

Appendix

a. Field Work

Site Plan Borehole Records Trial Pit Records

b. Lab Testing

Geotechnical Test Results Chemical Test Results Generic Risk Based Screening Values

c. Desk Study

Envirocheck Extracts Historical Maps UXO Preliminary Risk Assessment

d. Ground Movement Assessment

PDisp Analysis – Contour output - Stage 1 PDisp Analysis – Contour output - Stage 2 PDisp Analysis – Contour output - Stage 3

Stage 1 XDisp Analysis – Vertical movements XDisp Analysis – Horizontal movements XDisp Analysis – Tabular input and output

Stage 2 XDisp Analysis – Vertical movements XDisp Analysis – Horizontal movements XDisp Analysis – Tabular input and output

Stage 3 XDisp Analysis – Vertical movements XDisp Analysis – Horizontal movements XDisp Analysis – Tabular input and output

Ref J23153 Rev 0 23 October 2023

Field Work

Site Plan Borehole Records Trial Pit Records

Site Plan	& Environmental Associates
Sile Plan	www.gea-ltd.co.uk
Job Number J23153	
3 1661 1/1	

Project	Project BOREHOLE No									E No
118 Mald	en Roa	ad, London N	W5	5 4BY					рц1	1
Job No	C	Date 21-06-23	3	Grou	und Le	evel (m OD)	Co-Ordinates ()		DUT	L
J23153		21-06-23	3							
Client					Er	ngineer		S	Sheet	
William Carter	Limite	d				Martin R	edston Associates		1 of	1
SAMPLE	S & TE	STS					STRATA			ient fill
Depth Typ No	e	Test Result	Wate	Reduced Level	egen	Depth d (Thick- ness)	DESCRIPTION			lnstrum / Back
0.50 ES 0.70 D 1.00 D 1.50 D	ress a	nd Water Ot	Dse	rvations		(0.30) (0.30) (0.30) (0.30) (0.30) (1.40)	MADE GROUND (mid brown mottled slightly sandy silty clay. Gravel compri- medium brick and charcoal fragments Stiff to very stiff fissured mid-brown s pockets of orange brown clayey sand veining with root traces. 0.60 - 1.00 Occasional coarse sand to flint	dark gr ses fine) ilty CLA and ran fine gra	ey gravelly e to AY with rare re blue grey avel sized	
	Time	e Casir Depth [ıg Dia.	mm De	ater pth	Hand dug Groundwa Borehole I Borehole I	REMARKS services pit to 1.20 m iter not encountered refused at 2.00 m due to very stiff grou packfilled on completion	ind con	ditions	
All dimensions in I Scale 1:31.2	metres	Method/ Plant Used Ha	anc	l-held w	indov	w sampler		Log	ged By AG	

	Project										BOREHOL	E No
	118	Malden F	Road, L	ondon N'	W5	5 4BY					рца	•
	Job No		Date	21-06-23	3	Gro	ound Le	vel (m OD)	Co-Ordinates ()			_
	J23	153		21-06-23	3							
	Client						En	gineer			Sheet	
	William C	Carter Lim	ited					Martin R	edston Associates		1 of	1
	SAI	MPLES &	TESTS		_				STRATA			ient fill
	Depth	Type No	T Re	est esult	Wate	Reducec Level	Legenc	Depth d (Thick- ness)	DESCRIPTION			Instrum / Back
	-							- - (0.40)	AS TRIAL PIT NO 1			
	F							0.40	Stiff to very stiff mid-brown fissured	l silty	γ CLAY with	
									occasional blue grey veining and roc	ot tra	ices on fissured	
	0.70	D						- - -	surfaces and fine crystals			
	F											
	-							· - · - (1.40)				
	1.10	D										
	1.40											
	1 70							1.80				
	-							-				
	-							-				
	-							-				
	-							-				
	ļ							-				
2023												
γlu('								-				
te: 07	-											
Da	-							-				
.GLB	-											
RARY												
A LIB								-				
Z: GE	- 											
Libra	-							-				
E I	:= -							F				
AD.G												
RN RO	F							-				
LDER												
18 M/	-							-				
53 - 11	Boring	g Progres	s and V	Nater Oh	se	rvation	IS	<u> </u>	GENERAL			
J2315	Depth	Date 1	ïme	Casin Denth	ig Dia	mm	/ater		REMARKS			
oject:					<u>ла.</u>		epin	Hand dug	services pit to 1.20 m			
Pr								Groundwa Borehole	iter not encountered refused at 1.80 m due to very stiff gro	ound	conditions	
SION								Borehole	packfilled on completion			
RCUS												
3LE PE												
D: CAE												
port II	All dimensi	ons in metr	es Met Plar	thod/ nt Used Ha	anc	l-held v	vindow	v samnlei			Logged By AG	
æ	Jule	1.91.29						- Jumpici			7.0	

