the 2050 goal of net zero, the scheme will be able supplied by zero carbon electricity.

6.4 COST OF ENERGY SUMMARY

The scheme aims to protect the consumer from high prices by:

- · Reducing energy demands.
- · Generating energy onsite via solar PV.
- Monitoring energy demand.
- Creating building user guides to help occupants to reduce energy bills.
- Promoting the use of smart energy tariff such to provide cheaper electricity during non-peak times. This means buffer vessel energy stores can be charged at night by the heat pump when electricity costs are much lower.

Appendix A: Technology Feasibility Study Summary

The overall summary of the feasibility exercise is presented below. Technology Assessment/Viability Wind Power Wind turbine installed on the roof of the Due to the high cost per kW for smaller buildingmounted turbines and the impacts in terms of development. visual, noise and shadow flicker, wind turbines are not considered a viable technology for the CONCLUSION: NOT CONSIDERED FEASIBLE Ground Source Heat Pumps Open or closed loop GSHP system requiring Ground-source heat pumps are one of the lowest extraction of ground water and / or deep carbon methods of providing reliable low-carbon heat and require low maintenance. The new boreholes basement allows space for bore holes CONCLUSION: CONSIDERED FEASIBLE Air Source Heat Pumps Electric powered external plant serving each unit Air-source heat pumps are one of the lowest providing heating and hot water carbon methods of providing reliable low-carbon heat. They require low maintenance. However, they can raise noise concerns and impact the external view of the building. CONCLUSION: NOT CONSIDERED FEASIBLE Roof-mounted solar thermal panels providing hot are some potential for solar thermal water heating are leading to the solar thermal panels providing hot are some potential for solar thermal water heating are solar thermal panels providing hot are some potential for solar thermal water heating are solar thermal panels providing hot are solar than the panels providing hot are solar than the panels panel Solar Thermal Collectors heat pump would result is a complex system. Therefore, solar PV is preferred over solar thermal technology. CONCLUSION: NOT CONSIDERED FEASIBLE Solar Photovoltaic Panels The roof has some potential for solar PV. This Roof mounted Photovoltaic panels (PV) provide electricity directly to the scheme, exporting any technology also supports air source heat pumps. surplus production to the grid. CONCLUSION: CONSIDERED FEASIBLE Combined Heat & Power (CHP) Gas powered turbine generating electricity on site. Carbon offsetting potential of CHP is significantly reduced now that the UK's electricity grid is much Waste heat is also made available for on-site use cleaner after the increase in renewable energy deployment and decrease in coal generation. CONCLUSION: NOT CONSIDERED FEASIBLE **Energy Storage** Energy Storage e.g. batteries Battery scheme is not considered beneficial as the proposed solar array is relatively small in relation daytime energy use on site. CONCLUSION: NOT CONSIDERED FEASIBLE Biomass Heating Biomass-fired community heating system. Biomass heating is an established technology but has high maintenance requirements, fuel storage and delivery issues and is a source of increase in pollution, notably particulates (PM10), SO2 and NOX emissions. CONCLUSION: NOT CONSIDERED FEASIBLE

Table A1: Summary of Low and Zero Carbon Study Analysis Results

Appendix B: Psi Values

Junction	Junction Name	Psi Value (W/mK)
E2	Lintels	0.3
E3	Sill	0.04
E4	Jamb	0.05
E5	Ground Floor	0.07, for new junctions, 0.32 for existing junctions
E20	Exposed Floor	0.32
E21	Exposed Floor (inverted)	0.32
E22	Basement Floor	0.07
E6	Intermediate floor within a dwelling	0.07
E24	Eaves	0.04
E14	Flat roof	0.16
E15	Flat roof with parapet	0.3
E16	Corner (normal)	0.09
E17	Corner (inverted)	0
R1	Head of roof window	0.24
R2	Sill of roof window	0.24
R3	Jamb of roof window	0.24
R4	Ridge (vaulted ceiling)	0.08
R5	Ridge (inverted)	0.04
R7	Flat ceiling	0.04
R9	Roof to wall	0.04

Table B1: Summary of Psi Values

Appendix C: SAP and GLA Datasheets

This appendix contains the SAP datasheets for both 'Be Lean' and 'Be Green' and the GLA spreadsheet, which has been used to calculate the carbon emissions.

								RESIDEN	TIAL CO₂ ANA	LYSIS (PART L	.1)								
			Baseline		'Be Lean'	'Be Clean'	'Be Green'	Fabric Energy I	Efficiency (FEE)	Baseline			Be Leas'			'Be Clean'		Be (ireen'
Unit identifier (e.g. plot number, dwelling		represented by model	TER	saving/generat ion technologies (-)		DER		Efficiency	Fabric Énergy Efficiency	CO2 emissions	ion technologies	CO2 emissions	CO2 emissions with Notional PY savings included	-	CO2 emissions	CO2 emissions with Motional PY savings included		CO ₂ emissions	-
	(Row 4)	(=')	(kgCO ₂ / m ²) (Row 273)	(kgCO ₂ p.s.) (Row 263)	(kgCO ₂ / m ²) (Row 273 or 384)	(kgCO ₂ / m ²) (Row 273 or 384)	(kgCO ₂ / m ²) (Row 273 or 384)	(LUL/L-)	(EVIDE')	(kgCOz p.a.)	(kgCOz p.a.)	(kgCOz p.a.)	(kgCO ₂ p.s.)	(kgCOz p.a.)	(kgCOz p.a.)	(kgCOz p.a.)	(kgCOz p.a.)	(kgCO ₂ p.a.)	(kgCOz p.a.)
68 Elswort	Ly 1149	1149	7.67	-1057.27	7.74	7.74	3.37			8,813	-1,057	8,893	7,836	977	8,893	7,836	0	3,872	3,364

Table C1: GLA spreadsheet part L outputs

 $\textbf{Table 1:} \ \mathsf{Carbon\,Dioxide\,Emissions\,after\,each\,stage\,of\,the\,Energy\,Hierarchy\,for\,residential\,buildings$

	Carbon Dioxide Emissions for residential buildings (Tonnes CO ₂ per annum)						
	Regulated	Unregulated					
Baseline: Part L 2021 of the Building Regulations Compliant Development	8.8	1.8					
After energy demand reduction (be lean)	7.8	1.8					
After heat network connection (be clean)	7.8	1.8					
After renewable energy (be green)	3.9	1.8					

 $\textbf{Table 2:} \ \mathsf{Regulated} \ \mathsf{Carbon} \ \mathsf{Dioxide} \ \mathsf{savings} \ \mathsf{from} \ \mathsf{each} \ \mathsf{stage} \ \mathsf{of} \ \mathsf{the} \ \mathsf{Energy} \ \mathsf{Hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{buildings} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{buildings} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{buildings} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{residential} \ \mathsf{hierarchy} \ \mathsf{for} \ \mathsf{fo$

	Regulated resident	
	onnes CO₂ per annur	(%)
Be lean: savings from energy demand reduction	1.0	11%
Be clean: savings from heat network	0.0	0%
Be green: savings from renewable energy	4.0	45%
Cumulative on site savings	4.9	56%
Annual savings from off- set payment	3.9	-
	(Tonne	s CO ₂)
Cumulative savings for off–set payment	116	-
Cash in-lieu contribution (£)	11,036	

carbon price is based on GLA recommended price of £95 per tonne of carbon dioxide unless Local Planning Authority price is inputted in the

Table C2: GLA Summary tables

Property Reference			Elsworthy Road	d 						Issue	d on Da	ate	18/01/2024	
Assessment Refe	rence		Lean	.1				Prop Type R	tet					
Property		68	Elsworthy Road	3										
SAP Rating					89 B		DER	7.7	74		TER		7.67	
Environmental					90 B		% DER < TER						-0.91	
CO ₂ Emissions (t/					7.65		DFEE		.08		TFEE		36.64	
Compliance Chec	:k				See BREL		% DFEE < TF						1.52	
% DPER < TPER					-9.90		DPER	44	.69		TPEF	₹	40.66	
Assessor Details		Dr. Alan I	Harries								Asse	ssor ID	BC24-00	01
SAP 10 WORKSHEE: CALCULATION OF I		uild (As De	esigned)			2022)								
1. Overall dwell								 Area		orey he			Volume	
Basement floor Ground floor First floor Second floor Third floor Total floor area Dwelling volume	a TFA = (1a))+(1b)+(1c)	+(1d)+(1e)	(1n)	114	9.0300		(m2) 165.3300 389.0000 295.5000 191.4000	(1a) x (1b) x (1c) x (1d) x	1. 2. 2. 2.	5000 6700 0500 3500	(2a) = (2b) = (2c) = (2d) = (2e) =	972.5000 788.9850 392.3700 361.1300	(1a) - (3a (1b) - (3k (1c) - (3c (1d) - (3c (1e) - (3e (4) (5)
Number of open of Number of open of Number of chimne Number of flues Number of flues Number of inter Number of passif Number of flues of flues of passif Number of flues of fl	chimneys flues eys / flues attached to attached to ed chimneys mittent ext: we vents	o solid fue o other hea ract fans	el boiler	ire								0 * 80 = 0 * 20 = 0 * 10 = 0 * 35 = 0 * 20 = 0 * 10 = 0 * 10 = 0 * 40 =	m3 per hour 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	(6b) (6c) (6d) (6e) (6f) (7a) (7b)
Infiltration due Pressure test Pressure Test Me Measured/design Infiltration rat Number of sides	ethod AP50 te	ys, flues a	and fans =	= (6a)+(6b)	+(6c)+(6d)+(6e)+(6f)+	(6g)+(7a)+(7b)+(7c) =		C	.0000	/ (5) =	es per hour 0.0000 Yes Blower Door 3.0000 0.1500	(8)
Shelter factor Infiltration rat	te adjusted	to include	e shelter fa	actor					(20) = 1			(19)] = x (20) =	0.8500 0.1275	
Wind speed Wind factor Adj infilt rate	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250			3000 0750	Nov 4.5000 1.1250	Dec 4.7000 1.1750	
Balanced mechan	0.1626	0.1594 lation with	0.1562 n heat recov	0.1403 very	0.1371	0.1211	0.1211	0.1179	0.1275	0.	1371	0.1434	0.1498	(22b)
If mechanical ve If exhaust air h If balanced with	entilation neat pump us	sing Append	dix N, (23b)) = (23a) x					3a)				0.5000 0.5000 69.6000	(23b)
Effective ac	0.3146	0.3114	0.3082	0.2923	0.2891	0.2731	0.2731	0.2699	0.2795	0.	2891	0.2954	0.3018	(25)
3. Heat losses a	and heat los	ss paramete	er											
Clement door Window (Uw = 1.0 Basement Skyligh dining room Skylight Heatloss Floor : Basement GF 1F	00) nt light		2: 1: 1:	Gross m2 11.0000 72.0000 12.0000	Openings m2 51.1000 35.5700	Net 2. 83. 4. 3. 0. 389. 211. 120. 76.	TArea m2 .7700 .9000 .1400 .7800 .8000 .0000 .0000 .9000 .4300	U-value W/m2K 1.0000 0.9615 0.9615 0.9615 0.1300 0.1500 0.1500 0.1500	2.77 80.67 3.96 3.63 0.76 50.57 31.65 18.13	7/K 700 731 808 846 892 700 800 850	11 11 11 11	0.0000 0.0000 0.0000 0.0000 0.0000	A x K kJ/K 42790.0000 23210.0000 13299.0000 8407.3000	(26) (27) (27a) (27a) (27a) (27a) (28) (29a) (29a) (29a)
Dormer windows 2f			2	26.3000 56.9900		26.	.3000	0.1500 0.1500	3.94 8.54	150	11	0.0000	2893.0000 6268.9000	(29a)

