Tokla Todda	Project				Job no.		
	17	A Chesterford	Gardens, NW3 7	DD	CA6669		
6 Bartholomew Place	Calcs for	Bas	ement		Start page no./Kevision		
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	DD	03/11/2023					
It is proposed to extend the exist make only a relatively small char footprint of the existing building	ting subterran nge to the exis and do not ex	ean utility roo ting basemen [:] tend or under	m. The propos t footprint. All pin the adjoin	ed works are li new works are ing buildings.	mited in nat confined to	ure and the	
The following loads have been ta	aken for the bu	uilding:					
Timber roof:							
Permanent (roof structu	re and finishes	s) = 1.25	5 kN/m ²				
Variable		= 0.75	5 kN/m²				
Timber floor:							
Permanent (floor structu	ire and finishe	s)= 1.5	kN/m ²				
Variable		= 1.5	kN/m²				
Slab over basement:							
Permanent							
Finishes		= 0.75	5 kN/m²				
• 150 slab		= 3.75	5 kN/m²				
	Total	= 4.5	kN/m²				
Variable		= 1.5	kN/m²				

	Project				Job no.	
	17.	A Chesterford	Gardens, NW3 7	'DD	CA	6669
Cooper Associates	Calcs for				Start page no./R	Revision
6 Bartholomew Place		Bas	ement			4/B
London EC1A 7HH	Calcs by DD	Calcs date 03/11/2023	Checked by	Checked date	Approved by	Approved date
1 STEEL BEAM ANALYSIS & DE In accordance with EN1993-1- annex	ESIGN (EN1993- 1:2005 incorpo	<u>1-1:2005)</u> rating Corrige	nda February 2	006 and April 20	009 and the U TEDDS calcula	K national tion version 3.0.1
mm [A			3700 1] B	
Support conditions		\ /t; II	4 :1			
Support A		Vertically r	estrained			
Support B		Vertically r	y liee estrained			
Support D		Rotationall	v free			
Applied loading		riotational	<i>y</i> 1100			
Applied loading		Permanen	t colf weight of h	eam v 1		
Deam loads		Timber flor	1.5 em weight of b or $1.5 \text{kN/m} 2 \text{v} 2 \text{m}$	/2 - Permanent f		l/m
					///m	
		Concrete s	$5kN/m2 \times 4m/2$		1 3 kN/m	
			.5KN/112^411/2 -			
Analysis results		M - 00	0.1.0.1	N4 - 4	N 1. N 1	
Maximum moment;		$M_{max} = 22.3$	Z KNM;	$M_{min} = 0$		
Maximum snear;		$V_{max} = 24 F$	$V_{max} = 24 \text{ KN};$ $V_{min} =$		24 KN	
Dellection;		$o_{\text{max}} = 0.2$	$\delta_{max} = 6.2 \text{ mm};$ $\delta_{min} = 0 \text{ m}$			
Maximum reaction at support A;	tion of ourport A	$RA_{max} = 24$	$R_{A_{max}} = 24 \text{ KN}; \qquad R_{A_{min}} = $			
Unfactored veriable load reaction		A, KA_Permanent	- 11.0 KIN			
Maximum reaction at support B:	n at support A,			Pa -	- 24 kN	
Linfactored permanent load read	tion at support F	$R_{B} = max - 2$	$= 116 \mathrm{kN}$	TCB_min -		
Unfactored variable load reaction	n at support B [.]	RB Variable =	$R_{\rm Permanent} = 5.5 \rm kN$			
	n at support D,					
Section details Section type;	UC 152x152x30	(BS4-1) ;	Steel grade;		S355	
	01833 1					
Check shear - Section 6.2.6				i - t	V - 000 0	LNI
Design shear lorce,	$v \in d - 24 \text{ KIN};$	DAG		esisiaille,	vc,Rd - 230.9	n shear form
.		PAS	oo - Design she	ar resistance e.	kueeus uesig	n Shear TOPC
Check bending moment - Sec Design bending moment;	tion 6.2.5 M _{Ed} = 22.2 kNm;	, ,	Des.bending re	esist.moment;	M _{c,Rd} = 87.9 k	۱Nm
Slenderness ratio for lateral to	orsional bucklin	g				
LTB slenderness ratio;	λ _{LT} = 0.779 ;	-	Limiting slende Ā _{LT} > Ā _{LT.0} - Lat	rness ratio; t eral torsional b	$\overline{\lambda}_{LT,0} = 0.400$	ot be ignored
Design resistance for buckling Des.buckling resist.moment;	g - Section 6.3.2 M _{b,Rd} = 75.1 kNr	?.1 n		~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