					www.gea-ltd.co.uk	Trial Pit No
	GEA		Herts	01727 824666	Notts 01509 674888	1 & 2
Site:	118 Malden Road, Lo	ondon NW5 4BY				Job Number
Client:	William Carter Limite	d				Sheet 3/3
Engineer:	Martin Redston Asso	ciates				Date
Excavation	n Method	Dimensions	Ground Level (m OD)	Location		21/00/2020
TP2			TP1			Scale: NTS
						Loaded pv.
						AG

Lab Testing

Geotechnical Test Results Chemical Test Results Generic Risk Based Screening Values

K	SOILS)	Summary of Natural Moisture Content, Liquid Limit and Plastic Limit Result								Results		
Job No.			Project	Name						1	Proa	amme	
337	' 19		118 Ma	lden R	oad					Samples r	eceived	29/0	06/2023
Project No.			Cliont							Schedule Project str	received	05/0	07/2023
FIOJECI NO.			Client							FIUJECI SIZ	anteu	00/0	
J23	153		GEA							Testing St	arted	18/0	07/2023
Hole No.		Sa	mple		· Soil Desc	ription	NMC	Passing	LL	PL	PI	Re	marks
	Ref	Тор	Base	Туре				425µm					
		m	m				%	%	%	%	%		
BH1	-	0.70	-	D	Brown silty CLAY with	n sandy patches	29						
BH1	-	1.00	-	D	Brown silty CLAY with	n sandy patches	26						
BH1	-	1.50	-	D	Brown silty CLAY with sandy patches	n orangish brown	27						
BH1	-	1.90	-	D	Brown silty CLAY with sandy patches	n orangish brown	31	100	79	29	50		
BH2	-	0.70	-	D	Brown silty CLAY with	n sandy patches	30						
BH2	-	1.10	-	D	Brown silty CLAY with	n sandy patches	29						
BH2	-	1.40	-	D	Brown silty CLAY with	n sandy patches	30						
BH2	-	1.70	-	D	Brown silty CLAY with	n sandy patches	30	100	76	27	49		
TP1	-	0.40	-	D	Brown silty CLAY with sandy patches and ra	n orangish brown are fine gravel	33	99	75	30	45		
TP2	-	0.50	-	D	Brown silty CLAY with and rare fine gravel	n sandy patches	30	99	78	29	49		
cto	Test	Method	Is: BS13	577: Pa	art 2: 1990:	Test	Report by	K4 SOILS	LABO	RATORY	-	Chec	ked and
	Natur Atterh	al Moistu berg Limit	re Conten s: clause	t : clau 4.3, 4.4	se 3.2 and 5.0		Jnit 8 Olds Watford	Close Old Herts W	ปร Appro D18 9Rเ	bach J		Ар	proved
[(} ¶) '	These	e results o	only apply	to the i	items tested			04000 =:	4 000			Initials	J.P
UKAS	NOTE	E: The rep	oort shall r	not be r	eproduced except in full		Tel: Email: Ja	01923 71 ames@k4	1 288 soils.co	m		Date:	20/07/202
TESTING	witho	ut authori	ty of the la	aborato	ry	(1 ob M)		-	-				
2519	Appr	uved Sig	natories:	к.Рпац	ire (Tecn.Mgr) J.Phaure	(∟ab.ivigr)						MS	5-5-K1

