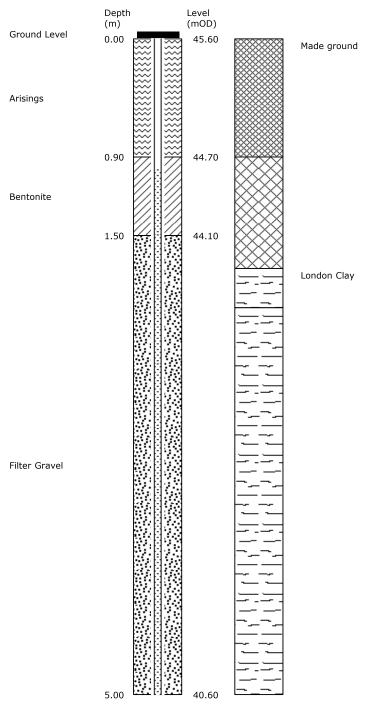
Site	Barrie House	;					Borehole N		
Location	29 St Edmun	d's Terr	ace, L	ondo	n N	W8 7	QН	W	S1
Client:	Robert Morle						Sheet	1 0	f 2
Engineer:	StructureMo	de Ltd					Report No	9241	L/OT
	Comments	Sample	es Fie	ld	Strat	a	Strata Description		egend
	Comments	Type Dep	th[m] Tes	t Depth[i	m]	Level[mOD]	·		xxxx
BH constr	ructed 17 Sep 2012			0.00	0	+45.60	MADE GROUND: [trial pit] - brown topsoil and clay with occasional building rubble	0	
BH dia: 6 with dept	0mm reducing h								
Groundwa	ater at 0.95m on			0.90	1	+44.70	Concrete foundation [no reinforcement observed]	1	
Groundwa	ater at 1.4m on							k k	
200mm o	turbance in upper If clay due to coring s and HV testing	HV/D 2. HV 2. D 2. HV 2. D 2. HV 2. D 2. HV 2. D 3. HV 3.	.90 4 .10 8 .30 8 .40 .50 8 .60 .70 7 .80 .90 9 .10 .20 8 .40 8	3 3 3 3 4 4	3	+43.85	Stiff brown CLAY with occasional grey gleying, selenite coand rare orange sand partings incipient claystone at 2.05m	rystals 2	X1;1,41;1,41;11,11;11,11;11,11;11
		D 3.	.60 80 .70 .80 8.	2	4			4	
		D 4. HV 4.	.20 98 .30 .40 93						1,41,11
Const.				5.00	5	+40.60	END OF BOREHOLE	5	-,- - - -
	using hand held window sample		Vater S = SE	T 'N' [snlit e	noon	sampler1 C	= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm	21	
							= SPI 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm ne top of a footing and cored to base of footing at 75mm dia		No:
	Standpipe installed t	:o 5.0m dept	:h			,	. J	W	
	Ground level interpo	lated from to	opograph	cal surve	ey .			""	

[* = extrapolated SPT 'N' value]

Site Barrie House
Location 29 St Edmund's Terrace, London NW8 7QH


Client: Robert Morley, Kaleminster Ltd
Engineer: StructureMode Ltd

Borehole No: WS1

Sheet 2 of 2

Report No: 9241/OT

Constructed using hand held window sample equipment

Remarks :- [i] Pipe diameter: 19mm

[ii] Tip at 5m depth [40.6m OD approx]

Borehole No:

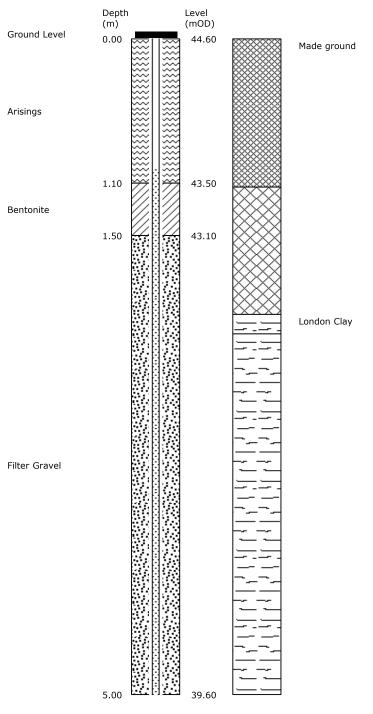
WS1

1								Borehole N	WS2
Location	29 St Edmun	d's Te	errace	e, Lo	ndon	N	W8 7	QН	W52
Client:	Robert Morle	y, Kal	emin	ster	Ltd			Sheet	1 of 2
Engineer:	StructureMod	de Ltd	l					Report No:	9241/0
			nples	Field	9	Strat	:a		
	Comments	Туре	Depth[m]	Test	Depth[m	1]	Level[mOD]	Strata Description	Legend
BH constru	cted 17 Sep 2012				0.00	0	+44.60	MADE GROUND: [trial pit] - brown topsoil and clay with occasional building rubble	0
BH dia: 60ı with depth	mm reducing								
					1.13	1	+43.47	MADE GROUND: soft to firm brown clay with occasional f gravel and dark brown sand/silt lenses	int 1
		HV/D HV/D	2.10	88 74	2.10	2	+42.50	Stiff, locally firm brown CLAY with orange patches and scattered selenite crystals below 2.25m becoming brown with occasional grey gley	2
		HV D HV	2.50 2.60 2.70	63 82				and selenite crystals	
		HV/D HV/D	2.90	78 74		3			3
Groundwat 15/10/12	er at 3.5m on	HV D HV	3.30 3.40 3.50	76 93					
		HV/D	3.70	86					
		HV	3.90	84		_	1		
		HV/D	4.10	68		4			4 -
		HV	4.30	80					
		HV/D	4.50	106					
		HV	4.70	92					
		HV	4.90	120	5.00	_	+39.60	END OF BOREHOLE	5
Constructed us	ing hand held window sample	equipment			5.00	5	+39.60	LIND OF BORLHOLL	Ιο
				S = SPT 'N	l' [split sp	oon :	sampler] C	= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm	2]
Remarks :-	Borehole constructed	off edge	of pad	footing					Borehole No:

[* = extrapolated SPT 'N' value]

Ground level interpolated from topographical survey

Site Barrie House
Location 29 St Edmund's Terrace, London NW8 7QH


Client: Robert Morley, Kaleminster Ltd
Engineer: StructureMode Ltd

Borehole No: WS2

Sheet 2 of 2

Report No: 9241/OT

Constructed using hand held window sample equipment

Remarks :- [i] Pipe diameter: 19mm

[ii] Tip at 5m depth [39.6m OD approx]

Borehole No:

WS2

Site	Barrie House	1						Borehole No:		
Location	29 St Edmun	d's Te	errace	e, Lo	ndor	ı N	IW8 7	он	V	VS3
Client:	Robert Morle							Sheet	1	of 1
Engineer:	StructureMod							Report No:	924	41/OT
		_	mples	Field		Strat	ta		Т	
	Comments	Туре	Depth[m]	Test	Depth[m	n]	Level[mOD]	Strata Description		Legend
BH constru	ucted 17 Sep 2012				0.00	0	+45.30	MADE GROUND: [trial pit] - brown topsoil and clay with occasional building rubble	0	
BH dia: 60 with depth	Omm reducing						-			
Groundwa	ter not observed				0.90	1	+44.40	Concrete foundation [single reinforcement bar, c.10mm dia, observed at 0.5m in core]	1	
Some dist	urbance in upper				1.62		+43.68	Stiff brown CLAY with occasional grey gleying, selenite crysta and rare orange sand partings	ls	
	clay due to coring and HV testing	HV	2.10	87		2		incipient claystone at 2.05m	2	
		D HV	2.20 2.30	97						[,]
		HV	2.50	114						
		HV D	2.70 2.80	109						
		HV	2.90	119						╌┤
		HV/D	3.10	85		3			3	<u></u>
		HV	3.30	87						
		HV	3.50	90						
		D HV	3.60 3.70	85						
		HV	3.90	94		4	_		4	┤╧┼
		HV	4.10	64		4				
		D	4.20							
		HV	4.30	86						
		HV	4.50	96						
		HV	4.70	98						
		D HV	4.80 4.90	97						
					5.00	5	+40.30	END OF BOREHOLE	5	
Constructed u	sing hand held window sample	e equipment								
								= SPT 'N' [solid cone] HV = Hand Vane [kPa] PP = Pocket Penetrometer [kg/cm²]		
Remarks :-	Borehole constructed Standpipe installed to			n trial p	oit whic	ch e	xposed th	ne top of a footing and cored to base of footing at 75mm dia	oreho	ole No:
	Ground level interpol		· ·	raphica	l surve	y			٧	VS3

[* = extrapolated SPT 'N' value]

Barrie House□ Site Report 9241/OT Location 29 St Edmund's Terrace, London NW8 7QH No: **Strength Profile [Hand Vane]** Undrained cohesion - Hand vane [kN/m²] 20 40 60 80 120 140 0.00 1.00 Testing from underside of pad foundations; depth range approximately 1.62m [WS3], 2.0m [WS2] and 1.77m [WS1] 2.00 Depth below ground level [m] 3.00 4.00 5.00 6.00 - - → - WS1 **─**₩S2

Site Barrie House□
Location 29 St Edmund's

29 St Edmund's Terrace, London NW8 7QH

Report No:

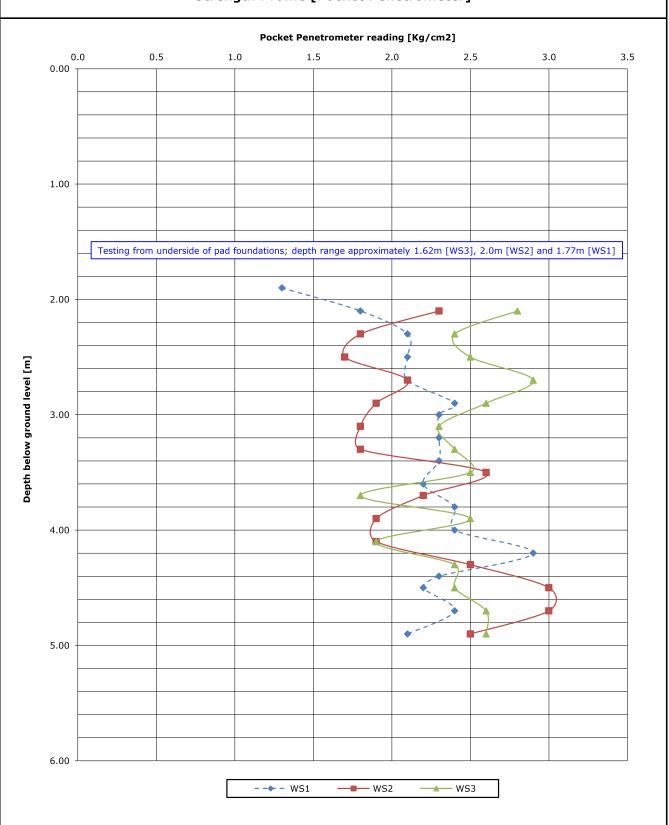
9241/OT

Pocket Penetrometer Strength Profile

WS1	WS1 WS2		W	S3			-			
Depth Value	Depth	Value	Depth	Value	Depth	Value	Depth	Value	Depth	Value
[m] [n]	[m]	[n]	[m]	[n]	[m]	[n]	[m]	[n]	[m]	[n]
1 ' 1 1	[m] 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9	[n] 2.30 1.80 1.70 2.10 1.90 1.80 2.60 2.20 1.90 1.90 2.50 3.00 2.50	[m] 2.1 2.3 2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9	[n] 2.80 2.40 2.50 2.90 2.60 2.30 2.40 2.50 1.80 2.50 1.90 2.40 2.60 2.60	[m]	[n]	[m]	[n]	[m]	[n]

