GeoBrace 550 Uplift Brackets

Used above GeoBrace 550 Inclined Prop Connector Plates to resist the uplift forces induced by a raking prop. Can either be welded to Sheet Piles or bolted to Concrete Capping Beams or D-Walls.

For allowable working loads, bolt and weld connection details refer to sheets 17 & 18.

European Data

COMPONENTS

Date: 23/04/2019

Issue : GB03

Sheet 16

Support & Uplift Brackets Bolted to Concrete Structures

Uplift Brackets 3,4 or 5

Support/Uplift Bracket	1	2	3	4	5
AWL (kN)	60	125	200	300	500
Number of grade 8.8 ATR anchors	4	8	12	16	18
ATR diameter and thread	M24	M24	M24	M30	M30
Embedment Depth (mm)	300	450	450	600	600

Anchor design calculations have been carried out using the full bracket allowable working load and grade 8.8 all-thread rod (ATR) fixed into 50N/mm² cube strength un-cracked concrete using Hilti HIT-HY 200-A Injection Mortar in accordance with the manufacturer's recommendations.

Un-reinforced concrete has been assumed and no account has been taken of edge or end distances. It is also assumed that appropriate strength grout is placed between the bracket and the prepared concrete surface.

The design, supply and correct installation of the anchors and grout for the applied loads are the responsibility of the Customer.

European Data

COMPONENTS

Date: 23/04/2019

Issue : GB03

Support & Uplift Brackets Welded to Steel Sheet Piles

Sheet Stee	Fillet Weld	Bracket	1	2	3	4	5
Grade	Number	AWL	60	175	300	500	750
	1	Throat	5.0	10.6	13.0	14.4	15.6
	I	Leg	7.1	15.0	18.4	20.3	22.1
0005	2	Throat	3.0	3.0	3.0	11.9	10.1
5230		Leg	4.2	4.2	4.2	16.8	14.3
	2	Throat	4.2 4.2 t none 8.5 none 12.0 t 4.5 9.5 6.4 13.4 t 3.0 3.0	3.7	3.0	8.9	
	3	Leg	none	12.0	5.2	4.2	12.6
	1	Throat	4.5	9.5	11.6	12.8	13.9
		Leg	6.4	13.4	16.4	18.1	19.7
0075		Throat	3.0	3.0	3.0	10.6	9.0
5215		Leg	4.2	4.2	4.2	14.9	12.7
	2	Throat	none	7.1	3.1	3.0	7.4
	5	Leg	none	10.0	4.4	4.2	10.5
	1	Throat	4.2	8.8	10.8	11.9	12.9
	I	Leg	5.9	12.4	15.3	16.8	18.3
0255	0	Throat	3.0	3.0	3.0	9.8	8.4
5500	۷	Leg	4.2	4.2	4.2	13.9	11.9
	2	Throat	none	6.2	3.0	3.0	5.4
	3	Lea	none	8.8	4.2	4.2	7.6

Weld Dimensions

Weld sizes may be pro-rated according to applied load/AWL for the bracket however we recommend a minimum site weld throat dimension of 3mm. It is the Customer's responsibility to adjust the weld size in-situ to suit steel thickness, site conditions and welding methods. The sheet pile shall be at least equal in thickness to the weld throat dimension.

It is the Customer's responsibility to ensure that the sheet piles are not locally overstressed by bracket forces or weld connections and to weld the clutches between sheets or add shear plates as needed to prevent the ejection of individual sheets by uplift forces.

European Data

COMPONENTS

Date: 23/04/2019

Issue : GB03

Sheet 18

4 Leg Lifting Chains

Used for unloading and moving individual leg assembles. SWL 6.7 tonnes.

It is the Customer's responsibility to provide longer and higher load capacity lifting chains if large assemblies of equipment are to be moved.

Code	Description	Weight
VAU10019	4 Leg Chains 3mtr - SWL 6.7TON 10mm	30.0 kg
VAU10020	4 Leg Chains 5mtr - SWL 6.7TON 10mm	60.0 kg

Diesel Power Pack LP 80 bar (blue) (GBX01000) weight 301kg

A grade 46 mineral oil only, diesel powered, hydraulic pump used with GeoBrace 390 and GeoBrace 550 Ram Units to adjust length and pre-load.

Grade 46 Mineral Oil - 5 Litres (VAU19005)

Hydraulic Connecting Hoses

For use with the Diesel Power Pack LP 80 bar (blue) (GBX01000).

Code	Description	Weight
AGU20103	3/8" Hose M/F ISO A, 2.5m - 350bar	1.7 kg
AGU20104	3/8" Hose M/F ISO A, 3.5m - 350bar	2.3 kg
AGU20049	3/8" Hose M/F ISO A, 5.0m - 350bar	3.2 kg

2 hoses are required to connect 1 hydraulic ram

European Data

COMPONENTS

Date: 23/04/2019

Issue : GB03

Sheet 19

Allowable Working Loads - Simply Supported Beams, Sheet to Sheet

Graph 550/1

European Data

DESIGN DATA

Date: 23/04/2019

Issue : GB03

Allowable Working Loads - Simply Supported Beams, Pin to Pin

Graph 550/2

European Data

DESIGN DATA

Date: 23/04/2019

Issue : GB03

Design of Continuous Beams with or Without Knee Braces

It is not possible to produce graphs covering the design of these applications as there are too many variables; carry out analysis on a case by case basis. Care is needed to correctly consider axial compression arising as a result of connection with braces joining at the excavation corners (A) and knee brace props joining the 550 Brace at angles (B). Compression loads are carried by the GeoBrace flanges and joint pins remote from the supported wall. Critical points for consideration occur at point B and where props intersect the GeoBrace 550 (C). In these locations hogging bending moments also result in compression loads in the inner flanges which are additive to induced axial loads. In the mid-span (D), sagging bending moments place the inner flanges in tension which are reduced by the magnitude of any induced axial load. Deflection in the mid-span will also move the line of induced axial load towards the neutral axis of the GeoBrace section. For large excavations where supported perimeter walls have adequate in-plane stiffness, such as in D-wall or secant pile construction, it may be possible to shed axial loads from the GeoBrace 550 sections into the supported walls near the corners of the excavation by the use of substantial shear stubs welded to the wall-side flange of the GeoBrace which project and are grouted into purpose designed pockets cut into the perimeter wall. This allows fuller use of the allowable GeoBrace section bending moment in areas of hogging moment towards the central part of the excavation.

Working Load Envelope - Combined Axial / Bending / Shear

European Data

DESIGN DATA

Date: 23/04/2019

Issue : GB03

Sheet 22

Graph 550/3

Intermediate Supports - Combined Axial / Bending / Prop Load

Intermediate Supports - Combined Axial / Bending / Shear

Graph 550/5

Zone A values have been limited due to the partial lateral and rotational restraint of the plate girder compression flange in accordance with BS5975 table K1 and for values of shear that do not exceed 55% of the prop load.

Separate calculations are required to access Zone B values in which detailed consideration is given to the lateral and rotational restraint of the girder compression flange in order to reduce the effective length of the plate girder web.