Tokla Toddo	Project				Job no.		
	17.	A Chesterford	Gardens, NW3 7	DD	CA	6669	
Cooper Associates	Calcs for				Start page no./R	Start page no./Revision	
6 Bartholomew Place		Bas	ement		5/B		
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	DD	03/11/2023					
	DASS	Docian buckl	ina rocistonoo i	noment exceed	e docian hon	dina momont	
	PA33 -	Design bucki	ing resistance i	noment exceed	s design ben	ung moment	
Check vertical deflection - Sec	ction 7.2.1						
Consider deflection due to perm	anent and variab	ble loads					
Limiting deflection	δlim = 10.3 mm;	540	Maximum defle	ction;	δ = 6.179 mm	.	
		PAS	os - Maximum d	eflection does l	not exceea ae	effection limit	
• •							
B2							
STEEL BEAM ANALYSIS & DE	SIGN (EN1993-	<u>1-1:2005)</u>					
In accordance with EN1993-1-	1:2005 incorpo	rating Corrige	nda February 2	006 and April 20	09 and the U	K national	
annex	·	0 0		•			
					TEDDS calculat	ion version 3.0.14	
mm L			2200] B		
			1		5		
Support conditions							
Support A		Vertically r	estrained				
		Rotationall	y free				
Support B		Vertically r	estrained				
		Rotationali	y free				
Applied loading							
Beam loads		Permanent	t self weight of b	eam × 1			
		Masonry 3	.3mht×2kN/m2 -	Permanent full L	JDL 6.6 kN/m		
		1st & 2nd I	-loors 2×5.6/2×1	.5kN/m2 - Perma	anent full UDL	8.4 kN/m	
		1st & 2nd I	-loors 2×5.6/2×1	.5kN/m2 - Varial	ble full UDL 8.	4 kN/m	
		Grd 1.6m/2	2×1.5kN/m2 - Pe	rmanent full UDI	_ 1.2 kN/m		
		Grd 1.6m/2	2×1.5kN/m2 - Va	riable full UDL 1	.2 kN/m		
Analysis results							
Maximum moment;		M _{max} = 22.2	2 kNm;	M _{min} = C) kNm		
Maximum shear;		V _{max} = 40.4	4 kN;	$V_{min} = -4$	40.4 kN		
Deflection;		δ _{max} = 2.2 ι	mm;	$\delta_{min} = 0$	mm		
Maximum reaction at support A;		R _{A_max} = 40).4 kN;	R _{A_min} =	40.4 kN		
Unfactored permanent load read	ction at support A	A; RA_Permanent	= 18.2 kN				
Unfactored variable load reaction	n at support A;	RA_Variable =	10.6 kN				
Maximum reaction at support B;		R _{B_max} = 40).4 kN;	R _{B_min} =	40.4 kN		
Unfactored permanent load reac	tion at support E	B; RB_Permanent	= 18.2 kN				
Unfactored variable load reaction	n at support B;	R _{B_Variable} =	10.6 kN				
Section details							
Section type;	2 x PFC 150x75	x18 (BS4-1);	Steel grade;		S355		
Section classification;	Class 1						