Notes

- Standard Penertration Test: BS1377: Part 9 (1990) Clause 3.3


- * = Extrapolated Value

Site Barrie House□
Location 29 St Edmund's Terrace, London NW8 7QH

Report 9241/OT
No: 9241/OT

Strength Profile [Pocket Penetrometer]

Site Barrie House□
Location 29 St Edmund's Terrace, London NW8 7QH

Report No:

9241/OT

Index Property Test Results

Sheet 1 of 3

			Moisture	Liquid	Plastic	Plasticity	Percent	
Sample	Depth	Sample	Content	Limit	Limit	Index	Passing	
Location	(m)	Description	[%]	[%]	[%]	[%]	[%]	Remarks
WS1	2.10	Brown CLAY with occasional grey gleying	20	78	25	53	>95	
WS1	2.40	Brown CLAY with occasional grey gleying	28					
WS1	2.60	Brown CLAY with occasional grey gleying	30					
WS1	2.80	Brown CLAY with occasional grey gleying	30	78	30	48	>95	
WS1	3.10	Brown CLAY with occasional grey gleying	31					
WS1	3.40	Brown CLAY with occasional grey gleying	32					
WS1	3.70	Brown CLAY with occasional grey gleying	31	83	30	53	>95	
WS1	4.00	Brown CLAY with occasional grey gleying	33					
WS1	4.30	Brown CLAY with occasional grey gleying	34					
WS1	4.60	Brown CLAY with occasional grey gleying	34					
WS2	2.10	MADE GROUND: Brown clay with	28					
		occasional flint gravel and dark brown						
		sand/silt lenses						
WS2	2.30	Brown CLAY with orange patches and	30	83	27	56	>95	
		grey gleying						
WS2	2.60	Brown CLAY with orange patches and	28					
		grey gleying						

Notes

- Moisture content test: BS 1377:Part 2 [1990] Clause 3.2 [value in brackets = calculated matrix moisture content for comparison with LL and PL]
- Liquid and Plastic Limit: BS 1377:Part 2 [1990] Clauses 4.4, 5.2, 5.3, 5.4 is carried out on fine grained soil matrix
- Percent passing 425 micron sieve is by estimation, by hand* or by wet sieving**
- LOI = Loss on Ignition

Sample examined by OT (Engineer)

Results checked by OT (Engineer) Certificate date: 02/10/2012

Site Barrie House□
Location 29 St Edmund's Terrace, London NW8 7QH

Report No: 9241/OT

Index Property Test Results

Sheet 2 of 3

			Maister	1 dans dell	Die -#:-	Diagrania	Daws	
			Moisture	Liquid	Plastic	Plasticity	Percent	
Sample	Depth	Sample	Content	Limit	Limit	Index	Passing	
Location	(m)	Description	[%]	[%]	[%]	[%]	[%]	Remarks
WS2	2.90	Brown CLAY with orange patches and	31					
		grey gleying						
WS2	3.10	Brown CLAY with orange patches and	32	91	30	61	>95	
		grey gleying						
WS2	3.40	Brown CLAY with orange patches and	30					
		grey gleying						
WS2	3.70	Brown CLAY with orange patches and	32					
		grey gleying						
WS2	4.10	Brown CLAY with orange patches and	29					
		grey gleying						
WS2	4.50	Brown CLAY with orange patches and	28					
		grey gleying						
WS3	2.20	Brown CLAY with occasional grey gleying	29	70	28	42	>95	
WS3	2.80	Brown CLAY with occasional grey gleying	31	80	28	52	>95	
WS3	3.10	Brown CLAY with occasional grey gleying	32					
WS3	3.60	Brown CLAY with occasional grey gleying	29					
WS3	4.20	Brown CLAY with occasional grey gleying	33					
		_ , , , ,						
WS3	4.80	Brown CLAY with occasional grey gleying	32					
BH1	1.10	Brown CLAY with grey patches	26					
		3 , 1						

Notes

- Moisture content test: BS 1377:Part 2 [1990] Clause 3.2 [value in brackets = calculated matrix moisture content for comparison with LL and PL]
- Liquid and Plastic Limit: BS 1377:Part 2 [1990] Clauses 4.4, 5.2, 5.3, 5.4 is carried out on fine grained soil matrix
- Percent passing 425 micron sieve is by estimation, by hand* or by wet sieving**
- LOI = Loss on Ignition

Sample examined by OT (Engineer)

Results checked by OT (Engineer) Certificate date : 02/10/2012

Site Barrie House□
Location 29 St Edmund's Terrace, London NW8 7QH

Report No: 9241/OT

Index Property Test Results

Sheet 3 of 3

								Sheet 5 of 5
			Moisture	Liquid	Plastic	Plasticity	Percent	
Sample	Depth	Sample	Content	Limit	Limit	Index	Passing	
Location	(m)	Description	[%]	[%]	[%]	[%]	[%]	Remarks
BH1	1.60	Brown CLAY with grey patches	27					
BH1	2.70	Brown CLAY with grey patches	29					
		- , ,						
BH1	3.50	Brown CLAY with grey patches	28	71	29	42	>95	
		5, p						
BH1	4.60	Brown CLAY with grey patches	29					
	1100	province in their grey pateries						
BH1	5.50	Brown CLAY with grey patches	28	83	28	55	>95	
5111	3.30	brown cear with grey pateries	20	03	20		7 55	
BH1	6.60	Brown CLAY with grey patches	30					
PUI	0.00	Brown CLAT with grey patches	30					
But	7 50	Drawn CLAY with gray patches	20	82	20		>95	
BH1	7.50	Brown CLAY with grey patches	30	82	30	52	>95	

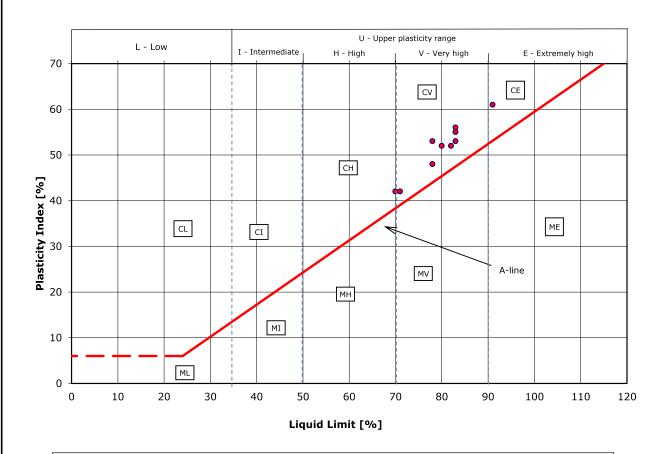
Notes

- Moisture content test: BS 1377:Part 2 [1990] Clause 3.2 [value in brackets = calculated matrix moisture content for comparison with LL and PL]
- Liquid and Plastic Limit: BS 1377:Part 2 [1990] Clauses 4.4, 5.2, 5.3, 5.4 is carried out on fine grained soil matrix
- Percent passing 425 micron sieve is by estimation, by hand* or by wet sieving**
- LOI = Loss on Ignition

Sample examined by OT (Engineer)

Results checked by OT (Engineer) Certificate date : 02/10/2012

Barrie House□ Site Report 9241/OT Location No: 29 St Edmund's Terrace, London NW8 7QH **Moisture Content Profile** Natural Moisture Content [%] 20 25 35 40 15 0.00 1.00 2.00 3.00 Depth below lower ground level [m] 4.00 5.00 6.00 7.00 8.00 - → - WS1 — WS2 — WS3 — BH1



29 St Edmund's Terrace, London NW8 7QH

Report No:

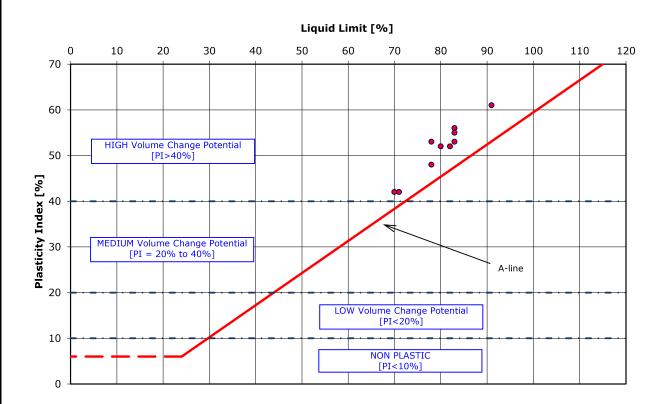
9241/OT

PLASTICITY CHART - BS5930 classification

M - Silt [M-soil] plots below the A-line C - Clay plots above the A-line

Notes:

Classification based upon BS5930:1999 'Code of practice for site investigations'



29 St Edmund's Terrace, London NW8 7QH

Report No:

9241/OT

PLASTICITY CHART - NHBC classification

Notes:

Classification based upon NHBC Standards, Part 4 'Foundations', Chapter 4.2 'Building near trees'

Site	Barrie House□	Report	0241 (07
Location	29 St Edmund's Terrace, London NW8 7QH	No:	9241/OT

Triaxial Compression Test Result

Sheet 1 of 1

									Sheet 1 of 1
			Cell	Comp	Bulk	Moisture		Angle of	
Sample	Depth	Test	Pressure	Strength	Density	Content	Cohesion	Friction	
Location	(m)	Туре	[kN/m2]	[kN/m2]	[Mg/m3]	[%]	[kN/m2]	[deg]	Remarks
Location	(111)	туре	[KN/IIIZ]	[KN/IIIZ]	[Mg/M3]	[/0]	[KIN/IIIZ]	[ueg]	Kemarks
BH1	1.10	U102	60	51	1.99	34	26	0	
5111	1.10	0102		31	1.55	31	20		
Notes									

