

Newark Road Peterborough PE1 5UA Tel: 01733 566566

GROUND INVESTIGATION REPORT

26 & 27 KING'S MEWS

LONDON WC1

Report Reference No. C13870A

On behalf of:-

1156 Limited 27 King's Mews London WC1N 2JB

September 2023

1156 LIMITED

DCL CONSULTING ENGINEERS LIMITED

REPORT ON A GROUND INVESTIGATION

<u>AT</u>

26 & 27 KING'S MEWS

LONDON WC1

Report Reference No. C13870A

September 2023

INTRODUCTION

1156 Limited, the client, intends to remodel the existing adjacent commercial buildings, Nos.26 & 27 King's Mews, London WC1. The proposed redevelopment will include the construction of a 3.50m deep basement beneath the footprint of the existing No. 26.

Ground Engineering Limited was instructed by the client to review ground investigations undertaken within and adjacent the site, by Ground Engineering Limited and within other reports in the public realm, and produce a ground investigation report under the direction of DCL Consulting Engineers Limited. This report provides comment on the nature and geotechnical properties of the underlying soils in relation to foundation/basement design and construction, and technical information to support the planning application/basement impact assessment (BIA) for the proposed basement beneath No.26, as required by the London Borough of Camden Planning Guidance 'Basements' document (2021).

This review was also informed by a desk study provided by the client (Ref. MES/2309/DCL004, September 2023).

LOCATION, TOPOGRAPHY, GEOLOGY AND HYDROGEOLOGY OF THE SITE

Location/Description

Nos.26 & 27 King's Mews are situated on the eastern side of the road, some 35m north of its junction with Theobald's Road, and 25m west of Gray's Inn Road, within the Bloomsbury district of the London Borough of Camden, London WC1. The site is centred at approximate National Grid Reference TQ 30940 81998.

The approximately 14m long and 12m wide rectangular site extends eastwards from its frontage on King's Mews roadway. At the time of the investigation the adjoining pair of twostorey (No.26) and four-storey with basement (No.27), brick buildings occupied the whole of the plot.

The plot was bounded to the north and south by Nos.25 & 28 King's Mews, respectively, and to the east by Nos.1 to 16 The Lincolns.

The site and immediate surrounding area was devoid of vegetation.

Topography

The site stands at an approximate elevation of 20.5mOD on locally gently northward and eastward falling ground, some 1.25km north of the eastward flowing River Thames.

Geology

The 1936 geological map for the area at 1:10,560 scale is based on the 1920 Ordnance Survey London Sheet V SW and shows the site to be covered by Taplow Gravel and underlain by the solid geology of the London Clay. This map also shows the culverted course of the River Fleet, flowing southwards, some 625m east of the site.

The 2006 geological map for the area at 1:50,000 scale, Sheet 256, also shows the site to be covered by the renamed superficial Lynch Hill Gravel Member and underlain by the solid geology of the London Clay Formation.

Well records on the 1936 geological map indicate that the surface cover of made ground and superficial deposits are together about 5m thick beneath this part of London.

Previous ground investigations adjacent the site in Nos.25 and 28 King's Mews, confirmed the presence of 3.60m to 4.00m of made ground, underlain by sand and gravel, and then the London Clay at 5.10m to 6.00m below ground level. The latter was found to at least 25m depth, and groundwater was recorded at about 4.00m below ground level.

Hydrogeology

The site is designated by the Environment Agency (EA) as being underlain by a Secondary (A) Aquifer, the Lynch Hill Gravel, which overlies the Unproductive stratum of the London Clay. Based on the local topography and geology of the site area, the direction of near surface groundwater and surface water flow would be expected to be from west to east, towards the culverted River Fleet.

Well records on the 1936 geological map indicate that the practically impervious Unproductive stratum of the London Clay Formation is 12m to 15m thick beneath this part of London and that the underlying Principal Aquifer of the White Chalk Subgroup lies about 40m below ground level, about -18mOD.

SITE WORK

A single borehole was undertaken at the position depicted on the site plan at the rear of this report. Services information was obtained and referenced in relation to the exploratory hole positions prior to boring/excavation.

The investigation was undertaken following the protocols detailed in British Standards (BS) 'Code of Practice for Site Investigations' (BS5930:2015) and 'Methods of test for soils for engineering purposes' (BS1377:1990).

Borehole

A single borehole (BH A) was undertaken by a restricted access, low headroom cable percussive rig within No. 27 King's Mews on 9th June 2016. The final borehole position was chosen following a scan using a cable avoidance tool (CAT). The concrete floor slab was cored using electrically powered diamond drilling equipment at 250mm diameter, and a starter pit was hand dug to 1.20m depth in order to confirm the absence of buried services.

The borehole was then advanced using weighted claycutter and shell tools, initially working within 150mm diameter casing. Water was added to enable drilling of coarse grained soils. Borehole BH A was completed at the intended depth of 15.00m below ground level.

Standard penetration tests were undertaken in the borehole within made ground and coarse grained soils in order to give an indication of the in-situ relative density/shear strength of the material. The test was made by driving a 50mm diameter solid cone (C) into the soil at the base of the borehole by means of an automatic trip hammer weighing 63.50kg falling freely through 750mm. The penetration resistance was usually determined as the number of blows required to drive the tool the final 300mm of a total penetration of 450mm into the soil ahead of the borehole. Where the full penetration was not achieved the actual penetration and the number of blows were recorded. The results have been tabulated and added to the borehole record.

Undisturbed samples (U) nominally 100mm in diameter were taken in clay. The ends of the samples were capped and sealed to maintain them in as representative condition as possible during transit to the laboratory.

Representative disturbed samples of soil were taken from the boring tools at regular intervals throughout the depth of the borehole and placed in polycarbonate pots/small plastic bags (D samples) and large plastic bags (B samples).

On completion of borehole BH A, a 50mm diameter standpipe was installed to 7.00m below ground level, with a gravel response zone up to 1.00m below ground level. Above the response zone to this installation, the borehole was backfilled with bentonite, whilst the hole beneath the installation was infilled with clean arisings. A protective stopcock cover was concreted into the ground flush with the surface over the top of the installation.

The borehole record gives the descriptions and depths of the various strata encountered, results of the in-situ tests, details of all samples taken, installation details and the groundwater conditions observed during boring, on completion and subsequently in the standpipe. Excess spoil was removed from site and disposed of at a licenced facility.

Gas and Groundwater Monitoring

A single return visit was made on 30th June 2016 in order to monitor methane, carbon dioxide and oxygen gas levels in the borehole standpipe. Ambient pressures and flow rates were recorded together with the depth to groundwater. The water level has been added to the borehole record, whilst the gas/groundwater results are presented following the exploratory hole record.

A sample of groundwater was recovered from the borehole standpipe during the monitoring visit, placed in a plastic bottle, and transported directly to the analysing laboratory.

LABORATORY TESTING

The samples were inspected in the laboratory and assessments of the soil characteristics have been taken into account during preparation of the exploratory hole records. The soil sample descriptions are in accordance with BS5930:2015.

The geotechnical tests were conducted to BS1377:1990 and other industry standards, and the results are presented following the exploratory hole records.

Geotechnical Testing

The particle size distribution of selected samples were obtained by sieve analysis. The results of these tests are given as particle size distribution curves at the end of this report.

Selected test specimens were prepared at full diameter from the undisturbed samples recovered from the borehole. An immediate undrained triaxial compression test was made on each sample at a single cell pressure approximately equivalent to the overburden pressure for that sample's depth. The results have been plotted against depth in Figure 1. The moisture content and bulk densities of these specimens were also determined.

Selected samples of soil were analysed to determine the concentration of soluble sulphates. The pH values were also determined using an electrometric method.

GROUND CONDITIONS

The ground conditions encountered in the borehole were as expected from the known history of the site and geological records with a significant thickness of made ground covering the Lynch Hill Gravel at 3.30m below ground level. This superficial deposit was underlain by the solid geology of the London Clay at 5.90m depth. The latter was found to at least 15.00m depth in the completed BH A. A standing water level was subsequently recorded in the borehole standpipe at 3.04m below ground floor level.

Made Ground

The concrete floor slab was 0.30m thick and was underlain by coarse grained made ground. The latter was generally a very loose, dark brown, slightly clayey, ashy sand and gravel with occasional brick cobbles. The gravel fraction consisted of brick, concrete, ash, flint, mortar, slate and fragments of bone, glass and pottery.

The base of the coarse grained fill was proved at 3.30m below ground level.

Lynch Hill Gravel

The superficial Lynch Hill Gravel was met beneath the made ground at 3.30m and was initially a medium dense, orange brown, silty sand and gravel, with a gravel fraction of angular to sub-rounded flint. Below 4.00m depth the Lynch Hill Gravel became very dense and slightly silty, and this stratum was proved to 5.90m depth in BH A, a recorded thickness of 2.60m, which was consistent with nearby well and borehole records.

