99 FROGNAL

BASEMENT CONSTRUCTION STRUCTURAL REPORT

23020.R02.P2

4 ILIFFE YARD

LONDON, SE17 3QA

30.11.2023

020 7701 2616 STRUCTUREWORKSHOP.CO.UK

CONTENTS

1	INTRODUCTION	3
1.1	EXISTING DEVELOPMENT	4
1.2	PROPOSED DEVELOPMENT	5
2	DESK STUDY	6
2.1	SITE HISTORY	6
2.2	TOPOGRAPHY	7
2.3	GEOLOGY	8
2.4	HYDROGEOLOGY HYDROLOGY, DRAINAGE AND FLOOD RISK	8
2.6	SURROUNDING VEGETATION	9
2.7	SITE BOUNDARIES	9
3	SCREENING	11
4	SCOPING	11
5	SITE INVESTIGATION	11
6	CONSTRUCTION METHODOLOGY/ENGINEERING STATEMENTS	12
6.1	OUTLINE GEOTECHNICAL DESIGN PARAMETERS	12
6.2	OUTLINE TEMPORARY AND PERMANENT WORKS PROPOSALS	12
6.3	GROUND MOVEMENT AND DAMAGE IMPACT ASSESSMENT	13
6.4	CONTROL OF CONSTRUCTION WORKS	13
7	BASEMENT IMPACT ASSESSMENT	14

APPENDIX A STRUCTURAL DRAWINGS

APPENDIX B BASEMENT CONSTRUCTION SEQUENCE

APPENDIX C PRELIMINARY STRUCTURAL CALCULATIONS FOR BASEMENT

APPENDIX D INTERPRETIVE REPORT BY A2 INVESTIGATION

APPENDIX E BASEMENT IMPACT ASSESSMENT BY A2 SITE INVESTIGATION

AUTHORS

Alija Massain

Aliya Hossain MEng

Daniel Dowek

MA MEng CEng MIStructE

1 INTRODUCTION

The purpose of this report is to assess the proposed basement development at 99 Frognal, London, NW3 6XU. This report provides an overview of the Basement Impact Assessment (BIA) report by A2 Site Investigation (A2-S1) included in Appendix E, with additional structural commentary, preliminary structural drawings, and a proposed sequence of work. Refer to the BIA non-technical summary for a list of conclusions in line with the current planning guidance adopted by the London Borough of Camden

The property is located in Hampstead, within the London Borough of Camden. The existing property is a large three-storey detached house constructed in ~1740, with a two-storey L-shaped extension in the back garden constructed in the 1970s. The project, led by Hayhurst and Co. Architects, involves restoration of the main house extending upwards with construction of a new mansard roof, full demolition of existing extension buildings, and construction of a new extension and basement that integrates with the landscape. The proposals also include the construction of three additional housing units on the site. Two housing units will be located below the raised vegetable garden north of the main house, and the other will form part of the new extension to the main house.

A ground investigation has been carried out by A2-SI, which included extensive trial pits and exploratory boreholes across the site to provide quantitative data on the ground conditions. Their Interpretive Report, included in Appendix D, contains additional details of the geology, hydrogeology, and a geotechnical commentary on the proposals. Following this, A2-SI carried out a Ground Movement Assessment to assess the impact of the proposed works on existing structures and neighbouring properties. The full BIA report prepared by A2-SI goes through the screening and scoping process in accordance with local planning guidance, the findings of which are summarised within this report. See Appendix E for the full report.

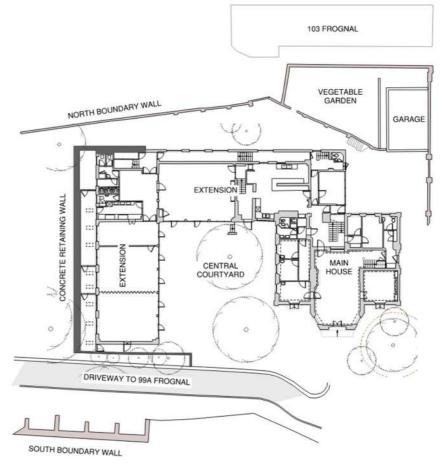
A preliminary proposed sequence of construction has been developed for the safe construction of the basement, included in this report, together with preliminary Stage 3 structural drawings provided in Appendix A which provide additional structural information.

1.1 EXISTING DEVELOPMENT

The site is located in Hampstead, North London, just west of Hampstead Village and southwest of Hampstead Heath, within the London Borough of Camden. No. 99 is close to the northern end of Frognal, a steep road that runs from Finchley Road up to Branch Hill / West Heath.

The site is located within a wider hillside setting and generally slopes upwards towards the north and western extents. The site elevations range from approximately 110m AOD on the eastern side to around 116m AOD on the west, however the existing topography is stepped, dividing the site into three primary areas at different levels. At the main house the ground level is around 110m AOD. There is a central courtyard in front of the rear extension at 111.40m AOD. The garden to the rear of the property (west) has a lawn at around 116m AOD with raised flowerbeds stepping upwards to the northern and western boundary.

The existing property is a large three-storey detached house with a roof terrace and small basement, constructed in ~1740. Historic records show there was previously a mansard roof level which is thought to have been removed in the 1930s. The main house is built of solid load-bearing brick walls, with timber floors and a timber roof. It is understood to have originally been built with a rectangular plan, with the canted bay on the south elevation added later in the 18th century. Some of the brickwork on the main house was refaced in 1890. The reinforced concrete art deco style staircase and glazed bay was added as part of the renovations undertaken in the 1930s.


A large L-shaped two-storey extension to the north and west of the main house was constructed in phases in the 1970s-80s. This brick faced structure is framed in reinforced concrete with concrete slabs, columns and foundations. There is a reinforced concrete wall retaining a level change of approximately 4m on the north, west and south sides of the western wing.

There are some nearby Listed properties, known to be 103 Frognal to the immediate north, and Grove Cottage and 108 Frognal on the other side of Frognal.

A description of the site boundaries is provided in section 2.7.

ARIAL VIEW OF SITE

SITE BUILDING PLAN

1.2 PROPOSED DEVELOPMENT

The proposal involves restoring the main house for its original use as a single-family dwelling, undoing the various alterations, removing 20th century partition walls and non-original staircases, and reinstating the original plan. The proposal for the main house also includes construction of a new mansard roof, providing an additional level with a roof terrace.

The 1970s L-shaped extension to the west of the house is to be carefully demolished and a new extension built in its place that integrates with the landscape. The new extension includes a large basement to be constructed roughly within the footprint of the existing 1970s building. The basement will contain a pool, sauna, utilities and plant space.

The proposals also include the construction of three additional housing units on the property. Two housing units will be located below the raised vegetable garden north of the main house, and the other will form part of the new extension to the main house.

Preliminary Stage 3 structural proposals for the areas with significant excavations are provided in Appendix A

BASEMENT

The basement formation level is approximately 6.5 metres below existing ground level due to the added depth for the swimming pool (not including localised sumps). The rear garden to the west of this building is approximately 4m above the existing ground floor level, so it is proposed that the existing concrete retaining wall remains in place during the works so the basement can be constructed from the lower level. Site inspections have revealed that this existing retaining wall does not rely on support from the building itself but will likely require additional stabilising measures prior to breaking out the concrete base slab. It is proposed that this could take the form of ground anchors to free up working space, which would be designed for temporary loading but become redundant once the final structure and landscaping is in place. To batter back behind the existing wall for basement construction would require a ~13.6m wide berth, and with spatial limitations due to the north boundary wall and the driveway to 99a this was not considered a practical option.

Due to high measured groundwater levels in this location, a secant piled wall is proposed to the perimeter of the basement to control groundwater during construction. In the permanent case water-resistant concrete lining walls are also proposed around the perimeter in addition to an internal drained cavity for waterproofing.

A piled ground beam within the basement footprint will break up the span of the basement ground slab and, together with the perimeter walls, resist uplift forces. The slab is to be cast on a void former to mitigate against heave forces on the underside of the basement slab being transmitted to the building.

The RC roof slab will provide a propping force to the top of the secant piles. An internal upper basement slab provides a services zone underneath for storage of pool-associated plant, which is proposed to be precast hollowcore panels suspended on blockwork walls, for ease of construction.

The perimeter and internal piles will be installed from existing ground level, and the pile capping beam and basement roof slab cast in-situ will provide lateral propping at the top of the piles. There is a large opening proposed in the roof slab at the south end of the basement, which will provide access and egress between the basement and gardens at ground level, and which can also be used to facilitate a 'top-down' construction sequence.

Refer to section 6.2 and Appendix B of this report for the assumed sequence of work and further details.

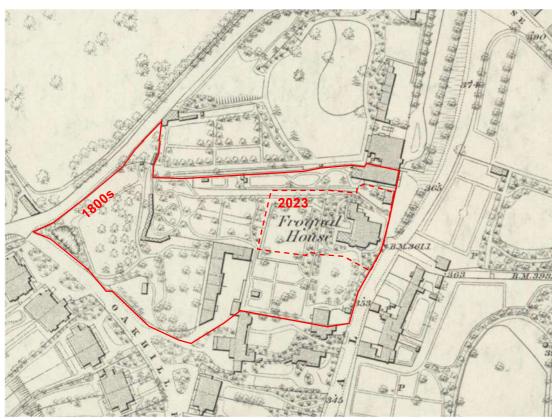
GARAGE HOUSES

The two housing units proposed in the north-east corner of the site are to be at ground level to match the driveway and existing garage. This will require excavation of the existing raised vegetable garden. This means that the perimeter walls must be designed as retaining structures to maintain stability of the neighbouring property and adjacent land.

The existing garden walls here are proposed to be retained in the interest of heritage protection, therefore these will be underpinned with mass concrete and stabilised with temporary internal lateral propping prior to excavation works. Underpinning is proposed in two vertical lifts to reduce the depth of excavations, to be carried out in sequence with the temporary lateral propping.

The ground slab will be suspended on piled ground beams, similar to the proposed basement construction. Permanent lateral stability to the existing walls and adjacent retained earth will be provided by reinforced concrete walls that are propped in the permanent case by the ground and roof slabs.

Refer to section 6.2 and Appendix B for the assumed sequence of work and further details.


PLAN VIEW. HAYHURST & CO ARCHITECTS

2 DESK STUDY

2.1 SITE HISTORY

'Frognal House' (now 99 Frognal) is thought to have been constructed in circa 1740, and the estate to have originally included Upper Frognal Lodge (No. 103) and a small mews terrace to the south west. The main house was used as a private residence for many years, between the years of 1862 to 1869 it housed the Sailors' Orphan Girls' School and Home, between the years of 1942 and 1944 it was a wartime residence to General Charles de Gaulle, and between the years of 1968 and 2021 it was home to the Sisters of St Dorothy convent.

Historic maps indicate that there was previously an extension on the south west corner of the main house that has since been removed. To the north east of the house, an existing garage exists bounded by a series of stepped brick walls that resolve the changes in ground level and also form the boundary with no. 103 Frognal. There are no other known historic building structures in the gardens of the main house that fall within the current site boundary, which is much smaller than it once.

ORDNANCE SURVEY MAP 1866

The existing house is three storeys with a roof terrace and small basement. Historic records show there was previously a mansard roof level which is thought to have been removed in the 1930s. The main house is built of solid load-bearing brick walls, with timber floors and a timber roof. It is understood to have originally been built with a rectangular plan, with the canted bay on the south elevation added later in the 18th century. Some of the brickwork on the main house was refaced in 1890. The reinforced concrete art deco style staircase and glazed bay was added as part of the renovations undertaken in the 1930s.

A large L-shaped two-storey extension to the north and west of the main house was constructed in phases in the 1970s-80s, purpose-built for student accommodation. This brick faced structure is framed in reinforced concrete with concrete slabs, columns and foundations. There is a reinforced concrete wall retaining a level change of approximately 4m on the north, west and south of the western wing.

PHOTOGRAPH OF FROGNAL HOUSE ESTATE, 1940

2.2 TOPOGRAPHY

A topographic survey has been undertaken which covers all areas within the property boundary including the adjacent footpath and road. The overall gradient of the land is sloping up to the north and west, from a level of 110m AOD at the eastern extent up to around 116m AOD on the west. Behind the northern wall of the extension building the land slopes up from a level of around 112.5m AOD to a level of 114m AOD at the boundary wall.

99 FROGNAL TOPOGRAPHIC SURVEY MAP

2.3 GEOLOGY

The British Geological Survey (BGS) mapping shows that site is underlain by Bagshot Formation, with no superficial deposits. The Claygate Member and the London Clay Formation are also shown in close proximity to the site and are thought to underlay the Bagshot Formation.

A number of historic borehole record on the BGS website within the surrounding area show the presence of made ground in the top layers.

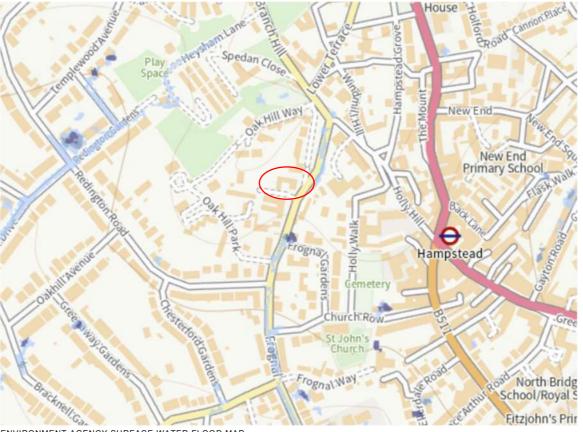
A desk study has been carried out by A2-SI which covers the initial geological findings in further detail. Please refer to the 'Phase I Desk Study' report included in Appendix E.

BGS MAPS - BEDROCK GEOLOGY

KEY

BAGSHOT FORMATION - SAND

CLAYGATE MEMBER - CLAY, SILT AND SAND

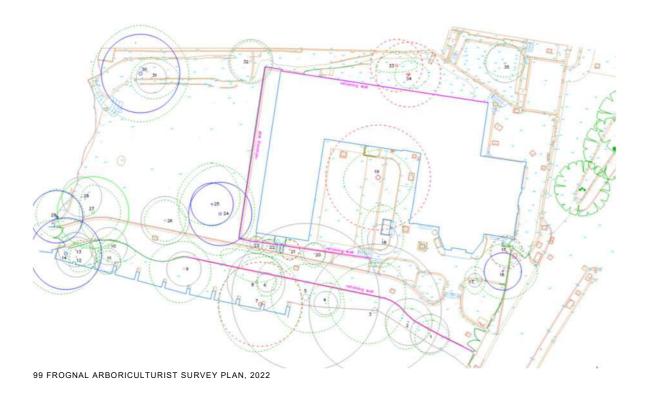

LONDON CLAY FORMATION - CLAY, SILT AND SAND

2.4 HYDROGEOLOGY

The desk study carried out by A2-SI includes a high-level hydrogeological assessment, which indicates the likelihood of a perched aquifer beneath the site. Refer to Appendix E for full details.

2.5 HYDROLOGY, DRAINAGE AND FLOOD RISK

The property is at very low risk of fluvial flooding and very low risk of surface water flooding, meaning there is less than 0.1% (1 in 1000) annual probability of flooding.


ENVIRONMENT AGENCY SURFACE WATER FLOOD MAP

2.6 SURROUNDING VEGETATION

Refer to the Architect's plan for the locations of existing vegetation and root protection areas.

The arboriculturist's survey was undertaken in February 2022. At the time of survey there was a total of 35 trees recorded on the property, most of which were located towards the south along the driveway, and mostly all sound and healthy. 5 of the 35 were found to be in poor condition and recommended for removal: one large Beech along the southern boundary wall; one Winter cherry between the driveway and the concrete retaining wall; one Goat willow in the central courtyard, and two Cherry trees behind the north wall of the extension. These are indicated in red in the figure below.

There are several trees in close proximity to the concrete retaining wall which may be affected by any proposed construction works here. However, given that the trees are at a raised ground level approximately 4m above the ground level at the top of the excavation, and given that the existing concrete retaining wall is not being removed as part of the works, it is not expected that works will clash with any root protection areas. The proposed basement foundations will extend below the influence of any existing and future planting.

2.7 SITE BOUNDARIES

There is a large freestanding brick wall along the property's southern boundary, built in 1896 by the owner at the time to shield his view of the adjacent flats being built. It was claimed to be 'the highest independent wall in London, 42ft high and 6ft thick at the bottom". This wall has large chamfered buttresses and is partially concealed by vegetation. Adjacent to this wall is a driveway within the property boundary that provides access to 99A Frognal to the west.

Along the northern boundary there is a historic brick retaining wall that separates 99 Frognal from no.103. The top of the wall is 2-3m above ground level on the 99 Frognal side. This boundary wall retains the neighbouring land, with the closest point of the neighbouring building being approximately 2m away. The wall is bulging in areas, has been previously extended upwards and has some buttresses toothed in.

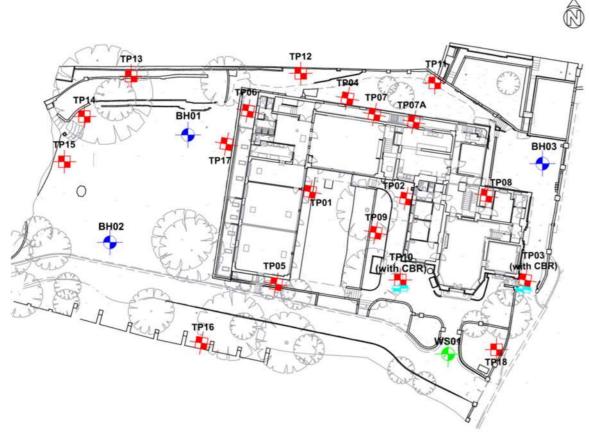
At the eastern boundary is Frognal (the road) and a driveway up to no.103, separated from 99 Frognal with a freestanding brick wall with piers and black-painted railing along the frontage.

At the western boundary there is a low brick garden wall with wooden fencing above to separate the property from 99A

SOUTHERN BOUNDARY WALL

NORTHERN BOUNDARY WALL

3 SCREENING


A BIA Screening has been undertaken by A2-SI in accordance with the London Borough of Camden planning policies and guidance. Refer to Appendix E for the full document.

4 SCOPING

The following issues raised in A2-SI's BIA screening process were brought forward for further assessment:

- The site is underlain by Secondary A Aquifers, i.e. the Bagshot Formation and the Claygate Member of the London Clay Formation.
- The formation level of the proposed basement is anticipated to be at 105.1mOD, which is below the short-term design water table of 110.00mOD specific for that area of the site.
- · The proposed basement will change the effective proportion of hard surfaced/paved areas.
- · Trees maybe felled during the development works. The works may take place in a tree protection zone.
- A single carriageway road (Frognal) is present directly to the east of the site.
- The proposed basement excavation will increase the differential depth of foundations relative to neighbouring properties.

An assessment of these issues has been undertaken in the BIA prepared by A2-SI, which discusses the potential impacts, mitigating factors and further actions proposed for each. Refer to Appendix E for the full document.

SITE INVESTIGATION PLAN

5 SITE INVESTIGATION

A site investigation was carried out by A2-SI in June 2023 to provide site-specific information to support the design of the proposed development. The investigative works comprised:

- 3no. cable percussion boreholes to depths 15-25m
- · 1no. window sampling borehole to depth 5m
- 16no. hand-dug trial pits with in-situ strength testing
- 2no CBR tests
- 1no. dynamic probing to confirm the geometry of the existing retaining wall (TP17)
- Falling head tests to provide an indication of soakage rates
- Installation of 4no. standpipes for groundwater monitoring
- · Laboratory testing of soil properties and contamination

Refer to the Interpretive Report prepared by A2-SI in Appendix D for full findings.

GROUND CONDITIONS

The ground conditions discovered on site are summarised in the table below:

DESCRIPTION OF GROUND	START (M BGL)	END (M BGL)
Made Ground	0.00 - 0.30	0.50 - 1.20
Bagshot Formation	0.50 - 1.20	3.80 - 9.20
London Clay Formation - Claygate Member	3.80 - 9.20	> 20.60

GROUNDWATER

The groundwater monitoring readings taken in June and July 2023 encountered groundwater between +106.74 and +109.99m AOD across the site, which is considered to be perched water within the Bagshot Formation.

In the western portion of the site it is recommended that a short-term design water level of 110m AOD is adopted, which is approximately 5m above the formation level of the proposed basement. In the eastern portion of the site it is recommended that a short-term design water level of 107m AOD is adopted, which is approximately 3m below the formation level of the proposed Garage Houses.

6 CONSTRUCTION METHODOLOGY/ENGINEERING STATEMENTS

6.1 OUTLINE GEOTECHNICAL DESIGN PARAMETERS

The following outline, reasonably conservative geotechnical parameters have been determined based on the site investigation data collected. A full table of parameters included in the Interpretive Report in Appendix D.

STRATUM	Υ_b (kN/m ³)	Φ'cv (°)	c' (kPa)	c _u (kPa)
Made Ground	18	22	0	-
Bagshot Formation	19	24	0	90
London Clay Formation – Claygate Member (cohesive)	20	24	0	100
London Clay Formation – Claygate Member (granular)	20	35	0	-

6.2 OUTLINE TEMPORARY AND PERMANENT WORKS PROPOSALS

To develop the structural proposals and for the purpose of informing the ground movement assessment, a basement construction sequence has been developed by Structure Workshop. The sequence presents an assumed methodology to minimise disruption to adjoining properties and safeguard the existing retained structures on the site. Refer to the sketch in Appendix B for the proposed sequence of works, and to Section 7 of the BIA in Appendix E for further description.

Safe working routes, hoarding, and temporary protection to sensitive elements will be set up at the start of the construction phase. In advance of any excavation works site wide movement monitoring will be set up. This will include ongoing regular monitoring of the main house, boundary walls, and the flank wall of the nearest neighbouring property. A full movement monitoring proposal together with appropriate trigger values and frequency of readings will be developed in the forthcoming design stages. Movement monitoring results will be checked by the Contractor, Engineer and CA at regular intervals to ensure that there are no unexpected movements. Should any trigger values be exceeded, site work will be immediately stopped to establish the cause of any movement.

The existing retaining walls on the site to be retained will require temporary stabilisation. At this stage we envisage that they will either be tied back with soil anchors, or internally propped with temporary lateral propping. The final solution will depend on the Contractor's proposals and Party Wall negotiations. We have had initial conversations with soil anchoring contractors to provide an initial sizing on the structural drawings.

To form the garage houses at the north of the site some underpinning is proposed with internal temporary lateral propping. This is envisaged to be undertaken in two vertical lifts to reduce the depth of excavations. Where existing retaining walls are to be taken down, some temporary sheet piling is proposed. When all existing walls and ground has been effectively stabilised excavations down to ground level can begin. The entire site can then be piled in one go from a similar ground level.

The extension basement is proposed as top-down construction, with the basement roof slab cast before bulk excavation is carried out. This is to lock the ground floor in place, reducing the likelihood of ground movements, but also to help reduce noise and dust on site.

Due to the water levels discovered the basement will have a secant piled perimeter wall and an internal concrete lining wall with a water-resisting additive. The secant wall is chosen to help control ground water during construction, such that it should be possible to dewater the excavation without significant inflows.

Once formation level is reached the ground slab will be cast, followed by the internal basement vertical structure. Permanent lateral propping to retaining forces is provided by the top and bottom basement slabs. Similarly in the Garage Houses, reinforced concrete retaining walls will provide permanent stabilisation to the adjacent retained brick walls. The walls will be propped by the ground floor and roof slab, which are also proposed in reinforced concrete.

6.3 GROUND MOVEMENT AND DAMAGE IMPACT ASSESSMENT

An assessment of ground movement due to construction of the proposed basement has been undertaken by A2-SI based on the current structural design, excavation depth and footprint, and proposed sequence of work. They have concluded that the potential damage/impact of the proposed works can be limited to Category 1 – Very Slight, in accordance with the Burland Scale. Refer to Appendix E for the Ground Movement Assessment report prepared by A2-SI.

6.4 CONTROL OF CONSTRUCTION WORKS

Following the appointment of a Principal Contractor in subsequent project stages, a Construction Method Statement will be developed to determine the best strategy for safely carrying out the works.

In advance of any excavation works site wide movement monitoring will be set up. This will include ongoing regular monitoring of the Main house, boundary walls, and the flank wall of the nearest neighbouring property. A full movement monitoring proposal together with appropriate trigger values, frequency of readings will be developed in the forthcoming design stages. Movement monitoring results will be checked by the Contractor, Engineer and CA at regular intervals to ensure that there are no unexpected movements. Should any trigger values be exceeded, site work will be immediately stopped to establish the cause of any movement.

All piling works will be undertaken in accordance with the structural specification. The proposed sequence allows all piling across the development to be undertaken in one period to minimise disruption to neighbours.

The top-down construction sequence also helps control dust and vibrations during the basement construction. Top-down construction will also help minimise ground movements caused by basement excavation.

Underpinning of existing walls around the Garage Houses will be undertaken in sequence in accordance with the structural specification with limited excavation depths.

During construction temporary rainwater diversions will be in place across the site, and a method for dewatering any perched groundwater inflows will be provided within the basement construction.

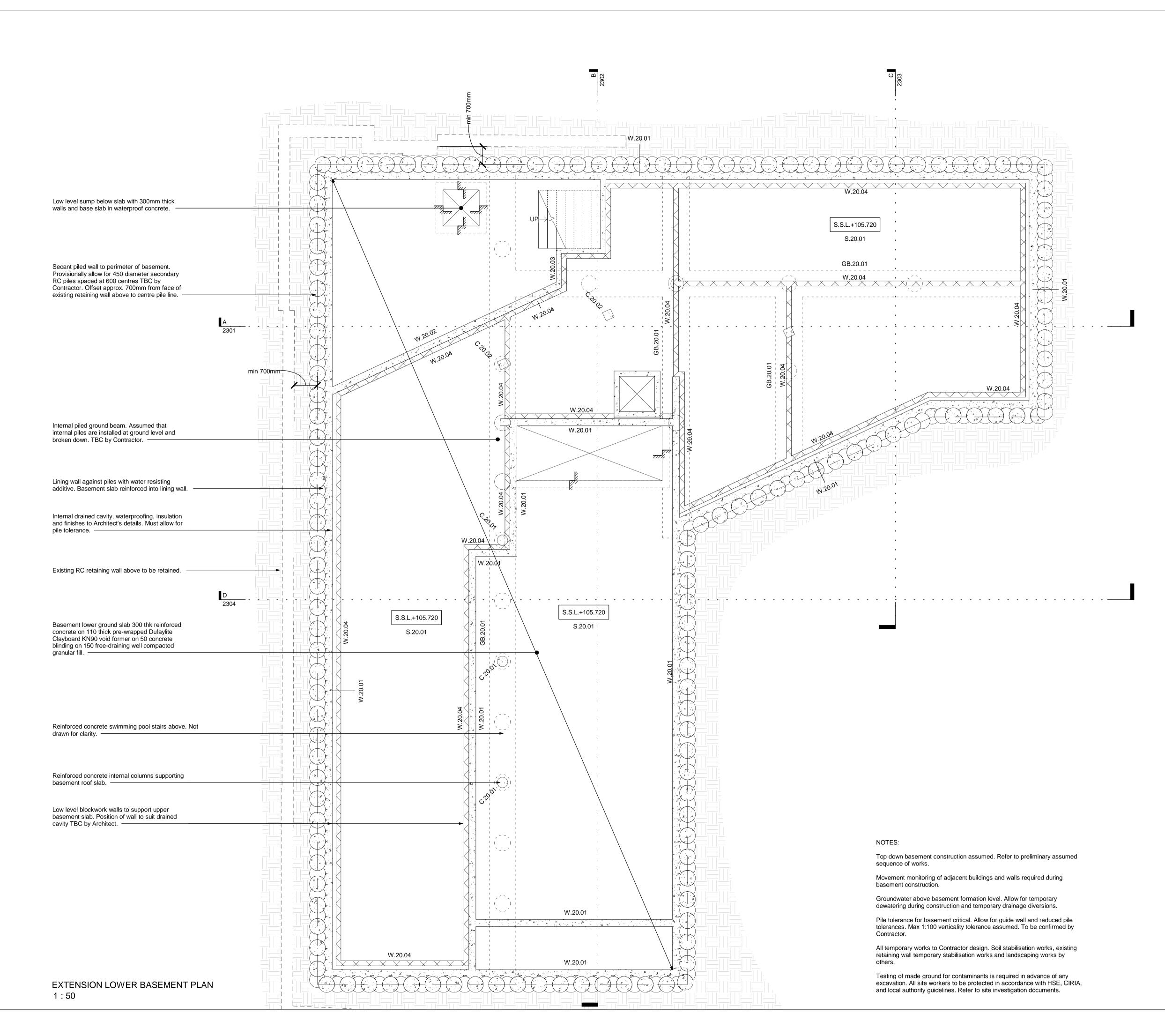
7 BASEMENT IMPACT ASSESSMENT

Refer to Section 8 of the BIA report prepared by A2-SI in Appendix B for the full BIA statement in accordance with LB Camden guidelines.

It is proposed that the new structures will be founded on piles bearing onto the Claygate Member of the London Clay Formation, which is considered to be a suitable founding stratum.

A sequence of construction has been developed to demonstrate a safe construction methodology that maintains stability to all surrounding structures and land. During the works a structural monitoring strategy will be in place to control movements and impacts to existing structures adjacent. Sensitive brick structures will be protected and temporarily propped as a precaution where required.

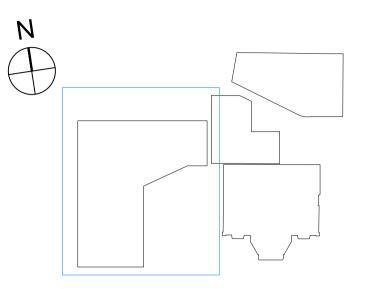
The ground movement assessment prepared by A2-SI, included in Appendix E, has indicated that ground movements caused by the proposed development are within acceptable limits. The risk to adjacent properties is calculated to be limited to Category 1 'very slight' on the Burland Scale.


The BIA has concluded that risks to the development and adjacent receptors are low and will be mitigated as part of the design development and construction methodology. Any potential damage can be mitigated by appointment of a suitable experienced Contractor, following an appropriate construction methodology, and putting in place suitable and control measures.

The BIA has identified a potential hydrogeological impact as the excavation will be within the Bagshot Formation and partially within the Claygate Member of the London Clay Formation which are both classed as Secondary A Aquifers. As the geological conditions are largely cohesive with low permeabilities, and the proposed basement is set back from the site extents, overall impacts on the wider hydrogeological environment are considered to be low. A secant piled perimeter is proposed for the basement construction to provide a water cut-off as well as earth-retaining structure.

The BIA has concluded that there is very low risk of surface water flooding. The proposed drainage strategy will reflect the existing system however with attenuation on site for controlled discharge to the public sewer. A drainage strategy and flood risk assessment has been prepared by Civilistix. Refer to their report for further information.

APPENDIX A


STRUCTURAL DRAWINGS

This drawing is to be read in conjunction with all other Architect's and Engineer's drawings, details and specifications.

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer immediately.

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

EXTENSION - BEAM SCHEDULE BSMT

MEMBER SIZE MATERIAL/GRADE/NOTES GB.20.01 450d x 750w

RC 28/35 ground beam

EXTENSION - COLUMN SCHEDULE BSMT

MEMBER SIZE MATERIAL/GRADE/NOTES C.20.01 300 Dia circular RC 28/35 C.20.02 250 x 250 RC 28/35

EXTENSION - WALL SCHEDULE BSMT

MATERIAL/GRADE/NOTES MEMBER SIZE W.20.01 200 Thick RC 28/35 Water resisting W.20.02 200 Thick RC 28/35 W.20.03 150 Thick RC 28/35 W.20.04 140 Thick Blockwork

EXTENSION - SLAB SCHEDULE BSMT

MEMBER SIZE MATERIAL/GRADE/NOTES S.20.01 300 Thick RC 28/35 ground slab

Issued for Information DESCRIPTION

DATE

31.10.23

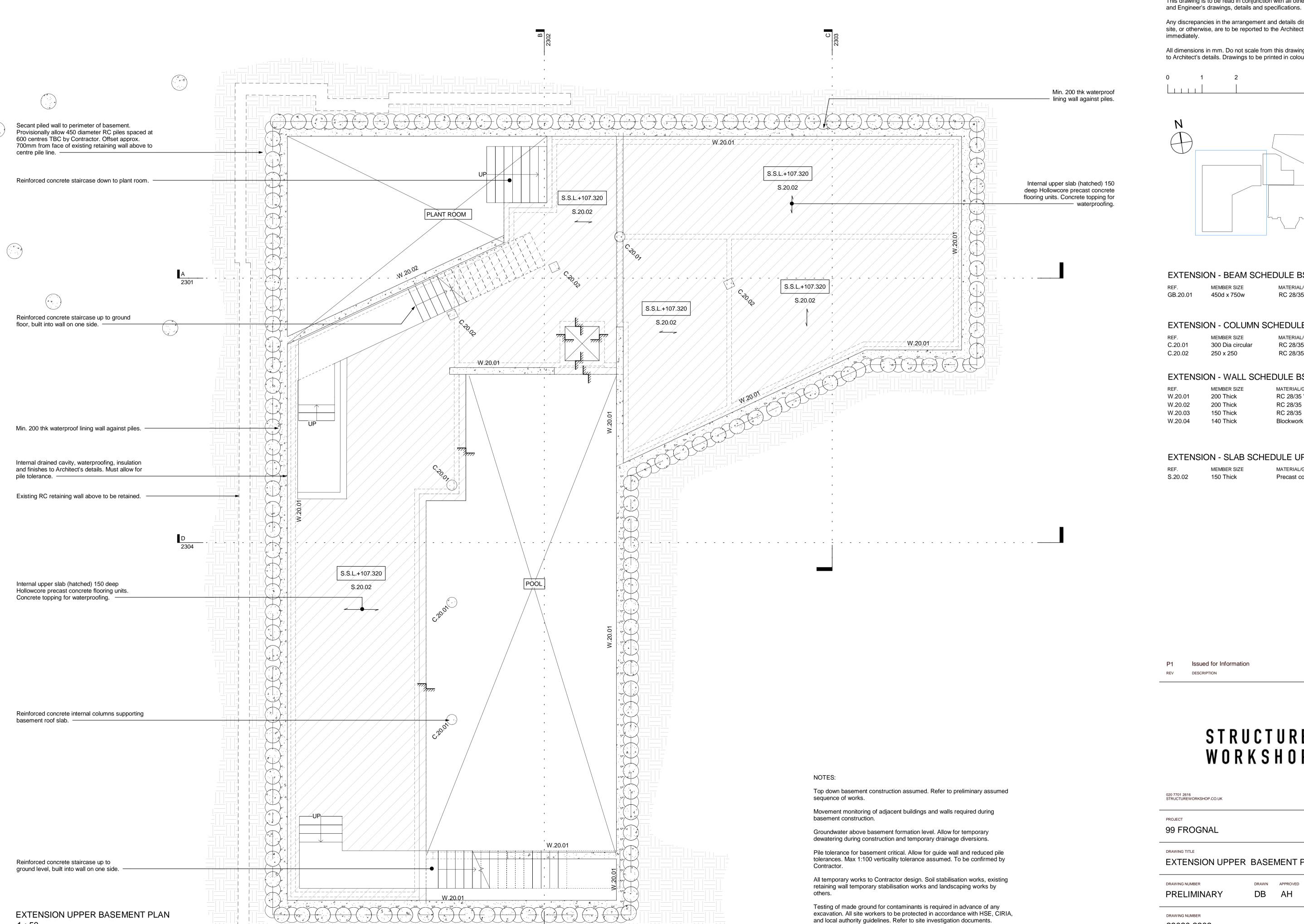
STRUCTURE WORKSHOP

020 7701 2616 STRUCTUREWORKSHOP.CO.UK

4 ILIFFE YARD LONDON, SE17 3QA

SCALE AT A1

1:50

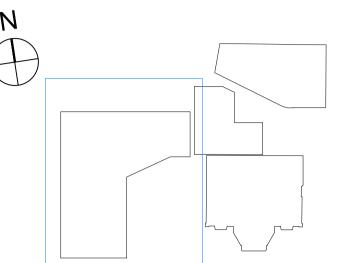

PROJECT 99 FROGNAL

DRAWING TITLE EXTENSION LOWER BASEMENT PLAN

DRAWING NUMBER **PRELIMINARY**

DRAWING NUMBER 23020.2201

REV. P1


1:50

NOTES:

