APPENDIX G

DFS Pile Design Report

D ₋ S				CALCULATIONS
			١	www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Date	e: 13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Re Pile Retaining Wall & \emptyset 300 Bearing Pil	etaining Wall, Ø600 Contiguous es <u>Rev. 04</u>	Page	e: 1 of 41
	BROXWOOD VIEW, 2	29. ST. EDMUND'S T	ERR	ACE

LONDON NW8 7QH

Detailed Designs for Ø450 Perimeter Secant Pile Retaining Wall, Ø600 Perimeter Contiguous Pile Retaining Wall & Ø300 Bearing Piles

Piling Contractor:

Arma Piling Limited 40 New Town Road Bishop's Stortford CM23 3SD United Kingdom

Geotechnical/Temporary Works Design Engineers:

Deep Foundations Specialists Limited Foundations, Basements & Temporary Works Specialist Consulting Geostructural Engineers 2nd Floor The Porter Building 1 Brunel Way Slough SL1 1FQ

Tel: 0207 313 4169 email: Tel: 01753 396498 W: www.deep-foundations.co.uk

Project Structural Engineers:

Richard Tant Associates Consulting Civil & Structural Engineers 54 Lisson Street London NW1 5DF

Tel: 020 7724 1002 email: info@richardtantassociates.com

Report Issued to:

Broxwood View Limited 62 St. Martins Lane London WC2N 4JS

Tel: email:

D_S					CALCULATIONS
				W	ww.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Retai Pile Retaining Wall & \emptyset 300 Bearing Piles <u>I</u>	ining Wall, ∅600 <mark>Rev. <u>04</u></mark>	Contiguous	Page:	2 of 41

DESIGN STATUS & ISSUE RECORD

Revision	Status	Description	De	sign	Check	
			Engineer	Date	Engineer	Date
/	For Review	Detailed designs for secant pile retaining wall & bearing piles	Dr. Azeez Rotimi	14/10/22	Dr. Abid Adekunte	14/10/22
Rev. 01	For Review	Design for bearing piles updated on the basis of Project Structural Engineer's latest loading information for minipiles. Bearing pile size reduced from 350mm to 300mm.	Dr. Azeez Rotimi	26/10/22	Dr. Abid Adekunte	26/10/22
Rev. 02	For Review	Design for bearing piles updated on the basis of Project Structural Engineer's latest pile load schedule for minipiles. Pile wall redesigned as contiguous pile wall of Ø600 & Ø450 diameters.	Dr. Azeez Rotimi	30/11/22	Dr. Abid Adekunte	30/11/22
Rev. 03	For Review	Design report and drawings updated to account for comments & recommendations provided by checking engineers/party wall surveyors.	Dr. Azeez Rotimi	13/12/22	Dr. Abid Adekunte	13/12/22
Rev. 04	Construction	Pile wall design section B-B is changed from Ø450 contiguous pile retaining wall system to a Ø450 secant pile wall system. Design report, pile wall schedule and construction drawings updated accordingly.	Dr. Azeez Rotimi	14/02/23	Dr. Abid Adekunte	14/02/23

CALCULATIONS

www.deep-foundations.co.uk

Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Ret Pile Retaining Wall & \emptyset 300 Bearing Pile	aining Wall, ∅600 s <u>Rev. 04</u>	Contiguous	Page:	3 of 41

BROXWOOD VIEW, 29. ST. EDMUND'S TERRACE LONDON NW8 7QH

DETAILED DESIGNS FOR Ø450 PERIMETER SECANT PILE RETAINING WALL, Ø600 PERIMETER CONTIGUOUS PILE RETAINING WALL & Ø300 BEARING PILES

1.0 INTRODUCTION

Deep Foundations Specialists (DFS) Limited have been appointed by Broxwood View Limited to carry out the detailed designs for the permanent perimeter pile retaining walls, associated temporary works and bearing piles for the proposed residential development on the above site in Northwest London.

The wider project is centred on the redevelopment of the site; this involves the complete demolition of the pre-existing 2 storey Porter's Lodge building on the site and the subsequent construction of a new 4 storey-extension adjacent to the northern wall of the existing Barrie House multi-storey block of residential apartments on the site, with an underlying single level-basement. The new 4 storey-structure would accommodate 9 No. residential apartments.

The approximate National Grid Reference for the approximately square-shaped 0.18 ha-site is 527495E, 183575N, while existing site topography generally slopes downwards from the northern boundary to the south, with an approximate gradient of 1:8. The site's reduced levels vary between (+48.600m OD) – (+42.000m OD). It is proposed to chiefly support the new structure on a 950mm thick reinforced concrete raft at basement floor level, while a number of bearing piles are also required outside the proposed basement area to support some sections of the proposed development.

A combination of secant bored pile retaining wall and contiguous bored pile retaining wall are required to support the deep excavation for the proposed subterranean components of the building, Maximum retained height is < 4.85m. The pile retaining walls would also function as permanent components of the new basement structure. In addition to lateral earth/groundwater retention, the bored pile retaining walls are also designed to support service vertical compressive loading of up to 500 kN/m run and nominal service vertical tension loading of -20 kN/m run of wall, as specified by the Project Structural Engineer.

The detailed design package for the temporary works that are required to provide lateral restraint to the bored pile walls at construction stage would be prepared and issued by DFS or others under separate cover.

D ₋ S				CALCULATIONS
				www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date: 13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile	e Retaining Wall, Ø600 (Contiguous	Page: 4 of 41
	Pile Retaining Wall & Ø300 Bearing	Piles <u>Rev. 04</u>	0	C C
 This p	particular report chiefly focuses on the	e detailed designs for th	e Ø450 peri	meter secant pile retaining wall,
Ø600	perimeter contiguous pile retaining	wall and the \varnothing 300 beari	ing piles. The	e perimeter secant pile retaining
wall s	hall comprise of 450mm dia. male ar	nd female piles, with ma	ale piles space	ced @ 550mm c/c intervals. The
perim	neter contiguous pile retaining wall sl	hall comprise of 600mm	n dia. piles (م م 700mm c/c. The bearing piles
are su	ubject to service vertical compression	n, tension and horizonta	al loading of	up to 250 KN/pile, -25 KN/pile
and 1	0 KN/pile respectively.		-	
The d	esign report is presented under the fo	ollowing headings:		
•	INPUT DATA			
•	OUTLINE OF DESIGN			
•	TYPICAL SECTIONS CONSIDERED IN	PILE WALL ANALYSIS &	DESIGN	
•	GROUND CONDITIONS			
•	BORED PILE RETAINING WALL DESI	GNS		
	- Geotechnical Design			
	- Structural Design			
•	BEARING PILE DESIGN			
	- Geotechnical Design			
	- Structural Design			
•	REFERENCES			

• APPENDICES

D	_S	CALCULATIONS
	+	www.deep-foundations.co.uk
l dol	No:	DFS221011 Design Engineer: AR Date: 13 December 2023
 Job Name: BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Calc Title: Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Conti Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u> 		BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Page: 5 of 41 Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>
2.0	INPUT	T DATA
	Desig	n is based on the following site-specific refence documents:
	(i)	Email Correspondence between Andrea Carbogno (Carbogno Ceneda Architects) and Dr. Abid
		Adekunte (Deep Foundations Specialists Limited) and others on 13/02/2023 @ 09:49 – RE: Broxwood View Secant Piled Wall.
	(ii)	PARMARBROOK's Document No. 1805 of May 2018 – Basement Impact Assessment: Barrie House, 29 St. Edmunds Terrace.
	(iii)	Card Geotechnics Limited's Geotechnical Report No. CG/28408 Rev. 2 of May 2018 – Barrie House Basement Impact Assessment Revision 2.
	(iv)	Soil Consultants Limited's Geotechnical Report No. 9241/OT/JRCB of 07 November 2012 – Ground Investigation Report for Proposed Construction at Barrie House, 29 St. Edmund's Terrace, London NW8 7QH.
	(v)	Richard Tant Associates' Drawing No. 5295-S01G – Notes.
	(vi)	Richard Tant Associates' Drawing No. 5295-S02D – Proposed Basement Floor Sheet 1/2.
	(vii)	Richard Tant Associates' Drawing No. 5295-S03A – Proposed Basement Floor Sheet 2/2.
	(viii)	Richard Tant Associates' Drawing No. 5295-S04B – Proposed Ground Floor Sheet 1/2.
	(ix)	Richard Tant Associates' Drawing No. 5295-S05A – Proposed Ground Floor Sheet 2/2.
	(x)	Richard Tant Associates' Drawing No. 5295-S10D – Section 1-1.
	(xi)	Richard Tant Associates' Drawing No. 5295-S11D – Section 2-2.
	(xii)	Richard Tant Associates' Drawing No. 5295-S12C – Sections 3-3 & 4-4.
	(xiii)	Richard Tant Associates' Drawing No. 5295-S13D – Section 5-5.
	(xiv)	Richard Tant Associates' Drawing No. 5295-S14D – Sections 6-6 & 7-7.

<u>D_FS</u>				(ww	CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Re	taining Wall, Ø600	Contiguous	Page:	6 of 41
	Pile Retaining Wall & Ø300 Bearing Pile	es <u>Rev. 04</u>	C	-	
(xv)	Richard Tant Associates' Drawing No. 5	295-S15C – Section	is 8-8 & 9-9.		
(xvi)	Richard Tant Associates' Drawing No. 5	295-S16C – Section	ıs 10-10, 11-1	1 & 12-:	12.
(xvii)	Richard Tant Associates' Drawing No. 5	295-S17C – Section	13-13.		
(xviii)	Richard Tant Associates' Drawing No. 5	295-S18C – Section	14-14.		
(xix)	Richard Tant Associates' Drawing No. 5	295-S19C – Section	15-15.		
(xx)	Richard Tant Associates' Drawing No. 5	295-S20A – Sectior	n 16-16.		
(xxi)	Richard Tant Associates' Drawing No. 5	295-S21A – Sectior	n 17-17.		
(xxii)	Richard Tant Associates' Drawing No. 5	295-S22B – Section	18-18.		
(xxiii)	Richard Tant Associates' Drawing No. 5	295-S23A – Sectior	n 19-19.		
(xxiv)	Richard Tant Associates' Drawing No. 5	295-S24 – Section 2	20-20.		
(xxv)	Richard Tant Associates' Drawing No. 5	295-S25 – Sections	21-21 & 22-2	2.	
(xxvi)	Richard Tant Associates' Drawing No. 5	295-PM01C – Move	ement Monito	oring 1/	3.
(xxvii)	Richard Tant Associates' Drawing No. 5	295-PM02C – Mov	ement Monito	oring 2/	3.
(xxviii)	Richard Tant Associates' Drawing No. 5	295-PM03A – Mov	ement Monit	oring 3/	3.