Tekla Tedds	Project						
					Job no.		
	17	7A Chesterford	Gardens, NW3 7	DD	CA6669		
Cooper Associates	Calcs for				Start page no./Revision		
6 Bartholomew Place		Bas	ement			6/B	
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	DD	03/11/2023					
	1	4	1	1	- 4	•	
Check shear - Section 6.2.6							
Design shear force;	V _{Ed} = 40 kN;		Design shear re	esistance;	V _{c,Rd} = 390.2	kN	
C		PAS	SS - Desian she	ar resistance (exceeds desia	n shear force	
Check handing moment. Cos	tion C O E		..		J		
Check bending moment - Sec			Dee herdiner	-:-44.	M _ 00.01	-N I	
Design bending moment;	$W_{Ed} = 22.2 \text{ KINIF}$	1,	Desibending re	sist.moment;	IVIc,Rd = 93.8 K	(INT)	
Slenderness ratio for lateral t	orsional buckli	ng					
LTB slenderness ratio;	λ _{LT} = 0.783 ;		Limiting slende	rness ratio;	λ _{LT,0} = 0.400)	
			$\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0} - Lat$	eral torsional	buckling cann	ot be ignored	
Design resistance for bucklin	a - Section 6 3	21					
Des buckling regist memory	$\mathbf{g} = \mathbf{G} = \mathbf{G} = \mathbf{G} + \mathbf{M}$						
Des.buckling resist.moment;		nn Deelaar hueld					
	PASS	- Design bucki	ing resistance i	noment excee	as aesign ben	aing momen	
Check vertical deflection - Se	ction 7.2.1						
Consider deflection due to perm	nanent and varia	ble loads					
Limiting deflection	δ _{lim} = 6.1 mm;		Maximum defle	ction;	δ = 2.206 mm	ı	
-		PAS	SS - Maximum o	eflection does	not exceed d	eflection limi	
,							
> A							
In accordance with EN1993-1 annex	-1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U	K national	
In accordance with EN1993-1 annex	-1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U	K national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U	K national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2	006 and April 2	2009 and the U TEDDS calcular	K national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2 3600	006 and April 2	2009 and the U TEDDS calcular	I K national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2 3600 1	006 and April 2	2009 and the U TEDDS calculat	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2 3600 1	006 and April 2	2009 and the U TEDDS calculat	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	orating Corrige	nda February 2 3600 1	006 and April 2	2009 and the U TEDDS calcular	K national	
In accordance with EN1993-1 annex	1:2005 incorpo	vertically r	nda February 2	006 and April 2	2009 and the U TEDDS calcular	K national	
In accordance with EN1993-1 annex	1:2005 incorpo	Vertically r Rotational	nda February 2 3600 1 restrained ly free	006 and April 2	2009 and the U TEDDS calcular	I K national	
In accordance with EN1993-1 annex	1:2005 incorpo	Vertically r Rotational Vertically r	nda February 2 3600 1 restrained ly free restrained	006 and April 2	2009 and the U TEDDS calculat	I K national	
In accordance with EN1993-1 annex	1:2005 incorpo	Vertically r Rotational Vertically r	nda February 2 3600 1 restrained ly free restrained ly free	006 and April 2	2009 and the U TEDDS calculat	IK national	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational	nda February 2 account accou	006 and April 2	2009 and the U TEDDS calcula	I K national tion version 3.0.1	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational	nda February 2 3600 1 restrained ly free restrained ly free	006 and April 2	2009 and the U TEDDS calcula 	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r	nda February 2 a a a a a a a a a a a a a	206 and April 2	2009 and the U TEDDS calculat	IK national	
In accordance with EN1993-1 annex	1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9	nda February 2 a a a a a a a a a a a a a	eam × 1 Permanent full U	2009 and the U TEDDS calculat	I K national tion version 3.0.1	
In accordance with EN1993-1 annex	1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2	nda February 2 account accou	206 and April 2	2009 and the U TEDDS calculat	I K national tion version 3.0.1	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2	nda February 20 3600 1 restrained ly free restrained ly free t self weight of b mht ×2kN/m2 - Fe ×1.25kN/m2 - Va	2006 and April 2 eam × 1 Permanent full U primable full UDL	2009 and the U TEDDS calculat	I K national tion version 3.0.1	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 1st&2nd 2	nda February 20 account of the set of the s	eam × 1 Permanent full U ariable full UDL 2 - Permanent full U	2009 and the U TEDDS calculat J J JDL 18 kN/m DL 2.5 kN/m 1.5 kN/m ull UDL 6 kN/m	I K national tion version 3.0.1	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 1st&2nd 2 1st&2nd 2	nda February 20 according accor	2006 and April 2 eam × 1 Permanent full U ariable full UDL 2 - Permanent full	2009 and the U TEDDS calculat J J J J J J J J J J J J J J J J J J J	IK national	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 1st&2nd 2 1st&2nd 2	nda February 20 3600 1 restrained ly free t self weight of b mht ×2kN/m2 - Fe ×1.25kN/m2 - Va ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 4 5kN/m2 - Perr	eam × 1 Permanent full U Permanent full U Permanent full UDL Permanent full UDL Permanent full	2009 and the U TEDDS calculat J J J J J J J J J J J J J J J J J J J	IK national	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 1st&2nd 2 1st&2nd 2 Grd 2m/2×	nda February 24	eam × 1 Permanent full U ermanent full UD ermanent full UDL 2 - Permanent full 2 - Variable full manent full UDL	2009 and the U TEDDS calculat J J J J J J J J J J J J J J J J J J J	I K national tion version 3.0.14	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 1st&2nd 2 1st&2nd 2 Grd 2m/2× Grd 2.2m/2	nda February 20	eam × 1 Permanent full U ermanent full U ariable full UDL 2 - Permanent ful 2 - Variable full manent full UDL manent full UDL	2009 and the U TEDDS calculat J J J J J J J J J J J J J J J J J J J	I K national tion version 3.0.14	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 1st&2nd 2 1st&2nd 2 1st&2nd 2 Grd 2.2m/2 Grd 2.2m/2	nda February 20 3600 1 restrained ly free restrained ly free t self weight of b mht ×2kN/m2 - Fe ×1.25kN/m2 - Va ×4m/2×1.5kN/m2 4.5kN/m2 - Perr 2×1.5kN/m2 - Per 2×1.5kN/m2 - Va	2006 and April 2 eam × 1 Permanent full U ermanent full UL riable full UDL 2 - Permanent ful 2 - Variable full nanent full UDL rmanent full UDL	2009 and the U TEDDS calculat J J B JDL 18 kN/m DL 2.5 kN/m 1.5 kN/m ull UDL 6 kN/m UDL 6 kN/m 4.5 kN/m 2L 1.6 kN/m 3.1 kN/m	I K national tion version 3.0.14	
In accordance with EN1993-1 annex	-1:2005 incorpo	Vertically r Rotational Vertically r Rotational Vertically r Rotational Permanen Masonry 9 Roof 4m/2 Roof 4m/2 Roof 4m/2 1st&2nd 2 1st&2nd 2 Grd 2m/2× Grd 2.2m/2	nda February 20 3600 1 restrained ly free restrained ly free t self weight of b mht ×2kN/m2 - Fe ×1.25kN/m2 - Va ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2×1.5kN/m2 ×4m/2	206 and April 2 eam × 1 Permanent full U ariable full UDL 2 - Permanent full UDL 2 - Variable full nanent full UDL rmanent full UDL rmanent full UDL	2009 and the U TEDDS calculat J J J J J J J J J J J J B J J J J B J	I K national tion version 3.0.14	

