

1G081-HES-0001 **Euston Station - Ground Investigation Factual Report**

Document No.: 1G081-WYG-GT-REP-000-000006

Revision	Date	Author	Checked by	Approved by	Revision Details:
P01	20/12/17	F. Baudrain	M. Hawkins	C. Pugh	For Comment
P02	22/01/18	F. Baudrain	N. Paulakis	M. Hawkins	Updated

Co-financed by the European Union Connecting Europe Facility

1G081-HES-001 **Ground Investigation Framework Euston Station - Ground Investigation** Factual Report

equilibre montain equilibre mo WYG Document Reference: 1G081-WYG-GT-REP-000-000006 Status: Final P02 Security Classification: Unclassified

www.wyg.com

WYG Environment Planning Transport Limited. Registered in England & Wales Number: 03050297 Registered Office: Arndale Court, Otley Road, Headingley, Leeds, LS6 2UJ

Document Control

Document:	Euston Station - Ground Investigation Factual Report	
Project:	HS2 Ground Investigation Framework	
Work Package:	1G081 – HES – 001	
Client:	High Speed Two Limited	
Job Number:	A085215-1	
File Origin:	H:\A080000-A089999\A085215\HS2 DELIVERY PHASE\WORK PACKAGE ORDERS\HES-001\Documents\Reports\Factual report\Issue\HES_Final Factual Report.docx	

Revision: -Date: Prepared by: Franck Baudrain P01 - Final 29/09/2017 Checked by: Mark Hawkins

Approved By: **Chris Pugh**

Revision: -Date: Prepared by: Franck Baudrain P02 - Final 22/01/2018 Checked by: **Nick Paulakis**

Contents

1	Gene	ral	1
	1.1	Introduction	1
	1.2	Objectives of the Investigation	1
2	Site D	Details	2
	2.1	Site Location	2
	2.2	Site Description	
	2.3	Anticipated Geology	
3	Grour	nd Investigation Works	
	3.1	Scope of Work	
	3.2	Specification and Standards	
	3.3	Historical Report	
4	Εηςοι	untered Ground Conditions	
	4.1	Geology	11
	4.2	Groundwater	
	4.3	Evidence of land contamination	
5	Labor	ratory Testing	
	5.1	Geotechnical Laboratory Testing	14
	5.2	Chemical Laboratory Testing	
6	-	toring	
7		ronic Data	
-			
NO	tes		2

LIST OF TABLES

LIST OF TABLES	
Table 1 – Geological profile	
Table 2 – Summary of Investigation Methods	
Table 3 – Changes from Final Scope during fieldwork	
Table 4 – Summary of Geotechnical Testing Table 5	
Table 5 – Summary of Amendments to schedule Table 6 – Summary of Soil Chemical Testing	
Table 0 – Summary of Son Chemical Testing Table 7 – Summary of Groundwater Chemical Testing	
Table 8– Summary of Installation Response Z	
www.wyg.com	creative minds safe hands

Euston Station - Ground Investigation Factual Report **Revision: Final P02**

Appendices

- Appendix A **Report Conditions**
- Appendix B Drawings
- Appendix C Phase 1 – Non- Intrusive Geophysics Results (PAS128B)
- Appendix D Exploratory Hole Logs
 - **Rotary Core Boreholes D.1**
 - **D.2** Windowless Sample Boreholes
 - D.3 **Cable Percussive Boreholes**
 - **D.4** CPT Logs
 - D.5 Pavement Core Holes
 - **D.6 Calibration Certificates**
- Appendix E Photographs
 - E.1 Rotary Core and inspection pit Photographs
 - E.2 Windowless Sample Photographs
 - Cable Percussive Inspection Pit Photographs E.3
 - **CPT** Inspection Pit Photographs **E.4**
 - E.5 Pavement Core Hole Photographs
- Appendix F Borehole Permeability Test Results
- Appendix G **Geophysical Test Results**
- Appendix H **CPT Results**
- Appendix I Self Boring Pressuremeter Test Results
- Appendix J Geotechnical Laboratory Test Results
- Appendix K Chemical Laboratory Test Results
- Appendix L Monitoring
 - L.1 Monitoring Data
 - L.2 **Calibration Certificates**
- Appendix M Electronic Data (AGS4)
- Appendix N Historical Reports
- tor Inplementation Ian Farmer Associates, Regents Park Estate, London NW1, Report on Ground N.1 Investigation, Contract number 52382A, December 2015
 - WSP Limited, 2015 Euston Road, Condon, Ground investigation N.2 Interpretative Report, Ref. 90316L, 102, 1999