London Clay

The solid geology of the London Clay was reached at 5.90m depth and was initially reworked to a stiff, brown, slightly gravelly, silty clay with a gravel fraction of sub-angular to rounded flint. This reworked horizon was 0.50m thick and was followed by a stiff, closely fissured,

grey brown clay with occasional silt partings and rare gravel size pyrite nodules. The London Clay became silty below 10.00m depth, and then below 13.00m below ground level was a very stiff, grey brown, slightly sandy, silty clay with occasional silt and fine sand partings, and rare gravel size pyrite nodules. The London Clay was found to at least 15.00m below ground level where the borehole was completed.

Groundwater

The addition of water to enable boring of the Lynch Hill Gravel from 3.60m to 4.00m depth in BH A will have masked any initial water ingress within this stratum, but water was recorded by the driller as being met at 4.00m and rose to 3.60m in the fifteen minutes before drilling resumed. This water was sealed out of the borehole once the casing entered the underlying London Clay, and the 15.00m deep borehole was 'damp' on completion.

The water level recorded in the 7.00m deep standpipe three weeks after installation was 3.04m below ground level.

<u>COMMENTS ON THE GROUND CONDITIONS IN RELATION</u> TO FOUNDATION DESIGN AND CONSTRUCTION

The investigation found a significant thickness of made ground beneath the existing building (No.26), which is bounded to the north (No.25) and south (No.27) by similar existing basements. Foundations for the new 3.50m deep basement will need to penetrate this made ground to reach the top of the underlying medium dense becoming very dense Lynch Hill Gravel, which was met at 3.30m, a minimum of 2.50m above the interface with the underlying stiff solid geology London Clay. A standpipe water level was recorded at 3.04m below the ground level, above the proposed basement floor level. This water level is considered to reflect the depth of 'perched' groundwater within the superficial Lynch Hill Gravel.

Foundations for the envisaged basement will need to penetrate the made ground and be based within the medium dense becoming very dense Lynch Hill Gravel. Existing shallow foundations will need to be underpinned to the same level as the adjacent basements, which should be feasible using traditional underpinning techniques.

Foundation Depths

The exploratory hole encountered natural ground at 3.30m depth within this site although it may locally be expected to lie at slightly greater depths, as previously found beneath the adjacent sites where up to 4.00m of made ground was encountered.

The underlying Lynch Hill Gravel may be regarded as a non-shrinkable stratum. The top of the high volume change potential London Clay was recorded at 5.90m below street level and so will be well below the depth affected by tree root-induced desiccation.

Foundations will need to be taken down through the made ground and into the top of the medium dense, becoming very dense Lynch Hill Gravel, which was met at 3.30m below ground level within this small site. The 3.50m deep proposed basement floor level should therefore be within the top of this stratum.

Bearing Pressure/Capacity

The construction of a 3.50m deep basement on this site should remove most, if not all, of the made ground as its foundations will reach the underlying sand and gravel at 3.30m depth. With a minimum of 1.90m of sand and gravel remaining between the base of the made ground and the top of the London Clay, the superior bearing properties of the Lynch Hill Gravel can be utilised during the design of strip or pad foundations for the proposed basement walls.

The results of the in-situ standard penetration tests indicate that an allowable bearing pressure of 300kN/m² could be applied on 1.00m wide foundations cast at a basement excavation level of 3.50m on the Lynch Hill Gravel. Such a pressure would not overstress the underlying stiff London Clay.

A bearing pressure of 300kN/m² should be more than sufficient to support the likely foundation pressures for the new structure and for adjacent foundations underpinned to the same depth as the proposed and adjacent existing basements.

Basement

The construction of a 3.50m to 4.00m deep basement will remove the made ground. Foundations for the basement walls just below the new basement floor level would be within the very dense Lynch Hill Gravel and could be designed using the previously detailed bearing parameters.

Alternatively a basement raft foundation could be considered for this structure, although it's design would need to take into account the bearing properties of the underlying London Clay. A conservative net safe bearing capacity of 150kN/m², which incorporates a factor of safety of 3.0, could be used for the design of a 6.00m wide raft foundation at 3.50m below existing ground level.

It is estimated that theoretical base heave at the centre of a 12m long and 6m wide, 3.50m deep unconfined basement excavation would be in the order of 15mm, based on the proposed basement dimensions and typical parameters for the underlying London Clay. However, with a minimum of 1.90m of Lynch Hill Gravel remaining below the proposed underside of the 3.50m to 4.00m deep basement floor slab, little, if any, base heave would be expected following the removal of about $65kN/m^2$ of overburden pressure within the basement, as any heave would dissipate between inter-grain contacts within the Lynch Hill Gravel.

A likely basement raft loading is unknown but if it were the 65kN/m² of removed overburden pressure then no net heave/settlement would be expected. Raft loadings greater than 65kN/m² could result in net settlement, whilst conversely loads lower than 65kN/m² could result in net heave, although as detailed above this is considered unlikely. Net differential heave/settlement will need to be taken into account in the design of the basement floor. The advice of specialists should be sought in this regard.

Excavations/Groundwater

The excavation of the basement to between 3.50m and 4.00m below existing ground floor level will require the construction of close support to its sides, the control of groundwater, and the need to avoid undermining adjacent structures.

The use of mass concrete basement walls, constructed in alternate panels around the perimeter of the basement could provide support, a limited cut-off to 'perched' water and reduce the scale of any dewatering required within the basement excavation.

An alternative would be to use sheet, contiguous or secant piled walls around the perimeter of the basement, although this may well be problematical on this relatively small restricted access site, which already has adjacent basement walls on its northern and southern sides. Piling to a sufficient depth to mobilise adequate passive pressure below the basement level should be feasible on this site.

The excavation of a 3.50m deep basement could then be undertaken within the mass concrete or piled walls, although it should be noted that mass concrete, contiguous and sheet pile lined excavations may not be water tight.

In order to construct the basement beneath this site it will be necessary to provide permanent support to the adjacent structures, some of which are based on deepened strip and underpinned foundations, whilst others are supported by basement walls. This support can either be provided by underpinning these structures to the same depth as the proposed basement prior to basement construction or by constructing piled walls to the excavation that are adequately propped during construction by temporary support and permanently by the basement and ground floors, to prevent movement at the top of the retaining walls.

Such lateral movement would otherwise be accompanied by settlement of the ground behind the basement walls. CIRIA report C760 'Guidance on Embedded Retaining Wall Design' (2017) indicates very small scale horizontal and vertical movements resulting from the construction of a secant piled wall, as does the use of high support stiffness (high propped walls and top down construction) to the basement excavation. Provided that such a very stiff bracing system is used to prevent deflection of the proposed basement walls, and that the neighbouring structures are of robust construction, the anticipated level of structural damage, if any, would fall within Category 1 'very slight' as described in Table 6.4 of the aforementioned CIRIA document.

The advice of specialist groundworks contractors with experience of constructing such basements should be sought, particularly in respect of other potential methods of providing support to the sides of the basement excavation on this small site.

The basement excavation should be inspected on completion to ensure that the condition of the soil complies with that assumed in design. Should pockets of inferior material be present, they should be removed and replaced with well graded hardcore or lean mix concrete. The excavated surface should be protected from deterioration and a blinding layer of concrete used where foundations are not completed without delay.

The recorded standpipe groundwater level of 3.04m would be just above the proposed floor level of 3.50m, and so potential flotation should not be a problem.

As the water level was recorded above the level of the proposed basement it will be necessary to waterproof the basement in order to prevent the ingress of 'perched' water and downward percolating surface water into the completed structure.

Safety precautions should not be neglected especially where personnel are to enter excavations, when close side support will be required in order to maintain excavation stability. All excavations should be undertaken in accordance with CIRIA Report 97 '*Trenching Practice*'. This is especially important on this site as excavations are unlikely to stand unsupported even in the short term.

Care should also be taken to ensure that the proposed retaining walls of the basement are not surcharged with plant and equipment or the stockpiling of materials and excavated soils outside of the basement excavation.

<u>Piled Foundations</u>

In the unlikely event that piled foundations are preferred due to practical or economic considerations related to the construction of the basement and underpinning foundations on this site, the ground conditions are considered suitable for bored or CFA, but not driven piles as the vibrations during installation of driven piles could damage the existing dwelling and adjacent structures. The advice of specialist piling contractors should be sought as to their preferred method of pile installation in these conditions on this restricted access site and their attention drawn to the very dense nature of the Lynch Hill Gravel, and the possible presence of concretionary limestone nodules within the London Clay beneath the site.

Preliminary working loads for a single bored pile may be estimated for design and cost purposes using pile bearing coefficients, which are based on the following assumptions.

1) The ultimate load on a pile would be the sum of the side friction/adhesion acting on the pile shaft together with the end bearing load.

2) The pile bearing properties within the depth of the proposed basement have been ignored.

C13870A

3) The shaft friction of a pile within sand and gravel would be a function of the SPT 'N' values and the overburden pressure. The groundwater level was recorded at about 3.00m depth. End bearing within the very dense Lynch Hill Gravel should not be considered.

4) In the London Clay the shaft adhesion and end bearing would be a function of the lower bound average of the apparent cohesion values determined by triaxial compression strength tests (Figure 1).

5) A factor of safety of at least 2.0 would be used to assess pile working loads. If test loading of selected piles were not practical the factor of safety would be increased to at least 2.5.