D ₋ S					CALCULATIONS
-+				wv	vw.deep-foundations.co.uk
Job No:	DFS221011 D	esign Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – Ø450 Secant Pile Retair Pile Retaining Wall & Ø300 Bearing Piles <u>R</u>	ning Wall, Ø600 <u>ev. 04</u>	Contiguous	Page:	7 of 41

3.0 OUTLINE OF DESIGN

- Design calculations for the pile retaining walls and bearing piles have been carried out in accordance with the recommendations of the ICE SPERW (2016), BS 8002 (1994), BS 8004 (1986), BS8102 (2009), BS5975 (2008), CIRIA Report No. C760 (2017), London District Surveyors' Association's (LDSA) Guidance Note No. 1 for the Design of Straight Shafted Bored Piles in London Clay (2018) and the BS 8110 (1997).
- Proposed development comprises of a 4 storey-block of residential apartments, with an underlying basement, as an extension adjacent to the northern wall of the existing Barrie House multi-storey block of residential flats.
- The new structure is proposed to be chiefly supported on reinforced concrete raft at lower ground floor level. However, a number of bearing piles are also required outside the proposed basement area to support a number of sections of the proposed building.
- The proposed earth/groundwater retention system for the deep excavation for the new basement on the site shall comprise of a combination of Ø450 perimeter secant pile retaining wall; 450mm dia. Interlocking male and female piles, with male piles spaced @ 550mm c/c intervals and Ø600 contiguous pile retaining wall; 600mm dia. piles @ 700mm c/c intervals.
- An existing Thames Water underground asset/trunk runs outside the northern boundary of the site at off-set distances of between 4.1m – 5.0m from the centreline of the nearest run of pile retaining wall. Therefore, the serviceability of the adjacent underground trunk has had to be carefully accounted for in the choices of the ground engineering methodologies and construction sequencing on which the detailed designs for the pile retaining walls and bearing piles presented in this report are based.
- Approx. 73 Im total run of proposed perimeter bored pile retaining walls; this comprises of 13.5 Im of Ø600 contiguous pile retaining wall and 59.5 Im of Ø450 secant pile retaining wall.
- For serviceability reasons, the pile retaining walls shall be temporarily restrained with temporary structural steel props prior to the commencement of bulk excavation for the new basement. The temporary props can be removed once the permanent floor slabs achieve sufficient structural strength. However, it is imperative that the Project Structural Engineer designs the reinforced

D ₋ S	CALCULATIONS
-+	www.deep-foundations.co.uk
Job No:	DFS221011 Design Engineer: AR Date: 13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST.
	NW8 7QH
Calc Title:	Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Page: 8 of 41 Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>
	concrete capping beam to safely span across openings at ground floor level in the permanent
	condition i.e. 8m minimum span length under 160 kN/m service horizontal loading.
•	Maximum retained height of pile walls is < 4.85m.
•	5 No. \varnothing 300 bearing piles are required outside the proposed basement area to support a number of
	sections of the proposed development.
•	The bearing piles are subject to service vertical compressive, tension and horizontal loading of up to
	250 KN/pile, -25 KN/pile and 10 KN/pile respectively. In addition, the design for the bearing piles
	accounts for load eccentricity-induced overturning moment of up to 19 kNm/pile. A copy of DFS'
	bearing pile construction schedule, which provides detailed information on individual pile loads,
	required pile lengths and required steel reinforcement is attached to the appendices of this report.
•	Shaft resistance and passive resistance within the top 5m of every bearing pile have been ignored in
	pile axial capacity calculations and lateral analysis, in order to account for potential bulk excavation-
	induced stress relief in the ground within the site.
•	Piling platform level(s) are unconfirmed at this stage. However, for design purpose, the piling mat level
	for both the perimeter pile walls and the bearing piles is generally taken to be the proposed ground
	floor level; +44.600m OD. Nonetheless, the Principal Contractor must confirm actual piling platform
	level(s) prior to the commencement of piling works on the site, so that the pile wall construction
	schedule and bearing pile construction schedule may be amended accordingly.
•	The perimeter pile walls and bearing piles shall be installed by Continuous Flight Auger (CFA) drilling
	technique, with heavy duty augers.
•	It is imperative that a temporary guide wall be put in-place prior to the commencement of the
	installation of the secant pile wall.
•	In addition to lateral earth/groundwater retention, the pile retaining wall has also been designed to
	support service vertical compressive and tension loading of up to +500 kN/m and -20 kN/m
	respectively.
•	The secant pile wall design accounts for 1:100 verticality tolerance (with heavy duty augers), 25mm
	horizontal positional tolerance (with a temporary guide wall in-place) and 30mm over-break in
	accordance with the recommendations of the ICE Specification for Piling & Embedded Retaining Walls
	(ICE SPERW, 2015). Based on these, there are potentials for piles in the secant wall to encroach into

D ₋ S	CALCULATIONS				
	www.deep-foundations.co.uk				
Job No:	DFS221011 Design Engineer: AR Date: 13 December 2023				
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Retaining Wall, \emptyset 600 Contiguous Page: 9 of 41 Pile Retaining Wall & \emptyset 300 Bearing Piles <u>Rev. 04</u>				
	the basement area by magnitudes of up to 105mm. It is imperative that the Architect, Project				
	Structural Engineer and Principal Contractor make allowance for this.				
•	The secant pile wall is designed to provide earth/groundwater retention in both temporary and				
	permanent conditions. Pile wall design accounts for full hydrostatic pressure behind the wall in the				
	long term, in accordance with the recommendations of the BS8102 (2009).				
•	Estimation of pile wall and bearing pile vertical capacities in compression are based on a global factor				
	of safety of 2.6, with a minimum partial factor of safety of 1.2 on shaft friction resistance only. This is				
	based on the assumption that no pile load tests would be carried out on the site (after LDSA, 2018).				
•	Estimation of pile wall and bearing pile vertical capacities in tension are based on a minimum factor of				
	safety of 3.0 on shaft friction resistance only. This is also based on the assumption that no pile load				
	tests would be carried out on the site (after LDSA, 2018).				
•	Estimation of pile wall axial capacities are based on 100% pile group efficiency for closely spaced				
	perimeter pile groups, following the recommendations of Kezdi (1957), Broms (2007), Rose & Taylor				
	(2010), Rose (2012) and Rose et al. (2013).				
•	Maximum pile settlement of 5mm under service vertical loading.				
•	Estimated pile wall lateral deflection in both temporary and permanent conditions is < 10mm.				
•	Concrete grade DS-4-FND4-C32/40 for male/hard piles, as specified by the Project Structural Engineer.				
•	10 N/mm ² 56 day-strength concrete for female piles in secant pile wall for permanent groundwater				
	cut-off.				
•	50mm cover to pile reinforcement.				

D ₋ S			CALCULATIONS
F			www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Date: 13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH		

Calc Title:Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 ContiguousPage: 10 of 41Pile Retaining Wall & Ø300 Bearing Piles Rev. 04

4.0 TYPICAL SECTIONS CONSIDERED IN PILE WALL ANALYSIS & DESIGN

Typical pile wall sections considered in numerical analysis and design are described below. Also, see DFS' construction drawings No's DFS221011-01, DFS221011-02 & DFS221011-03 attached to the appendices of this report for the numbered pile wall layout and illustration of typical design sections respectively.

PILE WALL SECTION A - A (Ø600 PERIMETER CONTIGUOUS PILE WALL, DOUBLY PROPPED, ADJACENT TO

EXISTING HEAVILY LOADED PAD FOOTINGS UNDERNEATH BARRIE HOUSE BUILDING): Piling Platform Level = Proposed Ground Floor Level = +44.600m OD. Basement Formation Level \approx -+39.770m OD. Maximum Pile Wall Retained Height < 4.85m (Measured from Piling Platform Level). Wall Section is Designed to be Temporarily Restrained with 2 No. Rows of Structural Steel Props at Capping Beam Level and 2.5m Depth (i.e. +42.100) in the Temporary Condition. In the Permanent Condition, the Pile Wall shall be Restrained by the Basement Raft/Basement Floor Slab and the Ground Floor Slab. 270 kPa Structural Surcharge Loading from Adjacent/Existing Pad Footings and 10 kPa Nominal Traffic & Services Surcharge are Accounted for in Wall Analysis & Design. In Addition to Lateral Retention, Pile Wall Design Accounts for Service Vertical Compressive and Tension Loading of up to 500 kN/m & -20 kN/m Run of Wall Respectively.

Proposed Sequence of Construction:

- Install Ø600 piles @ 700mm c/c intervals from piling platform level (+44.600) to depths specified by DFS to form contiguous pile wall; see DFS' pile wall construction schedule for more detailed information.
- 2. Break down piles to 75mm above proposed soffit level of RC capping beam.
- 3. Construct RC capping beam on pile wall.
- 4. Install 1st row of temporary props at capping beam level.
- 5. Carry out initial bulk excavation down to 3m depth.
- 6. Install 2nd row of temporary props and associated structural steel waling beam at 2.5m depth (+42.100).
- 7. Complete bulk excavation down to basement formation level; +39.770.
- 8. Place blinding of 50mm minimum thickness at formation level.
- 9. Construct 950mm thick reinforced concrete raft/basement floor slab with water-proof concrete and dowel into pile retaining wall.

D _c S				CALCULATIONS
			ww	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Designs – Ø450 Secant Pile Pile Retaining Wall & Ø300 Bearing	Retaining Wall, Ø600 Contiguous Piles <u>Rev. 04</u>	Page:	11 of 41
10. Co	ommence the construction of RC liner	wall with water-proof concrete, in	front of	pile retaining wall, from
ba	asement level, up to 3m depth.			
11. Re	emove 2 nd row of temporary props and	d associated structural steel waling	beam at	2.5m depth (+42.100).
12. Co	omplete the construction of RC liner w	all up to capping beam soffit level	and conr	nect same to capping
be	eam.			
13. Co	onstruct ground floor slab and connec	t same to capping beam.		
14. Re	emove temporary props at capping be	am level.		
15. Co	onstruct superstructure.			

PILE WALL SECTION B - B (*2*450 PERIMETER SECANT PILE WALL, SINGLY PROPPED, OTHER AREAS OF **PROPOSED BASEMENT, EXCLUDING THE PROPOSED UNDERPINNING AREA**): Piling Platform Level = Proposed Ground Floor Level = +44.600m OD. Basement Formation Level \approx -+39.770m OD. Maximum Pile Wall Retained Height < 4.85m (Measured from Piling Platform Level). Wall Section is Designed to be Temporarily Restrained with 1 No. Row of Structural Steel Props at Capping Beam Level. In the Permanent Condition, the Pile Wall shall be Restrained by the Basement Raft/Basement Floor Slab and the Ground Floor Slab. 25 kN/m Estimated Additional Horizontal Loading from Proposed RC Garden Retaining Wall Supporting Higher Ground behind Pile Wall, 50 kPa Estimated Potential Surcharge from Emergency Fire Engines/Appliances and 10 kPa Nominal Traffic & Services Surcharge are Accounted for in Wall Analysis & Design. In Addition to Lateral Retention, Pile Wall Design Accounts for Service Vertical Compressive and Tension Loading of up to 70 kN/m & -20 kN/m Run of Wall Respectively.

Proposed Sequence of Construction:

- 1. Install temporary guide wall prior to the commencement of secant pile wall construction.
- Install Ø450 interlocking male and female piles, with male piles spaced @ 550mm c/c intervals from piling platform level (+44.600) to depths specified by DFS to form secant pile wall; see DFS' pile wall construction schedule for more detailed information.
- 3. Break down piles to 75mm above proposed soffit level of RC capping beam.
- 4. Construct RC capping beam on pile wall.
- 5. Install temporary props at capping beam level.
- 6. Complete bulk excavation down to basement formation level; +39.770.