This drawing is to be read in conjunction with all other Architect's

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

EXTENSION - BEAM SCHEDULE BSMT

450d x 750w

MATERIAL/GRADE/NOTES RC 28/35 ground beam

EXTENSION - COLUMN SCHEDULE BSMT

MATERIAL/GRADE/NOTES MEMBER SIZE 300 Dia circular RC 28/35 RC 28/35

EXTENSION - WALL SCHEDULE BSMT

MATERIAL/GRADE/NOTES RC 28/35 Water resisting RC 28/35 RC 28/35 Blockwork

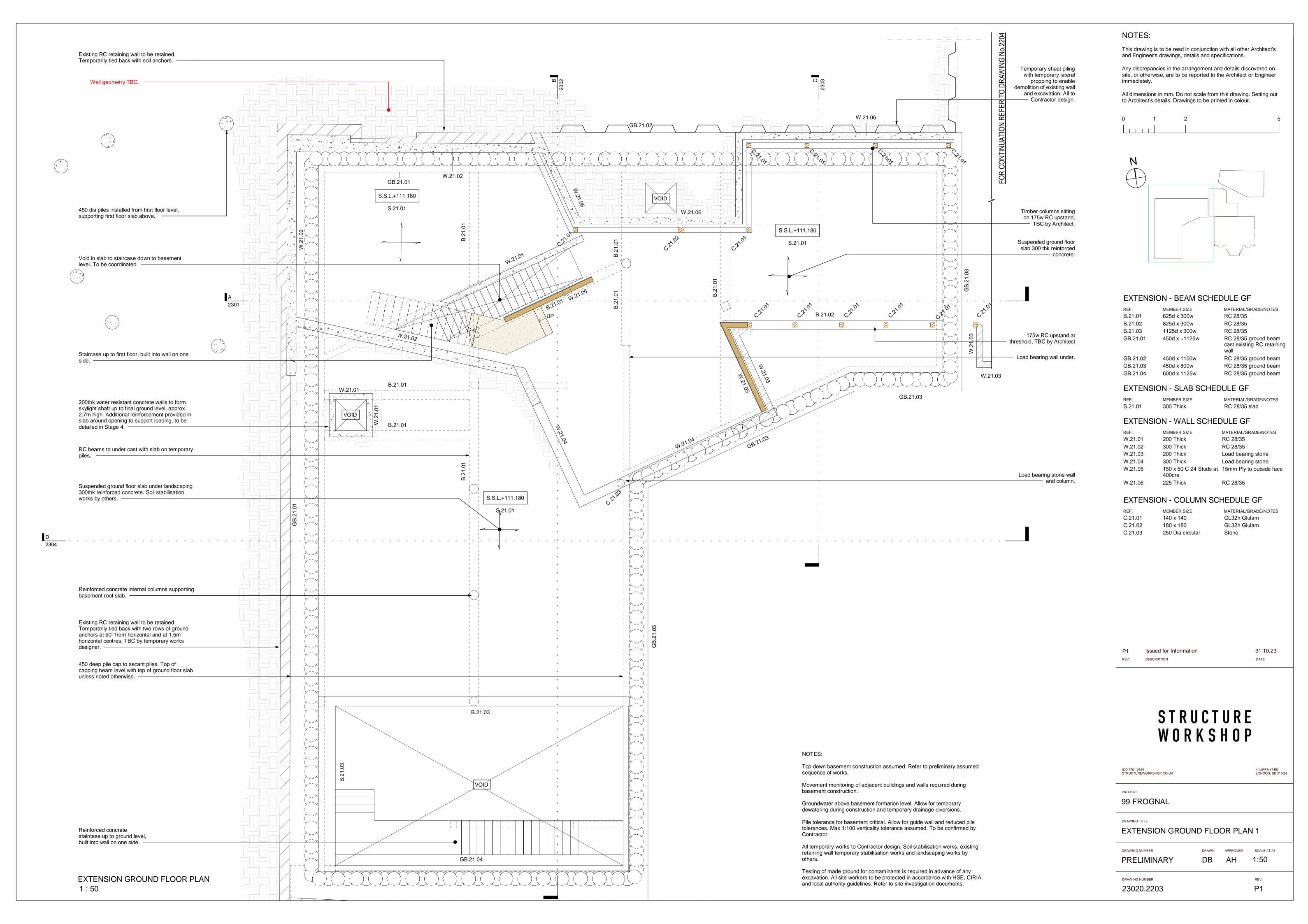
EXTENSION - SLAB SCHEDULE UPPER BSMT

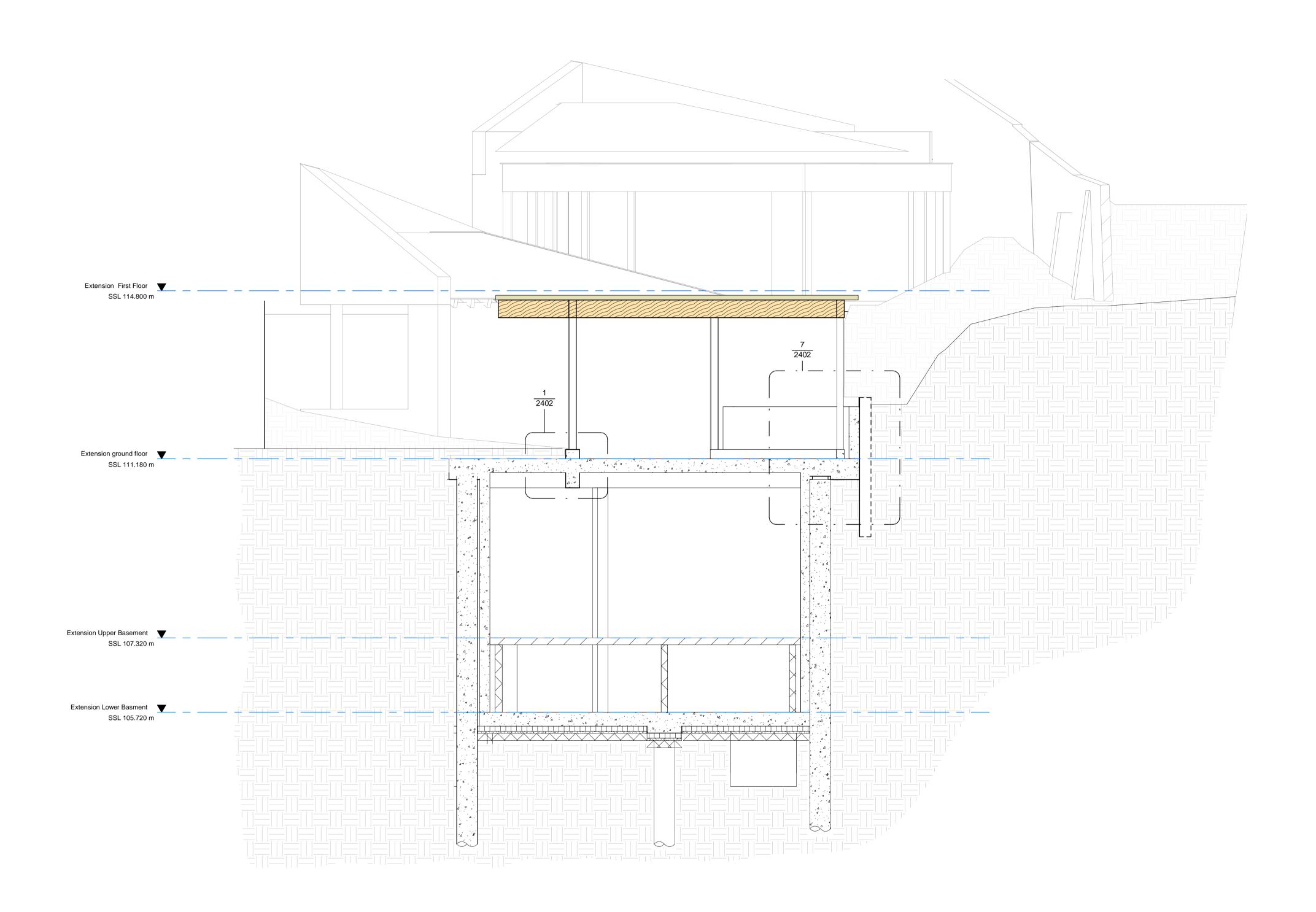
MATERIAL/GRADE/NOTES Precast concrete floor

> 31.10.23 DATE

STRUCTURE WORKSHOP

4 ILIFFE YARD LONDON, SE17 3QA

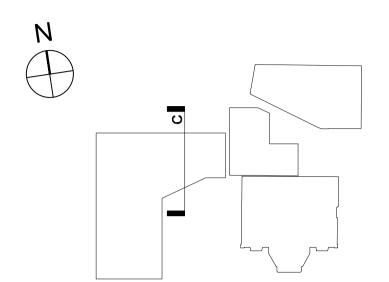

EXTENSION UPPER BASEMENT PLAN


23020.2202

REV. P1

SCALE AT A1

1:50



This drawing is to be read in conjunction with all other Architect's and Engineer's drawings, details and specifications.

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer immediately.

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

0 1 2

P1 Issued for Information
REV DESCRIPTION

DATE

STRUCTURE WORKSHOP

020 7701 2616 STRUCTUREWORKSHOP.CO.UK 4 ILIFFE YARD LONDON, SE17 3QA

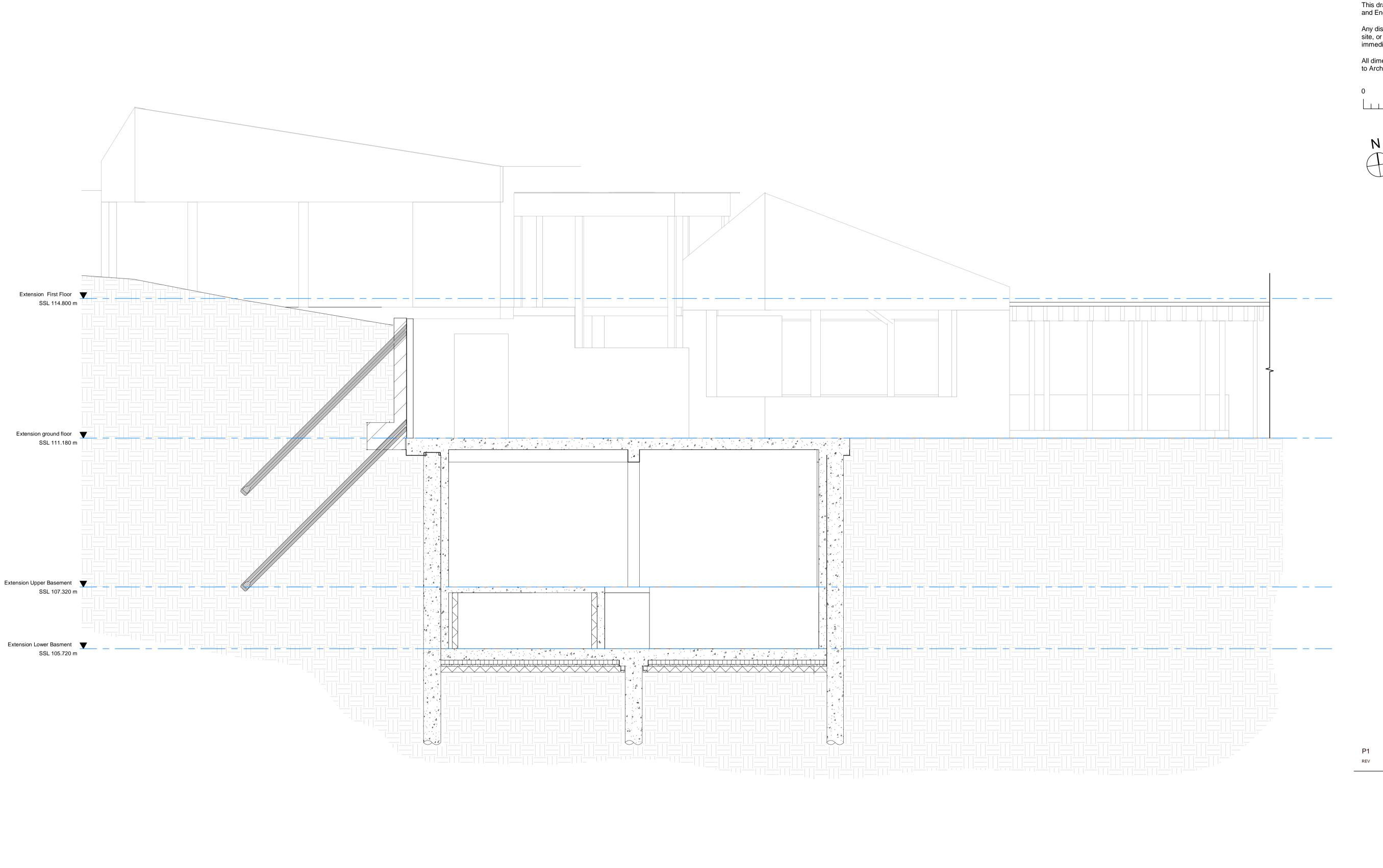
31.10.23

PROJECT

99 FROGNAL

DRAWING TITLE

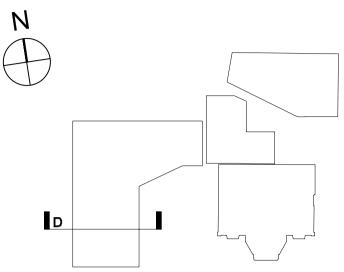
EXTENSION CROSS SECTION C


DRAWING NUMBER DRAWN APPROVED SCALE AT A1

PRELIMINARY DB AH 1:50

DRAWING NUMBER 23020.2303

REV.


SECTION C-C 1:50

This drawing is to be read in conjunction with all other Architect's and Engineer's drawings, details and specifications.

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer immediately.

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

lssued for Information
DESCRIPTION

DATE

31.10.23

STRUCTURE WORKSHOP

020 7701 2616 STRUCTUREWORKSHOP.CO.UK 4 ILIFFE YARD LONDON, SE17 3QA

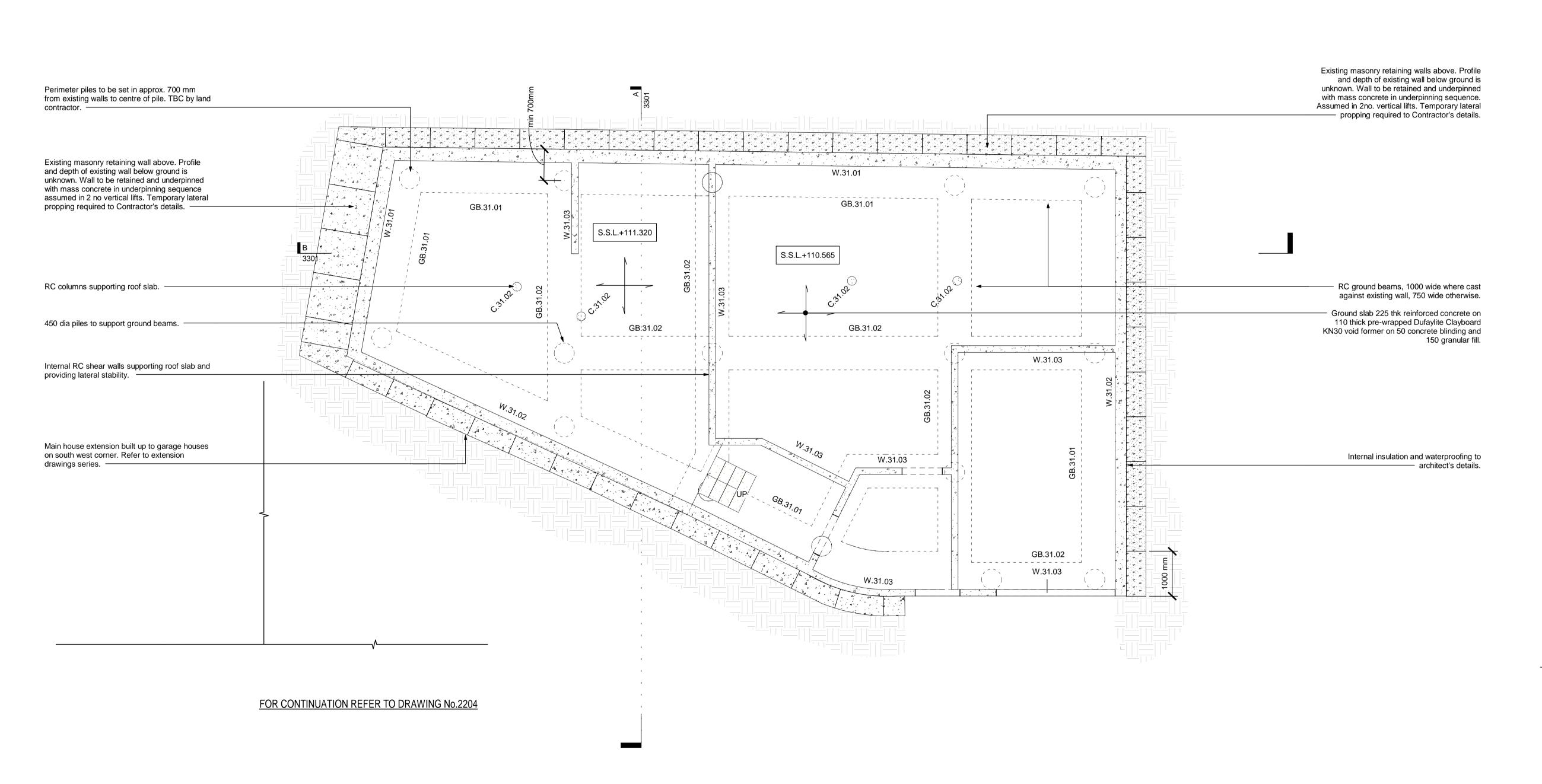
P1

PROJECT

99 FROGNAL

DRAWING TITLE

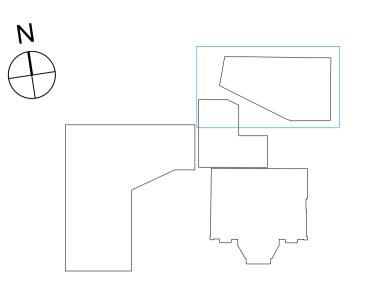
23020.2304


EXTENSION CROSS SECTION D

DRAWING NUMBER DRAWN APPROVED SCALE AT A1

PRELIMINARY DB AH 1:50

DRAWING NUMBER REV.


SECTION D-D 1:50

This drawing is to be read in conjunction with all other Architect's and Engineer's drawings, details and specifications.

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer immediately.

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

GARAGE HOUSE - BEAM SCHEDULE GF

MEMBER SIZE MATERIAL/GRADE/NOTES GB.31.01 450d x 1000w RC 28/35 ground beam GB.31.02 450d x 750w RC 28/35 ground beam

GARAGE HOUSE - COLUMN SCHEDULE GF

MEMBER SIZE C.31.02

RC 28/35 200 Dia circular

GARAGE HOUSE - WALL SCHEDULE GF

MEMBER SIZE W.31.01 300 Thick

W.31.02

W.31.03

250 Thick 150 Thick

RC 28/35 Water resisting <varies> RC 28/35

MATERIAL/GRADE/NOTES

MATERIAL/GRADE/NOTES

DESCRIPTION

Issued for Information

31.10.23 DATE

STRUCTURE WORKSHOP

NOTES:

Refer to preliminary assumed sequence of works.

Movement monitoring of adjacent buildings and walls required during basement construction.

Allow for temporary dewatering during construction and temporary drainage

Pile design is CDP. Setting out to be confirmed by Contractor.

All temporary works to Contractor design. Soil stabilisation works, existing retaining wall temporary stabilisation works and landscaping works by

Testing of made ground for contaminants is required in advance of any excavation. All site workers to be protected in accordance with HSE, CIRIA, and local authority guidelines. Refer to site investigation documents.

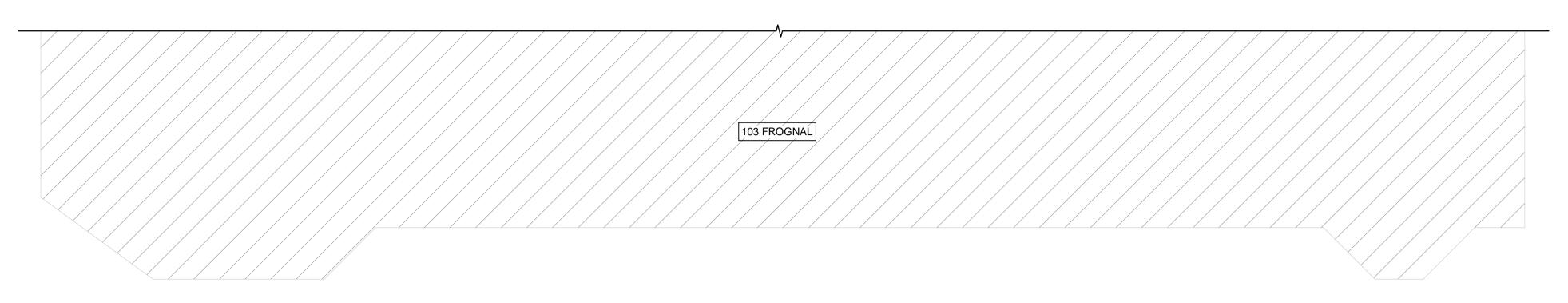
020 7701 2616 STRUCTUREWORKSHOP.CO.UK

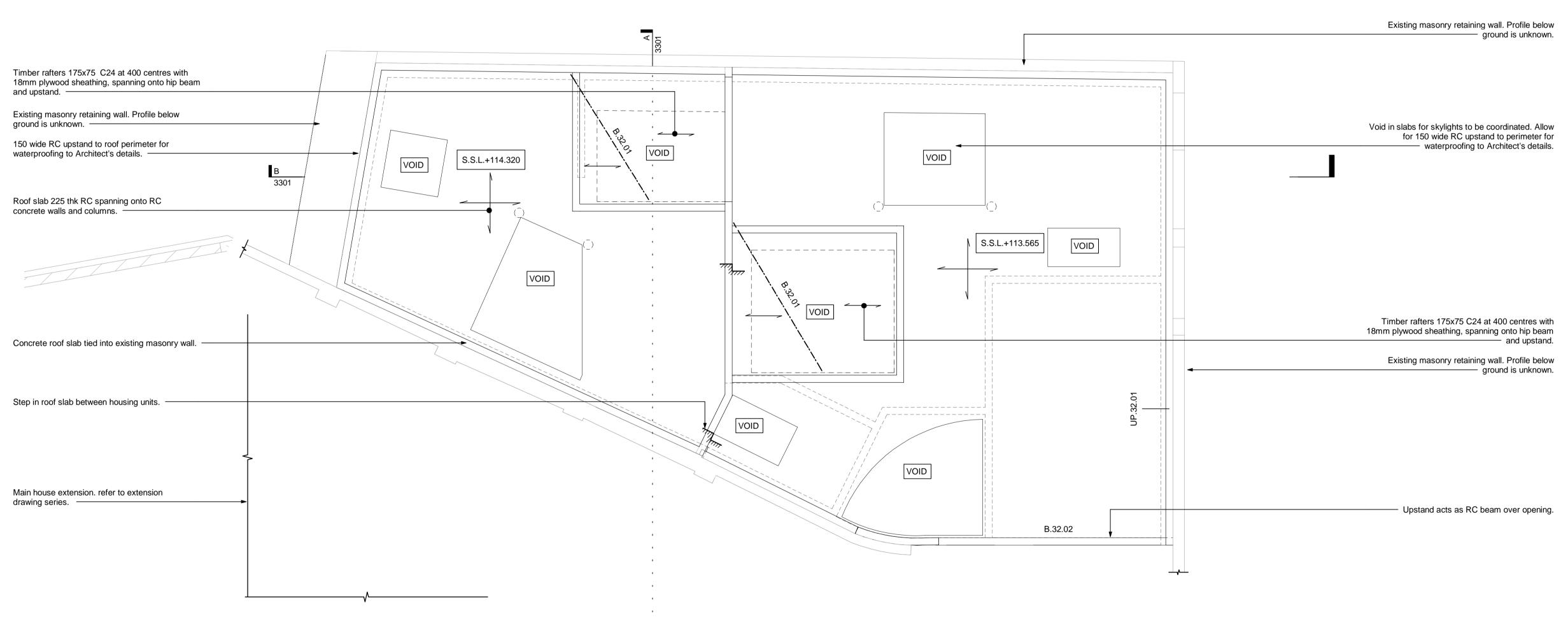
4 ILIFFE YARD LONDON, SE17 3QA

SCALE AT A1

REV.

P1

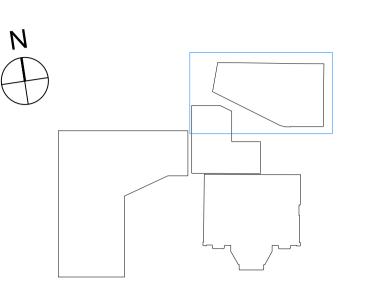

PROJECT


99 FROGNAL

GARAGE HOUSE GROUND FLOOR PLAN

DRAWING NUMBER AH 1:50 PRELIMINARY

DRAWING NUMBER 23020.3201



This drawing is to be read in conjunction with all other Architect's and Engineer's drawings, details and specifications.

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer immediately.

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

GARAGE HOUSE - BEAM SCHEDULE 1F

MATERIAL/GRADE/NOTES MEMBER SIZE B.32.01 300d x 100w GL28h Glulam B.32.02 350d x 150w RC 28/35

31.10.23 DATE

4 ILIFFE YARD LONDON, SE17 3QA

STRUCTURE WORKSHOP

020 7701 2616 STRUCTUREWORKSHOP.CO.UK

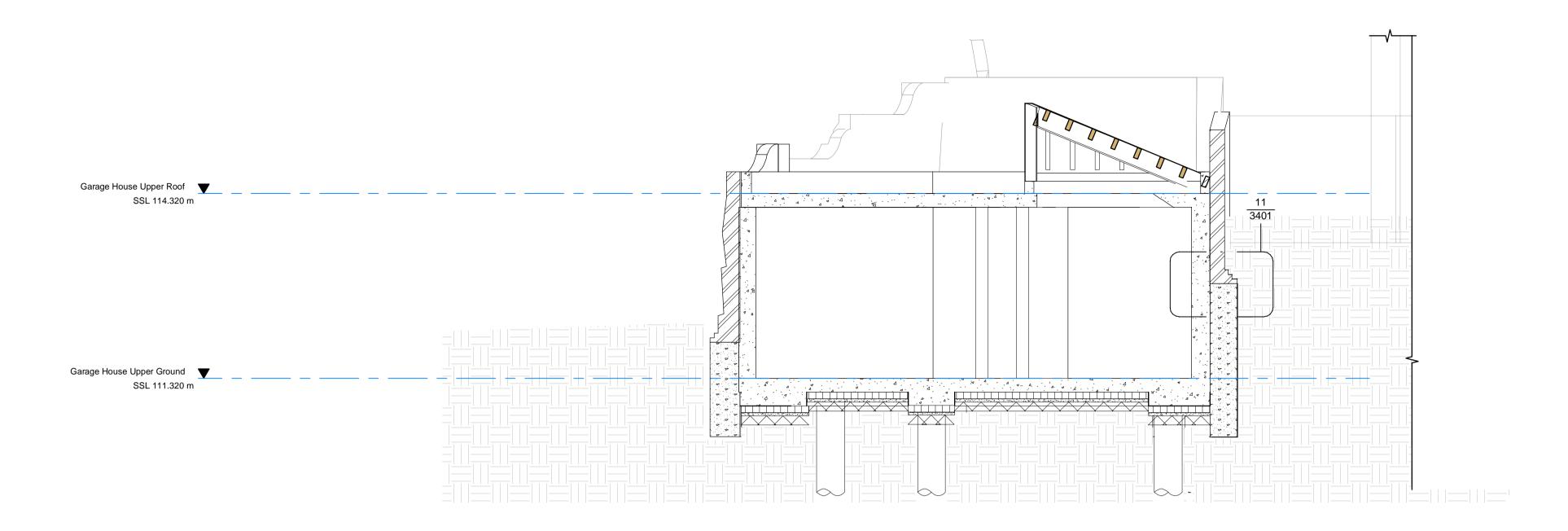
Issued for Information

DESCRIPTION

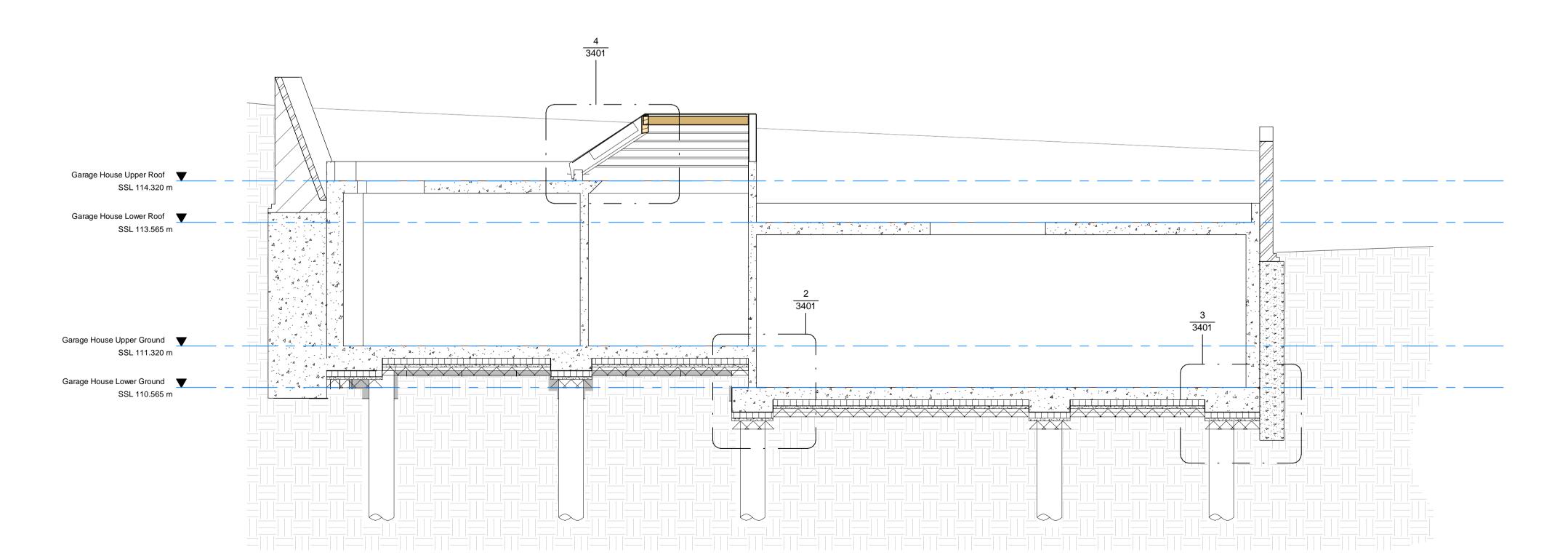
PROJECT 99 FROGNAL

DRAWING TITLE

GARAGE HOUSE ROOF PLAN


DRAWING NUMBER APPROVED SCALE AT A1 AH 1:50 PRELIMINARY

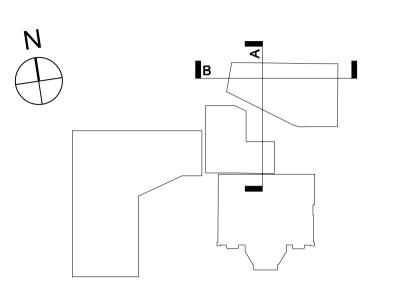
DRAWING NUMBER 23020.3202


REV. P1

GARAGE HOUSE ROOF PLAN

FOR CONTINUATION REFER TO DRAWING No.2206

SECTION A-A 1:50


SECTION B-B 1 : 50

NOTES:

This drawing is to be read in conjunction with all other Architect's and Engineer's drawings, details and specifications.

Any discrepancies in the arrangement and details discovered on site, or otherwise, are to be reported to the Architect or Engineer immediately.

All dimensions in mm. Do not scale from this drawing. Setting out to Architect's details. Drawings to be printed in colour.

Issued for Information
DESCRIPTION

31.10.23 DATE

STRUCTURE WORKSHOP

020 7701 2616 STRUCTUREWORKSHOP.CO.UK 4 ILIFFE YARD LONDON, SE17 3QA

PROJECT

99 FROGNAL

DRAWING TITLE

GARAGE HOUSE CROSS SECTIONS A & B

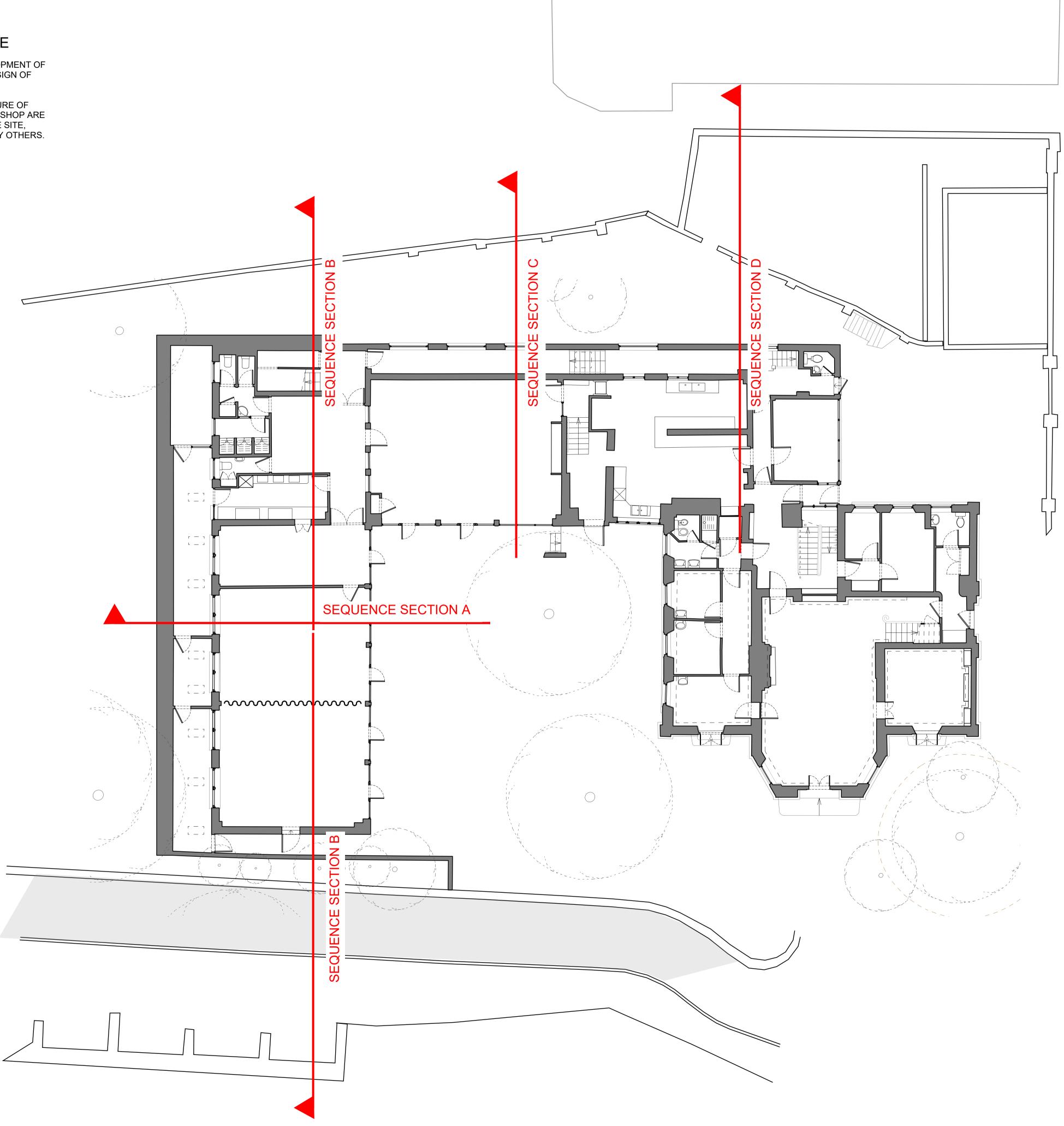
DRAWING NUMBER DRAWN APPROVED SCALE AT A1

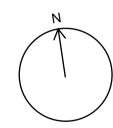
PRELIMINARY DB AH 1:50

DRAWING NUMBER REV.