Notes

- Key : 38, 102 = dia in mm, U=Undrained, M=Multistage, MC=Moisture Content, QD=Quick Drained Test

Consolidated Undrained Triaxial Compression Test

undisturbed

BS 1377: Part 8: 1990

undisturbed

a)	യ
-	-
a	a
Ω	Ω

Checked by:

Approved by:

Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at300.xls]Report

15/10/2012

Filename:

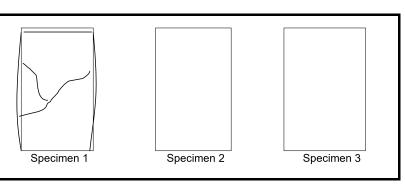
		Specimen 1	Specimen 2	Specimen 3					
Specimen Details		•	·	·					
Job Ref.			13381						
Job Location		Barrie House, 2	Barrie House, 29 St Edmund's Terrace, London, NW8 7QH						
Borehole		BH1	BH1	BH1					
Sample No.		U2	U2	U2					
Depth	m	3.00	3.00	3.00					
Date		01/10/2012	01/10/2012	01/10/2012					

Description of Specimen

Disturbed / Undisturbed

Brown with blue grey veins CLAY with occasional selenite crystals

undisturbed


Initial Specimen Conditions

initial opecimen con-	41110110		
Height	mm	202.00	
Diameter	mm	105.00	
Area	mm^2	8659.01	
Volume	cm ³	1749.12	
Mass	g	3339.90	
Dry Mass	g	2559.80	
Density	Mg/m ³	1.91	
Dry Density	Mg/m ³	1.46	
Moisture Content	%	30.48	
Degree of Saturation	%	96.54	
Specific Gravity		2.72	
(assumed	/measured)	assumed	

Final Specimen Conditions

Moisture Content	%	31.00
Density	Mg/m ³	2.02
Dry Density	Mg/m ³	1.54

Sketch of Failure of the Specimen

Date: Date:

Approved by: Checked by:

Filename:

Date:

m²/yr.

Consolidation Coef.

K4 Soils Laboratory

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

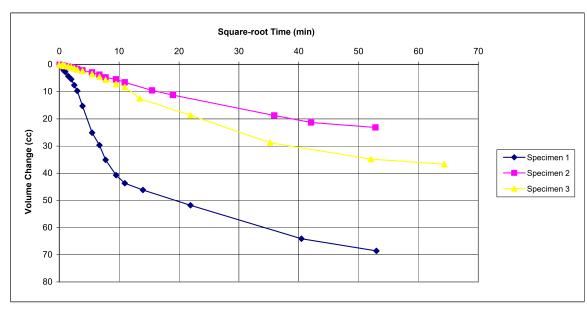
Specimen Details		Specimen 1	Specimen 2	Specimen 3
Job Ref.			13381	
Job Location			9 St Edmund's Terrace, Lor	idon, NW8 7QH
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	3.00	3.00	3.00
Date		01/10/2012	01/10/2012	01/10/2012
Test Setup				
Date started	ĺ	20/09/2012		
Date Finished	ĺ	30/09/2012		
Top Drain Used	ĺ	У		
Base Drain Used	ĺ	n		
Side Drains Used	ĺ	y		
Pressure System Numb	er	1		
Cell Number		1		
Saturation Cell Pressure Incr.	kPa	400.00		
Back Pressure Incr.	kPa	390.00		
Differential Pressure	kPa	10.00		
Final Cell Pressure	kPa	400.00		
Final Pore Pressure	kPa	391.00		
Final B Value		0.97		
Consolidation		00.00	00.00	400.00
Effective Pressure	kPa	30.00	60.00	120.00
Cell Pressure Back Pressure	kPa kPa	430.00 400.00	460.00 400.00	520.00 400.00
Excess Pore Pressure	kPa kPa	400.00 17.10	34.90	400.00 69.70
Pore Pressure at End	kPa	401.20	401.90	401.60
	cm ³			
Consolidated Volume Volumetric Strain	Cm	1680.52 0.013073233	1657.37 0.00459183	1620.67 0.007381168
Consolidated Height	mm	199.36	193.67	187.67
	mm ²			
Consolidated Area		8432.61	8558.26	8636.70
Vol. Compressibility	m ² /MN	2.46665	0.41744	0.32516

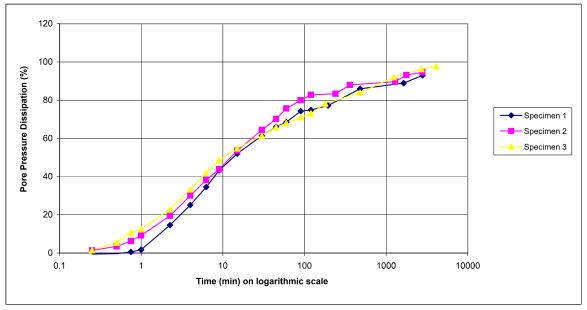
Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Date: Date:

Checked by: Approved by:


Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at300.xls]Report


15/10/2012

Filename:

		Specimen 1	Specimen 2	Specimen 3
Specimen Details				
Job Ref.			13381	
Job Location		Barrie House,	29 St Edmund's Terrace, Lor	ndon, NW8 7QH
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	3.00	3.00	3.00
Date		01/10/2012	01/10/2012	01/10/2012

Consolidation Stage

Date: Date:

15/10/2012

K4 Soils Laboratory

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen 1	Specimen 2
-	•

Specimen 3

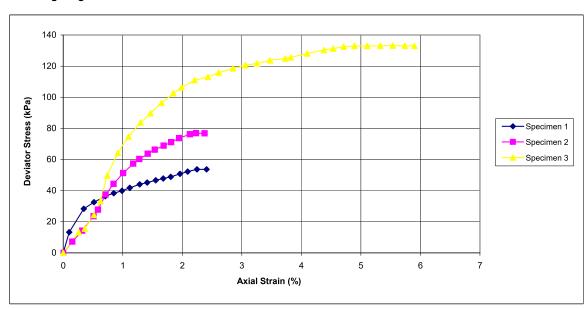
Specimen Details	3			
Job Ref.		13381		
Job Location		Barrie House, 29 St Edmund's Terrace, London, NW8 7QH		
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	3.00	3.00	3.00
Date		01/10/2012	01/10/2012	01/10/2012

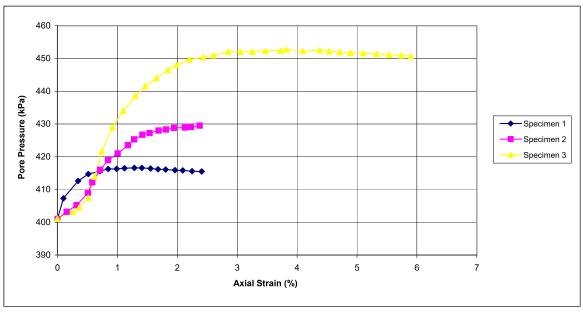
Shearing				
Initial Cell Pressure	kPa	430	460	520
Initial Pore Pressure	kPa	401	401	401.1
Rate of Strain	%/hour	0.594059406	0.61677883	0.634699585
Max Deviator Stress				
Axial Strain		2.247	2.231	5.536
Axial Stress	kPa	54.21	77.46	133.70
Cor. Deviator stress	kPa	53.51	76.73	132.94
Effective Major Stress	kPa	68.11	107.83	201.94
Effective Minor Stress	kPa	14.40	30.90	68.80
Effective Stress Ratio		4.730	3.490	2.935
s'	kPa	41.26	69.37	135.37
ť	kPa	26.86	38.47	66.57
Shear Resistance Angle	degs	25.00	25.00	25.00
Cohesion c'	kPa	10.21	10.21	10.21
Max Effective Priciple S	tress Ra	tio		
Axial Strain		2.247	2.375	4.710
Axial Stress	kPa	54.21	77.34	133.03
Cor. Deviator stress	kPa	53.51	76.62	132.26
Effective Major Stress	kPa	68.11	107.32	200.46
Effective Minor Stress	kPa	14.40	30.50	68.00
Effective Stress Ratio		4.730	3.519	2.948
s'	kPa	41.26	68.91	134.23
ť	kPa	26.86	38.41	66.23

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Checked by: Approved by:


Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at300.xls]Report


15/10/2012

Filename:

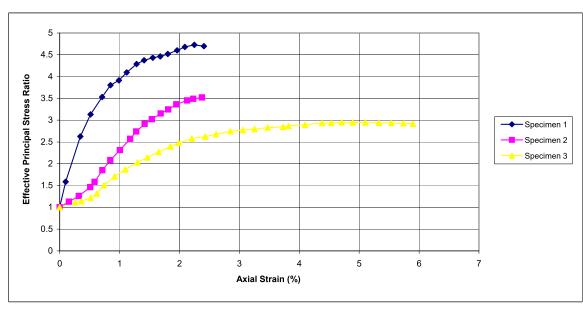
		Specimen 1	Specimen 2	Specimen 3
Specimen Details	3			
Job Ref.			13381	
Job Location		Barrie H	ouse, 29 St Edmund's Terra	ce, London, NW8 7QH
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	3.00	3.00	3.00
Date		01/10/2012	01/10/2012	01/10/2012

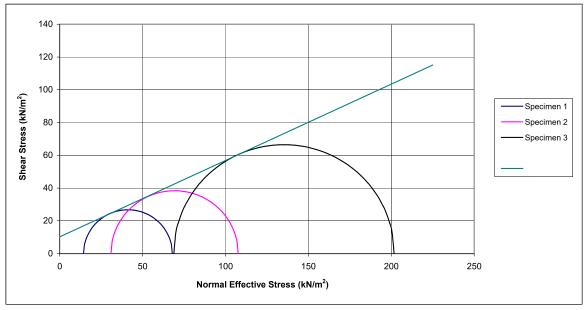
Shearing Stage

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Specimen 1


Sample Details


Specimen 2

Specimen 3

Job Ref.		13381		
Job Location		Barrie House, 29 St Edmund's Terrace, London, NW8 7QH		
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	3.00	3.00	3.00
Date		01/10/2012	01/10/2012	01/10/2012

Shearing Stage

Approved by:

Checked by:

Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at300.xls]Report

Filename:

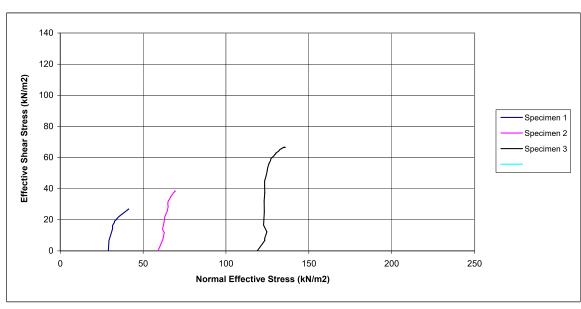
15/10/2012

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Specimen 1

Sample	Details	


Specimen 2

Specimen 3

Date: Date:

Sample Details				
Job Ref.		13381		
Job Location		Barrie House, 29 St Edmund's Terrace, London, NW8 7QH		
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	3.00	3.00	3.00
Date		01/10/2012	01/10/2012	01/10/2012

Shearing Stage

15/10/2012

Consolidated Undrained Triaxial Compression Test

BS 1377 : Part 8 : 1990

a)	a)
-	-=
æ	ש
Ω	Ω

Approved by: Checked by:

Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at500+1.xls]Report

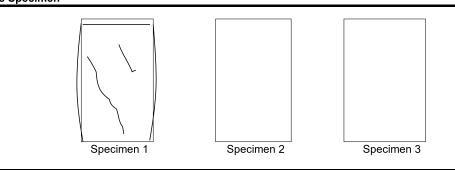
19/10/2012

Filename:

		Specimen 1	Specimen 2	Specimen 3
Specimen Details		-	-	-
Job Ref.			13381	
Job Location			Edmunds Terrace	
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012
Disturbed / Undisturb	oed	undisturbed	undisturbed	undisturbed

Description of Specimen

Brown and blue grey slightly silty CLAY with occasional selenite crystals


Initial Specimen Conditions

initial opecimen our			
Height	mm	206.00	
Diameter	mm	105.00	
Area	mm ²	8659.01	
Volume	cm ³	1783.76	
Mass	g	3360.70	
Dry Mass	g	2554.50	
Density	Mg/m ³	1.88	
Dry Density	Mg/m ³	1.43	
Moisture Content	%	31.56	
Degree of Saturation	%	95.45	
Specific Gravity		2.72	
(assumed	d/measured)	assumed	

Final Specimen Conditions

p		
Moisture Content	%	32.00
Density	Mg/m ³	1.96
Dry Density	Mg/m ³	1.49

Sketch of Failure of the Specimen

Date: Date:

Approved by: Checked by:

K4 Soils laboratory

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

		Specimen 1	Specimen 2	Specimen 3
Specimen Details		•	•	•
Job Ref.			13381	
Job Location			Edmunds Terrace	
Borehole	Ī	BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012

Test	Setu	p
------	------	---

100t Octup			
Date started	20/09/2012	20/09/2012	20/09/2012
Date Finished	18/10/2012	18/10/2012	18/10/2012
Top Drain Used	у	у	у
Base Drain Used	n	n	n
Side Drains Used	у	у	у
Pressure System Number	1	1	1
Cell Number	1	1	1

Saturation

Cell Pressure Incr.	kPa	500.00	
Back Pressure Incr.	kPa	0.00	
Differential Pressure	kPa	500.00	
Final Cell Pressure	kPa	500.00	
Final Pore Pressure	kPa	485.20	
Final B Value		0.97	

Consolidation

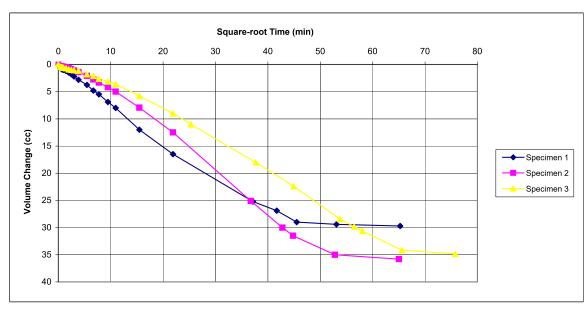
Effective Pressure	kPa	50.00	100.00	200.00
Cell Pressure	kPa	350.00	400.00	500.00
Back Pressure	kPa	300.00	300.00	300.00
Excess Pore Pressure	kPa	30.70	45.80	88.65
Pore Pressure at End	kPa	292.40	299.40	300.30
Consolidated Volume	cm ³	1754.06	1718.26	1683.41
Volumetric Strain		0.005550083	0.006803276	0.006760727
Consolidated Height	mm	204.86	200.36	196.00
Consolidated Area	mm^2	8562.90	8576.48	8589.61
Vol. Compressibility	m^2/MN	0.43473	0.43987	0.22957
Consolidation Coef.	m²/yr.			

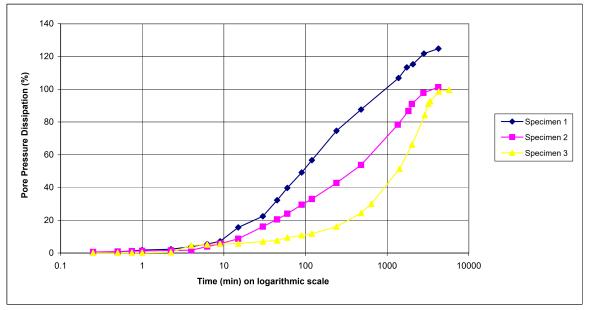
Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Date: Date:

Checked by: Approved by:


Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at500+1.xls]Report


19/10/2012

Filename:

		Specimen 1	Specimen 2	Specimen 3
Specimen Details				•
Job Ref.			13381	
Job Location			Edmunds Terrace	
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012

Consolidation Stage

Date: Date:

19/10/2012

K4 Soils laboratory

Consolidated Undrained Triaxial Compression Test

BS 1377 : Part 8 : 1990

		Specimen 1	Specimen 2	Specimen 3
Specimen Details		-	•	-
Job Ref.			13381	
Job Location			Edmunds Terrace	
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012

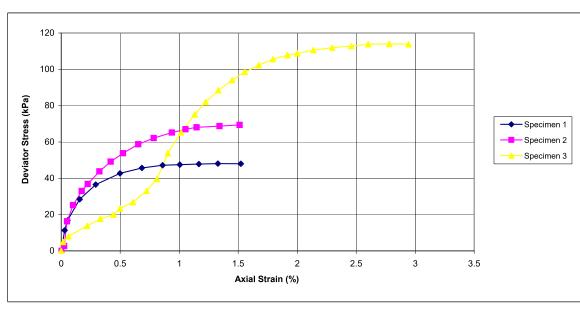
Shearing				
Initial Cell Pressure	kPa	350	400	500
Initial Pore Pressure	kPa	292	288.8	299.4
Rate of Strain	%/hour	0.349514563	0.356900882	0.364863239
Max Deviator Stress				
Axial Strain		1.328	1.512	2.781
Axial Stress	kPa	48.49	69.81	114.54
Cor. Deviator stress	kPa	47.89	69.15	113.78
Effective Major Stress	kPa	85.69	149.25	243.68
Effective Minor Stress	kPa	37.60	79.90	129.70
Effective Stress Ratio		2.279	1.868	1.879
s'	kPa	61.65	114.57	186.69
ť'	kPa	24.05	34.67	56.99
Shear Resistance Angle	degs	18.00	18.00	18.00
Cohesion c'	kPa	0.00	0.00	0.00
Max Effective Priciple S	tress Ra	tio		
Axial Strain		1.328	1.512	2.602
Axial Stress	kPa	48.49	69.81	114.37
Cor. Deviator stress	kPa	47.89	69.15	113.61
Effective Major Stress	kPa	85.69	149.25	243.21
Effective Minor Stress	kPa	37.60	79.90	129.40
Effective Stress Ratio		2.279	1.868	1.880
s'	kPa	61.65	114.57	186.31
t'	kPa	24.05	34.67	56.91
lt'	k₽a	24.05	34.67	56.91

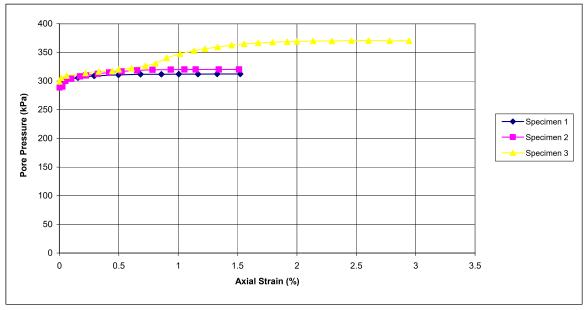
Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Date:	Date:	

Checked by: Approved by:


Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at500+1.xls]Report


19/10/2012

Filename:

		Specimen 1	Specimen 2	Specimen 3
Specimen Details				-
Job Ref.			13381	
Job Location			Edmunds Terrace	
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012

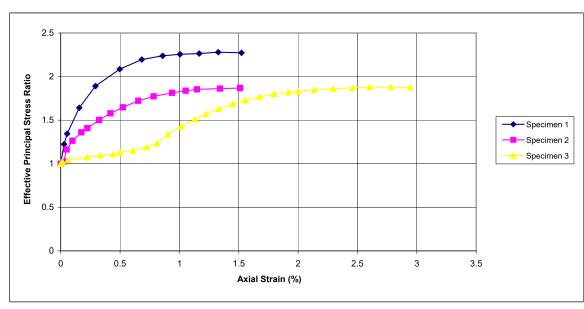
Shearing Stage

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Date:	Date:

Checked by: Approved by:


Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at500+1.xls]Report

19/10/2012

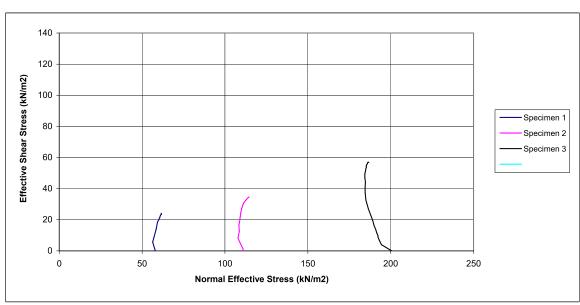
Filename:

		Specimen 1	Specimen 2	Specimen 3
Sample Details			•	•
Job Ref.			13381	
Job Location		Edmunds Terrace		
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012

Shearing Stage

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990


Specimen 1
Sample Details

Specimen 2 Specimen 3

Sample Detail

Job Ref.		13381		
Job Location		Edmunds Terrace		
Borehole		BH1 BH1 BH1		
Sample No.		U2	U2	U2
Depth	m	5.00	5.00	5.00
Date		20/09/2012	20/09/2012	20/09/2012

Shearing Stage

-liename

Consolidated Undrained Triaxial Compression Test

BS 1377 : Part 8 : 1990

œ.	e
at	aţ
Ω	Ω

Checked by:

Approved by:

Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at700.xls]Report

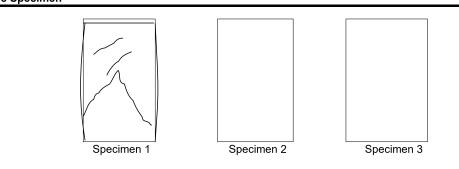
15/10/2012

Specimen 1 Specimen 2 Specimen 2	
Specimen Details	

Job Ref.		13381		
Job Location		Barrie House, 29 St Edmunds Terrace, London, NW8 7QH		
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	7.00	7.00	7.00
Date		21/09/2012	21/09/2012	21/09/2012
Disturbed / Undisturbed		undisturbed	undisturbed	undisturbed