Sulphate Content (Gravimetric Method) for 2:1 Soil: Water Extract and pH Value - Summary of Results

Tested in accordance with BS1377 : Part 3 : 2018, Clause 7.6 & Clause 12

Job No.			Project N	lame					Progra	mme		
33719			118 Male	den Road				Samples re	eceived	29/06/2023		
Project No	`		Client					Project s	tarted	06/07/2023		
J23153	J.		GEA					Testing S	Started	19/07/2023		
		Sa	ample			Dry Mass	SO4					
Hole No.	Ref	Top m	Base	Туре	Soil description	passing 2mm %	Content	pН	I	Remarks		
BH1	-	1.00	-	D	Brown silty CLAY with sandy patches	100	190	7.7				
BH1	-	1.50	-	D	Brown silty CLAY with orangish brown sandy patches	100	290	7.6				
BH2	-	0.70	-	D	3rown silty CLAY with sandy patches 100 190 7.7							
Test Report by K4 SOILS LABORATORY Check Appr Unit 8 Olds Close Olds Approach Appr Watford Herts WD18 9RU Initials Tel: 01923 711 288 Email: James@k4soils.com These results only apply to the items tested Date: NOTE: The report shall not be reproduced except in full without authority of the laboratory Date:								ecked and pproved J.P 20/07/2023 MSF-5-R29				

Alexander Goodsell Geotechnical & Environmental Associates Widbury Barn Widbury Hill Ware Hertfordshire SG127QE

i2 Analytical Ltd. 7 Woodshots Meadow, Croxley Green Business Park, Watford, Herts, WD18 8YS

t: 01923 225404 f: 01923 237404 e: reception@i2analytical.com

e: AlexGoodsell@gea-ltd.co.uk

Analytical Report Number : 23-41012

Project / Site name:	118 Maiden Road	Samples received on:	22/06/2023
Your job number:	J23153	Samples instructed on/ Analysis started on:	23/06/2023
Your order number:		Analysis completed by:	30/06/2023
Report Issue Number:	1	Report issued on:	30/06/2023
Samples Analysed:	3 soil samples		

Nonja Signed:

Dominika Warjan Reporting Specialist For & on behalf of i2 Analytical Ltd.

Standard Geotechnical, Asbestos and Chemical Testing Laboratory located at: ul. Pionierów 39, 41-711 Ruda Śląska, Poland.

Accredited tests are defined within the report, opinions and interpretations expressed herein are outside the scope of accreditation.

Standard sample disposal times, unless otherwise agreed with the laboratory, are :

soils	- 4 weeks from reporting
leachates	- 2 weeks from reporting
waters	- 2 weeks from reporting
asbestos	- 6 months from reporting

Excel copies of reports are only valid when accompanied by this PDF certificate.

Any assessments of compliance with specifications are based on actual analytical results with no contribution from uncertainty of measurement. Application of uncertainty of measurement would provide a range within which the true result lies. An estimate of measurement uncertainty can be provided on request.