23020.3301

P1

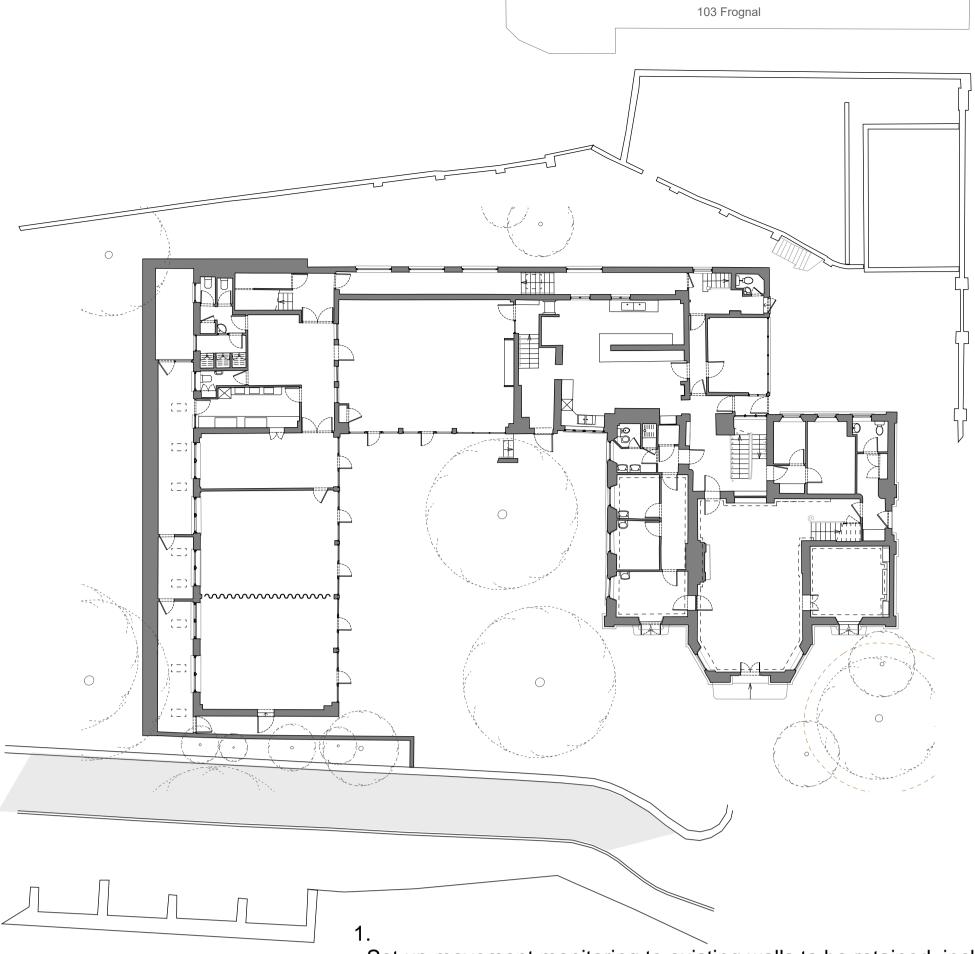

APPENDIX B


BASEMENT CONSTRUCTION SEQUENCE

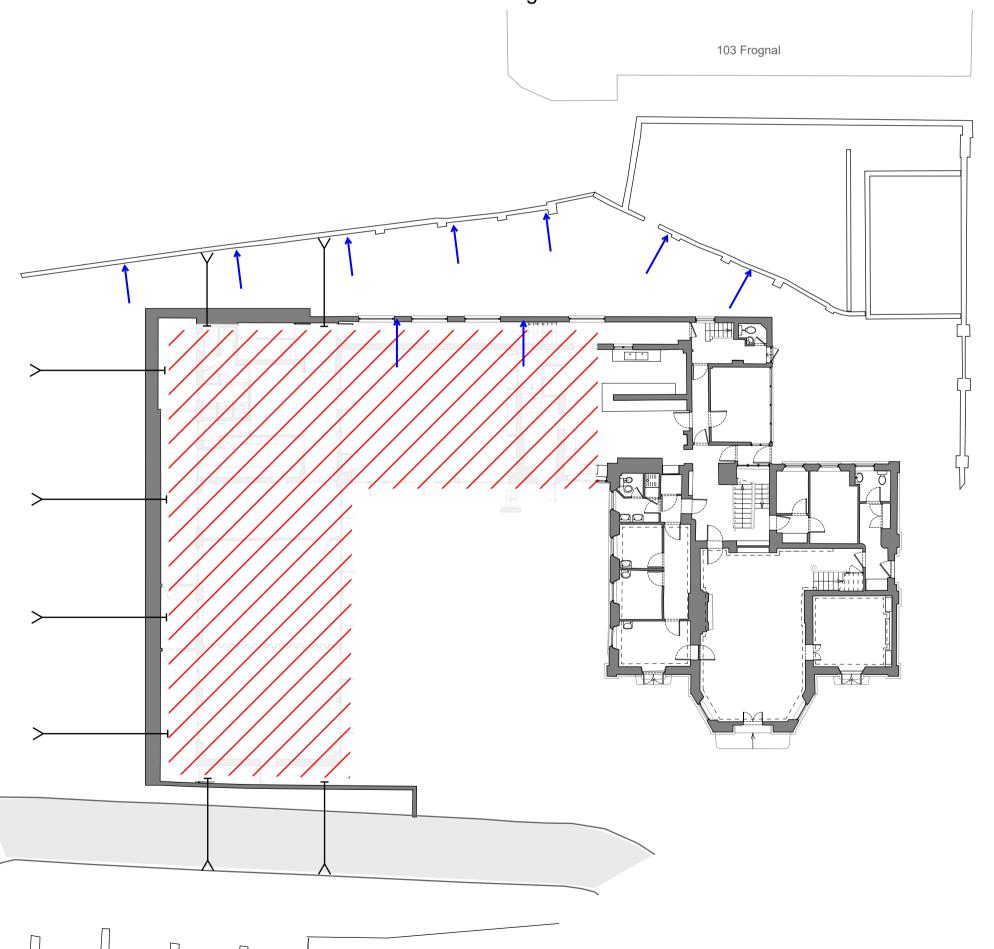
BASEMENT CONSTRUCTION SEQUENCE

THIS ASSUMED SEQUENCE IS PRELIMINARY TO ENABLE DEVELOPMENT OF THE STRUCTURAL DETAILS. THE FINAL SEQUENCE AND THE DESIGN OF ALL TEMPORY WORKS IS TO THE CONTRACTOR'S DETAILS.

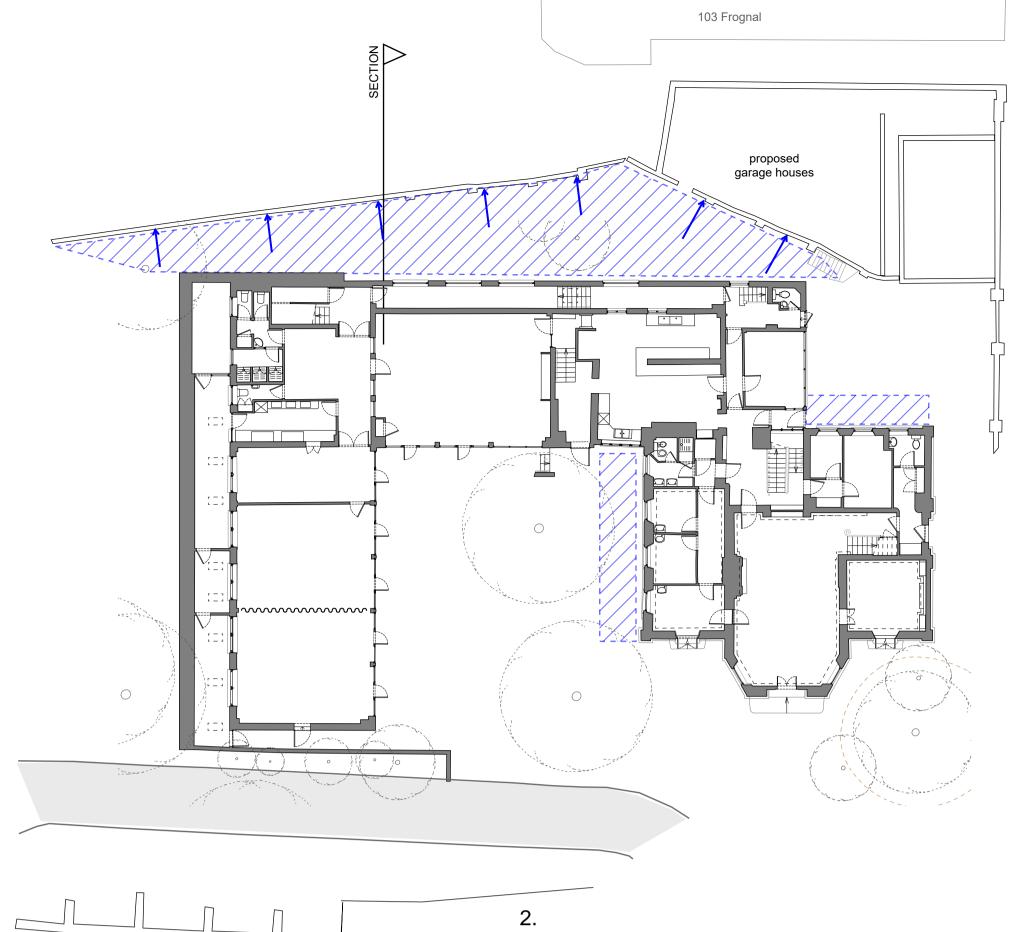
THIS ASSUMED SEQUENCE RELATES TO THE PRIMARY STRUCTURE OF THE BUILDING ONLY, THE DESIGN OF WHICH STRUCTURE WORKSHOP ARE RESPONSIBLE FOR. THE DESIGN OF LANDSCAPING ACROSS THE SITE, BELOW GROUND DRAINAGE AND OTHER BURIED SERVICES IS BY OTHERS.

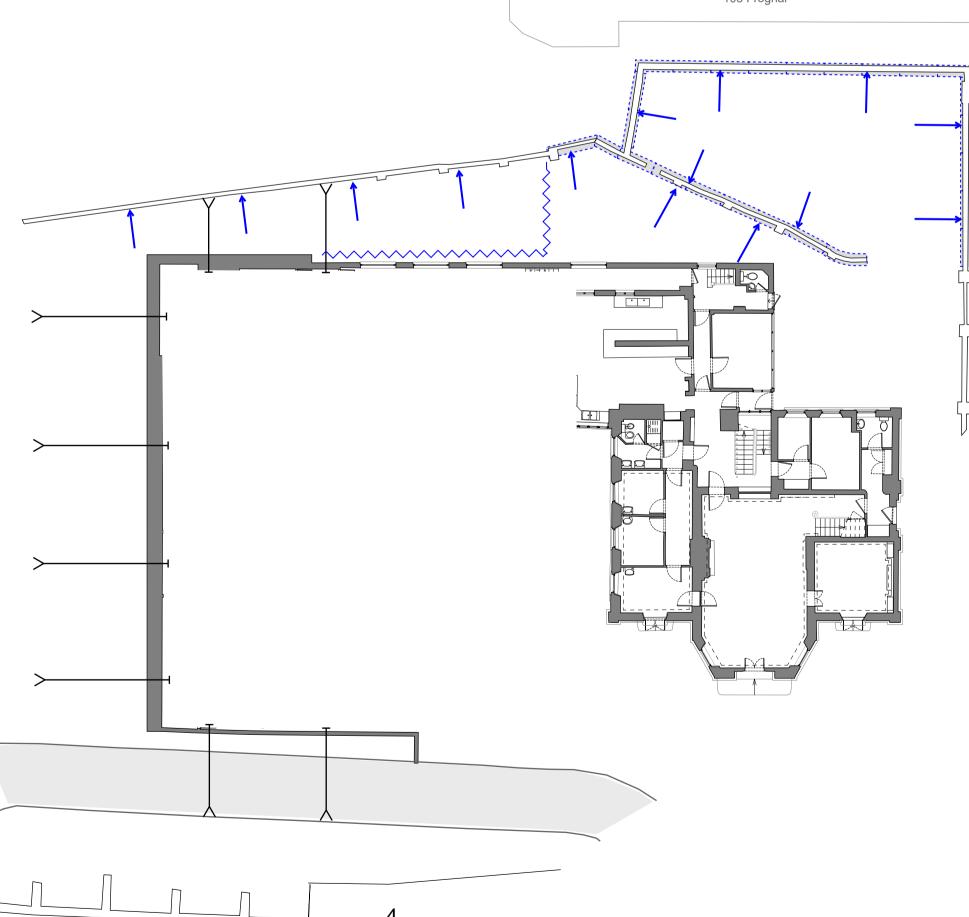

STRUCTURE WORKSHOP

020 7701 2616	4 ILIFFE YARD
STRUCTUREWORKSHOP.CO.UK	LONDON, SE17 3Q
PROJECT 99 FROGNAL	

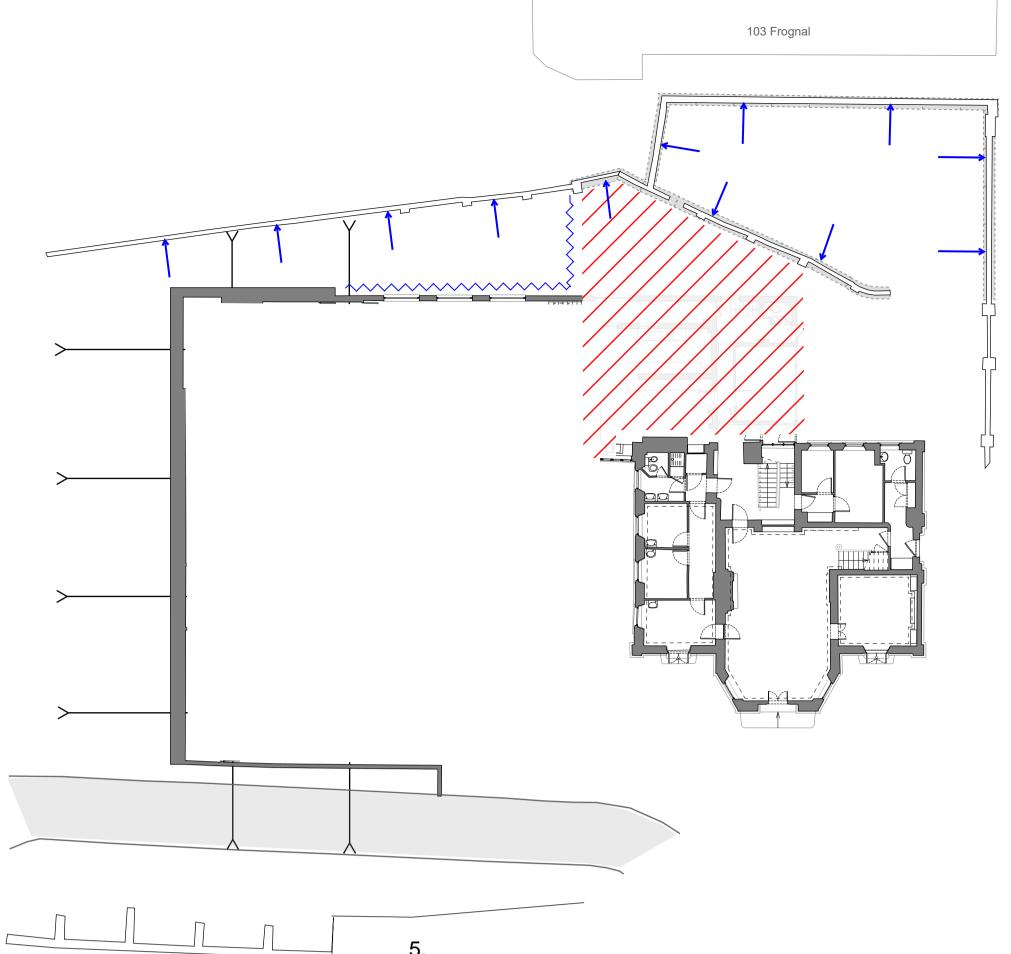

TITLE	

BASEMENT CONSTUCTION SEQUENCE

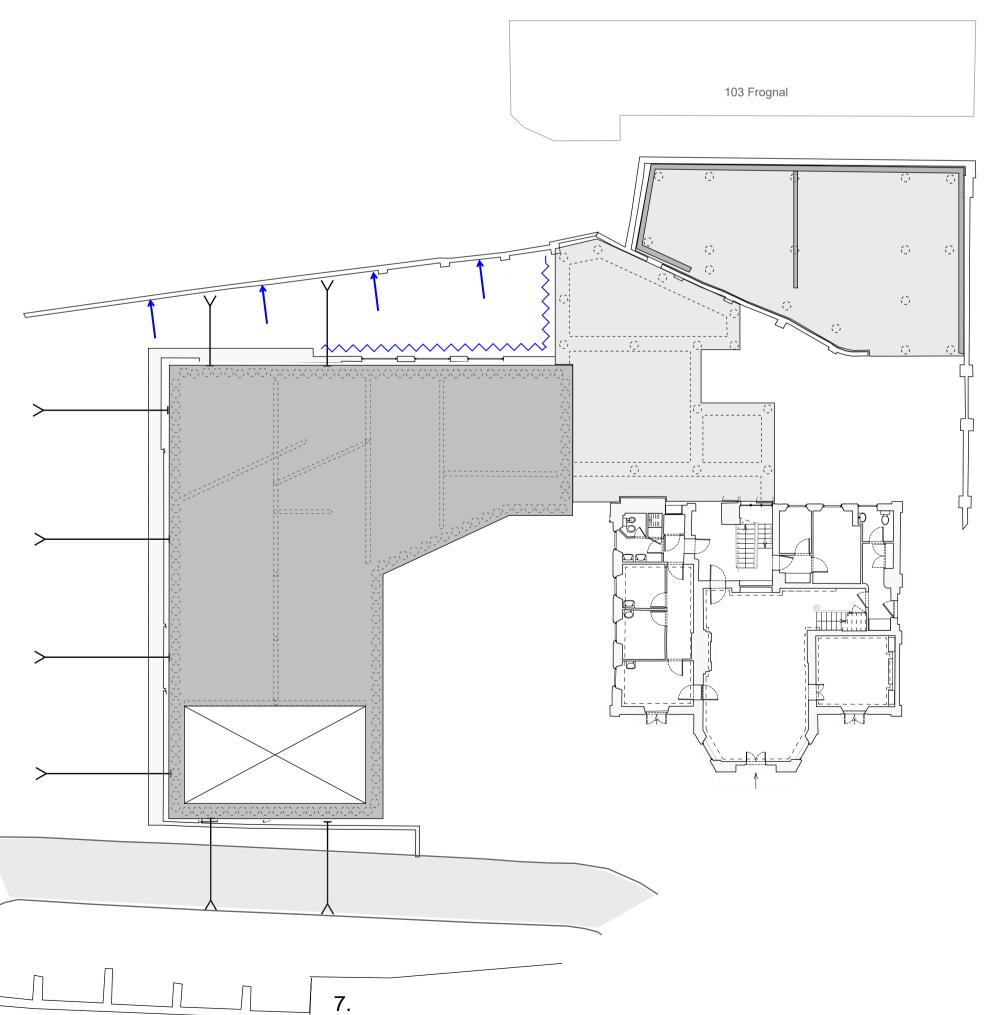

DATE	ENGINEER
NOV 23	AH
PROJECT NUMBER	SKETCH NUMBER
23020	SK27 P4


- Set up movement monitoring to existing walls to be retained, including main house, north and south boundary walls, the adjacent property 103 Frognal to the north, and the east wall on Frognal

- Demolish west wing of existing extension building and partially demolish north wing to extents of proposed
- Install soil anchors and temporary support to existing retaining walls as required. Undertake demolition and anchoring in sections to ensure stability is maintained.
- Add propping to existing north retaining wall of the existing extension to be demolished later.
- Retain north-west corner of existing extension that provides support to existing garage walls.

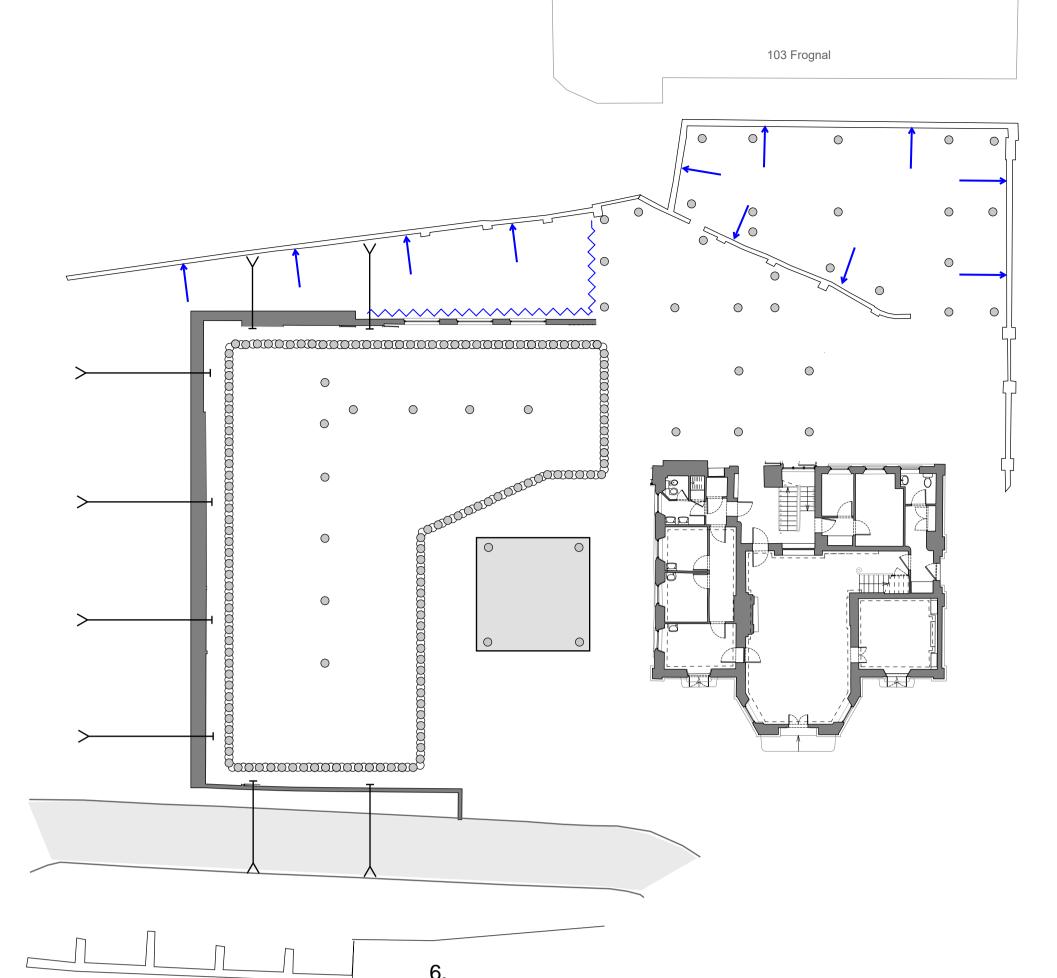


- Create working route along northern boundary to provide sufficient working space for small plant.
- Provide protection/stabilisation to boundary walls and to north & west main house walls.
 Anchoring and remediation works to the northern boundary wall as required for stabilisation of the existing
- structure details subject to party wall agreement.
 Lower ground behind existing retaining walls as required to reduce lateral loads while maintaining stability to adjacent structures and road.

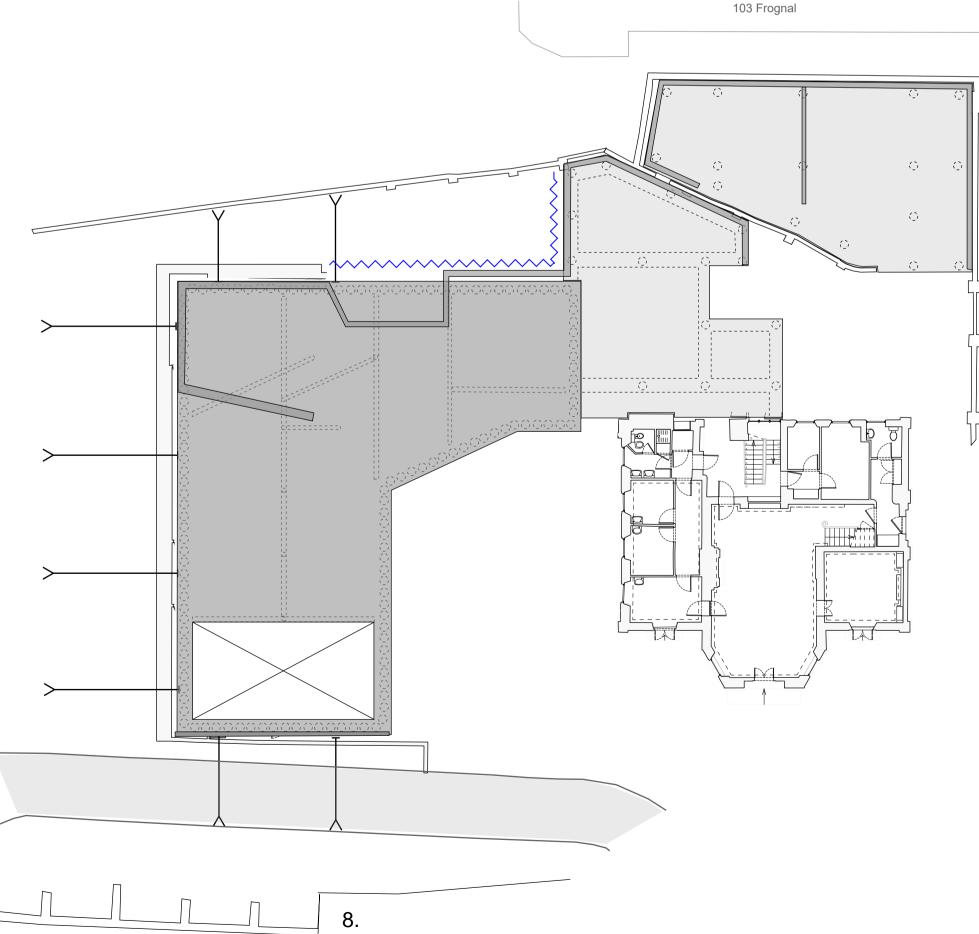


See separate Garage House Construction Sequence sketch.

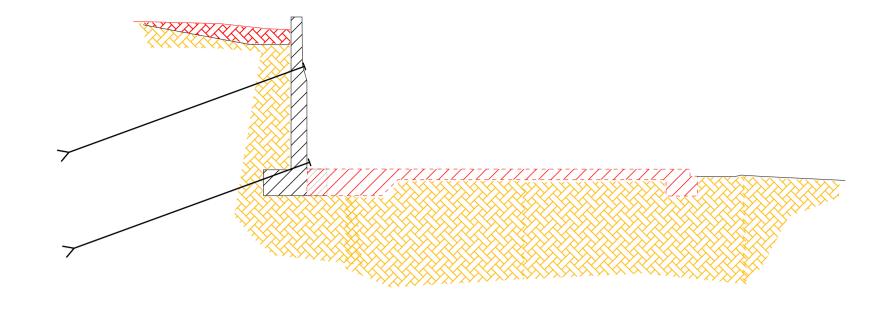
- Underpin existing walls around garage houses from raised level.
- Install temporary propping and excavate down to formation level in sequence.
- Install temporary sheet piling between extension and north boundary wall.

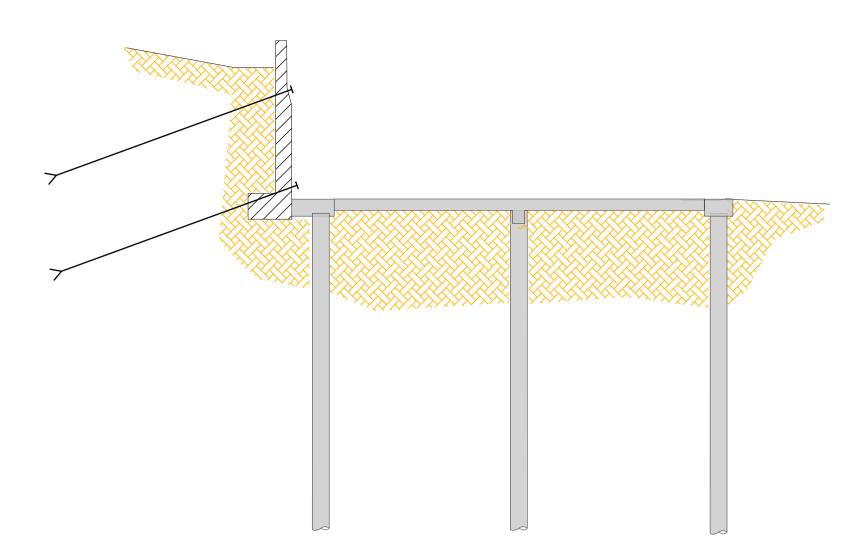


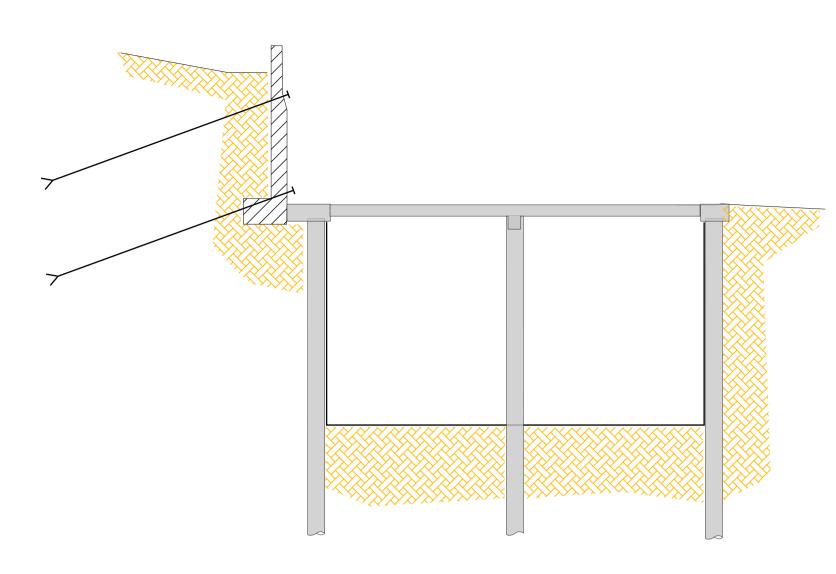
- Demolish remainder of existing extension and excavate ground between existing extension and garage houses down to proposed formation level.



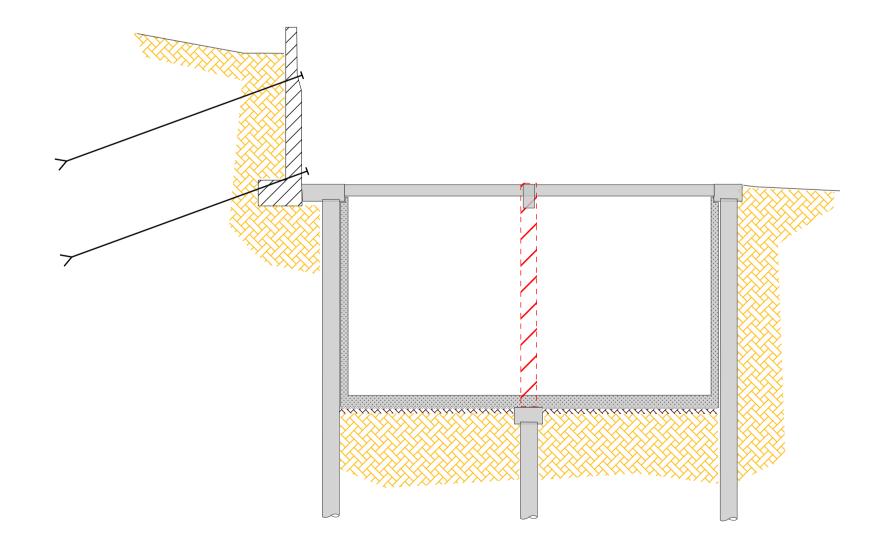
- Cast perimeter capping beam, basement roof slab and downstand beams on ground on temporary internal piles. Ground floor slab for east side of proposed extension can be cast simultaneously.
- Top down basement construction. Once roof slab cast, bulk excavation of basement can begin through large opening at south end of basement slab.


 Refer to basement construction sequence sections. Progress basement construction in parallel with work above ground as Contractor sees fit.

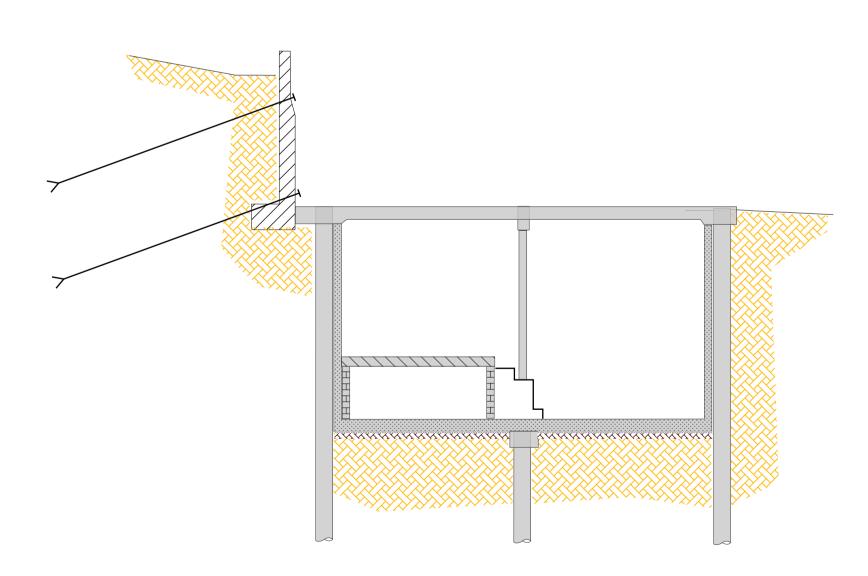



- Install secant piled perimeter wall to basement and other piled foundations for the proposed extension from existing extension ground floor level. Piled foundations at garage houses can be installed at the same time.
- Work around temporary propping.
- Possible location for crane in centre of site with piled base? TBC by Contractor.

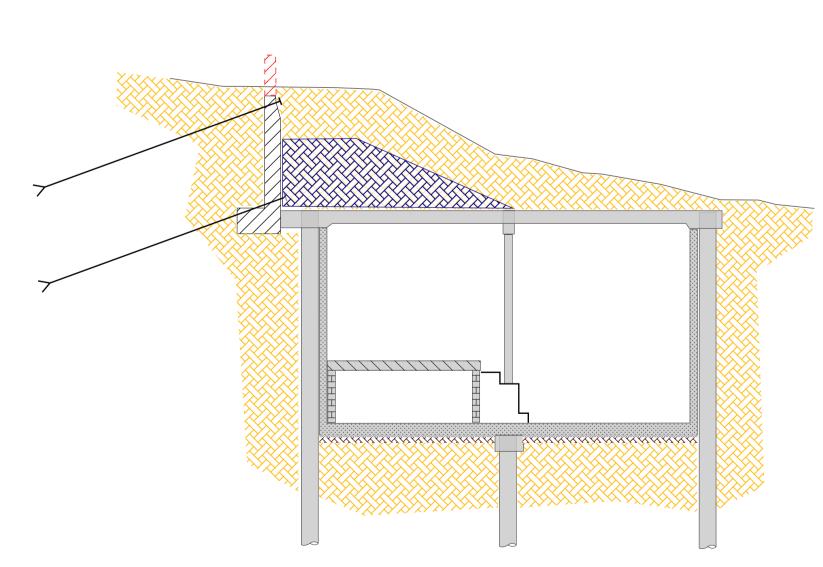
- Construct permanent retaining walls at ground floor on north side of new extension and one south wall against road.
- Remove sheet piling
- Backfill and install earth and landscaping works across site.
- Construction of superstructure above ground.



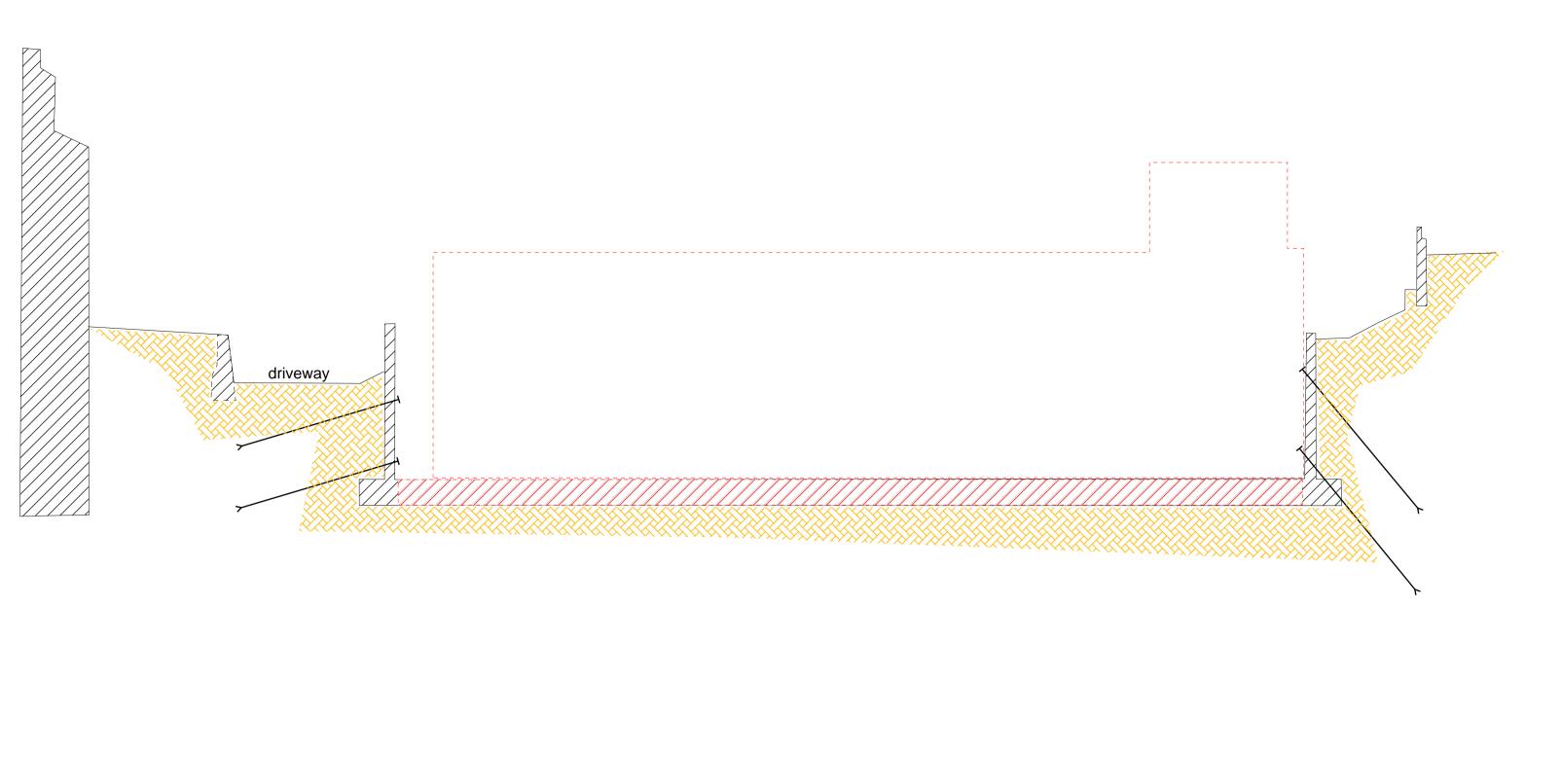
- Lower earth behind wall to final level.
- Re-support existing retaining wall with soil anchors to take full lateral load
 Demolish existing extension. Undertake demolition and anchoring in sections to ensure stability is maintained.
 - Cut base of existing retaining wall flush with wall with diamond tipped saw.
- Break out existing ground slab


6 / 7A.