					1	
Tokla Todda	Project				Job no.	
	17	A Chesterford	Gardens, NW3	7DD	CA	6669
Cooper Associates	Calcs for				Start page no./Revision	
6 Bartholomew Place		Bas	ement			7/B
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	DD	03/11/2023				
Analysis results		M - 00	0.1.0.1	N4 —	0 1.01	
Maximum moment;		$M_{max} = 98.$	3 KINM;	Min =		
		$V_{max} = 109$.3 KIN;	V _{min} = -	-109.3 KIN	
		$\delta_{max} = 9 \text{ m}$	m;	δ _{min} = ι	mm	
Maximum reaction at support A;		$R_{A_{max}} = 10$	J9.3 KN;	RA_min =	= 109.3 KN	
Unactored permanent load read	n et europert A	A, RA_Permanent	= 59.7 KIN			
Unfactored variable load reaction	n at support A;	RA_Variable =	19.1 KIN	D .	- 400 2 1/1	
Maximum reaction at support B;	tion of support l	$R_B_{max} = 10$	J9.3 KIN;	KB_min →	= 109.3 KIN	
Unfactored veriable load reaction	n et support B	D, RB_Permanent	- 59.7 KIN			
	n at support B;	RB_Variable =	19.1 KN			
Section details						
Section type;	2 x PFC 200x90	0x30 (British S	teel Section R	ange 2022 (BS4-	- 1)) ; Steel	grade;
	S355					
Section classification;	Class 1					
Check shear - Section 6.2.6						
Design shear force;	V _{Ed} = 109 kN;		Design shear	resistance;	V _{c,Rd} = 627.9	kN
		PAS	SS - Design sh	ear resistance e	xceeds desig	n shear force
Check bending moment - Sec	tion 6.2.5					
Design bending moment;	M _{Ed} = 98.3 kNm	1;	Des.bending r	esist.moment;	M _{c,Rd} = 206.8	kNm
Slenderness ratio for lateral to	orsional buckli	na	-			
I TB slenderness ratio	$\overline{\lambda}_{1,T} = 0.951$	19	l imiting slend	arness ratio:	$\overline{\lambda}_{1,T,0} = 0.400$	
	λει - 0.301 ,			erriess ratio,	$\pi_{L1,0} = 0.400$, ot he ignored
			лцт > лцт,0 - La		uckiing cann	or be ignored
Design resistance for bucklin	g - Section 6.3.	2.1				
Des.buckling resist.moment;	M _{b,Rd} = 125.4 kf	Nm	• • • • • • • • • • • • • • • • • • • •			
	PASS-	- Design bucki	ing resistance	moment exceed	is design ben	aing moment
Check vertical deflection - See	ction 7.2.1					
Consider deflection due to perm	anent and varia	ble loads				
Limiting deflection	δ _{lim} = 10 mm;		Maximum defl	ection;	δ = 9.035 mm	ı
		PAS	S - Maximum	deflection does	not exceed d	eflection limit
;						
525						
B3B						
STEEL BEAM ANALYSIS & DE		-1-1.2005)				
		<u>-1-1.2000/</u>				
In accordance with EN1993-1-	1:2005 incorpo	rating Corrige	nda February 2	2006 and April 2	009 and the U	K national
annex					TEDDS calcula	tion version 3.0.14
						1011 Version 5.0.14
			2000		<u> </u>	
A			1		B	
Support conditions						
		Vortically	ootrained			
		venucally r	ธรมสมาชิน			