European Data

DESIGN DATA

Date: 23/04/2019

Table 1 - Component Makeup for a GeoBrace 550 Assembly with Ram Unit

Leg	Kit Code	Sheet to Dimensi	o Sheet on (mm)	GBX55000	GBX55009	GBX55013	GBX55027	GBX55054	GBX55108	GBX55001	BVU70001	Weight	Pin Hole Deflection
Туре		min	max	Ram Unit	900mm Extension	1350mm Extension	2700mm Extension	5400mm Extension	10800mm Extension	59x350mm Pin	8mm R-Clip	(kg)	(mm)
1	KTU16120	3250	4250	1						1	2	2640	5
2	KTU16121	4150	5150	1	1					3	6	3430	8
3	KTU16122	4600	5600	1		1				3	6	3600	9
4	KTU16123	5050	6050	1	2					5	10	4220	13
5	KTU16124	5500	6500	1	1	1				5	10	4390	14
6	KTU16125	5950	6950	1			1			3	6	4080	12
7	KTU16126	6400	7400	1	2	1				7	14	5180	20
8	KTU16127	6850	7850	1	1		1			5	10	4870	16
9	KTU16128	7300	8300	1		1	1			5	10	5040	18
10	KTU16129	7750	8750	1	2		1			7	14	5670	21
11	KTU16130	8200	9200	1	1	1	1			7	14	5840	22
12	KTU16131	8650	9650	1				1		3	6	5040	17
13	KTU16132	9100	10100	1	2	1	1			9	18	6630	29
14	KTU16133	9550	10550	1	1			1		5	10	5840	19
15	KTU16134	10000	11000	1		1		1		5	10	6010	20
16	KTU16135	10450	11450	1	2			1		7	14	6630	22
17	KTU16136	10900	11900	1	1	1		1		7	14	6800	23
18	KTU16137	11350	12350	1			1	1		5	10	6490	23
19	KTU16138	11800	12800	1	2	1		1		9	18	7590	29
20	KTU16139	12250	13250	1	1		1	1		7	14	7280	25
21	KTU16140	12700	13700	1		1	1	1		7	14	7450	27
22	KTU16141	13150	14150	1	2		1	1		9	18	8070	33
23	KTU16142	13600	14600	1	1	1	1	1		9	18	8240	36
24	KTU16143	14050	15050	1					1	3	6	7000	20
25	KTU16144	14500	15500	1	2	1	1	1		11	22	9030	46
26	KTU16145	14950	15950	1	1				1	5	10	7790	22
27	KTU16146	15400	16400	1		1			1	5	10	7960	22
28	KTU16147	15850	16850	1	2				1	7	14	8580	24
29	KTU16148	16300	17300	1	1	1			1	7	14	8750	24
30	KTU16149	16750	17750	1			1		1	5	10	8440	24
31	KTU16150	17200	18200	1	2	1			1	9	18	9550	29
32	KTU16151	17650	18650	1	1		1		1	7	14	9240	26
33	KTU16152	18100	19100	1		1	1		1	7	14	9400	27
34	KTU16153	18550	19550	1	2		1		1	9	18	10000	34
35	KTU16154	19000	20000	1	1	1	1		1	9	18	10200	37
36	KTU16155	19450	20450	1				1	1	5	10	9410	27
37	KTU16156	19900	20900	1	2	1	1		1	11	22	11000	50
38	KTU16157	20350	21350	1	1			1	1	7	14	10200	28
39	KTU16158	20800	21800	1	1	1		1	1	7	14	10400	36
40	KTU16150	21250	22250	1	2			1	1	9	18	11000	42
41	KTU16160	21700	22700	1	1	1		1	1	g	18	11200	45
42	KTU16161	22150	23150	1	, '	'	1	1	1	7	14	10800	45
43	KTU16162	22600	23600	1	2	1	'	1	1	11	22	12000	56
44	KTU16163	23050	24050	1	1		1	1	1	9	18	11600	52
45	KTU16164	23500	24500	1		1		1	1	a	18	11800	56
_ - J	11010104	20000	27000							J J	ιU	11000	00

European Data

COMPONENTS

Date: 23/04/2019

Issue : GB03

Sheet 24

Table 1 (continued) - Component Makeup for a GeoBrace 550 Assembly with Ram Unit

Leg	Kit Code	Sheet to Dimensi	o Sheet on (mm)	GBX55000	GBX55009	GBX55013	GBX55027	GBX55054	GBX55108	GBX55001	BVU70001	Weight	Pin Hole Deflection
Туре		min	max	Ram Unit	900mm Extension	1350mm Extension	2700mm Extension	5400mm Extension	10800mm Extension	59x350mm Pin	8mm R-Clip	(kg)	(mm)
46	KTU16165	23950	24950	1	2		1	1	1	11	22	12400	62
47	KTU16166	24400	25400	1	1	1	1	1	1	11	22	12600	67
48	KTU16167	24850	25850	1					2	5	10	11400	43
49	KTU16168	25300	26300	1	2	1	1	1	1	13	26	13400	77
50	KTU16169	25750	26750	1	1				2	7	14	12200	47
51	KTU16170	26200	27200	1		1			2	7	14	12300	49
52	KTU16171	26650	27650	1	2				2	9	18	12900	54
53	KTU16172	27100	28100	1	1	1			2	9	18	13100	57
54	KTU16173	27550	28550	1			1		2	7	14	12800	55
55	KTU16174	28000	29000	1	2	1			2	11	22	13900	64
56	KTU16175	28450	29450	1	1		1		2	9	18	13600	61
57	KTU16176	28900	29900	1		1	1		2	9	18	13800	64
58	KTU16177	29350	30350	1	2		1		2	11	22	14400	69
59	KTU16178	29800	30800	1	1	1	1		2	11	22	14600	72
60	KTU16179	30250	31250	1				1	2	7	14	13800	65

Note: All legs are supplied fully assembled with 1 extra pin & R clip at the end to connect at the corner. If connecting end to end as parallel walers rather than a square or rectangular frame 1 extra pin & R clip will be required per leg.

In order to minimise initial deflection caused by pin hole tolerances assemble the brace with the longest possible extensions in the middle and position shorter lengths at the ends. When assembling braces in accordance with RMDK drawings, follow the makeup shown.

When selecting the lengths of the GeoBrace 550 assemblies, make appropriate allowance for pin hole deflection, elastic deflection and adequate working space.

Dimension Conversions

To obtain the pin to pin, or clear internal dimensions for the GeoBrace 550 leg from the sheet to sheet dimension, subtract the following offsets:

European Data

COMPONENTS

Date: 23/04/2019

Issue : GB03

Sheet 25

Contact Details: International Offices

Europe

Head Office – United Kingdom RMD Kwikform, Brickyard Road, Aldridge, Walsall WS9 8BW, UK. Tel: +44 1922 743743 Email: info@rmdkwikform.com

Ireland

RMD Kwikform, Ballyboggan Road, Finglas, Dublin 11, Ireland. Tel: +353 1 830 2500 Email: rmd.dublin@rmdkwikform.com

South America

Chile RMD Kwikform, La Estera 811, Parque Industrial Ville Grande, Lampa, Santiago, Chile. Tel: +56 2 747 1414 Email: rmd.chile@rmdkwikform.com

America

USA 9351 Grant Street, Suite 200, Thornton, Colorado, 80229 Tel: +1 303 252 7000 Email: usa@rmdkwikform.com

South Africa

RMD Kwikform South Africa (Pty) Ltd 26 Venturi Crescent, Hennopspark X5, Pretoria, South Africa Tel: +27 (0)12 681 0360 Email: info.sa@rmdkwikform.com

Middle East

UAE

RMD Kwikform, PO Box 5801, Sharjah, United Arab Emirates. Tel: +971 6 5534173 Email: rmd.uae@rmdkwikform.com

Qatar

RMD Kwikform, PO Box 405, Doha, Qatar. Tel: +974 467 5925 Email: rmd.qatar@rmdkwikform.com

Bahrain

RMD Kwikform, C/O CGH , Building 829, Flat 11, Block 408, Sanabis, Kingdom of Bahrain. Tel: +973 1738 2724 Email: rmd.bahrain@rmdkwikform.com

Oman

RMD Kwikform Oman LLC PO Box 889 Post Code 115 Muscat Sultanate of Oman Tel: +968 2463 6776 Email: rmd.oman@rmdkwikform.com

India

RMD Kwikform, No.28/2, 1st Floor, AMG Towers, Lawyer Jagannathan Street, G.S.T. Road, Alandhur, Chennai—60016, Tamil Nadu, India Tel: +91 44 4915 3333 Email: rmd.india@rmdkwikform.com

Saudi Arabia

PO Box 921, Entrance 1, North 2nd Floor, Room 4A Gulf Star Building, Prince Turki Abdulaziz Street, Comiche, Al Khobar 31952, Kingdom of Saudi Arabia Tel: +966 13 896 8665 Email: rmd.ksa@rmdkwikform.com

Asia Pacific

Australia

RMD (Australia) Pty. Ltd. PO Box 169, Melrose Park, South Australia, 5039. Tel: +61 8 8179 8200 Email: rmd.australia@rmdformwork.com