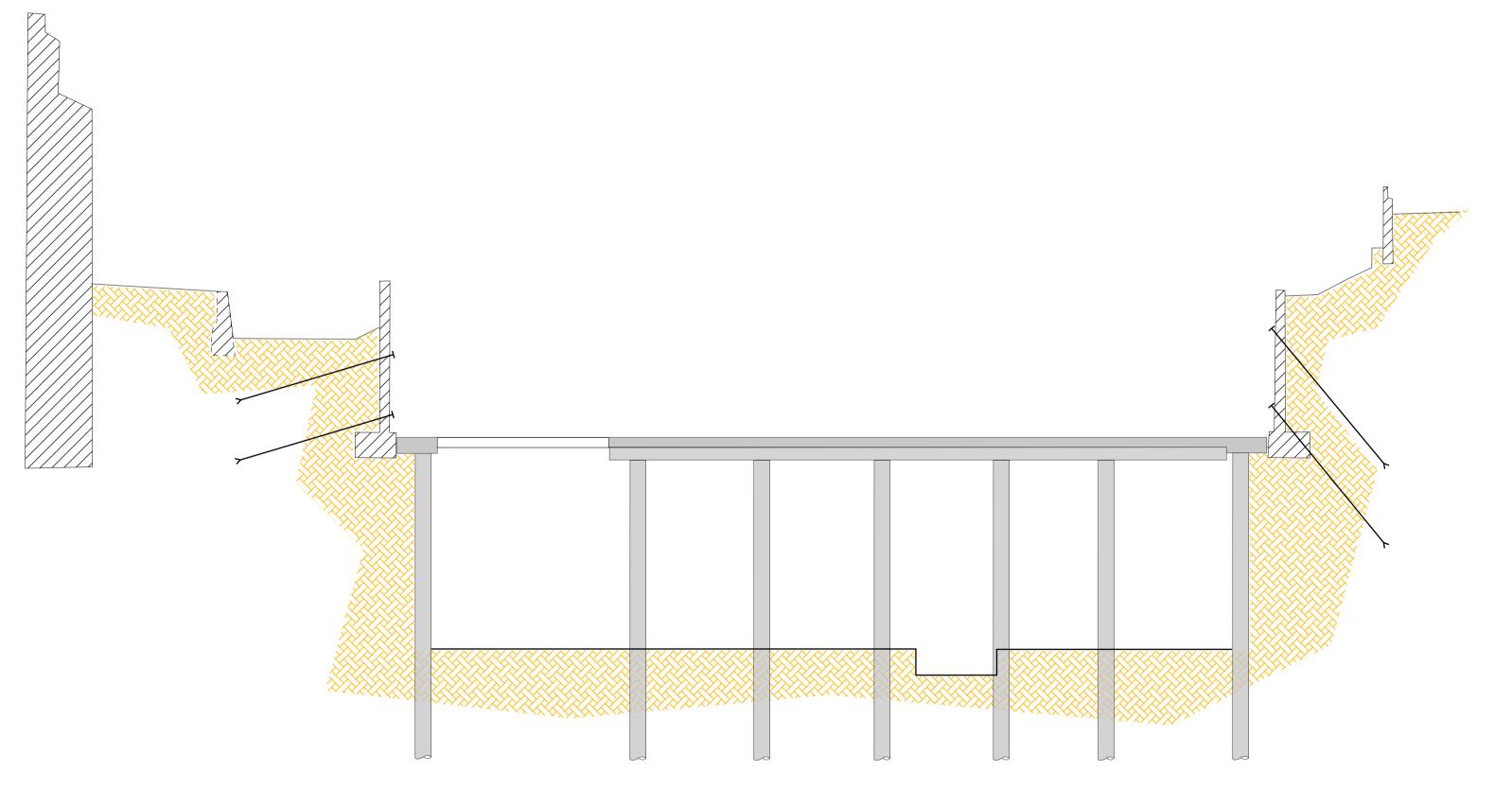
- Install piles from ground level.
- Cast perimeter capping beam, basement roof slab and downstand beams on perimeter piles and temporary internal piles.
- Slab to be cast on blinding and sheeting. Pipes to be installed to allow future pouring of basement lining wall.


- Using slab opening at south end for access and spoil removal, excavate to formation level around internal temporary piles.
- Internal piles support basement roof slab in temporary case.

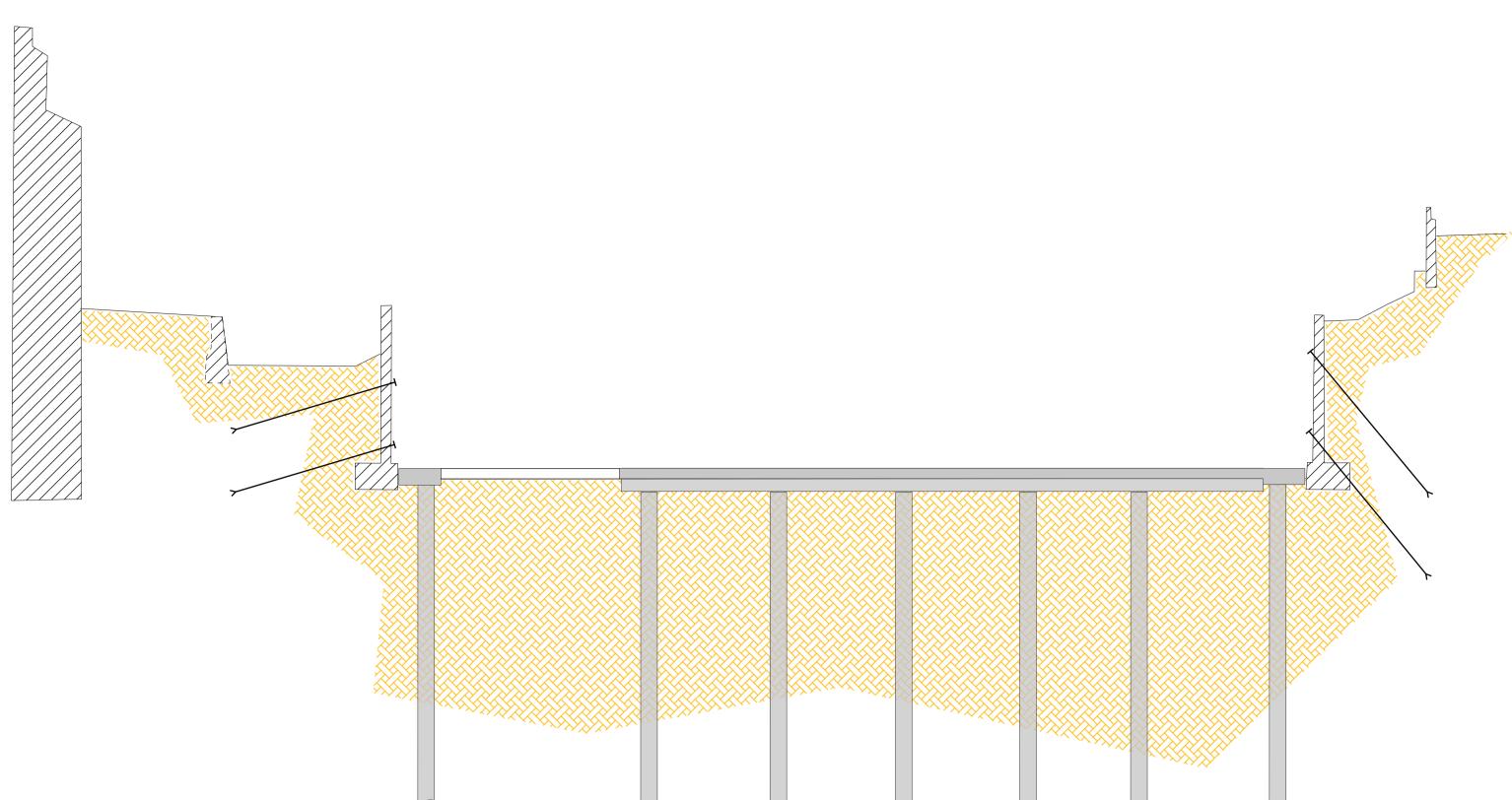
- Cast basement ground beams at low level, low level sumps, basement slab, and lining walls in waterproof concrete.
- Build permanent internal columns and shear walls.
- Demolish temporary internal piles once roof slab fully supported on permanent vertical structure.



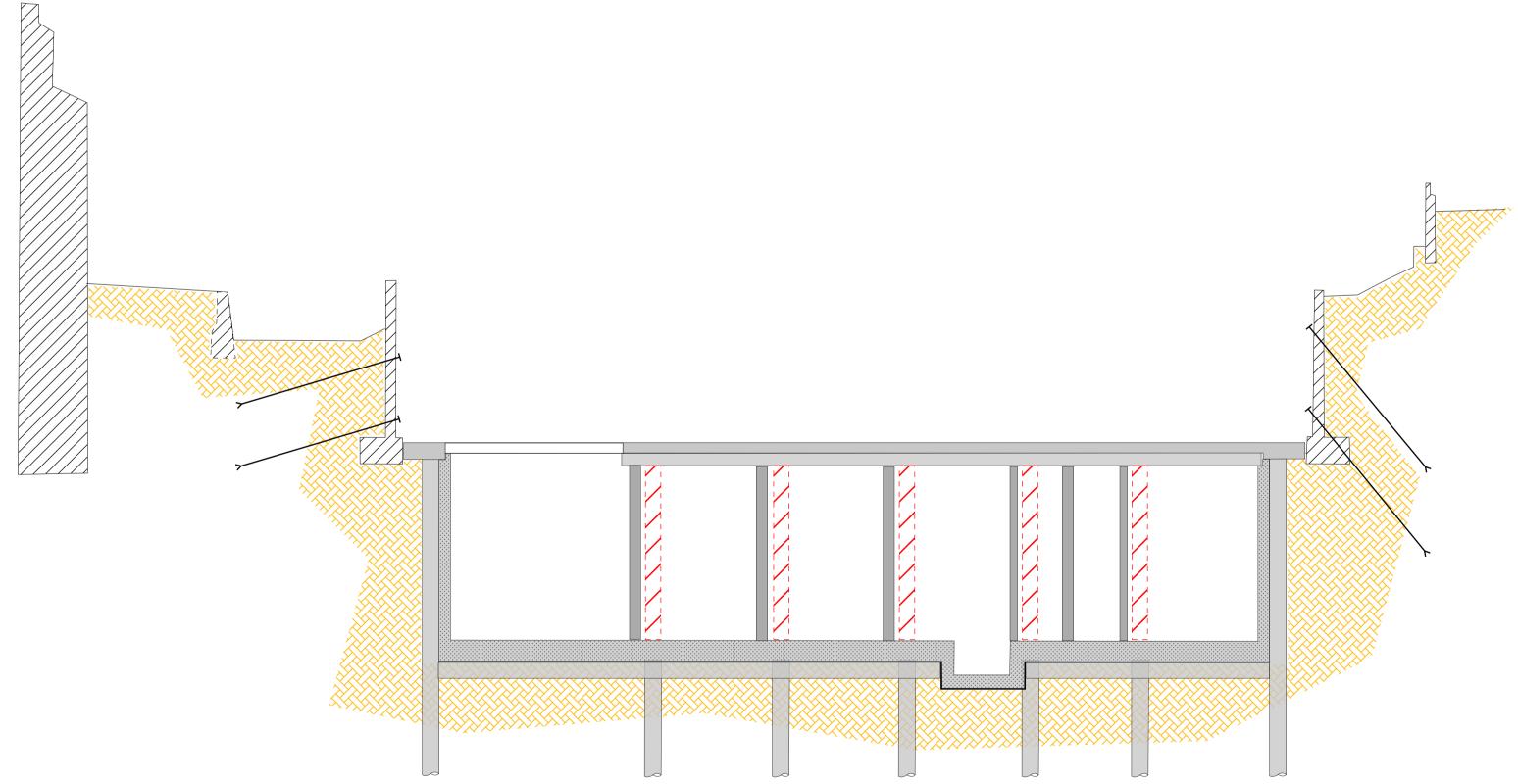
- Build internal block walls and lift in upper beam and block floor.
- Internal waterproof pool structure to be installed. Design by others.



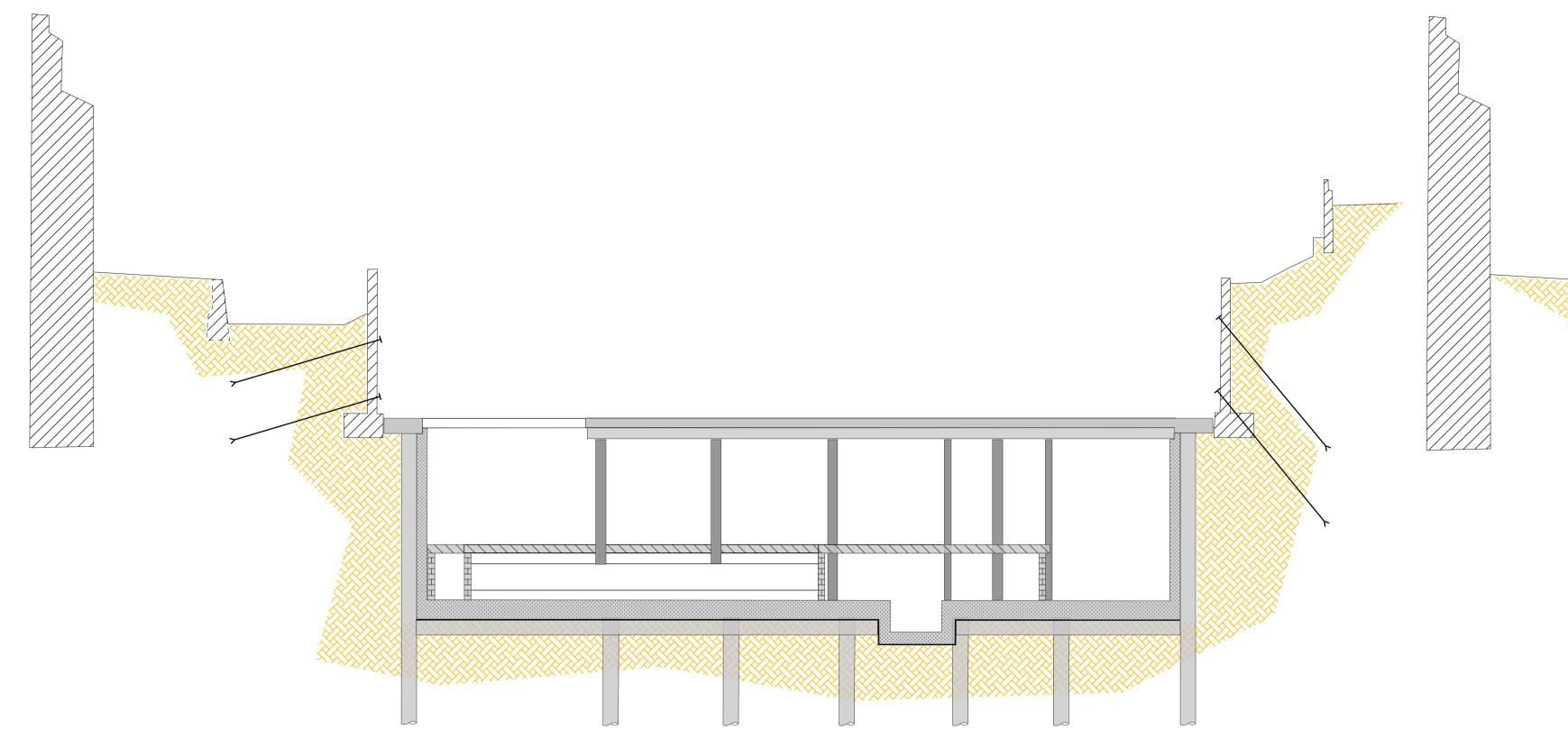
- Backfill over basement roof with light-weight construction and top soil, and landscape as per proposed design. Permanent soil stabilisation works by others.
- Demolish top of existing retaining walls where required.


BASEMENT SEQUENCE A

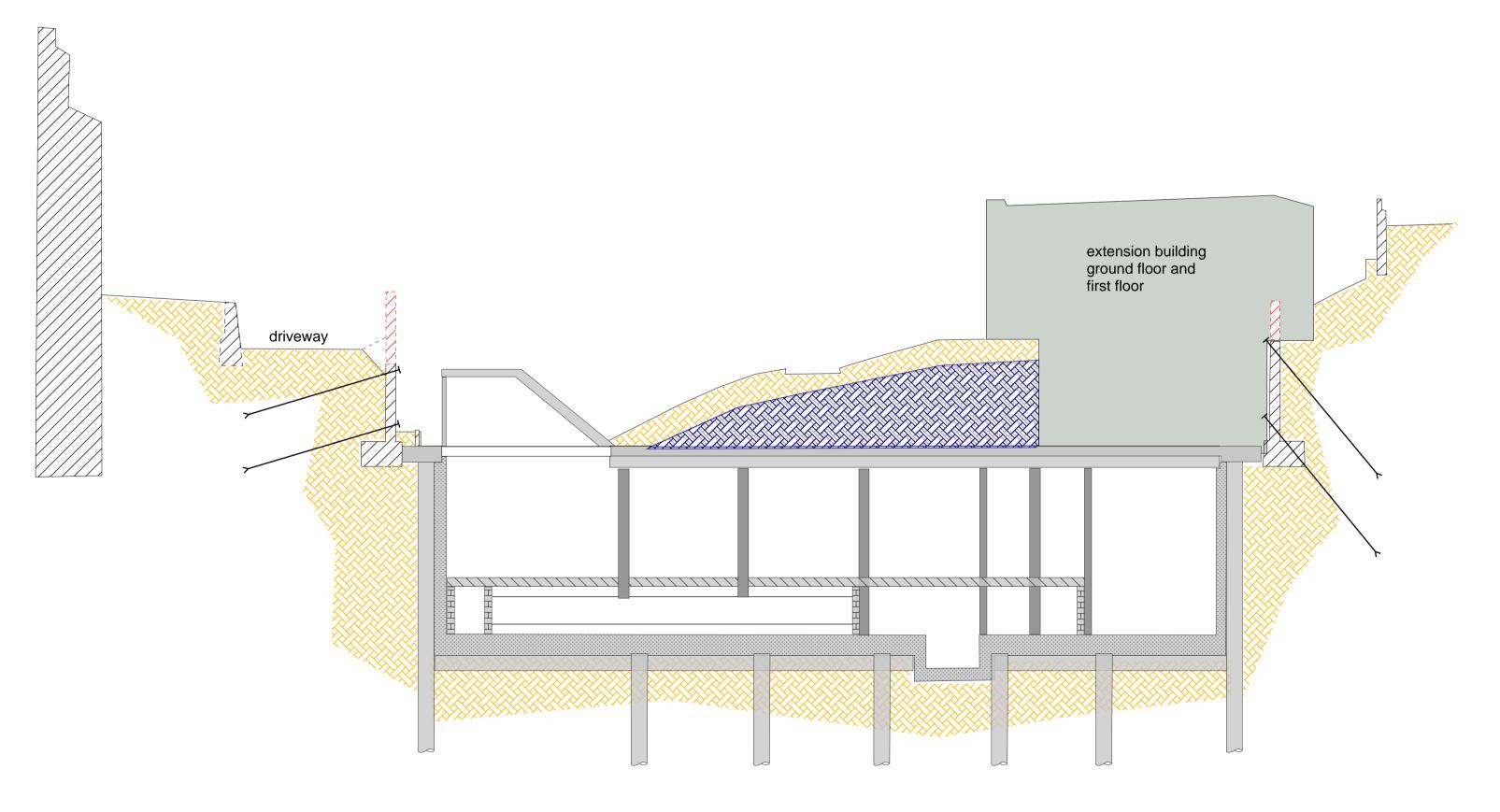
- Re-support existing retaining wall with soil anchors to take full lateral load
 Demolish existing extension. Undertake demolition and anchoring in sections to ensure stability is maintained.
 Cut base of existing retaining wall flush with wall with diamond tipped saw.
 Break out existing ground slab

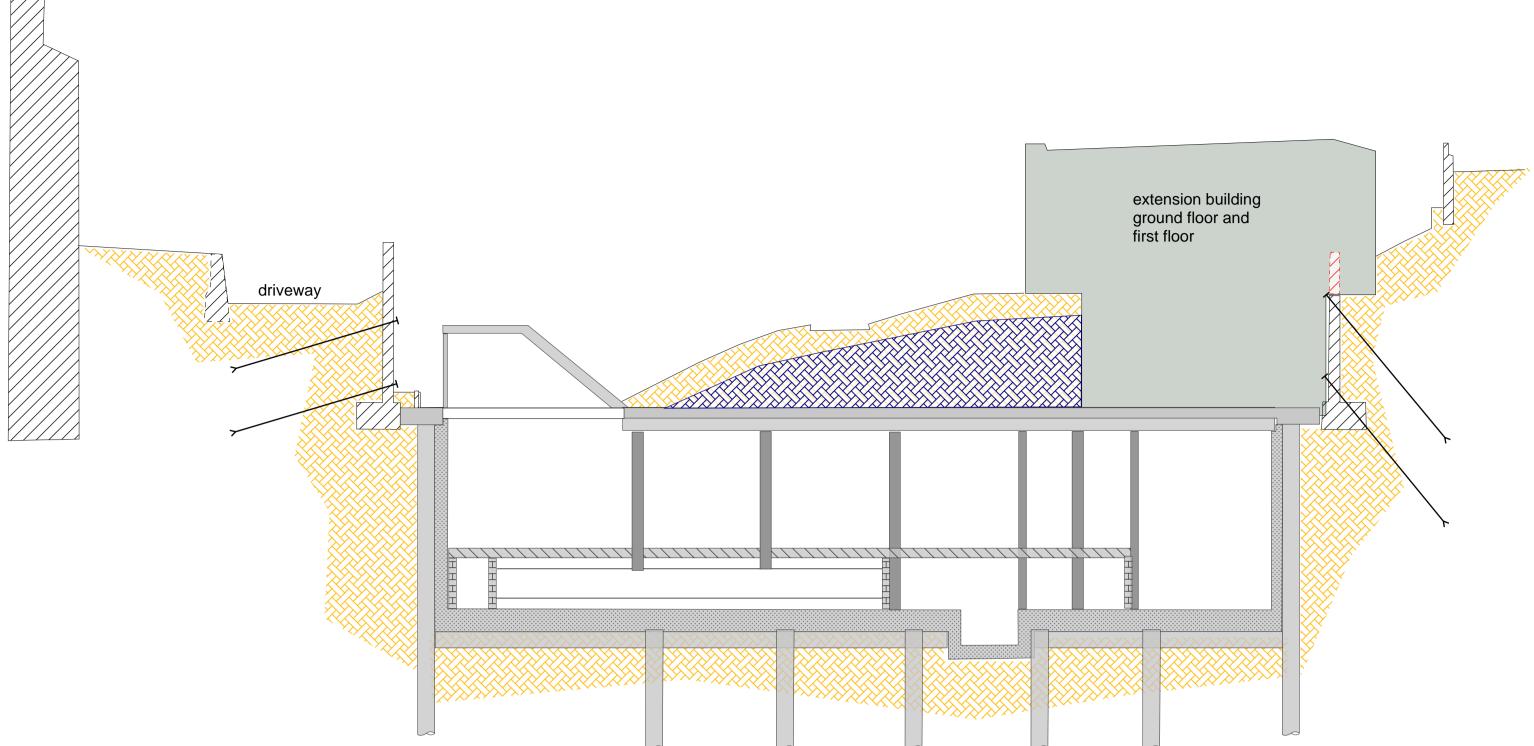


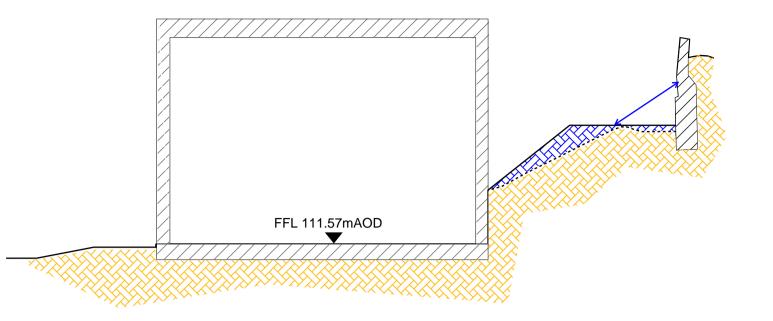
- 7B.
 Using slab opening at south end for access and spoil removal, excavate to formation level around internal
- Internal piles support basement roof slab in temporary case.

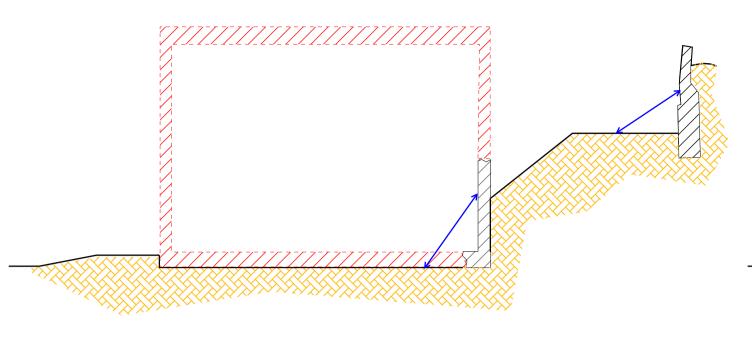


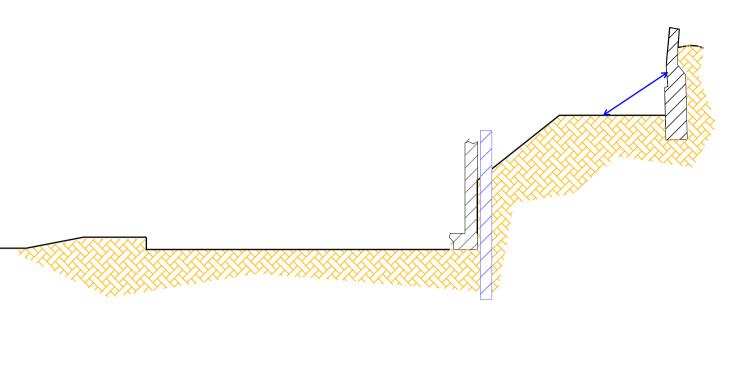
6 / 7A.


- Install piles from ground level.
- Cast perimeter capping beam, basement roof slab and downstand beams on perimeter piles and temporary
- Slab to be cast on blinding and sheeting. Pipes to be installed to allow future pouring of basement lining wall.

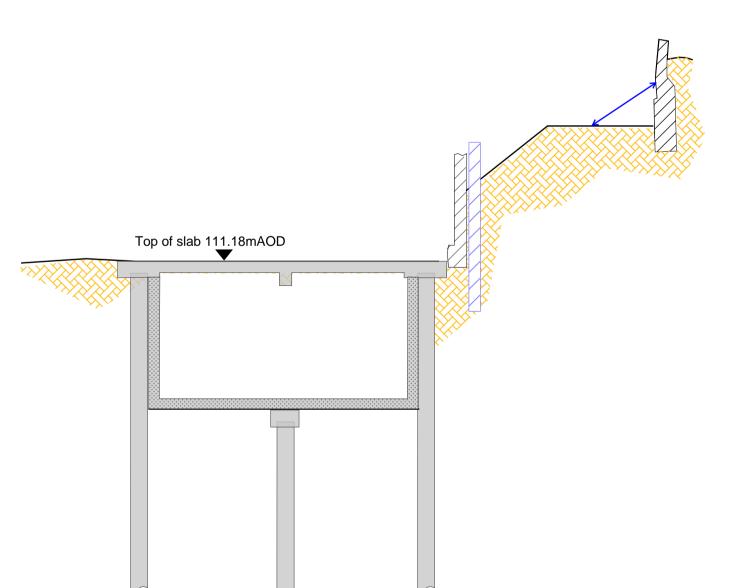

- 7C.
 Cast basement ground beams at low level, low level sumps, basement slab, and lining walls in waterproof concrete.
 Build permanent internal columns and shear walls.
 Demolish temporary internal piles once roof slab fully supported on permanent vertical structure.

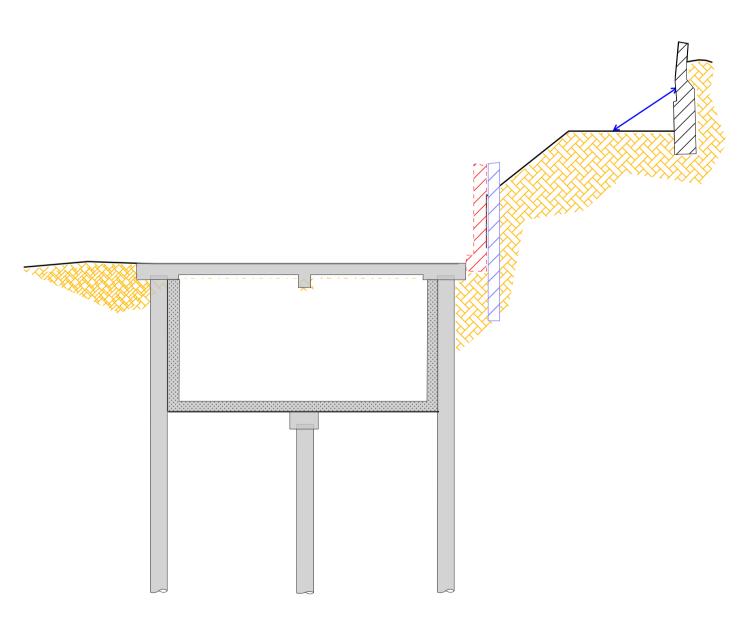

- Build internal block walls and lift in upper beam and block floor.
 Internal waterproof pool structure to be installed. Design by others.



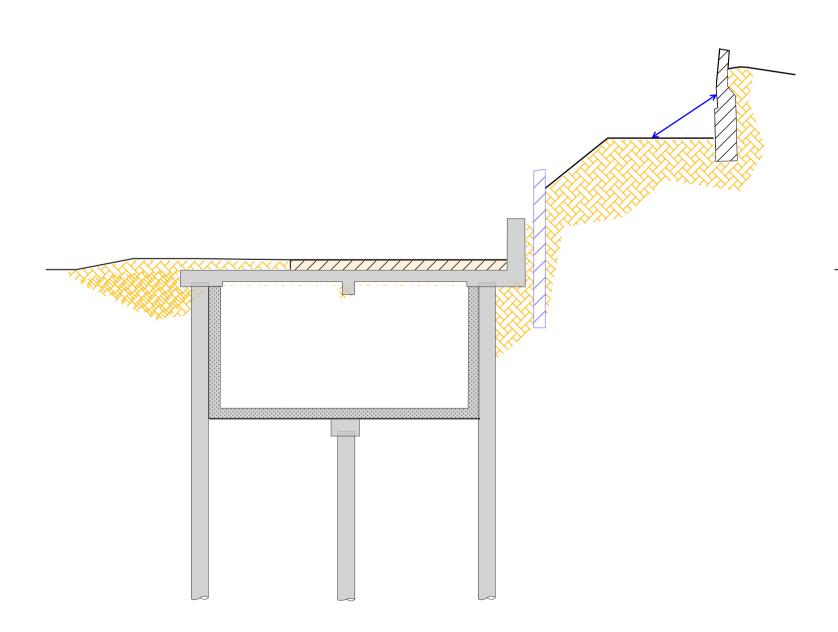

- Re-profile ground as per proposed landscaping. Assumed that slope stabilisation is required adjacent to driveway, to be designed by others.
 Demolish top of existing RC retaining wall where it protrudes above final ground level.

- Construct permanent retaining walls at ground floor level.
 Backfill over basement roof with light-weight construction and top soil, and landscape as per proposed design. Permanent soil stabilisation works by others.
 - Construct superstructure above ground.
 - Construct low-level retaining wall in front of existing RC retaining wall along driveway as part of landscaping works.

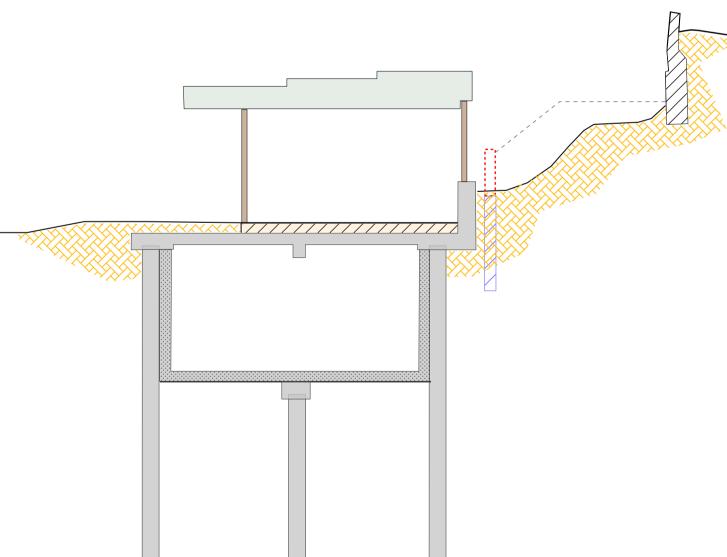


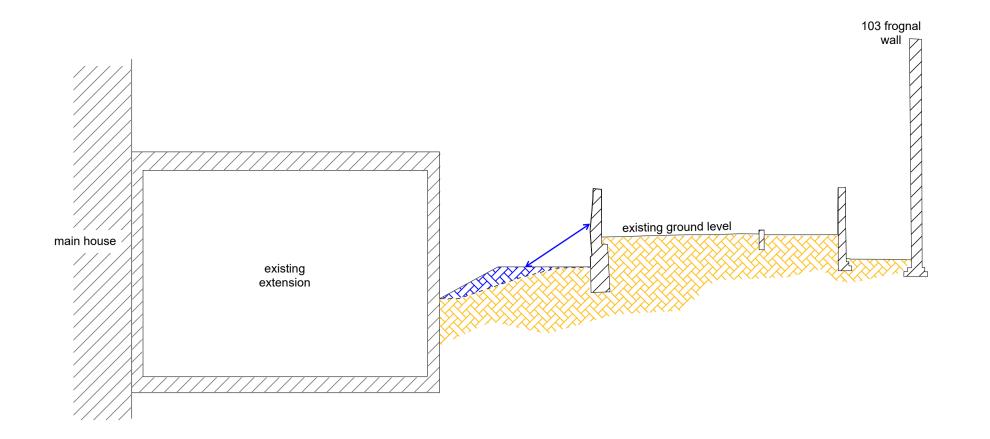

- Create working route along northern boundary to provide sufficient working space for small plant.
- Install soil anchoring or internal propping to north boundary wall.
- Demolish existing extension building.
- Add temporary propping to existing north retaining wall of extension, where sheet piling will be installed at a later stage.
- Install sheet piling behind existing retaining wall.

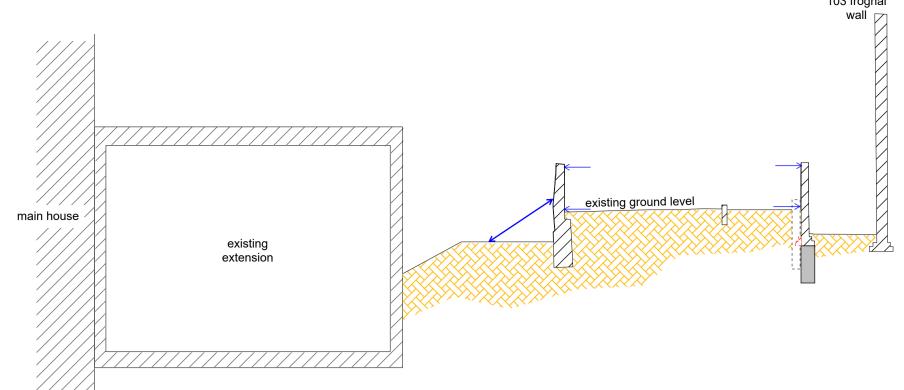
Install secant piled perimeter wall to basement and other piled foundations for basement from existing extension ground floor level.