General 1

Introduction 1.1

WYG Environment Planning Transport Limited (WYG) was commissioned by High Speed Two (HS2) Limited to undertake a ground investigation and produce a factual report for the HS2 Euston Station (HES001) work package. The investigation was specified by HS2 Ltd who also provided assurance on a small sample of site work.

This report has been prepared for High Speed Two (HS2) Limited and other agreed parties in accordance with the terms and conditions of the contract. Attention is drawn to the report conditions, outlined in Appendix A, and the terms and conditions of the engagement.

The Ground Investigation was undertaken in two phases. A first phase comprised a limited deployment for drilling works during Easter term holiday within Maria Fidelis Lower School from the 10th to the 22nd April 2017. The second and main phase of works was undertaken between the 22nd May and the 4th August 2017.

1.2 Objectives of the Investigation

The purpose of the ground investigation is to provide both geotechnical and geo-environmental factual information to enable safe and cost-effective design and construction of the proposed terminus for the proposed HS2 routes to and from the north. To accommodate the proposed new additional high-speed lines code the main works will comprise the re-development of the existing Euston station in addition to widening and deepening of the existing Station approach to the north of Euston Station, and extension of Euston Underground Station, linking to Euston Square Underground Station.

2 Site Details

2.1 Site Location

Euston Station is located in central London within the London Borough of Camden.

The 'site' is defined as the required working area within which each of the fieldwork, site compound(s) and access routes are located.

The whole of the site to be investigated is located immediately adjacent to the west side of Euston station and falls within an area of approximately 110,000m2.

The National Grid Reference (NGR) for the centre of the site is approximately E: 529346, N: 182669.

The Site Location Plan (ref: 1G081-HS2-GT-MAP-000-000001) is located in Appendix B.

2.2 Site Description

The site predominantly contains both commercial and residential buildings in addition to public roads. Much of the site, therefore comprises hardstanding ground, with the exception of St James' Gardens and Euston Square Garden. The former is the area of an historical cemetery, which is located towards the centre of the site. Whilst no exploratory holes have been undertaken within St James Gardens, one borehole was drilled within Euston Square Garden.

The site is bordered to the east by the existing Euston Station, the station approach and related rail infrastructure. To the west the site is bordered by Hampstead Road (A400) and to the south by Gower Place. Several existing underground structures have been identified within the site boundary which include built at the should not be limited to; LUL tunnels and shafts comprising: Northern Line "Bank Branch" – running north-south within west of site area Northern Line "Charing Cross Branch" – running east-west within south of site area Victoria Line – running east-west within south of site area Relief tunnel – running parallel to the Northern To the north the site is bordered by commercial and residential properties in addition to the existing rail lines

- Disused tunnels and shafts •
- Cable tunnel (Euston Square Station to Drummond Street) •

Obstructions

- Potential bridge abutments
- Possible turn table
- Disused burial ground
- Brick foundations of historic structures/buildings

The site has been classified by the Employer as Yellow in accordance with the Guidance for Safe Intrusive Activities on Contaminated or Potentially Contaminated Land (BDA, 2008). This classification has been based on information presented in the London-West Midlands Environmental Statement.

Potential sources of contamination within the site included the following;

- Former printing works (E:529314, N:182791)
- Garage (centred at E:529445, N:182582)
- Wagon works, garage, hotel (centred at E:529416, N:182642)
- Builders yard (centred at E:529235, N:182860)
- Burial ground/cemetery (centred at E:529331, N:182723)
- Historical warehouses (E:529455, N:182519)
- Historical printing works; municipal building (E:529503, N:182477)
- Railway station and rail land

Further detail is presented in the Geotechnical Desk Study report (reference: C220-ARP-DL-REP-01A-000002) and the Environmental Statement available from HS2 Ltd.