SAP 10 Online 2.13.2 Page 1 of 8

lower basement GF Old wall 1F Old wall 2f old wall Roof GF roof Total net area of external elements Aum Fabric heat loss, W/K = Sum (A x U)	81.0000 80.1000 94.8000 53.0100 107.8000 54.8100	4.9400 3.7800	80. 94. 53. 0 102.		0.1500 0.3000 0.3000 0.3000 0.1100 0.1100	12.150 24.030 28.440 15.903 11.314 5.613	0 11 0 11 0 15 6	0.0000 0.0000 0.0000 0.0000 9.0000 9.0000	8910.0000 8811.0000 10428.0000 7951.5000 925.7400 459.2700	(29a) (29a) (29a) (30)
Heat capacity Cm = Sum(A x k) Thermal mass parameter (TMP = Cm / TFA) List of Thermal Bridges K1 Element E5 Ground floor (normal) E6 Intermediate floor within a E22 Basement floor E15 Flat roof with parapet E14 Flat roof E24 Eaves (insulation at ceilin E16 Corner (normal) E17 Corner (inverted - internal R1 Head of roof window R2 Sill of roof window R3 Jamb of roof window R4 Ridge (waulted ceiling) R5 Ridge (inverted) R7 Flat ceiling (inverted) R9 Roof to wall (flat ceiling) E20 Exposed floor (normal) E21 Exposed floor (inverted) E16 Corner (normal) E17 Corner (inverted - internal E5 Ground floor (normal) E2 Other lintels (including oth E3 Sill E4 Jamb Thermal bridges (Sum(L x Psi) calculate	dwelling ing level - inverted area greater than area greater than er steel lintels)	external as			Let 49, 17, 30, 45, 46, 49, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40	.6000 .5000 .2000 .2000 .3000 .3000 .8000 .8000 .8000 .8000 .8000 .9600 .0000 .6800 .3100 .4000 .5000 .0200 .8400 .2000 .33300	si-value 0.0700 0.1400 0.0700 0.3000 0.1600 0.0900 0.0000 0.2400 0.2400 0.2400 0.0400 0.0400 0.0400 0.0400 0.32	Tot. 3.47 2.45 2.11 13.50 1.47 0.97 6.11 0.00 0.19 0.46 3.19 0.28 0.66 5.77 11.96 4.96 8.28 0.00 9.02 13.59 1.76 5.30	116.9279 a1 20 00 40 00 20 20 20 64 00 20 20 20 56 68 00 72 24 80 00 36 00 40 90 66	(35)
	y (38) m = 0.33 x (Mar Apr 11.0002 266.4687	25)m x (5) May 263.5624	Jun 249.0308	Jul 249.0308	Aug 246.1245	Sep 254.8435	Oct 263.5624	Nov 269.3750	Dec 275.1876	(38)
Average = Sum(39)m / 12 = Jan Feb	Mar Apr 0.6008 0.5882	672.9220 May 0.5856	Jun 0.5730	Jul 0.5730	Aug 0.5705	Sep 0.5781	0ct 0.5856	0.5907	684.5472 675.1017 Dec 0.5958 0.5875	
Hot water usage for baths 41.0789 40.4688 3 Hot water usage for other uses	87.7312 89.6097 38.0256 83.7888 51.6794					83.9743 36.5958 51.6794	87.5004 38.0032 53.7888	91.5766 39.6198 55.8981	4.2357 94.8736 40.9400 58.0075 178.6273	(42a) (42b) (42c)
Jan Feb Daily hot water use	Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
194.3248 190.1741 18 Energy conte 307.7630 270.8054 28 Energy content (annual) Distribution loss (46)m = 0.15 x (45)m	34.5226 242.9012	171.1958 230.4625	164.4872 202.2562	161.9101 195.8162	166.9424 206.7096	172.2496 212.4009		187.0945 266.5505 um(45)m =	193.8210 303.4769 2966.9631	
46.1645 40.6208 4 Water storage loss:		34.5694	30.3384	29.3724	31.0064	31.8601	36.4947	39.9826	45.5215	(46)
Total storage loss 0.0000 0.0000 If cylinder contains dedicated solar st	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(56)
Primary loss 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.4991 0.5194	0.0000 0.0000 0.5647	0.0000	0.0000 0.0000 0.5707	0.0000 0.0000 0.5504	0.0000 0.0000 0.5092			0.0000 0.0000 0.4003	(59)
308.1612 271.2120 28 WWHRS 0.0000 0.0000	35.0216 243.4206 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000		0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	207.2600 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000 0.0000 0.0000	0.0000 0.0000 0.0000	303.8772 0.0000 0.0000 0.0000 0.0000	(63a) (63b) (63c)
308.1612 271.2120 28	35.0216 243.4206	231.0272	202.8196	196.3869		212.9102 er year (kWh			2972.8838	(64)
12Total per year (kWh/year) Electric shower(s) 0.0000 0.0000	0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	2973 0.0000	
Heat gains from water heating, kWh/mont 102.4307 90.1444 9	:h					wer(s) (kWh/	year) = Su	m(64a)m =	0.0000	(64a)
(66)m 211.7834 211.7834 21 Lighting gains (calculated in Appendix 587.1589 650.0688 58 Appliances gains (calculated in Appendi 995.0542 1005.3797 97 Cooking gains (calculated in Appendix L	Mar Apr 1.7834 211.7834 L, equation L9 or 17.1589 606.7308 x L, equation L13 19.3596 923.9660 y, equation L15 or	May 211.7834 L9a), also: 587.1589 or L13a), ai 854.0416 L15a), also	Jun 211.7834 see Table 5 606.7308 lso see Tabl 788.3224 see Table 5	Jul 211.7834 587.1589 e 5 744.4180	Aug 211.7834 587.1589 734.0925	606.7308 760.1125	815.5061	Nov 211.7834 606.7308 885.4306	587.1589 951.1497	(67) (68)
44.1783 44.1783 4 Pumps, fans 3.0000 3.0000		44.1783 3.0000		44.1783 0.0000		44.1783 0.0000			44.1783 3.0000	

SAP 10 Online 2.13.2 Page 2 of 8

Losses e.g. e	vaporation	(negative v	values) (Tab	le 5)									
Water heating	-169.4268 gains (Tab	-169.4268 le 5)	-169.4268	-169.4268	-169.4268				-169.4268	-169.4268	-169.4268	-169.4268	(71)
Total interna	l gains	134.1435	127.3233	112.3535	103.1854	93.5987	87.7037	92.5652	98.2647	108.8992	123.2477	135.7609	
	1809.4238	1879.1270	1783.3768	1732.5854	1633.9209	1575.1870	1505.8156	1500.3516	1551.6431	1601.0992	1704.9441	1763.6046	(73)
6. Solar gain:	s												
(7)									nn.	2		G-i	
[Jan]				m2	Solar flux Table 6a W/m2	Speci or	g fic data Table 6b	Specific or Tab	FF : data :le 6c	Acce fact Table	or	Gains W	
North					10.6334		0.5000		.8000	0.77		3.5076	
East South West				500 900	19.6403 46.7521		0.5000	0	.8000 .8000 .8000	0.77 0.77 0.77	00	273.5751 12.8301	(78)
East			8.7		19.6403 26.0000	· 	0.5000 0.4000		.8000	1.00		171.3315 65.2954	
Solar gains Total gains										1229.1149 2830.2141			
7. Mean inter													
Temperature d	uring heati	ng periods	in the livi	ng area fro	m Table 9,							21.0000	(85)
tau	Jan 53.6081		Mar 54.0595			Jun 56.6844	Jul 56.6844	Aug 56.9357	Sep 56.1884	Oct 55.4603	Nov 54.9854	Dec 54.5185	
alpha util living a		4.5889	4.6040	4.6815	4.6974	4.7790	4.7790	4.7957	4.7459	4.6974	4.6657	4.6346	
MIT	0.9995	0.9984	0.9949	0.9770	0.9175	0.7733	0.6099	0.6834	0.9129	0.9915	0.9988	0.9996 19.1849	
Th 2 util rest of 1	20.4247	20.4270	20.4293	20.4407	20.4429	20.4544	20.4544	20.4567	20.7302	20.1790	20.4384	20.4338	
MIT 2	0.9994 18.6970	0.9982 18.8988	0.9939 19.2336	0.9726 19.7232	0.9009 20.1260	0.7303 20.3795	0.5440 20.4401	0.6190 20.4313	0.8889 20.2411	0.9894 19.6942	0.9986 19.1300		(90)
Living area f:	18.7230	18.9247	19.2594	19.7487	20.1521	20.4064	20.4680	20.4587		Living are		0.0522 18.7199 0.0000	
Temperature acadjusted MIT		18.9247	19.2594	19.7487	20.1521	20.4064	20.4680	20.4587	20.2669	19.7195	19.1554	18.7199	(93)
8. Space heat	ing require	ment											
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains Ext temp.	0.9990 2333.6888	0.9972	0.9914	0.9658	0.8908	0.7263	0.5457	0.6192	0.8795	0.9856	0.9978	0.9993	(95)
	10040.8773	9722.8257	8808.5669	7331.8608	5687.5915	3822.8865	2546.6382	2660.4053	4096.0942	6136.7357	8182.4265	9939.5481	(97)
Space heating Space heating Solar heating	5734.1483 requiremen		3974.9963 ber year (kW		1093.9535	0.0000	0.0000	0.0000	0.0000	2490.3403	4194.3122	5762.1980 30156.6204	(98a)
Solar heating	0.0000 contributi	0.0000 on - total	0.0000 per year (0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating Space heating	5734.1483		3974.9963 ar contribu			0.0000 (kWh/year)	0.0000	0.0000	0.0000	2490.3403	4194.3122	5762.1980 30156.6204	(98c)
Space heating										(980	:) / (4) =	26.2453	(99)
9a. Energy re													
Fraction of s												0.0000	(201)
Fraction of sp Efficiency of Efficiency of	main space	heating sy	stem 1 (in									1.0000	(206)
Efficiency of												0.0000	
Space heating	Jan requiremen	Feb t	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	5734.1483 efficiency	4581.7825 (main heat		1)		0.0000	0.0000	0.0000	0.0000			5762.1980	
Space heating			84.0000 vstem) 4732.1384	84.0000	84.0000	0.0000	0.0000	0.0000	0.0000	84.0000	84.0000 4993.2288	84.0000 6859.7595	
Space heating					0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating	fuel (main 0.0000	heating sy 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating	fuel (seco 0.0000	ndary) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating		t.											
Efficiency of	308.1612	271.2120	285.0216	243.4206	231.0272	202.8196	196.3869	207.2600	212.9102	243.7957	266.9917	303.8772 83.8000	
(217)m Fuel for wate	88.7192 r heating,	88.6924 kWh/month	88.6320	88.4796	88.0474	83.8000	83.8000	83.8000	83.8000	88.5103	88.6707	88.7242	(217)
Space cooling		rement	321.5786	275.1149	262.3897	242.0282	234.3520	247.3270	254.0694	0.0000	301.1047 0.0000	342.4964	
(221)m Pumps and Fa Lighting Electricity ge		0.0000 255.4850 122.2792 PVs (Apper	0.0000 282.8584 110.0989 ndix M) (nec	0.0000 273.7339 80.6632 ative quant	0.0000 282.8584 62.3066	0.0000 273.7339 50.9050	0.0000 282.8584 56.8381	0.0000 282.8584 73.8803	0.0000 273.7339 95.9633	282.8584 125.9090	273.7339 142.2139	0.0000 282.8584 156.6591	(231)
(233a)m Electricity g	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000 ty)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(233a)