Hong Kong

RMD Kwikform, 22/F Excel Center, 483A Castle Peak Road, Cheung Sha Wan, Kowloon, Hong Kong. Tel: +852 2415 4882 Email: rmd.hongkong@rmdkwikform.com

New Zealand

RMD (New Zealand) Ltd. PO Box 22-316, 101-105 Station Road, Otahuhu, Auckland 6, New Zealand. Tel: +64 9 276 5955 Email: rmd.auckland@rmdformwork.com

Philippines

RMD Kwikform, Units 2406-2409, Raffles Corporate Center, F. Ortigas Jr. Road, Ortigas Center, Pasig City, Philippines. Tel: +632 696 7635 Email: rmd.manila@rmdkwikform.com

Guam

RMD Kwikform. 321 East Harmon Industrial Park Road, Unit F, Tamuning, Guam. Tel: +671 647 7635 Email: rmd.guam@rmdkwikform.com

European Data

Date: 23/04/2019

Issue : GB03

Sheet 26

<u>D_FS</u>				(ww	CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	25 March 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Design – Temporary Propping Pile Retaining Walls & Segmental Unde	Scheme to Laterally rpinning Wall <u>Rev. C</u>	Restrain 1 <u>3</u>	Page:	37 of 38

DEWALT SC-PRO Carbon Steel Threaded Anchor Rods Technical Datasheets

ADHESIVE ANCHORS

SC-PRO

ORETE ANCHORING SYSTEI

GENERAL INFORMATION

SC-PRO

Vinylester Spinning Capsule Adhesive Anchoring System

PRODUCT DESCRIPTION

The SC-PRO anchor system consists of integrated two-component glass capsules and matching chisel pointed anchor rods which are installed using a rotary hammer. The adhesive is designed for installation of M8 to M30 threaded rods in concrete. It is suitable for a wide range of steel grades and can be used for installations in water filled holes.

SECTION CONTENTS

FASTENERS ENGINEERED BY POWERS

General Information Installation Information Design Information Material Information Ordering Information

SYSTEM COMPONENTS

SC-PRO (MB)

DEWALT

SC-PRO

Chisel Pointed Rod

Carbon Steel 5.8

Carbon Steel 8.8

Stainless Steel A4

• ETA-13/0051

Stainless Steel HCR

GRADES

FEATURES AND BENEFITS

- · Designed for use with chisel pointed threaded rod
- Simple and fast installation
- · Quick curing time and good chemical resistance
- · Versatile low odor formula with quick curing time
- · Capsule design allows pre-measured adhesive volumes and avoids waste

APPROVALS AND LISTINGS

LOADING CONDITIONS

SUITABLE BASE MATERIALS

INSTALLATION DATA - THREADED ROD

	Notation	Ilmit				SC-PRO) - Thread	led rod			
	Notation	Unit	M8	M10	M12	M14	M16	M20	M22	M24	M30
Anchor diameter	d	[mm]	8	10	12	14	16	20	22	24	30
Nominal drill bit diameter	d ₀	[mm]	10	12	14	16	18	22	24	26	32
Diameter of hole clearance in fixture	d _f	[mm]	9	12	14	16	18	22	24	26	33
Diameter of steel brush	d _b	[mm]	11	13	16	18	20	24	26	28	34
Effective embedment and drill hole depth 1 Effective embedment and drill hole depth 2	$\begin{array}{l} h_{ef,1} = h_{1,1} \\ h_{ef,2} = h_{1,2} \end{array}$	[mm] [mm]	80 -	90 -	110 165	120 -	125 190	170 255	190 -	210 315	280 -
Minimum member thickness for $h_{\text{ef},1}$ Minimum member thickness for $h_{\text{ef},2}$	h _{min,1} h _{min,2}	[mm] [mm]	110 -	120 -	140 195	150 -	160 225	220 300	240 -	260 370	340 -
Minimum spacing for $h_{ef,1}$ Minimum spacing for $h_{ef,2}$	S _{min,1} S _{min,2}	[mm] [mm]	40 -	45 -	55 85	60 -	65 95	85 130	95 -	105 160	140 -
Minimum edge distance for $h_{\text{ef},1}$ Minimum edge distance or $h_{\text{ef},2}$	C _{min,1} C _{min,2}	[mm] [mm]	40 -	45 -	55 85	60 -	65 95	85 130	95 -	105 160	140 -
Thickness of fixture	t _{fix}	[mm]	$0 \text{ mm} \le t_{\text{fix}} \le 1500 \text{ mm}$								
Maximum torque	T _{max}	[Nm]	10	20	40	60	80	120	135	180	300
Torque wrench socket size	S _w	[mm]	13	17	19	22	24	30	32	36	46

INSTALLATION INSTRUCTIONS

1.) Using the proper drill bit size, drill a hole into the base material to the required depth.

2X

minimum.

blow the hole 5.) Snake capsu clean using a to distribute hand pump or adhesive compressed components. air 2 times

6.) Insert the capsule into the drilled hole.

nut on rod + coupler on nut. Insert drive unit in rotary hammer. In hammer drill mode, 250-500 rpm break glass. Allow the adhesive to cure for the time specified for the actual concrete temperature prior to applying any load.

For complete installation instructions, see technical approval.

minimum.

Concrete temperature	Minimum curing time ¹⁾						
≥ - 5°C	5 h						
\geq + 5°C	1 h						
\geq + 20°C	20 min						
\geq + 30°C	10 min						
1) Time data for dry concrete, double curing time for wet concrete							

TECH MANUAL – ADHESIVE ANCHORS ©2013 DEWALT PRINTED 6/13

DESIGN INFORMATION

TENSION LOAD CAPACITIES - PARAMETERS FOR CALCULATION OF DESIGN STRENGTH

According to EOTA TR 029.

					SC-PRO - Threaded rod						
	Notation	Unit	M8	M10	M12	M14	M16	M20	M22	M24	M30
		Ste	eel failu	'e							
Carbon steel											
Characteristic resistance, strength class 5.8	N _{Rk,s}	[kN]	18	29	42	58	78	123	152	177	281
Characteristic resistance, strength class 8.8	N _{Rk,s}	[kN]	29	46	67	92	126	196	242	282	449
Partial safety factor	$\gamma_{Ms}^{(1)}$	[-] 1.50									
A4 and HCR steel											
Characteristic resistance, strength class 50	N _{Rk,s}	[kN]	-	-	-	-	-	-	-	-	281
Characteristic resistance, strength class 70	N _{Rk,s}	[kN]	26	40	59	81	110	172	212	247	-
Partial safety factor	$\gamma_{Ms}^{(1)}$	[-]				1.	87				2.86
	Comi	pined pullo	ut and c	oncrete f	ailure						
Characteristic resistance in uncracked concre	te, dry and we	t concrete									
Temperature Range: 40°C / 24°C	$ au_{ ext{Rk,uncr}}$	[N/mm ²]	12	12	12	12	12	11	11	11	10
Temperature Range: 80°C / 50°C	$ au_{ m Rk, uncr}$	[N/mm ²]	10	10	10	10	10	9.5	9.5	9.5	9
Partial safety factor	$\gamma_{Mc} = \gamma_{Mp}^{1}$	[-]				. 1.	5 ²⁾				1.8 ³⁾
Increasing factor for concrete strength											
C30/37	ψ _c	[-]					1.14				
C40/50	ψ _c	[-]					1.26				
C50/60	ψ _c	[-]					1.34				
		Cond	crete fail	ure							
Concrete cone failure											
Characteristic spacing	S _{cr,N}	[mm]					3.0·h _{ef}				
Characteristic edge distance	C _{cr,N}	[mm]					1.5·h _{ef}				
Partial safety factor	$\gamma_{Mc}^{1)}$	[-]				1.	5 ²⁾				1.8 ³⁾
Splitting failure											
Characteristic spacing	S _{cr,sp}	[mm]					2·c _{cr,sp}				
Characteristic edge distance	C _{cr,sp}	[mm]	160	135	140	150	160	215	240	265	350
Partial safety factor for uncracked concrete	$\gamma_{Msp}^{(1)}$	[-]				1.	5 ²⁾				1.8 ³⁾
Increasing factor for concrete strength											
C30/37	ψc	[-]	1.14								
C40/50	ψ _c	[-]	1.26								
C50/60	ψ _c	[-]					1.34				
1) In absence of other national regulations 2) Partial safety factor $\gamma_2 = 1.0$ is included 3) Partial safety factor $\gamma_2 = 1.2$ is included The DEWALT Design Assist is a powerful as	ichor design soffw	are which hol			le and com	nlex ancho	ranes				
Dewalt Design Assist The design data of all DeWALT anchor prod	lucts is readily ava	ilable. To dow	nload this	software for	r free, go to) www.DeW	ALTdesigna	assist.com			