D ₋ S					CALCULATIONS
F_				ww	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name	e: BROXWOOD VIEW, 29 ST.				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile	Retaining Wall, Ø600 C	Contiguous	Page:	12 of 41
	Pile Retaining Wall & $arnothing$ Bearing F	Piles <u>Rev. 04</u>			
7.	Place blinding of 50mm minimum thickn	ess at formation level.			
8.	Construct 950mm thick reinforced concr	rete raft/basement floo	r slab with v	vater-pr	oof concrete and dowel
	into pile retaining wall.				
9.	Commence the construction of RC liner	wall with water-proof c	oncrete, in f	front of	pile retaining wall, from
	basement level, up to capping beam soft	fit level and connect sar	me to cappii	ng beam	I.
10.	Construct ground floor slab and connect	same to capping beam	l.		
11.	Remove temporary props at capping bea	am level.			

12. Construct superstructure.

D_S					CALCULATIONS
				W	ww.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \varnothing 450 Secant Pile Ret Pile Retaining Wall & \varnothing 300 Bearing Pile	taining Wall, ∅600 s <u>Rev. 04</u>	Contiguous	Page:	13 of 41

5.0 GROUND CONDITIONS

Site stratigraphy at Broxwood View, 29 St. Edmund's Terrace London NW8 7QH may be generalised as shown in table 1 below:

DEPTH (m bgl)	DESCRIPTION	Representative N _{spt} Value
0.0 – 2.5	Made Ground	-
Below 2.5m bgl	Soft to Firm to Stiff to Very Stiff London Clay	6 - 16

Table 1 – Generalised Site Stratigraphy

Soil parameters used in design are presented in table 2 overleaf. In table 2;

 ϕ' values for the cohesionless layers/made ground have been deduced from N_{spt} values (after Peck, Hanson & Thorburn (1974)).

 ϕ' values for the cohesive layers are deduced from plasticity indices (after CIRIA Report No. 104, 1984 & CIRIA Report No. C580, 2003).

E' values for cohesionless materials/made ground are estimated with the correlation: E' = $2000 - 3000 * N_{spt}$ in kPa (after CIRIA Report No. 143, 1995 & CIRIA Report No. C580, 2003).

E' values for cohesive layers are deduced from the expression $E' = 0.8 * E_u$, where $E_u = 800 * C_u$. (after Borin, 2012).

D _r S							CAL	CULATIONS	
							www.de	ep-foundations.co.uk	
Job No:	DFS221011 Design Engineer: AR						Date: 13	December 2023	
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 70H								
Calc Title:	Calc Title: Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Page: 14 of 41 Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>								
SOIL LAYER		N _{spt}	γ (kN/m³)	φ′ (°)	C' (kPa)	C _u (kPa)	Eu	E' (kPa)	
Made Ground		-	18.0	28.0	0.0	-	-	15000	
Soft to Firm to	Stiff to	6 - 16	19.0	23.0	5.0	30 + 12z	24000 + 9600z	19200 + 7680z	
Very Stiff Lond	lon Clay								

Table 2 – Input soil parameters

D_S					CALCULATIONS
				wv	vw.deep-foundations.co.uk
Job No:	DFS221011 De	esign Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \varnothing 450 Secant Pile Retain Pile Retaining Wall & \varnothing 300 Bearing Piles <u>Re</u>	ing Wall, ∅600 <u>ev. <mark>04</mark></u>	Contiguous	Page:	15 of 41

6.0 PILE RETAINING WALL DESIGNS

(i) <u>Geotechnical Design</u>

The geotechnical design involves four stages, which are outlined below;

(i) <u>Ultimate Limit State (ULS) Analysis</u> – This involves the use of factored soil parameters to estimate the required embedment of the wall below proposed excavation level, for overall stability to be maintained in both the temporary condition and the permanent condition. This analysis has been carried out with the 'CADS PWS 6.09' geostructural modelling programme for embedded retaining walls. Analysis also provides information on estimated ultimate bending moments and shear forces in the wall.

Factors of safety adopted in the ULS analysis are based on the recommendations of the CIRIA Report No. C580 (2003) and CIRIA Report No. C760 (2017) for moderately conservative parameters. These are outlined below:

Factor of safety on undrained shear strength C_u = 1.5

Factor of safety on drained shear strength C' = 1.2

Factor of safety on drained angle of shearing resistance φ^\prime = 1.2

See copies of the CADS PWS 6.09 ULS analysis output files attached to the appendices of this report.

- (ii) <u>Serviceability Limit State (SLS) Analysis</u> This involves the use of unfactored soil parameters to estimate the lateral displacement of the wall, as well as service bending moments, shear forces and service loads on the struts/permanent slabs. The analysis has been carried out with the 'CADS PWS 6.09' geostructural modelling programme. See copies of the CADS PWS 6.09 SLS analysis output files attached to the appendices of this report.
- (iii) <u>Pile Wall Capacities under Vertical Axial Loading</u> This is based on the traditional bearing capacity approach for axially loaded piles. 100% pile group efficiency has been adopted, based on the

D_S				(CALCULATIONS
F				ww	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Reta Pile Retaining Wall & \emptyset 300 Bearing Piles	ining Wall, ∅600 <u>Rev. 04</u>	Contiguous	Page:	16 of 41
	recommendations of Rose & Taylor (201	0), Rose et al. (20	11 & 2012), k	Kezdi (19	957) & Broms (2007) for
	perimeter pile groups embedded in clay	or sand.			
	However, the wall is assumed to act as	a continuous door	n strin footing	bolow b	accoment formation level

However, the wall is assumed to act as a continuous deep strip footing below basement formation level, surrounded by a block of soil, with the assumption of a block type failure mechanism in the ultimate limit state. In addition, the bearing capacity factor N_c in the London clay is reduced with a reduction factor f, in order to account for the existence of gaps in-between the piles within the wall.

The reduction factor f is expressed as;

$$f = \frac{\pi D}{4S}$$

----- [1]

Where D = pile diameter and S = pile centre to centre spacing. This approach produces an estimate of the axial capacities of the wall per metre run. See Adekunte (2014) for more detailed information on this methodology.

Separate MS Excel spreadsheet showing pile wall axial capacities in compression and tension are attached to the appendices of this report.

(iv) <u>Assessment of At-Rest Lateral Earth Pressures Around Pile Wall in the Permanent Condition</u> –

The numerical modelling/analysis of all pile wall sections for the permanent conditions are based on drained/effective stress parameters ϕ' , c' & E' presented in table 2 of section 5.0 of this report. However, as the pile retaining wall would be restrained by permanent floor slabs in the permanent condition, such that potential wall lateral displacement could be limited, there could be potentials for lateral earth pressures around the retaining wall to be higher than the active pressures or lower than the passive resistances computed by the CADS PWS 6.09 programme that had been based on active and passive pressure coefficients K_a & K_p respectively.

пς				CALCULATIONS
				www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date: 13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Ret Pile Retaining Wall & Ø300 Bearing Piles	aining Wall, Ø600 5 <u>Rev. 04</u>	Contiguous	Page: 17 of 41
	Therefore, this report considers it prude	ent to investigate t	he potential i	influence of at-rest-lateral earth
	pressures on the overall stability of the	e pile wall in the p	permanent co	ondition. Lateral effective earth
	pressure at rest σ'_r is given by the equat	tion;		
	$\sigma'_r = \sigma'_z * K_o$			[2]
	In equation 2, K_o is coefficient of earth overburden pressure).	pressure at rest ar	nd σ'_z is effec	tive vertical pressure (including
	Taking the shallow made ground layer the underlying London clay stratum the practice;	on the site to be r to be overconsolic	ormally cons lated in line	olidated material, whilst taking with established geotechnical
	$K_{\text{o}(\text{NC})}$ for the made ground layer may be	estimated with Ja	<y's &="" (1944="" 1<="" td=""><td>1948) equation;</td></y's>	1948) equation;
	$K_{o(NC)} = 1 - Sin \phi'$			[3]
	In equation 3, ϕ' is effective angle of she	earing resistance.		
	$K_{\text{o(OC)}}$ for the London clay stratum may b	e estimated with S	chmertmann	's (1985) equation;
	$K_{o(OC)} = 0.5 * (OCR)^{0.5}$			[4]
	where OCR is overconsolidation ratio equation;	, which can be e	estimated wit	th Mayne & Mitchell's (1987)
	OCR = 4.31 * $(C_u/\sigma'_z)^{0.5}$			[5]
	where C _u = undrained shear strengt pressure).	h and σ'_z is effe	ctive vertical	l stress (including overburden
	However, with references to the CIRIA	Report No. 104 (1	<u>984), CIRIA R</u>	Report No. C580 (2003) and the
	CIRIA Report No. C760 (2017), at-res	t-earth pressures	conditions a	are inapplicable to embedded

_				ww	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \varnothing 450 Secant Pile Reta Pile Retaining Wall & \varnothing 300 Bearing Piles	ining Wall, Ø600 C <u>Rev. 04</u>	Contiguous	Page:	18 of 41

retaining walls due to the effects of wall installation by boring technique and the subsequent bulk excavation in front of the retaining wall, which essentially result in significant stress relief around the embedded retaining wall, such that horizontal effective stresses close to the wall are considerably reduced to values below their in-situ value e.g. see section 4.1.2 of the CIRIA Report No. C580 (2003).

CALCULATIONS

Furthermore, section 4.5 of the CIRIA Report No. 104 (1984) recommends that coefficients of atrest-pressures "should not in general be thought of as a fundamental property of the soil" in embedded retaining wall analysis and design, as at-rest-conditions no longer apply if the ground has strained horizontally" e.g. due to drilling-induced/bulk excavation-induced reduction in horizontal stress. In addition, movements of most propped/unpropped embedded retaining walls inevitably lower K₀ values behind the wall from its value just after installation to a value close to the coefficient of active pressure Ka (after CIRIA Report No. 104, 1984).

In addition, while the CIRIA Report No. 104 (1984) acknowledges that in some circumstances, rigid structures may experience higher than active pressures, any structure partially or wholly relying on passive pressure of the soil in front of the wall to maintain overall stability should not be designed for pressures higher than active values behind the wall (see page 76, section 8.1.2 of the CIRIA Report No. 104, 1984).

On the basis of the above, CIRIA Reports No's 104 (1984), C580 (2003) & C760 (2017) generally do consider coefficients of at-rest-earth pressures not to be particularly applicable to the design of embedded retaining walls in both temporary and permanent conditions, while the use of active and passive pressure coefficients K_a and K_p are encouraged by all the documents. These recommendations essentially form the basis of the retaining wall design calculations presented in this report.

The results of the wall analysis and design are presented in table 3 overleaf. A copy of the pile wall construction schedule is also attached to the appendices of this report.