SAP 10 Online 2.13.2 Page 3 of 8

(234a)m	0.0 0.0 (n) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0000 0 0000 0 0000 0	.0000	0.000 0.000 0.000 0.000 0.000	0.0000 0.0000 00 0.0000 00 0.0000 00 0.0000	(235a (235c (233b (234b (235c (211)) (213) (215) (219) (221) (230a (230a (230a (231) (231) (235c (231) (235c (230a (230a (230a (231) (235c (231) (235c (230a	(a) (b) (b) (c) (c) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d
	77 Primary Primary 77 93	0 0 0 0 0 v energy f kg CO 1 1 1	2/kWh .2100 .2100 .1387 .1443		Emissions kg Co2/year 7539,1551 0.0000 715.8979 8255.0530 461.9716 177.5471 8894.5718 7.7400 simary energy kWh/year 40567.8346 0.0000 3852.2126 44420.0473 5038.2731 1886.8289 51345.1496 44.6900	(261) (373) (264) (265) (267) (272) (273) (273) (273) (274) (275) (473) (278) (279) (281) (282) (286)	
Ground floor 389.000 First floor 295.50 Second floor 191.400	ea 22) 000 (1a) 000 (1b) 000 (1c) 000 (1d) 000 (1e)	x 1 x 2 x 2 x 2	(m) .5000 .5000 .6700 .0500	(2b) = (2c) = (2d) = (2e) =	392.3700 361.1300	(1a) (1b) (1c) (1d) (1e) (4)	- (3b) - (3c) - (3d)
Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater Number of blocked chimneys				0 * 80 = 0 * 20 = 0 * 10 = 0 * 20 = 0 * 35 = 0 * 20 =	= 0.0000 = 0.0000 = 0.0000	(6a) (6b) (6c) (6d) (6e)	

SAP 10 Online 2.13.2 Page 4 of 8

Number of intern Number of passi Number of fluel	ve vents										4 * 10 = 0 * 10 = 0 * 40 =	40.0000 0.0000 0.0000	(7b)
Infiltration du Pressure test Pressure Test M Measured/design Infiltration ra Number of sides	ethod AP50 te	eys, flues	and fans	= (6a) + (6b))+(6c)+(6d)+	(6e) + (6f) +	(6g)+(7a)+(7b)+(7c) =		40.0000	Air changes) / (5) = Bl	0.0145 Yes ower Door 5.0000 0.2645	(17)
Shelter factor Infiltration ra	te adjusted	d to includ	de shelter :	factor					(20) = 1 - (2		x (19)] = x (20) =	0.8500 0.2248	
Wind speed Wind factor	Jan 5.1000 1.2750	Feb 5.0000 1.2500	Mar 4.9000 1.2250	Apr 4.4000 1.1000	May 4.3000 1.0750	Jun 3.8000 0.9500	Jul 3.8000 0.9500	Aug 3.7000 0.9250		Oct 4.3000 1.0750		Dec 4.7000 1.1750	
Adj infilt rate Effective ac	0.2866 0.5411	0.2810 0.5395	0.2754 0.5379	0.2473 0.5306	0.2417 0.5292	0.2136 0.5228	0.2136 0.5228	0.2079 0.5216		0.2417 0.5292		0.2641 0.5349	
3. Heat losses													
Element				Gross m2	Openings m2		tArea m2	U-value W/m2K	A x W/		K-value kJ/m2K	A x K kJ/K	
TER Opaque door TER Opening Typ Basement Skylight Heatloss Floor Basement GF 1F Dormer windows 2f lower basement GF Old wall 1F Old wall 2f old wall Roof GF roof Total net area of	e (Uw = 1.2 hight 1 of external	l elements	:	211.0000 172.0000 112.0000 26.3000 56.9900 81.0000 94.8000 53.0100 107.8000 54.8100	51.1000 35.5700 4.9400 3.7800	2 83 4 3 0 389 211 120 76 26 56 81 80 94 53	.7700 .9000 .9000 .1400 .7800 .8000 .0000 .0000 .9000 .3000 .9000 .1000 .8000 .0100 .8600 .0300 .8100	1.0000 1.1450 2.0221 2.0221 2.0221 0.1300 0.1800 0.1100	2.77C 96.068 8.371 7.642 1.617 50.57C 37.98C 21.762 13.757 4.734 10.258 14.58C 14.418 17.064 9.541 11.314 5.613	0 7 3 4 6 6 0 0 0 0 0 4 4 0 2 2 0 0 0 0 0 0 0 0 0 0	ACT MAIN	XO/ X	(26) (27) (27a) (27a) (27a) (28) (29a) (29a) (29a) (29a) (29a) (29a) (29a) (30) (30) (31) (33)
Thermal mass pa	rameter (TM	MP = Cm / 5	FFA) in kJ/r	n2K								116.9279	(35)
E6 Inte E22 Bass E15 Fla E14 Fla E14 Fla E24 Eav. E16 Cor. E17 Cor. R1 Head R2 Sill R3 Jamb R4 Ridg R5 Ridg R7 Flat R9 Roof E20 Exp E21 Exp E16 Cor. E17 Cor. E5 Grou.	ent mnd floor (r rmediate fi ement floor) troof with troof es (insulat ner (invert of roof wi of roof wi of roof wi to wall (t to wall (t osed floor ner (invert ceiling (f to wall (f osed floor rer (invert rosed floor fr (invert cinvert ceiling (f soult ceiling (f soult soul	loor within r h parapet tion at ce: l) ted - inter indow indow ceiling) d) inverted) flat ceilir (normal) (inverted) l) ted - inter normal) (including	ng)) rnal area g: other stee:	- inverted reater than	external ar			49 17 30 45 9 24 67 14 0 0 1 14 35 7 16 14 46 32 28 45 44	3.6000 1.5000 1.2000 1.2000 1.2000 1.2000 1.3000 1.3000 1.9600 1.8000 1.8000 1.8000 1.9600 1.	si-value 0.1600 0.0000 0.0700 0.5600 0.2400 0.0900 -0.0900 0.0800 0.0800 0.0800 0.0800 0.0400 0.0400 0.3200 0.3200 0.0900 -0.0900 -0.0900 0.0500 0.0500	Tota 7,936 0.000 2.114 25.200 0.736 5.832 6.116 -1.333 0.064 0.048 0.155 3.196 0.280 0.667 5.772 11.968 4.960 4.141 -2.955 4.512 2.266 2.207 5.305	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
Ventilation hear													
Heat transfer c			Mar 490.4656 907.7193	Apr 483.7697 901.0234	May 482.5169 899.7706	Jun 476.6850 893.9387	Jul 476.6850 893.9387	Aug 475.6050 892.8588	Sep 478.9313 896.1851	Oct 482.5169 899.7706	Nov 485.0512 902.3050	Dec 487.7008 904.9546	
Average = Sum(3	9)m / 12 = Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	901.0174 Dec	
HLP (average) Days in mont	0.7925	0.7912	0.7900	0.7842	0.7831	0.7780	0.7780	0.7771	0.7799	0.7831	0.7853	0.7876 0.7842 31	(40)
4. Water heating Assumed occupange Hot water usage Hot water usage Hot water usage Average daily he	g energy re	showers 93.8072 40.4688 uses 55.8981	91.7216 39.6097 53.7888)					83.9743 36.5958 51.6794	87.5004 38.0032 53.7888	91.5766 39.6198 55.8981	4.2357 94.8736 40.9400 58.0075 178.6273	(42a) (42b) (42c)
Daily hot water		Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
	194.3248 307.7630		185.1200 284.5226		171.1958 230.4625	164.4872 202.2562	161.9101 195.8162	166.9424 206.7096		179.2923 243.2980		193.8210 303.4769	