Description of Specimen

Brown CLAY with selenite crystals


Initial Specimen Conditions

initial opecimen cond			
Height	mm	206.00	
Diameter	mm	105.00	
Area	mm^2	8659.01	
Volume	cm ³	1783.76	
Mass	g	3433.90	
Dry Mass	g	2666.71	
Density	Mg/m ³	1.93	
Dry Density	Mg/m ³	1.49	
Moisture Content	%	28.77	
Degree of Saturation	%	95.50	
Specific Gravity		2.72	
(assumed/	measured)	assumed	

Final Specimen Conditions

a. opcoo oc.			
Moisture Content	%	28.68	
Density	Mg/m ³	2.00	
Dry Density	Mg/m ³	1.55	

Sketch of Failure of the Specimen

Date: Date:

Approved by: Checked by:

Filename: Date:

K4 Soils Laboratory

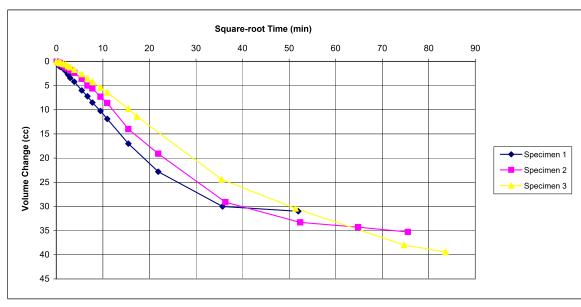
Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

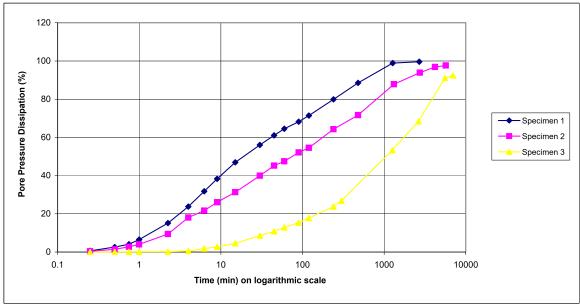
Specimen Details		Specimen 1	Specimen 2	Specimen 3
Job Ref.		13381		
Job Location		Barrie House, 2	9 St Edmunds Terrace, Lor	ndon. NW8 7QH
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	7.00	7.00	7.00
Date		21/09/2012	21/09/2012	21/09/2012
Test Setup		04/00/0040		1
Date started		21/09/2012		
Date Finished		10/10/2012		
Top Drain Used Base Drain Used		У		
Side Drains Used		n		
Pressure System Numb	or	у 1		
Cell Number	CI	1		
90				
Saturation Cell Pressure Incr. Back Pressure Incr. Differential Pressure Final Cell Pressure Final Pore Pressure Final B Value	kPa kPa kPa kPa kPa	400.00 0.00 400.00 400.00 383.60 0.96		
Consolidation	10	70.00	440.00	000.00
Effective Pressure	kPa	70.00	140.00	280.00
Cell Pressure Back Pressure	kPa	370.00	440.00	580.00
Excess Pore Pressure	kPa kPa	300.00	300.00 79.80	300.00
Pore Pressure at End	кРа kРа	46.20 300.20	79.80 301.90	158.30 312.00
	cm ³			312.00
Consolidated Volume	cm ⁻	1752.76	1717.46	1678.06
Volumetric Strain	mm	0.005793016	0.006713233 196.72	0.007646965 188.45
Consolidated Height	mm mm²	204.81		
Consolidated Area		8558.69	8731.40	8905.36
Vol. Compressibility	m ² /MN	0.37781	0.25853	0.15681
Consolidation Coef.	m²/yr.			

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Specimen 1


Specimen	Details


Specimen Details						
Job Ref.		13381				
Job Location		Barrie House, 29 St Edmunds Terrace, London, NW8 7QH				
Borehole		BH1	BH1	BH1		
Sample No.		U2	U2	U2		
Depth	m	7.00	7.00	7.00		
Date		21/09/2012	21/09/2012	21/09/2012		

Specimen 2

Specimen 3

Consolidation Stage

Date: Date:

Approved by:

Checked by:

Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at700.xls]Report 15/10/2012

Filename:

Consolidated Undrained Triaxial Compression Test BS 1377 : Part 8 : 1990

Specimen 1

Specimen 2

Specimen 3

Specimen Details							
Job Ref. 13381			13381				
Job Location		Barrie House, 29 St Edmunds Terrace, London, NW8 7QH					
Borehole		BH1	BH1	BH1			
Sample No.		U2	U2	U2			
Depth	m	7.00	7.00	7.00			
Date		21/09/2012	21/09/2012	21/09/2012			

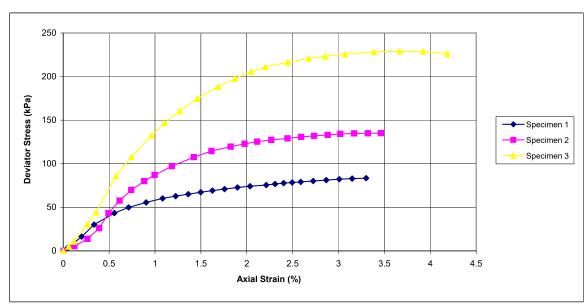
Shearing				
Initial Cell Pressure	kPa	370	440	580
Initial Pore Pressure	kPa	300.2	301.5	300.5
Rate of Strain	%/hour	0.582524272	0.605917883	0.631887889
Max Deviator Stress				
Axial Strain		3.301	3.462	3.667
Axial Stress	kPa	83.90	135.60	229.71
Cor. Deviator stress	kPa	83.28	134.91	228.89
Effective Major Stress	kPa	121.18	213.51	395.39
Effective Minor Stress	kPa	37.70	78.40	166.30
Effective Stress Ratio		3.214	2.723	2.378
s'	kPa	79.44	145.96	280.84
t'	kPa	41.74	67.56	114.54
Shear Resistance Angle	degs	21.07	21.07	21.07
Cohesion c'	kPa	14.87	14.87	14.87
Max Effective Priciple S	Stress Ra	tio		
Axial Strain		3.301	3.020	3.667
Axial Stress	kPa	83.90	134.72	229.71
Cor. Deviator stress	kPa	83.28	134.04	228.89
Effective Major Stress	kPa	121.18	211.44	395.39
Effective Minor Stress	kPa	37.70	77.20	166.30
Effective Stress Ratio		3.214	2.739	2.378
s'	kPa	79.44	144.32	280.84
t'	kPa	41.74	67.12	114.54

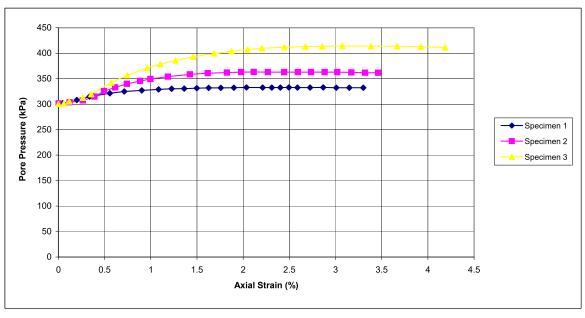
Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Date:

Checked by: Approved by:


Y:\2012\CLIENTS\Soils Consultants\13381\[13381bh1at700.xls]Report


15/10/2012

Filename:

		Specimen 1	Specimen 2	Specimen 3	
Specimen Details					
Job Ref.			13381		
Job Location		Barrie House, 29 St Edmunds Terrace, London, NW8 7QH			
Borehole		BH1	BH1	BH1	
Sample No.		U2	U2	U2	
Depth	m	7.00	7.00	7.00	
Date		21/09/2012	21/09/2012	21/09/2012	

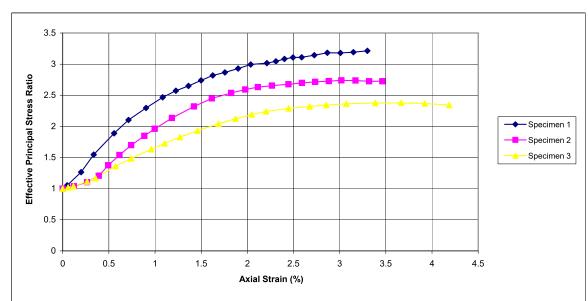
Shearing Stage

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Specimen 1

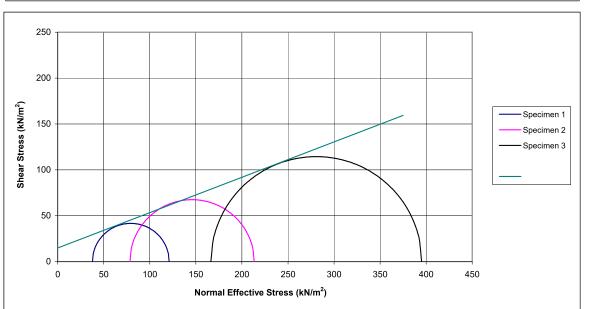
Sample Details


Specimen 2

Specimen 3

	Sample Detail
ate:	Job Ref.
Da	Job Location

Job Ret.		13381		
Job Location		Barrie House, 29 St Edmunds Terrace, London, NW8 7QH		
Borehole		BH1	BH1	BH1
Sample No.		U2	U2	U2
Depth	m	7.00	7.00	7.00
Date		21/09/2012	21/09/2012	21/09/2012


Shearing Stage

Filename:

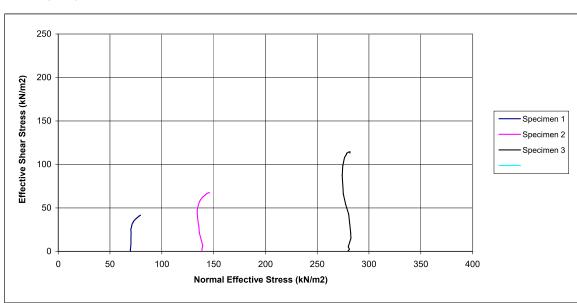
Checked by: Approved by:

Consolidated Undrained Triaxial Compression Test

BS 1377: Part 8: 1990

Specimen 1

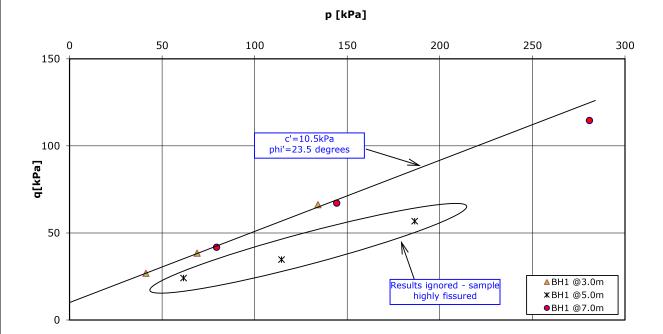
Sample Details


Specimen 2

Specimen 3

Cample Detail
Job Ref.
lob Location

Job Ref.		13381			
Job Location		Barrie House, 29 St Edmunds Terrace, London, NW8 7QH			
Borehole		BH1	BH1	BH1	
Sample No.		U2	U2	U2	
Depth	m	7.00	7.00	7.00	
Date		21/09/2012	21/09/2012	21/09/2012	


Shearing Stage

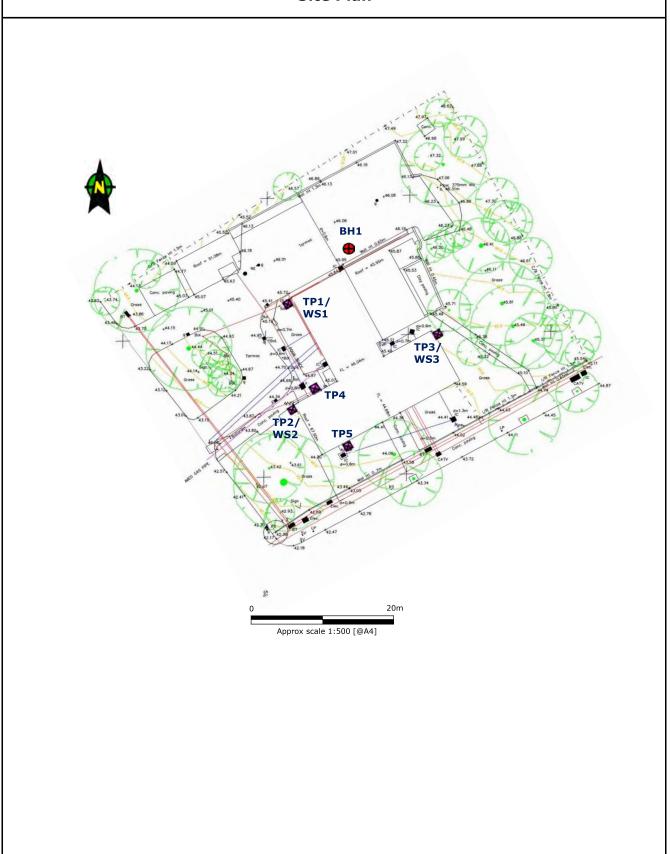
Site Barrie House
Location 29 St Edmund's Terrace, London NW8 7QH

Report No: 9241/OT

p-q Plot

Notes:

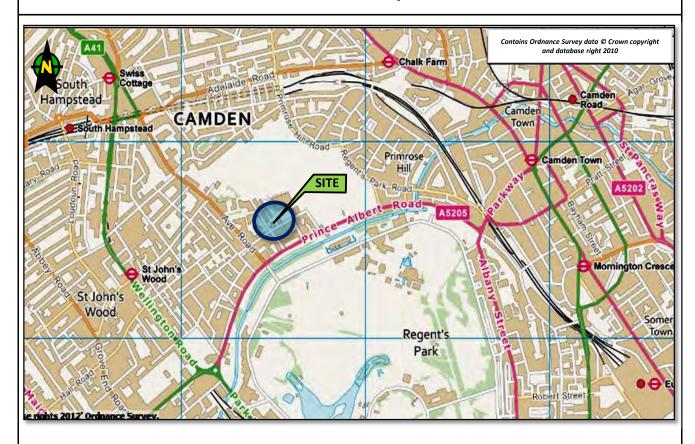
Summary of multistage consolidated underained triaxial tests with pore pressure measurement on BH1 samples by K4 Soils Laboratory

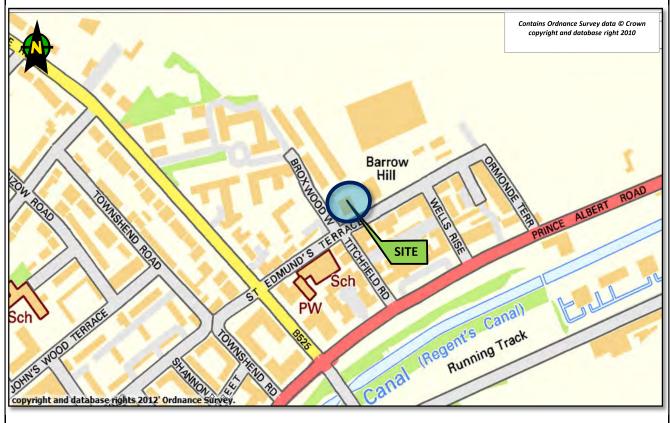


Site Barrie House
29 St Edmund's Terrace, London NW8 7QH

Report No

9241/OT


Site Plan



Report No

9241/OT

Location Map

RT/SMS/5295

Broxwood View Appendix 6 - Calculations

Broxwood View (Previously 29 Barrie House)

Appendix 6 Calculations

For

Attanasio d'Aponte Arbitrage Broxwood Ltd

5295

March 2023

CONTENTS

Description	Page
General	2
Design Criteria	2
Retaining Wall Calculation	5
Piled Retaining Wall Calculation	7
Underpinned Retaining Wall Calculation	8
Raft Calculation	10

RT/SMS/5295

Broxwood View Appendix 6 - Calculations

1.0 General

As part of the redevelopment of a site at Barrie House, 29 St Edmunds Terrace, Camden, London NW8, it is proposed to construct a new four storey residential development including a single level basement. The site is currently occupied by a car park and a two-storey masonry structure.

The site can be located by National Grid Reference TQ27497 83580 and lies off the East side of Broxwood Way, which provides the site access. The southern boundary adjoins the existing Barrie House block, while the Northern boundary adjoins block of flats on Broxwood Wat. The Eastern boundary adjoins the gardens and multi-storey block of number 35 St Edmund's Terrace.

The proposed basement is to be constructed by utilizing a secant and contiguous piled retaining wall around the perimeter of the site except for a small section between grid lines 12 and 15 (refer to Appendix 3 drawing 5295-S02) where a reinforced concrete underpinned wall is proposed. The piled retaining wall will retain the soil pressures and adjacent surcharge loads (including adjacent foundation loads where applicable). The piled wall will be temporarily propped during constriction and permanently propped via the capping beam and ground floor slab. A 200mm thick liner wall is proposed within the basement to retaining water pressures. A raft foundation is proposed to transfer the vertical loads into the ground. These calculations justify the design of the elements above.

These calculations are not to be relied on by any third party without prior written consent from RTA.

2.0 Design Criteria

2.1 Design Life

The design life of the building is to be 60 years and as such categorized as 'Normal Life' to BS 7543.

RT/SMS/5295

Broxwood View Appendix 6 - Calculations

2.2 Loading

2.2.1 Dead Loading

The following loads have been assumed for the weight of the structure / finishes and facades. Loads have also been provided for the CLT superstructure, refer to Appendix 3.

		DL Load press.	DL Applied
Element	Description	(kN/m²)	UDL (KN/m)
Basement			
	950 Raft	23	
	100 Screed	1.8	
	Finishes	0.5	
	Total	25.3	
Ground Floor			
	325 Slab	7.8	
	100 Screed	1.8	
	Finishes	0.5	
	Ceiling	0.5	
	Total	10.6	
Retaining Wall	200 wall	5	15
Façade	Masonry skin	2.5	7.5
Super Structure	Refer to loads from superstructure designer.		

Broxwood View Appendix 6 - Calculations

2.2.2 Imposed Loading

Element	Description	LL Load press. (kN/m²)	Point Load (kN)
Floors	Category A1 (residential)	1.5	2
	Partitions	1	
	Total	2.5	2
Corridors	Category C31 (communal areas in blocks		
	of flats)	3	4.5
Stairs	Category C32	3	4
Balconies	Category A5	2.5	2
Super Structure	Refer to loads from superstructure designer.		

2.2.3 Wind Loading

The basic map velocity is 21.5m/s this equates to a peak velocity pressure of 0.728kN/m².

2.2.4 Snow Loading

The superstructure designer has accounted for snow loading in their loadings. Refer to Appendix 3

2.3 Materials

The following structural materials are to be used, Steel grade: S355. Concrete grade C40. Reinforcement fy=500N/mm².

2.4 Durability

Concrete elements will be designed to the recommendations in BS EN 19921-1 Design of Concrete Structures and BS 8500. Concrete mixes specified to suit 'normal' structural performance. Where concrete elements are in contact with the ground special consideration has been give to the concrete mix with respect to sulphates.

2.5 Robustness

The design of the building assumes a categorization of building type as Consequence Class 2B Upper Risk Group.

The design of the structure will be to the recommendations made in BS EN 1991-1-7.

2.6 Fire Rating

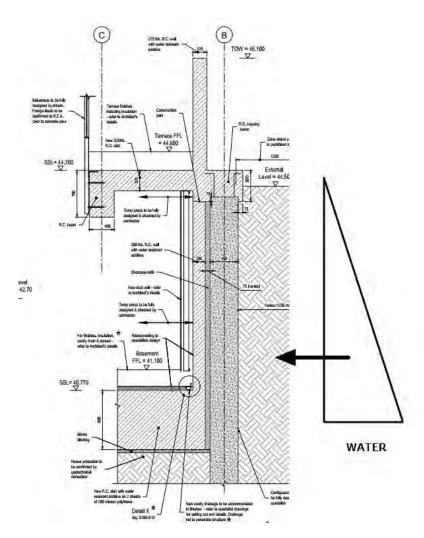
As informed by the fire statement prepared by Emco, 60mins rating to structural elements.

RT/SMS/5295

Broxwood View Appendix 6 - Calculations

2.7 Design Guides

The following codes of practice and design guides have been used in the assessment of the development to this stage:


Reference	Title
BS648	Weights
BS6399	Loadings
BS7543	Durability
BS8002	Earth Retaining Structure
BS8004	foundations
BS8110	Structural Use of Concrete
BS8500-1:2002	Concrete
BS EN 206-1	Concrete: Specification
BS EN 1991	Loadings

Broxwood View Appendix 6 - Calculations

3.0 Retaining Wall

Conservatively the lateral pressure from possible water has been taken assuming a maximum water depth.