D_S CALCULATIONS								
-+					www.deep-for	undations.co.uk		
Job No: I	DFS2210)11		Design Engineer: Al	R Date: 13 Dece	mber 2023		
Job Name: I I	Job Name: BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH							
Calc Title: [Calc Title: Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Page: 19 of 41 Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>							
PILE WALL SECTIO	N	Maximum	Required Male	Theoretically	Temporary Prop	Required Steel		
		Retained	Pile	Estimated & Expected	Load/Permanent	Reinforcement		
		Height (m)	Length/Female	Maximum Pile Wall	Horizontal Loading on RC	in Piles		
			Pile Length (m)	Lateral Deflection	Floor Slabs (kN/m)			
				(mm)				
Continu A A		4.05	16.0	20.0. (c. 10.0. surgested	200.0 (1 st Down of	12 0400 + 12m		
Section A - A		4.85	16.0	20.0 (< 10.0 expected,	300.0 (1 st ROW Of	12-B40s x 13m		
(∅600 Contiguo	us Pile			based on DFS	Comporary Props @	& B16 IInks @		
Wall. Doubly Pror	oped @			experience with the	Capping Beam Level)	150mm C/C		
Capping Beam I	evel &			CADS PWS 6.09	550.0 (2 nd Row of			
2.5m Depth)				field in structure at table	Temporary Props @ 2.5m			
				field instrumentation &	Depth: +42.100)			
				monitoring).				
					550.0 (Basement			
					Raft/Basement Floor Slab)			
					160.0 (Ground Floor Slab)			
Section B - B		4.85	8.0/ <mark>6.0</mark>	8.0 (< 10.0 expected,	40.0 (Temporary Props @	5–B20s x 7m &		
				based on DFS'	Capping Beam Level)	B8 links @		
(Ø450 Secant Pil	e Wall,			experience with the		175mm c/c		
Singly Propped	d @			CADS PWS 6.09	220.0 (Basement			
Capping Beam Lev	vel)			programme & parallel	Raft/Basement Floor Slab)			
				field instrumentation &				
				monitoring).	90.0 (Ground Floor Slab)			
	- The l	ing of up to ± 50	s recommended in th 0 kN/m and -20 kN/m	e above table are adequate t	o support service vertical compre	SSIVE and tension		
	- Copi	ies of CADS PWS	6.09 computer outp	ut files for pile lateral stability	analysis are attached to the app	endices of this		
	repo	ort.			,			
	- Sepa	arate MS-Excel s	preadsheet for pile w	all axial capacities in compres	ssion and tension are also attache	ed to the		
	appe	endices of this re	eport.					
			Table 3 – Sun	nmary of Pile Retaining	Wall Design			

D ₋ S	CALCULATIONS
	www.deep-foundations.co.uk
Job No:	DFS221011 Design Engineer: AR Date: 13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH
Calc Title:	Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Page: 20 of 41 Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>
(ii)	Structural Design
	The 'CADS PWS 6.09' geostructural modelling programme has also been used to design the
	reinforcement bars in the piles within the contiguous pile wall. Copies of relevant computer output

files are attached to the appendices of this report.

	CALCULATIONS
	www.ueep-roundations.co.uk
Job No:	DFS221011 Design Engineer: AR Date: 13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Page: 21 of 41 Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>
7.0 <u>BEAR</u>	RING PILE DESIGN
(i)	Geotechnical Design
	The geotechnical design for the bearing piles to support service vertical compressive loading, tension
	loading, horizontal loading and overturning moments involves three stages, which are outlined below;
	- Estimation of Pile Capacities under Vertical Axial Compressive/Tension Loading.
	- Pile Settlement Analysis
	- Assessment of Pile Behaviour under Combined Lateral Loading/Tension/Overturning Moments
	Pile Capacities under Vertical Axial Loading
	Design is generally based on the traditional bearing capacity approach.
	In cohesionless layers, ultimate shaft friction capacity Q_s is given by the equation:
	$Q_s = k_s \cdot \overline{\sigma'_{\nu o}} \cdot tan(\delta) \cdot A_s \tag{6}$
	And ultimate end bearing capacity is given by the equation:
	$Q_b = N_q \cdot \sigma'_{\nu 1} \cdot A_b \tag{7}$
	where
	$k_s =$ Coefficient of lateral earth pressure.
	$\overline{\sigma'_{vo}}$ = Average effective overburden pressure along shaft. (kPa)
	$\delta = - \delta$ Angle of friction between pile and soil.
	σ'_{v1} = Effective overburden pressure at toe level. (kPa)
	N_q = Bearing capacity factor (after Berezanstev et al., 1961).
	In cohesive layers, ultimate shaft friction capacity is given by the equation:

D _c S					CALCULATIONS		
				ww	vw.deep-foundations.co.uk		
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023		
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 70H						
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Re Pile Retaining Wall & \emptyset 300 Bearing Pile	etaining Wall, Ø600 es <u>Rev. 04</u>	Contiguous	Page:	22 of 41		
	$Q_s = \alpha * C_u * A_s$				(8)		
	Ultimate end bearing capacity is given	by the equation:					
	$Q_b = N_c * C_u$				(9)		
	Where						
	α = adhesion factor. This has been take	en to be 0.5-0.6 in th	ne clay strata	on the	current site (after		
	Martin et al., 2016).						
	C _u = undrained shear strength						
	A _s = pile shaft surface area						
	N _c = bearing capacity factor accounting for cohesion. This is taken to be 9 in clay.						
	Separate MS Excel spreadsheet for pile	e axial capacities in t	ension and o	compres	sion are attached to the		
	appendices of this report. Bearing pile	e construction sched	lule showing	pile ler	ngths and reinforcement		

details is also attached to the appendices.

D ₋ S					CALCULATIONS
-+				wv	vw.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \varnothing 450 Secant Pile Ret Pile Retaining Wall & \varnothing 300 Bearing Pile	taining Wall, ∅600 s <u>Rev. 04</u>	Contiguous	Page:	23 of 41

Analysis of Pile Settlement under 250 KN Maximum SWL (Ø300 Pile)

Maximum pile settlement under a given applied load is given by the sum of the initial shaft movement required to mobilise the skin friction around the pile shaft, elastic settlement of the pile shaft and the elasto-plastic deformation of soil beneath the pile toe. This can be expressed as:

(after Tomlinson, 2001 and Mokwa & Duncan, 2003).

In equation 10, Δ_y is the initial movement required to mobilise skin friction resistance around the pile shaft. It is generally considered to be smaller than the movement required to mobilise the end-bearing resistance at pile toe level, while it is generally independent of pile diameter and soil type (after Kulhawy, 1984).

 Δ_{y} typically ranges between 2.5mm – 8mm (after Davisson (1975), Gardner (1975) & Kulhawy (1984)). However, for the purpose of the current settlement calculations, Δ_{y} = 3mm is considered to be reasonable (after Mokwa & Duncan, 2003).

Ultimate skin friction capacity = 558 KN (please see copy of DFS' pile axial capacity calculation spreadsheet attached to the appendices of this report)

Adopting a factor of safety of 1.5 on shaft friction resistance only;

Q _{allowable} in skin friction = 558/1.5 = 372 KN; this shall be limited to the maximum service load on the pile (250 KN).

 \therefore Load on Pile Shaft W_s = 250 KN

:. Total Load Transferred to pile base $W_b = (250 - 250)$ KN = 0.0 (this essentially points to the likelihood of the service loading on the pile being wholly supported in shaft friction only, with negligible or no-load transfer to the pile base).

D ₋ S					CALCULATIONS
-1-				ww	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Re Pile Retaining Wall & Ø300 Bearing Pile	etaining Wall, Ø600 es <u>Rev. 04</u>	Contiguous	Page:	24 of 41
L = Sh	aft Length = 15.0m				
B = Pil	le diameter = 0.3m				
$A_s = SI$	haft Area = π * Β * L = π * 0.3 * 15.0 = 14	.14m²			
A _b = P	ile Base Area = $\pi * B^2 / 4 = \pi * 0.3^2 / 4 = 0$	0.07 m²			
E _p = E	lastic Modulus of Pile Material (concrete) = 30 GPa. However	r, conservativ	ely ador	ot 15 GPa.
ν = Pc	pisson's ratio of soil beneath pile base. Pi	le is end-bearing in s	stiff to very st	iff clay.	Use ν = 0.15.
I _p = In	fluence factor. For ν = 0.0 – 0.25 and L/B	$>$ 5, $I_{\rm p}$ = 0.5 (after T	omlinson, 200	01).	
E _b = D	eformation modulus of soil beneath the	pile. This can be exp	pressed as:		
E _b = 2 C760,	- 3 * N _{spt} in MPa (after CIRIA Report No 2017)	o. 143, 1995, CIRIA I	Report No. C	580, 200	03 and CIRIA Report No.
N _{spt} at	t pile toe level > 35				
∴ E _b =	2 * 35 = 70 MPa or 70,000 kPa				
= 3 ∴ E	[8.84 x 10 ⁻³] + [0.0] + [3.0] mm				
∴ε≈	3.1mm.				
Hence	e, based on site-specific design parame	ters, estimated wo	rst-case pile	head se	ettlement under service
vertic	al compressive loading of up to 250 KN	i <u>s < 5mm (O.K.).</u>			
Also, a	a copy of the pile settlement analysis spr	eadsheet is attache	d to the appe	ndices c	of this report.

<u>D_FS</u>			CALCULATIONS www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Date: 13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH		
Calc Title:	Detailed Designs – \varnothing 450 Secant Pi Pile Retaining Wall & \varnothing 300 Bearing	le Retaining Wall, ∅600 Contiguous g Piles <u>Rev. 04</u>	5 Page: 25 of 41
(ii)	Structural Design		
1. <u>C</u>	ompression Reinforcement in Bearin <u>300 Section</u> Capacity of concrete section unde	n <mark>g Piles:</mark> r axial compressive loading is given	by:
	$\begin{array}{l} \textit{Compressive SWL} \leq \\ \gamma_f = \\ f_{cu} = \\ A_c = \\ \\ \textit{SWL} \leq \\ \\ \textit{SWL} \leq \end{array}$	$\frac{0.4 \times f_{cu} \times A_c}{\gamma_f}$ 1.5 40N/mm ² 70718 mm ² 0.4 × 40 × 70718 1.5 754 KN (O.K.).	(11)
	Maximum service vertical compression	essive loading of 250 KN/pile is le	ss than 754 KN, therefore Grade
	Concrete O.K. Compression <u>∴ Provide nominal compression r</u>	einforcement.	

2. <u>Bending/Tension/Shear Reinforcement in Bearing Piles:</u>

Please see copies of bearing pile lateral analysis spreadsheet attached to the appendices of this report.

Essentially, the 4-B25 x 8m steel reinforcement cage and R6 links @ 120mm c/c in each bearing pile is designed to support a combination of tension loading, bending moments and shear forces. Therefore, no additional central tendons are required in these piles.

D ₋ S				CALCULATIONS
-+-				www.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer: AR	Da	te: 13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH			
Calc Title:	Detailed Designs – \varnothing 450 Secant Pile Re Pile Retaining Wall & \varnothing 300 Bearing Pile	etaining Wall, Ø600 Contiguou es <u>Rev. 04</u>	s Pa	ge: 26 of 41

REFERENCES

Adekunte, Sheppard & Rotimi (2020), "Experience-Based Value Engineering of Foundations & Deep Excavation Support Systems". *Proceedings of the Deep Foundations Institute's 46th Annual International Conference on Deep Foundations*, Las Vegas, Nevada USA, October 13-16, 2021.