SAP 10 Online 2.13.2 Page 5 of 8

Energy conten	+ (annual)									Total = 9	Sum(45)m =	2966.9631	
Distribution			(45) m 42.6784	36.4352	34.5694	30.3384	29.3724	31.0064	31.8601	36.4947	39.9826	45.5215	(46)
Water storage Total storage	loss:												(,
If cylinder c			ar storage	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Primary loss	0.0000 0.0000 50.9589	0.0000 0.0000 46.0274	0.0000 0.0000 50.9589	0.0000 0.0000 49.3151	0.0000 0.0000 50.9589	0.0000 0.0000 49.3151	0.0000 0.0000 50.9589	0.0000 0.0000 50.9589	0.0000	0.0000 0.0000 50.9589	0.0000 0.0000 49.3151	0.0000	(59)
Combi loss Total heat re	quired for	water heati			n month		246.7751	257.6685	49.3151		315.8655	50.9589 354.4358	
WWHRS PV diverter	-43.5390 -0.0000	-38.5063 -0.0000	-40.3216 -0.0000	-33.3879 -0.0000	-31.1163 -0.0000	-26.6264 -0.0000	-24.9580 -0.0000	-26.5404 -0.0000		-32.4769 -0.0000	-36.7924 -0.0000		(63a)
Solar input FGHRS	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Output from w		278.3265	295.1599	258.8285	250.3051	224.9448	221.8171		234.1673 er year (kW				
12Total per y Electric show		ar)						TOTAL P	er year (xw	11/ year) - 3	um(04)m -	3162	
	0.0000	0.0000		0.0000 Tot	0.0000 al Energy u	0.0000 sed by inst	0.0000 antaneous e	0.0000 lectric sho	0.0000 wer(s) (kWh	0.0000 /year) = Su	0.0000 um(64a)m =		
Heat gains fr			/month 107.3435	93.0934	89.3685	79.5789	77.8486	81.4707	82.9521	93.6363	100.9568	113.6458	(65)
5. Internal g													
Metabolic gai	ns (Table 5), Watts										-	
(66)m Lighting gain	211.7834		211.7834	211.7834			211.7834	Aug 211.7834	Sep 211.7834	Oct 211.7834	Nov 211.7834	Dec 211.7834	(66)
Appliances ga	602.8057	667.3920	602.8057	622.8992	602.8057	622.8992	602.8057	602.8057	622.8992	602.8057	622.8992	602.8057	(67)
Cooking gains	995.0542 (calculate	1005.3797 d in Append	979.3596 dix L, equat	923.9660 ion L15 or	854.0416 L15a), also	788.3224 see Table	744.4180 5	734.0925	760.1125	815.5061	885.4306	951.1497	
Pumps, fans	3.0000	3.0000	44.1783 3.0000	3.0000		44.1783 0.0000	44.1783 0.0000	44.1783 0.0000	44.1783 0.0000	44.1783 3.0000	44.1783 3.0000	44.1783 3.0000	
Losses e.g. e	-169.4268	-169.4268	values) (Tab -169.4268		-169.4268	-169.4268	-169.4268	-169.4268	-169.4268	-169.4268	-169.4268	-169.4268	(71)
Water heating Total interna	154.6652		144.2789	129.2964	120.1190	110.5263	104.6352	109.5036	115.2112	125.8553	140.2178	152.7497	(72)
		1913.4223	1815.9792	1765.6967	1666.5012	1608.2830	1538.3940	1532.9367	1584.7580	1633.7021	1738.0826	1796.2402	(73)
6. Solar gain													
[Jan]				irea	Solar flux		g		FF	Acce	:88	Gains	
				m2	Table 6a	Speci	fic data	Specific	data	fact	or	W	
					W/m2	or	fic data Table 6b	or Tab	le 6c	Table	6d		
North			1.1	.900	10.6334		0.6300	0	.7000	Table 0.77	6d '00	3.8671 301.6166	
North			1.1 50.2 0.9 31.4	.900	10.6334		0.6300 0.6300 0.6300 0.6300	0 0 0	.7000 .7000 .7000	Table 0.77 0.77 0.77 0.77	6d 700 700 700	301.6166 14.1452 188.8930	(76) (78) (80)
North East South			1.1 50.2 0.9 31.4	.900				0 0 0	.7000	Table 0.77	6d 700 700 700	301.6166 14.1452	(76) (78) (80)
North East South West East	598.5071	1176.9895	1.1 50.2 0.9 31.4 8.7	900 500 900 700 2200	10.6334 19.6403 46.7521 19.6403 26.0000	3646.0628	0.6300 0.6300 0.6300 0.6300 0.6300	0 0 0 0 0 0	.7000 .7000 .7000 .7000 .7000 .7000	Table 0.77 0.77 0.77 0.77 1.00	6d 00 00 00 00 00 00 747.3572	301.6166 14.1452 188.8930 89.9852	(76) (78) (80) (82)
North East South West East	598.5071	1176.9895	1.1 50.2 0.9 31.4 8.7	900 500 900 700 2200	10.6334 19.6403 46.7521 19.6403 26.0000	3646.0628	0.6300 0.6300 0.6300 0.6300 0.6300	0 0 0 0 0	.7000 .7000 .7000 .7000 .7000 .7000	Table 0.77 0.77 0.77 0.77 1.00	6d 00 00 00 00 00 00 747.3572	301.6166 14.1452 188.8930 89.9852	(76) (78) (80) (82)
North East South West East Solar gains Total gains	598.5071 2440.5671	1176.9895 3090.4118	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267	900 500 900 700 200 2877.3356 4643.0323	10.6334 19.6403 46.7521 19.6403 26.0000	3646.0628 5254.3457	0.6300 0.6300 0.6300 0.6300 0.6300 	2961.1555 4494.0922	.7000 .7000 .7000 .7000 .7000 .7000	Table 0.77 0.77 0.77 0.77 1.00	6d 00 00 00 00 00 00 747.3572	301.6166 14.1452 188.8930 89.9852	(76) (78) (80) (82)
North East South West East	598.5071 2440.5671 nal tempera	1176.9895 3090.4118	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267	900 1500 1900 7700 200 2877.3356 4643.0323	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905	3646.0628 5254.3457	0.6300 0.6300 0.6300 0.6300 0.6300 3466.6281 5005.0220	0 0 0 0 0 0 2961.1555 4494.0922	.7000 .7000 .7000 .7000 .7000 .7000	Table 0.77 0.77 0.77 0.77 1.00	6d 00 00 00 00 00 00 747.3572	301.6166 14.1452 188.8930 89.9852	(76) (78) (80) (82) (83) (84)
North East South West East Solar gains Total gains Total gains Temperature d Utilisation f	598.5071 2440.5671 	1176.9895 3090.4118 ture (heati- ng periods (ains for li Feb	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 ing season) in the livi	900 1500 1900 200 2877.3356 4643.0323	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905	3646.0628 5254.3457 Th1 (C) Jun	0.6300 0.6300 0.6300 0.6300 0.6300 3466.6281 5005.0220	2961.1555 4494.0922	.7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000	Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860	6d 100 00 00 00 00 00 747.3572 2485.4398	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383	(76) (78) (80) (82) (83) (84)
North East South West East Solar gains Total gains Total gains 7. Mean inter Temperature d Utilisation f tau alpha	598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323	1176.9895 3090.4118 ture (heati-	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146	900 900 900 700 200 2877.3356 4643.0323	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 0m Table 9, Table 9a) May 41.4778	3646.0628 5254.3457 Th1 (C) Jun 41.7484	0.6300 0.6300 0.6300 0.6300 0.6300 3466.6281 5005.0220	2961.1555 4494.0922	.7000 .7000 .7000 .7000 .7000 .7000 .7000	Table 0.77 0.77 0.77 0.77 1.00	6d 00 00 00 00 00 00 747.3572 2485.4398	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402	(76) (78) (80) (82) (83) (84)
North East South West East	598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323	1176.9895 3090.4118 .ture (heati- ng periods lains for li Feb 41.0501	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146	900 500 900 700 200 2877.3356 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 om Table 9, Table 9a) May 41.4778 3.7652	3646.0628 5254.3457 Th1 (C) Jun 41.7484	0.6300 0.6330 0.6330 0.6330 0.6330 3466.6281 5005.0220	2961.1555 4494.0922	.7000 .7000 .7000 .7000 .7000 .7000 .7000 2281.8057 3866.5636	Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778	00 00 00 00 00 00 00 00 747.3572 2485.4398 Nov 41.3613 3.7574	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493	(76) (78) (80) (82) (83) (84)
North East South West East Solar gains Total gains Total gains Total gains Temperature d Utilisation f tau alpha util living a	598.5071 2440.5671 	1176.9895 3090.4118 ture (heati- ng periods ains for li Feb 41.0501 3.7367	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 10 the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896	900 1500 1900 200 2877.3356 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 om Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832	Jul 41.7484 3.7832	2961.1555 4494.0922 Aug 41.7989 3.7866 0.7541 20.8689	.7000 .7000	Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433	00 00 00 00 00 00 00 747.3572 2485.4398 Nov 41.3613 3.7574 0.9982 19.1695	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518	(76) (78) (80) (82) (83) (84) (85)
North East South West East	598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989	1176.9895 3090.4118 .ture (heati- ng periods tains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921	900 900 900 900 700 220 2877.3356 4643.0323 ng area frc nil,m (see Apr 41.4201 3.7613 0.9764 19.8408 20.2671	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 0m Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766	0.6300 0.6300 0.6300 0.6300 0.6300 3466.6281 5005.0220 Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775	.7000 .7000	Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89)
North East South West East Solar gains Total gains 7. Mean inter Temperature d Utilisation f tau alpha util living a MIT Th 2 util rest of MIT 2 Living area f	598.5071 2440.5671 	1176.9895 3090.4118 .ture (heati- ng periods ains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609 0.9972 17.7254	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 10 season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223	900 900 900 900 200 2877.3356 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 DM Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407	Jul 41.7484 3.7832 0.6031 0.6031 20.2106	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764	.7000 .7000	Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 ea / (4) =	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91)
North East South West East Solar gains Total gains Total gains 7. Mean inter Temperature d Utilisation f tau alpha util living a MIT Th 2 util rest of	598.5071 2440.5671	1176.9895 3090.4118 iture (heating periods agains for life and the second of the seco	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 1954.5475 1954.5475 1970.5267 19933 19.2896 20.2620 0.9921 18.2223 18.2780	900 900 900 900 700 220 2877.3356 4643.0323 ng area frc nil,m (see Apr 41.4201 3.7613 0.9764 19.8408 20.2671	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766	0.6300 0.6300 0.6300 0.6300 0.6300 3466.6281 5005.0220 Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126	.7000 .7000	Table 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 2a / (4) = 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92)
North East South West East Total gains Total gains Total gains Total gains Total gains Total gains Total gains Total gains Total gains Timperature d Utilisation f tau alpha util living a MIT Th 2 util rest of MIT 2 Living area f MIT Temperature a	598.5071 2440.5671	1176.9895 3090.4118 iture (heating periods agains for life and the second of the seco	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 1954.5475 1954.5475 1970.5267 19933 19.2896 20.2620 0.9921 18.2223 18.2780	900 900 900 900 2877.3356 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 20.7454 20.2724 0.7766 20.0407 20.0775	Jul 41.7484 3.7832 0.6870 20.9998 20.2724 20.22471	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126	.7000 .7000	Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92)
North East South West East	598.5071 2440.5671 nal tempera actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081	1176.9895 3090.4118 ture (heati- 	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780	900 900 900 900 200 2877.3356 4643.0323 ang area frc nil,m (see Apr 41.4201 3.7613 0.9764 19.8408 20.2671 0.9715 18.9285 18.9761	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 om Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193	Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775	Jul 41.7484 3.7832 0.6630 0.6300 0.6300 0.6300 3466.6281 5005.0220	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126	.7000 .7000	Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92)
North East South West East	598.5071 2440.5671	1176.9895 3090.4118 .ture (heati- ng periods ains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609 0.9972 17.7254 17.7869	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 1 the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780	900 900 900 900 2877.3356 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775	Jul 41.7484 3.7832 0.6870 20.9098 20.2724 20.2471 20.2471	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126	.7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7028 .7762 .0.9288 .20.5275 .20.2707 .9049 .19.7956 .f.LA = 19.8338 .19.8338	Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 ta / (4) = 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92)
North East South West East	598.5071 2440.5671	1176.9895 3090.4118 Lture (heati- ang periods lains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609 17.7254 17.7869 17.7869 Lains for li Feb 0.9949	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780	900 900 900 900 2200 2877.3356 4643.0323 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775	Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031 20.2471 20.2471 Jul 0.5999	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126	.7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7010	Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.1289 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713	(76) (78) (80) (82) (83) (84) (85) (85) (86) (87) (88) (89) (90) (91) (92) (93)
North East South West East	598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081 Jan 0.9979 2435.5095 4.3000	1176.9895 3090.4118 Lture (heati- ang periods lains for li Feb 41.0501 3.7367 0.9976 18.9023 20.2609 17.7254 17.7869 17.7869 Lains for li Feb 0.9949	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780	900 900 900 900 2200 2877.3356 4643.0323 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 m Table 9, Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775	Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031 20.2471 20.2471 Jul 0.5999	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126	.7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7010	Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.1289 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713	(76) (776) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93)
North East South West East	598.5071 2440.5671 nal tempera uring heati actor for g	1176.9895 3090.4118 Lture (heating periods ains for life periods ains for life periods ains for life periods ains for life periods according to the life periods at life peri	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780	900 900 900 900 200 2877.3356 4643.0323 A643.0323 A643.0323 0.9764 19.8408 20.2671 0.9715 18.9285 18.9761 18.9761 Apr 0.9591 4453.1236 8.9000	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775	Jul 41.7484 3.7832 0.6870 20.2106 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126	.7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .70288 .20.5275 .20.2707 .9049 .19.8338 .19.8338 .19.8338 .20.8862 .20.8	Table 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831 18.9831	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 18.1289 18.1289	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713	(76) (78) (80) (82) (83) (84) (85) (85) (86) (87) (88) (89) (90) (91) (92) (93)
North East South West East	598.5071 2440.5671 nal tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081	1176.9895 3090.4118 Lture (heating periods ains for life periods	1.1 50.2 0.9 31.4 8.7 1954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livi iving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 18.2780 Mar 0.9868 3720.7083 6.5000 10691.1621 5186.0176	900 900 900 900 200 2877.3356 4643.0323 4643.0323 	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 May 40.8929 4658.8098 11.7000 7125.5333	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775	Jul 41.7484 3.7832 0.6870 20.2106 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126	.7000 .7000	Table 0.77 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 18.9831 Oct 0.9804 2974.8755 10.6000 7542.8893	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 18.1289 Nov 0.9952 475.2676 7.1000	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713	(76) (78) (80) (82) (83) (84) (85) (86) (87) (88) (89) (91) (92) (93) (94) (95) (96) (97)
North East South West East	598.5071 2440.5671 all tempera uring heati actor for g Jan 40.9845 3.7323 rea 0.9991 18.6828 20.2598 house 0.9989 17.4433 raction 17.5081 djustment 17.5081 djustment 17.5081	1176.9895 3090.4118 Lture (heating periods lains for life lains	1.1 50.2 0.9 31.4 8.7 1.954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 Mar 0.9868 3720.7083 6.5000 10691.1621 5186.0176 per year (kW 0.0000	900 900 900 900 900 900 900 900 900 900	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 May 40.8929 4658.8098 11.7000 7125.5333	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775 Jun 0.7622 4004.7580 14.6000 4896.5570	Jul 41.7484 3.7832 0.6870 20.9098 20.2724 0.6031 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000 3260.2827	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126	.7000 .7000	Table 0.77 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9831 18.9831 18.9831 Oct 0.9804 2974.8755 10.6000 7542.8893	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0716 18.1289 Nov 0.9952 475.2676 7.1000	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 Dec 0.9984 2284.0420 4.2000 12009.8859 7236.0279 39312.4507	(76) (778) (80) (82) (83) (84) (85) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98a)
North East South West East	598.5071 2440.5671	1176.9895 3090.4118 Lture (heating periods ains for life periods at life	1.1 50.2 0.9 31.4 8.7 1.954.5475 3770.5267 1954.5475 3770.5267 ing season) in the livitiving area, Mar 41.1146 3.7410 0.9933 19.2896 20.2620 0.9921 18.2223 18.2780 18.2780 Mar 0.9868 3720.7083 6.5000 10691.1621 5186.0176 per year (kW 0.0000	900 900 900 900 900 200 2877.3356 4643.0323 4643.0323 9764 19.8408 20.2671 0.9764 19.8408 20.2671 18.9285 18.9761 18.9761 18.9761 18.9761 18.9761 18.9761 18.9761 0.9591 4453.1236 8.9000 9078.8081 3330.4928 th/year) 0.0000 Wh/year)	10.6334 19.6403 46.7521 19.6403 26.0000 3550.8893 5217.3905 Table 9a) May 41.4778 3.7652 0.9289 20.3589 20.2680 0.9120 19.5785 19.6193 19.6193 May 41.7700 7125.5333 1835.2423	3646.0628 5254.3457 Th1 (C) Jun 41.7484 3.7832 0.8232 20.7454 20.2724 0.7766 20.0407 20.0775 20.0775 4004.7580 14.6000 4896.5570 0.0000	Jul 41.7484 3.7832 0.6870 20.9098 20.2724 120.2106 20.2471 20.2471 Jul 0.5999 3002.5525 16.6000 3260.2827 0.0000	Aug 41.7989 3.7866 0.7541 20.8689 20.2733 0.6775 20.1764 20.2126 20.2126	.7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .7000 .9288 .20.5275 .20.2707 .9049 .19.8338 .19.8338 .19.8338 .19.8338 .19.8338 .19.8338 .10000 .10000 .10000 .10000 .10000	Table 0.77 0.77 0.77 0.77 0.77 1.00 1400.7839 3034.4860 Oct 41.4778 3.7652 0.9902 19.8433 20.2680 0.9876 18.9357 Living are 18.9831 18.9831 Oct 0.9804 2974.8755 10.6000 7542.8893 3398.6023	Nov 41.3613 3.7574 0.9982 19.1695 20.2661 0.9978 18.0728 18.1289 18.1289 Nov 0.9959 2475.2676 7.1000 9951.4557 5382.8555 0.0000	301.6166 14.1452 188.8930 89.9852 491.4981 2287.7383 21.0000 Dec 41.2402 3.7493 0.9993 18.6518 20.2641 0.9992 17.4062 0.0522 17.4713 0.0000 17.4713 Dec 0.9984 2284.0420 4.2000 12009.8859 7236.0279 39312.4507	(76) (776) (778) (80) (82) (83) (84) (85) (86) (87) (88) (89) (90) (91) (92) (93) (94) (95) (96) (97) (98a) (98b)