FASTENERS ENGINEERED BY POWERS®

ADHESIVE ANCHORS

SG-PRO CONCRETE ANCHORING SYSTEM

SHEAR LOAD CAPACITIES - PARAMETERS FOR CALCULATION OF DESIGN STRENGTH

According to FOTA TR 029

	N-4 **					SC-PRO) - Threa	ded rod			
	Notation	Unit	M8	M10	M12	M14	M16	M20	M22	M24	M30
		Ste	eel failur	e							
Data base for steel failure without level arm											
Carbon steel											
Characteristic resistance, strength class 5.8	V _{Rk,s}	[kN]	9	14	21	29	39	61	76	88	140
Characteristic resistance, strength class 8.8	V _{Rk,s}	[kN]	15	23	34	46	63	98	121	141	224
Partial safety factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]					1.25				
A4 and HCR steel											
Characteristic resistance, strength class 50	V _{Rk,s}	[kN]	-	-	-	-	-	-	-	-	140
Characteristic resistance, strength class 70	V _{Rk,s}	[kN]	13	20	30	40	55	86	106	124	-
Partial safety factor	$\gamma_{Ms}{}^{1)}$	[-]				1.	56				2.38
Steel failure with level arm											
Carbon steel											
Characteristic resistance, strength class 5.8	M ⁰ _{Rk,s}	[Nm]	19	37	65	105	166	325	448	561	1125
Characteristic resistance, strength class 8.8	M ⁰ _{Rk,s}	[Nm]	30	60	105	168	266	519	716	898	1799
Partial safety factor	$\gamma_{\text{Ms}}{}^{1)}$	[-]					1.25				
A4 and HCR steel											
Characteristic resistance, strength class 50	M ⁰ _{Rk,s}	[Nm]	-	-	-		-	-	-	-	1125
Characteristic resistance, strength class 70	M ⁰ _{Rk,s}	[Nm]	26	52	92	146	233	454	627	786	-
Partial safety factor	$\gamma_{Ms}{}^{1)}$	[-]				1.	56				2.38
		Conc	crete fail	ure							
Pry-out failure											
Factor in Equation (5.7) of TR 029	k	[-]					2				
Partial safety factor	$\gamma_{\text{Mcp}}{}^{1)}$	[-]					1.5 ²⁾				
Edge failure											
Partial safety factor	$\gamma_{Mc}^{(1)}$	[-]					1.5 ²⁾				
1) In absence of other national regulations 2) The value contains an installation safety factor of $\gamma_{\rm 2}$ =	1.0	1									
The DeWALT Design Assist is a powerful and	hor design softwa	are which hel lable. To dow	ps you to d nload this s	esign simp software fo	le and com r free, go to	plex ancho www.DeW	rages. ALTdesigna	ssist.com			

PRECALCULATED TENSION AND SHEAR CAPACITIES According to EOTA TR 029.

- The following tables are meant to give the designer aid in the preliminary design process. No responsibility is taken
- for the correctness of these data. • The given values are valid for normal concrete C20/25 and static/quasi-static loads with the exact dimensional
- information given. For any other conditions, the use of DDA is recommended.
- The values in the table below are strength design level loads. This assumes a safety factor is included both on the loading and the resistance.
- For further details and background information please see the introduction of this manual.

innuence of steel grades										
Size	Property	5.8	8.8	A4 / HCR						
Mo	N _{Rd} [kN]	12.0	19.3	13.9						
Wio	V _{Rd} [kN]	7.2	12.0	8.3						
M10	N _{Rd} [kN]	19.3	30.7	21.9						
IVITU	V _{Rd} [kN]	12.0	18.4	12.8						
M10	N _{Rd} [kN]	28.0	44.7	31.6						
IVI I Z	V _{Rd} [kN]	16.8	27.2	19.2						
MIC	N _{Rd} [kN]	52.0	83.3	58.8						
IVITO	V _{Rd} [kN]	31.2	50.4	35.3						
MOO	N _{Rd} [kN]	81.3	130.7	91.4						
IVI2U	V _{Rd} [kN]	48.8	78.4	55.1						
MOA	N _{Rd} [kN]	117.3	188.0	132.1						
IVI∠4	V _{Rd} [kN]	70.4	112.8	79.5						
M20	N _{Rd} [kN]	186.7	299.3	98.3						
IVIOU	V _{Rd} [kN]	112.0	179.2	58.8						

Instructions:

 The steel grade potentially influences the load capacity of the anchor. Table depicts ultimate steel strengths of threaded rods for given steel grades.

FASTENERS ENGINEERED BY POWERS

- The steel strength equals the load capacity of the anchor provided other failure modes, i.e. concrete failure or pullout failure, do not yield lower strengths and therefore do not control the anchor capacity.
- To determine the critical failure mode, the steel strength identified in the table has to be compared with the concrete and pullout strengths in the following tables.

	C20/25	Anchorin	g locate	d far fro	m any eo	lge	Anchori	ng locate	ed close	Close to an edge 40 40 40 240 40 240 15.8 36.3 9.0 6.4 10.3 7.5 5.0 7.5 15.9 15.8 31.3 8.6 6.4 10.3 7.5 5.0 7.5	ge
M8	8.8 steel dry/wet concrete							9	e siri		en la compañía de la comp
Embedment depth	h _{ef} [mm]	80									
Member thickness	h [mm]		110								
Edge distance	c [mm]	-	-	-	-	-	40	40	40	40	40
Anchor spacing	s [mm]	0	40	240	40	240	0	40	240	40	240
40/24°C	N _{Rd} [kN]	16.1	21.3	32.2	28.8	64.3	9.2	12.1	18.4	15.8	36.7
	$F_{Rd}^{45^{\circ}}$ [kN]	11.7	19.1	23.3	30.6	46.7	4.5	6.0	9.0	6.4	10.5
	V _{Rd} [kN]	12.0	24.0	24.0	48.0	48.0	3.7	5.0	7.5	5.0	7.5
80/50°C	N _{Rd} [kN]	13.4	18.4	26.8	26.0	53.6	8.0	10.9	15.9	15.8	31.9
	$F_{Rd}^{45^{\circ}}$ [kN]	10.7	17.7	21.5	28.6	43.0	4.3	5.8	8.6	6.4	10.3
	V _{Rd} [kN]	12.0	24.0	24.0	48.0	48.0	3.7	5.0	7.5	5.0	7.5
- Steel strengths controls	- Steel strengths controls - Concrete strength controls - Anchor pullout strength controls										

The DEWALT Design Assist is a powerful anchor design software which helps you to design simple and complex anchorages.