The site is predominantly classed as having a low risk of encountering unexploded ordnance (UXO). An area of medium risk, however, has been identified covering locations ML000-CR001 (formerly CP007), ML000 PC010 & PC011, ML000-CP001, ML000-WS001, 2 and 3.

Further detail and suggested mitigation measures are provided by Zetica in their report titled Unexploded Ordnance Desk Study', (HS2 reference: 0615-ZET-GT-REP-000-000001).

2.3 Anticipated Geology

The conjectured geological profile at the site is as follows;

Table 1 – Geological profile

Stratum	Approx. base of strata – depth (mbgl) [elevation mOD]	Approx. Thickness (m)
Made Ground	<3 [+20]	<3
London Clay Formation	19 [+4]	16
Harwich Formation	21 [+2}	<2
Lambeth Group	38 [-15]	19
Thanet Sand Formation	44 [-21]	6
Chalk	-	-

River Terrace Deposits are shown to overly the London Clay to the south of the site and therefore may be encountered during the proposed ground investigation works.

The above geological profile has been inferred from available information, including borehole data from the British Geological Survey (BGS). No assurance is given to its accuracy.

Perched groundwater to be expected in Made Ground and alluvium overlying the London Clay Formation. Small quantities of water to be expected during drilling through sand bands of the London Clay. Standing water has been recorded at approximately 0 – 5mOD within the top of the Lambeth Group, there is expected to be an underdrainage effect of the Lambeth Group and non-hydrostatic pore pressures are expected in the London Clay. Sand channels within the Lambeth Group with potentially high groundwater pressures and running sand should be expected. The Environment Agency (2010) review of groundwater levels shows that the groundwater levels in the chalk beneath the site are between -30m.OD and -40m.OD approximately 600 below ground level.

Further detail is presented in the Geotechnical Desk Study report (ref: C220-ARP-DL-REP-01A-00002).

Ground Investigation Works 3

3.1 Scope of Work

The ground investigation, designed by HS2 Ltd, was undertaken by WYG and their approved subcontractors and was carried out in two distinct mobilisations, although for the purpose of this report the information is reported as one.

The ground investigation was undertaken in stages. In addition to obtaining the latest service diagrams and drawings from the relevant service providers (PASS128 Type D), Stage 1 comprised site reconnaissance (PASS128 Type C) and non-intrusive geophysical mapping surveys (PASS128 Type B) to establish the location and depth of existing utilities. The surveys were carried out at each exploratory hole location prior to breaking ground, in line with PASS128 requirement. Stage 1 works were carried out utilising the following equipment:

- Mala HDR Ground Penetration Radar (GPR).
- RD8000 Tracing Set, transmitter & receiver (Electromagnetic Locator [EML]).

The outputs of the geophysical surveys are enclosed as Appendix C.

Stage 2 comprised the following intrusive investigations and related in-situ testing:

- Excavation of inspection pits (data enclosed as Appendix D.1, D.2, D.3, D.4, D.5 with associated photographs provided as Appendix E.1, E.2, E.3 and E.4) in line with PASS128 Type A verification.
- Rotary Geobore-S boreholes (water flush) through superficial deposits, weathered and solid strata (data enclosed as Appendix D.1 with associated core photographs provided as Appendix E.1). Use of biodegradable polymer (Purebore) was approved for use by HS2 Ltd when drilling through Lambeth Group and Chalk to ease drilling and improve recovery.
- Cable percussive boreholes (exploratory hole logs enclosed as Appendix D.3 with associated photographs for the inspection pits provided as Appendix E.3). Cone Penetrometer Test boreholes (exploratory hole)
- photographs provided as Appendix E.4).
- Pavement cores (data enclosed as Appendix D.5 with associated photographs provided as Appendix E.5).
- Recovery of disturbed and undisturbed samples from appropriate intrusive methods.
- Variable head permeability testing in boreholes (results enclosed as Appendix F).

- Down-the-hole geophysical survey to include natural gamma and televiewer (data enclosed as • Appendix G).
- Laboratory testing: classification tests; strength tests; compressibility and swelling tests; specialist • soil testing; contamination testing; rock testing; and groundwater chemistry (enclosed as Appendix J & K).
- Installation of groundwater monitoring instrumentation and subsequent monitoring, including • development and sampling of monitoring wells and ground gas (enclosed as Appendix L).

