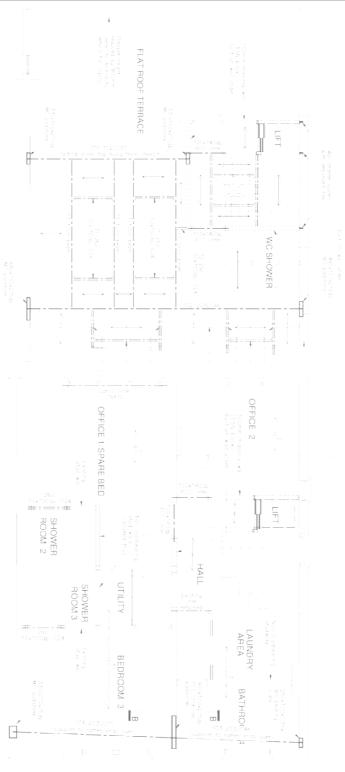


28 Parliament Hill

London Borough of Camden


NW3 2TN

Structural Design Package

November 2023

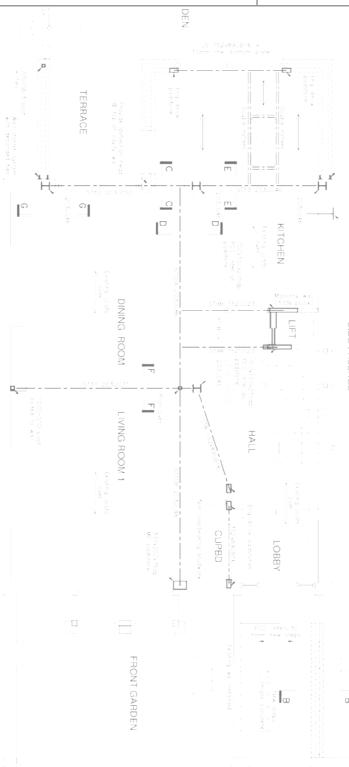
20230153

	Project 28 Parliament Hill		Job Ref. 20230153	
Gr	Drawing Ref.	Calculations by AS	Checked by	Sheet
	Part of Structure Steel IDs -Roof/	3rd floor level	Sep-23	

	Project 28 Parliament Hill			Job Ref. 20230153	
G-		Drawing Ref.	Calculations by AS	Checked by	Sheet
		Part of Structure Roof/3rd floor steel beams read	rtions	Date Sep-23	

Superstructure design has been undertaken by HLS Structural Engineers LTD. For the purpose of the lower ground floor design, GSE has used HLS's design and steel beam reactions, as follows:

Roof/3rd floor steel beams reactions:


ST1 (roof)		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	11.1	13.7
Imposed	4.2	6.1

ST2 (roof)		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	19.2	16.6
Imposed	10.6	8.2

ST3 (3rd floor)		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	5.1	5.1
Imposed	6	6

ST4 (3rd floor)		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	14	14
Imposed	17	17

	Project 28 Parliament Hill		Job Ref. 20230153	
G	Drawing Ref.	Calculations by AS	Checked by	Sheet
	Part of Structure Steel IDs - First	floor level	Sep-23	

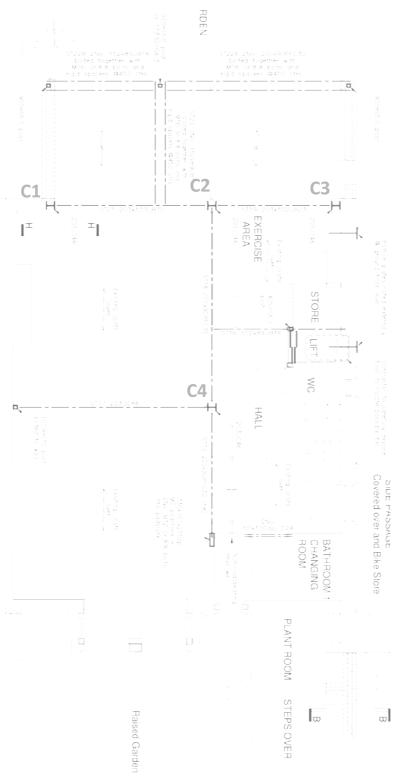
	Project 28 Parliament Hill			Job Ref. 20230153	
G _r -		Drawing Ref.	Calculations by	Checked by	Sheet
		Part of Structure First floor steel beams reacti	ons	Date Sep-23	

Superstructure design has been undertaken by HLS Structural Engineers LTD. For the purpose of the lower ground floor design, GSE has used HLS's design and steel beam reactions, as follows:

First floor steel beams reactions:

ST8		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	2.9	2.9
Imposed	6.9	6.9

ST10A		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	62.3	80.2
Imposed	5.7	12.3


ST10B		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	17.5	18.8
Imposed	7.8	8.3

ST11		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	52	134.2
Imposed	44.2	61.1

ST12		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	75.6	127
Imposed	19.8	24.5

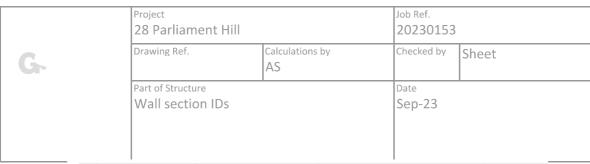
ST13		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	70.2	70.2
Imposed	11.8	11.8

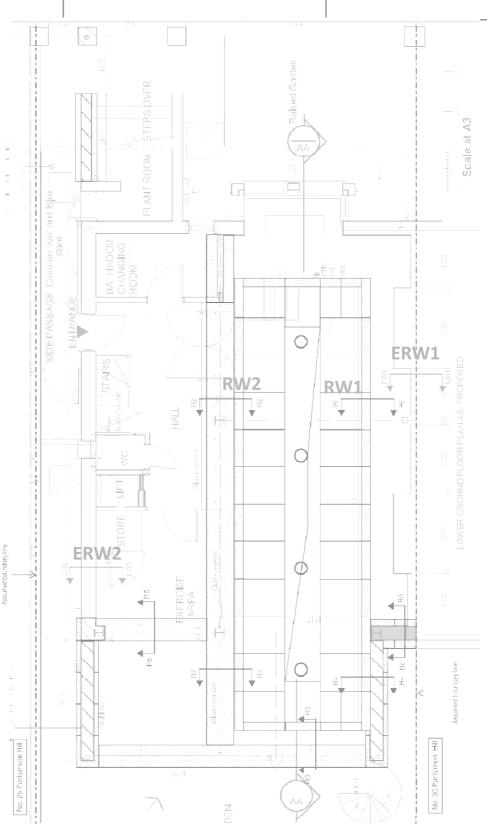
	Project 28 Parliament Hill		Job Ref. 20230153	}
G _r	Drawing Ref.	Calculations by AS	Checked by	Sheet
	Part of Structure Steel IDs - Groun	nd floor level	Sep-23	

		Project 28 Parliament Hill		Job Ref. 20230153	
G _r -		Drawing Ref.	Calculations by AS	Checked by	Sheet
		Part of Structure Ground floor steel beams react	ions	Date Sep-23	

Superstructure design has been undertaken by HLS Structural Engineers LTD. For the purpose of the lower ground floor design, GSE has used HLS's design and steel beam reactions, as follows:

Ground floor steel beams reactions:


ST15		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	2.5	2.5
Imposed	3.7	3.7


ST17		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	7.4	7.4
Imposed	15.6	15.6

ST18		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	2.5	2.5
Imposed	3.7	3.7

ST19		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	3	3
Imposed	6.6	6.6

ST21		
Reactions (unfactored):	Vertical (LHS) [kN]	Vertical (RHS) [kN]
Dead	15.8	19.7
Imposed	10.8	10.3

	Project 28 Parliament F	Project 28 Parliament Hill		Job Ref. 20230153	
G. CILLIN STRUCTUR	Drawing Ref.	Calculations by AS	Checked by	Sheet	
	Part of Structure Retaining wall s	ections	Date Sep-23		

RW1/RW2

Based on pool spec: 1.4 m Finishes: 0.2 m

Retained height = 1.6 m

ERW1/ERW2

Based on underpinning info: 3 m

Retained height = 3 m

Ground conditions: refer to existing borehole logs until receipt of SI report

"stiff, sandy, very silty clay"

Assumed safe bearing pressure: 95 kPa *Based on AVZ SI report

Party wall thickness assmptions (PARTY WALL WITH No.30):

LGF 440mm GF+1st+2nd+3rd 330mm

Party wall thickness assmptions (GARDEN WALL):

LGF+GF+1st+2nd 330mm 3rd 215mm

Assumption: Joists @No..30 Parliament Hill assumed to be spanning front to back, same as the existing joists @No.28 Parliament Hill.

	,		Job Ref. 20230153	
G STRUCTURAL THIS NOTING	Drawing Ref.	Calculations by	Checked by	Sheet
	Part of Structure ERW1 (Party wal	l with No.30 Parliament	Hill)	Date Sep-23

The existing retaining wall will be checked for the temporary condition, during the excvataion of the pool.