SAP 10 Online 2.13.2 Page 6 of 8

Space heating per m2 (98c) / (4) = 34.2136 (99)

9a. Energy requirements - Individual heating s	ystems, inc	luding micr	o-CHP							
Fraction of space heat from secondary/suppleme Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in Efficiency of main space heating system 2 (in Efficiency of secondary/supplementary heating	ntary syste %) %)								0.0000 1.0000 92.4000 0.0000 0.0000	(202) (206) (207)
Jan Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 7136.2561 5806.9563 5186.0176	-	=	0.0000	0.0000	0.0000	_	3398.6023	5382.8555	7236.0279	(98)
Space heating efficiency (main heating system 92.4000 92.4000 92.4000		92.4000	0.0000	0.0000	0.0000	0.0000	92.4000	92.4000	92.4000	
Space heating fuel (main heating system) 7723.2208 6284.5848 5612.5732			0.0000	0.0000	0.0000	0.0000			7831.1990	
Space heating efficiency (main heating system 0.0000 0.0000 0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating fuel (main heating system 2)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000			
Space heating fuel (secondary)								0.0000	0.0000	
0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(213)
Water heating requirement	250 0205	250 2051	224 0440	221 0171	221 1201	224 1672	261 7000	270 0721	211 7020	(64)
315.1829 278.3265 295.1599 Efficiency of water heater	258.8285	250.3051	224.9448	221.8171	231.1281	234.1673	261.7800	279.0731	311.7030 80.3000	(216)
(217)m 88.4991 88.4667 88.3902 Fuel for water heating, kWh/month	88.2187	87.7718	80.3000	80.3000	80.3000	80.3000	88.2243	88.4332	88.5085	
356.1425 314.6118 333.9282 Space cooling fuel requirement	293.3941	285.1772	280.1305	276.2355	287.8308	291.6155	296.7211	315.5752	352.1729	
(221)m 0.0000 0.0000 0.0000 Pumps and Fa 7.3041 6.5973 7.3041 Lighting 125.2511 100.4811 90.4721	0.0000 7.0685 66.2837	0.0000 7.3041 51.1995	0.0000 7.0685 41.8304	0.0000 7.3041 46.7059	0.0000 7.3041 60.7100	0.0000 7.0685 78.8563	0.0000 7.3041 103.4638	0.0000 7.0685 116.8621	0.0000 7.3041 128.7322	(231)
Electricity generated by PVs (Appendix M) (neg (233a)m -155.5531 -219.6397 -315.7679	-354.4734	-380.9005		-349.0761	-329.9947	-296.4940	-250.3656	-170.8869	-134.3886	(233a)
Electricity generated by wind turbines (Append (234a)m 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234a)
Electricity generated by hydro-electric genera (235a)m 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235a)
Electricity used or net electricity generated (235c)m 0.0000 0.0000 0.0000	by micro-CH 0.0000	P (Appendix 0.0000	N) (negati 0.0000	ve if net g 0.0000	eneration) 0.0000	0.0000	0.0000	0.0000	0.0000	(235c)
Electricity generated by PVs (Appendix M) (neg (233b)m -86.5226 -182.2850 -363.1416			-729.9862	-722.0784	-611.0274	-446.9263	-261.9386	-115.8542	-68.4515	(233b)
Electricity generated by wind turbines (Append (234b)m 0.0000 0.0000 0.0000				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(234b)
Electricity generated by hydro-electric genera (235b)m 0.0000 0.0000 0.0000	tors (Appen 0.0000	dix M) (neg 0.0000	ative quant 0.0000	ity) 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235b)
Electricity used or net electricity generated (235d)m 0.0000 0.0000 0.0000						0.0000	0.0000	0.0000	0.0000	
Annual totals kWh/year Space heating fuel - main system 1									42545.9424	
Space heating fuel - main system 2 Space heating fuel - secondary									0.0000	(213)
Efficiency of water heater Water heating fuel used									80.3000 3683.5353	
Space cooling fuel									0.0000	
Electricity for pumps and fans: Total electricity for the above, kWh/year Electricity for lighting (calculated in Append	ix L)								86.0000 1010.8482	
Energy saving/generation technologies (Appendi PV generation	ces M ,N an	d Q)							-8171.8495	(233)
Wind generation Hydro-electric generation (Appendix N)									0.0000	(234)
Electricity generated - Micro CHP (Appendix N) Appendix Q - special features									0.0000	
Energy saved or generated									-0.0000 0.0000	
Energy used Total delivered energy for all uses									39154.4764	
12a. Carbon dioxide emissions - Individual hea						P			Post and and	
Space heating - main quater 1					Energy kWh/year 42545.9424		ion factor kg CO2/kWh	k	Emissions cg CO2/year	
Space heating - main system 1 Total CO2 associated with community systems							0.2100		8934.6479 0.0000	(373)
Water heating (other fuel) Space and water heating					3683.5353		0.2100		773.5424 9708.1903	(265)
Pumps, fans and electric keep-hot Energy for lighting					86.0000 1010.8482		0.1387 0.1443		11.9293 145.8966	
Energy saving/generation technologies					2211 6700		0.1045		445 0100	
PV Unit electricity used in dwelling PV Unit electricity exported					-3311.6782 -4860.1713		0.1346 0.1258		-445.9132 -611.3600	
Total CO2, kg/year									-1057.2732 8808.7430	(272)
EPC Target Carbon Dioxide Emission Rate (TER)									7.6700	(2/3)
13a. Primary energy - Individual heating syste	ms includin	g micro-CHP								
					Energy		rgy factor		nary energy	
Space heating - main system 1					kWh/year 42545.9424		kg CO2/kWh 1.1300		kWh/year 48076.9149	(275)
Total CO2 associated with community systems Water heating (other fuel)					3683.5353		1.1300		0.0000 4162.3949	(278)
Space and water heating Pumps, fans and electric keep-hot					86.0000		1.5128		52239.3098 130.1008	(281)
Energy for lighting					1010.8482		1.5338		1550.4728	(282)
Proray saying/gonoration tochnologies										

SAP 10 Online 2.13.2 Page 7 of 8

Energy saving/generation technologies

1.4976 0.4617

-4959.7125 -2244.0750 -7203.7875 (283) 46716.0958 (286) 40.6600 (287)

PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER) -3311.6782 -4860.1713

SAP 10 Online 2.13.2 Page 8 of 8

Assessment Reference Be Green Prop Type Ref	
SAP Rating	
SAP Rating	
Environmental 96 A % DER < TER 55.89	
CO.Emissions (typear) 3.33 DPEE 36.08 TFEE 36.64	
See BREL W. DFEE < TFEE	
Massessor Details Dr. Alan Harries Dr. Alan H	
Assessor Details	
Client C	
Client C	
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF DWELLING EMISSIONS FOR REGULATIONS COMPLIANCE 1. Overall dwelling characteristics Area (m2) (m) (m3) Basement floor (m2) (m3) Cround floor (m3) (m3) x 1.5000 (2a) = 247.9950 (75.000 (2a) = 247.9950 (7	
	b) - (3k c) - (3c d) - (3c e) - (3e)
2. Ventilation rate m3 per hour	
Number of open chimneys 0 * 80 = 0.0000 (Number of open flues 0 * 20 = 0.0000 (Number of chimneys / flues attached to closed fire 0 * 10 = 0.0000 (Number of flues attached to solid fuel boiler 0 * 20 = 0.0000 (Number of flues attached to other heater 0 * 35 = 0.0000 (Number of blocked chimneys 0 * 20 = 0.0000 (Number of intermittent extract fans 0 * 10 = 0.0000 (Number of passive vents 0 * 10 = 0.0000 (Number of flueless gas fires 0 * 40 = 0.0000 (b) c) d) e) f) a) b)
Air changes per hour Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(6c)+(6d)+(6e)+(6f)+(6g)+(7a)+(7b)+(7c)$ = 0.0000 / (5) = 0.0000 (١
Yes	7) 8)
Shelter factor $(20) = 1 - [0.075 \times (19)] = 0.8500 \text{ (21)} = (18) \times (20) = 0.1275 \text{ (22)}$	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Wind speed 5.1000 5.0000 4.9000 4.4000 4.3000 3.8000 3.7000 4.0000 4.3000 4.7000 0.900 Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 0.9250 1.0000 1.0750 1.1250 1.1750 0.9500	
Adj infilt rate 0.1626 0.1594 0.1562 0.1403 0.1371 0.1211 0.1211 0.1179 0.1275 0.1371 0.1434 0.1498 (2b)
Balanced mechanical ventilation with heat recovery If mechanical ventilation 0.5000 (3a)
If exhaust air heat pump using Appendix N, (23b) = (23a) x Fmv (equation (N5)), otherwise (23b) = (23a) 0.5000 (If balanced with heat recovery: efficiency in % allowing for in-use factor (from Table 4h) = 69.6000 (
Effective ac 0.3146 0.3114 0.3082 0.2923 0.2891 0.2731 0.2731 0.2699 0.2795 0.2891 0.2954 0.3018 (
Effective ac 0.3146 0.3114 0.3082 0.2923 0.2891 0.2731 0.2731 0.2699 0.2795 0.2891 0.2954 0.3018 (>)
3. Heat losses and heat loss parameter	
Element Gross Openings NetArea U-value A x U K-value A x K	
m2	9a) 9a) 9a)
Dormer windows 26.3000 26.3000 0.1500 3.9450 110.0000 2893.0000 (26.3000 0.1500 8.5485 110.0000 6268.9000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 8.5485 110.0000 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (3.3000 0.1500 0.1500 (