There were some changes to the scope of work from the original January 2015 specification to the one issued prior to the start of the fieldwork in March 2017. The investigation methods and numbers are given in Table 2 below. Exploratory hole logs are enclosed as Appendix D.

	Original Scope (7 th January 2015)	Revised Scope (27 th March 2017)	Completed
Method	No. / total meerage	No. / total meterage	No. / total meterage
Rotary cored holes	2 / 100m	4 / 200m	5 / 225.8m
Rotary open holes	2 / 100m	2 / 100m	0
Cable percussive holes	7 / 290m	8 / 290m	6 / 218m
Inspection pits	16	18	19
Trial pits	14	0	0
Windowless sampling	5	5	3
Concrete Coring	0	0	2
Pavement Core	2	2	1
СРТ	3 / 75m	3 / 75m	3 / 88m
SBPT / Dilatometer	24	14	9
Optical/Acoustic Televiewer	0	0	1 / 23m 3 / 181m
Natural Gamma	2 / 100m	5 / 230m	3 / 181m
			ormpleme
ww.wyg.com	Page	7	creative minds safe hands

Table 2 – Summary of Investigation Methods

Some changes were also implemented during the fieldwork phase as follows:

Table 3 – Changes from Final Scope during fieldwork

Location	Reason for change in scope/Comments	
ML000- RC007 and ML000- RO001	• Both boreholes are located within the school Maria Fidelis' playground. These formed the Phase 1 of the ground investigation, completed in advance of the main element of work in order that the works could be completed during half term school holiday.	
	• The boreholes were terminated at shallower depths than scheduled (53.75m target of 60m for RC007 and 30m target of 50m for RO001) due to the time restrictions (surrendering the drilling area before start of the term).	
ML000-	Changed due to programming and logistical constraints.	
RO001 and ML000- RO002	• Both boreholes were drilled by rotary coring (Geo-bore S system) in order to provide a better hole quality for the implementation of insitu pressuremeter testing.	
ML000- RC012	 The proposed rotary core borehole was located adjacent to the ML000-RO002. Given ML000-RO002 was cored, ML000-RC012 was deemed obsolete and cancelled. 	
ML000- CR002 / ML000- CP016	Location of the two boreholes swapped to mitigate issue of available working areas.	dic
ML000-	The cable percussive element of the work was cancelled and the borehole drifted	
CR002	solely by rotary coring means (Geo-bore S technique).The borehole depth was increased from 60 m to 70 m.	
ML000- CP003	• The borehole was terminated at shallower depth (29m instead of 40m) due to site constraints and high risk of mud splash to members of the public.	
ML000- CR001	• The borehole was terminated at shallower depth (53m instead of 60m) than scheduled due to significant flint obstruction being encountered at 52.65m which	

Location	Reason for change in scope/Comments
	could not be penetrated. Numerous attempts and variations of drilling techniques were utilised.
ML000- WS001	• Two inspection pits were excavated for this location, both refused on a concrete obstruction at 0.85-1.2m depth potentially associated with the adjacent former underground station.
ML000- WS005	• The inspection pit was unable to identify safe clearance of existing services to facilitate drilling the borehole safely.
	• The borehole location was on the pavement and provided limited scope to move its location outside the dense corridor of utility services.
ML000- CP016	 The inspection pit identified type 1 backfill material at 1.2m depth near major utility service. The pit was extended deeper via vacuum extraction system to 2.3m where it refused on an unknown brick structure. Bricks removed from the borehole were shown to a historic brick specialist from EDP Services, who commented that based on colour, composition and size of the bricks removed, the layers of bricks were likely to be late 17th/early 18th century. The bricks contained large air holes and impurities so it is unlikely to have been used for facing and may have formed part of the foundations/basement structures associated with the Georgian properties along Melton Street (formerly Euston Street/Easton Crescent). The borehole was therefore cancelled.
ML000- CT020	 Given the issue of obstructions identified around ML000-CP016 (see above), the proposed CPT borehole ML000-CT020 was relocated where ML000-RC012 was initially proposed (by the Thistle Hotel).
w.wyg.com	Page 9

Euston Station - Ground Investigation Factual Report **Revision: Final P02**

3.2 Specification and Standards

The investigation was undertaken in accordance with the following specifications:

- UK Specification for Ground Investigation 2nd Edition, Thomas Telford Limited (2012)
- HS2 LTD Ground Investigation Framework Specification for Ground Investigation, Document No. HS2-• HS2-GT-SPE-000-000001
- Work Package Specification WPO-HES-001 HS2 Euston Station, Document No. 1G081-HS2-GT-SPE-000-000001

The specifications reference the standards and other documents that have governed the investigation.