Adekunte, Greentree, Brunger & Munteanu (2018), "Non-Conventional Practice: Recent Case Histories of the use of Vertical Buttress Piles in Deep Excavation Support". *Paper Verbally Presented and Published in the Proceedings of the Deep Foundations Institute's* 43rd Annual International Conference on Deep Foundations, Anaheim California, USA, October 24-27, 2018.

Adekunte, Hilton & Greentree (2016), "An Alternative Approach for Estimating the Vertical Capacity of L-Shaped Segmental Underpinning Systems in Urban Basement Construction". *Proceedings of the Deep Foundations Institute's International Conference on Deep Foundations, Seepage Control and Remediation*, New York, USA, October 12-15, 2016.

Adekunte (2015), "Collaborative Development of Sustainable & Economical Solutions for Underground Structures". *Proceedings of the Deep Foundations Institute's 40th Annual International Conference on Deep Foundations*, Oakland California, USA, October 12-15, 2015.

Adekunte (2014), "Dealing with Complexities Associated with the Application of Bored Pile Retaining Walls in Urban Developments". *Proceedings of the Deep Foundations Institute's 39th Annual Conference on Deep Foundations*, Atlanta Georgia, USA, October 21-24, 2014.

Adekunte (2014), "An Investigation into the Vertical Axial Capacities & Groundwater Cut-off Capabilities of Secant Pile Walls". *Proceedings of the International Society for Soil Mechanics & Geotechnical Engineering (ISSMGE)'s TC207 International Conference on Soil-Structure Interaction – Underground Structures & Retaining Walls*, St. Petersburg, Russia, June 16-18, 2014.

Borin (2012), "The use of WALLAP in the context of Eurocode 7 (EN 1997-1, Eurocode 7: Geotechnical Design)". Geosolve, UK.

British Standards Institution (1986), "BS 8004 - Code of Practice for Foundations".

British Standards Institution (1997), "BS 8110 - Code of Practice for the Structural Use of Concrete".

British Standards Institution (1999), "BS 5930:1999+A2:2010 - Code of Practice for Site Investigations".

				C	CALCULATIONS
—F—	I			www	w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – Ø450 Secant Pile R Pile Retaining Wall & Ø300 Bearing Pi	Retaining Wall, Ø600 C iles <u>Rev. 04</u>	Contiguous	Page:	27 of 41
British (+A1:2	1 Standards Institution (2004), "BS EN 2013)".	1997-1:2004 Eurococ	de 7 – Geote	echnical	Design. General Rules
Britisł Struct	 Standards Institution (2004), "BS E ures – General Rules and Rules for Build 	EN 1992-1-1:2004+A1 dings".	:2014 Euroc	ode 2	– Design of Concrete
British 1992-	Standards Institution (2006), "PD 6683 1".	7: 2006 – Background	Paper to the	UK Nat	ional Annexes to BS EN
Brom	s (1964a), "Lateral Resistance of Piles	in Cohesionless Soils"	". Journal of	Soil Me	chanics & Foundations
Divisio	on. Proceedings of the American Society	y of Civil Engineers, Vo	l. 90, pp. 123	-156.	
Brom	s (1964b), "Lateral Resistance of Pile	s in Cohesive Soils".	Journal of S	Soil Me	chanics & Foundations
Divisio	on. Proceedings of the American Society	y of Civil Engineers, Vo	l. 90, No. SM	2, pp. 2 ⁻	7-63.
Chin	(1970), "Estimation of the Ultimate	Load of Piles not ca	arried to Fai	ilure". <i>F</i>	Proceedings of the 2 nd
South	eastern Asian Conference on Soil Engine	eering, pp. 81-90.			
Chin (1971), "Discussion, "Pile Tests. Arkansa	s River Project". <i>Journ</i>	al of the Ame	erican So	ociety of Civil Engineers,
SMFD	, Vol. 97, SM6, pp. 930-932.				
CIRIA	(1984), "Report No. 104; Design of Reta	aining Walls Embeddeo	d in Stiff Clay'	".	
CIRIA	(1999), "Report No. 181; Piled Foundati	ions in Weak Rock".			
CIRIA	(2003), "Report No. C580; Embedded R	etaining Walls - Guida	nce for Econo	omic De	sign".
CIRIA	(2017), "Report No. C760; Guidance on	Embedded Retaining	Wall Design"		
CIRIA	(1995), "Report No. 143 – The Standard	Penetration Test (SP1	Γ): Methods a	and Use'	
Daviss	on (1975), "Pile Load Capacity". Desig	n, Construction and P	erformance c	of Deep	Foundations, American
Societ	y of Civil Engineers, University of Califo	rnia, Berkeley, Califorr	nia, pp. 1-49.		
Feder	ation of Piling Specialists UK (2006), "Ha	andbook on Pile Load ⁻	Testing".		

				CAL	
				www.dee	ep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date: 13 [December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON				
Calc Title:	NW8 7QH Detailed Designs – \emptyset 450 Secant Pile Ret Pile Retaining Wall & \emptyset 300 Bearing Pile	aining Wall, ∅600 Co s <u>Rev. 04</u>	ontiguous	Page: 28 c	of 41
Fellen	ius (1980), "The Analysis of Results fror	n Routine Pile Load	Tests". Grou	und Enginee	ering, London, Vol.
13(6)	рр 19-31.				
Gardr	ner (1975), "Considerations in the Design	of Drilled Piers". <i>Desi</i>	gn, Construc	tion and Pe	rformance of Deep
Found	dations, San Francisco, pp. 1-32.				
Hassa Rock, Rolla,	ni, Whittaker & Scoble (1980), "Applicati Proposals for a New Size Correlation Cha MO, 1980.	ion of the Point Load rt". <i>Proceedings of th</i>	d Index Test ne 21 st U.S Sy	to Strength /mposium o	Determination of <i>n Rock Mechanics.</i>
Institu	ution of Civil Engineers (2016), "ICE Specifi	cation for Piling and	Embedded R	etaining Wa	alls". 2 nd Ed.
Intern Intern	national Society for Rock Mechanics (198 national Journal of Rock Mechanics & Mini	5), "Suggested Methons ng Sciences, Vol. 22,	ods for Dete pp 51-60.	rmining Poi	nt Load Strength".
Kondr	ner (1963), "Hyperbolic Stress-Strain Resp	onse of Cohesive Soi	ls". Journal c	of the Ameri	can Society of Civil
Engin	eers, SMFD, Vol. 89, SM1, pp. 115-143.				
Kulha	wy (1984), "Limiting Tip and Side Resista	ance". Analysis and I	Design of Pil	e Foundatio	ons, ASCE National
Conve	ention, American Society of Civil Engineers	s, New York, pp. 80-98	3.		
Leona Behav	ards & Lovell (1978), "Interpretation of L viour of Deep Foundations, Special Technic	oad Test on High-Ca cal Publication STP 67	pacity Drive 0, pp 388-41	n Piles". <i>AS</i> .5.	TM Symposium on
Marti of the	n, Budden & Norman (2016), "Pile Tests t Institution of Civil Engineers, Geotechnica	o Justify Higher Adhe I Engineering 169, Ap	esion Factors pril 2016, Issi	s in London ue G2.	Clay". Proceedings
Mokw	va & Duncan (2003), "Rotational Restrain	t of Pile Caps during	Lateral Load	ding". <i>Journ</i>	al of Geotechnical
and G	Geoenvironmental Engineering, American S	Society of Civil Engine	ers, Septeml	ber 2003.	
O' Ro	ourke (1988), "Rock Index Properties for	r Geoengineering De	sign in Und	lerground D	evelopment. SME
Prepr	int 88-48, 1988, 5 pp.				
Peck,	Hanson & Thorburn (1974), "Foundation I	Engineering". 2 nd Ed.			

<u>D_FS</u>				ww	CALCULATIONS
Job No:	DFS221011 Design Eng	ineer:	AR	Date:	13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Retaining Wall, Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>	Ø600	Contiguous	Page:	29 of 41
Rowe	& Armitage (1987a), "Theoretical Solutions for Axia	Defo	rmation of D	rilled Sh	afts in Rock". Canadian
Geote	chnical Journal. Vol. 24(1).				
Rowe Vol. 2	& Armitage (1987b), "A Design Method for Drilled I 4(1).	Piers ir	n Soft Rock".	Canadic	an Geotechnical Journal.

Taylor, Rose & Gorasia (2013), "Pile and pile group capacity; some findings from centrifuge tests". *International Journal of Geo-Engineering*, 2013, 5(2), pp. 5-15.

Tomlinson (2001), "Foundation Design & Construction". 7th Ed. Pearson Education Limited, 2001.

<u>D_FS</u>		ww	CALCULATIONS
Job No:	DFS221011 Design Engineer: AR	Date:	13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Retaining Wall, Ø600 Contiguous Pile Retaining Wall & Ø300 Bearing Piles <u>Rev. 04</u>	Page:	30 of 41
	APPENDICES		

<u>D_FS</u>				ww	CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name: Calc Title:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH Detailed Designs – Ø450 Secant Pile Re Pile Retaining Wall & Ø300 Bearing Pile	etaining Wall, Ø600 es <u>Rev. 04</u>	Contiguous	Page:	31 of 41
	DFS' Pile Wall (Construction	Drawin	gs	

5. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF PRIOR TO COMMENCEMENT OF WORKS.

6. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.

7. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF

9 10 (11	12			15	17
L, WITH MALE PIL	ES @ 550mm c	/c MAXIMUM		->B B		
						∞ ∞ ≥ ⊔ F 83 F 83 F 83 F 83 F 84 F 84 F 85 B5 F 85 M 86
IT IS IMPER SPAN ACI CONDITIC HORIZON IE)	ATIVE THAT THE RC ROSS OPENINGS A DN I.E. 8m MINIMUN FAL LOADING.	C CAPPING BEA T GROUND FLC M SPAN LENGTH	AM BE DESIGNED OR LEVEL IN THI H UNDER 160 kN/	TO SAFELY PERMANENT m SERVICE		36 F 87 M 86 F 87 M 86 F 88 M 86 F 88 M 86 F 88 M 86 F 88 M 86 M 88 M 88 F 90 M 90 F 91 M 91 M 91 M 92 M 92 M 92 M 93 M 93 F 95
WALL, WITH PILES	5 @ 700mm c/c				F 10 F 10 F 10	01 M 102 F 103 F 104
SECTION A-A SECTION A-A SECTION A-A SUBJECTION A-A SUBJECTION AND ADDRESSIN THE SUBJECTION AND ADDRESSIN THE CONTRACTOR MAKE ALLOWANCE FOR THE RECOMMENDATIONS OF THE ICE SEMENT AREA BY MAGNITUDES OF UP TH THE ABOVE STATED REGULATION. F GROUND CONDITIONS ON THE SITE,	HEALTH, SAFETY AND 8 IN ADDITION TO THE IDENTIFIED THROUGH HAZARDS. 8.1 PILING PLATFORM LE IS GENERALLY TAKEN PLATFORM LEVEL(S) ACCORDINGLY. 8.2 A REINFORCED CONC COMMENCEMENT OF 8.3 IN ADDITION, IT IS IN	ENVIRONMENT RISK/HAZARD TYPICAL DESIGN RISK ASSESS VEL IS UNCONFIRMED I TO BE THE PROPOSE PRIOR TO THE COMME CRETE CAPPING BEAM BULK EXCAVATION FOR IPERATIVE THAT THE C	LY ASSOCIATED WITH TH MENT. THESE ARE OUTL AT THIS STAGE. HOWEV ED GROUND FLOOR LEV ENCEMENT OF PILING WO MUST BE CONSTRUCTED R THE NEW BASEMENT. CONCRETE MIX DESIGN F	HE GROUND ENGINEERIN INED IN 8.1 – 8.3 BEI ER, FOR DESIGN PURPO EL; APPROX. +44.600M ORKS ON THE SITE, SO O ON THE PILE WALL, W FOR THE PILES IN THE	IG WORKS DETAILED IN TH LOW. ALL SITE OPERATIONS OSE, THE PILING MAT LEVE OD. NONETHELESS, THE I THAT THE PILE WALL SCH WHILE TEMPORARY PROPS I CONTIGUOUS WALL ACCOU	IS DRAWING, ADDITIO MUST ACCOUNT FC L FOR THE PERIMET PRINCIPAL CONTRACT IEDULE & BEARING MUST BE INSTALLED MUST BE INSTALLED
WORKS TO BE UNDERTAKEN.	SET-RETARDING ADM TO FORCE THE STEE	IXTURES IN ORDER TO) EASE THE INSTALLATIO HE DESIGN DEPTHS.	N OF REINFORCEMENT	CAGES INTO CONCRETED D	RILLHOLES. REINFOR