	C20/25	Anchorin	Anchoring located far from any edge Anchoring located close to an edge							ge	
MIO	8.8 steel dry/wet concrete				ece Ece						an little
Embedment depth	h _{ef} [mm]	90									
Member thickness	h [mm]		120								
Edge distance	c [mm]	-	-	-	-	-	45	45	45	45	45
Anchor spacing	s [mm]	0	45	270	45	270	0	45	270	45	270
40/24°C	N _{Rd} [kN]	22.6	28.5	45.2	36.8	90.5	12.4	15.6	24.7	21.6	49.5
	F _{Rd} ^{45°} [kN]	17.2	27.3	34.4	41.6	68.9	5.8	7.5	11.5	8.2	13.2
	V _{Rd} [kN]	18.4	36.8	36.8	73.5	73.6	4.7	6.2	9.3	6.2	9.3
80/50°C	N _{Rd} [kN]	18.8	24.9	37.7	33.9	75.4	10.7	14.2	21.4	20.6	42.8
	$F_{Rd}^{45^{\circ}}$ [kN]	15.8	25.2	31.6	38.4	63.2	5.5	7.3	11.0	8.1	13.0
	V _{Rd} [kN]	18.4	36.8	36.8	67.8	73.6	4.7	6.2	9.3	6.2	9.3

- Steel strengths controls - Concrete strength controls - Anchor pullout strength controls

	C20/25	Anchorin	g locate	d far fro	m any e	dge	Anchori	ng locate	ed close	to an ed	ge
M12	8.8 steel dry/wet concrete						1	3	° / 11-3	Ċ	an / 19
Embedment depth	h _{ef} [mm]		110								
Member thickness	h [mm]		140								
Edge distance	c [mm]	-	-	-	-	-	55	55	55	55	55
Anchor spacing	s [mm]	0	55	330	55	330	0	55	330	55	330
40/24°C	N _{Rd} [kN]	33.2	41.1	66.4	51.7	132.7	18.3	22.6	36.6	30.2	73.1
	F _{Rd} ^{45°} [kN]	25.4	39.7	50.7	58.5	101.5	8.2	10.7	16.4	11.5	18.6
	V _{Rd} [kN]	27.2	54.4	54.4	103.5	108.8	6.6	8.7	13.1	8.7	13.1
80/50°C	N _{Rd} [kN]	27.6	36.1	55.3	48.4	110.6	15.8	20.7	31.6	29.7	63.3
	F _{Rd} ^{45°} [kN]	23.3	36.9	46.5	54.8	93.1	7.9	10.4	15.7	11.5	18.4
	V _{Rd} [kN]	27.2	54.4	54.4	96.8	108.8	6.6	8.7	13.1	8.7	13.1

- Steel strengths controls

	C20/25	Anchorin	ig locate	d far fro	m any e	dge	Anchori	ng locat	ed close	A close to an edge Image: Constraint of the second state of the sec			
M16	8.8 steel dry/wet concrete		a de la cale	A CARACTER STOR					\$	®®	an 19		
Embedment depth	h _{ef} [mm]	125											
Member thickness	h [mm]		160										
Edge distance	c [mm]	-	-	-	-	-	65	65	65	65	65		
Anchor spacing	s [mm]	0	65	375	65	375	0	65	375	65	375		
40/24°C	N _{Rd} [kN]	47.1	55.2	94.1	64.8	188.2	25.5	29.9	50.9	37.6	108.8		
	F _{Rd} ^{45°} [kN]	41.3	60.5	82.6	73.3	165.2	11.2	14.4	22.3	15.3	25.1		
	V _{Rd} [kN]	50.4	100.8	100.8	129.6	201.6	8.9	11.8	17.7	11.8	17.7		
80/50°C	N _{Rd} [kN]	41.9	51.1	83.8	63.1	167.6	22.8	27.8	45.6	36.8	91.2		
	F _{Rd} ^{45°} [kN]	38.8	57.5	77.6	71.4	155.3	10.8	14.1	21.7	15.2	25.1		
	V _{Rd} [kN]	50.4	100.8	100.8	126.2	201.6	8.9	11.8	17.7	11.8	17.7		
- Steel strengths controls	- Steel strengths controls - Concrete strength controls - Anchor pullout strength controls												

The DeWALT Design Assist is a powerful anchor design software which helps you to design simple and complex anchorages. The design data of all DeWALT anchor products is readily available. To download this software for free, go to www.DeWALTdesignassist.com

ADHESIVE ANCHORS

FASTENERS	ENGINEERED	BY	POWERS [®]

	C20/25	Anchorin	ig locate	d far fro	m any e	dge	Anchori	ng locat	g located close to an edge			
M20	8.8 steel dry/wet concrete	Contraction of the second seco	ECE		CCE	S / / ·································	A CONTRACTOR OF		a ši is	^{3⁶}	S [®] /	
Embedment depth	h _{ef} [mm]	170										
Member thickness	h [mm]					2	20					
Edge distance	c [mm]	-	-	-	-	-	85	85	85	85	85	
Anchor spacing	s [mm]	0	85	510	85	510	0	85	510	85	510	
40/24°C	N _{Rd} [kN]	74.6	87.1	149.2	101.6	298.5	39.8	46.4	79.6	58.0	170.4	
	F _{Rd} ^{45°} [kN]	64.9	95.0	129.8	114.9	259.5	17.6	22.7	35.3	24.1	39.8	
	V _{Rd} [kN]	78.4	156.8	156.8	203.1	313.6	14.1	18.8	28.1	18.8	28.1	
80/50°C	N _{Rd} [kN]	67.6	82.9	135.3	101.6	270.6	37.9	46.4	75.8	58.0	151.6	
	F _{Rd} ^{45°} [kN]	61.6	92.0	123.3	114.9	246.5	17.4	22.7	34.8	24.1	39.8	
	V _{Rd} [kN]	78.4	156.8	156.8	203.1	313.6	14.1	18.8	28.1	18.8	28.1	
Stool strongths controls	Staal strangthe approximation ap											

Anchoring located far from any edge Anchoring located close to an edge C20/25 **M24** 8.8 steel and the second s and the second dry/wet concrete 8 **SARAGE** <u>°°°//</u> 8/ a a finit Embedment depth 210 h_{ef} [mm] 260 Member thickness h [mm] --105 105 105 105 105 Edge distance c [mm] --_ Anchor spacing s [mm] 0 105 630 105 630 0 105 630 105 630 40/24°C 102.5 204.9 54.6 N_{Rd} [kN] 119.5 139.5 409.8 63.7 109.3 79.7 255.5 $F_{Rd}^{45^{\circ}}$ [kN] 91.1 132.6 182.2 157.8 364.5 24.9 32.0 49.9 34.0 56.8 112.8 225.6 225.6 278.9 20.1 26.8 40.2 451.2 26.8 40.2 V_{Rd} [kN] 80/50°C 119.5 139.5 63.7 109.3 N_{Rd} [kN] 100.3 200.6 401.1 54.6 79.7 227.4 $F_{Rd}^{45^{\circ}}$ [kN] 90.1 132.6 180.2 157.8 360.4 24.9 32.0 49.9 34.0 56.8 225.6 451.2 20.1 40.2 V_{Rd} [kN] 112.8 225.6 278.9 26.8 26.8 40.2

- Steel strengths controls

	C20/25	Anchorin	ig locate	d far fro	m any e	lge	Anchori	ng locate	ed close	See to an edge 140 140 140 840 51.6 91. 43.2 64. 51.6 91. 43.2 64. 51.6 91. 43.2 64. 51.6 91. 43.2 64.	
M30	8.8 steel dry/wet concrete		And the second		a ^a hehefe			8	a ar		an Aria
Embedment depth	h _{ef} [mm]					28	30				
Member thickness	h [mm]					34	40				
Edge distance	c [mm]	140 140 140 140 140									
Anchor spacing	s [mm]	0	140	840	140	840	0	140	840	140	840
40/24°C	N _{Rd} [kN]	131.4	153.4	262.9	178.9	525.8	70.1	81.8	140.2	102.2	338.1
	$F_{Rd}^{45^{\circ}}$ [kN]	128.7	182.3	257.4	214.3	514.7	37.6	48.0	75.3	51.6	91.7
	V _{Rd} [kN]	179.2	358.4	358.4	429.4	716.8	32.4	43.2	64.9	43.2	64.9
80/50°C	N _{Rd} [kN]	131.4	153.4	262.9	178.9	525.8	70.1	81.8	140.2	102.2	311.5
	$F_{Rd}^{45^{\circ}}$ [kN]	128.7	182.3	257.4	214.3	514.7	37.6	48.0	75.3	51.6	91.1
	V _{Rd} [kN]	179.2	358.4	358.4	429.4	716.8	32.4	43.2	64.9	43.2	64.9
Steel strengths controls	e strength controls 🧧 - /	Anchor pullout stre	ength contr	ols							

The DEWALT Design Assist is a powerful anchor design software which helps you to design simple and complex anchorages.