Ultimate Pile Bearing Value

kN/m²

Shaft adhesion/friction in ground to about 4m	Ignored
Average shaft adhesion in Lynch Hill Gravel	20
Average shaft adhesion in London Clay to 10m	50
Average shaft adhesion in London Clay, 10m to 15m	60
End bearing in London Clay above 10m	900
End bearing in London Clay at 10m	1125

Item

Using these coefficients it is estimated that a single, 300mm diameter bored pile installed to 10m below ground level would have an anticipated working load of 125kN, with a factor of safety of 2.5. Different pile lengths, or diameters, from those detailed above would give different available working loads, which could be tailored to suit the working loads required.

The design of piled foundations on this site will also need to take into account potential tensile stresses in the piles during basement construction where the net change in load is to be reduced.

A piling specialist should undertake the final design of piles.

Retaining Walls

The walls of the proposed basement will act as retaining walls and will need to be designed accordingly. For a permanent retaining wall analysis effective stress parameters would be appropriate, however, in the absence of effective stress testing on samples from this site, published parameters, previous experience and in-situ test results could be used as a conservative approach.

The design of retaining walls around the basement area may be based on the following stress parameters:

Soil Type	Bulk Density	Effective Shear	Angle of Shearing
	(Mg/m³)	Strength (kPa)	Resistance (degrees)
	γв	c'	φ'
Made Ground	1.80	0	28
Lynch Hill Gravel	2.10	0	36
London Clay	2.00	0-2	22

Buried Concrete

Sulphate analysis of the soil samples tested gave results in Design Sulphate Classes DS-1, DS-2 and DS-3 of the BRE Special Digest 1, Table C2 (2005) presented in Appendix 1. The pH results were between 6.7 and 7.4 and so slightly acidic to alkaline. The highest DS-3 results were obtained within the made ground.

The London Clay is listed in this publication as being a stratum that may contain sulphides, such as pyrite, hence oxidation due to disturbance during the excavation of foundations may increase the total potential sulphate content. Visual evidence of pyrite was recorded within the London Clay beneath this site. It should be noted that the use of piled foundations would minimise disturbance of the ground and consequently reduce the potential for the oxidation of any pyritic clay. Pile arisings should not be re-used and placed against foundations. Using the sulphate and pH results an Aggressive Chemical Environment for Concrete (ACEC) Class of AC-3 would be considered appropriate for buried concrete beneath this site as detailed in the previously cited BRE document.

Slope Stability

The ground within which the level plot is located slopes down gently to the north/north-east and falls from 22.7mOD near the southern end of the parallel John Street to 19.9mOD near the junction of Gray's Inn Road and Northington Street, 100m distant. This is a slope angle of less than 1 degree and hence this slope is not marked on Figure 16 of the London Borough of Camden 'Guidance for subterranean development' (2010), which indicates slopes of greater than 7 degrees.

There is no evidence of historical slope instability, nor would it be expected based on the topography of the immediate surrounding area.

On this site it is considered unlikely that the proposed basement development will induce slope instability.

Other Issues

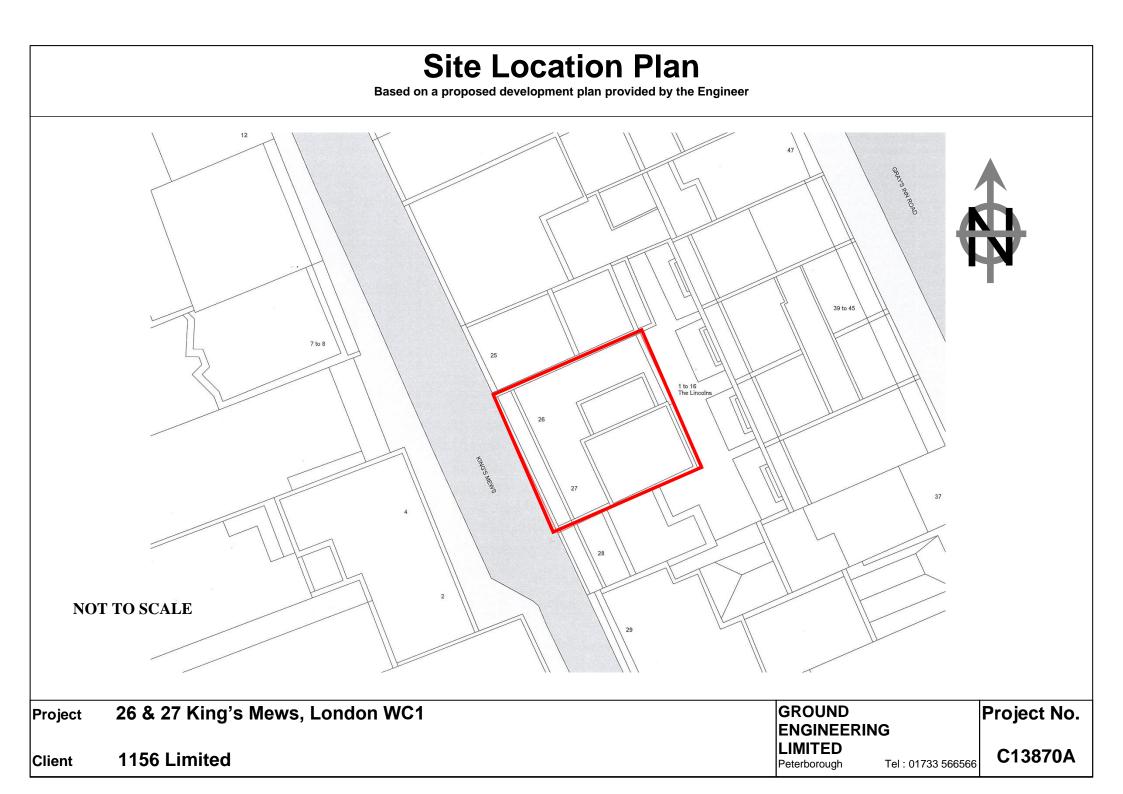
The basement development beneath this site would only be considered likely to affect the drainage system of the site itself. However, drainage and sewerage records for the surrounding buildings will need to be referenced, if available, or perhaps surveyed to confirm that the site does not share a communal drainage system that runs beneath the site.

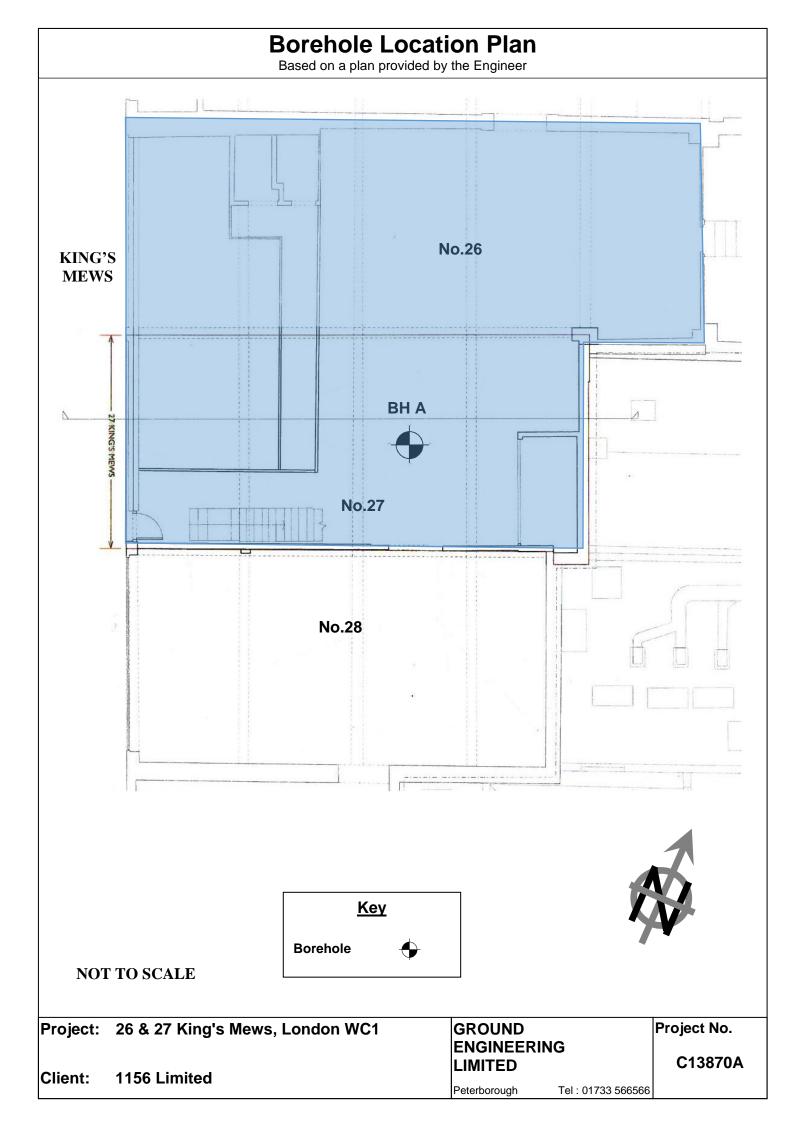
The flow of surface water within the surrounding area, from south to north/northeast, should not be changed by the proposed basement on this small site.