- 1. THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. THE SECANT PILE WALL DESIGN ACCOUNTS FOR 1:100 VERTICALITY TOLERANCE (WITH HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE BASEMENT AREA BY MAGNITUDES OF UP TO 105MM. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 3. THE CONTIGUOUS PILE WALL DESIGN ACCOUNTS FOR 1:75 VERTICALITY TOLERANCE, 75mm HORIZONTAL POSITIONAL TOLERANCE AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE PILE WALL TO ENCROACH INTO THE BASEMENT AREA BY MAGNITUDES OF UP TO 170MM. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 4. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED REGULATION.
- 5. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.
- 6. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- 7. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- 8. IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING, ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 8.1 - 8.3 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 8.1. PILING PLATFORM LEVEL IS UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER CONTIGUOUS PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE PROPOSED GROUND LEVEL; APPROX. +44.600M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT OF PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 8.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AT LEVELS SPECIFIED BY DFS PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 8.3. IN ADDITION. IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE PILES IN THE SECANT & CONTIGUOUS WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

UPERVISION OF BULK EXCAVATION BY MAIN
CTOR IS REQUIRED, SO AS TO ENSURE THAT BULK
TION DOES NOT PROGRESS BELOW THE DIG
OWN IN THIS DRAWING

-20 kN/m Allowa	able
<u>Service</u> Tension	Loading

Piles to be Trimmed Down to Cut-off Level

	 -	* *
1st Row of Temporary Structural Steel Props @ Capping Beam Level (Service Prop Load = 300 kN/m Run of Wall)	(
1250mm Wide x 650mm Deep RC Capping Beam (Design & Detailing by Others)	ED HEIGHT	
+42,100	IAINE	
	1 REJ	
2ND Row of Temporary Structural Steel Props @ 2.5m Depth (Service Prop Load = 550 kN/m Run of Wall)	MAXIMUN	
6 Links @ 150mm c/c	4,830 (
40s x 13.0m		
+39.770 Lowest Excavation Level		
	*	
Ø600mm Contiguous Pile Wall, with Piles @ 700mm c/c Maximum Spacing		
		(F
		NGT
		ELE
		CAG
		ENT (
		CEMI
		ORC
		KEINF
		AIN R
		T M/
		WAL
		PILE
		I) 00(
		13,(
+31.600 PILE MAIN		
STEEL REINFORCEMENT CAGE TOE LEVEL		
		×
+28.600 PILE TOE LEVEL		
V	l	

Conc FND4 Spec Proje Engin	crete Grad <u>e DS4</u> - C32/40, as ified by the ct Structural teer	
B16 Links @ 150mm c/c		
	50	500
	SECTIC)N 1-1 (SC
PRO	OPOSED SEQUE	ENCE OF CONSTRUC
PILE WA LOA BUI	E WALL SECTIO LL, DOUBLY PR ADED PAD FOOT LDING)	N A-A (Ø600 PERIMET OPPED, ADJACENT TO TINGS UNDERNEATH I
Α.	INSTALL ØG PILING PLAT BY DFS TO F WALL CONS INFORMATIC	00 PILES @ 700mm FORM LEVEL (+44.600 FORM CONTIGUOUS F STRUCTION SCHEDUL ON.
В.	BREAK DOW	VN PILES TO 75mm AE C CAPPING BEAM.
C. D.	CONSTRUC ⁻ INSTALL 1S ⁻ BEAM LEVEI	T RC CAPPING BEAM (T ROW OF TEMPORA L.
E.	CARRY OUT DEPTH.	T INITIAL BULK EXC
Г. С	ASSOCIATE DEPTH (+42.	D STRUCTURAL STEE
G. H.	FORMATION PLACE BLIN	I LEVEL; +39.770.
I.	FORMATION CONSTRUC [®] RAFT/BASEN CONCRETE	LEVEL. T 950mm THICK RI MENT FLOOR SLAB AND DOWEL INTO PIL
J.	COMMENCE WITH WATE RETAINING	THE CONSTRUCTION THE CONSTRUCTION THE CONCRET WALL, FROM BASEN
K.	DEPTH (+41. REMOVE 2 ASSOCIATE DEPTH (+42.	.600). ND ROW OF TEM D STRUCTURAL STEE .100).
L.	COMPLETE TO CAPPINO TO CAPPINO	THE CONSTRUCTION G BEAM SOFFIT LEVE G BEAM.
M.		F GROUND FLOOR SL BEAM.
N. O.	CONSTRUC	MPORARY PROPS AT T SUPERSTRUCTURE.

CALE 1:6)

UCTION:

IETER CONTIGUOUS PILE TO EXISTING HEAVILY **FH BARRIE HOUSE**

mm C/C INTERVALS FROM .600) TO DEPTHS SPECIFIED S PILE WALL; SEE DFS' PILE DULE FOR MORE DETAILED

ABOVE PROPOSED SOFFIT

M ON PILE WALL. DRARY PROPS AT CAPPING

XCAVATION DOWN TO 3M

EMPORARY PROPS AND FEEL WALING BEAM AT 2.5M

ON DOWN TO BASEMENT

MINIMUM THICKNESS AT

REINFORCED CONCRETE _AB WITH WATER-PROOF PILE RETAINING WALL.

TION OF RC LINER WALL RETE, IN FRONT OF PILE SEMENT LEVEL, UP TO 3M

EMPORARY PROPS AND FEEL WALING BEAM AT 2.5M

ON OF RC LINER WALL UP EVEL AND CONNECT SAME

SLAB AND CONNECT SAME

AT CAPPING BEAM LEVEL.

IMPORTANT CONSTRUCTION NOTES

- 1. ALL DIMENSIONS ARE MILLIMETERS UNLESS NOTED OTHERWISE.
- 2. ALL LEVELS ARE METRES UNLESS NOTED OTHERWISE.
- 3. THIS DRAWING SHALL BE READ IN CONJUNCTION WITH ALL RELEVAN ENGINEERS ARCHITECTS, AND SPECIALISTS LATES DRAWINGS AND SPECIFICATIONS ANY DISCREPANCIES MUST BE REPORTED TO DFS, ENGINEER ARCHITEC AND IMMEDIATELY.
- 4. ONLY FIGURED DIMENSIONS ARE TO BE USED. ANY QUERIES MUST BE REFERRED TO DFS.
- 5. 50mm COVER TO PILE REINFORCEMENT.
- 6. STRICT SUPERVISION BULK EARTH WORKS ENSURE REQUIRED TO THAT EXCAVATIONS DO NOT EXCEED DESIGN THE DEPTH SHOWN IN THESE DRAWINGS (4.83m)
- 7. SECANT & CONTIGUOUS PILE WALLS SHALL BE INSTALLED IN ACCORDANCE WITH RECOMMENDATIONS OF THE ICE SPECIFICATIONS FOR PILING AND EMBEDDED RETAINING WALLS (ICESPERW, 2016).
- 8. THE SECANT CONTIGUOUS PILE WALLS ARE DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE.
- SECANT 9. THE CONTIGUOUS PILE WALLS DESIGNED ARE SUPPORT FULL HYDROSTATIC PRESSURE IN THE LONG-TERM, ONCE FACED WITH A PERMANENT RC LINER WALL, IN ACCORDANCE WITH THE RECOMMENDATION OF THE BS8102 (2009)

DEEP FOUNDATIONS SPECIALISTS LIMITED 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498