The design data of all DEWALT anchor products is readily available. To download this software for free, go to www.DEWALTdesignassist.com

MATERIAL INFORMATION

MATERIAL SPECIFICATIONS - CHISEL POINTED THREADED ROD

Part no.	Designation	Material					
		Carbon steel 5.8					
1	Anchor rod	Steel zinc plated \geq 5 μm or hot-dip galvanized \geq 40 μm ; Strength class 5.8, R_m = 500 MPa; $R_{p\ 0.2}$ = 400 MPa					
2	Hexagon nut	Steel zinc plated \geq 5 μm or hot-dip galvanized \geq 40 $\mu m;$ Strength class 5					
3	Washer	Steel zinc plated \geq 5 μm or hot-dip galvanized \geq 40 μm					
		Carbon steel 8.8					
1	Anchor rod	Steel zinc plated \geq 5 μm or hot-dip galvanized \geq 40 μm ; Strength class 8.8, R_m = 800 MPa; R_{p \ 0.2} = 640 MPa					
2	Hexagon nut	Steel zinc plated \geq 5 μm or hot-dip galvanized \geq 40 $\mu m;$ Strength class 8					
3 Washer Steel zinc plated \ge 5 µm or hot-dip galvanized \ge 40 µm							
		Stainless steel A4					
1	Anchor rod	Stainless steel 1.4401 / 1.4571; Strength class 50, R_m = 500 MPa; $R_{p\ 0.2}$ = 210 MPa (for $>$ M24) Strength class 70, R_m = 700 MPa; $R_{p\ 0.2}$ = 450 MPa (for \leq M24)					
2	Hexagon nut	Stainless steel 1.4401 / 1.4571; Strength class 50 for class 50 rod; Strength class 70 for class 70 rod					
3	Washer	Stainless steel 1.4401 / 1.4571					
		Stainless steel HCR					
1	Anchor rod	Stainless steel 1.4529 / 1.4565; Strength class 50, R_m = 500 MPa; $R_{p\ 0.2}$ = 210 MPa (for $>$ M24) Strength class 70, R_m = 700 MPa; $R_{p\ 0.2}$ = 450 MPa (for \leq M24)					
2	Hexagon nut	Stainless steel 1.4529 / 1.4565; Strength class 50 for class 50 rod; Strength class 70 for class 70 rod					
3	Washer	Stainless steel 1.4529 / 1.4565					

ORDERING INFORMATION

SC-Pro Vinylester Spinning Capsules

Art. no.	Туре	Drill hole dia. [mm]	Length [mm]	Box qty.	Carton qty.
DFC1510000	Spinning capsule M8	10	80	10	500
DFC1510050	Spinning capsule M10	12	90	10	500
DFC1510100	Spinning capsule M12	14	110	10	500
DFC1510150	Spinning capsule M16	18	125	10	200
DFC1510200	Spinning capsule M20	22	170	10	100
DFC1510250	Spinning capsule M24	26	210	10	100

SC-PRO

Accessories

Art. no.	Туре	Drill hole dia. [mm]	Length [mm]	Box qty.	Carton qty.	
DFC1650050	DEWALT blow pump	-	-	1	-	
DFC1670000	SDS connection for steel brushes	-	-	1	20	
DFC1670050	300mm extension for steel brushes	-	300	1	20	
DFC1670100	Steel brush for SDS - 12mm diameter	M8	170	1	10	
DFC1670150	Steel brush for SDS - 14mm diameter	M10	170	1	10	
DFC1670200	Steel brush for SDS - 16mm diameter	M12	200	1	10	
DFC1670250	Steel brush for SDS - 18mm diameter	-	200	1	10	
DFC1670300	Steel brush for SDS - 20mm diameter	M16	300	1	10	
DFC1670350	Steel brush for SDS - 22mm diameter	-	300	1	10	
DFC1670400	Steel brush for SDS - 26mm diameter	M20	300	1	10	
DFC1670450	Steel brush for SDS - 30mm diameter	M24	300	1	10	
DFC1670500	Steel brush for SDS - 34mm diameter	M27	300	1	10	
DFC1670550	Steel brush for SDS - 37mm diameter	M30	300	1	10	
DFC1670600	Steel brush for SDS - 40mm diameter	-	300	1	10	

BLOW PUMP

SDS CONNECTION

STEEL BRUSH

<u>D_FS</u>				(ww	CALCULATIONS w.deep-foundations.co.u
Job No:	DFS221011	Design Engineer:	AR	Date:	25 March 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON				
Calc Title:	NW8 /QH Detailed Design – Temporary Propping Pile Retaining Walls & Segmental Unde	Scheme to Laterall rpinning Wall <u>Rev.</u>	y Restrain <u>03</u>	Page:	38 of 38

Reference Exploratory Holes & Clay Strength Plot

Site	Barrie House							Borehole No:		
Site Barrie House Print Practice Site <	В	9HT								
Client:	Barrie House time 29 St Edmund's Terrace, London NW8 7QH trace Robert Morley, Kaleminster Ltd StructureMode Ltd Comments StructureMode Ltd D 0.00 Motor GRUND: sephale [100mm] over grey ashy sand with sephal; cinkers and fitting and ashy sand with sephal; cinkers dia: 150mm aed to: 1.50m D 0.00 Motor GRUND: sephale Linkers Juid 1.00 Motor Clay with grey patches Juid 2.30 6 D Joint Clay with grey patches Juid 2.300 Juid 2 Juid 2.300 Juid 2 Juid 2 Juid 2.300 <th< th=""><th>Sheet</th><th>1</th><th>of 1</th></th<>	Sheet	1	of 1						
Engineer:	StructureMod	le Lto	d					Report No:) 24	\$1/OT
	Comments	Sa	mples	Field		Strat	a	Strata Description	Τ	Legend
BH constru	Icted 17 Sep 2012	Туре	Depth[m]	Test	Depth[n	n]	Level[mOD]	MADE GROUND: asphalt [100mm] over grey/black mixture of	╞	×××
					0.00	0	+40.00	ashy sand with asphalt, clinker and flint gravel; below about	ľ	
BH dia: 15	0mm		0.60		0.50		+45.50	Cost becoming grey/blown clay with some ash and clinker	4	<u> </u>
Cased to:	1.50m	D	0.60			-	-	Soft brown CLAY with grey patches		
		U	1.10			1	1		1	
Groundwar	ter hot observed					-				<u>,</u>
		D	1.60					below about 1.6m becoming firm brown CLAY with occasiona	L	<u> </u>
						2	ł	grey gleying	2	
	e Barrie House Declate No: BH: 2385 Edmund's Terrace, London NWS 7QH Sine 1 of Read the Single Sing									
		D	2.70			_	-			<u>,</u>
							1			
		U	3.00			3	-		3	<u> </u>
		D	3.50							~
										<u> </u>
						4			4	<u> </u>
		S/D	4.30	12		-	-			~~
		D	4.60							<u> </u>
		U	5.00			5	{		5	
		D	5.50			<u> </u>	-			<u>,</u>
]			
		S/D	6.30	16		6		becoming stiff below about 6.0m	6	<u> </u>
		D	6.60			-	-			~
		U	7.00			7			7	<u> </u>
		D	7.50		7.50	-	+38.50	END OF BOREHOLE	-	
							-			
						8			8	
							-			
							4			
						9				
							-			
Constructed us	ing cable percussive technique	es				10			1(0
Key: U = Undi	sturbed B = Bulk D = Small di	isturbed \	V = Water S	5 = SPT 'N	V [split s	poon	sampler] C	= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm ²]		
Remarks :-	Backfilled with arising	gs and s	urface re	einstate	d on c	omp	letion	Bor	reho	le No:
	Ground level interpol	ated fro	ım topogı	raphica	l surve	y			B	BH1