As previously described, 'perched' groundwater was recorded within the basal part of the made ground beneath this site at 3.04m below ground level. The proposed 3.50m to 4.00m basement excavation depth therefore does extend below the 'perched' groundwater level. However, little displacement of groundwater will take place by its exclusion from beneath the area of the proposed basement and footings, so little or no rise would be expected in the level at which groundwater currently stands adjacent to the site.

The orientation of the small proposed basement, when considered together with the adjacent existing basements to the immediate north and south of the site, would be across the likely direction of near surface groundwater flow from south to north-north-east on this very gently sloping ground. However, as the proposed 3.50m deep basement does not extend greatly below the recorded 'perched' groundwater level, it is considered that the drainage path will not be substantially increased.

SOIL GAS MONITORING RESULTS


A single return visit to site recorded concentrations of landfill type gasses (methane, carbon dioxide and oxygen), in the BH A standpipe installation. The results are presented to the rear of the exploratory hole record. The recorded concentration of methane was less than 0.1%. The carbon dioxide level was 3.1%. The recorded oxygen concentration within the standpipe was slightly depleted when compared to atmospheric conditions. The in-situ measurement confirmed a gas emission flow rate of <0.11/hr.


Assuming a 'worst case' positive flow rate of 0.11/hr, the carbon dioxide result gives a Gas Screening Value (GSV) of 0.00311/hr. This GSV falls within Characteristic Situation 1 as defined by BS8485:2015+A1:2019 'Code of practice for the design of protective measures for methane and carbon dioxide ground gases for new buildings', and so no special precautions are required to protect the proposed redevelopment from ingress of soil gases.

GROUND ENGINEERING LIMITED

<u>S. J. FLEMING</u> M.Sc., M.C.S.M., C.Geol., F.G.S., <u>Director</u>

<u>J. E. M. DAVIES</u> B.Sc.(Hons.), M.Sc., C.Geol., F.G.S., <u>Associate Director</u>

GROUNI ENGINE		NG	Site:	26 &				IEWS, LONDO				В	oreho BHA	
I M I el: 01733-566566 vww.groundengine	Τŀ	E D	Date: 09/	/06/16	ŀ	Hole S ⁻	ize: 1	50mm dia to 15.	OOm			Ground Level:		
Samples and in Depth m	-situ Te Type	ests Blows	(Date) Casing	Inst.				Description of	of Strata			Legend	Depth m	O.[Leve m
				<u>اللہ</u>	╈	MADE G	ROUND	- CONCRETE.			2017-07-08-07-07-07-07-07-07-07-07-07-07-07-07-07-		0.30	
0.30-1.00	B1					cobble	es. Gra	- Very loose, o AND GRAVEL with wel of brick, o linker and poro	concrete,	n, sligh nal brid ash, fl	itly k int,			
1.20-1.70 1.35-1.65	B2 C	N1			2 × 2 × 2 × 5								XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
2.00-2.50	в3												Š	
2.15-2.45	С	N3	1.50										XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
3.00-3.30 3.04 3.15-3.45 3.30-3.60	B4 W1 C B5	N28	▼s 3.00		*								3.30	
5.50 5.00			1 ♥			Medium Gravel (LYNCH	dense of ar HILL	, orange brown, gular to sub-ro GRAVEL MEMBER)	silty sounded fl	AND AND int.	GRAVEL.	×0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0 •0		
			1 又											
4.20-4.70 4.35-4.54	B6 C	50*	4.20		1 0 0	GRAVEL	. Grav	orange brown, s el of angular t	o rounde	d flint.				
					°4							0.0.0	•	
5.00-5.50	B7	5 O.t.	F 00		-	(LYNCH	HILL	GRAVEL MEMBER)				0.00	•	
5.15-5.41	С	50*	5.00									0.0.0		
5.90-6.20	в8				<u>`</u> +	04:66	1	. 1				10 0	- 5.70	
6.20-6.60	U1	60	6.10		\$	of sub	-andul	, slightly grav ar to rounded f NDON CLAY)	lint.	LTY LLAY	. Gravel	× °×	6.40	
6.60	D1					Stiff,	close	ly fissured, gr ilt partings ar	ey brown	CLAY wi	th		-	
7.00-7.45	U2	55	6.10	BENEATH	ź	occasi pyrite	onal s nodul	ilt partings är es.	nd rare g	ravel si	ze		_	
7.45	D2			BENEATH	X									
8.00	D3			BENEATH		(LONDO	N CLAY	FORMATION)						
8.50-8.95	U3	50	6.10	BENEATH										
0.50-0.75	دں	0	5.10		8							Ì		
8.95	D4			BENEATH								K		
				BENEATH	X								-	
9.50	D5			NISTALLATION									-	
10.00-10.45	U4	70	6.10	BENEATH INSTALLATION	×								10.00	
				g_diamo	nd	drilli	ng equ	ipment		-			Projec	ct No
EMARKS 1. F 2. E 3. W 4. B 5. G	orehol	e case	pit from rom 3.60 d to 6.1 g standp	Om dept	h								1387 Scale	'0A Page
		and the states of the states of		وروار المراجع والمراجع									1:50	1/2
EY) - Disturbed San			Blowsfor ven penetr				G	oundwater Strike Depth m	S		Grou	undwater (Observatio Depth m	ons
3 - Bulk Sample J - Undisturbed S	. E	S - Envir	onmental	Sample	No	Struck	Rose to		Cased	Sealed	Date	Hole	Casing	Wat
V - Undisturbed S V - Water Sample C - SPT Spoon/Co Z Water Strike	ne J	Cohe Cohe	snear re sion () kF I on compl I casing w	a etion	1	4.00	3.60	medium	4.00	6.10	09/06/16 30/06/16	15.00 7.00	6.10 1.00	damp 3.04

GROUN ENGINE		NG	Site:	26 & 2	7 KING'S MEWS, LONDON WC1	BC	DREHO	
I M I Fel: 01733-566566 www.groundengin	ТЕ	D	Date: 09/	/06/16	Hole Size: 150mm dia to 15.00m	Ground Level:		
Samples and ir Depth m	T	sts Blows	(Date) Casing	Inst.	Description of Strata	Legend	Depth	0.0 Leve
10.45	Type D6	DIOWS		BENEATH INSTALLATION BENEATH INSTALLATION	Stiff, closely fissured, grey brown, silty CLAY with rare gravel size pyrite nodules.	× × × × × ×	 10.00	m
11.00 11.50-11.95	D7 U5	70	6.10	BENEATH INSTALLATION BENEATH INSTALLATION		× × × × ×		
11.95	D8			BENEATH	(LONDON CLAY FORMATION)	× × × × × ×		
12.50 13.00-13.40	D9 U6	80	6.10	BENEATH		× × × × ×	13.00	
13.40	D10			BENEATH INSTALLATION BENEATH INSTALLATION	Very stiff, grey brown, slightly sandy, silty CLAY with occasional silt and fine sand partings, and rare gravel size pyrite nodules.			
14.00 14.50-14.95	D11	75	6.10	BENEATH INSTALLATION BENEATH INSTALLATION	(LONDON CLAY FORMATION)	× · · · · · · · · · · · · · · · · · · ·		
15.00	D12	()	0.10	BENEATH		×.···· ×····×····	15.00	
EMARKS							Projec 1387 Scale 1:50	
Y - Disturbed San			Blowsfor ven penetr		Groundwater Strikes Grou Depth m	ndwater O		
 Bisturbed Sample Bulk Sample Undisturbed S Water Sample SPT Spoon/Co Water Strike Water Rise 	Estample \ e one c v	S - Envir / - Vane Cohe c Leve w Leve	onmental S	Sample N st a etion ithdrawn	No Struck Rose to Rate Cased Sealed Date		Casing	Wate

GROUND ENGINEERING LIMITED

Results of Standard/Cone Penetration Tests

C13870A - 26 & 27 King's Mews, London WC1

BH.No.	Depth (m)	Casing Depth (m)	Depth to Water (m)	Type of Test *	Seating Drive Blows /Penetration (mm)	Test Drive: 300mm. Blows for each successive 75mm penetration	N Value	Extra- polated N Value
BHA	1.20-1.65 2.00-2.45 3.00-3.45 4.20-4.54 5.00-5.41	1.50 3.00 4.20 5.00	3.60 4.30	ССССС	0 / 150 1 / 150 12 / 150 16 / 150 10 / 150	1 0 0 1 1 10 7 6 5 5 15 20 15/35 12 12 18 8/30	1 3 28	

* C denotes test using a solid cone S denotes test using a split barrel sampler

Groundwater/Gas Monitoring Record

GROUND ENGINEERING LIMITED

Site: 26 & 27 King's Mews, London WC1

Report Ref: C13870A

Date	Borehole	Meth (% \			Dioxide v/v)		vgen v/v)	Flow Rate (I/hr)	Atmosph. Pressure (mb)	Depth of Well (m)	Depth to Groundwater (m)
		Peak	Steady	Peak	Steady	Min.	Max.				
30/06/16	BH A	<0.1	<0.1	3.1	3.1	16.9	16.9	<0.1	1002	7.00	3.04#

- Water samples recovered.