BROXWOOD VIEW LIMITED

BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH

CONTIGUOUS PILE WALL SECTION A-A

14 FEB 2023

DRAWING TITLE

AR AA DFS221011-02 04 SCALE IS AS SHOWN @ A1

- 1. THIS GEO-STRUCTURAL DESIGN HAS BEEN CARRIED OUT AND REVIEWED IN ACCORDANCE WITH THE CONSTRUCTION, DESIGN & MANAGEMENT (CDM) REGULATIONS 2015 AND DOES NOT INCLUDE ANY ABNORMAL RISK ITEM THAT A COMPETENT CONTRACTOR WOULD NOT BE AWARE OF WHEN UNDERTAKING CONSTRUCTION WORKS SHOWN.
- 2. THE SECANT PILE WALL DESIGN ACCOUNTS FOR 1:100 VERTICALITY TOLERANCE (WITH HEAVY DUTY AUGERS), 25mm HORIZONTAL POSITIONAL TOLERANCE (WITH A TEMPORARY GUIDE WALL IN-PLACE) AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE SECANT WALL TO ENCROACH INTO THE BASEMENT AREA BY MAGNITUDES OF UP TO 105MM. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 3. THE CONTIGUOUS PILE WALL DESIGN ACCOUNTS FOR 1:75 VERTICALITY TOLERANCE, 75mm HORIZONTAL POSITIONAL TOLERANCE AND 30mm OVER-BREAK IN ACCORDANCE WITH THE RECOMMENDATIONS OF THE ICE SPECIFICATION FOR PILING & EMBEDDED RETAINING WALLS (ICE SPERW, 2015). BASED ON THESE, THERE ARE POTENTIALS FOR PILES IN THE PILE WALL TO ENCROACH INTO THE BASEMENT AREA BY MAGNITUDES OF UP TO 170MM. IT IS IMPERATIVE THAT THE ARCHITECT, PROJECT STRUCTURAL ENGINEER AND PRINCIPAL CONTRACTOR MAKE ALLOWANCE FOR THIS.
- 4. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST CARRY OUT INDEPENDENT RISK ASSESSMENTS THAT ARE APPLICABLE TO THEIR WORKS AND FULLY COMPLY WITH THE ABOVE STATED REGULATION.
- 5. THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS MUST REVIEW THE SITE-SPECIFIC AND HISTORICAL BOREHOLE LOGS OF THE SITE TO HAVE ADEQUATE KNOWLEDGE OF GROUND CONDITIONS ON THE SITE, PRIOR TO COMMENCEMENT OF WORKS.
- 6. DURING SITE OPERATIONS, IF OBSERVED GROUND CONDITIONS DIFFER FROM THE GENERALISED STRATIGRAPHY SHOWN IN THIS SET OF DRAWINGS, DFS MUST BE INFORMED IMMEDIATELY.
- 7. IT IS THE RESPONSIBILITY OF THE PRINCIPAL CONTRACTOR AND ASSOCIATED SUB-CONTRACTORS TO ENSURE THAT SITE OPERATIVES ARE COMPETENT AND EXPERIENCED IN THE AREA OF WORKS TO BE UNDERTAKEN.
- 8. IN ADDITION TO THE RISK/HAZARD TYPICALLY ASSOCIATED WITH THE GROUND ENGINEERING WORKS DETAILED IN THIS DRAWING, ADDITIONAL SITE/WORK-SPECIFIC HAZARDS HAVE BEEN IDENTIFIED THROUGH DESIGN RISK ASSESSMENT. THESE ARE OUTLINED IN 8.1 – 8.3 BELOW. ALL SITE OPERATIONS MUST ACCOUNT FOR ALL USUAL AND SITE/WORK-SPECIFIC HAZARDS.
- 8.1. PILING PLATFORM LEVEL IS UNCONFIRMED AT THIS STAGE. HOWEVER, FOR DESIGN PURPOSE, THE PILING MAT LEVEL FOR THE PERIMETER CONTIGUOUS PILE WALL AND BEARING PILES IS GENERALLY TAKEN TO BE THE PROPOSED GROUND LEVEL; APPROX. +44.600M OD. NONETHELESS, THE PRINCIPAL CONTRACTOR MUST CONFIRM ACTUAL PILING PLATFORM LEVEL(S) PRIOR TO THE COMMENCEMENT OF PILING WORKS ON THE SITE, SO THAT THE PILE WALL SCHEDULE & BEARING PILE SCHEDULE MAY BE AMENDED ACCORDINGLY.
- 8.2. A REINFORCED CONCRETE CAPPING BEAM MUST BE CONSTRUCTED ON THE PILE WALL, WHILE TEMPORARY PROPS MUST BE INSTALLED AT LEVELS SPECIFIED BY DFS PRIOR TO THE COMMENCEMENT OF BULK EXCAVATION FOR THE NEW BASEMENT.
- 8.3. IN ADDITION, IT IS IMPERATIVE THAT THE CONCRETE MIX DESIGN FOR THE PILES IN THE SECANT & CONTIGUOUS WALL ACCOUNTS FOR 10MM MAXIMUM AGGREGATE SIZE AND SET-RETARDING ADMIXTURES IN ORDER TO EASE THE INSTALLATION OF REINFORCEMENT CAGES INTO CONCRETED DRILLHOLES. REINFORCEMENT CAGE VIBRATORS MAY ALSO BE REQUIRED TO FORCE THE STEEL CAGES DOWN TO THE DESIGN DEPTHS.

SECANT PILE WALL SECTION B-B (SC

YERVISION OF BULK EXCAVATION BY M 'OR IS REQUIRED, SO AS TO ENSURE THAT B 'N DOES NOT PROGRESS BELOW THE I WN IN THIS DRAWING Allowable nsion Loading to be Trimmed Down to Cut-off Level	IAIN ULK DIG			Concrete C32/40 fo specified Struc tura l 56 Day Str female pi B8 Links 175mm	Grade DS4 - F r Male/Hard Pi by the Project Engineer, (10N ength - Concr les) @ c/c	ND4 - les as J/mm ² ete for
		- \ - \		C	FCTIOI	NI 9 9 (9
Temporary Structural Steel Props @ Capping Beam Level (Service Prop Load = 40 kN/m Run of Wall) Omm Wide x 650mm Deep RC Capping am (Design & Detailing by Others) hks @ 175mm c/c x 7.0m Omm Secant pile wall; Ø 450mm Male male piles, with Male piles spaced @ nm c/c maximum spacing +39.770 LOWEST EXCAVATION LEVEL	4,830 (MAXIMUM RETAINED HEIGHT)	7,000 (PILE WALL MAIN REINFORCEMENT CAGE LENGTH)	8,000 (FILE LEINGIH)	PROP PILE WALL, BASEN AREA A. B. C. D. E. F.	DSED SEQUEN <u>NALL</u> SECTION SINGLY PR <u>MENT</u> , EXCLU NSTALL TEMP COMMENCEM COMMENCEM CONSTRUCTION INSTALL Ø450 WITH MALE PIN FROM PILING F SPECIFIED BY DFS' PILE WAL DETAILED INFO BREAK DOWN SOFFIT LEVEL CONSTRUCT F INSTALL TEMP COMPLETE BL FORMATION LI	ICE OF CONS N B - B (Ø45 OPPED, OTH JDING THE ORARY GUIDE ENT OF SECAN ON. INTERLOCKING LES SPACED (Ø PLATFORM LEY DFS TO FORM L CONSTRUCT ORMATION. PILES TO 75M OF RC CAPPING BI ORARY PROP JLK EXCAVATION EVEL; +39.770.
+37.600 PILE MAIN STEEL REINFORCEMENT CAGE TOE LEVEL		-		G. H. I.	PLACE BLINDIN FORMATION LE CONSTRUCT 9 RAFT/BASEME CONCRETE AN COMMENCE TI	NG OF 50MM M EVEL. 50MM THICK F NT FLOOR SLA ND DOWEL INT HE CONSTRUC
E 1:25)	_			J. K.	WITH WATER-I RETAINING WA CAPPING BEAI CAPPING BEAI CONSTRUCT G SAME TO CAPI REMOVE TEMF	PROOF CONCE ALL, FROM BAS M SOFFIT LEVE M. BROUND FLOC PING BEAM. PORARY PROF SUPERSTRUCT
E 1:25)		、 — 、		J. K. L.	CAPPING BEAN CAPPING BEAN CONSTRUCT C SAME TO CAPI REMOVE TEMP	M SO M. BRO PINO POR SUPI

<u>NOTES</u> 1. ALL DIMENSIONS ARE MILLIMETERS UNLESS NOTED OTHERWISE. Ø450mm Secant pile wall; Ø450mm Male & Female . ALL LEVELS ARE piles, with Male piles METRES UNLESS NOTED spaced @ 550mm c/c OTHERWISE. maximum spacing 3. THIS DRAWING SHALL BE READ IN CONJUNCTION ALL WITH RELEVAN ARCHITECTS, ENGINEERS AND SPECIALISTS LATES DRAWINGS AND SPECIFICATIONS ANY DISCREPANCIES MUST BE _5-B20s x 7.0m REPORTED TO DFS, ENGINEER AND ARCHITEC IMMEDIATELY. 50 4. ONLY FIGURED DIMENSIONS TO BE USED. ANY ARE QUERIES BE MUST SCALE 1:5) REFERRED TO DFS. 5. 50mm COVER TO PILE REINFORCEMENT. **TRUCTION:** 6. STRICT SUPERVISION OF BULK EARTH WORKS **0 PERIMETER SECANT PILE** ТО REQUIRED ENSURE ER AREAS OF PROPOSED THAT EXCAVATIONS DO NOT PROPOSED UNDERPINNING EXCEED THE DESIGN DEPTH SHOWN IN THESE DRAWINGS (4.83m) WALL PRIOR TO THE 7. SECANT & CONTIGUOUS NT PILE WALL PILE WALLS SHALL BE INSTALLED IN ACCORDANCE WITH RECOMMENDATIONS OF THE IG MALE AND FEMALE PILES. ICE SPECIFICATIONS FOR PILING AND EMBEDDED 2 550mm C/C INTERVALS RETAINING WALLS VEL (+44.600) TO DEPTHS (ICESPERW, 2016). SECANT PILE WALL; SEE 8. THE SECANT CONTIGUOUS PILE WALLS FION SCHEDULE FOR MORE ARE DESIGNED FOR BOTH TEMPORARY AND PERMANENT USE. **1M ABOVE PROPOSED** SECANT 9. THE NG BEAM. CONTIGUOUS PILE WALLS DESIGNED ARE BEAM ON PILE WALL. SUPPORT FULL HYDROSTATIC PRESSURE I PS AT CAPPING BEAM LEVEL. THE LONG-TERM, ONCE ON DOWN TO BASEMENT FACED WITH A PERMANEN LINER WALL, IN RC ACCORDANCE WITH THE RECOMMENDATION OF THE **MINIMUM THICKNESS AT** BS8102 (2009) REINFORCED CONCRETE AB WITH WATER-PROOF O PILE RETAINING WALL. DEEP FOUNDATIONS SPECIALISTS LIMITED CTION OF RC LINER WALL 2nd FLOOR, THE PORTER BUILDING 1 BRUNEL WAY SLOUGH SL1 1FQ. TELEPHONE: 01753 396498 RETE, IN FRONT OF PILE **BROXWOOD VIEW LIMITED** SEMENT LEVEL, UP TO 'EL AND CONNECT SAME TO BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH OR SLAB AND CONNECT SECANT PILE WALL SECTION B-B PS AT CAPPING BEAM LEVEL AR AA 14 FEB 2023 TURE. DFS221011-03 04 SCALE IS AS SHOWN @ A1

IMPORTANT CONSTRUCTION

<u>D_FS</u>				ww	CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Re Pile Retaining Wall & \emptyset 300 Bearing Pile	etaining Wall, ∅600 es <u>Rev. 04</u>	Contiguous	Page:	32 of 41

DFS' Pile Wall Construction Schedule

BROXWOOD VIEW, 29 ST. EDMUND 450mm Dia. Secant & 600mm Dia. Co Wall Schedule - 450mm Dia. Secant I Rev 04	/00D VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 70H Dia. Secant & 600mm Dia. Contiguous Pile Retaining Walls thedule - 450mm Dia. Secant Male & Female Piles, with Male Piles Spaced @ 550mm c/c & 600mm Dia. Contiguous Piles Spaced @ 700mm c/c														SHEET NO.: ENQUIRY NO CREATED BY DATE:	AR 14/02/2023	of JOB NO.: CHECKED BY: AA DATE:14/02/23							
Wall Section	Wall Type	Piling Technique	Temporary Condition	Permanent Condition	Wall Length	Asumed PPL	Lowest Excavation Level	Design Retained Level for Pile Wall	P/H	Min excavation level inc. Overdig	Retained Height	ⁱ Pile Dia	Male Pile Spacing c/c	Required Male Pile Toe Level	Required Female Pile Toe Level	No. of Hard Piles Required	Bored/Concreted Male Pile Length	Bored/Concreted Female Pile Length	Estimated Maximum Pile Lateral Deflection	Anticipated Maximum Pile Lateral Deflection	Required Steel Reinforcement in Male Piles	Steel Top	Steel Reinforcement Cage Toe Level	Steel Reinforcemen Cage Length
					(m run)	(mOD)	(mOD)	(mOD)		(mOD)	(m)	(mm)	(mm)	(mOD)	(mOD)		(m)	(m)	(mm)	(mm)		(mOD)	(mOD)	(m)
SECTION A - A	600mm Dia. Perimeter Contiguous Pile Wall	CFA Drilling with Heavy Duty Augers	Doubly Restrained with 2 No. Rows of 9 Structural Steel Struts @ Capping Beam Level & 2.5m Depth (+42.100)	Restrained by the Basement Raft and the Ground Floor Slab	12.5	44.600	39.770	44.600	2.31	39.270	4.83	600	700	28.600	N/A	18	16.0	N/A	20	10	12 - B40 x 13m & B16 links @ 150mm c/c	44.600	31.600	13.0
SECTION B - B	450mm Dia. Perimeter Secant Pile Wall	CFA Drilling with Heavy Duty Augers	Singly Restrained with 1 No. Row of Structural Steel Struts @ Capping Beam Level	Restrained by the Basement Raft and the Ground Floor Slab	56.5	44.600	39.770	44.600	0.66	39.270	4.83	450	550	36.600	38.600	103	8.0	6.0	8	10	5 - B20 x 7m & B8 links @ 175mm c/c	44.600	37.600	7.0
L					69.0	I																		

Total

18 No. 600mm Dia. Contiguous Piles 103 No. 450mm Dia. Male Secant Piles 104 No. 450mm Dia. Female Secant Piles

Design Notes:

RC Capping Beam It is imperative that the Project Structural Engineer Designs the RC Capping Beam on the Pile Wall to Safely Span over a Minimum Length of 8m under 160 kNIm Service Horizontal Loading Across Openings at Ground Floor Level in the Permanent Condition

Support to Vertical Axial Loading Based on the Recommended Male/Hard Pile Lengths in the Above Table, the Pile Wall can Safely Support Service Vertical Compressive and Tension Loading of up to 500 kN/m & -20 kN/m Run of Wall Respectively, as Specified by the Project Structural Engineer.