Analytical Report Number: 23-41012 Project / Site name: 118 Maiden Road

I ah Sample Number				2724408	2724409	2724410
Sample Reference				2721100 RH1	2721105 TD1	TD2
Sample Number				None Supplied	None Supplied	None Supplied
Denth (m)				0.50		
Date Sampled				21/06/2023	21/06/2023	21/06/2023
Time Taken				None Supplied	None Supplied	None Supplied
	1	_	1	None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	imit of detection	Accreditation Status			
Stone Content	%	0.1	NONE	< 0.1	< 0.1	< 0.1
Moisture Content	%	0.01	NONE	18	18	15
Total mass of sample received	kg	0.001	NONE	1	1	1
			8			
Asbestos in Soil	Туре	N/A	ISO 17025	Not-detected	Not-detected	Not-detected
Asbestos Analyst ID	N/A	N/A	N/A	LFT	LFT	LFT
General Inorganics						
pH - Automated	pH Units	N/A	MCERTS	8	8	10.1
Total Cyanide	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Total Sulphate as SO4	mg/kg	50	MCERTS	810	1600	32000
Water Soluble SO4 16hr extraction (2:1 Leachate		0.00125	MCEDTO	0.31	0.56	2
Equivalent)	g/l	0.00125	MCERTS	0.01		-
Sulphide	mg/kg	1	MCERTS	< 1.0	< 1.0	1.9
Water Soluble Chloride (2:1)	mg/kg	0.1	MCERTS	46	42	280
Total Organic Carbon (TOC) - Automated	70	0.1	PICERTS	1.2	0.6	0.6
Total Bhanala						
	ma/ka	1	MCERTS	4.0	1.0	
Total Phenois (mononydric)	iiig/kg	1	PICERTS	< 1.0	< 1.0	< 1.0
Creatisted DAUs						
Speciated PAHs	ma/ka	0.05	MCEDTC	0.05	0.05	0.05
Accomptibulance	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Elueropo	mg/kg	0.05	MCERTS	< 0.05	< 0.05	< 0.05
Dhenanthrene	ma/ka	0.05	MCERTS	0.05	0.05	0.19
Anthracene	ma/ka	0.05	MCERTS	0.17	< 0.05	< 0.05
Fluoranthene	ma/ka	0.05	MCERTS	1.4	0.05	0.05
Durene	ma/ka	0.05	MCERTS	1.1	0.25	0.5
Benzo(a)anthracene	mg/kg	0.05	MCERTS	0.62	0.13	0.17
Chrysene	mg/kg	0.05	MCERTS	0.63	0.13	0.19
Benzo(b)fluoranthene	mg/kg	0.05	ISO 17025	0.75	0.17	0.23
Benzo(k)fluoranthene	mg/kg	0.05	ISO 17025	0.27	0.05	0.07
Benzo(a)pyrene	mg/kg	0.05	MCERTS	0.51	0.1	0.17
Indeno(1,2,3-cd)pyrene	mg/kg	0.05	MCERTS	0.28	< 0.05	< 0.05
Dibenz(a,h)anthracene	mg/kg	0.05	MCERTS	0.08	< 0.05	< 0.05
Benzo(ghi)perylene	mg/kg	0.05	MCERTS	0.36	< 0.05	< 0.05
			8			
Total PAH						
Speciated Total EPA-16 PAHs	mg/kg	0.8	ISO 17025	6.76	1.23	1.62
Heavy Metals / Metalloids						
Arsenic (aqua regia extractable)	mg/kg	1	MCERTS	15	23	14
Cadmium (aqua regia extractable)	mg/kg	0.2	MCERTS	< 0.2	< 0.2	< 0.2
Chromium (hexavalent)	mg/kg	1.8	MCERTS	< 1.8	< 1.8	< 1.8
Chromium (aqua regia extractable)	mg/kg	1	MCERTS	38	22	27
Copper (aqua regia extractable)	mg/kg	1	MCERTS	41	130	110
Lead (aqua regia extractable)	mg/kg	1	MCERTS	270	290	540
Mercury (aqua regia extractable)	mg/kg	0.3	MCERTS	1.1	0.7	0.7
Nickel (aqua regia extractable)	mg/kg	1	MCERTS	22	18	20
Selenium (aqua regia extractable)	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
Zinc (aqua regia extractable)	mg/kg	1	MCERTS	120	76	130

This certificate should not be reproduced, except in full, without the express permission of the laboratory. The results included within the report relate only to the sample(s) submitted for testing.