LABORATORY TEST RESULTS

CONTRACT 26 & 27 KING'S MEWS, LONDON WC1

		D 11		Classi	fication		Dens	sity		Tri	iaxial Compre	ssion			Sulpha	ates (SO ₄)		
ore- ole	Sample	Depth m	Liquid Limit	Plastic Limit	Plasticity Index	Moisture Content	Bulk	Dry	Туре	Principal Stress Difference	Cell Pressure	Shear Strength	Angle of Shear Resistance	So Total %	Aqueous	Water mg/l	рН	Remarks
IA	в2	1.20 -	%	%	%	%	Mg/m ³	Mg/m ³		kPa	kPa	kPa	degrees	% Dry Wt.	Extract mg/l 1539		6.7	
~	52	1.70													757		0.1	
	В4	3.00 - 3.30													2478		7.4	
	в8	5.90 -													337		7.4	
		6.20																
	U1	6.20 -				31	1.96	1.49	Q	183	130	91	0					
		6.60																
	U2	7.00 -				25	2.05	1.64	Q	228	150	114	0					
		7.45																
	U3	8.50 -				31	1.97	1.51	Q	178	180	89	0		710		7.4	
		8.95																
	U4	10.00 -				27	2.01	1.58	Q	262	210	131	0					
	04	10.00 -				21	2.01	0.1	L Q	202	210	151						
	υ5	11.50 - 11.95				23	2.04	1.66	Q	241	240	121	0					
	U6	13.00 -				25	2.08	1.66	Q	398	270	199	0		856		7.1	
		13.40																
	U7	14.50 -				23	2.08	1.70	Q	346	300	173	0					
		14.95																
		STURBED SA			U. – CONSO	LIDATED UN	DRAINED	I	I	Aqueous	Extract	2:1 Wate	r:Soil	I		<u> </u>		1
В	- BULK	JRBED SAMP SAMPLE	LE	Q.		IATE UNDRA	INED											13
W	- WATER	R SAMPLE		Q.	M IMMED	IATE UNDRA	INED MULT	TISTAGE						GR	OU	ND	ENC	GINEERING Tel: 01733-5665

L I M I T E D www.groundengineering.co.uk

Determination of Particle Size Distribution

Newark Road Peterborough t: 01733 566566 f: 01733 315280 e: admin@groundengineering.co.uk

<u>-</u>	Determination of Particle Size I	
	Tested in Accordance with BS 1377-2: 199	0: Clause 9.2
_	Sieved Grading	
Client:	Ground Engineering Ltd	Certificate Number: PL5462-1/1/710-2
Client Address:	Newark Road	Client Reference: C13870
	Peterborough	Lab Job Number: PL5462-1
	PE1 5UA	Date Sampled: Unknown
		Date Received: 16.06.2016
Contact:	Steve Fleming	Date Tested: 06.07.2016
Contact.	Otovo i ioning	Certificate of Sampling: N/A
Site Name:	07 Kingo Mowo	
	27 Kings Mews	Sampling Certificate No.: N/A
Site Address:	London WC1	Sampled By: Client
TEST RESULTS	Laboratory Reference: PL5462-1	/1 Pre-treatment for N/A
	Client Reference: B2	organic material:
Sample Description	 Dark brown slightly clayey SAND and 	I GRAVEL
Material Specification	on: Not Required	Depth Top: 1.20m
Location:	BHA	Depth Base: 1.70m
Source:		Supplier:
	Determination of Particle Size Distribution	
	Determination of Particle Size Distribution	Sieve Analysis
0.002 0.00	06 0.02 0.06 0.20 0.60 2.0 6	20 60 200 1000 Sieve mm %Passing
		90 100
90		90 75 100
		63 100
80		80 50 93
		37.5 93
p 70-		28 82 70 20 76
6 0-		60 <u>10</u> 66
0 70		6.3 59
50		50 5.0 56
Jer c		3.35 53
9 40		40 2.00 49
ati		1.18 46
₽ 30 -		30 0.600 41
บ ้		0.425 37
20		<u> </u>
10		
		0.020
		0.006
- Fine		ledium Coarse Cobble Boulder 0 0.002
Clay Silt	Silt Silt Sand Sand Sand Gravel G	aravel Gravel Cobble Boulder
0.002 0.00	06 0.02 0.06 0.20 0.60 2.0 6	20 60 200 1000
	Nominal Size of Material [mm]	
L		
Comments:		
Approved Signatory:	M Hartnun - Laboratory Manager	Signed

Approved Signatory: M. Hartnup - Laboratory Manager

Signed:

for and on behalf of Ground Engineering Ltd

Date Reported: Form Number: 11.07.2016 Page 1 of 1 GELab/C/709-2 Version 46

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

Determination of Particle Size Distribution

Newark Peterborough Road t: 01733 566566 f: 01733 315280 e: admin@groundengineering.co.uk

<u>-</u>	Peter mination of Particle Size Dist	
	Tested in Accordance with BS 1377-2: 1990: Cla Sieved Grading	ause 9.2
Client:	Ground Engineering Ltd	Certificate Number: PL5462-1/2/710-2
Client Address:	Newark Road	Client Reference: C13870
Client Address.		
	Peterborough	Lab Job Number: PL5462-1
	PE1 5UA	Date Sampled: Unknown
		Date Received: 16.06.2016
Contact:	Steve Fleming	Date Tested: 06.07.2016
Contact.	oteve i leining	
014 N		Certificate of Sampling: N/A
Site Name:	27 Kings Mews	Sampling Certificate No.: N/A
Site Address:	London WC1	Sampled By: Client
TEST RESULTS	Laboratory Reference: PL5462-1/2	Pre-treatment for
	Client Reference: B3	organic material:
Somula Description.		organie material.
Sample Description:	BIOWIT Clayey very gravely SAIND	
Material Specificatio		Depth Top: 2.00m
Location:	BHA	Depth Base: 2.50m
Source:		Supplier:
	Determination of Particle Size Distribution	
	Determination of Particle Size Distribution	Sieve Analysis
0.002 0.00	6 0.02 0.06 0.20 0.60 2.0 6 20	0 60 200 1000 Sieve mm %Passing
100		
		90 100
90		90 75 100
		63 100
80-		<u> </u>
		37.5 100
50 70=		70 28 96
		20 91
as of the second s		14 85
ຍັ 60-		60 10 79
itag		6.3 74
5 0 -		50 5.0 70
Per l		3.35 66
9 40		40 2.00 61
40,		1.18 57
₫ 30 -		30 0.600 51
บี		0.425 46
20-		20 0.212 30
		0.212 00
		0.150 26
10-		
0++++++++		
Clay Silt	Medium Coarse Fine Medium Coarse Fine Medium Silt Sand Sand Sand Gravel Gravel	Coarse Gravel Cobble Boulder 0.002
0.002 0.00	6 0.02 0.06 0.20 0.60 2.0 6 20 Nominal Size of Material [mm]	0 60 200 1000
	· · · · · · · · · · · · · · · · · · ·	

Comments:

Approved Signatory: M. Hartnup - Laboratory Manager Signed:

11.07.2016

for and on behalf of Ground Engineering Ltd

Date Reported: Form Number:

Page 1 of 1 GELab/C/709-2 Version 46

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

Determination of Particle Size Distribution

Newark Road Peterborough t: 01733 566566 f: 01733 315280 e: admin@groundengineering.co.uk