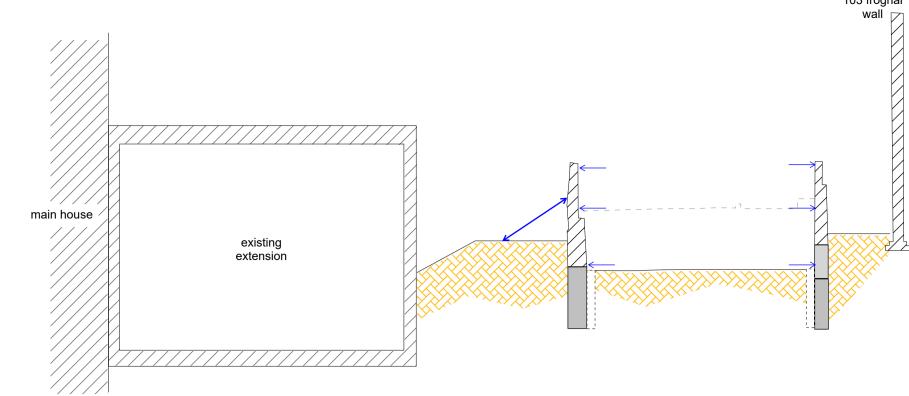


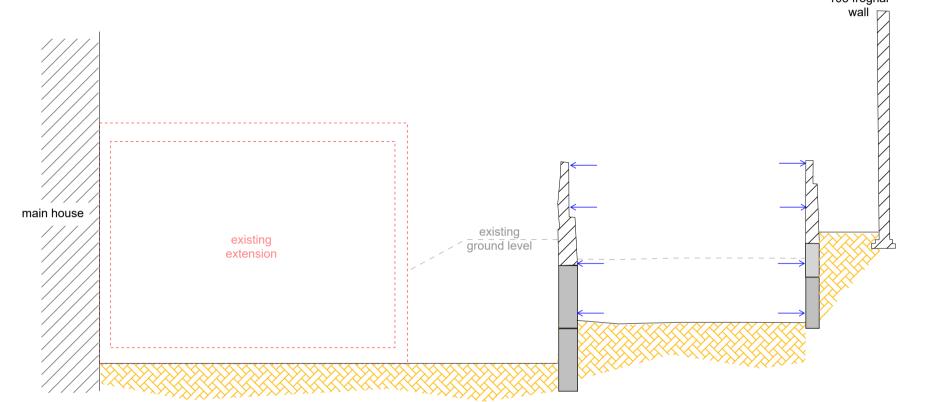
- Cast perimeter capping beam, basement roof slab and downstand beams on perimeter piles and temporary internal piles.
- Work around temporary propping, re-supporting lateral propping to retaining wall on ground floor slab.
- Top down construction of basement, excavating from south end around temporary piles.

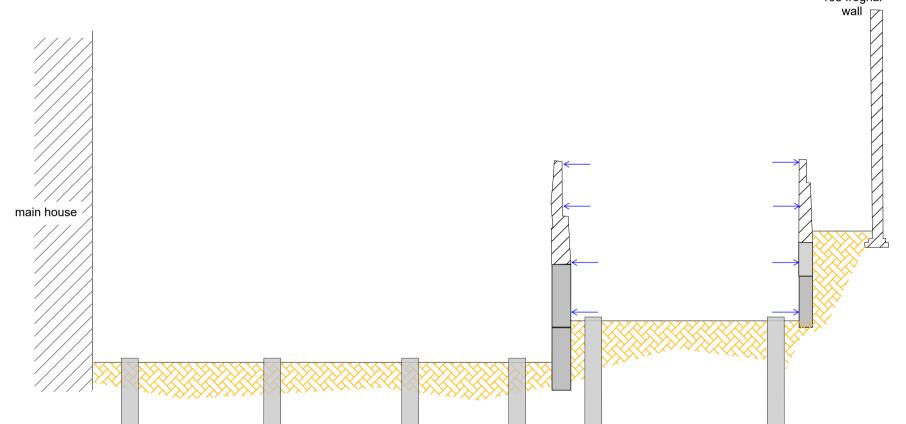

Refer to basement construction sequence A.

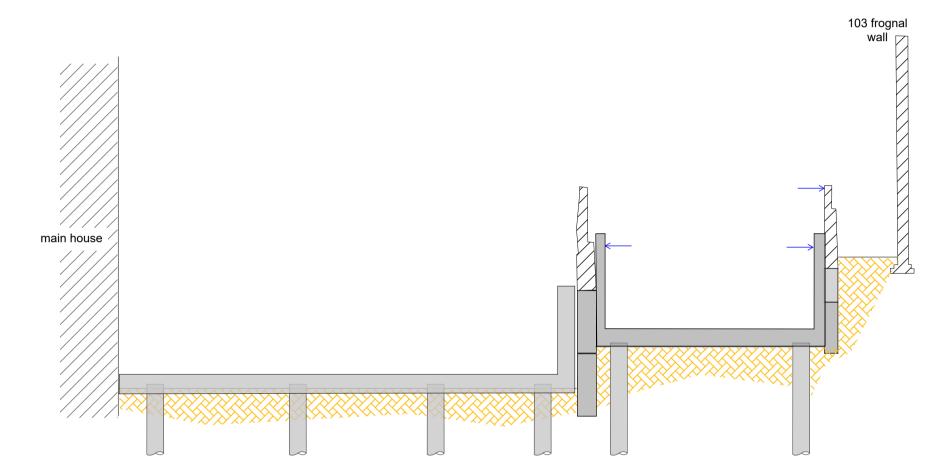

- Demolish existing concrete retaining wall working around temporary propping to sheet piled wall.

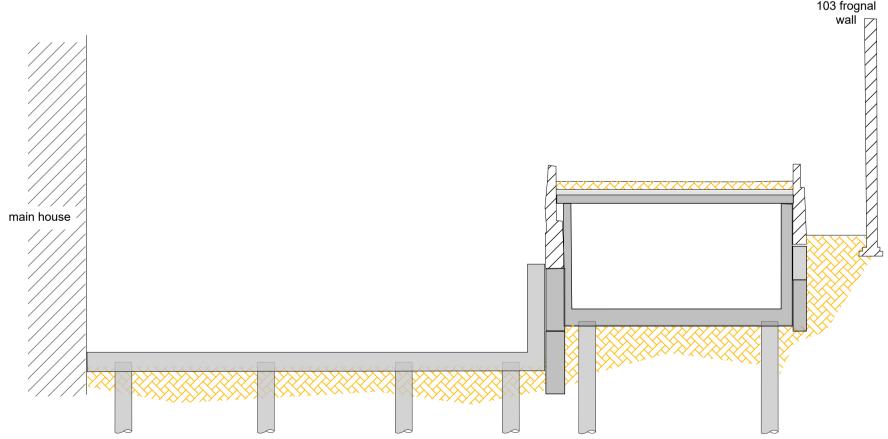

- Construct permanent retaining walls and drainage at ground floor level.


- Construction of superstructure above ground.
 Backfill and install earth and permanent soil stabilisation and landscaping works.
- Remove or cut down top of sheet piling.


- Install temporary propping to existing garden wall.
- Undertake levelling works as required to provide suitable base for propping.


- Install first lift of underpinning in sequence to west, north and east existing walls to approximately half-way down to proposed new formation level.
- Install temporary lateral propping at high level.


- Excavate ground down to approximately mid-height excavation level.
- Install additional temporary lateral propping as required just above excavation level to stabilise walls and first lift of underpinning.
- Install second lift of underpinning in sequence to all perimeter walls to below formation level. (on southern garage wall depth of underpinning will need to be to formation level of proposed extension to main house)


- Demolish existing extension building and excavate ground level in between down to proposed formation level.

- Excavate down to garage house formation level
- Install piles for garage houses and extension building working around temporary propping.

- Cast ground slab and load-bearing walls, working around temporary propping.
 Relocate propping onto new RC walls as they gain strength gain strength.
- New RC walls provide permanent stabilisation to existing brick walls.

- Install roof slab to garage houses. Roof slab provides permanent prop to top of new RC walls.
- Remove temporary props.
- Construct superstructure of extension building

GARAGE HOUSES SEQUENCE D

APPENDIX C

PRELIMINARY STRUCTURAL CALCULATIONS FOR BASEMENT

LONDON SE17 3QA

STRUCTUREWORKSHOP.CO.UK

99 FROGNAL

STRUCTURE

WORKSHOP

PRELIMINARY STRUCTURAL CALCULATIONS FOR BASEMENT

PROJECT NO 23020

PREPARED BY ALIYA HOSSAIN MENG

REVIEWED BY DANIEL DOWEK MA MENG CENG MISTRUCTE

REVISION DATE COMMENTS

P1 02/11/2023 Issued for information

STRUCTURE WORKSHOP

CONTENTS

1		
INTROE	DUCTION	
1.1	Introduction	1
LOADIN	IG	
2.1	Schedule of Loads	2
2.2	Foundation Load Distribution	8
EXTENS	SION BASEMENT	
3.1	Buoyancy	13
3.2	Basement Walls	15
3.2.1	West piled retaining wall	16
3.2.2	East piled retaining wall	19
3.3	Basement Layout	22
3.3.1	Design of RC Slab S.20.01	25
3.3.2	Design of RC Beam GB.20.01	26
3.3.3	Design of RC Slab S.21.01	27
3.3.4	Design of Pile Cap GB.21.04	28
3.3.5	Roof Beam B.21.01 Schedule of Loads	30
3.3.6	Design of RC Beam B.21.01	32
3.3.7	Design of RC Beam B.21.02	36
GARAG	E HOUSES	
11	Potoining Walla	27

PROJECT

99 Frognal

PROJECT NO

23020

DATE

18/10/2023

AΗ

TITLE SHEET NO ENG Introduction

SUMMARY

This calculation package covers the preliminary sizing of key basement structural elements that form part of the new development at 99 Frognal. Detailed calculations shall be carried out to complete the design and for Building Control approval. The project includes full demolition of the existing extension building and construction of a new extension with a basement. The proposals also include the construction of two additional housing units located just north of the main house in the location of the existing garage building. The site is located in Hampstead in the London Borough of Camden.

Structure Workshop have developed a preliminary assumed sequence of works for the basement construction.

A site specific ground investigation and ground movement analysis have been undertaken by A2 Site Investigation. Allowable design values for the geological strata on site provided by A2 have been used for the design of retaining walls and foundations. For details of the site investigation findings and the results of the ground movement analysis, please refer to the Basement Impact Assessment and associated Appendices.

The foundations for the basement in the proposed extension comprise secant piled walls around the perimeter, with a reinforced concrete piled ground beam and slab at the base. The basement excavation is approximately 6.5m below existing ground level, and the groundwater level in this location is high, therefore the piles are designed to withstand hydrostatic pressures as well as lateral forces from the retained earth and surcharge above ground. This pack contains the preliminary analysis and design undertaken for the extension basement foundations, slabs and beams.

The Garage Houses are to be constructed immediately adjacent to existing party walls, and is in close proximity to the large 3-storey grade II listed neighbouring building. The existing brick walls will be underpinned and temporarily supported during excavation works, and the new structure will be designed to provide permanent support for lateral loads from retainined earth. Refer to the Basement Construction Structural Report for further details.

These calculations should be read in conjunction with the following structural engineering drawings:

23020.2201	Extension Lower Basement Plan
23020.2202	Extension Upper Basement Plan
23020.2203	Extension Ground Floor Plan 1
23020.2301	Extension Section A
23020.2302	Extension Section B
23020.2303	Extension Section C
23020.2304	Extension Section D
23020.2401	Extension Details Sheet 1
23020.2402	Extension Details Sheet 2
23020.3201	Garage Houses Ground Floor Plan
23020.3202	Garage Houses First Floor Plan
23020.3301	Garage Houses Section A
23020.3401	Garage Houses Details Sheet 1

ROOF 1

RC Slab

RC Roof beams

Rigid Insulation

Vapour Control Plasterboard + skim

Soil

Live

Soil

Live

ROOF 3

Finishes

OSB3 sheathing

Rigid Insulation

Vapour Control OSB3 sheathing

Timber Rafters

Timber Battens

Live

Soil RC Slab

Live

ROOF 5

Finishes

OSB3 sheathing

Rigid Insulation

Vapour Control OSB3 sheathing

Timber Rafters

Live

Plasterboard + skim

ROOF 4

Rigid Insulation Vapour Control Plasterboard + skim

Plasterboard + skim

ROOF 2

OSB3 sheathing

Rigid Insulation

Vapour Control OSB3 sheathing

Glulam Timber Rafters 0.420 m

DESIGN ROOF LOADS

PROJECT

Extension - Buried Basement

TITLE

1.500 m

0.300 m

0.300 m

0.015 mm

0.600 m

0.018 m

0.300 m

0.018 m

Snow

0.050

0.018 m

0.300 m

0.018 m

0.225 m

0.025 m

0.015 mm

0.500 m

0.225 m 0.300 m

0.015 mm

0.050

0.018 m

0.300 m

0.018 m

0.175 m

0.015 mm

Garage Houses - Flat slab

Garage Houses - Timber frame 'pop-outs'

Snow

Extension - Green roof

Extension - Stone feature roof

0.05

99 Frogna Schedule					PROJECT NO SHEET NO	23020 2	DATE ENG	25/1 AH	0/2023
								-	
wind Donner	-4					Dead	Live	Total	Units
uried Baseme Average de	nt pth for desig	an of fou	ndatio	n Inads	18.0 kN/m ³	Gk 27.00	Qk	Σ	
_	lepth assum					21.00			
2.00 111 0	iopur docum	100 101 U	ooigii o	r clab C.2	24.0 kN/m ³	7.20			
					24.0 kN/m ³	1.20			
					1.0 kN/m ³	0.30			
						0.01			
					9.0 kN/m^3	0.14			
							5.00		
						TOTAL 35.85	5.00		kN/m ²
						•	٥.	_	
reen roof					18.0 kN/m ³	Gk 10.80	Qk	Σ	
					7.0 kN/m ³				
					1.0 kN/m ³				
					··• KIN/III	0.01			
					7.0 kN/m ³				
x 0.1	115 m	at	0.60	m crs.	6.5 kN/m ³	0.52			
							3.00		
						TOTAL 11.89	3.00		kN/m ²
one feature r	oof					Gk	Qk	Σ	
					25.0 kN/m ³				
					7.0 kN/m ³				
					1.0 kN/m ³				
					7.0 kN/m ³	0.01 0.13			
x 0.	09 m	at	0.60	m crs.	5.0 kN/m ³	0.13			
	04 m	at	0.40	m crs.	5.0 kN/m ³				
					9.0 kN/m ³				
							3.00		
						TOTAL 2.13	3.00		kN/m ²
es - Flat slab						Gk	Qk	Σ	
					18.0 kN/m ³				
					24.0 kN/m ³				
					1.0 kN/m ³				
					9.0 kN/m ³	0.01 0.14			
					O.O KIN/III	0.14	3.00		
						TOTAL 14.85	3.00		kN/m ²
es - Timber fra	ame 'pop-ou	ts'				Gk	Qk	Σ	
					25.0 kN/m ³				
					7.0 kN/m ³				
					1.0 kN/m ³				
						0.01			
_	\ 7 .				7.0 kN/m ³				
x 0.0)75 m	at	0.40	m crs.	5.0 kN/m ³				
					9.0 kN/m ³	0.14	4.50		
							1.50		

TOTAL

2.11

1.50

kN/m²

PROJECT TITLE

99 Frognal

Schedule of Loads

PROJECT NO 23020 SHEET NO 3

DATE 25/10/2023 ENG

ΑН

				Dead	Live	Total	Units
FLOOR 1	Extension - Basement ground slab			Gk	Qk	Σ	
Finishes	0.030 m	20.0 kN/m ³		0.60			
Screed	0.080 m	22.0 kN/m ³		1.76			
Rigid Insulation	0.150 m	1.0 kN/m ³		0.15			
RC Slab	0.300 m	24.0 kN/m ³		7.20			
Live					5.00		
			TOTAL	9.71	5.00		kN/m²
FLOOR 2	Extension - Ground Floor above basement			Gk	Qk	Σ	
Finishes	0.030 m	20.0 kN/m ³		0.60			
Screed	0.080 m	22.0 kN/m ³		1.76			
Rigid Insulation	0.150 m	1.0 kN/m ³		0.15			
RC Slab	0.300 m	24.0 kN/m ³		7.20			
Plasterboard + skim	0.015 mm	9.0 kN/m ³		0.14			
Live					1.50		
			TOTAL	9.85	1.50		kN/m²
FLOOR 3	Extension - First Floor RC slab			Gk	Qk	Σ	
Finishes	0.030 m	20.0 kN/m ³		0.60		_	
Screed	0.080 m	22.0 kN/m ³		1.76			
Rigid Insulation	0.150 m	1.0 kN/m ³		0.15			
RC Slab	0.225 m	24.0 kN/m ³		5.40			
Plasterboard + skim	0.015 mm	9.0 kN/m ³		0.14			
Live					1.50		
			TOTAL	8.05	1.50		kN/m²
FLOOR 4	Extension - Ground Floor RC slab			Gk	Qk	Σ	
Finishes	0.030 m	20.0 kN/m ³		0.60	QI.	_	
Screed	0.080 m	22.0 kN/m ³		1.76			
Rigid Insulation	0.150 m	1.0 kN/m ³		0.15			
RC Slab	0.300 m	24.0 kN/m ³		7.20			
Live					1.50		
			TOTAL	9.71	1.50		kN/m²
FLOOR 5	Garage Houses - Ground Floor RC slab			Gk	Qk	Σ	
Finishes	0.030 m	20.0 kN/m ³		0.60	QI.	_	
Screed	0.080 m	22.0 kN/m ³		1.76			
Rigid Insulation	0.150 m	1.0 kN/m ³		0.15			
RC Slab	0.225 m	24.0 kN/m ³		5.40			
Live	0.220	2 KI4/III		00	1.50		
			TOTAL	7.91	1.50		kN/m²
FLOOR 6	Extension - timber suspended first floor (House 2)			Gk	Qk	Σ	
FLOOR 6 Finishes	0.020 m	7.0 kN/m ³		0.14	۷ĸ	۷	
Floorboards	0.022 m	5.0 kN/m ³		0.14			
Timber Joists	0.220 m x 0.05 m at 0.40 m crs.	5.0 kN/m ³		0.11			
Noggins	5.255 III A 0.05 III at 0.40 III 615.	O.O KIN/III		0.13			
Services				0.05			
Plasterboard + skim	0.015 mm	9.0 kN/m ³		0.05			
Live	5.5.10 Hilli	O.O KIN/III		J. 14	1.50		
LIVE					1.50		kN/m²

PROJECT TITLE

99 Frognal

Schedule of Loads

PROJECT NO

SHEET NO

23020 4 DATE 25/

ΑН

ENG

25/10/2023

kN/m

TOTAL

8.55

0.00

DESIGN FOUNDATION LOADS Dead Live Total Units FOUNDATIONS 1 Extension - Basement perimeter secant piles Gk Qk Σ 24.0 kN/m³ Secant piles 0.450 m dia. 6 m deep 64.8 0.750 m wide 0.45 m deep Capping beam Х 24.0 kN/m3 8.10 kN/m TOTAL 72.9 0.00 FOUNDATIONS 2 Extension - Basement piles under central columns Gk Qk Σ Piles 0.450 m dia. Х m deep m spacing 24.0 kN/m^3 1.91 0.750 m wide Capping beam 0.45 m deep 24.0 kN/m3 8.10 kN/m **TOTAL** 10.01 0.00 **FOUNDATIONS 3** Extension - Piles under First Floor RC ground slab Gk Qk Σ Piles 0.450 m dia. Х 1 m deep 24.0 kN/m³ 1.05 nr. Capping beam 0.750 m wide 0.45 m deep 24.0 kN/m3 8.10 kN/m **TOTAL** 9.15 0.00 **FOUNDATIONS 4** Extension - Piles under Ground Floor RC ground slab Qk Σ Gk 14 nr. Piles 0.450 m dia. 1 m deep 24.0 kN/m3 0.94 Capping beam 0.750 m wide 0.45 m deep 24.0 kN/m^3 8.10 Х kN/m TOTAL 9.04 0.00 **FOUNDATIONS 5** Garage Houses - Underpinning existing walls Gk Qk Σ 0.550 m wide 33.00 Mass concrete Х 2.5 m deep 24.0 kN/m³ Dry pack 0.550 m wide m deep 22.0 kN/m^3 1.21 TOTAL 34.21 0.00 kN/m FOUNDATIONS 6 Garage Houses - Perimeter piles Gk Qk Σ Piles 0.450 m dia. 1 24.0 kN/m³ 1.01 Х m deep 12 nr. Capping beam 1.000 m wide х 0.45 m deep 46 m long 24.0 kN/m³ 10.80 TOTAL 11.81 0.00 kN/m **FOUNDATIONS 7** Σ Garage Houses - Internal piles Gk Qk Piles 0.450 m dia. 1 m deep 4 nr. 24.0 kN/m³ 0.45 Capping beam 0.750 m wide х 0.45 m deep 34 m long 24.0 kN/m³ 8.10

PROJECT TITLE

99 Frognal

Schedule of Loads

PROJECT NO 23020 DATE 25/10/2023 SHEET NO 5 ENG ΑН

										Dead	Live	Total	Units
WALL TYPE 1	Extension - Ba	asement	Wall							Gk	Qk	Σ	
Secant piles	See FOUNDA	TIONS 1											
Water resistant concre	et 0.200 m							24.0 kN/m^3		4.80			
Insulation										0.10			
Blockwork wall	0.140 m							20.0 kN/m^3		2.80			
OSB3 sheathing	0.009 m							7.0 kN/m^3		0.06			
Battens	0.025 m	x	0.05	m	at	1.20	m crs.	5.0 kN/m^3		0.01			
Plasterboard + skim	0.015 m							9.0 kN/m^3		0.14			
									TOTAL	7.90	0.00		kN/m²
WALL TYPE 2	Futancian La		· · · · · · · · · · · · · · · · · · ·	- 14/-11 /	Over up al F	-(u)				Clr	Ok	Σ	
Stone outer wall	Extension - Lo 0.200 m	aubeann	ig Storie	e vvali (Grouna r	1001)		25.0 kN/m ³		Gk 5.00	Qk	2	
Insulation	0.200 111							20.0 KN/III		0.10			
Timber studs	0.140 m	х	0.05	m	at	0.60	m crs.	5.0 kN/m ³		0.10			
	0.140 m	^	0.03	111	aı	0.00	III CIS.	6.0 kN/m ³		0.00			
Plywood sheathing Plasterboard + skim	0.016 m									0.11			
Plasterboard + skilli	0.015 111							9.0 kN/m ³	TOTAL	5.40	0.00		kN/m²
									TOTAL	3.40	0.00		KIN/III
WALL TYPE 3	Extension - R	C Retaini	ng Wal	(Grour	nd Floor)					Gk	Qk	Σ	
Concrete	0.275 m							24.0 kN/m ³		6.60			
Insulation										0.10			
Timber studs	0.140 m	x	0.05	m	at	0.60	m crs.	5.0 kN/m^3		0.06			
Blockwork wall	0.140 m							20.0 kN/m^3		2.80			
Plywood sheathing	0.018 m							6.0 kN/m^3		0.11			
Plasterboard + skim	0.015 m							9.0 kN/m^3		0.14			
									TOTAL	9.80	0.00		kN/m²
WALL TYPE 4	Extension - Ti	mber Stu	d Exter	nal						Gk	Qk	Σ	
Cladding	0.020 m							25.0 kN/m ³		0.50			
OSB3 sheathing	0.018 m							7.0 kN/m^3		0.13			
	0.140 m	Х	0.05	m	at	0.60	m crs.	5.0 kN/m^3		0.06			
Timber studs										0.10			
Insulation								9.0 kN/m^3		0.14			
	0.015 m												
Insulation	0.015 m								TOTAL	0.92	0.00		kN/m²
Insulation Plasterboard + skim		'azina							TOTAL			7	kN/m
Insulation Plasterboard + skim WALL TYPE 5	Extension - Gl	'azing						25 kN/m ³		Gk	0.00 Qk	Σ	kN/m²
Insulation Plasterboard + skim		'azing						25 kN/m ³				Σ	kN/m²

PROJECT TITLE

99 Frognal

Schedule of Loads

PROJECT NO 23020 SHEET NO 6

DATE 25/10/2023

ENG AH

										Dead	Live	Total	Unit
WALL TYPE 6	Garage House	s - 300	wall							Gk	Qk	Σ	
Reinforced concrete	0.300 m							24.0 kN/m^3		7.20			
nsulation										0.10			
OSB3 sheathing	0.009 m							7.0 kN/m^3		0.06			
Battens	0.025 m	Х	0.05	m	at	1.20	m crs.	5.0 kN/m^3		0.01			
Plasterboard + skim	0.015 m							9.0 kN/m^3		0.14			
									TOTAL	7.50	0.00		kN/n
WALL TYPE 7	Garage House	es - 250	wall							Gk	Qk	Σ	
Reinforced concrete	0.250 m		-					24.0 kN/m ³		6.00		_	
nsulation										0.10			
OSB3 sheathing	0.009 m							7.0 kN/m ³		0.06			
Battens	0.025 m	х	0.05	m	at	1.20	m crs.	5.0 kN/m ³		0.01			
Plasterboard + skim	0.015 m							9.0 kN/m ³		0.14			
									TOTAL	6.30	0.00		kN/n
WALL TYPE 8	Garage House	es - 150	wall							Gk	Qk	Σ	
Reinforced concrete	0.150 m	,0 ,00	···an					24.0 kN/m ³		3.60	Q.I.	_	
nsulation										0.10			
OSB3 sheathing	0.009 m							7.0 kN/m ³		0.06			
Battens	0.025 m	х	0.05	m	at	1.20	m crs.	5.0 kN/m ³		0.01			
Plasterboard + skim	0.015 m							9.0 kN/m ³		0.14			
									TOTAL	3.90	0.00		kN/n
WALL TYPE 9	Garage House	es - Brick	(Mason	rv						Gk	Qk	Σ	
Brickwork	0.215 m			,				20.0 kN/m ³		4.30		_	
nsulation										0.10			
Blockwork	0.100 m							15.0 kN/m ³		1.50			
Plasterboard + skim	0.015 m							9.0 kN/m ³		0.14			

PROJECT TITLE

99 Frognal

Schedule of Loads

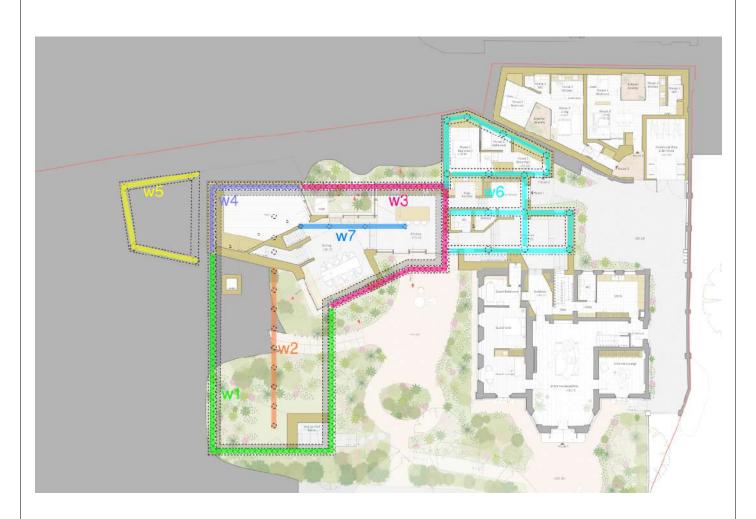
PROJECT NO SHEET NO 23020 7 DATE 25/10/2023

ENG AH

				Dead	Live	Total	Units
WALL TYPE 10	103 Frognal - Loadbearing brick wall			Gk	Qk	Σ	
Brickwork	0.330 m	20.0 kN/m ³		6.60			
Insulation				0.10			
Blockwork	0.100 m	15.0 kN/m ³		1.50			
Internal finishes				0.20			
			TOTAL	8.40	0.00		kN/m
FLOOR 6	103 Frognal - GF / 1F / 2F Timber floors			Gk	Qk	Σ	
Finishes	0.020 m	7.0 kN/m^3		0.50			
Floorboards	0.020 m	5.0 kN/m ³		0.10			
Timber Joists				0.20			
Services				0.05			
Internal finishes	0.015 mm	9.0 kN/m ³		0.20			
Live					1.50		
			TOTAL	1.05	1.50		kN/m
ROOF 6	103 Frognal - Zinc and Timber Roof			Gk	Qk	Σ	
Finishes				0.5			
Timber Rafters				0.20			
Internal finishes				0.20			
Live	Snow				0.60		
			TOTAL	0.90	0.60		kN/m
FOUNDATIONS 5	103 Frognal - Strip footings			Gk	Qk	Σ	
Mass concrete	0.600 m wide x 0.7 m deep	24.0 kN/m^3		10.08			_
			TOTAL	10.08	0.00		kN/m

PROJECT TITLE 99 Frognal

Foundation Load Distribution


PROJECT NO SHEET NO 23020 8 ATE 2

ΑН

ENG

25/10/2023

The total loads from the new development have been calculated based on layouts provided by the Architect. These loads are presented as distributed loads (UDLs) along the foundation lines, which have been split up as shown in the diagram below.

Line load total lengths

L_{w1}	40	m
L_{w2}	14	m
L_{w3}	30.9	m
L_{w4}	14	m
L_{w5}	17.9	m
L_{w6}	56.8	m
L_{w7}	9.5	m

Line loads (unfactored)

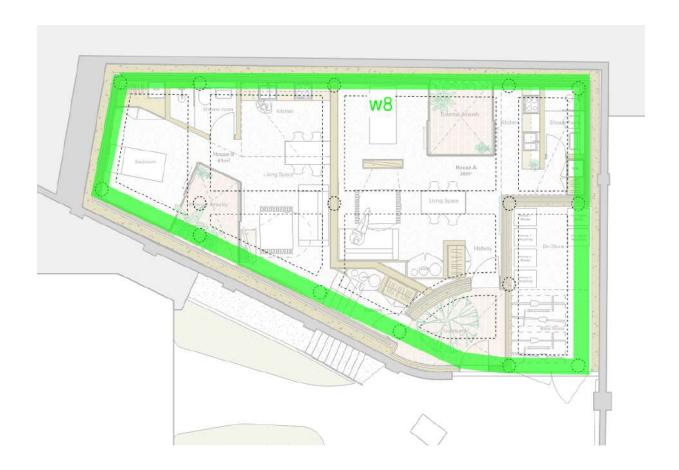
	Dead	Live	ive Total	
	Gk	Qk	Σ	
w1	201	19	220	kN/m
w2	238	50	288	kN/m
w3	214	29	243	kN/m
w4	316	44	360	kN/m
w5	37	13	50	kN/m
w6	73	10	83	kN/m
w7	108	31	139	kN/m

PROJECT TITLE

99 Frognal

Foundation Load Distribution

PROJECT NO SHEET NO 23020


9

DATE

25/10/2023

ENG AH

The total load from the proposed garage houses have been calculated based on the latest layouts received from the architect at the time of writing. This is presented as a distributed load (UDLs) along the perimeter foundation line, as indicated in the diagram below.

Line load total length

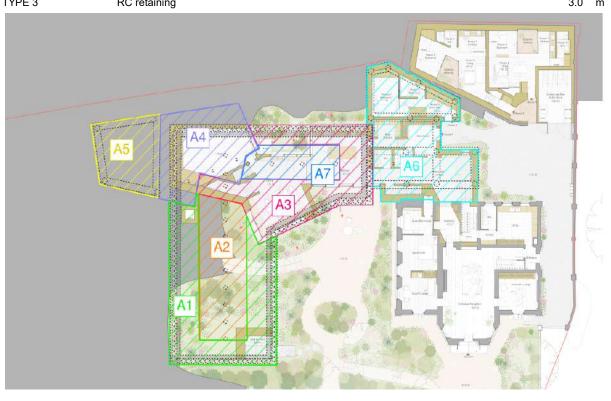
L_{w8} 46 m

PROJECT

TITLE

99 Frognal

Foundation Load Takedown


PROJECT NO SHEET NO

23020 10 DATE 25/10/2023

ENG

AH

EXTENSION				
LOAD AREA BREAKD	OOWN			
Basement - buried	Total area acting on secant piles	A 1	103	m^2
	Slab area		77	m ²
Basement - buried	Area acting on central piles	A2	70	m²
Basement - NE	Area under GF acting on secant piles	А3	103.0	m²
	Area under GF acting on central piles	A7	34.0	m^2
	Basement slab area		137	m^2
	GF slab area		110	m^2
	Stone feature roof area		41.4	m^2
	Green roof area		72.7	m ²
Basement - NW	Area under GF + 1F	A 4	74.8	m²
	Basement slab area		35	m^2
	GF Slab area		46	m^2
	1F Slab area		74.8	m^2
	Stone feature roof area		36.7	m^2
	Green roof area		46.5	m ²
First Floor - West	Area acting on ground beams	A 5	49.8	m²
Ground Floor - East	Area acting on ground beams	A6	122	m²
WALL HEIGHTS				
WALL TYPE 1	Basement		5.1	m
WALL TYPE 2	Stone Loadbearing		3.4	m
WALL TYPE 3	RC retaining		3.0	m

PROJECT TITLE

99 Frognal

Foundation Load Takedown

PROJECT NO DATE 23020 25/10/2023 SHEET NO ENG ΑН 11

			Dead	Live	Total	
LINE LOAD w1			Gk	Qk	Σ	
FLOOR 1 x Area / L _{w1}	Basement		18.7	9.6		kN/m
ROOF 1 x Area / L _{w1}	Basement roof (buried)		69.0	9.6		kN/m
FOUNDATIONS 1	Secant piles		72.9			kN/m
WALL TYPE 1 x wall height	Basement		40.3			kN/m
		TOTAL	200.9	19.3	220.1	kN/m
LINE LOAD w2			Gk	Qk	Σ	
FLOOR 1 x Area / L _{w2}	Basement		48.6	25.0		kN/m
ROOF 1 x Area / L _{w2}	Basement roof (buried)		179.2	25.0		kN/m
FOUNDATIONS 2	Central piled ground beam		10.0			kN/m
	Gomai piloa grouna zoum	TOTAL		50.0	287.8	
LINE LOAD w3 A3 / (A3+A7) 0	0.75 *Loads split between w3 and w7		Gk	Qk	Σ	
FLOOR 1 x Area / L _{w3}	Basement*		32.4	16.7	۷	kN/m
FLOOR 2 x Area / L _{w3}	Ground Floor*		26.3	4.0		kN/m
FOUNDATIONS 1	Secant piles		72.9	→.0		kN/m
WALL TYPE 1 x wall height	Secant piles Basement		40.3			kN/m
WALL TYPE 1 x wall neight X wall length / L _{w3}	Loadbearing stone		9.5			kN/m
WALL TYPE 3 x wall height X wall length / L _{w3}	RC retaining*		9.7			101 4/11
ROOF 2 x Area / L _{w3}	Green roof*		21.0	5.3		kN/m
ROOF 3 x Area / L _{w3}	Stone feature roof*		2.1	3.0		kN/m
wo		TOTAL		29.0	243.3	
LINE LOAD w4			Gk	Qk	Σ	
FLOOR 1 x Area / L _{w4}	Basement		24.3	12.5		kN/m
FLOOR 2 x Area / L _{w4}	Ground Floor		32.3	5.4		kN/m
FLOOR 3 x Area / L _{w4}	First Floor		43.0	8.0		kN/m
FOUNDATIONS 1	Secant piles		72.9			kN/m
WALL TYPE 1 x wall height	Basement		40.3			kN/m
WALL TYPE 2 x wall height X wall length / L_{w4}	First Floor stone loadbearing		11.7			kN/m
WALL TYPE 3 x wall height X wall length / L_{w4}	Ground Floor RC external		43.3			kN/m
WALL TYPE 4 x wall height X wall length / L_{w4}	First Floor timber external		3.3			kN/m
ROOF 2 x Area / L _{w4}	Green roof		39.5	10.0		kN/m
ROOF 3 x Area / L _{w4}	Stone feature roof		5.6	7.9		kN/m
		TOTAL	316.1	43.8	359.8	kN/m
LINE LOAD w5			Gk	Qk	Σ	
FLOOR 3 x Area / L _{w5}	First Floor ground slab		22.38	4.17		kN/m
ROOF 3 x Area / L _{w5}	Stone feature roof		5.92	8.35		kN/m
FOUNDATIONS 3	Piles and ground beams		9.15			kN/m
WALL TYPE 2 x wall height X wall length / L_{w5}	Stone loadbearing		20.9			
		TOTAL	37.4	12.5	50.0	kN/m
LINE LOAD w6 (assuming green roof loads instead	d of first floor loads conservatively)		Gk	Qk	Σ	
FLOOR 4 x Area / L _{w6}	Ground Floor ground slab		20.86	3.22		kN/m
ROOF 2 x Area / L _{w6}	Green roof		25.53	6.44		kN/m
	Piles and ground beams		9.04			kN/m
FOUNDATIONS 4			J.U4			131 1/11
FOUNDATIONS 4 WALL TYPE 2 x wall height X wall length / L _{w6}	Stone loadbearing		17.46			kN/m

PROJECT

TITLE

99 Frognal

Foundation Load Takedown

PROJECT NO SHEET NO 23020 12 DATE 25/1

ΑН

ENG

25/10/2023

LINE LOAD w7	*A7 / (A3+A7)	0.25	i e		Gk	Qk	Σ	
FLOOR 1 x Area / L _{w7}			Basement		34.75	17.89		kN/m
FLOOR 2 x Area / L _{w7}			Ground Floor		28.3	4.3		kN/m
FOUNDATIONS 2			Central piled ground beam		10.0	0.00		kN/m
WALL TYPE 3 x wall heigh	ht x wall length / L _{w7}		RC retaining*		10.4	0.00		
ROOF 2 x Area / L _{w7}			Green roof*		22.6	5.7		kN/m
ROOF 3 x Area / L _{w7}			Stone feature roof*		2.30	3.24		kN/m
				TOTAL	108.3	31.1	139.4	kN/m

GARAGE HOUSES

LOAD AREA BREAKDOWN Total Roof slab area: "Pop-outs" area: Total Ground slab area:						25	1 m ² 5 m ²) m ²
Total length of external walls:	Length	Height				Area	
WALL TYPE 6	16.5 m	2.7 m				44.55	5 m ²
WALL TYPE 7	14.3 m	2.7 m				38.6	1 m ²
WALL TYPE 8	18 m	2.7 m				48.6	3 m ²
WALL TYPE 9	4.5 m	2.7 m				12.15	5 m ²
Assume total load applied around perimeter ground beams:				L _{w7}	Live	46 Total	3 m
LINE LOAD							
LINE LOAD w8	DO alab and thick and to see In an			Gk	Qk	Σ	LAU
ROOF	RC slab and timber frame 'pop-o	outs'		34.71	7.60	42	kN/m
WALLS	RC external walls			18.28	0.00	18	kN/m
FLOOR	Ground Floor RC slab			24.07	4.57	29	kN/m
FOUNDATIONS	Piles and ground beams			52.27	0.00	52	kN/m
		TO	TAL	129	12	141	kN/m

PROJECT TITLE

99 Frognal

Buoyancy Check

PROJECT NO SHEET NO

23020

13

DATE ENG

12/09/2023

ΑН

BUOYANCY CHECK	BS EN 1997-1

GEOMETRY

Existing Ground Level		GL	111.4	mAOD
Assumed Ground Water Level	Assume at ground level in worst case	GWL	111.4	mAOD
Basement Formation Level			105.4	mAOD
Denth below water level		h	6.0	m

PROPERTIES

Water Unit Weight	Y_w	9.81 _{kN/m3}
Waler Offic Weight	T W	5.5 · KIN/III3

UPLIFT

Uplift Pressure	$p = \gamma_w \times h$	р	58.9	kN/m2
Partial Factor (permanent Unfavoura	ble)	Y _{G;dst}	1.1	
Partial Factor (permanent Favourable	9)	YG;stb	0.9	

DOWNWARD ACTION

Proposed soil load on roof and all live loads are omitted as these are favourable actions

(unfactor	ed)	Σ ($w_i L_{wi}$)		W	17573 kN
w7'	110.2 kN/m	L_{w5}	15 m	w7' x L _{w7}	1654 kN
w4'	279.8 kN/m	L_{w4}	14 m	w4' x L _{w4}	3917 kN
w3'	195.2 kN/m	L_{w3}	30.9 m	w3' x L _{w3}	6030 kN
w2'	102.8 kN/m	L_{w2}	14 m	w2' x L _{w2}	1439 kN
w1'	154.7 kN/m	L_{w1}	40 m	w1' x L _{w1}	6187 kN

Total weight ($\mathsf{Gk}_{\mathsf{TOT}}$ Total weight (factored) $Gk = \gamma_{G;stb} \times W$ 15816 kN

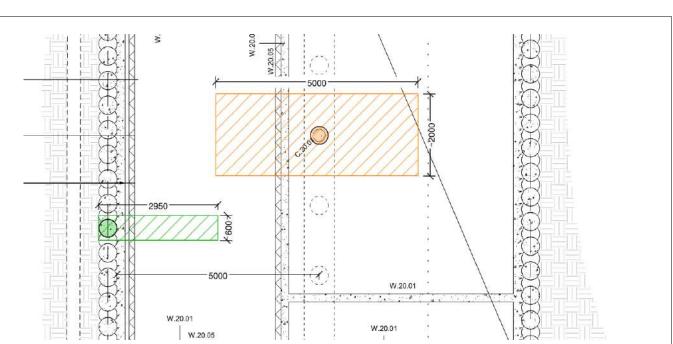
GLOBAL CHECK

WHOLE BASEMENT

Total Area	A1 + A2 + A3 + A4 + A7	Α	385 m ²
Upwards Force	$A \times \gamma_w h$	\uparrow	22649 kN
Downwards Force	Gk _{TOT}	\downarrow	15816 kN

Basement is buoyant

Tension reinforcement required below slab to anchor down.