• Case 1 – Minimum vertical forces and maximum horizontal forces: This is the most onerous case for bearing pressures on the toe and overturning. For these the live loads will be removed.

Assumptions:

- Total retained height 3000mm
- Accidental water level not considered for the tempoary condition
- Surcharge of 5kN/m2 has been taken
- 150Pa safe bearing pressure
- it is assumed that the floor joists span front to back of the property

Ltoe = 0 mLheel = 0 m

113.85

Loading (w)

Dead Load (G_k) :		kN/m^2	m	kN/m
Masonry 440mm (assumed)-LGF		9.9	2.85	28.22
Masonry 330mm (assumed) - GF+1st+2nd+3rd		7.4	12.7	93.98
Beams ST1+ST2 Reactions (roof)	30.3		10.3	2.94
Beam ST4 Reaction (3rd floor)	14		10.3	1.36
TOTAL LC1				126.50

Live Load (Q_k) :			kN/m ²	m	kN/m
	surcharge considered		10.00		
	Beams ST1+ST2 Reactions (roof)	14.8		10.3	1.44
	Beam ST4 Reaction (3rd floor)	17		10.3	1.65

TOTAL LC2

TOTAL LC1	3.087
TOTAL LC2	0.00

	Project 28 Parliament Hill		Job Ref. #REF!	
G CRLIN STRUCTURAL ING NUMBER	Drawing Ref.	Calculations by	Checked by	Sheet
	Part of Structure ERW2 (Garden wall)			Date Sep-23

No calcs undertaken for this wall at this point

Assumptions:

- Total retained height 3000mm
- it is assumed that the floor joists span front to back of the property

Ltoe = 0 mLheel = 0 m

Loading (w)

Dead Load (G_k) :		kN/m ²	m	kN/m
Masonry 330mm (assumed)-LGF+GF+1st+2nd		7.4	12	88.80
Masonry 215mm - 3rd		5.3	3	15.90
Beam ST2 Reactions (roof)	16.6		10.3	1.61
Beam ST4 Reaction (3rd floor)	5.1		5	1.02
ST13+ST19 / Column 3 Raction (LGF)	73.2		6	12.20
TOTAL IC1				119 53

TOTAL LC2 107.58

Live Load (Q_k) :			kN/m ²	m	kN/m
	surcharge considered		10.00		
	Beam ST2 Reactions (roof)	8.2		10.3	0.80
	Beam ST4 Reaction (3rd floor)	6		10.3	0.58
	ST13+ST19 / Column 3 Raction (LGF)	18.4		6	3.07

TOTAL LC1	4.445
TOTAL LC2	0.00

	Project 28 Parliament Hill		Job Ref. 20230153	
G CREEK STRUCTURAL FING NOTHING	Drawing Ref.	Calculations by	Checked by	Sheet
	Part of Structure Retaining wall R-2		,	Date Sep-23

h = 1.6 m

The retaining walls will be designed for one load case:

- Case 1 Maximum vertical forces and minimum horizontal forces: This is the most onerous case for bearing pressures on the heel;
- Case 2 Minimum vertical forces and maximum horizontal forces: This is the most onerous case for bearing pressures on the toe and overturning. For these the live loads will be removed.

Assumptions:

- Total retained height 1600mm
- Accidental water level assumed at 1mBGL
- Surcharge of 5kN/m2 has been considered for the area underneath existing floor
- 125Pa safe bearing pressure

Ltoe = 1.6 m Lheel = m

Loading (w)

Dead Load (G_k) :		kN/m^2	m	kN/m
	No vertical load considered			
	TOTAL LC1			0.00
	TOTAL LC2			0.00
Live Load (Q_k) :		kN/m ²	m	kN/m
	surcharge considered	10.00		
	No vertical load considered			
				1
	TOTAL LC1			0.000
	TOTAL LC1			0.000
	TOTAL LC2			0.00

	Project 28 Parliament Hil	I	Job Ref. 20230153	3
G _r -	Drawing Ref.	Calculations by	Checked by	Sheet
	Part of Structure Existing underpin check (Section R2	with new colum load - bearing)	ng pressure	Date Sep-23

Assumptions:

125Pa safe bearing pressure

Thickness of existing underpin assumed as 440mm

Loading (w)

	kN/m ²	m	kN/m
222.4		8	27.80
149.5		8	18.69
	10.6	3	31.68
	·		78.17
			70.35
	-	222.4 149.5	222.4 8 149.5 8