					_							-	_	-					-						_								
						Τe	este	əd i	n A		orda	ance	e w	ith	BS	13	77-	2: 1	99	90: C	lau	ise	9.	2									
												ç	Siev	/ec	Gr	adii	na						-										
Clie	nt.					G	roi	ınd	Fr	nai	nee						.9							0	`rt	ific	oto	Nh	imhor.	PL5462-	1/3/	710-2	
		_I_I								•			y L	iu																	1/0/	110-2	
CIIE	ent A	٩ddr	ess	5.				ark																						C13870			
								rbc		ugi	n														La	ab J	lob	Νι	umber:	PL5462-	1		
						PI	Ε1	5U	IA																	Da	te 🕄	Sa	mpled:	Unknowr	i i		
																										Dat	e F	Rec	eived:	16.06.20	16		
Cor	ntac	t٠				St	łοv	e F	٦	mir	na																			06.07.20			
001	nao	ι.				0	.0 •				'9												<u> </u>		£:~~			-			10		
																													npling:				
		me:						ing														S	an	npl	ing				te No.:				
Site	e Ad	dres	SS:			Lo	<u>onc</u>	don	W	C1	í															5	Sar	npl	ed By:	Client			
TES	ST R	ESU	JLTS	s		La	abo	orat	or	/ R/	efer	rene	ce:			F	PL5	546	2-1	1/3									Pre-tre	eatment for	r	N1/A	
				_							nce					F	34													c material		N/A	
San	nnla	Des	oriu	ntic	.n.	-					laye		٥rv	ar	ave	-													e. gain	e materia	•		
San	npie	Des	scrip	plic	л.				0,001	10	laye	, y v	сту	gr	ave	iiy c		ND.															
••																											_						
		I Sp	ecit	ica	tio	n:				leq	luire	d																		3.00m			
								BF	ΗA																								
<u> </u>	irce	tion: BHA Depth Base: 3.30m ce: Supplier:																															
								٦d	otor	min	natio	n of	Dar	ticl	o Si	70 D	lictr	ibut	ion														
											ano				0.01		1511	ibut	1011	•										Sieve	<u>+ An</u>	alysis	
		0.	.002	0	.006	6	0.02	2	0.0)6	C).20	(0.6	0	2.0)	6	3		20		60)	2	00		1(000	Sieve mm	1	%Passi	ng
	100	[П	ТТ	Ш	11	Т	ТТ					П	Ш	Π	Т			Ш			ΠÍ	PP	A	00 (9	TŶ	Ш	1 00	125		100	
					Ш									Ш					Ш											90		100	
	90.		++	╨	₩		+	₩	┼╫	╟╫		\vdash	┼┼	₩	╢─	+	+	$\left \right \right $	₩		\sim	\vdash	₩	┼┼┼			₩	нн	90	75		100	
					Ш									Ш					Ш		Ί									63		100	
	80-	<u> </u>	\square		Ш		╇	₩	Щ	Ш			$\downarrow \downarrow$	Ш				\square	Ш				Ш	Ш			Ш	Ш	= 80	50		100	
					Ш									Ш																37.5		95	
	7 0ª				Ш				Ш	Ш				Ш					И										₽ 70	28		93	
sing	10	Γ			Ш									Ш					111										10	20		91	
as:	60.				Ш									Ш					Ш											14		82	
Je F	00		\square	++	ĦĦ		\top	Ħ	Ħ			\square	$^{++}$	Ħ		T			ĦT				Ħ				$^{++}$	Ш	6 0	10		76	
Itaç					Ш														Ш											6.3		70	
cer	50		++	╈	₩		+	╈	┼╫			\vdash		Ħ	╫	+		$\left \right $	₩			\vdash	H			\vdash	╈	HH	- 50	5.0		67	
Per					Ш								M						Ш											3.35		64	
ę	40.	┣──	++	┼┼	₩		╋	₩	┽╫┥	┝╫╫╴		\vdash	\mathbb{H}	₩	╢─	+	+	$\left \right \right $	₩	<u> </u>	\vdash	\vdash	₩	╟╫		\vdash	╂╋	HH	40	2.00		60	
lati					Ш														Ш											1.18		56	
Cumulative Percentage Passing	30.	<u> </u>	\square	11	Ш		╇	$\downarrow \downarrow$	Щ	Ш		Д	11	Ш				\square	Ш				Ш	Ш		\square	Ш	Ш	30	0.600		51	
បី					Ш							ľ		Ш					Ш											0.425		44	
	20				Ш				Ш																				- 20	0.300		36	
	201	Γ		П	Ш		Т	Π	TĿ	11			П	Π		Т	Т	Ш	Π			Π	Π	Ш		П	Π	Ш	20	0.212		29	
1																							$\ \ $							0.150		25	_
1	10 [.]	<u>†</u>	$\uparrow \uparrow$	++	\ddagger		+	++	\dagger			\vdash	++	††	11	+			₩			\vdash	Ħ			\vdash	++	$\parallel\parallel$	- 10	0.063	_	16	
1																							$\ \ $							0.020		┣───	
1	0-	╞──	┢┼┥	++	╢╢		+	++	┽╇┥	┟╫╫╴		\vdash	++	₩		+	-	┞┼╀	╢╢				╢	₩		\vdash	╂╋	HH	• •	0.006		┣───	_
1		Clay		Fine Silt	$\ $	Mediur Silt	n	Coars Silt			ine and		edium Sand	ן י	Coars Sand		Fii Gra	ne avel		/ledium Gravel		Coars Grave			obble	6	Boulde	er		0.002			
1		L_		Ш	Ш	Ш	_		Щ				Ш		11			Ш	Ш				Щ	Щ				Щ	J				
1		0.	.002	0	.006	Ó	0.02	2	0.0		Non).20 nina		0.6 2 e c		2.0 Iteri		e mm1			20		60	J	2	200		1(000				
1																	··· •																

Comments:

Approved Signatory: M. Hartnup - Laboratory Manager

Signed:

Date Reported: Form Number:

11.07.2016 Page 1 of 1 GELab/C/709-2 Version 46 for and on behalf of Ground Engineering Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

Determination of Particle Size Distribution

Newark Road Peterborough t: 01733 566566 f: 01733 315280 e: admin@groundengineering.co.uk

							Т	est	ed	in	Ac	:co	rda					-		-		2:	19	90): C	la	us	e 9	9.2	2	_									
Clie Clie		Add	res	ss:			N P	erou ew ete	/ar erb	k F or	Ro ou	ad						G	rad	nın	ıg									C	CI	ien ab J	t R Job	lef N	er Iu	enc mbe	e: er:	PL5462-1/4 C13870 PL5462-1	/710-2	
Cor	ntac	ct:						tev				inę	9															C	Ce	rti		Da [:] [te Dat	Re te	ece Te	eive este	d: d:	Unknown 16.06.2016 06.07.2016 N/A		
Site Site								7 K ond		-			/S														ç					Ce	ertif	ica	ate	e No	э.:	N/A Client		
<u>TES</u> San					tio	n:		abo lier	nt I	Re	fer	en	ce				cl	ay	ey	В	5	546 ID			4 GF	۲A	VE	EL										atment for c material:	N//	A
Mat Loc Sou	atio	n:	ec	ific	at	io	า:			lot sHA		÷qu	ire	d																				ept	h		e:	3.30m 3.60m		
									۵)ete	ərm	ina	tior	n of	f P	arti	icl	e S	ize	Di	str	ibu	tio	n														Sieve A	nalysis	
	100		0.00	2	0.0	006		0.0	2	0	0.06	,	0	.20		0	.60)	2	2.0			6		:	20	_		60		2	00		1	10			Sieve mm	%Pas	sing
	100	Γ	Т	Π	Π			Т	Т	Π	Π	Π				Π	Π				Π		Π	Π			Ń	ÎŤ	ĨĨ	ÌÌ) ()	ÌÌ	TÎ	Т	Π	· 100)	125	10	
	90																Π										1		Ш									90	10	
	90	†—		Ħ	Ħ	Ħ		╈	$^{+}$	Ħ	Ħ	╓				Ħ	Ħ				П	Ħ	Ħ	₶	1	F	П	Ħ	Ħ	III		H	+	Ħ	Ш	90		75	10	
												1					Π												Ш									63 50	10	
	80	+	╈	Ħ	╫	₩		╈	+	Ħ	₩	╓				Ħ	₩				Ħ	H	Ht	1	1	\vdash	Ħ	H	₩			\vdash	╫	₩	Н	⁹ 80		37.5	10	
												1					Π							Ņ					Ш									28	96	
bu	70	+	╈	┼┤	╫	₩	-	╋	┿	₩	₩	╢─			+	╫	₩	╢╴			+	┢╋╋	H	Æ		┢	+	╟	₩	₩		\vdash	╫	╫	╫	70		20	89	
Cumulative Percentage Passing												1					Π						A						Ш									14	81	
Pa	60	+	+	┼┤	╫	╢		+	┿	₩	₩	╟	-	_	+	╢	╫	╢		-			₩	╢		┝	+	₩	₩	₩		\vdash	╢	₩	₩	⁹ 60		10	72	
age												1					Π				ľ								Ш									6.3	64	1
Sent	50		+	H	╢	╢		+	+	₩	₩	╨	_		+	╢	Щ			L	\vdash	╟╟	₩	╨		┝	+		₩	₩		\vdash	++	╫	Ш	[,] 50		5.0	61	1
erc											Ш					¢	1	1											Ш									3.35	57	7
VeF	40	_	+	Ц	Щ	Щ		╇	╇	Щ	Ш	╨				Д	Щ				Н	\square	Ш	₩.		⊢	Н	Щ	Ш	Ш		\vdash		Щ	Щ	40		2.00	54	1
lati											Ш				1	P	Ш												Ш									1.18	51	
nu	30	_		Ц	Щ	Щ		⊥	\perp	Щ	Ш	╨			4	Щ	Щ	1			Ц	Щ	Ш	1			Ц	Щ	Ш	Ш		\square	Ш	Щ	Щ	30		0.600	45	
C												1					Π												Ш									0.425	38	
	20			Ш	Ш	Ш				Ш	Ш	삝				Ш	Ш					Ш	Ш					Ш	Ш	Ш			Ш	Ш	Ш	20		0.300	24	
												1		/			Π												Ш							20		0.212 0.150	14 10	
	10																																			· 10		0.063	7	
	10		Т	Π	Π	Π		Т	Т	П		▛	~		Т	Π	Π	Π			Π	Π	Π	Π		Γ	Π	Π	Π	Ш		Π	П	Π	Π	10		0.020		
	0											1					Π												Ш							~		0.006		
	0		1	Fin	e	TH,	∣ ∕lediu	- 	+ Coa	++ arse	Ħ	H Fin	е		/led	++ ium	ť,	 Coa	rse		Fir	HH ne	Ħ	H Me	dium	+ ,	H Coa	rse	Ħ		hhla		Ħ	Ħ	Ш	• 0		0.002		
Í		Cla	y	Sil	t I		Silt		S	Silt		Sar 	nd		Sar			Sar			Gra				avel		Gra	vel			bble		Bould	ier	\parallel					
		C	0.00	2	0.0	006	;	0.0	2	0).06		0 Iom	.20 nina			.60 e o			2.0 eria			6]			20			60		2	200		1	10	00				
Con	nme	ents:																																						
2011																																								