Site	Barrie House	e						Borehole No:	w	/S1
Location	29 St Edmun	nd's Te	errace	e, Lo	ndor	ו N	W8 7	бн		
Client:	Robert Morle	ey, Ka	lemin	ster	Ltd			Sheet	1 (of 2
Engineer:	StructureMo	de Lto	1					Report No: 9)24	1/01
	Comments	Sa	mples	Field	9	Strat	ta	Strata Description		Legend
		Туре	Depth[m]	Test	Depth[m	ו] 	Level[mOD]	MADE GROUND: [trial pit] - brown topsoil and clay with	_	****
BH constr	ructed 17 Sep 2012				0.00	0	+45.60	occasional building rubble	U	
BH dia: 60 with dept	0mm reducing h									
Groundwa	ater at 0.95m on				0.90	1	+44.70	Concrete foundation [no reinforcement observed]	1	
Groundwa	ater at 1.4m on						-			\bigotimes
Some dist	turbance in upper				1.75		+43.85	Stiff brown CLAY with occasional grey gleying, selenite crystals and rare orange sand partings		·
200mm o	f clay due to coring	ΗV	1.90	47						
operation	s and HV testing	HV/D	2.10	81		2		incipient claystone at 2.05m	2]
		ΗV	2.30	88						
			2.40	00		_	-			
		D	2.50	00						
		HV	2.70	78						~_
		D HV	2.80 2.90	99		3			3	
		D	3.10							
		HV	3.20	84						~_
		HV/D	3.40	82			-			
		HV	3.60	80						
		D HV	3.70 3.80	82						
									L	[
		HV/D	4.00	90		4			4	<u> </u>
		ΗV	4.20	98						
		D	4.30	0.2						
		HV	4.40	92			-			,
		D	4.60							
					5.00	5	+40.60	END OF BOREHOLE	5	
Constructed u	using hand held window samp	le equipment								
Key: U = Und Remarks :	disturbed B = Bulk D = Small	disturbed W	/ = Water S	5 = SPT 'l	N' [split sp	boon	sampler] C	= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm ²]	abal	e No:
	Standpipe installed	to 5.0m c	lepth			e.	Aposeu u	to top or a rooting and cored to base or rooting at 75mm did		
	Ground level interpo	plated fro	m topogi	raphica	l surve	у			W	S1
[* = extrap	oolated SPT 'N' value]									

SCL Chart Generator Ver_1_5_11

0.00	Barrie House	1						Ε	Borehole No:		
Location	29 St Edmun	d's Te	errace	e, Loi	ndon	n N	W8 7	QH		vv	152
Client:	Robert Morle	y, Ka	lemin	ster	Ltd			5	Sheet	1 (of 2
Engineer:	StructureMod	de Ltd	1					-	Report No:	924	1/01
	Comments	Sa	mples	Field	9	Strat	а	Churche Description		Т	
	Comments	Туре	Depth[m]	Test	Depth[m	n] [Level[mOD]	Strata Description			Legend
BH constru BH dia: 60 with depth	ucted 17 Sep 2012				0.00	0	+44.60	MADE GROUND: [trial pit] - brown topsoil and cl occasional building rubble	ay with	0	
with depth					1.13	1	+43.47	MADE GROUND: soft to firm brown clay with occ gravel and dark brown sand/silt lenses	asional flint	1	
		HV/D HV/D HV D	2.10 2.30 2.50 2.60	88 74 63	2.10	2	+42.50	Stiff, locally firm brown CLAY with orange patche scattered selenite crystals below 2.25m becoming brown with occasional and selenite crystals	es and grey gleying	2	
		HV HV/D	2.70 2.90	82 78		3				3	
Groundwat	tor at 3 5m on	HV/D HV D	3.10 3.30 3.40	74 76							
15/10/12		HV/D	3.70 3.90	86 84							111
		HV/D	4.10	68		4				4	
		ΗV	4.30	80							
		HV/D HV	4.50 4.70	106 92							
		ΗV	4.90	120	5 00	5	+39 60			5	
Constructed us	sing hand held window sample	equipment	:	ļ	5.00		, 55.00				
Key: U = Undi	sturbed B = Bulk D = Small d	listurbed W	/ = Water S	5 = SPT 'N	۷' (split sp	oon s	sampler] C	= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrome	eter [kg/cm ²]		
Remarks :-	Borehole constructed	d off edg	e of pad	footing					В	orehol	e No:
	Standpipe installed to	o 5.0m d	lepth	2							162

Site	Barrie House							Borehole No:		162
Location	29 St Edmun	d's Te	errace	e, Lo	ndor	ו N	IW8 7	Qн	~	133
Client:	Robert Morle	ey, Ka	lemin	ster	Ltd			Sheet	1	of 1
Engineer:	StructureMo	de Lto	I					Report No:	924	1/OT
	Comments	Sa	mples	Field		Strat	ta	Strata Description	Τ	Legend
		Туре	Depth[m]	Test	Depth[m	n]	Level[mOD]	MADE GROUND: [trial nit] - brown tonsoil and clay with	_	8888
BH constr	ucted 17 Sep 2012				0.00	0	+45.30	occasional building rubble	0	
BH dia: 60 with deptl	0mm reducing h						-			
Groundwa	ater not observed				0.90	1	+44.40	Concrete foundation [single reinforcement bar, c.10mm dia, observed at 0.5m in core]	1	
					1.62		+43.68	Stiff brown CLAY with occasional grey gleying, selenite crystal	s	\bigotimes
Como diat								and rare orange sand partings		
200mm of	f clay due to coring									
operations	s and HV testing					2	1	incipient claystone at 2.05m	2	<u> </u>
		HV	2.10	87						—–
		HV	2.20	97						
			2.00							~
		ΗV	2.50	114						·
		ну	2 70	109						
		D	2.80	105						
		ΗV	2.90	119					L	~
		HV/D	3.10	85		3			3]
		ΗV	3.30	87						
		нv	3.50	90		-	-			ļ
		D	3.60							
		ΗV	3.70	85						<u> </u>
		нν	3.90	94						~
						4			4	<u> </u>
		ΗV	4.10	64						
		D	4.20	00						
		ΠV	4.30	80						~
		ΗV	4.50	96						
		нν	4.70	98						
		D	4.80							
		HV	4.90	97	5.00	-	+40 20		╉	
Constructed u	using hand held window sample	e equipment		I	5.00	12	T40.30			
Key: U = Und	listurbed B = Bulk D = Small d	disturbed W	/ = Water S	5 = SPT 'I	N' [split sp	poon	sampler] C	= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm ²]		
Remarks :-	⁻ Borehole constructed	d through	n an ope	n trial p	oit whic	ch e	xposed th	he top of a footing and cored to base of footing at 75mm dia \Box Bo	reho	e No:
	Standpipe installed t Ground level interpo	to 5.0m c	lepth m topogy	raphica	surve	v			W	/S 3
[* = extrap	polated SPT 'N' value]		opogi	2,9.1100		,				

BARRIE HOUSE Basement Impact Assessment – Revision 1

BARRIE HOUSE Basement Impact Assessment – Revision 1

TØ28 SE 230 **Contract Name** Borehole No. AVENUE ROAD 1 Sheet 1 of 3 2740, 8347 Method of boring Shell and Auger Ground level 38.02 m OD Diameter 200 mm nominal Start 5.9.78 Finish 6.9.78 Reduced Description of Strata British Geological Survey Daily la-citu Depth levei (m Q.D.) Sam progress level tests ples (m) (m) Made 1.40 Soft grey-brown silty clay with chalk and brick 5/9 fragments ground U 1.40 36.62 11111111111 2-U U 4 , ٠. Britis ۰. U Firm to stiff brown silty clay with 5/9 selenite crystals becoming fissured with depth with occasional yellow- 6 brown silt partings and blue grey mottlings (London Clay) U F 8 U Contd/... Notes **Terresearch Limited** Report No. S.28/591 Appendix 1 Sheet 1