	Project				Job no.				
Iekia. ledds	17	A Chesterford	Gardens, NW3 7	'DD	CA	6669			
Cooper Associates	Calcs for				Start page no./Revision				
6 Bartholomew Place		Bas	ement		8/B				
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date			
	DD	03/11/2023							
	-								
		Rotationall	y free						
Support B		Vertically r	Vertically restrained						
		Rotational	y free						
Applied loading									
Beam loads		Permanen	t self weight of b	eam × 1					
		Masonry 9	mht ×2kN/m2 - F	Permanent full UI	DL 18 kN/m				
		Roof 4m/2	×1.25kN/m2 - Pe	ermanent full UD	L 2.5 kN/m				
		Roof 4m/2	×1.25kN/m2 - Va	ariable full UDL 1	.5 kN/m				
		1st&2nd 2:	×4m/2×1.5kN/m2	2 - Permanent ful	l UDL 6 kN/m	1			
		1st&2nd 2	×4m/2×1.5kN/m2	2 - Variable full U	DL 1 kN/m				
		Grd 2m/2×	4.5kN/m2 - Perr	nanent full UDL 4	1.5 kN/m				
		Grd 2.2m/2	2×1.5kN/m2 - Pe	ermanent full UDL	_ 1.6 kN/m				
		Grd 4.2m/2	2×1.5kN/m2 - Va	ariable full UDL 3.	.1 kN/m				
		B2 - Perma	B2 - Permanent point load 18.2 kN at 300 mm						
		B2 - Variat	ole point load 10	.6 kN at 300 mm					
Analysis results									
Maximum moment:		M _{max} = 32 .	9 kNm [.]	$M_{min} = 0$) kNm				
Maximum shear:		V _{max} = 87.3	3 kN:	$V_{min} = -$	59 kN				
Deflection:		δ _{max} = 2.8	mm:	$\delta_{\min} = 0$	mm				
Maximum reaction at support A	:	RA max = 8	7.3 kN:	R _A min =	87.3 kN				
Unfactored permanent load rea	ction at support /	A; RA Permanent	t = 48.4 kN	_					
Unfactored variable load reaction	on at support A;	RA Variable =	• 14.6 kN						
Maximum reaction at support B	•	R _{B_max} = 59	9 kN;	R _{B_min} =	59 kN				
Unfactored permanent load rea	B; RB_Permanent	R _{B_Permanent} = 35.7 kN							
Unfactored variable load reaction	on at support B;	R _{B_Variable} =	R _{B_Variable} = 7.2 kN						
Section details									
Section type;	2 x PFC 150x7	5x18 (British S	teel Section Ra	nge 2022 (BS4- ⁻	1)) ; Steel	grade;			
	S355								
Section classification;	Class 1								
Check shear - Section 6.2.6									
Design shear force;	V _{Ed} = 87 kN;		Design shear r	esistance;	V _{c,Rd} = 390.2	kN			
		PAS	SS - Design she	ar resistance ex	ceeds desig	n shear for			
Check bending moment - Sec	tion 6 2 5		-		_				
Design bending moment	$M_{Ed} = 32.9 \text{ kNm}$		Des bending re	sist moment [.]	Mo Rd = 93 8	kNm			
		' ,	Dec.bending re	olot.momont,					
Sienderness ratio for lateral t		ng							
LIB slenderness ratio;	$\lambda_{LT} = 0.736;$		Limiting slende	rness ratio;	λ _{LT,0} = 0.40)			
			λιτ > λιτ,ο - Lat	teral torsional b	uckling cann	ot be ignore			
Design resistance for bucklin	g - Section 6.3.	2.1							
Des.buckling resist.moment;	M _{b,Rd} = 70.9 kNi	m							
	PASS -	Design buckl	ing resistance i	moment exceed	s design ber	nding mome			
Check vertical deflection - Se	ction 7.2.1								
Consider deflection due to perm	nanent and varia	ble loads							
Limiting deflection	δ _{lim} = 5.6 mm;		Maximum defle	ection;	δ = 2.804 mr	n			
		PAS	SS - Maximum d	leflection does i	not exceed d	eflection lin			
·									
3									

BEARING CAPACITY

Bearing capacity of 100kPa assumed. The bearing capacity is based on the visual assessment of soil in trial pits and experience in the area. Stiff clay is normally accepted as 100 kN/m2 and often has a higher GBC. The bearing pressure below existing walls is bigger than 100kPa.

	Project				Job no.		
Tekla ledds	17	A Chesterford	Gardens. NW3 7	DD	CA	CA6669	
Cooper Associator	Calcs for		,		Start page no./Re	evision	
6 Bartholomew Place		Bas	ement		1	1/B	
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date	
	DD	03/11/2023					
RETAINING WALL ANAL	YSIS & DES	IGN (EN19	<u>92)</u>				
RETAINING WALL ANALYSIS	-						
In accordance with EN1997-1 incorporating Corrigendum N	2004 incorpora	ating Corrigenc	lum dated Febr	uary 2009 and 1	the UK Nationa	al Annex	
Retaining wall details					Tedds calculau	on version 2.9.22	
Stem type:	Cantilever						
Stem height:	h _{stem} = 2500 mr	n					
Stem thickness:	t _{stem} = 350 mm						
Angle to rear face of stem:	α = 90 deg						
Stem density:	γ _{stem} = 25 kN/m	3					
Toe length:	Itoe = 1800 mm						
Base thickness;	t _{base} = 300 mm						
Base density;	$\gamma_{\text{base}} = 25 \text{ kN/m}^3$	3					
Height of retained soil;	, h _{ret} = 2500 mm;		Angle of soil su	rface;	β = 0 deg		
Depth of cover;	d _{cover} = 0 mm		5	,	r - 5		
Retained soil properties							
Soil type:	Stiff clay						
Moist density	$v_{mr} = 19 \text{ kN/m}^3$						
Saturated density:	$\gamma_{\rm er} = 19 \rm kN/m^3$						
Characteristic effective shear re	sistance angle:						
Characteristic wall friction and	a.		$\delta_{rk} = 9 \operatorname{deg}$				
	*,						
Base soil properties	04:45 - 1						
Soli type;							
Soli density;	$\gamma_b = 19 \text{ KIN/III}^\circ$		4. - 19 dog				
Characteristic enective shear re	sistance angle,						
Characteristic wan inclion angle	;		$o_{b,k} = 9 \text{ deg}$				
Brocumed bearing capacity:	e;	1/m ²	$o_{bb,k} = 12 \deg$				
Presumed bearing capacity,	Pbearing - IUU KI	N/111-					
Loading details							
Variable surcharge load;	Surcharge _Q = 5	kN/m²					
Calculate retaining wall geom	etry						
Base length;	I _{base} = 2150 mm	1					
Moist soil height;	h _{moist} = 2500 mi	m					
Length of surcharge load;	I _{sur} = 0 mm						
Vertical distance;	x _{sur_v} = 2150 mr	m					
Effective height of wall;	h _{eff} = 2800 mm						
	$X_{sur_h} = 1400 \text{ m}$	m 2.			- 4075 -		
Area of wall stem;	$A_{stem} = 0.875 \text{ m}$	-,	Vertical distance	e; e:	Xstem = 1975 m		
	ADDASE - 0.043 III	,		ο,	ADase - 10/3 []		
Using Coulomb theory	V 0 105		D .	.			
Active pressure coefficient;	κ _A = 0.483 ;		Passive pressu	re coefficient;	Kp = 2.359		
Bearing pressure check							
Vertical forces on wall							
Total;	$F_{total_v} = F_{stem} +$	F _{base} = 38 kN/m	I				