Approved Signatory: M. Hartnup - Laboratory Manager

Signed:

MAA.

for and on behalf of Ground Engineering Ltd

Date Reported: Form Number: 11.07.2016 Page 1 of 1 GELab/C/709-2 Version 46

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

Determination of Particle Size Distribution

Newark Road Peterborough t: 01733 566566 f: 01733 315280 e: admin@groundengineering.co.uk

																											_					
					Tested in Accordance with BS 1377-2: 1990: Clause 9.2																											
				Sieved Grading																												
Clio	Client:				G	•											Cartificate Number: DI 5/62 1/5/710 2															
Client Address:					Ground Engineering Ltd											Certificate Number: PL5462-1/5/710-2																
					Newark Road												Client Reference: C13870															
							Peterborough												Lab Job Number: PL5462-1													
						P	E1	5L	JA																	Dat	e S	Sar	npled	l: Ur	nknown	
																										Date	e R	ec	eived	1: 16	5.06.2016	
Cor	Contact:				Steve Fleming											Date Received: 16.06.2016																
001	Contact			0	Steve Fleming									Date Tested: 06.07.2016 Certificate of Sampling: N/A																		
						_																										
Site								_			ews	5										S	am	npl	ing				e No.			
Site	Ad	dres	SS:			Lo	onc	dor	۱V	٧C	1															S	am	npl	ed By	/: Cl	lient	
TES	TR	ESU	JLTS	S		La	abo	orat	tor	rv F	Refe	erer	nce	:			ΡL	.546	62-	1/5									Pre-tr	eatr	ment for	
				-						-	enc						B6	-													naterial:	N/A
0		D					ICI					idy (<u>_</u>	۸ <i>\</i> /			ЪО	,											organ		nateriai.	
San	npie	Des	scri	ρτια	on:			Ы	00	VII :	San	uy v	GR	AV																		
										_																						
Mat		-	ecif	ica	tio	n:					quir	red																	h Top			
Loc	atio	n:						Bł	HA	۱.																I			Base		70m	
Sou	rce:																											Su	pplier			
								Ъ			in at i	ion c								-												
								U	ete	2111	nati	on c	лга	artic	ie a	ize	DIS	mbu	itio	n											Sieve Ar	nalysis
		0.	.002	0	.006	6	0.02	2	0.	.06		0.20	0	0.6	50	2	.0		6		20		60		2	00		10	000		Sieve mm	%Passing
	¹⁰⁰ 1	0.	.002	0	.006	3 	0.02	2	0.	.06 	-	0.20	0 	0.6 	50 TTT	2	.0		6		20	2	60 PPF	Î	2 00 (00	न्भ	10 TTT	000 F ¹⁰⁰	;	Sieve mm 125	%Passing 100
	100 -	0.	.002	0	.006	6	0.02	2	0.	.06		0.20		0.0	50	2	.0	Π	6		20	Ĩ	60	Î	20 00 (00		10				
	100- 90-	0.	.002	0	.006		0.02	2	0.	.06		0.20		0.0	50	2	.0		6		20	Ĩ	60		2	00					125	100
		0.	.002	0	.006		0.02	2	0.	.06		0.20		0.6	50	2	.0		6		20	Ĩ	60		20	00		10	100		125 90	100 100
	90.	0.	.002	0	.006		0.02	2	0.	.06		0.20		0.6	50	2	.0		6		20	Ĩ	60		2			10	90		125 90 75	100 100 100
		0.	.002	0	.006		0.02	2	0.	.06		0.20		0.0	50	2	.0		6		20		60					10	100		125 90 75 63	100 100 100 100
	90 . 80-	0.	.002	0	.006		0.02	2	0.	.06		0.20		0.6	50	2	.0		6		20		60						■ 100 ■ 90 ■ 80		125 90 75 63 50	100 100 100 100 100
	90.	0.	.002	0	.006		0.02	2	0.	.06		0.20		0.0	50	2	.0		6		20		60						90		125 90 75 63 50 37.5	100 100 100 100 100 100
	90∎ 80⊧ 70⊧	0.	.002	0	.006		0.02	2	0.	.06		0.20		0.0	50	2	.0		6		20		60						 100 90 80 70 		125 90 75 63 50 37.5 28	100 100 100 100 100 100 88
	90 . 80-	0.	.002	0	.006		0.02	2	0.	.06		0.20		0.0		2	.0		6		20		60						■ 100 ■ 90 ■ 80		125 90 75 63 50 37.5 28 20	100 100 100 100 100 100 88 77
	90∎ 80= 70= 60=	0.	.002	0	.006		0.02	2		.06		0.20		0.0		2	.0		6		20		60						 100 90 80 70 		125 90 75 63 50 37.5 28 20 14 10 6.3	100 100 100 100 100 88 77 66 57 46
	90∎ 80⊧ 70⊧	0.	.002		.006			2		.06		0.20		0.0		2	.0		6		20		60						 100 90 80 70 		125 90 75 63 50 37.5 28 20 14 10	100 100 100 100 100 88 77 66 57
	90∎ 80= 70= 60=	0.	002		.006			2		.06		0.20		0.0		2	.0		6		20								 100 90 80 70 60 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35	100 100 100 100 100 88 77 66 57 46 42 39
	90∎ 80= 70= 60=	0.	.002		.006		0.02	2		.06		0.20		0.0	50	2	.0		6		20		60						 100 90 80 70 60 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00	100 100 100 100 100 88 77 66 57 46 42 39 35
	90∎ 80₌ 70₌ 60₌ 50₌	0.			.006		0.02	2		.06		0.20		0.0	50	2	.0		6		20								 100 90 80 70 60 50 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35	100 100 100 100 100 88 77 66 57 46 42 39
	90 . 80 = 70 = 60 = 40 .	0.					0.02	2		.06		0.20		0.0			.0		6		20								 100 90 80 70 60 50 40 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600	100 100 100 100 100 88 77 66 57 46 42 39 35 31 26
Cumulative Percentage Passing	90∎ 80₌ 70₌ 60₌ 50₌	0.						2		.06		0.20				2	.0		6		20								 100 90 80 70 60 50 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600 0.425	100 100 100 100 100 100 100 66 57 46 42 39 35 31 26 19
	90 - 80 = 70 = 60 = 40 - 30 -	0.						2		.06		0.20				2	.0				20		60						 100 90 80 70 60 50 40 30 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600 0.425 0.300	100 100 100 100 100 100 100 66 57 46 42 39 35 31 26 19 10
	90 . 80 = 70 = 60 = 40 .	0.						2		.06						2	.0				20								 100 90 80 70 60 50 40 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600 0.425 0.300 0.212	100 100 100 100 100 88 77 66 57 46 42 39 35 31 26 19 10 33
	90 - 80 = 70 = 60 = 40 - 30 -							2		.06							.0				20								 100 90 80 70 60 50 40 30 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600 0.425 0.300 0.212 0.150	100 100 100 100 100 100 100 66 57 46 42 39 35 31 26 19 10 3 1
	90 - 80 = 70 = 60 = 40 - 30 -							2									.0				20								 100 90 80 70 60 50 40 30 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600 0.425 0.300 0.212 0.150 0.063	100 100 100 100 100 88 77 66 57 46 42 39 35 31 26 19 10 33
	90 . 80 = 70 = 60 = 40 . 30 . 20 =							2									.0				20								 100 90 80 70 60 50 40 30 20 		125 90 75 63 50 37.5 28 20 14 10 6.3 5.0 3.35 2.00 1.18 0.600 0.425 0.300 0.212 0.150	100 100 100 100 100 100 100 66 57 46 42 39 35 31 26 19 10 3 1

Comments:

Approved Signatory: M. Hartnup - Laboratory Manager

Medium

Silt

0.02

Fine

Silt

Т

0.006

Clay

0.002

Signed:

1000

ļШ

Cobble

200

Coarse

Gravel

20

11

60

MA.