Analytical Report Number: 23-41012 Project / Site name: 118 Maiden Road

Potroloum Hydrocorbons

Lab Sample Number				2724408	2724409	2724410
Sample Reference	BH1	TP1	TP2			
Sample Number	None Supplied	None Supplied	None Supplied			
Depth (m)	0.50	0.20	0.30			
Date Sampled				21/06/2023	21/06/2023	21/06/2023
Time Taken				None Supplied	None Supplied	None Supplied
Analytical Parameter (Soil Analysis)	Units	Limit of detection	Accreditation Status			

recoledin riyurocarbons						
TPH C10 - C40 _{EH_CU_1D_TOTAL}	mg/kg	10	MCERTS	< 10	< 10	< 10
TPH (C8 - C10) _{HS_1D_TOTAL}	mg/kg	0.1	NONE	< 0.1	< 0.1	< 0.1
TPH (C10 - C12) EH_CU_1D_TOTAL	mg/kg	2	MCERTS	< 2.0	< 2.0	< 2.0
TPH (C12 - C16) EH_CU_1D_TOTAL	mg/kg	4	MCERTS	< 4.0	< 4.0	< 4.0
TPH (C16 - C21) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH (C21 - C35) EH_CU_1D_TOTAL	mg/kg	1	MCERTS	< 1.0	< 1.0	< 1.0
TPH Total C8 - C35 EH CUEHS 1D TOTAL	mg/kg	10	NONE	< 10	< 10	< 10

U/S = Unsuitable Sample I/S = Insufficient Sample ND = Not detected

Analytical Report Number : 23-41012 Project / Site name: 118 Maiden Road

* These descriptions are only intended to act as a cross check if sample identities are questioned. The major constituent of the sample is intended to act with respect to MCERTS validation. The laboratory is accredited for sand, clay and loam (MCERTS) soil types. Data for unaccredited types of solid should be interpreted with care.

Stone content of a sample is calculated as the % weight of the stones not passing a 10 mm sieve. Results are not corrected for stone content.

Lab Sample Number	Sample Reference	Sample Number	Depth (m)	Sample Description *
2724408	BH1	None Supplied	0.5	Brown clay and sand with gravel.
2724409	TP1	None Supplied	0.2	Brown clay and sand with gravel and glass
2724410	TP2	None Supplied	0.3	Brown sand with rubble.

Analytical Report Number : 23-41012 Project / Site name: 118 Maiden Road

Water matrix abbreviations: Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Sulphate, water soluble, in soil (16hr extraction)	water soluble, in soil (16hr Determination of water soluble sulphate by ICP-OES. In house method.) Results reported directly (leachate equivalent) and corrected for extraction ratio (soil equivalent).		L038-PL	D	MCERTS
Metals in soil by ICP-OES	Determination of metals in soil by aqua-regia digestion followed by ICP-OES. In-house method based on MEWAM 2006 Methods for the Determination of Metals in Soil.		L038-PL	D	MCERTS
Asbestos identification in soil	Asbestos Identification with the use of polarised light microscopy in conjunction with dispersion staining techniques.	os Identification with the use of polarised light In house method based on HSG 248 copy in conjunction with dispersion staining ques.		D	ISO 17025
Chloride, water soluble, in soil	Determination of Chloride colorimetrically by discrete analyser.	In house method.	L082-PL	D	MCERTS
Moisture Content	Moisture content, determined gravimetrically. (30 oC)	In house method.	L019-UK/PL	w	NONE
Monohydric phenols in soil	Determination of phenols in soil by extraction with sodium hydroxide followed by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (skalar)	L080-PL	w	MCERTS
Speciated EPA-16 PAHs in soil	Determination of PAH compounds in soil by extraction in dichloromethane and hexane followed by GC-MS with the use of surrogate and internal standards.	In-house method based on USEPA 8270	L064-PL	D	MCERTS
pH in soil (automated)	Determination of pH in soil by addition of water followed by automated electrometric measurement.	In house method.	L099-PL	D	MCERTS
Sulphide in soil	Determination of sulphide in soil by acidification and heating to liberate hydrogen sulphide, trapped in an alkaline solution then assayed by ion selective electrode.	In-house method	L010-PL	D	MCERTS
Total sulphate (as SO4 in soil)	Determination of total sulphate in soil by extraction with 10% HCl followed by ICP-OES.	In house method.	L038-PL	D	MCERTS
Stones content of soil	Standard preparation for all samples unless otherwise detailed. Gravimetric determination of stone > 10 mm as % dry weight.	In-house method based on British Standard Methods and MCERTS requirements.	L019-UK/PL	D	NONE
Total cyanide in soil	Determination of total cyanide by distillation followed by colorimetry.	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	L080-PL	w	MCERTS
Total organic carbon (Automated) in soil	Determination of organic matter in soil by oxidising with potassium dichromate followed by titration with iron (II) sulphate.	In house method.	L009-PL	D	MCERTS
TPH in (Soil)	Determination of TPH bands by HS-GC-MS/GC-FID	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS
TPH Banding in Soil by FID	Determination of hexane extractable hydrocarbons in soil by GC-FID.	In-house method, TPH with carbon banding and silica gel split/cleanup.	L076-PL	D	MCERTS