PROJECT TITLE

99 Frognal **Buoyancy Check** PROJECT NO SHEET NO

23020 14

DATE 12/09/2023 ΑН

ENG

PERIMETER PILES

Area acting on single pile **Buoyancy Force** Dead load acting on single pile Tension force in pile

Male (reinforced) piles only, 600 spacings $P = \gamma_{G;dst} x p x A$ $Gk = \gamma_{G:stb} x w1' x 600mm (pile spacing)$ T = P - Gk

1.8 m2 Α Ρ kΝ 115 Gk kΝ

kΝ

450dia. pile approx. 10m deep

Т

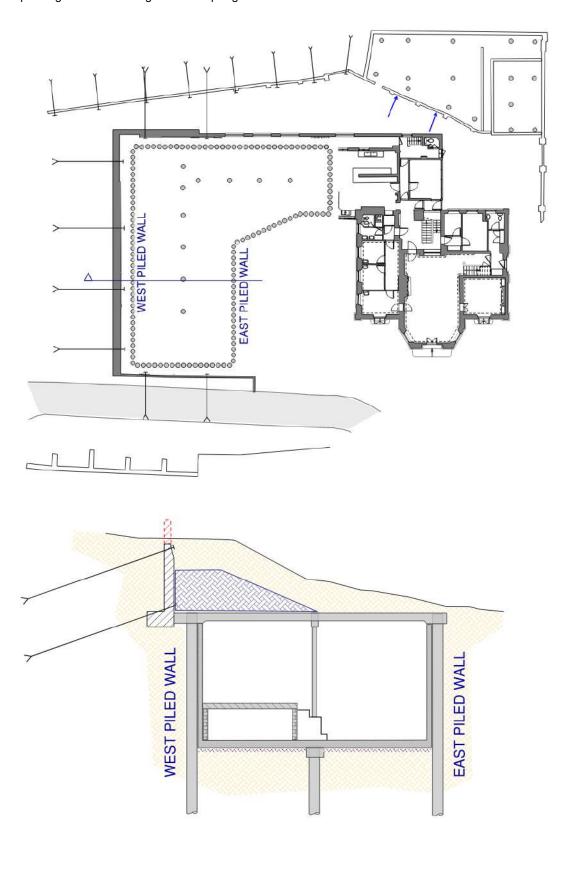
INTERNAL PILES

Area acting on single pile **Buoyancy Force** Dead load acting on single pile Tension force in pile

 $P = \gamma_{G:dst} x p x A$ $Gk = \gamma_{G;stb} x w2' x \sim 2m spacing$

10 m2 Р 647 kN 185 Gk kΝ Т 462 kN

450dia. pile approx. 15m deep


	Pile Diam	eter (mm)	30	00	45	50	60	00
	Pile	Гуре	С	Ť	С	т	С	т
		10.0	440	205	790	310	1055	415
	gth (m)	12.5	535	280	940	420	1420	560
	Pile Length (m)	15.0	635	360	1090	640	1640	720
	ш.	17.5	750	450	1260	675	1870	900
1.	Pile capacities o	alculated using EC7 N	A Design Approach	Combination 2 part	ial factors.			
2.	Length taken fro	om the top of the pile (1	109.0mOD) at basem	ent formation level.				
3.	Diameters are to	ool diameters.						
4.	Permanent/varia	ible load split taken as	70%/30%.					
5.	Lateral pile load	ing has not been consi	dered in the provide	d capacities.				
6.	Long-term water	r table adopted.						
7.	GEO evaluation only, STR verification to be completed in accordance with BS EN 1992.							

A2 Site Investigation. Interpretive report

15

BASEMENT RETAINING WALLS

The walls of the basement are proposed to be 450dia. Reinforced piles at 600mm spacings are designed to take the loads from surcharge, soil and hydrostatic pressures. The following sheets present the preliminary calculations undertakn to jusitify this concept design. The final design will be to piling Contractor's details.

WATER PRESSURE

Pressure at base of wall

Pressure at top of wall

PROJECT TITLE 99 Frognal

= $\gamma w x hw$

= $\gamma w x (z-h)$

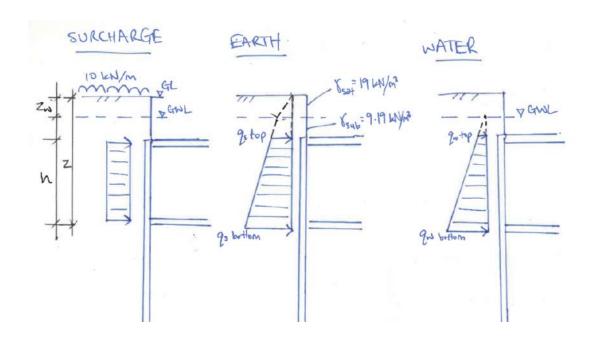
Piled Retaining Wall

PROJECT NO SHEET NO 23020 16

qw bot

qw top

DATE ENG


04/10/2023

 $80.93~kN/m^2$

 25.21 kN/m^2

ΑН

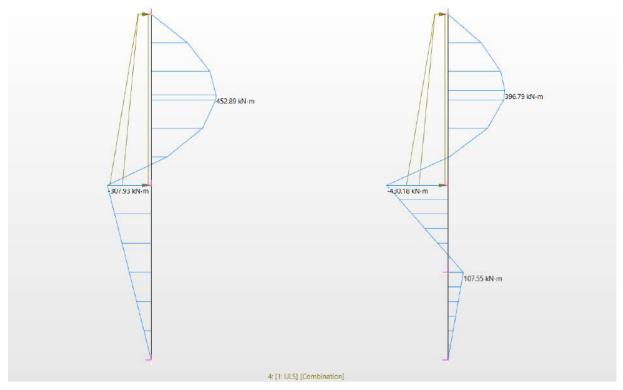
GEOMETRY Proposed Ground Level		114.8 mAOD
		114.8 mAOD
Design Ground Water level		113.8 _{mAOD}
Basement formation level		105.5 _{mAOD}
Top of pile level		111.2 mAOD
Wall Height	h	5.68 m
Retained height	z	9.25 m
Ground water level (metres below surface)	Z_{W}	1.00 m
Ground water height $= z - z_w$	h_w	8.25 m
Saturated Unit Weight Bagshot Formation. GEA Interprative Report	Ysat	19 _{kN/m3}
Water Unit Weight	Yw	9.81 kN/m3
Submerged Unit Weight $\gamma_{sub} = \gamma_{sat} - \gamma_{w}$	Y _{sub}	9.19 kN/m3
Shear Angle GEA Interprative Report	φ	24 deg
K coefficient active pressure $Ka = (1 - \sin \varphi) / (1 + \sin \varphi)$	K_a	0.422
K coefficient at-rest pressure $Ko = (1 - \sin \varphi)$	K _o	0.593
conservstively use Ko for preliminary design		
DESIGN LOADS		
SURCHARGE		
Surcharge = 10 kN/m^2	w	10.0 kN/m ²
Pressure = w x K	q	5.93 kN/m ²
EARTH PRESSURE		
Pressure at base of wall = $\gamma_{\text{sub}} x K x h_w + \gamma_{\text{sat}} x K x z_w$	q _s (bottom)	56.25 kN/m ²
Pressure at top of wall $= \gamma_{sub} \times K \times (h_w - h) + \gamma_{sat} \times K \times z_w$	q _s (top)	25.28 kN/m ²

PROJECT 99 Frognal

Piled Retaining Wall

PROJECT NO

23020


DATE

04/10/2023

SHEET NO 17 ENG AH

WEST PILED WALL - PROPPED RETAINING WALL

STRAND ANALYSIS

The left model shown in the snip above assumes pinned supports at the basement roof and lower ground slab level, and pinned at the base at an embedment depth of 5.8m (assumed).

The second model was prepared as a sensitivity check. It assumes that there is additional support to the embedded pile, modelled as an additional pin midway up. This reduces the max. moment in the pile above ground (down to 397kNm) but incrases the max. moment at the ground slab level (up to 430kNm). This is an improvement on the first model therefore a maximum moment of 452.6kNm has been assumed for preliminary design.

This assessment does not account for the benefitting actions of any shear walls or the upper basement slab, composite action of the lining wall or the effect of soil structure interaction (SSI).

DESIGN MOMENTS FROM STRAND ANALYSIS

Surcharge		M_{q}	18.3 kNm/m
Soil pressure		M_s	123.3 kNm/m
Water pressure		M_{w}	160.3 kNm/m
TOTAL MOMENT	$M_t = M_s + M_e + M_w$	\mathbf{M}_{t}	301.93 kNm/m
Ultimate design moment	x 1,5 partial safety factor	Mt ult	452.89 kNm/m
Design Moment per pile (ULS)	600mm spacing	Mt ult	271.7 kNm

PROJECT TITLE 99 Frognal

Piled Retaining Wall

PROJECT NO SHEET NO 23020 18 DATE 04

ENG

04/10/2023 AH

> 450 mm 600 mm

> > 50 mm

32 mm

8 mm

6

158 <u>mm</u>

28 N/mm²

500 N/mm²

OK

WEST PILED WALL - PROPPED RETAINING WALL
GEOMETRY

Pile diameter

Pile spacing

Nominal cover to bars

Long. Bar dia.

Link dia

Number of longitudinal bars

assume min. spacing

Concrete Strength Concrete strength class C28/35

Steel Strength

RC COLUMN CHECK
Compressive force per pile

Spacing

d d/h $\rho \text{ fyk / fck} \qquad \qquad \textit{From pocket book charts (p.138)}$

Area of required reinforcement $\rho = 4 \text{ As } / \pi \text{ h}^2$

Minimum reinf. 0.4% Ac (p. 141)

Maximum reinf. 4% Ac (p. 141)

Area of provided reinforcement

h s piles cnom φ φν

N s bars

 $A_s \, min$

A_s max

fck fyk

N 180.1 kN

0.03 0.11 302

0.67 0.45

 $\begin{array}{ccc} & & & 0.0252 \\ \text{As req} & & \textbf{4,008} & \text{mm}^2 \end{array}$

636 mm²

As prov **4,825** mm²

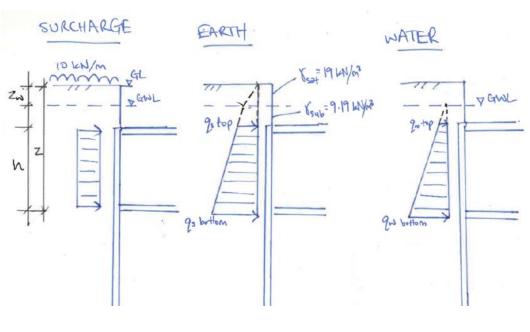
PASS

ACCEPT 6 no. 32 dia. reinforcement bars in 450 dia. concrete pile

100 mm

PROJECT 99 Frognal

Piled Retaining Wall


PROJECT NO

23020

DATE 04/10/2023

SHEET NO	19	ENG	ΑH

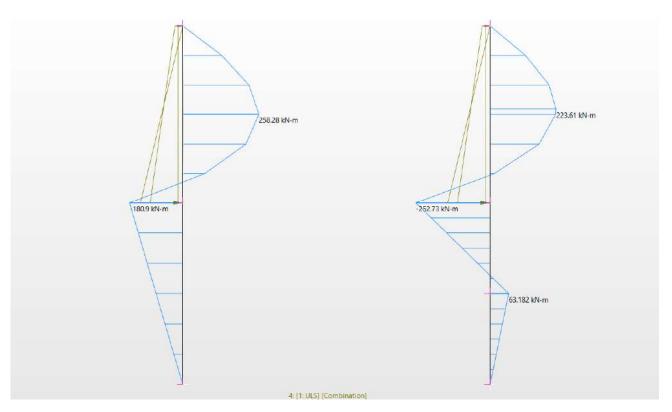
GEOMETRY			
Proposed Ground Level			111.9 _{mAO}
Design Ground Water level			110.9 _{mAO}
Basement formation level			105.5 _{mAO}
Top of pile level			111.2 mAO
Wall Height		h	5.68 m
Retained height		Z	6.40 m
Ground water level	(metres below surface)	Z_{W}	1.00 m
Ground water height	= z - z _w	h_w	5.40 m
Saturated Unit Weight	Bagshot Formation. GEA Interprative Report	Ysat	19 kN/m
Water Unit Weight		Yw	9.81 kN/m
Submerged Unit Weight	$\gamma_{\text{sub}} = \gamma_{\text{sat}} - \gamma_{\text{w}}$	Ysub	9.19 kN/m
Shear Angle	GEA Interprative Report	φ	24 deg
K coefficient active pressure	$Ka = (1 - \sin \varphi) / (1 + \sin \varphi)$	K _a	0.422
K coefficient at-rest pressure	$Ko = (1 - \sin \varphi)$	K _o	0.593
	conservatively use Ko for preliminary design		
DESIGN LOADS			
SURCHARGE			
Surcharge	$= 10 \text{ kN/m}^2$	W	10.0 kN/m
Pressure	= w x K	q	5.93 kN/m
EARTH PRESSURE			
Pressure at base of wall	= $\gamma_{\text{sub}} \times K \times h_{\text{w}} + \gamma_{\text{sat}} \times K \times z_{\text{w}}$	q_s (bottom)	40.71 kN/m
Pressure at top of wall	= $\gamma_{sub} \times K \times (h_w - h) + \gamma_{sat} \times K \times Z_w$	q _s (top)	9.75 kN/m
WATER PRESSURE			
Pressure at base of wall	= γw x hw	qw bot	52.97 kN/m
Pressure at top of wall	= yw x (z-h)	qw top	0.00 kN/m

PROJECT 99 Frognal

Piled Retaining Wall

PROJECT NO SHEET NO

23020 20


DATE **ENG**

04/10/2023

AH

EAST PILED WALL - PROPPED RETAINING WALL

STRAND ANALYSIS

The left model shown in the snip above assumes pinned supports at the basement roof and lower ground slab level, and pinned at the base at an embedment depth of 5.8m (assumed).

The second model was prepared as a sensitivity check. It assumes that there is additional support to the embedded pile, modelled as an additional pin midway up. This reduces the max. moment in the pile above ground (down to 223.6kNm) but incrases the max. moment at the ground slab level (up to 252.7Nm). This is an improvement on the first model therefore a maximum moment of 258.2kNm has been assumed for preliminary design.

This assessment does not account for the benefitting actions of any shear walls or the upper basement slab, composite action of the lining wall or the effect of soil structure interaction (SSI).

DESIGN MOMENTS FROM STRAND ANALYSIS

Surcharge		M_q	18.2 kNm/m
Soil pressure		M_s	75.5 kNm/m
Water pressure		M_w	78.6 kNm/m
TOTAL MOMENT	$M_t = M_s + M_e + M_w$	M_{t}	172.19 kNm/m
Ultimate design moment	x 1,5 partial safety factor	Mt ult	258.28 kNm/m
Design Moment per pile (ULS)	600mm spacing	Mt ult	155.0 kNm

PROJECT 99 Frognal

Piled Retaining Wall

PROJECT NO SHEET NO

23020 21

DATE

ENG

04/10/2023

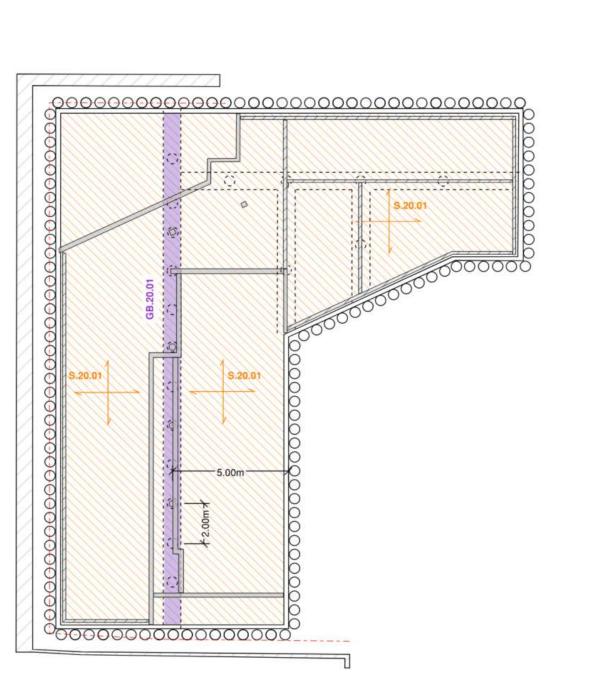
PASS

 AH

EAST PILED WALL	- PROPPED RETAINING WALL

GEOMETRY				
Pile diameter		h	450	mm
Pile spacing		s piles	600	mm
Nominal cover to bars		cnom	50	mm
Long. Bar dia.		φ	20	mm
Link dia		φν	8	mm
Number of longitudinal bars		N	6	
Spacing	assume min. spacing 100 mm	s bars	164	mm
				OK
Concrete Strength	Concrete strength class C28/35	fck	28	N/mm ²
Steel Strength		fyk	500	N/mm ²
RC COLUMN CHECK				
Compressive force per pile		N	180.1	kN
N / h ² fck		N	0.03	
M / h ³ fck	Take moment from Strand analysis		0.06	
d	,		314	
d/h			0.70	
ρ fyk / fck	From pocket book charts (p.138)		0.20	
ρ	, " ,		0.0112	
Area of required reinforcement	$\rho = 4 \text{ As } / \pi \text{ h}^2$	As req	1,781	mm ²
·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	·		ок
Minimum reinf.	0.4% Ac (p. 141)	A _s min	636	mm ²
Maximum reinf.	4% Ac (p. 141)	A _s max	6,362	
	. ,		-	
Area of provided reinforcement		As prov	1,885	mm2

ACCEPT 6 no. 20 dia. reinforcement bars in 450 dia. concrete pile

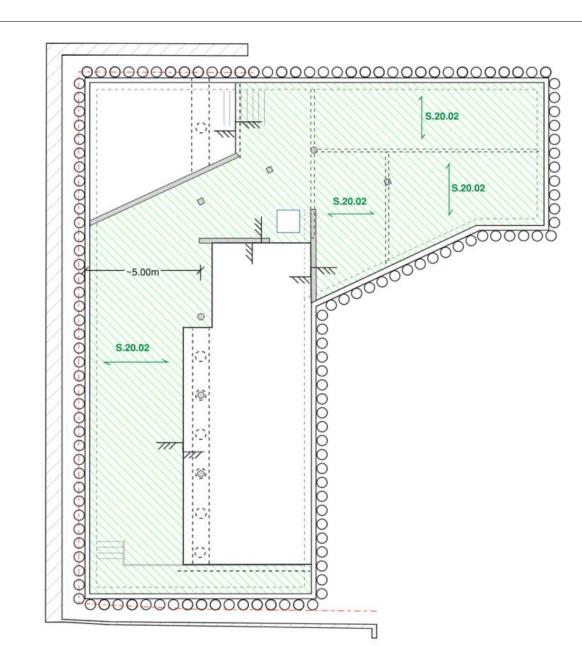

99 Frognal

Basement Layout

PROJECT NO SHEET NO 23020 22 DATE 06/

06/10/2023

BASEMENT STRUCTURAL LAYOUT


LOWER BASEMENT

PROJECT TITLE 99 Frognal
Basement Layout

PROJECT NO 23020 SHEET NO 23

DATE 06/10/2023

23 ENG AH

UPPER BASEMENT

To simplify the construction process it is proposed that internal upper slab S.20.02 is formed of precast concrete panels spanning blockwork walls. The depth has been sized with reference to the FP McCann Hollowcore datasheets, see the Table below. Due to the potential for heavy plant being moved across the floor, an imposed load of 5kN/m2 has been assumed conservatively. The maxium span of these panels would be 5.0m. As such, a **150mm deep panel** is sufficient.

HOLLOWCORE LOAD/SPAN TABLE

Spans indicated opposite allow for characteristic service load (live load kN/m²) + unit self WT + 1.5kN/m² for floor finishes.

Unit Depth	Self Weight	Fire				Charact	teristic Serv	ice Load kN	Vm²			
(mm)	(kN/m²)	Rating (hrs)	0.75	1.5	2.0	2.5	3.0	4.0	5.0	7.5	10	15.0
150	2.36	-1	7.50	7.50	7.50	7.50	7.50	7.10	6.60	5.80	5.20	4.50
150H	3.02	4	7.50	7,50	7.50	7.50	7,40	6.90	6,40	5.60	5.10	4.40
200	2.98	П	10.00	9.90	9.70	9.20	9.00	8.40	7.90	7.00	6.30	5.40
250	3.62	7	12.50	11.70	11.30	10.90	10.50	9.80	9.30	8.20	7.50	6.40
260	3.47	- 11	13.00	12.50	12.00	11.50	11.00	10.50	10.00	8.50	8.00	7.00
300	3.99	2	14.60	14.30	14.10	13.60	13.30	12.50	11.90	10.70	9.70	7.90
350	4,41	2	16.00	15.00	14.90	14,70	14.50	14.20	13.20	12.00	10.80	9.50
400	4.77	2	17.00	17.00	17.00	16.30	15.70	15.10	14,40	13.10	12.10	10.50
450	5.36	2	17.00	17.00	17.00	17.00	16.50	16.20	15.20	14.00	13.00	11.30
500	5.92	2	18.00	18.00	18.00	18.00	18.00	17.20	16.50	15.00	13.90	12.00

PROJECT 99 Frognal **Basement Layout** PROJECT NO SHEET NO

23020 24

DATE 06/10/2023 ENG ΑН

6.60m B.21.02 B.21.01 (C) S.21.01 S.21.01 B.21.01 (A) 5.00m VOID ~9.50m GB.21.04 ^y0000000000000000 -1125mm

GROUND FLOOR / BASEMENT ROOF

PROJECT 99 Frognal
TITLE RC Slab S.20.01

PROJECT NO 23020 DATE 01/10/2023 SHEET NO 25 ENG AH

RC SLAB	S.20.01			
SLAB GEOMETRY				
Design span			L	5 m
Slab thickness			h	300 mm
Bottom layer cover			c_{b}	50 mm
Гор layer cover			\mathbf{c}_{t}	50 mm
MATERIAL PROPERTIES				
Concrete Strength	C28/35		f_ck	28 N/mm ²
Steel strength	High yield reinforcement		f_{yk}	500 N/mm ²
DESIGN FORCES				
Design load	Assume worst case = uplift - s	elfweight of slab	W	57.5 kN/m /
Major Sagging Moment			$M_{s,Ed,major}$	101 kNm
Minor Sagging Moment			$M_{s,Ed,minor}$	0 kNm
Major Hogging Moment			$M_{h,Ed,major}$	180 kNm
Minor Hogging Moment			$M_{h,Ed,minor}$	0 kNm
BOTTOM REINFORCEMEN	T - MAJOR DIRECTION			
Reinforcement provided	diameter, \mathcal{O}_{b1} 16	spacing 150	$A_{s,prov}$	1340 mm ²
Effective depth	= h - c _b - Ø _{b1} / 2		d	242 mm
K Factor	$= M / d^2 f_{ck}$ < 0.168	3 :. No compression reinfor	cement req'd K	0.061
_ever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z <		Z	228 mm
Reinforcement required	= max [M / 0.87 f_{vk} z; 0.0013		$A_{s,req'd}$	1015 mm ²
	,		A _{s,prov} >	$A_{s,req'd}$: OK
BOTTOM REINFORCEMEN	T - MINOR DIRECTION			
Reinforcement provided	diameter, Ø _{b2} 12	spacing 200	$A_{s,prov}$	565 mm ²
Effective depth	= h - c_b - \emptyset_{b1} - \emptyset_{b2} / 2		d	228 mm
K Factor	$= M / d^2 f_{ck}$ < 0.168	3 :. No compression reinfor	cement req'd K	0.000
_ever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z <	: 0.95 d	Z	217 mm
Reinforcement required	= max [M / 0.87 f _{yk} z; 0.0013	b d] , < 0.04 b h	$A_{s,req'd}$	296 mm ²
			A _{s,prov} >	A _{s,req'd} : OK
TOP REINFORCEMENT - M	AJOR DIRECTION			
Reinforcement provided	diameter, \emptyset_{t1} 16	spacing 100	$A_{s,prov}$	2011 mm ²
Effective depth	= h - ct - Øt ₁ / 2		d	242 mm
K Factor	$= M / d^2 f_{ck}$ < 0.168	3 :. No compression reinfor	cement req'd K	0.110
_ever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z <	: 0.95 d	z	216 mm
Reinforcement required	= max [M / 0.87 f_{yk} z; 0.0013		$A_{s,req'd}$	1916 mm ²
	•		A _{s,prov} >	$A_{s,req'd}$:: OK
TOP REINFORCEMENT - M	IINOR DIRECTION			
	diameter, \emptyset_{b2} 12	spacing 200	$A_{s,prov}$	565 mm ²
Reinforcement provided			ď	228 mm
Reinforcement provided Effective depth	$= h - c_t - \emptyset_{t1} - \emptyset_{t2} / 2$			
		3 :. No compression reinfor	cement req'd K	0.000
Effective depth			cement req'd K z	0.000 217 mm
Effective depth < Factor	$= M / d^2 f_{ck}$ < 0.168	0.95 d		

PROJECT 99 Frognal

TITLE

99 Flogilai

RC Beam GB.20.01

PROJECT NO 23020 DATE 31.07.2023

26

ENG

AΗ

SHEET NO

750 wide x 450 dp Reinforced Concrete Ground Beam (BS EN 1992-1-1:2004) **BEAM GEOMETRY** L 2.0 m Beam span Design span Beam depth d 450 mm b 750 mm Beam width С 50 mm Cover Assume 50mm cover MATERIAL PROPERTIES Concrete Strength C28/35 28 N/mm² N/mm² High yield reinforcement f_{yk} 500 Steel strength Concrete Tensile Strength f_{ctm} 2.80 N/mm² **DESIGN FORCES Design Moment** $wl^2/8$ FLOOR 1. Assume 5m width of ground slab acting on beam M_{Ed} 52 kNm Design Shear wl/2 V_{Ed} 103 kN TENSION REINFORCEMENT $\mathsf{A}_{\mathsf{s},\mathsf{prov}}$ Reinforcement provide Use 3no. H16 bars 603 mm² Effective depth = h - c - Ølinks - Øbar / 2 d 376 mm $= M / b d^2 fck$ K Factor Κ 0.017 - $\delta = 0.85$ Κ 0.168 No compression reinforcement req'd = $0.5 d [1 + \sqrt{(1 - 3.53K)}], z < 0.95 d$ Lever arm 357 mm Min. reinforcement $= \max [(0.26 \text{ fctm b d}) / \text{ fyk}; 0.0013 \text{ b d}]$ $A_{s,min}$ 411 mm² Reinforcement requirer = max [M / 0.87 fyk z ; $A_{s,min}$] , < 0.04 b h $A_{s,req}$ 411 mm² $A_{s,prov}$ As,req OK SHEAR REINFORCEMENT $= V_{Ed} / 0.9 d b$ Design shear stress 0.406 N/mm² Strut capacity $\cot\theta = 2.5$ V_{Rd,max c} 3.430 N/mm² $\cot\theta = 1.0$ V_{Rd,max c} 4.970 N/mm² < max cot θ =2.5 :. $\cot\theta = 2.5$ minimum strut angle ($\cot\theta$ =2.5) Strut angle 21.80 ° = 0.75 dMax link spacing $\boldsymbol{s}_{\text{max}}$ 282 mm $= v_{Ed} b / (0.87 f_{vk} \cot \theta)$ Shear links required A_{sw} / s 0.28 mm Shear links required $= v_{Ed} b s_{max} / (0.87 f_{vk} \cot \theta)$ A_{sw} 79 mm Use 2no H16 link legs Shear links provided $A_{sw,prov}$ 402 mm² = min($A_{sw,prov}/(A_{sw}/s)$, s_{max}) Spacing required 250 mm OK s_{max} OK **DEFLECTION** Required reinforcemen = As / b d 0.002 ρ Reference ratio $= \sqrt{f_{ck}} / 1000$ ρ_0 0.005 -Simply supported beam System factor 1.0 Κ Factor 2 1.0 Factor 3 $= A_{s,prov} / A_{s,req}, \le 1.5$ 1.47 F3 Span/depth ratio limit = F2 F3 K [11 + 1.5 $\sqrt{(fck)} \rho 0/\rho + 3.2 \sqrt{(fck)} (\rho 0/\rho -1)^1.5$] L/d_{lim} 73.5 73.5 5.3 OK

PROJECT 99 Frognal
TITLE RC Slab S.21.01

PROJECT NO 23020 SHEET NO 27

DATE 01/10/2023 ENG AH

RC SLAB	S.21.01				
SLAB GEOMETRY					
Design span			L	5	m
Slab thickness			h	300	mm
Bottom layer cover			c_b	50	mm
Top layer cover			\mathbf{c}_{t}	50	mm
MATERIAL PROPERTIES					
Concrete Strength	C28/35		f _{ck}	28	N/mm
Steel strength	High yield reinforcemen	t	f_{yk}	500	N/mm
DESIGN FORCES					
Design load	Buried basement (ROO	F 1) load, w = 1.35Gk + 1.5Qk	W	68.0	kN/m
Major Sagging Moment	(2 2		$M_{s,Ed,major}$		kNm
Minor Sagging Moment			M _{s,Ed,minor}		kNm
Major Hogging Moment			M _{h,Ed,major}	213	kNm
Minor Hogging Moment			M _{h.Ed.minor}	0	kNm
00 0			.,,		
BOTTOM REINFORCEMENT		. 450	A	4040	2
Reinforcement provided	diameter, \emptyset_{b1} 16	spacing 150	A _{s,prov}	1340	
Effective depth	$= h - c_b - \emptyset_{b1} / 2$		d	242	mm
K Factor	$= M / d^2 f_{ck} $	0.168 :. No compression reinforcement req'd	K	0.073	
Lever arm	= 0.5 d [1 + √ (1 - 3.53K		Z	225	
Reinforcement required	= max [M / 0.87 $f_{yk} z$; 0	0.0013 b d] , < 0.04 b h	$A_{s,req'd}$	1215	
			A _{s,prov} >	A _{s,req'd}	:. OK
BOTTOM REINFORCEMENT	- MINOR DIRECTION				
Reinforcement provided	diameter, \emptyset_{b2} 10	spacing 200	$A_{s,prov}$	393	mm ²
Effective depth	= h - c_b - \emptyset_{b1} - \emptyset_{b2} / 2		d	229	mm
K Factor	$= M / d^2 f_{ck} $	0.168 :. No compression reinforcement req'd	K	0.000	
Lever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53)}$ K)], z < 0.95 d	Z	218	mm
		10012 h d 1 × 0 04 h h	^	000	
Reinforcement required	= max [M / $0.87 f_{yk} z$; 0	0.00 13 b d] , < 0.04 b ll	$A_{s,req'd}$	298	mm ²
Reinforcement required	= max [M / 0.87 f _{yk} z ; (.0013 0 0] , < 0.04 0 11	A _{s,req'd} A _{s,prov} >	A _{s,req'd}	
Reinforcement required TOP REINFORCEMENT - MA	,	.0013 b d] , < 0.04 b li	-		
	,	spacing 100	-		:. OK
TOP REINFORCEMENT - MA	AJOR DIRECTION		A _{s,prov} >	A _{s,req'd}	:. OK
TOP REINFORCEMENT - MA	AJOR DIRECTION diameter, Ø _{t1} 16		$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} \\ d & \end{array}$	A _{s,req'd}	:. OK
TOP REINFORCEMENT - MA Reinforcement provided Effective depth	AJOR DIRECTION diameter, Ø _{t1} 16 = h - ct - Øt ₁ / 2	spacing 100 0.168 :. No compression reinforcement req'd	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} \\ d & \end{array}$	A _{s,req'd} 2011 242	mm²
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor	AJOR DIRECTION diameter, \emptyset_{t1} 16 $= h - ct - \emptyset t_1 / 2$ $= M / d^2 f_{ck} <$	spacing 100 0.168 :. No compression reinforcement req'd)], z < 0.95 d	$\begin{array}{c} A_{s,prov} & > \\ \\ A_{s,prov} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	2011 242 0.130	mm² mm
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor Lever arm	AJOR DIRECTION diameter, \emptyset_{t1} 16 = h - ct - \emptyset t ₁ / 2 = M / d ² f _{ck} < = 0.5 d [1 + $\sqrt{(1 - 3.53)}$ K	spacing 100 0.168 :. No compression reinforcement req'd)], z < 0.95 d	A _{s,prov} > A _{s,prov} d K z	A _{s,req'd} 2011 242 0.130 210	mm² mm mm mm
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor Lever arm Reinforcement required	AJOR DIRECTION diameter, \emptyset_{t1} 16 = h - ct - $\emptyset t_1$ / 2 = M / d ² f _{ck} < = 0.5 d [1 + $\sqrt{(1 - 3.53)}$ K = max [M / 0.87 f _{yk} z; 0	spacing 100 0.168 :. No compression reinforcement req'd)], z < 0.95 d	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} \\ d \\ K \\ z \\ A_{s,req'd} \end{array}$	2011 242 0.130 210 2326	mm² mm mm mm
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor Lever arm	AJOR DIRECTION diameter, \emptyset_{t1} 16 = h - ct - $\emptyset t_1$ / 2 = M / d ² f _{ck} < = 0.5 d [1 + $\sqrt{(1 - 3.53)}$ K = max [M / 0.87 f _{yk} z; 0	spacing 100 0.168 :. No compression reinforcement req'd)], z < 0.95 d 0.0013 b d] , < 0.04 b h	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} & \\ d & \\ K & \\ z & \\ A_{s,req'd} & \\ A_{s,prov} & < \\ \end{array}$	2011 242 0.130 210 2326 A _{s,req'd}	mm² mm mm mm² FAIL
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor Lever arm Reinforcement required TOP REINFORCEMENT - MII Reinforcement provided	AJOR DIRECTION $\begin{array}{ccc} \text{diameter, } \varnothing_{t1} & 16 \\ = \text{h - ct - } \varnothing_{t_1} \text{/ 2} \\ = \text{M / } \text{d}^2 \text{ f}_{ck} & < \\ = 0.5 \text{ d } [1 + \sqrt{(1 - 3.53 \text{K})}] \\ = \text{max } [\text{ M / } 0.87 \text{ f}_{yk} \text{ z }; \text{ O}] \\ \\ \text{NOR DIRECTION} \\ \text{diameter, } \varnothing_{b2} & 10 \\ \end{array}$	spacing 100 0.168 :. No compression reinforcement req'd)], z < 0.95 d	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} \\ d \\ K \\ z \\ A_{s,req'd} \end{array}$	2011 242 0.130 210 2326 A _{s,req'd}	mm² mm mm² FAIL
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor Lever arm Reinforcement required	AJOR DIRECTION diameter, \emptyset_{t1} 16 $= h - ct - \emptyset t_1 / 2$ $= M / d^2 f_{ck} <$ $= 0.5 d [1 + \sqrt{(1 - 3.53K)}]$ $= max [M / 0.87 f_{yk} z; 0]$ NOR DIRECTION diameter, \emptyset_{b2} 10 $= h - c_t - \emptyset_{t1} - \emptyset_{t2} / 2$	spacing 100 0.168 :: No compression reinforcement req'd)], z < 0.95 d 0.0013 b d], < 0.04 b h spacing 200	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} & \\ d & \\ K & \\ z & \\ A_{s,req'd} & \\ A_{s,prov} & < \\ \\ \end{array}$	2011 242 0.130 210 2326 A _{s,req'd}	mm² mm mm² FAIL
TOP REINFORCEMENT - MAREINFORCEMENT - MAREINFORCEMENT - MAREINFORCEMENT - MILE REINFORCEMENT	AJOR DIRECTION diameter, \emptyset_{t1}	spacing 100 0.168 :. No compression reinforcement req'd 0), z < 0.95 d 0.0013 b d] , < 0.04 b h spacing 200 0.168 :. No compression reinforcement req'd	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} & \\ d & \\ K & \\ z & \\ A_{s,req'd} & \\ A_{s,prov} & < \\ \\ \end{array}$	2011 242 0.130 210 2326 A _{s,req'd}	mm² mm mm² FAIL
TOP REINFORCEMENT - MA Reinforcement provided Effective depth K Factor Lever arm Reinforcement required TOP REINFORCEMENT - MII Reinforcement provided Effective depth	AJOR DIRECTION diameter, \emptyset_{t1} 16 $= h - ct - \emptyset t_1 / 2$ $= M / d^2 f_{ck} <$ $= 0.5 d [1 + \sqrt{(1 - 3.53K)}]$ $= max [M / 0.87 f_{yk} z; 0]$ NOR DIRECTION diameter, \emptyset_{b2} 10 $= h - c_t - \emptyset_{t1} - \emptyset_{t2} / 2$	spacing 100 0.168 :. No compression reinforcement req'd 0.0013 b d] , < 0.04 b h spacing 200 0.168 :. No compression reinforcement req'd 0], z < 0.95 d	$\begin{array}{c c} A_{s,prov} & > \\ \\ A_{s,prov} & \\ d & \\ K & \\ z & \\ A_{s,req'd} & \\ A_{s,prov} & < \\ \\ \end{array}$	2011 242 0.130 210 2326 A _{s,req'd} 393 229 0.000 218	mm² mm mm² FAIL