Groundwater Cut-off

Install Female Piles to 6m Depth, as Specified in the Above Table; Minimum Embedment of 1m in the Stiff to Very Stiff London Clay Layer below Basement Formation Level is Required.

m run

Concrete Grade DS4-FND4-C32/40 for Male/Hard Piles, as Specified by the Project Structural Engineer. For Female Piles, Provide 10 Nmm2 Concrete (56 day-strength) for Permanent Groundwater Cut-off.

50mm cover to pile reinforcement Rev 04

Revision Notes:

<u>D_FS</u>				(ww	CALCULATIONS w.deep-foundations.co.uk
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Re Pile Retaining Wall & \emptyset 300 Bearing Pile	etaining Wall, Ø600 es <u>Rev. 04</u>	Contiguous	Page:	33 of 41
	DFS' Bearing Pil	e Constructi	on Sche	dule	

																						_	Ref				
																							Made By		AR	Date	30/11/2022
									BROXWOOD VI	VIEW, 29 ST. EDMUND'S TERRACE, LONDON NW8 70H - 300mm Dia. Bearing Piles									Verified		AA	Date	30/11/2022				
DS									Bearing Pile Sc	Schedule - No Pile Load Testing Requirements									Page				Revision: 02				
<u>P</u> E																									i		
																				Tension Reinforcement							
																						1	Main Rei	nforcement C	age	((FA)
Pile			Shaft Diameter		Piling Platform	Estimated Lowest Pile Cut-Off Level	Concreting/Steel	Service Overturning	Service Horizontal	Maximum Service								Compression Toe	Tension Toe	Bore Length from	Concreted	No. of					
Indentification No.		No. of Piles	(mm)	Piling Technique	Level (m OD)	(m OD)	Termination Level	Moment kNm	Loading KN	Compression KN	Service Tension KN							Level (m OD)	Level (m OD)	PPL (m)	Length (m)	Bars	Bar dia. mm	Links	Length (m)	Bar & No.	Length (m)
·						+												+	+	+		<u></u> +∔					-+
P1		1	300	CFA/SFA	44.600	TBC	44.600	19	10	250	-25							29.60	37.10	15.0	15.0	4	B25	<u>R6 @ 120</u>	8		
P2	+	1	300	CEA/SEA	44,600	TBC	44 600	10	10	250	-05							29.60	37.10	15.0	15.0	4	B25	R6 @ 120	8		
			000	or nor n	44.000		44.000			200	20							25.55	00	10.0	10.0		DEG	10 0 120			
P3		1	300	CFA/SFA	44.600	TBC	44.600	19	10	250	-25							29.60	37.10	15.0	15.0	4	B25	<u>R6 @ 120</u>	8		
	+		<u> </u>			+			+	<u>+</u>	+							.+				<u></u> +∔-					+
P4		1	300	CFA/SFA	44.600	TBC	44.600	19	10	250	-25							29.60	37.10	15.0	15.0	4	B25	<u>R6 @ 120</u>	8		
P5		1	300	CFA/SFA	44.600	твс	44.600	19	10	100	-25							34.60	37.10	10.0	10.0	4	B25	R6 @ 120	8		
ļ						_			.	 	ļ											ļ			·		
L	TOTAL :	5	i	l	.L	L	L		J	i	L	ii	i	L	l.		L		J	.1	J	Jl.	i	i		L	

									SUMMAR	Y					
No. of Piles	Pile Diameter	Max Service	Lowest Toe Level	Ave Bore Length	Ave Concreted Length			Main Reinforcement	Tension Reinforcement	Concrete Volum	2			Bore Max	Bore Min
	(mm)	Compression (KN)	(m OD)	(m)	(m)	No. of Bars	Dia (mm)	Type Length (m		(m ²⁰				Length (m)	Length (m)
						30	0mm DIA. PERM	MANENT BEARING PILES							
5	300	+250/-25	29.600	14.0	14.0	4-	825 x 8m & R6 L	inks @ 120mm o/c x 5 No's		5.0				15.0	10.0
	I		1												
	1 1		1	1	1							1		1	
				1							1	1	1		1
											1	1			

<u>D_FS</u>				ww	CALCULATIONS
Job No:	DFS221011	Design Engineer:	AR	Date:	13 December 2023
Job Name:	BROXWOOD VIEW, 29 ST. EDMUND'S TERRACE LONDON NW8 7QH				
Calc Title:	Detailed Designs – \emptyset 450 Secant Pile Re Pile Retaining Wall & \emptyset 300 Bearing Pile	taining Wall, ∅600 es <u>Rev. 04</u>	Contiguous	Page:	34 of 41

Project Structural Engineer's Drawings

RIBA STAGE 3 (COORDINATION)

NOTES

Copyright Carbogno Ceneda Architects.

No implied license exists. This drawing should not be used to calculate areas for the purposes of valuation. All dimensions to be checked on site by the contractor and such dimensions to be their responsibility.

This drawing is to be read in conjunction with all other contract documents and specifications and all other consultants drawings. All levels and dimensions should be checked on site

All work must comply with relevant British Standards and Building Regulations requirements Drawing errors and omissions to be reported to the architect

\sum	Existing Structure not part of this application
	Area of backfill to be removed
	Assumed existing internal partitions and fittings

_____ Site Boundary

Project Ref. No.		2113		
Client	I	BROXWOOD V	IEW LIM	ITED
Date	ſ	MARCH 2022		
Scale	1	I:100 @ A1		
Project		BROXWOOD V 29 ST EDMUNI LONDON NW8	'IEW, DS TERF 7QH	RACE,
Drawing Name	:	EXISTING TOF SURVEY AND FLOOR DIMEN	Pograp Grouni Isional	HICAL D CHECI
Drawing	No.	R001	Rev.	-
Drawn	CF	Approved AC	Signed	
CARBO 48a ANTILL LONDON N	GNC ROAD 15 4BA	CENEDA ARC 0, TEL 07890 50 NFO@CARE	CHITECT 86 884 80GNOCENE	S Eda.com

© COPYRIGHT NOT TO BE REPRODUCE OR USED WITHOUT PERMISSION

Site Plan / Ground Floor Plan

1:200 Scale

This drawing is to be read in conjunction with all relevant specifications and drawings issued. For discrepancies or omissions contact Mobile CAD Surveying Solutions Ltd prior to work commencing. The contractor is to check and verify all building and site dimensions and levels before work commences.

© COPYRIGHT Mobile CAD Surveying Solutions Ltd 2017 DO NOT SCALE THIS DRAWING - CHECK ALL DIMENSIONS ON SITE

Note: Areas drawn indicatively noted and indicated by grey dashed line as line below

Compass Note: Geographical orientation indicated is for indicative purposes only.

I/C	-	Inspection Chamber	BT	-	British Telecoms
M/H	-	Manhole	GAS	-	Gas Supply
G	-	Drainage Gully	ES	-	Electrical Supply
CD	-	Channel Drain	PO	-	Post Office
RE	-	Rodding Eye	CATV	′ -	Community Antenna
RWP	-	Rain Water Pipe			Television
S+VP		Soil & Vent Pipe	TSSU	- 1	Traffic Light Signals
WM	-	Water Meter	T.P	-	Telegraph Pole
ST	-	Stop Tap	В.	-	Bollard
SV	-	Stop Valve	L.P.	-	Lamp Post
FH	-	Fire Hydrant	Ht	-	Height
IL	-	Invert Level			
CL	-	Cover Level			

B 2017.10.18 Window mullions added as per Al A 2017.10.16 Windows on external wall added as per Al Rev Date Amendments

Project:	Measured Building	Survey	
Address:	Barrie House,		
	29 St Edmund's Terrace,		
	London,		
	NW8 7QH		
Drawing No:	2067 - 01		
Drawing Title:	Site Plan / Ground	Floor	
Drawing Date:	September 2017		
Drawing Size:	Scale as Shown @	A1	
Drawn By: JH	Checked By: MW	Issue E	

NOTE: ONLY SOFT STRIP OUT, SITE CLEARANCE AND FACILITIES PREPARATION CAN TAKE PLACE ON SITE. UNLESS OTHERWISE INSTRUCTED BY CARBOGNO CENEDA ARCHITECTS. NO CONCRETE WORK, EXCAVATION, DEMOLITION OF PORTER'S LODGE, PILING CAN TAKE PLACE UNTIL WE ISSUE FURTHER INSTRUCTION.

RIBA STAGE 3 (COORDINATION)

NOTES

Copyright Carbogno Ceneda Architects.

No implied license exists. This drawing should not be used to calculate areas for the purposes of valuation. All dimensions to be checked on site by the contractor and such dimensions to be their responsibility.

This drawing is to be read in conjunction with all other contract documents and specifications and all other consultants drawings. All levels and dimensions should be checked on site

All work must comply with relevant British Standards and Building Regulations requirements Drawing errors and omissions to be reported to the architect

KEY PLAN

Existing Structure / Earth
Existing Structure not part of this application
Area of backfill to be removed
 Assumed existing internal partitions and fittings
 Site Boundary

Project Ref. No.		2113		
Client	E	BROXWOOD V	IEW LIMITED	
Date	Ν	MARCH 2022		
Scale	1	:100 @ A1		
Project	E 2 L	BROXWOOD V 29 ST EDMUNI _ONDON NW8	'IEW, DS TERRACE, 7QH	
Drawing Name	Vrawing SETTING OUT			
Drawing	No.	R101	Rev	
Drawn	CF	Approved AC	Signed	
CARBOGNO CENEDA ARCHITECTS 48a ANTILL ROAD, TEL 07890 586 884 LONDON N15 4BA INFO@CARBOGNOCENEDA.COM				

© COPYRIGHT NOT TO BE REPRODUCED OR USED WITHOUT PERMISSION