	Project				Job no.	
	17	A Chesterford	Gardens, NW3 7	'DD	CA	6669
Cooper Associates	Calcs for				Start page no./R	evision
6 Bartholomew Place		Bas	ement		1	2/B
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	DD	03/11/2023				
Horizontal foreas on wall						
Total	$F_{max} = F_{max} + t$	Envire + Envire	= 10.2 kN/m			
	i totai_n — i sur_n i	i moist_n i pass_	n – 40.2 KN/III			
Moments on wall	M - M . I		- 40 1.01	_		
lotal;	IVItotal = IVIstem + I	VIbase + IVIsur + IV	moist = 18 KNM/m	1		
Check bearing pressure						
Propping force;	F _{prop_base} = 40.2	kN/m	. .		.	2
Bearing pressure at toe;	$q_{toe} = 53.4 \text{ kN/n}$	1 ² ;	Bearing pressu	re at heel;	q _{heel} = 0 kN/m	2
Factor of safety;	$FOS_{bp} = 1.872$	llowabla boariu		oode maximun	a applied beau	ina proceuro
	PA33 - A	nowable bearing	ig pressure exc	ceeus maximun	i applieu beal	ing pressure
RETAINING WALL DESIGN						
In accordance with EN1992-1	1:2004 incorpo	rating Corrige	ndum dated Jai	nuary 2008 and	the UK Natio	nal Annex
incorporating National Amend	dment No.1	5 5				
					Tedds calculat	ion version 2.9.22
Concrete details - Table 3.1 -	Strength and de	eformation cha	racteristics for	concrete		
Concrete strength class;	C32/40					
Char.comp.cylinder strength;	f _{ck} = 32 N/mm ² ;		Mean axial tens	sile strength;	f _{ctm} = 3.0 N/m	m ²
Secant modulus of elasticity;	Ecm = 33346 N/	mm²;	Maximum aggr	egate size;	h _{agg} = 20 mm	
Design comp.concrete strength	;f _{cd} = 18.1 N/mm	l ² ;	Partial factor;		γ _C = 1.50	
Reinforcement details						
Characteristic yield strength;	f _{yk} = 500 N/mm ²	2;	Modulus of elas	sticity;	Es = 200000 M	N/mm ²
Design yield strength;	f _{yd} = 435 N/mm²;		Partial factor;		γs = 1.15	
Cover to reinforcement						
Front face of stem;	c _{sf} = 30 mm;		Rear face of ste	em;	c _{sr} = 75 mm	
Top face of base;	c _{bt} = 30 mm;		Bottom face of base;		c _{bb} = 50 mm	
Check stem design at base of	stem					
Depth of section;	h = 350 mm					
Poctangular soction in floxur	Section 6.1					
Design bending moment:	M = 43.1 kNm/r	n.	K = 0.019 [.]		K' = 0 207	
Boolgn bonding momont,		,	K' > K - N	lo compression	reinforceme	nt is reauired
Tens.reinforcement required;	A _{sr.reg} = 390 mm	1 ² /m				
Tens.reinforcement provided;	16 dia.bars @ 2	200 c/c;	Tens.reinforcer	ment provided;	Asr.prov = 1005	mm²/m
Min.area of reinforcement;	A _{sr.min} = 420 mn	n²/m;	Max.area of rei	nforcement;	A _{sr.max} = 1400	0 mm²/m
	PASS - Area o	f reinforcemen	t provided is gr	reater than area	of reinforcen	nent required
				Librai	ry item: Rectangula	ar single summary
Deflection control - Section 7	.4					
Limiting span to depth ratio;	16		Actual span to	depth ratio;	9.4	
		PASS	- Span to dept	h ratio is less tl	han deflection	control limit
Crack control - Section 7.3						
Limiting crack width;	w _{max} = 0.3 mm;		Maximum cracl	k width;	w _k = 0.164 mr	n
		PASS	S - Maximum cra	ack width is les	s than limiting	g crack width
Rectangular section in shear	- Section 6.2					
Design shear force;		V = 47.2 k	N/m			
Rectangular section in shear	- Section 6.2					
Design shear force;	V = 47.2 kN/m;		Design shear re	esistance;	V _{Rd.c} = 137 kN	l/m
		PAS	SS - Design she	ar resistance e	xceeds desig	n shear force