PROJECT 99 Frognal PROJECT NO DATE 23020 25/10/2023

RKSHOP	TITLE RC Beam GB.21.04	SHEET NO	28	ENG	- 25/ 3 AH	
600 wide x 1125	dp Reinforced Concrete Beam	(BS EN 1992	2-1-1:2004)		
BEAM GEOMETRY						
Beam span	Design span			L	9.5	m
Beam depth	depth in direction of applied forces			d	1125	mm
Beam width				b	600	mm
Cover	Assume 50mm cover			С	50	mm
MATERIAL PROPE	RTIES					
Concrete Strength	C28/35			f_{ck}	28	N/mn
Steel strength	High yield reinforcement			f_{yk}	500	N/mn
Concrete Tensile Stre	ngth			f_{ctm}	2.80	N/mn
DESIGN FORCES						
Design Moment	$wl^2/8$ $w = 201 \text{ kN/m}$			M_{Ed}	2268	kNm
Design Shear	wl/2			V_{Ed}	955	kN
TENSION REINFO	RCEMENT					
Reinforcement provide	Use 16no. H25 bars (2 layers of 8no. bars)			$A_{s,pro}$, 7854	mm²
Effective depth	= h - c - Ølinks - Øbar - horiz. pitch / 2			d	993	mm
K Factor	= M / b d² fck			K	0.137	· -
	$\delta = 0.85$ K < 0.168 :. No compr	ession reinforcemer	nt req'd			
ever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d			z	853	mm
/lin. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]			$A_{s,mir}$	867	mm²
Reinforcement require	$e_{C} = max [M / 0.87 fyk z ; A_{s,min}] , < 0.04 b h$			$A_{s,req}$	6112	mm²
			$A_{s,prov}$	> As,re	eq :.	OK
SHEAR REINFORC	CEMENT					
Design shear stress	$= V_{Ed} / 0.9 d b$			$v_{\sf Ed}$	1 781	N/mn
Strut capacity	cotθ = 2.5				3.430	
, ,	cotθ = 1.0				_{ix c} 4.970	
	v_{Ed} < nax cot θ =2.5 :. cot θ = 2.5			ra,iii		
Strut angle	minimum strut angle (cotθ=2.5)			θ	21.80	•
Max link spacing	= 0.75 d			s _{max}	744	
Shear links required	= $v_{Ed} b / (0.87 f_{yk} \cot \theta)$			A _{sw} /	s 0.98	mm
Shear links required	= v_{Ed} b s_{max} / (0.87 f_{yk} cot θ)			A_sw	732	mm
Shear links provided	Use 3no H20 link legs			$A_{sw,p}$	ov 942	mm²
Spacing required	= min($A_{sw,prov}/(A_{sw}/s)$, s_{max})			s	700	mm
			$A_{sw,prov}$	> A _{sv}	:.	OK
			s	< S _{ma}	:.	OK
DEFLECTION						
Required reinforceme	n = As / b d			ρ	0.005	; -
Reference ratio	$=\sqrt{f_{ck}}/1000$			$ ho_0$	0.005	
System factor	Simply supported beam			K	1.0	
actor 2	n/a			F2	1.0	-
Factor 3	= A _{s,prov} / A _{s,req} , ≤ 1.5			F3	1.28	-
Span/depth ratio limit	= F2 F3 K [11 + 1.5 √(fck) ρ0/ρ]			L/d _{lim}	24.0	-

PROJECT

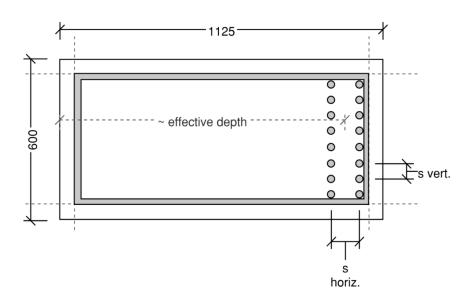
TITLE

99 Frognal

RC Beam GB.21.04


PROJECT NO SHEET NO

23020


DATE

25/10/2023

ENG 29 ΑН

DESIGN FORCES Surcharge + Water + Soil

CROSS SECTION OF CAPPING BEAM GB.21.04

Vertical pitch

= (b - 2*c - 2*Ølinks - Øbar) / (no. bars - 1)

s vert

62 mm

Horizontal pitch

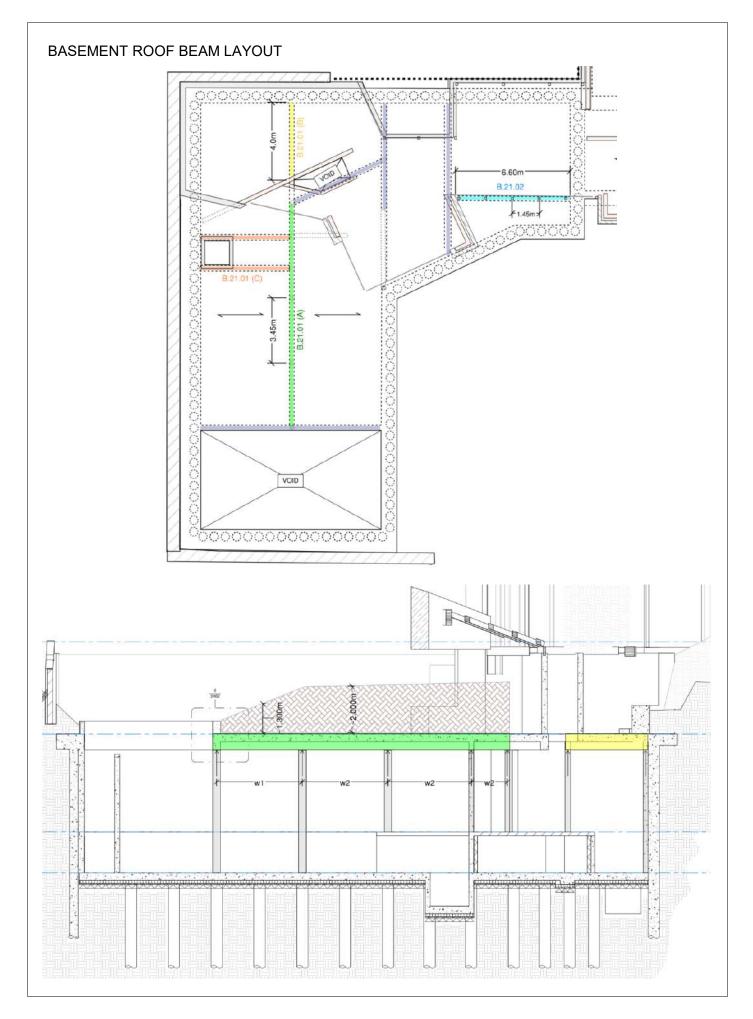
Allowable pitch given bar size, from rebar detailing tables

s horiz

75 mm PROJECT TITLE

99 Frognal


PROJECT NO


23020

DATE

31/07/2023

ΑH

PROJECT

TITLE

99 Frognal

Schedule of Loads

PROJECT NO SHEET NO

23020 31 DATE 31/07/2023

ENG AH

								Dead	Live	Total	Units
BEAM B.21.01 (A)	Basement ro	oof under i	andscap	ing				Gk	Qk	Σ	
RC Slab	0.300 m		,	J		24.0 kN/m ³		7.20			
Rigid Insulation	0.300 m					1.0 kN/m ³		0.30			
Vapour Control								0.01			
Plasterboard + skim	0.015 mm					9.0 kN/m ³		0.14			
Live									5.00		
Soil Avg. Depth 1	1 1.300 m					18.0 kN/m ³	•	36.00			
Avg. Depth 2		Typica	I load (co	onservative)		18.0 kN/m ³		23.40			
Line Load, w1							TOTAL	43.65	5.00		kN/m²
width of slab acting	on beam	5 m						218.2	25.00		kN/m
							ULS	294.6	37.5	332.1	kN/m
Line Load, w2		F					TOTAL		5.00		kN/m²
width of slab acting o	on beam	5 m							25.00		kN/m
							ULS	209.6	37.5	247.1	kN/m
BEAM B.21.01 (B)	Basement ro	oof under	Ground F	loor				Gk	Qk	Σ	
Finishes	0.030 m					20.0 kN/m ³		0.60			
Screed	0.080 m					22.0 kN/m ³		1.76			
Rigid Insulation	0.150 m					1.0 kN/m ³		0.15			
RC Slab	0.300 m					24.0 kN/m ³		7.20			
Plasterboard + skim	0.015 mm					9.0 kN/m ³		0.14			
Live	gym								5.00		
							TOTAL	9.85	5.00		kN/m²
width of slab acting	on beam	5 m									
								49.2	25.00		kN/m
							ULS	49.2 66.45	25.00 37.5	104	kN/m
BEAM B 21 01 (C)	Danamant na	. ofodo a		in a sand also disa	1-4		ULS	66.45	37.5		
	Basement ro	oof under l	andscap	ing and skyligi	ht		ULS	66.45 Gk	37.5 Qk	Σ	
ROOF 1						18 0 tal/ ³	ULS	66.45 Gk Gk	37.5		
ROOF 1 Soil	2.500 m			ing and skyligi deepest soil c		18.0 kN/m ³	ULS	Gk Gk 45.00	37.5 Qk	Σ	
ROOF 1 Soil RC Slab	2.500 m 0.300 m					24.0 kN/m ³	ULS	Gk Gk 45.00 7.20	37.5 Qk	Σ	
ROOF 1 Soil RC Slab RC Roof beams	2.500 m 0.300 m 0.05					24.0 kN/m ³ 24.0 kN/m ³	ULS	Gk Gk 45.00 7.20 1.20	37.5 Qk	Σ	
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation	2.500 m 0.300 m					24.0 kN/m ³	ULS	Gk Gk 45.00 7.20 1.20 0.30	37.5 Qk	Σ	
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control	2.500 m 0.300 m 0.05 0.300 m					24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³	ULS	Gk Gk 45.00 7.20 1.20 0.30 0.01	37.5 Qk	Σ	
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim	2.500 m 0.300 m 0.05					24.0 kN/m ³ 24.0 kN/m ³	ULS	Gk Gk 45.00 7.20 1.20 0.30	37.5 Qk Qk	Σ	
Soil RC Slab RC Roof beams Rigid Insulation Vapour Control	2.500 m 0.300 m 0.05 0.300 m					24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³		Gk Gk 45.00 7.20 1.20 0.30 0.01 0.14	37.5 Qk Qk 5.00	Σ	kN/m
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live	2.500 m 0.300 m 0.05 0.300 m					24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³		Gk Gk 45.00 7.20 1.20 0.30 0.01	37.5 Qk Qk 5.00	Σ	
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim	2.500 m 0.300 m 0.05 0.300 m		tion with			24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³		Gk Gk 45.00 7.20 1.20 0.30 0.01 0.14	37.5 Qk Qk 5.00	Σ	kN/m
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live SKYLIGHT SHAFT Concrete walls	2.500 m 0.300 m 0.05 0.300 m 0.015 mm	in loca	tion with	deepest soil c	over	24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³		Gk Gk 45.00 7.20 0.30 0.01 0.14 53.85	37.5 Qk Qk 5.00	Σ	kN/m ²
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live SKYLIGHT SHAFT Concrete walls BEAM B.21.02	2.500 m 0.300 m 0.05 0.300 m 0.015 mm	in loca	tion with	deepest soil c	over	24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³		Gk Gk 45.00 7.20 0.30 0.01 0.14	37.5 Qk Qk 5.00	Σ	kN/m ²
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live SKYLIGHT SHAFT Concrete walls BEAM B.21.02 POINT LOADS	2.500 m 0.300 m 0.05 0.300 m 0.015 mm	in loca thick	x columns	deepest soil o	<i>rover</i> high	24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³ 9.0 kN/m ³		Gk Gk 45.00 7.20 1.20 0.30 0.01 0.14 53.85	37.5 Qk Qk 5.00 5.00	Σ	kN/m²
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live SKYLIGHT SHAFT Concrete walls BEAM B.21.02	2.500 m 0.300 m 0.05 0.300 m 0.015 mm	in loca thick	x columns	deepest soil c	<i>rover</i> high	24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³	TOTAL	Gk Gk 45.00 7.20 0.30 0.01 0.14 53.85 12.96 Gk	37.5 Qk Qk 5.00 5.00	Σ	kN/m ² kN/m
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live SKYLIGHT SHAFT Concrete walls BEAM B.21.02 POINT LOADS Columns	2.500 m 0.300 m 0.05 0.300 m 0.015 mm	in loca thick	x columns	deepest soil o	<i>rover</i> high	24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³ 9.0 kN/m ³		Gk Gk 45.00 7.20 0.30 0.01 0.14 53.85 12.96 Gk	37.5 Qk Qk 5.00 5.00	Σ	kN/m ² kN/m
ROOF 1 Soil RC Slab RC Roof beams Rigid Insulation Vapour Control Plasterboard + skim Live SKYLIGHT SHAFT Concrete walls BEAM B.21.02 POINT LOADS	2.500 m 0.300 m 0.05 0.300 m 0.015 mm	in loca thick	x columns	deepest soil o	high acting on	24.0 kN/m ³ 24.0 kN/m ³ 1.0 kN/m ³ 9.0 kN/m ³	TOTAL	Gk Gk 45.00 7.20 0.30 0.01 0.14 53.85 12.96 Gk	37.5 Qk Qk 5.00 5.00	Σ	kN/m ² kN/m

PROJECT 99

TITLE

99 Frognal

RC Beam B.21.01 (A) sagging

PROJECT NO 23020 DATE

DATE 31/07/2023

SHEET NO 32 ENG AH

300 wide x 625 d	p Reinforced Concrete Beam	(BS EN 1992-1-1:2004)			
BEAM GEOMETRY	(
Beam span	Design span		L	3.45	m
Beam depth			d	625	mm
Beam width			b	300	mm
Cover	Assume 50mm cover		С	50	mm
MATERIAL PROPE	ERTIES				
Concrete Strength	C28/35		f_{ck}	28	N/mm
Steel strength	High yield reinforcement		f_{yk}	500	N/mm
Concrete Tensile Stre	ength		f_{ctm}	2.80	N/mm
DESIGN FORCES					
Design Moment	Max. sagging moment. From Strand7 Analysis		M_{Ed}	219	kNm
Design Shear	From Strand7 Analysis		V_{Ed}	540	kN
TENSION REINFO	RCEMENT				
Reinforcement provid	e Use 3no. H25 bars		$A_{s,prov}$	1473	mm²
Effective depth	= h - c - Ølinks - Øbar / 2		d	547	mm
K Factor	= M / b d² fck		K	0.087	-
	$\delta = 0.85$ K < 0.168 : No compression	reinforcement req'd			
Lever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d		Z	500	mm
Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]		$A_{s,min}$	239	mm²
Reinforcement require	ec = max [M / 0.87 fyk z ; A _{s,min}] , < 0.04 b h		$A_{s,req}$	1008	mm²
		A _{s,prov}	> As,req	:.	OK
SHEAR REINFORG	CEMENT				
Design shear stress	$= V_{Ed} / 0.9 db$		$v_{\sf Ed}$	3.658	N/mm
Strut capacity	$\cot\theta = 2.5$		V _{Rd,max c}	3.430	N/mm
, ,	$\cot\theta = 1.0$		V _{Rd,max c}		
	v_{Ed} < nax cot θ =1.0 :. 1 < cot θ <2.5		,		
Strut angle	= 0.5 sin-1 (vEd / 0.2 fck (1 - fck/250))		θ	23.68	0
Max link spacing	= 0.75 d		S _{max}	410	mm
Shear links required	= $v_{Ed} b / (0.87 f_{yk} \cot \theta)$		A _{sw} / s	1.11	mm
Shear links required	$= v_{Ed} b s_{max} / (0.87 f_{vk} \cot \theta)$		A_{sw}	453	mm
Shear links provided	Use 4no H16 link legs		A _{sw,prov}	804	mm²
Spacing required	$= \min(A_{sw,prov}/(A_{sw}/s), s_{max})$		S	400	mm
94	(Sw.prov. (Sw. / / Illan)	$A_{sw,prov}$	> A _{sw}	:.	OK
			< S _{max}	:.	OK
			1 IIIax		
DEFLECTION	- A- /h- d			0.000	
Required reinforceme			ρ	0.003	
Reference ratio	= $\sqrt{f_{ck}}/1000$ Simply supported beam		ρ_0	0.005	
			K	1.0	
-			F2	1.0	-
Factor 2	n/a				
Factor 2 Factor 3	= A _{s,prov} / A _{s,req} , ≤ 1.5		F3	1.46	
System factor Factor 2 Factor 3 Span/depth ratio limit	= A _{s,prov} / A _{s,req} , ≤ 1.5	6.3	F3 L/d _{lim} < 54.4	1.46 54.4 :.	

PROJECT 99 F

TITLE

99 Frognal

RC Beam B.21.01 (A) hogging

PROJECT NO 23020 DATE 31/07/2023

ENG

 AH

33

SHEET NO

Concrete Tensile Strength f _{ctm} 2.80 N/mm DESIGN FORCES		Ip Reinforced Concrete Beam (BS EN	1992-1-1:2004	4)			
Beam dight	BEAM GEOMETR	Υ					
Beam width	Beam span	Design span			L	3.45	m
MATERIAL PROPERTIES	Beam depth				d	625	mm
MATERIAL PROPERTIES Concrete Strength C28/35 Site Istength High yield reinforcement From Strand7 Analysis f _{sm} 500 Nmm Concrete Tensile Strength f _{sm} 500 Nmm DESIGN FORCES Design Moment Max. hogging moment. From Strand7 Analysis Med 356 kNm Design Shear From Strand7 Analysis Med 357 mm Reinforcement provide Use finc. H20 bars max(25mm : Øbar)/2 changed for double layer d 527 mm K Factor = M / b d* ck 0.168 No compression reinforcement required Lever arm = 0.5 d 1 + √ (1 - 3.53K), z < 0.95 d 1 + √ (1 - 3.53K), z < 0.95 d Min. reinforcement = max [(0.26 form b d) f/ks; 0.0013 b d] A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k z ; A _{amin}] , < 0.04 b h A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Reinforcement required = max [M / 0.87 f/k cotle) A _{amin} 230 mm² Re	Beam width				b	300	mm
Steel strength High yield reinforcement Frat Light yield reinforcement Frat	Cover	Assume 50mm cover			С	50	mm
Steel strength High yield reinforcement Fight Steel strength Concrete Tensile Strength High yield reinforcement Fight High yield reinforcement Fi	MATERIAL PROPI	ERTIES					
DESIGN FORCES Design Moment Max. hogging moment. From Strand7 Analysis Max. hogging moment. From Strand7 Analysis Vid 500 km	Concrete Strength	C28/35			f_{ck}	28	N/mm
Design FORCES Design Moment Max. hogging moment. From Strand? Analysis Ved 590 kN	Steel strength	High yield reinforcement			f_{yk}	500	N/mm
Design Moment Max. hogging moment. From Strand? Analysis Near Ved 590 KNN	Concrete Tensile Str	ength			f _{ctm}	2.80	N/mm
Design Shear From Strand7 Analysis Vest 590 KN	DESIGN FORCES						
TENSION REINFORCEMENT Reinforcement provide Use 6no. H20 bars d c c 0 0 0 0 0 0 0 0	Design Moment	Max. hogging moment. From Strand7 Analysis			M_{Ed}	356	kNm
Reinforcement provide Use 6no. H20 bars Effective depth	Design Shear	From Strand7 Analysis			V_{Ed}	590	kN
Effective depth	TENSION REINFO	PRCEMENT					
K Factor = M / b d² fck 5 = 0.85	Reinforcement provid	de Use 6no. H20 bars			$A_{s,prov}$	1885	mm²
S = 0.85 K S 0.168 C No compression reinforcement req'd S S S S S S S S S	Effective depth	= d - c - Ølinks - Øbar - max(25mm; Øbar)/2 changed for double layer			d	527	mm
Lever arm	K Factor	$= M / b d^2 fck$			K	0.153	-
Min. reinforcement = max [(0.26 fctm b d) fyk ; 0.0013 b d]		δ = 0.85 K < 0.168 :. No compression reinforce	ement req'd				
Reinforcement requirer = $\max [M / 0.87 \text{ fyk z}; A_{s,min}], < 0.04 \text{ b h}$ $A_{s,prov} > A_{s,req} = 1853 \text{ mm}^2$ $A_{s,prov} > A_{s,req} = 1.06 \text{ MeV}$ SHEAR REINFORCEMENT Design shear stress = $V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 1.0$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} (1 - \text{ fck} / 250))$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.2 \text{ fck} / 0.00)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.0)$ $V_{Ed} < \min \cot \theta = 0.5 \text{ sin-1} (\text{VEd} / 0.0)$ $V_{Ed} < \min \cot$	Lever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d			z	442	mm
	Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]			$A_{\text{s,min}}$	230	mm²
$SHEAR \ REINFORCEMENT \\ Design \ shear \ stress \\ = V_{Ed} / 0.9 \ d \ b \\ Strut \ capacity \\ cot\theta = 2.5 \\ cot\theta = 1.0 \\ V_{Ed} < max \ cot\theta = 1.0 : 1 < cot\theta < 2.5 \\ V_{Rd,max} c < 4.970 \ N/mm \\ V_{Ed} < max \ cot\theta = 1.0 : 1 < cot\theta < 2.5 \\ Strut \ angle \\ = 0.5 \ sin-1 \ (VEd / 0.2 \ fck \ (1 - fck/250 \)) \\ = 0.75 \ d \\ Shear \ links \ spacing \\ Shear \ links \ required \\ = V_{Ed} \ b \ / (0.87 \ f_{y_k} \ cot\theta) \\ Shear \ links \ required \\ = V_{Ed} \ b \ / (0.87 \ f_{y_k} \ cot\theta) \\ Shear \ links \ required \\ = V_{Ed} \ b \ / (0.87 \ f_{y_k} \ cot\theta) \\ Shear \ links \ required \\ = V_{Ed} \ b \ / (0.87 \ f_{y_k} \ cot\theta) \\ Shear \ links \ required \\ = min \ (A_{sw,prov} / (A_{sw}/s) \ , s_{max}) \\ Spacing \ required \\ = min \ (A_{sw,prov} / (A_{sw}/s) \ , s_{max}) \\ = \frac{A_{sw,prov}}{s} \ & A_{sw} \ \ : OK \\ \hline System \ factor \\ System \ factor \\ Simply \ supported \ beam \\ Factor 2 \ n/a \\ Factor 3 \ = A_{s,prov} / A_{s,req} \ , \le 1.5 \\ Span / (fck) \ pO/p \]$	Reinforcement requir	$e_{C} = max [M / 0.87 \text{ fyk z } ; A_{s,min}], < 0.04 \text{ b h}$			$A_{s,req}$	1853	mm²
Design shear stress $= \bigvee_{Ed} / \ 0.9 \ d \ b$ $V_{Ed} / \ 0.9 \ d \ b$			$A_{s,prov}$	>	As,req	:.	OK
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SHEAR REINFOR	CEMENT					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Design shear stress	$= V_{Ed} / 0.9 d b$			V_{Ed}	4.148	N/mm
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Strut capacity	$\cot\theta = 2.5$			V _{Rd,max c}	3.430	N/mm
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		$\cot\theta = 1.0$					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		v_{Ed} < max cot θ =1.0 :. 1 < cot θ <2.5					
Shear links required $= v_{Ed} \ b \ / \ (0.87 \ f_{yk} \ cot\theta)$ $A_{sw} \ / \ s \ 1.54 \ mm$ Shear links required $= v_{Ed} \ b \ s_{max} \ / \ (0.87 \ f_{yk} \ cot\theta)$ $A_{sw} \ / \ s \ 1.54 \ mm$ Shear links provided Use 4no H16 link legs $A_{sw,prov} \ Box \ A_{sw,prov} \ Box \$	Strut angle	= 0.5 sin-1 (vEd / 0.2 fck (1 - fck/250))			θ	28.26	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	= 0.75 d			s _{max}		
Shear links provided Use 4no H16 link legs $ = \min(A_{sw,prov}/(A_{sw}/s) , s_{max}) $ $ s $, ,	$= v_{rd} b / (0.87 f_{d} \cot \theta)$			A _{sw} / s	1.54	mm
$Spacing required = min(A_{sw,prov}/(A_{sw}/s), s_{max})$ $Spacing required = min(A_{sw,prov}/A_{sw}/s), s_{max}$ $Spacing required = min(A_{sw,prov}/(A_{sw}/s), s_{max})$ $Spacing required = min(A_{sw,prov}/(A_{sw,prov}/s), s_{max})$ $Spacing required = min(A_{sw,prov}/(A_{sw,prov}/s), s_{max}/(A_{sw,pr$	· -	TEG 27 (SIS: 19K SSIS)				607	mm
$Spacing required = min(A_{sw,prov}/(A_{sw}/s), s_{max})$ $Spacing required = min(A_{sw,prov}/(A_{sw,prov}/s), s_{max}$ $Spacing required = min(A_{sw,prov}/(A_{sw,prov}/s), s_{max}$ $Spacin$	Shear links required	•			A_{sw}	007	1111111
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Shear links required Shear links required	$= v_{Ed} b s_{max} / (0.87 f_{yk} \cot \theta)$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shear links required Shear links required Shear links provided	= v_{Ed} b s_{max} / (0.87 f_{yk} cot θ) Use 4no H16 link legs			$A_{\text{sw,prov}}$	804	mm²
Required reinforcemen = As / b d $ \rho = \sqrt{\frac{1}{1000}} = \sqrt{\frac{1}{10000}} = \sqrt{\frac{1}{100000}} = \sqrt{\frac{1}{100000}} = \sqrt{\frac{1}{1000000}} = \sqrt{\frac{1}{1000000000000000000000000000000000$	Shear links required Shear links required Shear links provided	= v_{Ed} b s_{max} / (0.87 f_{yk} cot θ) Use 4no H16 link legs	$A_{sw,prov}$	>	A _{sw,prov}	804	mm² mm
Required reinforcemen = As / b d $ \rho = \sqrt{\frac{1000}{5}} = \frac{10$	Shear links required Shear links required Shear links provided	= v_{Ed} b s_{max} / (0.87 f_{yk} cot θ) Use 4no H16 link legs			$A_{sw,prov}$ s A_{sw}	804	mm² mm OK
Reference ratio $ = \sqrt{f_{ck}} / 1000 $ $ \rho_0 0.005 - 1000 $ System factor $ Simply supported beam $ $ K 1.0 - 1000 $ Factor $ 2 n/a $ $ F2 1.0 - 1000 $ Factor $ 3 = A_{s,prov} / A_{s,req}, \le 1.5 $ F3 $ 1.02 - 1000 $ Span/depth ratio limit $ F2 F3 K [11 + 1.5 \sqrt{(fck)} \rho 0/\rho] $ $ L/d_{lim} 18.8 - 1000 $	Shear links required Shear links required Shear links provided	= v_{Ed} b s_{max} / (0.87 f_{yk} cot θ) Use 4no H16 link legs			$A_{sw,prov}$ s A_{sw}	804	mm² mm OK
System factor Simply supported beam K 1.0 - Factor 2 n/a F2 1.0 - Factor 3 = $A_{s,prov} / A_{s,req}$, ≤ 1.5 F3 1.02 - Span/depth ratio limit = F2 F3 K [11 + 1.5 √(fck) ρ0/ρ] L/d _{lim} 18.8 -	Shear links required Shear links required Shear links provided Spacing required	= v_{Ed} b s_{max} / (0.87 f_{yk} cot θ) Use 4no H16 link legs = min($A_{sw,prov}$ /(A_{sw} /s), s_{max})			A _{sw,prov} s A _{sw}	804 350 :.	mm² mm OK OK
Factor 2	Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme	$= v_{Ed} b s_{max} / (0.87 f_{yk} \cot \theta)$ Use 4no H16 link legs $= min(A_{sw,prov} / (A_{sw}/s) , s_{max})$ en = As / b d			$\begin{array}{c} A_{sw,prov} \\ s \\ A_{sw} \\ \hline s_{max} \\ \end{array}$	804 350 :. :.	mm² mm OK OK
Factor 3 = $A_{s,prov} / A_{s,req}$, ≤ 1.5 F3 1.02 - Span/depth ratio limit = F2 F3 K [11 + 1.5 $\sqrt{(fck)} \rho 0/\rho$] L/d _{lim} 18.8 -	Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforcement	$= v_{Ed} b s_{max} / (0.87 f_{yk} \cot \theta)$ Use 4no H16 link legs $= min(A_{sw,prov} / (A_{sw}/s) , s_{max})$ en = As / b d $= \sqrt{f_{ck}} / 1000$			$\begin{array}{c} A_{sw,prov} \\ s \\ A_{sw} \\ \end{array}$ $\begin{array}{c} S_{max} \\ \end{array}$ $\begin{array}{c} \rho \\ \rho_0 \end{array}$	804 350 :. :. 0.006 0.005	mm² mm OK OK
Span/depth ratio limit = F2 F3 K [11 + 1.5 $\sqrt{(fck)} \rho 0/\rho$] L/d _{lim} 18.8 -	Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforcement Reference ratio System factor	$= v_{Ed} \ b \ s_{max} \ / \ (0.87 \ f_{yk} \ cot\theta)$ Use 4no H16 link legs $= min(\ A_{sw,prov} / (A_{sw}/s) \ , \ s_{max})$ en = As / b d $= \sqrt{f_{ck}} \ / \ 1000$ Simply supported beam			$\begin{array}{c} A_{sw,prov} \\ s \\ A_{sw} \\ \hline s_{max} \\ \end{array}$	804 350 :. :. 0.006 0.005 1.0	mm² mm OK OK
	Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforcement Reference ratio System factor Factor 2	$= v_{Ed} b s_{max} / (0.87 f_{yk} \cot \theta)$ Use 4no H16 link legs $= min(A_{sw,prov} / (A_{sw}/s) , s_{max})$ en = As / b d $= \sqrt{f_{ck} / 1000}$ Simply supported beam n/a			$\begin{array}{c} A_{sw,prov} \\ s \\ A_{sw} \\ \hline s_{max} \\ \end{array}$ $\begin{array}{c} \rho \\ \rho_0 \\ K \\ F2 \\ \end{array}$	804 350 :. :. 0.006 0.005 1.0	mm² mm OK OK
	Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforcement Reference ratio System factor Factor 2 Factor 3	$= v_{Ed} \ b \ s_{max} / (0.87 \ f_{yk} \ cot\theta)$ Use 4no H16 link legs $= min(\ A_{sw,prov} / (A_{sw}/s) \ , \ s_{max})$ $en = As / b \ d$ $= \sqrt{f_{ck} / 1000}$ Simply supported beam n/a $= A_{s,prov} / A_{s,req}, \le 1.5$			$\begin{array}{c} A_{sw,prov} \\ s \\ A_{sw} \\ \end{array}$ $\begin{array}{c} S_{max} \\ \end{array}$ $\begin{array}{c} \rho \\ \rho_0 \\ K \\ F2 \\ F3 \end{array}$	804 350 :. :. 0.006 0.005 1.0 1.02	mm² mm OK OK

PROJECT 99 Frognal

TITLE RC Beam B.21.01 (B)

PROJECT NO 23020 DATE 31/07/2023
SHEET NO 34 ENG AH

300 Wide x 023 d	p Reinforced Concrete Beam (BS EN 1993	2-1-1:200	4)			
BEAM GEOMETRY	,					
Beam span	Design span			L	4.0	m
Beam depth				d	625	mm
Beam width				b	300	mm
Cover	Assume 50mm cover			С	50	mm
MATERIAL PROPE	RTIES					
Concrete Strength	C28/35			f_{ck}	28	N/mm
Steel strength	High yield reinforcement			f_{yk}	500	N/mm
Concrete Tensile Stre	ngth			f_{ctm}	2.80	N/mm
DESIGN FORCES						
Design Moment	From Strand7 Analysis			M_{Ed}	220	kNm
Design Shear	From Strand7 Analysis			V_{Ed}	220	kN
TENSION REINFO	RCEMENT					
Reinforcement provid	e Use 3no. H25 bars			$A_{s,prov}$	1473	mm²
Effective depth	= h - c - Ølinks - Øbar / 2			d	547	mm
K Factor	$= M / b d^2 fck$			K	0.088	-
	δ = 0.85 K < 0.168 :. No compression reinforcement	nt req'd				
Lever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d			z	500	mm
Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]			$A_{\text{s,min}}$	239	mm²
Reinforcement require	ec = max [M / 0.87 fyk z ; A _{s,min}] , < 0.04 b h			$A_{s,req}$	1011	mm²
		_		10.00		OK
		$A_{s,prov}$	>	As,req	••	OK
SHEAR REINFORG	CEMENT	A _{s,prov}	>	As,req		OK
	CEMENT = V _{Ed} / 0.9 d b	A _{s,prov}	>	v _{Ed}	1.491	
Design shear stress		A _{s,prov}	>	· ·		N/mm
Design shear stress	$= V_{Ed} / 0.9 d b$	A _{s,prov}	>	V _{Ed}	3.430	N/mm
Design shear stress	$= V_{Ed} / 0.9 d b$ $\cot \theta = 2.5$	A _{s,prov}	>	V _{Ed}	3.430	N/mm
Design shear stress Strut capacity	= V_{Ed} / 0.9 d b $\cot\theta$ = 2.5 $\cot\theta$ = 1.0	A _{s,prov}	>	V _{Ed}	3.430	N/mm N/mm
Design shear stress Strut capacity Strut angle	= V_{Ed} / 0.9 d b $\cot\theta$ = 2.5 $\cot\theta$ = 1.0 V_{Ed} < $\max \cot\theta$ = 2.5 :. $\cot\theta$ = 2.5	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c}	3.430 4.970	N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing	= V_{Ed} / 0.9 d b cot θ = 2.5 cot θ = 1.0 V_{Ed} < nax cot θ =2.5 :. cot θ = 2.5 minimum strut angle (cot θ =2.5)	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c}	3.430 4.970 21.80	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required	= V_{Ed} / 0.9 d b $\cot\theta$ = 2.5 $\cot\theta$ = 1.0 V_{Ed} < nax $\cot\theta$ =2.5 :. $\cot\theta$ = 2.5 minimum strut angle ($\cot\theta$ =2.5) = 0.75 d	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max}	3.430 4.970 21.80 410	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required	$= V_{Ed} / 0.9 d b$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $v_{Ed} < \max \cot\theta = 2.5 :. \cot\theta = 2.5$ $\min \max \text{strut angle } (\cot\theta = 2.5)$ $= 0.75 d$ $= v_{Ed} b / (0.87 f_{yk} \cot\theta)$	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s	3.430 4.970 21.80 410 0.41	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$ = V_{Ed} / 0.9 d b $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ v_{Ed} < $	A _{s,prov}	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw} / S	3.430 4.970 21.80 410 0.41 169	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{max } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b } s_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max} A _{sw} / S A _{sw} A _{sw,prov}	3.430 4.970 21.80 410 0.41 169 402	N/mm N/mm N/mm ° mm mm mm
SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required Shear links provided Spacing required	$= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{max } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b } s_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs			V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ s_{max} A_{sw} / s A_{sw}	3.430 4.970 21.80 410 0.41 169 402 400	N/mm N/mm N/mm o mm mm mm mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{max } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b } s_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs	$A_{\text{sw,prov}}$	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ s_{max} A_{sw} / s A_{sw} $A_{sw,prov}$ s A_{sw}	3.430 4.970 21.80 410 0.41 169 402 400 :.	N/mm N/mm o mm mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required	$ = V_{Ed} / 0.9 \ d \ b $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	$A_{\text{sw,prov}}$	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ s_{max} A_{sw} / s A_{sw} $A_{sw,prov}$ s A_{sw}	3.430 4.970 21.80 410 0.41 169 402 400 :.	N/mm N/mm N/mm ° mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme	$ = V_{Ed} / 0.9 \ d \ b $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	$A_{\text{sw,prov}}$	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw} / S A_{sw} S_{max} S_{max}	3.430 4.970 21.80 410 0.41 169 402 400 :.	N/mm N/mm N/mm ° mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforcement	$ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ v_{Ed} < $	$A_{\text{sw,prov}}$	>	$\begin{array}{c} v_{Ed} \\ v_{Rd,maxc} \\ v_{Rd,maxc} \\ \theta \\ s_{max} \\ A_{sw} / s \\ A_{sw} \\ s \\ A_{sw,prov} \\ s \\ S_{max} \\ \end{array}$	3.430 4.970 21.80 410 0.41 169 402 400 :.	N/mm N/mm N/mm o mm mm oK OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme Reference ratio System factor	$ = V_{Ed} / 0.9 \ d \ b $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	$A_{\text{sw,prov}}$	>	$\begin{array}{c} v_{Ed} \\ v_{Rd,maxc} \\ v_{Rd,maxc} \\ \theta \\ s_{max} \\ A_{sw} / s \\ A_{sw} \\ A_{sw,prov} \\ s \\ A_{sw} \\ \end{array}$	3.430 4.970 21.80 410 0.41 169 402 400 :.	N/mm N/mm N/mm ° mm mm mm² mm OK OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required Shear links provided Spacing required	$= V_{Ed} / 0.9 d b$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{max } \cot\theta = 2.5 :. \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 d$ $= V_{Ed} b / (0.87 f_{yk} \cot\theta)$ $= V_{Ed} b s_{max} / (0.87 f_{yk} \cot\theta)$ Use 2no H16 link legs $= \min(A_{sw,prov}/(A_{sw}/s), s_{max})$ $n = As / b d$ $= \sqrt{f_{ck}} / 1000$ Simply supported beam	$A_{\text{sw,prov}}$	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw} / S A_{sw} S_{max} S_{max} S_{max}	3.430 4.970 21.80 410 0.41 169 402 400 :.	N/mm N/mm N/mm ° mm mm OK OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme Reference ratio System factor Factor 2	$= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{max } \cot\theta = 2.5 :. \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b s}_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ $Use 2no H16 link legs$ $= \min(A_{sw,prov}/(A_{sw}/s), s_{max})$ $n = As / b \text{ d}$ $= \sqrt{f_{ck}} / 1000$ Simply supported beam n/a	$A_{\text{sw,prov}}$	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} s A _{sw} S _{max}	3.430 4.970 21.80 410 0.41 169 402 400 :. :.	N/mm N/mm N/mm o mm mm OK OK