Head = 3.4m Total pressure = $3.4 \times 10 \times 3.4 \times 0.5 = 58$ kN/m

Propped cantilever Maximum moment = 26kNm/m (CHAR) = 39kNm/m (ULT) Maximum shear = 46kN/m (CHAR) = 69kN/m (ULT)

5295

mm²

 mm^2

157.60 MPa

114.16 mm

1.49

Broxwood View Appendix 6 - Calculations

Depth to NA

Clear cover (comp face)

Area defl steel provided

Provide B 16

Comp bar diameter

Depth to comp steel

Area defl steel req

Area steel required

Area steel provided

Concrete Design Check to BS8110 Date: 01/08/2022 Date: 01/08/	Concr	ata Dac	ign Chack to BS	22110	Job no:	52	
Design Parameters Coading	Controlle Design Check to Bootio			00110	Date:	01/08,	/2022
Design Parameters Simply Supported		Wall F	Retaining Wall			D\	N
Simply Supported			tetaning wan		Page:		
Element Slab/Wall Span L = 3.4 m Section depth D = 200 mm Screed Clear cover (tension face) = 50 mm Link size Bar diameter Concrete strength Fcu = 33 MPa Steel yield stress Fy = 500 MPa Breadth Breadth Breadth Breadth Bending Maximum moment M* = 39.00 kNm (Calculated or input) Compressive capacity No compression reinforcement required K = 0.0553 K = 0.0553 K = 0.0553 K = 0.000 kN/m Uniformly distributed loads Self weight Wsw = 0.000 kN/m Additional dead load WuL =	Desi	gn Paramet	ers		Loading		
Slab/Wall Span	Free body diagram		Simply Supported				
Section depth D = 200 mm Screed = 0 mm Clear cover (tension face) = 50 mm Link size = 0 mm Bar diameter			Slab/Wall	Unifor	mly distribut	ed loads	
Section depth D = 200 mm Screed	Span	L=	3.4 m	Self weight	w _{sw} =	0.00	kN/m
Clear cover (tension face) = 50 mm Link size = 0 mm Bar diameter ϕ = 16 mm Concrete strength F_{cu} = 35 MPa Steel yield stress F_y = 500 MPa Effective depth ϕ = 1000 mm Bending Maximum moment ϕ = 39.00 kNm (Calculated or input) Compressive capacity ϕ = 110.10 kNm No compression reinforcement required ϕ = 0.0553 ϕ = 0.00 kN ϕ = 0.0553 ϕ = 0.00 kn ϕ	Section depth	D =	200 mm		$\mathbf{w}_{LL} =$		kN/m
Link size $= 0 \text{ mm}$ Bar diameter $\phi = 16 \text{ mm}$ Concrete strength $F_{cu} = 35 \text{ MPa}$ Steel yield stress $F_y = 500 \text{ MPa}$ Effective depth $d = 142 \text{ mm}$ Breadth $b = 1000 \text{ mm}$ Dead point load $P_{LL} = kN$ Live point load $P_{LL} = kN$ Total Point loads (even if 0) Bending Shear Maximum moment $M^* = 39.00 \text{ kNm}$ (Calculated or input) Compressive capacity $M_u = 110.10 \text{ kNm}$ No compression reinforcement required $K' = 0.0553$ $K = 0.0553$ $K' = 0.0553$ No shear reinforcement required Link spacing $S_v = mm$	Screed	=[0 mm	Additional dead load	$w_{DL} =$		kN/m
Bar diameter $\phi = 16 \text{ mm}$ Concrete strength $F_{cu} = 35 \text{ MPa}$ Steel yield stress $F_y = 500 \text{ MPa}$ Effective depth $d = 142 \text{ mm}$ Breadth $b = 1000 \text{ mm}$ Bending Maximum moment $M^* = 39.00 \text{ kNm}$ (Calculated or input) Compressive capacity $M_u = 110.10 \text{ kNm}$ No compression reinforcement required $K = 0.0553$ $K = 0.$	Clear cover (tension face) =[50 mm	Total UDL (ULT)	w* =		kN/m
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Link size	=	0 mm				
	Bar diameter	φ =	16 mm		Point loads	i	
Effective depth $d = 142 \text{ mm}$ $b = 1000 \text{ mm}$ Total Point load (ULT) $P^* = kN$ Input Point loads (even if 0) Bending Maximum moment $M^* = 39.00 \text{ kNm}$ (Calculated or input) Compressive capacity $M_u = 110.10 \text{ kNm}$ (Concrete shear stress $V_c = 0.90 \text{ kNm}$ No compression reinforcement required $V^* = 0.0553 \text{ km}$ No shear reinforcement required Link spacing $V_c = 0.90 \text{ km}$ Link spacing $V_c = 0.90 \text{ km}$ Right and the spacing $V_c = 0.90 \text{ km}$ Right and $V_c = 0.90 \text{ km}$ Right	Concrete strength		35 MPa	Dead point load	$P_{DL} =$		kN
Breadth Bending Input Point loads (even if 0) Bending Shear Maximum moment $M^* = $ 39.00 kNm Max shear force $V^* = $ 69.00 kN Compressive capacity $M_u = $ 110.10 kNm Shear stress $v = $ 0.49 MPa No compression reinforcement required Concrete shear stress $v_c = $ 0.90 MPa No shear reinforcement required Link spacing $v_c = $ mm	Steel yield stress	F _y =	500 MPa	Live point load	P _{LL} =		kN
	Effective depth	d =	142 mm	Total Point load (ULT)	P*=		kN
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Breadth	b =	1000 mm	Input I	Point loads (e	even if 0)	
		Bending			Shear		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Maximum moment	M* =	39.00 kNm	Max shear force	V*=	69.00	kN
No compression reinforcement requiredConcrete shear stress v_c = 0.90 MPaK = 0.0553No shear reinforcement requiredK' = 1.00 MPaLink spacing v_c = 0.90 MPa	(Calcı	ılated or in	. ,	Shear stress	v =	0.49	MPa
K = 0.0553 No shear reinforcement required Link spacing S _v = mm					100A _s /bd =		
K' = Link spacing s _v = mm	No compression	ı reinforcer	ment required				MPa
		K =	0.0553	No shear	reinforceme	nt required	
Lever arm z = <u>132.67 mm</u>		K' =		Link spacing	s _v =		mm
	Lever arm	z =	132.67 mm				

mm

mm

mm

mm

 lmm^2

c/c

675.79 mm²

1340 mm²

Shear steel required

Shear steel provided

Modification factor

Modification factor

Min effective depth

Steel stress

Deflection

MF =

MF' =

Deflection check OK

Therefore the 200 thick wall is satisfactory with B16 bars at 150c/c.

150

x =

 $\phi' =$

d' =

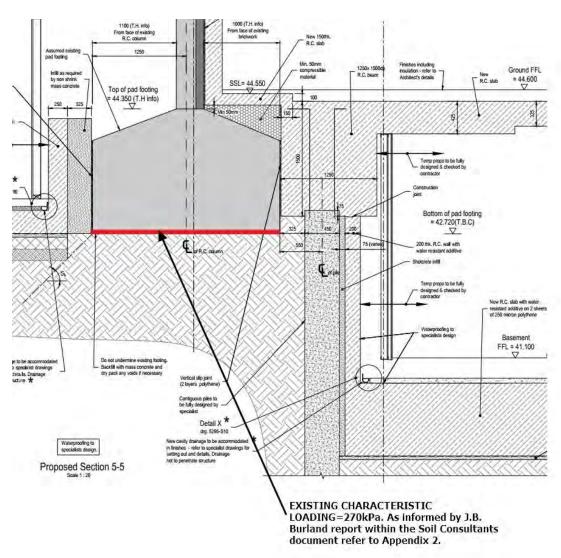
A_{sc rea} =

A_{sc prov} =

 $A_{st req} =$

@

 $A_{st prov} =$

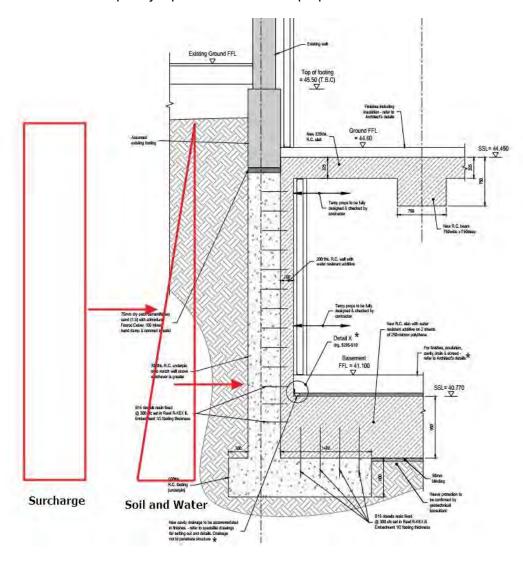


Broxwood View Appendix 6 - Calculations

4.0 Piled Retaining Wall

The piled retaining wall will be fully designed by a specialist however for the purposes of this report an assessment has been carried out to justify that a 450mm dia contiguous piled wall is suitable. The most onerous load arrangement has been looked at; adjacent to the existing pad foundations of Barrie House. When the specialist designs the other sections of the wall fire truck loading will be added to the surcharge loads in the relevant areas – refer to Appendix 3 drawing 5295-S02.

Refer to CGL BIA Appendix G for the Pile Design.



Broxwood View Appendix 6 - Calculations

5.0 Underpinned Retaining Wall

The underpinning, on grid line F between 12 and 15 is designed to transfer the vertical loads from the single storey building down to the basement level and retain the earth under the adjacent single storey building. The temporary condition is the most onerous before the raft is poured where the wall is spanning 4.5m between the temporary top and bottom lateral props.