Live Load (Q_k) :		kN/m^2	m	kN/m
ST13;ST19;ST12;ST21;ST18 - Column 2 Reaction (LGF)	56.9		8	7.11
ST17;ST15;ST18;ST11;ST8 - Column 4 Reaction (LGF)	91		8	11.38
TOTAL LC1				10 400

TOTAL LC1	18.488
TOTAL LC2	0.00

Bearing pressure/m' = 219.6705 kPa existing width of underpin = 0.44

Bearing pressure/m' = 130.6149 kPa new width of underpin = 0.74

	Project 28 Parliament Hill		Job Ref. #REF!		
G CRLIN STRUCTURAL INGNITRING	Drawing Ref.	Calculations by AS	Checked by	Sheet	
		Part of Structure Existing underpin bearing pressure check in existing condition (Section R2)			

Assumptions:

125Pa safe bearing pressure

Thickness of existing underpin assumed as 440mm

Loadin	g	(w	7)
	\sim		

Dead Load (G_k) :	kN/m ²	m	kN/m
Internal masonry wall (140mm)	2.9	10.35	30.22
Flat roof terrace	1.0	1.95	1.95
Self weight of existing underpin (440mm)	10.6	3	31.68
TOTAL LC1			63.85
TOTAL LC2			57.47
Live Load (Q_k) :	kN/m ²	m	kN/m
Live Load (Q_k) :	kN/m ²	m	kN/m
Live Load (Q_k) :	kN/m²	m	kN/m
Live Load (Q _k):	kN/m ²	m	kN/m
Live Load (Q_k) :	kN/m²	m	kN/m
			kN/m
Live Load (Q_k) :	kN/m ²	m 3	kN/m
Live Load (Q_k) : Flat roof terrace			

TOTAL LC2

Bearing pressure/m'

= 155.3455 kPa

existing width of underpin =

0.44

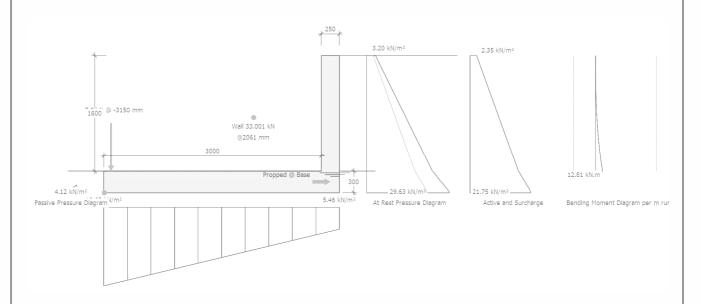
0.00

MasterSeries User Company

To place your details here please copy your custom user title block file to the MasterSeries

application directory.

Job ref : Job Ref
Sheet : Sheet Ref / 4 -


Made By :

Date : 22 Nov 2023/ Version 2015.04

Checked : Approved :

Fax: (028) 9036 5102

MASTERKEY: RETAINING WALL DESIGN TO BS 8002: 1994 AND BS 8110: 1997 RW2 (LC1)-Perm Reinforced Concrete Retaining Wall with Reinforced Base

Summary of Design Data

Notes All dimensions are in mm and all forces are per metre run Material Densities (kN/m³) Back Soil - Dry 20.00, Saturated 22.00, Submerged 12.00

Front Soil - Dry 18.00, Saturated 20.80, Submerged 10.80, Concrete 24.00

Concrete grade fcu 30 N/mm², Permissible tensile stress 0.250 N/mm²

Concrete covers (mm) Wall inner cover 30 mm, Wall outer cover 30 mm, Base cover 50 mm

Reinforcement design fy 500 N/mm² designed to BS 8110: 1997
Surcharge and Water Table Surcharge 5.00 kN/m², Water table level 0 mm

Unplanned excavation depth Front of wall 190 mm

† The Engineer must satisfy him/herself to the reinforcement detailing requirements of the relevant codes of practice

Additional Loads

Wall Propped at Base Level Therefore no sliding check is required

Vertical Line Load 7.8 kN/m @ X -3150 mm and Y 1600 mm - Load type Live

† Dimensions Ties, line loads and partial loads are measured from the inner top edge of the wall

Soil Properties

Bearing pressure Premissable service pressure @ front 95.00 kN/m², @ back 95.00 kN/m²

Back Soil Friction and Cohesion $\phi = Atn(Tan(25)/1.2) = 21.24^{\circ}$

Base Friction and Cohesion $\delta = Atn(0.75xTan(Atn(Tan(25)/1.2))) = 16.25^{\circ}$