Date Reported: Form Number: 11.07.2016 Page 1 of 1 GELab/C/709-2 Version 46

Fine

Sand

Medium

Sand

0.20 0

Coarse

lш

Nominal Size of Material [mm]

0.60

Sand

Fine

Grave

6

20

Medium

Gravel

Coarse

Silt

1

0.06

for and on behalf of Ground Engineering Ltd

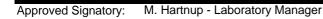
0.002

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

Determination of Particle Size Distribution

Newark Road Peterborough t: 01733 566566 f: 01733 315280 e: admin@groundengineering.co.uk

						0110						_							
			Test	ted in A	Accorda	ance wit	h BS 1	377-2:	1990: C	lause 9	9.2	_							
						Sieve	d Gra	ding											
Clie	nt:		Gro	und F	nainee	ering Lte		0		Certificate Number: PL5462-1/6/710-2									
	nt Address			vark R	-						Client Reference: C13870								
Cile	ni Address	•																	
				erboro	ugn						La			PL5462-1					
			PE1	5UA								Date \$	Sampled:	Unknown					
												Date F	Received:	16.06.2016					
Cor	tact:	Stev	ve Fle	mina							Date	e Tested [.]	06.07.2016						
001	laoti		0.0		······9					C	Ortifica		Sampling:						
<u>.</u>			<u></u>										• •						
	Name:			Kings						Sa	mpling		cate No.:						
Site	Address:		Lon	don W	/C1							Sar	npled By:	Client					
TES	T RESULTS	S	Lab	orator	y Refei	rence:		PL546	2-1/6				Pre-tre	eatment for					
		_			erence			B7						c material:	N/A				
•			Cile				/ - 1	ы					organi	c material.					
San	ple Descrip	otion:		DIOW	in sanu	y GRA\	EL												
Mat	erial Specif	icatior	ו:	Not F	Require	d							epth Top:						
Loc	ation:			BHA								De	pth Base:	5.50m					
Sou	rce:												Supplier:						
				Dete	rminatio	n of Parti	cle Size	Distribu	tion					Sieve Ar	alvsis				
	0.002	0.006	0.0	12 0	06 C).20 0.	60 2	2.0	6 2	20 (50 2	200	1000	Sieve mm	%Passing				
	100	1 1 1 1 1											1000	125	100				
														90	100				
	90												90	75	100				
														63	100				
														50	100				
	80												80	37.5	100				
														28	98				
bu	70	++++++	$\left \right $			┝╶┼╶┼┼╂		+ + + +		┠┼┼┼		++++	70	20	84				
ssi														14	66				
Ра	60-	++++++						++++				++++	60	10	55				
Cumulative Percentage Passing														6.3	43				
anta	50												50	5.0	38				
er ce														3.35	34				
Å									4111					2.00	29				
tive	40								1111				40	1.18	25				
ula														0.600	20				
۳	30	++++++	$\left \right $			┝─┼┼┼				$\left \right $		++++	30	0.425	14				
Ū														0.300	8				
	20	11111			1111				1111			\square	20	0.212	4				
														0.212	2				
	10													0.063	1				
	10+++												10	0.003	┝──่─┥				
														0.020	┣───┤				
	0+++				Eine			╽╶╽╻┥ ┥	++++		 	++++	 	0.008	┣───┤				
		ine N Silt	ledium Silt	Coarse Silt	Fine Sand	Medium Sand	Coarse Sand	Fine Gravel	Medium Gravel	Coarse Gravel	Cobble	Boulde		0.002					


111

60

20

6

Comments:

0.02

111

0.006

Т

0.06

Signed:

1000

1111

200

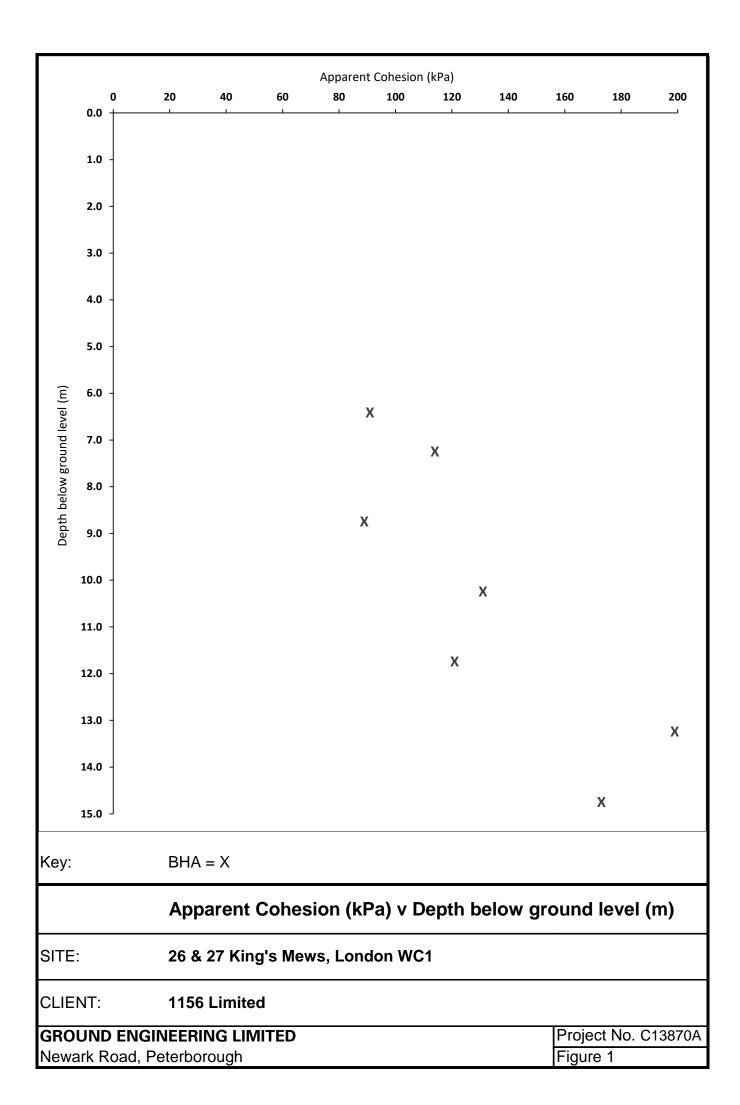
Date Reported: Form Number:

0.002

11.07.2016 Page 1 of 1 GELab/C/709-2 Version 46

0.20

11110


0.60

Nominal Size of Material [mm]

20

for and on behalf of Ground Engineering Ltd

Opinions and interpretations expressed herein are outside of the scope of the UKAS Accreditation This report may not be reproduced other than in full without the prior written approval of the issuing laboratory

APPENDIX 1

CLASSIFICATION OF AGGRESSIVE CHEMICAL

ENVIRONMENT FOR BURIED CONCRETE

TABLE C2 – AGGRESSIVE CHEMICAL ENVIRONMENT FOR CONCRETE

Table C2 Aggressive Chemical Environment for Concrete (ACEC) classification for brownfield locations^a ACEC Groundwater Sulfate and magnesium Design Sulfate Groundwater Total potential Static Mobile Class for 2:1 water/soil extract^b water location sulfate ^c water **Class for location** 2 3 4 5 9 6 7 8 1 (pH)^d (SO4 %) (pH)^d (SO₄ mg/ l) (Mg mg/l) $(SO_4 mg/l)$ (Mg mg/I) AC-1s DS-1 < 400 < 0.24 ≥2.5 < 500 > 6.5^d AC-1 5.5-6.5 AC-2z 4.5-5.5 AC-3z 2.5-4.5 AC-4z AC-1s DS-2 400-1400 0.24-0.6 > 5.5 500-1500 AC-2 > 6.5 AC-2s 2.5 - 5.5AC-3z 5.5-6.5 4.5-5.5 AC-4z 2.5-5.5 AC-5z 0.7-1.2 > 5.5 AC-2s DS-3 1600-3000 1500-3000 AC-3 > 6.5 AC-3s 2.5-5.5 5.5-6.5 AC-4 2.5-5.5 AC-5 1.3-2.4 AC-3s DS-4 3100-6000 ≤1200 3100-6000 ≤1000 > 5.5 AC-4 > 6.5 AC-4s 2.5-5.5 AC-5 2.5-6.5 AC-3s 3100-6000 > 1200^e 3100-6000 > 1000^e 1.3-2.4 > 5.5 DS-4m AC-4m > 6.5 2.5 - 5.5AC-4ms AC-5m 2.5-6.5 ≤ 1000 > 5.5 AC-4s DS-5 ≤1200 > 6000 > 2.4 > 6000 AC-5 2.5-5.5 ≥2.5 DS-5m > 1200 e > 6000 $> 1000^{e}$ > 2.4 > 5.5 AC-4ms > 6000 2.5-5.5 AC-5m ≥2.5

(ACEC) CLASSIFICATION FOR BROWNFIELD LOCATIONS^a

Notes

a Brownfield locations are those sites, or parts of sites, that might contain chemical residues produced by or associated with industrial production (Section C5.1.3).

b The limits of Design Sulfate Classes based on 2:1 water/soil extracts have been lowered from previous Digests (Box C7).

c Applies only to locations where concrete will be exposed to sulfate ions (SO₄), which may result from the oxidation of sulfides such as pyrite, following ground disturbance (Appendix A1 and Box C8).

d An additional account is taken of hydrochloric and nitric acids by adjustment to sulfate content (Section C5.1.3).

e The limit on water-soluble magnesium does not apply to brackish groundwater (chloride content between 12 000 mg/l and 17 000 mg/l). This allows 'm' to be omitted from the relevant ACEC classification. Seawater (chloride content about 18 000 mg/l) and stronger brines are not covered by this table.

Explanation of suffix symbols to ACEC Class

• Suffix 's' indicates that the water has been classified as static.

Concrete placed in ACEC Classes that include the suffix 'z' have primarily to resist acid conditions and may be made with any of the cements in Table D2 on page 42.

• Suffix 'm' relates to the higher levels of magnesium in Design Sulfate Classes 4 and 5.

© Crown Copyright

Produced from Building Research Establishment Special Digest 1, June 2005, by permission of the Controller of HM Stationery Office.