いたちょう

ritish Geolo	Con gical Survey	tra	ct Na	me	A 17 12 10 11	e olanical Surve	y		Borahas		~30	
					AVENUE	L KUAD			Sheet	ie no. :		
	Metho Diamo	od of eter	boring					Sneet 2 of 3 Ground level Start Finish				
	Daily progress	Water levels	in-situ Ical S çõeste	Sam ples	Depth (m)	Reduced leve! (m Q.D.)	Thicknes (m)	a Survey	Description of	Strata ^{British Ge}	ological Su	
			-	_	10.80	27.22	9.40	Firm to s selenite with dept brown sil	stiff brown crystals be h with occa t partings	silty cla coming fi sional ye and blue g	y with ssured llow- grey/	
tish Geolo	igical Survey			U	E British (eological Surv	ý	moterings	British Geo	logical Survey		
		1										
											1	
	ŀ											
	Bitti	sh Geolba	ical Survey	U			ritish Geologia	al Survey		British Ge		
								•				
						-						
											2	
							: I					
tish Geolo	gical Survey				BritishG	eological Suve	У		British Geo	logical Survey .		
				U			C	/ery stiff clay (Londo	fissured d on Clay)	ark grey s	ilty	
								•			10	
	Briti	sh Geolog	ical Survey	Ē		в	ritish Geologic	al Survey		British Ge	ological Su	
				υĘ								
				Ē								
				Ę							18	
tish Geolo	igical Surrey			Ē	British G	eological Surve	y .		British Geo	logical Survey		
				υF	1							
				Ē								
				E						Contd/.	• 20	
N	ot es Briti	sh Geolog	ical Survey			В	• iritish Geologic	al Survey		British Ge	ological Su	
1				· .								

ritish Geo		trac	t Naı	me	AVEN	UE ROAD	/		Borehole	NO. 1		
	Metho Diame	od of eter	boring						Ground level Start Finish			
	Daily progress	Water levels	in-situ cal Survey Sests	Sam- ples	Depth (m)	Reduced level (m Q.D.)	Thickmens (m)	Survey	Description of S	British Geological Sur		
Iritish God	Indical Suprov			U	British G	colorical Surve	14.20	Very sti	ff fissured	dark grey silt		
	iogrea ourvey				Dinish e	cological ourie			addir Grayyeon	. 2		
				U								
	. Brið:	sh Geologi	cal Survey			81	ritish Geologica	l Survey		British Geological Sur		
:			-							24		
Iritish Geo	6/9 Togical Survey				25.00	°13.02			British Geolo	gical Survey		
								Bottor	n ofBorehole			
				- litter						26		
	Briti	sh Ged ogi	cal Survey			ĮβI	ritish Geologica	l Survey		British Geological Sur		
lritish Geo	logical Survey				British G	Geological Suivey			- British Geolo	, , , , , , , , , , , , , , , , , , ,		
									-	***		
	NOTES Britis	sh Geologi	cal Survey				itish Geologica	l Survey		British Geological Sur		
				*								

British Geol	Con	trac	t Naı	ne	AVENUE	ROAD	1		Borehole No.	
							27	39. 8342	Sheet 1 of	· 2
	Metho	d of	boring	S	shell an	d Auger		Ground le	vel 38.18 m OD	
	Diame	eter		2	200 mm m	ominal		Start	7.9.78	
	L							Finish	8.9.78	
	Daily	Water	In-situ	Sam	Depth	Reduced	Thickness]		
	progress	levels	tests	ples	(m)	(m Q.D.)	(m)	Survey .	Description of Strata	sh Geological Su
					- 0.06	38.12	-0.06	Tarmac		Mada
					Ē	1				maue
				-	Ē		2.44	Soft dark	brown and black	
				B	È.			silty cla	y with chalk	
								Tumps and	DTICKS	
ritish Geo	logical Survey				British G	eological Surve			British Geological Survey	
				в	-					
	-74-			Ĩ	E .					
•	//9	ł			2.50	35 68				~~~~~
[7/9									ground
				U	-					
	: Britis	sh Geologi	cal Survey			Br	itish Geologica	Survey	Britis	sh Geological Su
		ĺ								
							.			
				Ĕ						
ntish Geol	logical Survey			I. E	British 6	eological Survey			British Geological Survey	
1				Ē			1			
				E						
	1	ļ		Ē						
				υĒ	.			Stiff to a	very stiff brown	ilt r al
				F				with occas	sional yellow-brow	m silt
	Britis	h Geologi	cal Survey	F		Br	itish Geological	partings(I	London Clay)	sh Geological Su
1				E	.					
1				Ē		[
				υĒ						
				Ē		1				
				Ē	· I					
ritish Geol	logical Survey			F	British G	eological Survey			British Geological Survey	
				Ę	Cintai O	, stegrear our ey				
				υĒ			1			
				Ē	1.	. [
				Ę						
	.			Ę			1			
	l			F	<u> </u>	L.	<u> </u>		Co	ntd/
	NOT ES Britis	sh Ģeologi	SWI. the	e bac	kfilled	to 10.0	00 m on	8.9.78 an	d casing pulled ba	sh Geological Su ack 1.5(
			Not eno	ugh o	f water	to get	samp1_			
							P-C			
1				. ·						

ť

ritish Geo		trac	t Nan	ne	Bri ave	NUE ROA	D		Boreho	e ^{ra} No. 2	3	
	Metho Diamo	od of eter	boring		-			Ground le Start Finish	level			
	Daily progress	Water Icoals	in-situ cal Suggests	Samples	Depth (m)	Reduced level B (m Q.D.)	Thiskness (m)	Survey	Description of	Strata British Geo	logical St	
				U			8.70	Stiff to with occa partings	very stiff asional yel (London Cla	brown sil low-brown-	ty c silt	
					E 11.20	26.98						
ritish Geo	ogical Survey				British G	eological Surve	7		British Geo	logical Survey		
	_ 12 _			U						·		
·												
	Brite	sh Geologi	cal Survey			8	ritish Geologica	l Survey		British Geo	logical Si	
				U								
									1 .		ł	
ritish Geo	logical Survey			U	British 3	eological Surre	y	Stiff to grey silt carbonace	very stiff y clay with ous impurit	fissured of logical Survey some ies(Londor	lark 1 Cla	
						с.,						
											10	
				υĘ								
	Ditte	sh Geologi	carouivey	Ē	·.		nusii Geologika				nogical of	
				Ē								
				Ē						•		
			. [Ĩ							18	
itish Geo	logical Survey			Ē	British G	eological Survey	y		British Geo	logical Survey		
				Ē								
			lı	τĒ								
L				Ē						Contd	1 20	
· ·	Notes Britis	sh Geologi	cal Survey			В	ritish Geologica	l Survey		British Geo	logical St	
	T orres of		1	-								

h Geolog	Con	tra	ct Nar	ne	British	ENUE RO	AD		Boreho	ie No.	2
	Metho Diame	od of eter	boring					Ground Start Finish	Sheet 3 level	of	3
	Daily progress	Water Ievels	ical In-situ Survey Sests	Sam- ples	Depth (m)	Reduced level (m O.D.)	Thickness (m)	Survey	Description of	Strata British G	ieological Surv
											,
h Geoloo	ical Survey				British C	eological Surv				ological-Survey	
			1				Í				
				U			13.80	Stiff t grey si carbona	to very stif ilty clay wi aceous impur	f fissured th some ities(Lond	dark <u>2</u> ion Cla
								-			-
	Briti	sh Geolo	gical Survey				ritish Geologic	il Survey		Britiśh G	eological Surv
											24
				υĘ							
h G sele s	29	-		<u></u>	25.00	13.18	ву	· · · · · · · · · · · · · · · · · · ·	British Ge	ological Survey	
								Botto	m of Boreho	le	
				Ē							26
	Biiti	sh Geolo	gical Survey				British Geologica	al Survey		British G	ieological Survi
				Ē							
				Ē							
				E						• •	
n Geolog	ical Survey			Ę	British (eological Surv	ev		British Ge	ological Survey	
				Ĭ							
				Ē							
				Ē							
\vdash	L			Ē				· · · · · · · · · · · · · · · · · · ·			
N	otes ^{Briti}	sn Geolo	gical Survey				ərnısn Geologica	ai Survey			eological Surv
	•										