Surcharge load: 5kN/m² x Ko = 3kN/m²

Soil load submerged: 10kN/m² x Ko x 4.5m = 27kN/m²

Water Load = $10 \times 4.5 \text{m} = 45 \text{kN/m}^2$

Vertical load = 20kN + 55kN(Self) = 75kN/m

Propped:

Maximum Bending = 72kNm/m (CHAR) = 108kNm/m (ULT) Maximum Shear = 124kN/m (CHAR) = 186kN/m (ULT)

Broxwood View Appendix 6 - Calculations

Canarata Dasign Chack to BC9110		5295
Concrete Design Check to BS8110	Date:	01/08/2022
Undorning	By:	DW
Underpinning	Page:	

Design Parameters					
Free body diagram		Simply Supported			
Element		Slab/V	Vall		
Span	L =	4.5	m		
Section depth	D =	300	mm		
Screed	=	0	mm		
Clear cover (tension face)	=	50	mm		
Link size	=	0	mm		
Bar diameter	φ=	20	mm		
Concrete strength	$F_{cu} =$	40	MPa		
Steel yield stress	$F_y =$	500	MPa		
Effective depth	d =	240	mm		
Breadth	b =	1000	mm		

Loading					
Uniformly distributed loads					
w _{sw} =	75.00	kN/m			
w _{LL} =	0.00	kN/m			
$\mathbf{w}_{DL} =$	0.00	kN/m			
w*=	105.00	kN/m			
Deiaklaada					
		kN			
P _{LL} =	0.00				
P*=	0.00	kN			
	w _{sw} = w _{LL} = w _{DL} = v distribut	$\begin{array}{c c} v \ distributed \ loads \\ \hline W_{SW} &=& 75.00 \\ W_{LL} &=& 0.00 \\ W_{DL} &=& 0.00 \\ W^* &=& 105.00 \\ \hline \\ Dint \ loads \\ \hline P_{DL} &=& 0.00 \\ P_{LL} &=& 0.00 \\ \hline \end{array}$			

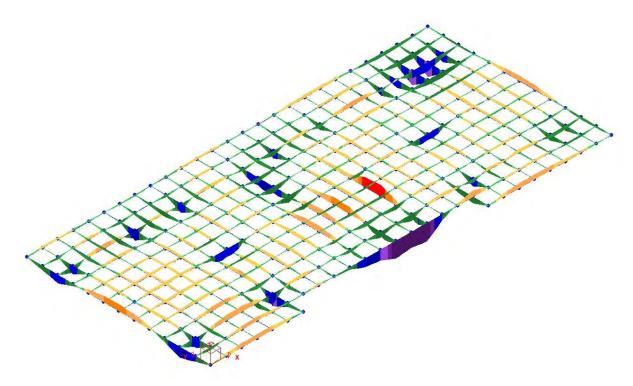
Bending					
Maximum moment	M* =	108.00	kNm		
(Calcı	ulated or in	iput)			
Compressive capacity	$M_u =$	359.42	kNm		
No compression	n reinforce	ment require	d		
	K =	0.0469			
	K' =				
Lever arm	z =	226.77	mm		
Depth to NA	x =		mm		
Clear cover (comp face)	=		mm		
Comp bar diameter	φ'=		mm		
Depth to comp steel	d' =		mm		
Area defl steel req	$A_{screa} =$				
Area defl steel provided	A _{sc prov} =		mm^2		
Area steel required	$A_{st reg} =$	1094.83	mm ²		
Provide B 20	@	150	c/c		
Area steel provided	$A_{st prov} =$	2090	mm ²		

Shear				
Max shear force	V*=	186.00	kN	
Shear stress	v =	0.78	MPa	
	$100A_s/bd =$	0.87		
Concrete shear stress	v _c =	0.80	MPa	
No shear reinforcement required				
Link spacing	s _v =		mm	
Shear steel required	$A_{sv req} =$		mm ²	
Shear steel provided	A _{sv prov} =		mm ²	
		·		

Deflection				
Steel stress	f _s =	163.70	MPa	
Modification factor	MF =	1.49		
Modification factor	MF' =			
Min effective depth	d _{min} =	150.92	mm	
Deflection check OK				

Therefore 300mm underpinning is satisfactory with B20 bars @ 150 c/c.

6.0 Raft Foundation


The raft foundation has been analyzed as a grillage with nodes and springs to model the soil properties. We have been informed by CGL regarding the spring stiffnesses. A number of models

RT/SMS/5295

Broxwood View Appendix 6 - Calculations

have been analyzed, with stiffer springs and softer springs and with cracked and uncracked concrete; also soft spot sensitivity analysis has been carried out and the most onerous results have been taken through to the final design of the raft foundation.

Taking the maximum vertical loads from the superstructure the average characteristic bearing pressure is 88kN/m². We have been informed by CGL that a safe bearing capacity of 120kPa can be assumed.

RT/SMS/5295

Broxwood View Appendix 7 – Suds Confirmation of Approval

Broxwood View (Previously 29 Barrie House)

Appendix 7 SUDS Confirmation of Approval

For

Attanasio d'Aponte Arbitrage Broxwood Ltd

5295

March 2023

CONTENTS

Camden Decision Notice

Application ref: 2022/1340/P Contact: Elaine Quigley Tel: 020 7974 5101

Email: Elaine.Quigley@camden.gov.uk

Date: 31 January 2023

Carbogno Ceneda Architects Angle House, 48a Anthill Road London N15 4BA

Development Management
Regeneration and Planning
London Borough of Camden
Town Hall
Judd Street
London

Phone: 020 7974 4444 planning@camden.gov.uk www.camden.gov.uk/planning

WC1H 9JE

Dear Sir/Madam

DECISION

Town and Country Planning Act 1990 (as amended)

Approval of Details Granted

Address:

Barrie House 29 St Edmund's Terrace London NW8 7QH

Proposal:

Details of sustainable urban drainage (SUDS) required by condition 21 of planning permission 2018/0645/P allowed on appeal (ref APP/X5210/W/19/3240401) dated 19/03/2020 for redevelopment of existing two-storey porter's lodge and surface level car park to construct a part four, part five storey extension to provide 9 self-contained residential flats.

Drawing Nos: Covering letter prepared by Carbogno Ceneda Architects dated 31/10/2022; SuDS Assessment prepared by Motion dated January 2018; Pre-enquiry letter from Thames Water dated 25/03/2022; email from Charlotte Orrell of DP9 dated 01/12/2022.

The Council has considered your application and decided to grant permission.

Informative(s):

1 Reasons for granting approval of details:

Details of the sustainable urban drainage system (SuDS) have been submitted which includes a SuDS assessment and a letter from Thames Water dated

25/03/2022. The report proposes a system of below-ground attenuation located below the proposed car park which will hold surface water before being discharged into the sewer. Permeable paving will be installed for all paved walkways. Following discussions with the applicant, details have also been provided of the named party who will undertake maintenance of the SuDS once it has been built.

A letter from Thames Water has been submitted by the applicant which confirms that there will be sufficient foul and surface water capacity in the sewage network to serve the development and that the proposed surface water discharge rates are satisfactory. The proposed run-off rate of 5 l/s is greater than the greenfield run-off rate of 0.3 l/s but meets the 5 l/s contained in the wording of condition 21.

The information has been reviewed by the Council's sustainability officer who is satisfied with the details. The condition can therefore be discharged.

The planning and appeal history of the site has been taken into account when coming to this decision.

The submitted details are consistent with the general expectations of the approved scheme and are acceptable in all other respects.

As such, the proposed details are in general accordance with policies CC2 and CC3 of the Camden Local Plan 2017.

- You are reminded that Condition 4 (sample of materials); Condition 7 (obscure glazing); Condition 24 (PV cells); Condition 31 (boundary treatment); Condition 33 (waste storage); Condition 34 (acoustic isolation) of planning permission 2018/0645/P dated 19/03/2020 allowed at appeal (ref APP/X5210/W/19/3240401) are outstanding and require details to be submitted and approved.
- You are advised that details for Condition 5 (noise assessment); Condition 6 (sound insulation measures); Condition 8 (hard and soft landscaping); Condition 10 (ground investigation); Condition 16 (blue-green roof feasibility assessment); Condition 19 (appointment of qualified chartered engineer); Condition 21 (SuDS); Condition 22 (tree protection measures); Condition 23 (ground source heat pumps); Condition 25 (method statement for piling); Condition 26 (lighting strategy); Condition 27 (bird and bat nesting features); Condition 28 (active birds nest); Condition 29 (landscaping for biodiversity) of planning permission 2018/0645/P allowed at appeal (ref APP/X5210/W/19/3240401) dated 19/03/2020 have been submitted to the Council and are pending consideration.

In dealing with the application, the Council has sought to work with the applicant in a positive and proactive way in accordance with paragraph 38 of the National Planning Policy Framework 2021.

You can find advice about your rights of appeal at: http://www.planningportal.gov.uk/planning/appeals/guidance/guidancecontent

Yours faithfully

Daniel Pope Chief Planning Officer

RT/SMS/5295

Broxwood View Appendix 8 – Thames Water – Letter of No Further Comment

Broxwood View (Previously 29 Barrie House)

Appendix 8 Thames Water Letter of No Further Comment

For

Attanasio d'Aponte Arbitrage Broxwood Ltd

5295

March 2023

CONTENTS

Thames Water Letter of No Further Comment

FAO: Wieland Kreuder

Broxwood View LTD 62 St Martins Lane London WC2N 4JS

04th December 2023

Dear Wieland Kreuder,

Developer Services - Asset Protection

Your ref

Our ref X2039/1807 v1 Name Alexandru Birgauan Phone 07768 801 351

E-Mail <u>alex.birgauan@thameswater.co.uk</u>

RE: Broxwood View, 29 St Edmund's Terrace, NW8 7QH – Letter of No Further Comments on proposed demolition, excavation, piling and construction adjacent to Thames Water's clean water main.

I write to confirm that we have completed the review of your submissions listed below in relation to the proposed development works located adjacent to Thames Water's clean water main.

Based on the information provided, we are satisfied that the proposed works will pose negligible risk to the Thames Water assets, and therefore we have no further comments to make.

Please notify Thames Water of any changes to the design solution as detailed in the submissions below:

- a) Report ref: CG/28408B titled "Barrie House, 29 St Edmund's Terrace, London Thames Water Impact Assessment" Rev 1 produced by Card Geotechnics Limited dated October 2022;
- b) Report ref: CG/28408B titled "Barrie House, 29 St Edmund's Terrace, London Thames Water Emergency Preparedness Plan" Rev 1 produced by Card Geotechnics Limited dated November 2022;
- c) Report ref: CG/28408B titled "Barrie House, 29 St Edmund's Terrace, London Monitoring Movement and Contingency Plan" Rev 1 produced by Card Geotechnics Limited dated November 2022;
- d) Drawing no. 5295-TS10 titled "Section 1-1" produced by Carbogno Ceneda Architects dated 27 September 2022;
- e) Drawing no. 5295-TS11 titled "Section 2-2" produced by Carbogno Ceneda Architects dated 27 September 2022.

Based on the information presented in the submission, we have no further comments to your proposed development adjacent to Thames Water's 24" cast iron clean water trunk main.

However, the proposal detailed in the documentation listed above is subject to the following conditions:

- a) Contractor to contact Thames Water to inform when the below ground works have started and finished.
- b) "Real-Time" vibration monitoring is required throughout the demolition phase. The monitoring proposal is to allow for monitor installations as close to the asset alignments as possible, with trigger levels set as follows:
 - a. Amber Trigger 5 mm/s PPV (reportable to Thames Water)

- b. Red Trigger 10 mm/s PPV (reportable to Thames Water and work stops until risk is mitigated
- c) The developer shall not place any lifting equipment that will impose point loads greater than the maximum allowable highway loading within the Thames Water asset exclusion zones.

Please be advised that Thames Water will hold **Broxwood View LTD** and any appointed contractors or sub-contractors liable for any losses incurred or damage caused to Thames Water assets arising from the construction and / or subsequent use of the facility.

Yours sincerely,

Alex Birgauan

Alexandru Birgauan Major Project – Developer Services