SAP 10 Online 2.13.2 Page 1 of 8

lower basement GF Old wall 1F Old wall 2f old wall Roof GF roof Total net area of external ex		81.0000 80.1000 94.8000 53.0100 107.8000 54.8100	4.940 3.780	80 94 53 0 102 0 51	.0000 .1000 .8000 .0100 .8600 .0300 .8100 (26)(0.1500 0.3000 0.3000 0.3000 0.1100 0.1100 30) + (32)	12.150 24.030 28.440 15.903 11.314 5.613	10 11 10 11 10 15 66	0.0000 0.0000 0.0000 0.0000 9.0000 9.0000	8910.0000 8811.0000 10428.0000 7951.5000 925.7400 459.2700	(29a) (29a) (29a) (30)
Heat capacity Cm = Sum(A x k Thermal mass parameter (TMP:		√m2K				(28).	(30) + (32	(32a).	(32e) = 1	34353.7100 116.9279	
List of Thermal Bridges K1 Element E5 Ground floor (norn E6 Intermediate floo: E22 Basement floor E15 Flat roof with p. E14 Flat roof E24 Eaves (insulation E16 Corner (normal) E17 Corner (inverted R1 Head of roof wind R2 Sill of roof wind R3 Jamb of roof wind R4 Ridge (vaulted ce. R5 Ridge (inverted) R7 Flat ceiling (inverted) R7 Flat ceiling (inverted) E20 Exposed floor (n. E21 Exposed floor (n. E21 Exposed floor (n. E25 Ground floor (normal) E17 Corner (inverted E5 Ground floor (norn E2 Other lintels (inc. E3 Sill E4 Jamb Thermal bridges (Sum(L x Psi Point Thermal bridges	mal) r within a dwelling arapet n at ceiling leve - internal area ow ow cliling) erted) c ceiling) ormal) neverted) - internal area mal) cluding other ste	ng el - inverted greater than greater than greater than	external a			49 177 300 455 9 24 677 144 0 0 1 399 7 166 144 377 155 466 322 288 455	ength	Psi-value 0.0700 0.1400 0.0700 0.3000 0.1600 0.0900 0.0000 0.2400 0.2400 0.2400 0.0400 0.0400 0.0400 0.0400 0.0400 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200 0.3200	Tot 3.47 2.45 2.11 13.50 1.47 0.97 6.11 0.00 0.19 0.19 0.46 3.19 0.28 0.66 5.77 11.96 4.96 8.28 0.00 9.02 13.59 1.76 5.30	al 220 000 440 000 220 220 644 000 220 220 248 880 000 366 000 40 900 660	
Total fabric heat loss							(3	(36) + (36)		409.3596	(37)
	ated monthly (38) Feb Mar 3.9066 281.0002	Apr	25) m x (5) May 263.5624	Jun 249.0308	Jul 249.0308	Aug 246.1245	Sep 254.8435	Oct 263.5624	Nov 269.3750	Dec 275.1876	(38)
Heat transfer coeff 696.1725 69	3.2661 690.3598		672.9220	658.3904	658.3904	655.4841	664.2031	672.9220	678.7346	684.5472	
	Feb Mar 0.6033 0.6008	Apr 0.5882	May 0.5856	Jun 0.5730	Jul 0.5730	Aug 0.5705	Sep 0.5781	Oct 0.5856	Nov 0.5907	675.1017 Dec 0.5958 0.5875	(40)
Days in mont 31	28 31	. 30	31	30	31	31	30	31	30	31	
Hot water usage for baths	irements (kWh/yea	87.7312					83.9743 36.5958	87.5004 38.0032	91.5766 39.6198	4.2357 94.8736 40.9400	(42a)
	5.8981 53.7888	51.6794	49.5700	47.4607	47.4607	49.5700	51.6794	53.7888	55.8981	58.0075	
Average daily hot water use Jan	(litres/day) Feb Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	178.6273 Dec	(43)
Daily hot water use	0.1741 185.1200	177.4362	171.1958 230.4625	164.4872 202.2562	161.9101 195.8162	166.9424 206.7096	172.2496 212.4009	179.2923 243.2980	187.0945 266.5505 Sum (45) m =	193.8210 303.4769	
Distribution loss (46)m = 0 46.1645 4	.15 x (45)m 0.6208 42.6784	36.4352	34.5694	30.3384	29.3724	31.0064	31.8601			45.5215	(46)
Water storage loss: Store volume a) If manufacturer declared Temperature factor from Tal Enter (49) or (54) in (55)		nown (kWh/d	lay):							175.0000 2.0000 0.5400 1.0800	(48) (49)
Total storage loss 33.4800 30	0.2400 33.4800		33.4800	32.4000	33.4800	33.4800	32.4000	33.4800	32.4000	33.4800	
Primary loss 23.2624 23	0.2400 33.4800 1.0112 23.2624 0.0000 0.0000	32.4000 22.5120 0.0000	23.2624	22.5120	33.4800 23.2624 0.0000	33.4800 23.2624 0.0000		33.4800 23.2624 0.0000	22.5120	33.4800 23.2624 0.0000	(59)
364.5054 323 WWHRS	2.0566 341.2650 0.0000 0.0000 0.0000 -0.0000 0.0000 0.0000	297.8132 0.0000 -0.0000 0.0000	287.2049 0.0000 -0.0000 0.0000	257.1682 0.0000 -0.0000 0.0000 0.0000	252.5586 0.0000 -0.0000 0.0000 0.0000	263.4520 0.0000 -0.0000 0.0000 0.0000	267.3129 0.0000 -0.0000 0.0000 0.0000	300.0404 0.0000 -0.0000 0.0000 0.0000	0.0000	360.2193 0.0000 -0.0000 0.0000 0.0000	(63a) (63b) (63c)
Output from w/h 364.5054 32:	2.0566 341.2650	297.8132	287.2049	257.1682	252.5586		267.3129 er year (kWh				
12Total per year (kWh/year) Electric shower(s) 0.0000	0.0000			0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	3635 0.0000	(64) (64a)
Heat gains from water heating	g, kWh/month 1.0438 139.9977			-			wer(s) (kWh/	-		0.0000	
111,1201 13.	., 100.0011				0.0020	1.1270					,,
5. Internal gains (see Table	5 and 5a)										
Metabolic gains (Table 5), Wa	atts						_			_	
Lighting gains (calculated in	1.7834 211.7834 n Appendix L, equ	211.7834 ation L9 or	L9a), also	see Table 5							
587.1589 650 Appliances gains (calculated	0.0688 587.1589 in Appendix L, e					587.1589	606.7308	587.1589	606.7308	587.1589	(67)

SAP 10 Online 2.13.2 Page 2 of 8

Cooking gains Pumps, fans Losses e.g. ev Water heating Total internal 6. Solar gain: [Jan] North East South West East	(calculated 44.1783 0.0000 vaporation -169.4268 gains (Tab. 198.5553 1 gains 1 867.3033	d in Appent 44.1783 0.0000 (negative v-169.4268 le 5) 195.0056	44.1783 0.0000 values) (Tak -169.4268 188.1689 1841.2225	100 L15 or 44.1783 0.0000 cle 5) -169.4268 173.1865 1790.4184 cle 8 m2 cle 900	L15a), also 44.1783 0.0000 -169.4268 164.0090 1691.7445	see Table 44.1783 0.0000 -169.4268 154.4164 1636.0047 Speci	5 44.1783 0.0000 -169.4268 148.5253 1566.6372 	153.3936 1561.1800 	159.1013 1612.4796 FF data le 6c	Acce fact Table 0.77 0.77 0.77	184.1078 1762.8043 ss or 6d 00 00 00	196.6398	(69) (70) (71) (72) (73) (74) (76) (78) (80)
Solar gains Total gains													
7. Mean internal temperature (heating season)													
Temperature du	uring heating	ng periods	in the livi	ng area fro	m Table 9,	Th1 (C)						21.0000	(85)
tau alpha	Jan 53.6081 4.5739	Feb 53.8328	Mar 54.0595	Apr 55.2218	May 55.4603	Jun 56.6844	Jul 56.6844 4.7790		Sep 56.1884 4.7459	Oct 55.4603 4.6974			
util living a	rea	0.9983			0.9144	0.7674	0.6031		0.9083	0.9908	0.9987		(86)
Living				20.3506	20.6586	20.8589	20.9165		20.7427	20.3265	19.9050		(,
Living Non living 24 / 16	19.0697 0	19.2218 0	19.4735 0		20.1445		20.3794	0	20.2331	0	0	0	
16 / 9	0	0	0	30	0	30 0	31	0	30 0	0	0		
MIT Th 2 util rest of h		21.0000 20.4270		21.0000 20.4407	21.0000 20.4429	21.0000 20.4544	21.0000 20.4544	21.0000 20.4567	21.0000 20.4498				
MIT 2 Living area fi	0.9993 20.4247	0.9980 20.4270		0.9713 20.4407	0.8974 20.4429	0.7240 20.4544	0.5376 20.4544	0.6115 20.4567	0.8835 20.4498	0.9885 20.4429 Living are	0.9984		(90)
MIT Temperature ac	20.4548	20.4569	20.4591	20.4699	20.4720	20.4829	20.4829	20.4850	20.4785				
adjusted MIT		20.4569	20.4591	20.4699	20.4720	20.4829	20.4829	20.4850	20.4785	20.4720	20.4677	20.4634	(93)
8. Space heat:	ing requirer 	ment Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Utilisation Useful gains Ext temp.	2392.2510 4.3000		3530.9851	4183.4312		3499.7248	2485.0561	2551.3735	3194.5724	2855.1522	2416.2327		(95)
Heat loss rate Space heating	11246.4939	10785.0780	9636.7779	7819.2413	5902.8895	3873.2159	2556.4351	2677.6687	4236.6332	6643.1037	9073.1219	11133.0526	(97)
Space heating Space heating Solar heating	6587.5567 requirement		4542.7098 per year (kW		1189.0091	0.0000	0.0000	0.0000	0.0000	2818.2360	4792.9602	6606.7551 34410.2052	(98a)
Solar heating Solar heating Space heating	0.0000 contribution	0.0000 on - total		0.0000 Wh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating	6587.5567 requirement		4542.7098 lar contribu			0.0000 (kWh/year)	0.0000	0.0000	0.0000	2818.2360		34410.2052	
Space heating	per mz									(980) / (4) =	29.9472	(99)
9a. Energy red													
Fraction of sp Fraction of sp Efficiency of Efficiency of Efficiency of	pace heat f: main space main space	rom main sy heating sy heating sy	ystem(s) ystem 1 (in ystem 2 (in	%) %)	m (Table 11)						0.0000 1.0000 178.6713 0.0000 0.0000	(202) (206) (207)
Space heating	Jan requirement	Feb t	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating	6587.5567 efficiency	5255.1950 (main heat		1)	1189.0091	0.0000	0.0000	0.0000	0.0000			6606.7551	(98)
Space heating	178.6713 fuel (main	178.6713 heating sy	178.6713 ystem)	178.6713	178.6713	0.0000	0.0000	0.0000	0.0000	178.6713	178.6713	178.6713	
Space heating	3686.9692 efficiency	2941.2638 (main heat	2542.4952 ting system	2)	665.4728	0.0000	0.0000	0.0000		1577.3297			
Space heating			ystem 2)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating				0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Maka 3 11	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(215)
Water heating Water heating	requirement	t 322.0566	341.2650	297.8132	287.2049	257.1682	252.5586	263.4520	267.3129	300.0404	321.4625	360.2193	(64)
Efficiency of (217)m	water heat			104.5200	104.5200	104.5200	104.5200	104.5200	104.5200	104.5200	104.5200	104.5200	(216)
. /			,									,	/