Analytical Report Number : 23-41012 Project / Site name: 118 Maiden Road

Water matrix abbreviations:

Surface Water (SW) Potable Water (PW) Ground Water (GW) Process Waters (PrW) Final Sewage Effluent (FSE) Landfill Leachate (LL)

Analytical Test Name	Analytical Method Description	Analytical Method Reference	Method number	Wet / Dry Analysis	Accreditation Status
Hexavalent chromium in soil	Determination of hexavalent chromium in soil by extraction in NaOH and addition of 1,5 diphenylcarbazide followed by colorimetry.	In-house method	L080-PL	W	MCERTS
D.O. for Gravimetric Quant if Screen/ID positive	Dependent option for Gravimetric Quant if Screen/ID positive scheduled.	In house asbestos methods A001 & A006.	A006-PL	D	NONE

For method numbers ending in 'UK or A' analysis have been carried out in our laboratory in the United Kingdom (WATFORD).

For method numbers ending in 'F' analysis have been carried out in our laboratory in the United Kingdom (East Kilbride). For method numbers ending in 'PL or B' analysis have been carried out in our laboratory in Poland.

For method numbers ending in PL or B analysis have been carried out in our laboratory in Poland. Soil analytical results are expressed on a dry weight basis. Where analysis is carried out on as-received the results obtained are multiplied by a moisture correction factor that is determined gravimetrically using the moisture content which is carried out at a maximum of 30oC. Unless otherwise indicated, site information, order number, project number, sampling date, time, sample reference and depth are provided by

the client. The instructed on date indicates the date on which this information was provided to the laboratory.

Information in Support of Analytical Results

List of HWOL Acronyms and Operators

Acronym	Descriptions
HS	Headspace Analysis
MS	Mass spectrometry
FID	Flame Ionisation Detector
GC	Gas Chromatography
EH	Extractable Hydrocarbons (i.e. everything extracted by the solvent(s))
CU	Clean-up - e.g. by Florisil®, silica gel
1D	GC - Single coil/column gas chromatography
2D	GC-GC - Double coil/column gas chromatography
Total	Aliphatics & Aromatics
AL	Aliphatics
AR	Aromatics
#1	EH_2D_Total but with humics mathematically subtracted
#2	EH_2D_Total but with fatty acids mathematically subtracted
_	Operator - understore to separate acronyms (exception for +)
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total