Front Soil Friction and Cohesion $\phi = Atn(Tan(30)/1.2) = 25.69^{\circ}$

Loading Cases

Gwall- Wall & Base Self Weight, FvHeel- Vertical Loads over Heel, Pa- Active Earth Pressure,

 $P_{surcharge}$ - Earth pressure from surcharge, P_p - Passive Earth Pressure

Case 1: Geotechnical Design 1.00 Gwall+1.00 FVHeel+1.00 Pa+1.00 Psurcharge+1.00 Pp Case 2: Structural Ultimate Design 1.40 Gwall+1.60 FVHeel+1.00 Pa+1.00 Psurcharge+1.00 Pp

Geotechnical Design

Wall Stability - Virtual Back Pressure

Case 1 Overturning/Stabilising 14,990/68.807 0.218 OK

Wall Sliding - Virtual Back Pressure

 $Fx/(Rx_{Friction} + Rx_{Passive})$ 0.000/(11.891+0.229) 0.000 OK

MasterSeries User Company

To place your details here please copy your custom user title block file to the MasterSeries application directory.

Job ref : Job Ref
Sheet : Sheet Ref / 5 -

Made By :

Date : 22 Nov 2023/ Version 2015.04

Checked : Approved :

Fax: (028) 9036 5102

Prop Reaction Case 2 (Service)	21.6 kN @ Base				
Soil Pressure					
Virtual Back (No uplift)	Max(19.646/95, 5.461/95) kN/m ²	0.207	OK		
Wall Back (No uplift)	Max(19.624/95, 5.483/95) kN/m ²	0.207	OK		
	Structural Design				
At Rest Earth Pressure					
At rest earth pressures magnification	$(1+Sin(\phi)) \times \sqrt{OCR} = (1+Sin(21.24)) \times \sqrt{1}$		1.36		
Prop Reaction					
Maximum Prop Reaction (Ultimate)	29.4 kN @ Base				
Wall Design (Inner Stee	el)				
Critical Section	Critical @ 0 mm from base, Case 2				
Steel Provided (Cover)	Main H16@150 (30 mm) Dist. H12@175 (46 mm)	1340 mm ²	OK		
Compression Steel Provided (Cover) Leverarm z=fn(d,b,As,fy,Fcu)	Main H12@250 (30 mm) Dist. H12@175 (42 mm) 212 mm, 1000 mm, 1340 mm ² , 500 N/mm ² , 30.0 N/mm ²	452 mm² 190 mm			
Mr=fn(above,As',d',x,x/d)	452 mm ² , 36 mm, 48 mm, 0.23	110.9 kN.m			
Moment Capacity Check (M/Mr)	M 12.8 kN.m, Mr 110.9 kN.m	0.115	OK		
Shear Capacity Check	F 21.4 kN, vc 0.676 N/mm ² , Fvr 143.2 kN	0.15	OK		
Base Top Steel Design					
Steel Provided (Cover)	Main H16@150 (50 mm) Dist. H12@175 (66 mm)	1340 mm ²	OK		
Compression Steel Provided (Cover)	Main H12@150 (50 mm) Dist. H12@175 (62 mm)	754 mm ²			
Leverarm z=fn(d,b,As,fy,Fcu)	242 mm, 1000 mm, 1340 mm ² , 500 N/mm ² , 30 N/mm ²	220 mm			
Mr=fn(above,As',d',x,x/d) Moment Capacity Check (M/Mr)	754 mm², 56 mm, 48 mm, 0.20 M 3,3 kN,m, Mr 128,4 kN,m	128.4 kN.m 0.025	OK		
Shear Capacity Check	F 9.7 kN, vc 0.625 N/mm ² , Fvr 151.3 kN	0.025	OK		
Base Bottom Steel Design					
Steel Provided (Cover)	Main H12@150 (50 mm) Dist. H12@175 (62 mm)	754 mm ²	OK		
Compression Steel Provided (Cover)	Main H16@150 (50 mm) Dist. H12@175 (66 mm)	1340 mm ²			
Leverarm z=fn(d,b,As,fy,Fcu)	244 mm, 1000 mm, 754 mm ² , 500 N/mm ² , 30 N/mm ²	232 mm			
Mr=fn(above,As',d',x,x/d)	1340 mm², 58 mm, 27 mm, 0.11	76.0 kN.m	01/		
Moment Capacity Check (M/Mr)	M 18.6 kN.m, Mr 76.0 kN.m F 14.1 kN, vc 0.514 N/mm², Fvr 125.4 kN	0.245 0.11	OK OK		
Shear Capacity Check	1 17.1 KIV, VC 0.514 IV/IIIII1", FVI 125.4 KIV	0.11	UK		