SAP 10 Online 2.13.2 Page 3 of 8

Fuel for water heating, kWh/month 348.7423 308.1292 326.5069 284.9342 274.7846 246.0469 241.	.6367 252.05	39 255.75	287.0651	307.5607	344.6415	(219)
Pumps and Fa 275.5543 248.8877 275.5543 266.6654 275.5543 266.6654 275.		43 266.66	554 275.5543	0.0000 266.6654	0.0000 275.5543	(231)
Lighting 152.4228 122.2792 110.0989 80.6632 62.3066 50.9050 56. Electricity generated by PVs (Appendix M) (negative quantity) (233a)m -45.6699 -73.2609 -119.0570 -149.0712 -170.3854 -154.5450 -152.				142.2139 -52.9975	156.6591	
Electricity generated by wind turbines (Appendix M) (negative quantity)	.0000 0.00			0.0000	-38.5148 0.0000	
Electricity generated by hydro-electric generators (Appendix M) (negative quantity)				0.0000	0.0000	
Electricity used or net electricity generated by micro-CHP (Appendix N) (negative if		n)		0.0000	0.0000	
Electricity generated by PVs (Appendix M) (negative quantity) (233b)m -4.4166 -10.3191 -23.2893 -41.7008 -65.2973 -77.1687 -75.	.9371 -62.41	31 -43.81	122 -17.6900	-6.4123	-3.3991	
	.0000 0.00	0.00	0.0000	0.0000	0.0000	(234b)
	.0000 0.00		0.0000	0.0000	0.0000	(235b)
	net generatio .0000 0.00		0.0000	0.0000	0.0000	(235d)
Annual totals kWh/year Space heating fuel - main system 1 Space heating fuel - main system 2 Space heating fuel - secondary Efficiency of water heater Water heating fuel used Space cooling fuel					19258.9411 0.0000 0.0000 104.5200 3477.8598 0.0000	(213) (215) (219)
Electricity for pumps and fans: (BalancedWithHeatRecovery, Database: in-use factor = 1.2500, SFP = 0.9625) mechanical ventilation fans (SFP = 0.9625) Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)					3244.4293 3244.4293 1230.1394	(231)
Energy saving/generation technologies (Appendices M ,N and Q) PV generation Wind generation Hydro-electric generation (Appendix N)					-1727.2394 0.0000 0.0000	(234)
Electricity generated - Micro CHP (Appendix N) Appendix Q - special features Energy saved or generated Energy used					0.0000 -0.0000 0.0000	(235)
Total delivered energy for all uses					25484.1302	
12a. Carbon dioxide emissions - Individual heating systems including micro-CHP						
	Ener kWh/ye	ar	nission factor kg CO2/kWh		Emissions g CO2/year	
Space heating - main system 1 Total CO2 associated with community systems	19258.94		0.1547		2980.2476	(373)
Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot	3477.85 3244.42		0.1411		490.5572 3470.8048	(265)
Energy for lighting	1230.13		0.1443		450.0423 177.5471	
Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Dwelling Carbon Dioxide Emission Rate (DER)	-1295.38 -431.85		0.1329 0.1197		-172.2200 -51.6899 -223.9098 3874.4845 3.3700	(272)
13a. Primary energy - Individual heating systems including micro-CHP						
	Ener	gy Primary	energy factor			
Space heating - main system 1 Total CO2 associated with community systems	19258.94	11	kg CO2/kWh 1.5729		kWh/year 30292.6727 0.0000	
Water heating (other fuel) Space and water heating	3477.85	98	1.5216		5291.7886 35584.4613	(278)
Pumps, fans and electric keep-hot Energy for lighting	3244.42 1230.13		1.5128 1.5338		4908.1726 1886.8289	(281)
Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total	-1295.38 -431.85		1.4913 0.4389		-1931.7781 -189.5314 -2121.3095	
Total Primary energy kWh/year Dwelling Primary energy Rate (DPER)					40258.1533 35.0400	
SAP 10 WORKSHEET FOR New Build (As Designed) (Version 10.2, February 2022) CALCULATION OF TARGET EMISSIONS		 				
1. Overall dwelling characteristics			Storey height		Volume	
Basement floor	(m		(m)		(m3)	(1a) - (3a
Ground floor First floor	389.00	00 (1b)	x 2.5000 x 2.6700	(2b) =	972.5000	(1b) - (3b
Second floor Third floor	191.40		x 2.0500		392.3700	(1d) - (3d (1e) - (3e

SAP 10 Online 2.13.2 Page 4 of 8

Total floor area TFA = (1a) + (1b) + (1c) + (1d) + (1e) ... (1n) $(3a) + (3b) + (3c) + (3d) + (3e) \dots (3n) = 2762.9800 (5)$ 2. Ventilation rate m3 per hour Number of open chimneys Number of open flues Number of chimneys / flues attached to closed fire Number of flues attached to solid fuel boiler Number of flues attached to other heater 80 = 20 = 10 = 0.0000 (6b) 0.0000 (6c) 0.0000 (6d) 20 0.0000 (6e) Number of blocked chimnevs 20 = 0.0000 (6f) Number of intermittent extract fans Number of passive vents Number of flueless gas fires 40.0000 10 = 10 = 40 = 0.0000 (7c) Air changes per hour 40.0000 / (5) = 0.0145Infiltration due to chimneys, flues and fans = (6a) + (6b) + (6c) + (6d) + (6e) + (6f) + (6g) + (7a) + (7b) + (7c) = (6a) + (6b) + (6c) + (6d) + (6Pressure test Pressure Test Method Yes Blower Door Measured/design AP50 Infiltration rate Number of sides sheltered 5 0000 (17) 45 (18) 2 (19) 0.2645 - [0.075 x (19)] (21) = (18) x (20) 0.8500 (20) 0.2248 (21) Shelter factor (20) = 1 -Infiltration rate adjusted to include shelter factor Aug 3.7000 0.9250 Jan 5.1000 May 4.3000 Jun 3.8000 Sep 4.0000 Oct 4.3000 Apr 4.4000 5.0000 Wind speed Wind factor 1.2750 1.2500 1.2250 1.1000 1.0750 0.9500 0.9500 1.0000 1.0750 1.1250 1.1750 (22a) Adj infilt rate 0.2810 0.2136 0.2641 (22b) 0.5349 (25) 0.5395 3. Heat losses and heat loss parameter K-value A x U Gross Openings NetArea U-value W/K 2.7700 96.0687 m2 2.7700 W/m2K kJ/m2K kJ/K 1.0000 (26) TER Opening Type (Uw = 1.20)
Basement Skylight (27)(27a) (27a) 4.1400 2.0221 8.3713 7.6434 dining room Skylight roof Skylight Heatloss Floor 1 2.0221 211.0000 Basement 211.0000 0.1800 37.9800 21.7620 (29a) 172.0000 112.0000 26.3000 51 1000 120 9000 0.1800 (29a) 76.4300 26.3000 0.1800 (29a) (29a) Dormer windows 56.9900 56.9900 0.1800 10.2582 (29a) lower basement 81.0000 81.0000 0 1800 14 5800 (29a GF Old wall 1F Old wall 14.4180 94.8000 0.1800 (29a) 2f old wall Roof 53.0100 53.0100 0.1800 9.5418 (29a) (30) (30) (31) 4 9400 11 3146 51.0300 1438.8100 0.1100 5.6133 Total net area of external elements Aum(A, m2) (26)...(30) + (32) = 328.0644 Fabric heat loss, W/K = Sum (A x U) Thermal mass parameter (TMP = Cm / TFA) in kJ/m2K116.9279 (35) List of Thermal Bridges K1 Element Length Psi-value Total E5 Ground floor (normal)
E6 Intermediate floor within a dwelling 0.1600 7.9360 E22 Basement floor E15 Flat roof with parapet E14 Flat roof E24 Eaves (insulation at ceiling level - inverted) 30.2000 0.0700 2.1140 45 0000 0.5600 25 2000 9.2000 24.3000 0.7360 5.8320 0.0800 0.2400 E24 Eaves (institution at ceiling level - inverted)
E16 Corner (normal)
E17 Corner (inverted - internal area greater than external area)
R1 Head of roof window
R2 Sill of roof window
R3 Jamb of roof window 67.9600 14.8200 0.0900 6.1164 -0.0900 0.0800 0.0600 -1.3338 0.0640 0.0480 0.8000 1.9400 0.0800 0.1552 R4 Ridge (vaulted ceiling) R5 Ridge (inverted) R7 Flat ceiling (inverted) R9 Roof to wall (flat ceiling) 39.9600 0.0800 3.1968 0.2800 16.6800 0.0400 144.3100 0.0400 5.7724 E20 Exposed floor (normal) E21 Exposed floor (inverted) 0.3200 11.9680 E16 Corner (normal) E17 Corner (inverted - internal area greater than external area) 46.0200 0.0900 4.1418 32.8400 -0.0900 -2.9556 E5 Ground floor (normal)
E2 Other lintels (including other steel lintels) 28.2000 45.3300 0.1600 4.5120 2.2665 E3 Sill 44.1500 0.0500 2.2075 E4 Jamb 106 1000 0.0500 5.3050 Thermal bridges (Sum(L x Psi) calculated using Appendix K) Point Thermal bridges
Total fabric heat loss 89.1894 (36) (36a) = (33) + (36) + (36a) =0.0000 417.2538 (37) Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$ Jan Feb Mar Apr May $(38)m \qquad 493.3455 \qquad 491.8911 \qquad 490.4656 \qquad 483.7697 \qquad 482.5169$ Dec 487.7008 (38) Sep 478.9313 Oct 482.5169 476.6850 476.6850 475.6050 485.0512 Heat transfer coeff 910.5993 Average = Sum(39)m / 12 909.1449 907.7193 901.0234 899.7706 893.9387 893.9387 892.8588 896.1851 899.7706 902.3050 904.9546 (39) May 0.7831 Jun 0.7780 Nov 0.7853 Jan 0.7925 Aug 0.7771 Dec 0.7876 (40) 0.7900 HLP (average) 0.7842 31 31 30 31 30 31 31 31 30 Days in mont