Widbury Barn Widbury Hill Ware SG12 7QE

Generic Risk-Based Soil Screening Values

Job Number

J23170

Sheet 1 / 1

Engineer

Site

Client

Martin Redston Associates

William Carter Limited

118 Malden Road, London NW5 4BY

jineer

Proposed End Use Residential with plant uptake

Soil Organic Matter content % 1.0

Contaminant	Screening Value mg/kg	Data Source	Contaminant	Screening Value mg/kg	Data Source		
Metals			Hydro	Hydrocarbons			
Arsenic	37	C4SL	Banded TPH (8-10)	52	Calc1		
Cadmium	22	C4SL	Banded TPH (10-12)	114	Calc1		
Chromium (III)	910	S4UL	Banded TPH (12-16)	215	Calc1		
Chromium (VI)	21	C4SL	Banded TPH (16-21)	400	Calc1		
Copper	2,400	S4UL	Banded TPH (21-35)	1692	Calc1		
Lead	200	C4SL	Benzene	0.2	C4SL		
Elemental Mercury	1.2	S4UL	Toluene	120	SGV		
Inorganic Mercury	40	S4UL	Ethyl Benzene	65	SGV		
Nickel	130	S4UL	Xylene	42	SGV		
Selenium	350	SGV	Aliphatic C5-C6	42	S4UL		
Zinc	3,700	S4UL	Aliphatic C6-C8	100	S4UL		
	Anions		Aliphatic C8-C10	27	S4UL		
Soluble Sulphate	500 mg/l	Structures	Aliphatic C10-C12	130	S4UL		
Sulphide	50	Structures	Aliphatic C12-C16	1100	S4UL		
Chloride	400	Structures	Aliphatic C16-C35	65,000	S4UL		
Others		Aromatic C6-C7	See Benzene	S4UL			
Organic Carbon (%)	6	Methanogenic potential	Aromatic C7-C8	See Toluene	S4UL		
Total Cyanide	140	WRAS	Aromatic C8-C10	34	S4UL		
Total Mono Phenols	184	SGV	Aromatic C10-C12	74	S4UL		
	PAH		Aromatic C12-C16	140	S4UL		
Naphthalene	2.30	S4UL	Aromatic C16-C21	260	S4UL		
Acenaphthylene	170	S4UL	Aromatic C21-C35	1100	S4UL		
Acenaphthene	210	S4UL	PRO (C ₅ –C ₁₀)	323	Calc2		
Fluorene	170	S4UL	DRO (C ₁₂ –C ₂₈)	66,500	Calc2		
Phenanthrene	95	S4UL	Lube Oil (C ₂₈ –C ₄₄)	66,100	Calc2		
Anthracene	2,400	S4UL	ТРН	750	Trigger to consider		
Fluoranthene	280	S4UL			speciated testing		
Pyrene	620	S4UL	Chlorina	Chlorinated Solvents			
Benzo(a)anthracene	7.2	S4UL	1,1,1 trichloroethane (TCA)	8.8	S4UL		
Chrysene	15	S4UL	tetrachloroethane (PCA)	1.2	S4UL		
Benzo(b)fluoranthene	2.6	S4UL	tetrachloroethene (PCE)	0.18	S4UL		
Benzo(k)fluoranthene	77.0	S4UL	trichloroethene (TCE)	0.016	S4UL		
Benzo(a)pyrene	4.35	C4SL	1,2-dichloroethane (DCA)	0.0071	S4UL		
Indeno(1 2 3 cd)pyrene	27.0	S4UL	vinyl chloride (Chloroethene)	0.00064	S4UL		
Dibenz(a h)anthracene	0.24	S4UL	tetrachloromethane (Carbon tetra	0.026	S4UL		
Benzo (g h i)perylene	320	S4UL	trichloromethane (Chloroform)	0.91	S4UL		
Total PAH Screen	62.1	B(a)P / 0.15					

Notes : Concentrations measured below these screening values may be considered to represent 'uncontaminated conditions' which pose a 'LOW' risk to human

health. Concentrations measured in excess of these values indicate a potential risk which require further, site specific risk assessment.

C4SL - Defra Category 4 Screening value based on Low Level of Toxicological Risk

SGV - Soil Guideline Value, derived from the CLEA model and published by Environment Agency 2009 - where not superseded by C4SL

S4UL - LQM/CIEH Suitable for use Level (2015) based on 'minimal' level of risk

Calc1 - sum of thresholds for Ali & Aro fractions - assuming a 35% Aro:65% Ali ratio as is commonly encountered in the soil

Calc2 - sum of nearest available carbon range specified including BTEX for PRO fraction

Total PAH based on B(a)P / 0.15 - GEA experience indicates that Benzo(a) pyrene rarely exceeds 15% of the total PAH concentration