	Project				Job no.	
	1	7A Chesterford	Gardens, NW3 7	'DD	CA6669	
Cooper Associates	Calcs for				Start page no./Re	evision
6 Bartholomew Place		Bas	ement		13/B	
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	חח	03/11/2023	,			
		00/11/2020				
Horizontal reinforcement para	allel to face of	stom - Section	96			
Min area of reinforcement	A = 350 m	m^2/m^2	Max spacing of	reinforcement:	s	om
Trans reinforcement provided:	10 dia bars @	200 c/c:	Trans reinforce	ment provided:	Ssx_max = 400 m	nm^2/m
rians.teiniorcement provided,		zoo o,c, f rainfarcaman	t provided is a	ment provided,	of roinforcom	ont roquirod
	1 A33 - Alea C	n rennorcemen	i provided is gr	eater than area	orrennorcen	entrequired
Check base design at toe						
Depth of section;	h = 300 mm					
Rectangular section in flexure	e - Section 6.1					
Design bending moment;	M = 44.2 kNm/	m;	K = 0.023 ;		K' = 0.207	
			K' > K - N	lo compression	reinforcemen	t is required
Tens.reinforcement required;	A _{bb.req} = 439 m	m²/m				
Tens.reinforcement provided;	12 dia.bars @ 3	200 c/c;	Tens.reinforcer	ment provided;	A _{bb.prov} = 565 r	nm²/m
Min.area of reinforcement;	A _{bb.min} = 384 m	m²/m;	Max.area of rei	nforcement;	A _{bb.max} = 1200	0 mm²/m
	PASS - Area c	of reinforcemen	t provided is gr	reater than area	of reinforcem	ent required
				Librar	y item: Rectangula	r single summary
Crack control - Section 7.3						
Limiting crack width;	w _{max} = 0.3 mm;		Maximum cracl	k width;	w _k = 0.297 mn	า
		PASS	S - Maximum cra	ack width is less	s than limiting	crack width
Rectangular section in shear	- Section 6 2				-	
Design shear force:	- Section 0.2	V = 33 k N /	m			
Design shear lorde,		$\mathbf{v} = 00\mathbf{R}\mathbf{v}$				
Rectangular section in shear	- Section 6.2					
Design shear force;	V = 33 kN/m;		Design shear re	esistance;	V _{Rd.c} = 127.1 k	N/m
		PAS	SS - Design sne	ear resistance ex	cceeas aesigr	n snear torce
Secondary transverse reinfor	cement to base	e - Section 9.3				
Min.area of reinforcement;	A _{bx.req} = 113 mr	m²/m;	Max.spacing of	reinforcement;	s _{bx_max} = 450 n	nm
Trans.reinforcement provided;	10 dia.bars @ 2	200 c/c;	Trans.reinforce	ment provided;	A _{bx.prov} = 393 r	nm²/m
	PASS - Area o	of reinforcemen	t provided is gr	reater than area	of reinforcem	ent required

Bearing pressure is less than 100kPa – Ok.

Calcs for Calcs by DD Calcs by Calcs by DD Calcs by DD Calcs by DD Calcs by Calcs by C	17A Chesterf	ford Gardens, Basement Checked b	y Checked da	ate Approved by	CA6669 o./Revision 20/B / Approved date			
Calcs for Calcs by Calcs by DD Calcs by Calcs by Ca	straps at n 3 No te block te block	Basement Checked b	y Checked da	ate Approved by	20/B / Approved date			
Calcs by DD Calcs Calcs Calcs A Calcs by DD Calcs Calcs Calcs A Calcs by DD Calcs Calcs Calcs A Calcs by DD Calcs Calcs A Calcs A Ca	Calcs date 03/11/20	Dasement Checked b	y Checked da	ate Approved by	Approved date			
CHECK EXISTING MASONRY PANEL OUTOR DATA CHECK EXISTING MASONRY PANEL The provide 30 x 5 galvanised, provide 30	straps at n 3 No te block d timber boor 4000/c. veen t.	923						
CR retaining walks CR retaining CR retaining Walks CR retaining CR re	straps at n 3 No te block 1 limber 3. toor 400c/c. veen 1.							
<complex-block></complex-block>								
MASONRY WALL PANEL DESIGN In accordance with BS5628-1:2005 Tedds calculation version 1.2. Masonry panel details Retaining wall - Unreinforced masonry wall without openings								
Panel length; L = 2000	mm;	Panel he	eight;	h = 1700 m	nm			
Panel support conditions	المناسم مرزم	t and laft ar-	tinuovo					
, All edges	s supported, right resistance to late	it and left cor eral movement	ninuous nt					
Effective panel length: $L_{ef} = 1500$) mm;	Effective	panel height:	h _{ef} = 1700	mm			