PROJECT 99 Frognal

TITLE RC Beam B.21.01 (C)

PROJECT NO SHEET NO

23020

DATE 31/07/2023

ENG

35

AH

	p Reinforced Concrete Beam (BS EN 1	992-1-1:2004	1)			
BEAM GEOMETRY	Y					
Beam span	Design span			L	5.0	m
Beam depth				d	625	mm
Beam width				b	300	mm
Cover	Assume 50mm cover			С	50	mm
MATERIAL PROPE	ERTIES					
Concrete Strength	C28/35			f_{ck}	28	N/mn
Steel strength	High yield reinforcement			f_{yk}	500	N/mn
Concrete Tensile Stre				f _{ctm}	2.80	N/mn
DESIGN FORCES						
Design Moment	$wl^2/8$			M_{Ed}	345	kNm
Design Shear	wl/2			V_{Ed}	276	kN
TENSION REINFO	RCEMENT					
Reinforcement provid				$A_{s,prov}$	1885	mm²
Effective depth	= d - c - Ølinks - Øbar - max(25mm ; Øbar)/2 changed for double layer			d	527	
K Factor	= M / b d² fck			K	0.148	
	δ = 0.85 K < 0.168 : No compression reinforce	ment rea'd				
Lever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d			Z	445	mm
				_		
				A _{o min}	230	mm²
Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]			$A_{s,min}$	230 1781	mm²
Min. reinforcement		A _{s prov}	>	$A_{s,req}$	1781	mm²
Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]	$A_{s,prov}$	>	,		
Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d] ec = max [M / 0.87 fyk z ; A _{s,min}] , < 0.04 b h	$A_{s,prov}$	>	$A_{s,req}$	1781	mm²
Min. reinforcement Reinforcement require	= max [(0.26 fctm b d) / fyk ; 0.0013 b d] ec = max [M / 0.87 fyk z ; A _{s,min}] , < 0.04 b h	A _{s,prov}	>	$A_{s,req}$	1781	mm² OK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress	= max [(0.26 fctm b d) / fyk ; 0.0013 b d] ec = max [M / 0.87 fyk z ; A _{s,min}] , < 0.04 b h	$A_{s,prov}$	>	A _{s,req} As,req	1781 :. 1.940	mm² OK
Min. reinforcement Reinforcement require SHEAR REINFORG	= max [(0.26 fctm b d) / fyk ; 0.0013 b d] et = max [M / 0.87 fyk z ; $A_{s,min}$] , < 0.04 b h CEMENT = V_{Ed} / 0.9 d b cot0 = 2.5	$A_{s,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c}	1781 :. 1.940 3.430	mm² OK N/mn N/mn
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress	$= \max \left[(0.26 \text{ fctm b d}) / \text{ fyk } ; 0.0013 \text{ b d } \right]$ $ec = \max \left[M / 0.87 \text{ fyk z} ; A_{s,min} \right], < 0.04 \text{ b h}$ $CEMENT$ $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$	A _{s,prov}	>	A _{s,req} As,req	1781 :. 1.940 3.430	mm² OK N/mn N/mn
Min. reinforcement Reinforcement require SHEAR REINFORO Design shear stress Strut capacity	$= \max [(0.26 \text{ fctm b d}) / \text{ fyk } ; 0.0013 \text{ b d }]$ $ec = \max [M / 0.87 \text{ fyk z } ; A_{s,min}], < 0.04 \text{ b h}$ $CEMENT$ $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$	A _{s,prov}	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c}	1781 :. 1.940 3.430 4.970	N/mn N/mn N/mn
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle	$= \max \left[(0.26 \text{ fctm b d}) / \text{ fyk } ; 0.0013 \text{ b d } \right]$ $ec = \max \left[M / 0.87 \text{ fyk z } ; A_{s,min} \right], < 0.04 \text{ b h}$ $CEMENT$ $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5$ $\cot \theta = 2.5$	A _{s,prov}	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c}	1781 :. 1.940 3.430 4.970 21.80	N/mn N/mn
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{\text{s,min}} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{\text{Ed}} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{\text{Ed}} < \max \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$	A _{s,prov}	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max}	1.940 3.430 4.970 21.80 395	N/mn N/mn N/mn
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ $CEMENT$ $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5$ $\min \max \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ f_{yk} \cot \theta)$	A _{s,prov}	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s	1.940 3.430 4.970 21.80 395 0.54	N/mn N/mn N/mn mm
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $e_t = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \ \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= V_{Ed} \ \text{b } / \ (0.87 \ f_{yk} \cot \theta)$ $= V_{Ed} \ \text{b } s_{max} / \ (0.87 \ f_{yk} \cot \theta)$	A _{s,prov}	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw}	1.940 3.430 4.970 21.80 395 0.54 211	N/mm N/mm N/mm n mm
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= v_{Ed} \ \text{b} \ \text{s}_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs	A _{s,prov}	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw} ,prov	1.940 3.430 4.970 21.80 395 0.54 211 804	N/mm N/mm N/mm mm mm mm
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $e_t = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \ \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= V_{Ed} \ \text{b } / \ (0.87 \ f_{yk} \cot \theta)$ $= V_{Ed} \ \text{b } s_{max} / \ (0.87 \ f_{yk} \cot \theta)$			A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max} A _{sw} / S A _{sw} A _{sw,prov} S	1.940 3.430 4.970 21.80 395 0.54 211 804 350	N/mm N/mm N/mm mm mm mm
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= v_{Ed} \ \text{b} \ \text{s}_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 :.	N/mr N/mr N/mr ° mm mm mm mm oK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= v_{Ed} \ \text{b} \ \text{s}_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs			A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max} A _{sw} / S A _{sw} A _{sw,prov} S	1.940 3.430 4.970 21.80 395 0.54 211 804 350	N/mm N/mm N/mm mm mm mm
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= v_{Ed} \ \text{b} \ \text{s}_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 :.	N/mm N/mm N/mm wm mm mm mm mm oK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required Shear links provided Spacing required	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \text{minimum strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= v_{Ed} \ \text{b s}_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs $= \min (A_{sw,prov} / (A_{sw} / s), s_{max})$	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 :.	N/mm N/mm mm mm mm oK OK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \text{minimum strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= v_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= v_{Ed} \ \text{b s}_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs $= \min (A_{sw,prov} / (A_{sw} / s), s_{max})$	$A_{sw,prov}$	>	A _{s,req} As,req As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 	N/mm N/mm N/mm mm mm mm OK OK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) \ / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M \ / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} \ / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= V_{Ed} \ b \ / \ (0.87 \ f_{yk} \cot \theta)$ $= V_{Ed} \ b \ s_{max} \ / \ (0.87 \ f_{yk} \cot \theta)$ Use 4no H16 link legs $= \min (A_{sw,prov} / (A_{sw} / s), s_{max})$ $en = As \ / \ b \ d$	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max} A _{sw} / S A _{sw} A _{sw,prov} S A _{sw}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 	N/mm N/mm N/mm mm mm mm OK OK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme	$= \max \left[\left(\ 0.26 \ \text{fctm b d} \right) \ / \ \text{fyk} \ ; \ 0.0013 \ \text{b d} \ \right]$ $ec = \max \left[\ M \ / \ 0.87 \ \text{fyk z} \ ; \ A_{s,min} \ \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} \ / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \min \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= V_{Ed} \ \text{b} \ / \ (0.87 \ f_{yk} \cot \theta)$ $= V_{Ed} \ \text{b} \ s_{max} \ / \ (0.87 \ f_{yk} \cot \theta)$ Use 4no H16 link legs $= \min (A_{sw,prov} / (A_{sw} / s), s_{max})$ $en = As \ / \ \text{b d}$ $= \sqrt{f_{ck}} \ / \ 1000$	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw} S _{max}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 	N/mm N/mm N/mm mm mm mm OK OK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme Reference ratio System factor	$= \max \left[\left(0.26 \text{ fctm b d} \right) / \text{ fyk } ; 0.0013 \text{ b d } \right]$ $e (= \max \left[\text{ M / 0.87 fyk z } ; \text{ A}_{s,\text{min}} \right], < 0.04 \text{ b h}$ CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \max \text{ strut angle } (\cot \theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b / } (0.87 \text{ f}_{yk} \cot \theta)$ $= V_{Ed} \text{ b / } (0.87 \text{ f}_{yk} \cot \theta)$ $= V_{Ed} \text{ b / } (0.87 \text{ f}_{yk} \cot \theta)$ Use 4no H16 link legs $= \min (\text{ A}_{sw,prov} / (\text{ A}_{sw} / \text{s}), \text{ s}_{max})$ $e = \text{As / b d}$ $= \sqrt{\text{ f}_{ck} / 1000}$ Simply supported beam	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} ,prov s A _{sw} p ο	1.940 3.430 4.970 21.80 395 0.54 211 804 350 0.005 0.005 1.0	N/mm N/mm N/mm mm mm oK OK
Min. reinforcement Reinforcement require SHEAR REINFORG Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme Reference ratio System factor Factor 2	$= \max \left[(\ 0.26 \ \text{fctm b d}) / \ \text{fyk} \ z \ ; \ 0.0013 \ \text{b d} \ \right]$ $= \exp \left[\left[\ M / \ 0.87 \ \text{fyk} \ z \ ; \ A_{s,min} \right] \right], < 0.04 \ \text{b h}$ CEMENT $= V_{Ed} / \ 0.9 \ \text{d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \max \cot \theta = 2.5 : \cot \theta = 2.5$ $\min \max \text{strut angle } (\cot \theta = 2.5)$ $= 0.75 \ \text{d}$ $= V_{Ed} \ \text{b} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= V_{Ed} \ \text{b} \ s_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ $= V_{Ed} \ \text{b} \ s_{max} / (0.87 \ \text{f}_{yk} \cot \theta)$ Use 4no H16 link legs $= \min (A_{sw,prov} / (A_{sw} / s) \ , s_{max})$ $= \min (A_{sw,prov} / (A_{sw} / s) \ , s_{max})$ $= A_{s,prov} / A_{s,req} \ , \le 1.5$	$A_{sw,prov}$	>	A _{s,req} As,req V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max} A _{sw} A _{sw} ,prov S A _{sw} S _{max}	1.940 3.430 4.970 21.80 395 0.54 211 804 350 0.005 0.005 1.0 1.0	N/mn N/mn N/mn mm mm mm OK OK

PROJECT 99 Frognal

TITLE

RC Beam B.21.02

PROJECT NO DATE 23020

31/07/2023 SHEET NO 36 ENG AH

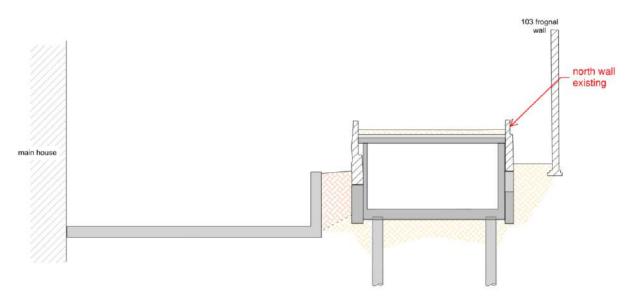
	p Reinforced Concrete Beam (BS EN 199	2-1-1:2004	1)			
BEAM GEOMETRY	,					
Beam span	Design span			L	6.6	m
Beam depth				d	825	mm
Beam width				b	300	mm
Cover	Assume 50mm cover			С	50	mm
MATERIAL PROPE	RTIES					
Concrete Strength	C28/35			f_{ck}	28	N/mm
Steel strength	High yield reinforcement			f_{yk}	500	N/mm
Concrete Tensile Stre				f _{ctm}	2.80	N/mm
DESIGN FORCES						
Design Moment	ULS			M_{Ed}	692	kNm
Design Shear	ULS			V_{Ed}	433	kN
TENSION REINFO	RCEMENT					
Reinforcement provide				$A_{s,prov}$	2945	mm²
Effective depth	= d - c - Ølinks - Øbar - max(25mm ; Øbar)/2 changed for double layer			d d	722	
K Factor	= M / b d² fck			K	0.158	
	$\delta = 0.85$ K < 0.168 : No compression reinforceme	nt rea'd			200	
Lever arm	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d			Z	600	mm
Min. reinforcement	= max [(0.26 fctm b d) / fyk ; 0.0013 b d]			A _{s.min}	315	mm²
	$ex = max [M / 0.87 fyk z ; A_{s,min}], < 0.04 b h$			A _{s,req}	2648	
oroomonic roquite				' 's,req	2070	
		As prov	>	As.rea		OK
		A _{s,prov}	>	As,req	:.	OK
SHEAR REINFORG		A _{s,prov}	>	As,req	:.	OK
		$A_{s,prov}$	>	As,req V _{Ed}		
Design shear stress	CEMENT	A _{s,prov}	>	V _{Ed}	2.224	N/mm
Design shear stress	CEMENT $= V_{Ed} / 0.9 d b$ $\cot \theta = 2.5$	A _{s,prov}	>	V _{Ed}	2.224 3.430	N/mm
Design shear stress	CEMENT $= V_{Ed} / 0.9 d b$ $\cot \theta = 2.5$ $\cot \theta = 1.0$	A _{s,prov}	>	V _{Ed}	2.224 3.430	N/mm
Design shear stress Strut capacity	CEMENT $= V_{Ed} / 0.9 d b$ $\cot \theta = 2.5$ $\cot \theta = 1.0$	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c}	2.224 3.430 4.970	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle	CEMENT $= V_{Ed} / 0.9 d b$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \text{nax } \cot \theta = 2.5$	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c}	2.224 3.430 4.970 21.80	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $V_{Ed} < \text{nax } \cot \theta = 2.5$ $\text{minimum strut angle } (\cot \theta = 2.5)$ $= 0.75 \text{ d}$	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max}	2.224 3.430 4.970 21.80 541	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \text{max } \cot \theta = 2.5 : \cot \theta = 2.5$ $\text{minimum strut angle } (\cot \theta = 2.5)$ $= 0.75 \text{ d}$ $= v_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot \theta)$	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s	2.224 3.430 4.970 21.80 541 0.61	N/mm N/mm N/mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \text{max } \cot \theta = 2.5 :. \cot \theta = 2.5$ minimum strut angle (\cot\theta = 2.5) $= 0.75 \text{ d}$ $= v_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot \theta)$ $= v_{Ed} \text{ b } s_{max} / (0.87 \text{ f}_{yk} \cot \theta)$	A _{s,prov}	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw}/S	2.224 3.430 4.970 21.80 541 0.61 332	N/mm N/mm N/mm ° mm mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{nax } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b s}_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs	A _{s,prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov}	2.224 3.430 4.970 21.80 541 0.61 332 402	N/mm N/mm N/mm ° mm mm mm
SHEAR REINFORO Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot \theta = 2.5$ $\cot \theta = 1.0$ $v_{Ed} < \text{max } \cot \theta = 2.5 :. \cot \theta = 2.5$ minimum strut angle (\cot\theta = 2.5) $= 0.75 \text{ d}$ $= v_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot \theta)$ $= v_{Ed} \text{ b } s_{max} / (0.87 \text{ f}_{yk} \cot \theta)$			V_{Ed} $V_{Rd,max c}$ $V_{Rd,max c}$ θ s_{max} A_{sw} / s A_{sw} $A_{sw,prov}$ s	2.224 3.430 4.970 21.80 541 0.61 332 402 500	N/mm N/mm N/mm ° mm mm mm mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{nax } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b s}_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs	A _{sw.prov}	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw} / S A_{sw} $A_{sw,prov}$ S A_{sw}	2.224 3.430 4.970 21.80 541 0.61 332 402 500 :.	N/mm N/mm o mm mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{nax } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b s}_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs			V_{Ed} $V_{Rd,max c}$ $V_{Rd,max c}$ θ s_{max} A_{sw} / s A_{sw} $A_{sw,prov}$ s	2.224 3.430 4.970 21.80 541 0.61 332 402 500	N/mm N/mm N/mm ° mm mm mm mm
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links required Shear links provided Spacing required	CEMENT $= V_{Ed} / 0.9 \text{ d b}$ $\cot\theta = 2.5$ $\cot\theta = 1.0$ $V_{Ed} < \text{nax } \cot\theta = 2.5 : \cot\theta = 2.5$ $\text{minimum strut angle } (\cot\theta = 2.5)$ $= 0.75 \text{ d}$ $= V_{Ed} \text{ b } / (0.87 \text{ f}_{yk} \cot\theta)$ $= V_{Ed} \text{ b s}_{max} / (0.87 \text{ f}_{yk} \cot\theta)$ Use 2no H16 link legs	A _{sw.prov}	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw} / S A_{sw} $A_{sw,prov}$ S A_{sw}	2.224 3.430 4.970 21.80 541 0.61 332 402 500 :.	N/mm N/mm o mm mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required	CEMENT $ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	A _{sw.prov}	>	V_{Ed} $V_{Rd,maxc}$ $V_{Rd,maxc}$ θ S_{max} A_{sw} / S A_{sw} $A_{sw,prov}$ S A_{sw}	2.224 3.430 4.970 21.80 541 0.61 332 402 500 :.	N/mm N/mm N/mm ° mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided	CEMENT $ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	A _{sw.prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw}	2.224 3.430 4.970 21.80 541 0.61 332 402 500 :.	N/mm N/mm N/mm ° mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme	CEMENT $ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ v_{Ed} < $	A _{sw.prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ S _{max} A _{sw} / S A _{sw} S A _{sw} S A _{sw}	2.224 3.430 4.970 21.80 541 0.61 332 402 500 	N/mm N/mm N/mm ° mm mm mm² mm OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme	CEMENT $ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ v_{Ed} < $	A _{sw.prov}	>	$\begin{array}{c} v_{Ed} \\ v_{Rd,maxc} \\ v_{Rd,maxc} \\ \theta \\ s_{max} \\ A_{sw} / s \\ A_{sw} \\ A_{sw,prov} \\ s \\ A_{sw} \\ S_{max} \\ \end{array}$	2.224 3.430 4.970 21.80 541 0.61 332 402 500 :.	N/mm N/mm o mm mm mm OK OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme Reference ratio System factor Factor 2	CEMENT $ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	A _{sw.prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} A _{sw,prov} s A _{sw}	2.224 3.430 4.970 21.80 541 0.61 332 402 500 :. :.	N/mm N/mm N/mm ° mm mm oK OK
Design shear stress Strut capacity Strut angle Max link spacing Shear links required Shear links provided Spacing required DEFLECTION Required reinforceme Reference ratio System factor	CEMENT $ = V_{Ed} / 0.9 \text{ d b} $ $ \cot\theta = 2.5 $ $ \cot\theta = 1.0 $ $ V_{Ed} < $	A _{sw.prov}	>	V _{Ed} V _{Rd,max c} V _{Rd,max c} θ s _{max} A _{sw} / s A _{sw} s A _{sw} s ρ ρ ο κ F2	2.224 3.430 4.970 21.80 541 0.61 332 402 500 0.004 0.005 1.0 1.0	N/mm N/mm N/mm mm mm OK OK

PROJECT TITLE 99 Frognal

Garage Houses - Retaining Walls

PROJECT NO SHEET NO 23020

37


DATE

12/09/2023

ENG AH

GARAGE HOUSES

STRUCTURAL DESCRIPTION

Existing brick retaining walls on north, east & west are proposed to be underpinned in two vertical lifts to enable excavation.

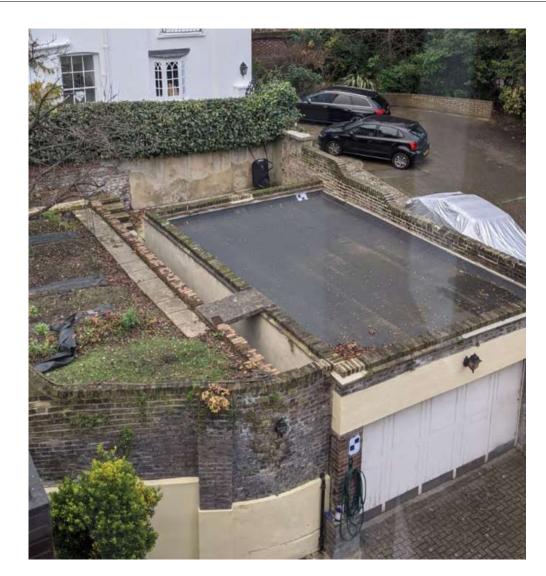
New RC retaining wall to be built inside existing wall to provide permant resistance to retaining forces.

Permanent propping to new retaining wall provided at top and bottom of wall by new slabs.

New walls designed to resist surcharge from adjacent soil and structures, and hydrostatic pressures from groundwater at ground level. Refer to assumed sequence of works. Temporary propping and underpinning to Contractor design

PROJECT TITLE

99 Frognal


Garage Houses - Retaining Walls

PROJECT NO SHEET NO

23020 38

12/09/2023 ENG

ΑН

EXISTING CONDITION

TITLE

PROJECT 99 Frognal

Garage Houses - Retaining Walls

PROJECT NO SHEET NO

23020 39

DATE 12/09/2023

ENG ΑН

GEOMETRY							
Height of retained earth				h_s		2.5	m
Height of water		Assume water	at ground level	h _w		2.5	m
Height of stem				1		3.1	m
Wall thickness				t		300	mm
Main diameter				dia		20	mm
Main bar centres		s < min(3h ; 4	100) OK	s		200	mm
Cover				C _{nor}	n	50	mm
Width		Calculation pe	er m length of wall	b		1000	mm
Effective depth				d		240	mm
Area of steel per m length	of wall		ок	As		1,571	mm^2
Minimum reinf.		0.4% Ac (p	D. 141)	A_s	min	1,200	mm^2
Maximum reinf.		4% Ac (p	o. 141)	A_s	max	12,000	mm^2
MATERIAL PROPERT	IES						
Soil Unit Weight				Ysat		19	kN/m
Friction angle				φ'		24	۰
Cohesion				c'		0	
Ko coefficient		Ko = (1 - sin o	φ)	Ko		0.5933	
Water Unit Weight		`	• •	Yw		9.81	kN/m ³
Submerged Soil Unit Wei	ght			Y sub		9.19	kN/m ³
RC Concrete Unit Weight				Y con	с	25.0	kN/m ³
Concrete Strength		C28/35		fcu		35	N/mm
Steel Strength				fyk		500	N/mm
DESIGN LOADS		Ft		N] _{1-N1/}
axial loading		Factored ROC	OF 4 load, assume 3m width acting.	N _{Ec}		60.1	kN/m
SURCHARGE							
Surcharge pressure from	-	-	livelend	-		T	11.22
Area/Element V	Vidth/Heigh		Live Load		ead Live	Total	Units
000 Data 1 M. II	m 42.00	kN/m ²	kN/m ²		Sk Qk	Σ	
330 Brick Wall	12.00	8.40	0.00		0.8 0.0		
Footings	1.00	10.08	0.00		0.0		
Roof	4.50	0.90	0.60		.1 2.7		
Ground Floor	4.50	1.05	1.50		.7 6.8		
1st Floor	4.50	1.05	1.50		.7 6.8		
2nd Floor	4.50	1.05	1.50	4	.7 6.8		

PROJECT 99 Frognal
TITLE Garage Houses - Retaining Walls

PROJECT NO 23020 SHEET NO 40

DATE 12/09/2023 ENG AH

:. Wall isn't slender

SURCHARGE	- w x V	q	30.41 kN/m
Neighbour footing pressure Distance of Neighbours	= w x K	ч х	2.3 m
_	= 10 kN/m ²	x W	10.0 kN/m
Path Surcharge Path Pressure	= 10 kN/m = w x K	q	5.93 kN/m
	- w x K	ч	36.34 kN/m
Total surcharge pressure on wall Wall Moment	From strand	M_q	40.44 kNm/
wall Moneth	Tom stand	ч	
EARTH PRESSURE			
Pressure at base of wall	$= \gamma_{sub} \times K_a \times h_s$	q_s	13.63 kN/m
Active Force	$= q_s \times I/2$	P_s	17.04 kN/m
Wall moment	From strand	M_s	7.00 kNm/
WATER PRESSURE			
Pressure at base of wall	$= \gamma_w \times h_w$	qw	24.53 kN/m
Force tri	$= q_w \times I/2$	$P_{\rm w}$	30.66 kN/m
Wall moment	From strand	$M_{\rm w}$	12.59 kNm/
ULTIMATE DESIGN MOMENT	$M_T (ULS) = 1.5 \times (M_w + M_s + M_w)$	Mt ult	90.0 kNm/
RC WALL CHECK			
RC WALL CHECK K	K = M / bd ² fck	K	0.045
	$K = M / bd^2fck$ $K < 0.168 : No compression rein$		0.045
			0.045 228 mm
К	K < 0.168 :. No compression rein	nforcement req'd	228 mm
K z	K < 0.168 :. No compression rein	nforcement req'd z	228 mm 908 mm2
K z Required reinforcement Provided reinforcement	K < 0.168 :. No compression rein	nforcement req'd z As req	228 mm 908 mm2
z Required reinforcement Provided reinforcement SLENDERNESS	K < 0.168 :. No compression rein	nforcement req'd z As req	228 mm 908 mm2. 1,571 mm2.
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor	K < 0.168 :. No compression rein = 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d	nforcement req'd z As req	228 mm 908 mm2 1,571 mm2
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to	K < 0.168 :. No compression rein = $0.5 \text{ d} [1 + \sqrt{(1 - 3.53 \text{K})}], z < 0.95 \text{ d}$	nforcement req'd z As req	228 mm 908 mm2. 1,571 mm2. PASS 0.95 3
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to	K < 0.168 :. No compression rein = $0.5 \text{ d} [1 + \sqrt{(1 - 3.53 \text{K})}], z < 0.95 \text{ d}$	nforcement req'd z As req As prov	228 mm 908 mm2 1,571 mm2 PASS 0.95 3 2
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to	K < 0.168 :. No compression rein = $0.5 \text{ d} [1 + \sqrt{(1 - 3.53 \text{K})}], z < 0.95 \text{ d}$	nforcement req'd z As req	228 mm 908 mm2. 1,571 mm2. PASS 0.95 3
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to	K < 0.168 :. No compression rein = $0.5 \text{ d} [1 + \sqrt{(1 - 3.53 \text{K})}], z < 0.95 \text{ d}$	nforcement req'd z As req As prov	228 mm 908 mm2 1,571 mm2 PASS 0.95 3 2
Z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to End condition at be	K < 0.168 :. No compression rein = $0.5 \text{ d} [1 + \sqrt{(1 - 3.53 \text{K})}], z < 0.95 \text{ d}$	aforcement req'd z As req As prov	228 mm 908 mm2. 1,571 mm2. PASS 0.95 3 2 2.95 m
Z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to End condition at be	K < 0.168 :. No compression reint = 0.5 d [1 + $\sqrt{(1 - 3.53 \text{K})}$], z < 0.95 d opportorm = 1.53 As fyk / 1000 t fck	z As req As prov	228 mm 908 mm2 1,571 mm2 PASS 0.95 3 2 2.95 m 0.11
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor End condition at to End condition at be Effective height of wall Slenderness factor	K < 0.168 :. No compression reint = 0.5 d [1 + $\sqrt{(1 - 3.53 \text{K})}$], z < 0.95 d opportorm = 1.53 As fyk / 1000 t fck	aforcement req'd z As req As prov	228 mm 908 mm2. 1,571 mm2. PASS 0.95 3 2 2.95 m 0.11 10.11
z Required reinforcement Provided reinforcement SLENDERNESS Effective height factor	K < 0.168 :. No compression reint = 0.5 d [1 + $\sqrt{(1 - 3.53 \text{K})}$], z < 0.95 d opportorm = 1.53 As fyk / 1000 t fck	riforcement req'd z As req As prov	228 mm 908 mm2. 1,571 mm2. PASS 0.95 3 2 2.95 m 0.11 10.11 -44.8

PROJECT TITLE 99 Frognal

Garage Houses - Retaining Walls

PROJECT NO SHEET NO 23020 41 DATE 12/09/2023

 $^{\mathsf{ENG}}$ AH

GEOMETRY				
Height of retained earth		h_s	2.0	m
Height of water	Assume water at ground level following rainfall	h _w	2.0	m
Height of stem	· ·	1	3.1	m
Wall thickness		t	250	mm
Main diameter		dia	16	mm
Main bar centres	s < min(3h ; 400) OK	s	200	mm
Cover		C _{nom}	50	mm
Width	Calculation per m length of wall	b	1000	mm
Effective depth		d	192	mm
Area of steel per m length of wall	ок	As	1,005	mm^2
Minimum reinf.	0.4% Ac (p. 141)	A_s min	1,000	mm^2
Maximum reinf.	4% Ac (p. 141)	A _s max	10,000	mm ²
MATERIAL PROPERTIES				
Soil Unit Weight		Y sat	19	kN/m
Friction angle		φ'	24	۰
Cohesion		c'	0	
Ko coefficient	$Ko = (\ 1 - \sin \varphi\)$	Ko	0.593263357	
Water Unit Weight		γ _w	9.81	kN/m
Submerged Soil Unit Weight		Y sub	9.19	kN/m
RC Concrete Unit Weight		Y conc	25.0	kN/m
Concrete Strength	C28/35	fcu	35	N/mr
Steel Strength		fyk	500	N/mn
DESIGN LOADS				
AXIAL LOADING	Factored line load w7. N _{Ed} = 1.35Gk + 1.5Qk (per m length)	N_{Ed}	192.8	kN/m
SURCHARGE				
Driveway Surcharge	$= 10 \text{ kN/m}^2$	w	10.0	kN/m
Drawiveway Pressure	= w x K	q	5.93	kN/m
Wall Moment	From strand	M_q	5.44	kNm/
EARTH PRESSURE				
Pressure at base of wall	$= \gamma_{\text{sub}} \times K_{\text{a}} \times h_{\text{s}}$	q_s	10.90	kN/m
Active Force	$= q_s \times 1/2$	P_s	10.90	kN/m
Vall moment	From strand	M_s	4.20	kNm/
WATER PRESSURE				
Pressure at base of wall	$= \gamma_w \times h_w$	qw		kN/m
Force tri	$= q_w \times I/2$	P_{w}		kN/m
Vall moment	From strand	$M_{\rm w}$	7.57	kNm/

PROJECT TITLE 99 Frognal

Garage Houses - Retaining Walls

PROJECT NO SHEET NO 23020 42 DATE 12/09/2023

ENG AH

($K = M / bd^2fck$	K	0.020
	K < 0.168 :. No compression reinfo	rcement req'd	
	= 0.5 d [1 + $\sqrt{(1 - 3.53K)}$], z < 0.95 d	Z	182 mm
Required reinforcement		As req	325 mm2/
Provided reinforcement		As prov	1,005 mm2
			PASS
SLENDERNESS			0.05
Effective height factor			0.95
End condition a			3
End condition a	at bottom		2
Effective height of wall		l _o	2.95 m
Slenderness factor	= 1.53 As fyk / 1000 h fck	ω	0.09
	= 0.69 $\sqrt{[(1+2 \omega)(1000 \text{ h fck}) / \text{NEd}]} \ge 1.0$	ξ	5.04
smaller end moment		M1	-44.8
arger end moment		M2	25.8
		l ₀ / h	11.780
	4.3	38 (1.7 - M1 / M2) ξ =	75.83717033
		I_0 / h	4.38 (1.7 - M1 / M2)

TITLE

PROJECT 99 Frognal

Garage Houses - Retaining Walls

PROJECT NO SHEET NO 43

23020

DATE 12/09/2023 ΑН

ENG

GEOMETRY				
Height of retained earth		h_s	4.3	m
Height of water	Assume water at ground level following rainfall	h_{w}	4.3	m
Height of stem		1	3.1	m
Wall thickness		t	300	mm
Main diameter		dia	20	mm
Main bar centres	s < min(3h ; 400) OK	s	200	mm
Cover		c_{nom}	50	mm
Width	Calculation per m length of wall	b	1000	mm
Effective depth		d	240	mm
Area of steel per m length of wall	ок	As	1,571	mm^2
Minimum reinf.	0.4% Ac (p. 141)	A_s min	1,200	
Maximum reinf.	4% Ac (p. 141)	A _s max	12,000	mm ²
MATERIAL PROPERTIES				
Soil Unit Weight		Y _{sat}	19	kN/m
Friction angle		φ'	24	۰
Cohesion		c'	0	
Ko coefficient	$Ko = (1 - \sin \varphi)$	Ko	0.593263357	
Water Unit Weight		Yw	9.81	kN/m
Submerged Soil Unit Weight		Y sub	9.19	kN/m
RC Concrete Unit Weight		Yconc	25.0	kN/m
Concrete Strength	C28/35	fcu	35	N/mr
Steel Strength		fyk	500	N/mn
DESIGN LOADS				
AXIAL LOADING	Factored line load w7. N _{Ed} = 1.35Gk + 1.5Qk (per m length)	N_{Ed}	192.8	kN/n
SURCHARGE				
Path Surcharge	$= 10 \text{ kN/m}^2$	W	10.0	
Path Pressure	= w x K	q		kN/m
Wall Moment	From strand	M_q	7.12	kNm
EARTH PRESSURE				
Pressure at base of wall	$= \gamma_{\text{sub}} \times K_{\text{a}} \times h_{\text{s}}$	q_s	23.44	
Active Force	$= q_s \times I/2$	P_s	50.40	
Wall moment	From strand	M_s	18.68	kNm
WATER PRESSURE				
Pressure at base of wall	$= \gamma_w \times h_w$	qw	42.18	kN/m
Force tri	$= q_w \times I/2$	$P_{\rm w}$	90.69	kN/m
	From strand	$M_{\rm w}$	38.57	kNm
Wall moment				

PROJECT TITLE 99 Frognal

Garage Houses - Retaining Walls

PROJECT NO

23020

DATE 12/09/2023

SHEET NO 44 ENG AH

RC WALL CHECK

 $K = M / bd^2fck$ K 0.048

K < 0.168 :. No compression reinforcement req'd

z = $0.5 d [1 + \sqrt{(1 - 3.53K)}], z < 0.95 d$ z 228 mm

Required reinforcement As req 974 mm2/m Provided reinforcement As prov 1,571 mm2/m

PASS

SLENDERNESS

Thickness and axial loading same as North Wall :. not slender

APPENDIX D

INTERPRETIVE REPORT BY A2 SITE INVESTIGATION

APPENDIX E

BASEMENT IMPACT ASSESSMENT BY A2 SITE INVESTIGATION