1149.0300

SAP 10 Online 2.13.2 Page 5 of 8

4. Water heating en	 nergy r	equirement	s (kWh/year										
Assumed occupancy												4.2357	(42)
	.2385	93.8072	91.7216	87.7312	84.7863	81.5023	79.6356	81.7054	83.9743	87.5004	91.5766	94.8736	(42a)
Hot water usage for 41 Hot water usage for	.0789	40.4688	39.6097	38.0256	36.8395	35.5243	34.8138	35.6669	36.5958	38.0032	39.6198	40.9400	(42b)
	.0075	55.8981	53.7888 /day)	51.6794	49.5700	47.4607	47.4607	49.5700	51.6794	53.7888	55.8981	58.0075 178.6273	
Jaily hot water use	an e	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Energy conte 307 Energy content (and	.3248 .7630 nual)	190.1741 270.8054	185.1200 284.5226	177.4362 242.9012	171.1958 230.4625	164.4872 202.2562	161.9101 195.8162	166.9424 206.7096	172.2496 212.4009	179.2923 243.2980 Total = S	187.0945 266.5505 um(45)m =	193.8210 303.4769 2966.9631	
Distribution loss 46 Water storage loss	.1645		45)m 42.6784	36.4352	34.5694	30.3384	29.3724	31.0064	31.8601	36.4947	39.9826	45.5215	(46)
Store volume a) If manufacture: Temperature facto Enter (49) or (54)	r decla or from in (55	Table 2b	actor is kn	own (kWh/d	day):							175.0000 1.5263 0.5400 0.8242	(48) (49)
Total storage loss 25 If cylinder contain	.5498	23.0773	25.5498	24.7257	25.5498	24.7257	25.5498	25.5498	24.7257	25.5498	24.7257	25.5498	(56)
Primary loss 23 Combi loss 0	.5498 .2624 .0000	23.0773 21.0112 0.0000	25.5498 23.2624 0.0000	24.7257 22.5120 0.0000	25.5498 23.2624 0.0000	24.7257 22.5120 0.0000	25.5498 23.2624 0.0000	25.5498 23.2624 0.0000	24.7257 22.5120 0.0000	25.5498 23.2624 0.0000	24.7257 22.5120 0.0000	25.5498 23.2624 0.0000	(59)
		314.8939 -38.5063	333.3348 -40.3216	ed for each 290.1389 -33.3879	month 279.2747 -31.1163	249.4938 -26.6264	244.6285 -24.9580	255.5218 -26.5404	259.6386 -27.5487	292.1103 -32.4769	313.7881 -36.7924	352.2892 -42.7328	
Solar input 0 FGHRS 0	.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	-0.0000 0.0000 0.0000	(63c)
	.0362	276.3876	293.0133	256.7510	248.1585	222.8674	219.6705	228.9815 Total p	232.0899 er year (kW	259.6334 h/year) = S	276.9957 um(64)m =	309.5564 3137.1413	(64)
12Total per year (1 Electric shower(s)		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(64a)
Heat gains from wat					al Energy u	-				-		0.0000	
141	.3810	125.3136	133.6536	118.5548	115.6786	105.0403	104.1587	107.7807	108.4134	119.9464	126.4182	139.9559	(65)
5. Internal gains													
Ja	an	Feb	Mar 211.7834	Apr 211.7834	May 211.7834	Jun 211.7834	Jul 211.7834	Aug 211.7834	Sep 211.7834	Oct 211.7834	Nov 211.7834	Dec 211.7834	(66)
	.8057	667.3920	602.8057	622.8992	602.8057	622.8992	602.8057	602.8057	622.8992	602.8057	622.8992	602.8057	(67)
	.0542	1005.3797	979.3596	923.9660	854.0416	788.3224	744.4180	734.0925	760.1125	815.5061	885.4306	951.1497	(68)
	.1783	44.1783	44.1783	44.1783	44.1783	44.1783	44.1783	44.1783	44.1783	44.1783	44.1783	44.1783	
Losses e.g. evapora					3.0000	0.0000	0.0000	0.0000	0.0000	3.0000	3.0000	3.0000	
Water heating gain:	s (Tabl		179.6419	164.6594	155.4820	145.8893	-169.4268 139.9982	144.8666	150.5742	161.2183	175.5808	-169.4268 188.1127	
Total internal gain	ns				1701.8642								
6. Solar gains													
[Jan]				m2	Solar flux Table 6a W/m2	Speci or				Acce fact Table	or	Gains W	
North East			1.1 50.2	900 500	10.6334 19.6403 46.7521 19.6403 26.0000		0.6300 0.6300	0	.7000 .7000	0.77 0.77 0.77 0.77	00	3.8671 301.6166	
South West			0.9 31.4	900 700	46.7521 19.6403		0.6300 0.6300	0	.7000 .7000	0.77 0.77	00	14.1452 188.8930	(80)
East			8.7	200	26.0000		0.6300	0	.7000	1.00	00	89.9852	(82)
Solar gains 598 Total gains 2475													
7. Mean internal to												21.0000	(85)
Utilisation factor		ins for li		nil,m (see	Table 9a)	Jun	Jul	Aug	Sen	Oct	Nov	21.0000 Dec	(03)
tau 40 alpha 3	.9845	41.0501	41.1146	41.4201	41.4778 3.7652	41.7484	41.7484	41.7989	41.6437	41.4778	41.3613	41.2402	
util living area 0	.9990	0.9975	0.9931	0.9759	0.9277	0.8208	0.6838	0.7507	0.9271	0.9898	0.9981	0.9993	(86)
Th 2 20			19.2959 20.2620	19.8466 20.2671			20.9112 20.2724			19.8494 20.2680			
MIT 2 17	.9989 .4515		0.9918 18.2303	0.9708 18.9358	0.9105 19.5842	0.7739 20.0437	0.5999 20.2117	0.6739 20.1782	19.8011	18.9436	18.0798	17.4144	(90)
	.5162	17.7949	18.2859	18.9833	19.6249	20.0805	20.2482	20.2144		Living are 18.9909		17.4794	(92)
Temperature adjustr adjusted MIT 17		17.7949	18.2859	18.9833	19.6249	20.0805	20.2482	20.2144	19.8393	18.9909	18.1370	0.0000 17.4794	

SAP 10 Online 2.13.2 Page 6 of 8

8. Space heating requirement									
Jan Feb Mar Apr Utilisation 0.9978 0.9947 0.9864 0.9583 Useful gains 2470.5474 3199.3345 3754.1776 4483.1693 Ext temp. 4.3000 4.9000 6.5000 8.9000	May 0.8914 4682.0945 11.7000		Jul 0.5968 3008.0104 16.6000	Aug 0.6668 3020.2407 16.4000	Sep 0.8839 3449.0475 14.1000	Oct 0.9797 3007.4831 10.6000	Nov 0.9957 2510.0010 7.1000	Dec 0.9983 2319.1485 4.2000	(95)
Heat loss rate W 12034.6271 11723.3532 10698.3016 9085.3113	7130.5853	4899.2627	3261.3076	3405.7060	5143.4635	7549.8449	9958.7446	12017.2367	(97)
Space heating kWh 7115.6753 5788.6206 5166.4283 3313.5423 Space heating requirement - total per year (kWh/year)	1821.6772	0.0000	0.0000	0.0000	0.0000	3379.5172	5363.0954	7215.3776 39163.9339	(98a)
Solar heating kWh 0.0000 0.0000 0.0000 0.0000 Solar heating contribution - total per year (kWh/year)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(98b)
Space heating kWh 7115.6753 5788.6206 5166.4283 3313.5423 Space heating requirement after solar contribution - total Space heating per m2			0.0000	0.0000	0.0000		5363.0954	7215.3776 39163.9339 34.0843	
9a. Energy requirements - Individual heating systems, inc									
Fraction of space heat from secondary/supplementary system Fraction of space heat from main system(s) Efficiency of main space heating system 1 (in %) Efficiency of main space heating system 2 (in %) Efficiency of secondary/supplementary heating system, %	em (Table 1	L)						0.0000 1.0000 92.3000 0.0000 0.0000	(202) (206) (207)
Jan Feb Mar Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Space heating requirement 7115.6753 5788.6206 5166.4283 3313.5423	1821.6772	0.0000	0.0000	0.0000	0.0000	3379.5172	5363.0954	7215.3776	(98)
Space heating efficiency (main heating system 1) 92.3000 92.3000 92.3000 92.3000	92.3000	0.0000	0.0000	0.0000	0.0000	92.3000	92.3000	92.3000	(210)
Space heating fuel (main heating system) 7709.2907 6271.5283 5597.4304 3589.9700	1973.6481	0.0000	0.0000	0.0000	0.0000	3661.4488	5810.5042	7817.3105	(211)
Space heating efficiency (main heating system 2) 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(212)
Space heating fuel (main heating system 2) 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Space heating fuel (secondary) 0.0000 0.0000 0.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Water heating Water heating requirement	040 1505	000 0074	010 6705	000 0015	000 0000	050 6004	076 0057	200 5564	(64)
313.0362 276.3876 293.0133 256.7510 Efficiency of water heater	248.1585	222.8674	219.6705	228.9815	232.0899	259.6334	276.9957	309.5564 79.8000	(216)
(217)m 88.3800 88.3459 88.2657 88.0856 Fuel for water heating, kWh/month	87.6153	79.8000	79.8000	79.8000	79.8000	88.0912	88.3109	88.3899	(217)
354.1936 312.8470 331.9672 291.4791 Space cooling fuel requirement	283.2365	279.2825	275.2763	286.9442	290.8394	294.7325	313.6599	350.2169	
(221)m 0.0000 0.0000 0.0000 0.0000 Pumps and Fa 7.3041 6.5973 7.3041 7.0685 Lighting 125.2511 100.4811 90.4721 66.2837	0.0000 7.3041 51.1995	0.0000 7.0685 41.8304	0.0000 7.3041 46.7059	0.0000 7.3041 60.7100	0.0000 7.0685 78.8563	0.0000 7.3041 103.4638	0.0000 7.0685 116.8621	0.0000 7.3041 128.7322	(231)
Electricity generated by PVs (Appendix M) (negative quant (233a)m -155.5531 -219.6397 -315.7679 -354.4734		-354.1375	-349.0761	-329.9947	-296.4940	-250.3656	-170.8869	-134.3886	(233a)
Electricity generated by wind turbines (Appendix M) (nego (234a)m 0.0000 0.0000 0.0000 0.0000		ity)	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	
Electricity generated by hydro-electric generators (Apper (235a)m 0.0000 0.0000 0.0000 0.0000	ndix M) (ne	gative quant		0.0000	0.0000	0.0000	0.0000	0.0000	
Electricity used or net electricity generated by micro-Cl	HP (Appendi:	k N) (negati			0.0000	0.0000	0.0000	0.0000	
Electricity generated by PVs (Appendix M) (negative quant	tity)								
(233b)m -86.5226 -182.2850 -363.1416 -546.9107 Electricity generated by wind turbines (Appendix M) (nego	ative quant:	ity)					-115.8542	-68.4515	
Electricity generated by hydro-electric generators (Appen		gative quant		0.0000	0.0000	0.0000	0.0000	0.0000	
(235b)m 0.0000 0.0000 0.0000 0.0000 Electricity used or net electricity generated by micro-Cl		k N) (negati			0.0000	0.0000	0.0000	0.0000	
(235d)m 0.0000 0.0000 0.0000 0.0000 Annual totals kWh/year	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	(235d)
Space heating fuel - main system 1 Space heating fuel - main system 2								42431.1309 0.0000	
Space heating fuel - secondary Efficiency of water heater								0.0000 79.8000	
Water heating fuel used Space cooling fuel								3664.6750 0.0000	
Electricity for pumps and fans:								0.0000	(221)
Total electricity for the above, kWh/year Electricity for lighting (calculated in Appendix L)	od 0)							86.0000 1010.8482	
Energy saving/generation technologies (Appendices M , N as PV generation Wind generation	14 Q)							-8171.8495	
Wind generation Hydro-electric generation (Appendix N) Electricity generated - Micro CHP (Appendix N)								0.0000 0.0000 0.0000	(235a)
Appendix Q - special features Energy saved or generated								-0.0000	
Energy used Total delivered energy for all uses								0.0000 39020.8047	
12a. Carbon dioxide emissions - Individual heating system	ns includin	g micro-CHP							
				Energy kWh/year		ion factor	,	Emissions	
Space heating - main system 1				42431.1309		0.2100		8910.5375	(261)
Total CO2 associated with community systems Water heating (other fuel)				3664.6750		0.2100		0.0000 769.5818	(264)
Space and water heating Pumps, fans and electric keep-hot				86.0000		0.1387		9680.1193 11.9293	(267)
Energy for lighting				1010.8482		0.1443		145.8966	(268)
Energy saving/generation technologies									

SAP 10 Online 2.13.2 Page 7 of 8

PV Unit electricity used in dwelling PV Unit electricity exported Total Total CO2, kg/year EPC Target Carbon Dioxide Emission Rate (TER) -3311.6782 -4860.1713 -445.9132 -611.3600 -1057.2732 (269) 8780.6720 (272) 7.6400 (273)

13a. Primary energy - Individual heating systems including micro-CHP				
Space heating - main system 1 Total CO2 associated with community systems Water heating (other fuel) Space and water heating Pumps, fans and electric keep-hot Energy for lighting	Energy Prin kWh/year 42431.1309 3664.6750 86.0000 1010.8482	nary energy factor kg CO2/kWh 1.1300 1.1300 1.5128 1.5338	Primary energy kWh/year 47947.1780 (27 0.0000 (47 4141.0828 (27 52088.2608 (27 130.1008 (28 1550.4728 (28	73) 78) 79) 31)
Energy saving/generation technologies PV Unit electricity used in dwelling PV Unit electricity exported Total Total Primary energy kWh/year Target Primary Energy Rate (TPER)	-3311.6782 -4860.1713	1.4976 0.4617	-4959.7125 -2244.0750 -7203.7875 (28 46565.0468 (28 40.5300 (28	36)

SAP 10 Online 2.13.2 Page 8 of 8