Tokla Todda	Project				Job no.		
	17	A Chesterford	CA6669				
Cooper Associates	Calcs for	Des			Start page no./Revision		
6 Bartholomew Place London EC1A 7HH	Calaa hu	Bas Color data	sement	Chasked data	Approved by Approve		
	DD	03/11/2023	Checked by	Checked date	Approved by	Approved date	
Lateral loading details Characteristic wind load on pan	el;		W _k = 10.000 kl	N/m²			
Vertical loading details Dead load on top of wall; Imposed load on top of wall;	G _k = 67.4 kN/m; Q _k = 9.8 kN/m;	,					
Partial safety factors for mate Category of manufacture; Partial factor for compression; Partial factor for shear;	rial strength Category II; γmc = 3.50; γmv = 2.50		Category of co Partial factor fo	nstruction; or flexure;	Normal γ _{mf} = 3.00		
Slenderness ratio (cl 24.1)	00 07		01	r.	00 40		
Allowable slenderness ratio;	$SR_{all} = 27;$	F	Sienderness ra ASS - Sienderi	atio; ness ratio is le:	SR = 4.3 ss than maxin	num allowabl	
Vortical loading (ol 29)		,	Gienden			4	
Vertical loading (cl 26)							
Partial safety factors for desig	$y_{fG} = 1.40^{\circ}$		Partial factor fo	or imposed load	. vfo = 1.60		
Check vertical loads at top of	wall			i inpoodu iouu	, ,, ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Design vertical load stress;	f _v = 0.319 N/mm	1 ² ;	Allowable stres	ss capacity;	f _{cap} = 0.697 N	N/mm ²	
	PASS	- Allowable st	ress capacity e	xceeds design	vertical load	stress on wa	
Horizontal loading (cl 32)							
Limiting dimensions (cl 32.3)							
Area of panel;	A _p = 3.4 m ² ;		Limiting area o	of panel;	A _{max} = 241.0	m ²	
Limiting panel dimension:	– 17250 m	PA	SS - Area of pa	nel does not e	xceed limiting	area of pane	
Limiting parler dimension,			PASS -	Limiting panel	dimension is	not exceede	
Partial safety factors for desig	un loads			01			
Partial factor for wind load;	γ _{fw} = 1.40 ;		Partial factor for	or dead load;	γ _{fG} = 0.90		
Design moments of resistanc	e in panels (cl 3	32.4.2)					
Elastic moment of resistance;	M _d = 6.613 kNm	1/m					
Design moment in panels (cl : Design moment in wall;	<u>32.4.2)</u>	$M = \alpha \times W$	$V_{k} \times \gamma_{fW} \times L^{2} = 1.4$ PASS - Res	164 kNm/m sistance mome	ent exceeds de	esign momer	
;							

Takla Tadda	Project				Job no.	
	17	A Chesterford (Gardens, NW3 7	DD	CA6669	
Cooper Associates	Calcs for		Start page no./Revision			
6 Bartholomew Place	Basement				23/B	
London EC1A 7HH	Calcs by	Calcs date	Checked by	Checked date	Approved by	Approved date
	DD	03/11/2023				

DAMAGE CATEGORY ASSESSMENT

This analysis is based on the guidance of CIRIA C760.

The two primary sources of cracking are vertical distortions from differential settlement and tapering cracks arising from the horizontal tension strains from the settlement/rebound wave. Burland suggested that the façade of the building can be considered as a large deep beam with the bending and diagonal strains within it depending on its proportions, i.e. ratio of the Length/Height, L/H. On tall narrow buildings, with L/H below unity, diagonal cracking from differential settlement predominates whereas on long squat buildings or terraces, tension cracks due to bending predominates.

The two types of cracking relate to vertical and horizontal strains. Utilising the concept of the limiting strains, envelopes of increasing damage can be developed combining the two types of movement for various building proportions. This is of limited value and it is more useful in practice to develop envelopes of different damage categories for a given façade proportion. The two axes on the Burland Scale charts are vertical differential settlement, Δ/L , and horizontal strains ϵ_h on to which different crack severity envelopes can be plotted.

Flank and corridor wall

The flank wall and corridor wall are going to be partially underpinned. This is a three storey building with a height of 11m and the basement is 7m long giving a L/H ration just over 0.5.

The maximum vertical deflection for the basement is -5.2mm. The sagging can be conservatively considered half of that (-5.2mm / 2 = -2.6mm).

The maximum horizontal movement for the basement is 1.2mm. This horizontal movement is small compering to a typical basement as retaining walls are just 2.6m high and they are restrained by RC walls, masonry walls and steel columns. The maximum horizontal movement is multiplied by 2.5 to allow for movement during construction (1.2mm * 2.5 = 3mm).

The side wall next to the basement is 5.2m long and with a height of 11m giving a L/H ration just under 0.5.

Bedroom 1

Shared hallwa

ide wa

S

The maximum vertical deflection for the basement is -5.2mm. The basement in this location will be approx. 200mm lower than the existing basement. The sagging can be conservatively considered a third of the maximum vertical deflection (-1.7mm).