3.3 **Historical Report**

Historical reports were provided to HS2 Ltd by third parties and the factual information requested by HS2 Ltd was digitised and included within the AGS file of the WYG Ground Investigation Works. The two reports are as follows:

- Ian Farmer Associates, Regents Park Estate, London NW1, Report on Ground Investigation, Contract number 52382A, December 2015.
- WSP Limited, 2015 Euston Road, London, Ground investigation Interpretative Report, Ref. 90316L, June 1999

These reports were received by WYG in PDF format and partially in AGS format (for Ian Farmer report only) and are included in Appendix N of this document. Where possible, the factual information was manually ede converted/digitised by WYG into AGS format as instructed by HS2 Ltd and form part of the AGS file included in Appendix M. The data provided by these two reports should be considered as for information purposes only and WYG cannot take responsibility for their accuracy and or validity. It is understood HS2 Ltd have received approval from all relevant parties to use the information for the reporting requirement.

Encountered Ground Conditions 4

A summary of the ground conditions encountered in the WYG investigation is presented below, with detailed information presented on the exploratory hole logs included in Appendix D.

4.1 Geology

4.1.1 Made Ground/Topsoil

Topsoil was encountered in CP001 located within the Euston Square Gardens. Elsewhere, either asphalt, concrete and/ or cobbles were encountered from ground level.

A variety of potential anthropogenic ground was encountered below all locations within the package beneath the hardstanding cover. The exception to this were ML000-WS002 and ML000-WS003 located within the basement car park of the Ibis Hotel, where the London Clay Formation was encountered directly beneath the concrete.

The inspection pit for borehole CP016 refused at 2.3m below ground level onto some old masonry works. Bricks removed from the pit were shown to an historic brick specialist from EDP Services, who commented that based on colour, composition and size of the bricks removed, the layers of bricks were likely to be late 17th/early 18th century. The brick contained large air holes and impurities so it is unlikely to have been used for facing and may have formed part of the foundations/basement structures associated with the Georgian properties along Melton Street (formerly Euston Street/Easton Crescent).

The inspection pits for ML000-WS001 and WS001A located on each end of the pavement width refused on a concrete slab at 0.85m and 1.2m below ground level. It was considered the slab is likely to be associated with the adjacent building, a disused substation.

Superficial deposits were encountered within the southern end of the site with Made Ground being underlaged to by orange brown gravelly sand (locally grading to sandy gravel with depth) of the River Torrest of the River Torrest of the severe found between 3.7-4.2m hol in ML000 Torrest of the River Torr form CP068.

4.1.3 Solid Geology

Anticipated solid geology was encountered in all exploratory borehole locations becath the Made Ground / Superficial Deposits. The bedrock formations comprised the following in vertical sequence from the shallowest to the deepest:

- London Clay Formation typically a firm becoming very stiff grey brown clay to 18.0-21.8m bgl weathering grades after Spink and Norbury (1993) have been applied when loggin;
- Lambeth Group (Upper Mottled Clay) typically multi coloured clay to 22.4-27.35m bgl;
- Lambeth Group (Sand Channel) typically grey sand to 24.0-25.2m bgl (only encountered in ML000-CP001, CP003 and CP068);
- Lambeth Group (Lower Mottled Clay) very stiff red blue, greyish brown mottled clay to 28.7-34.77m bgl;
- Lambeth Group (Upnor Formation) very dense greenish grey gravelly sand to 32.5-36.5m bgl
- Thanet Sand Formation very dense greenish grey sand to 41.95-43.35m bgl
- Bullhead Beds dark grey Sand with black flint gravel to 42.22-43.55m bgl (only encountered in ML000-CR001 and RO002);
- Upper Chalk (Seaford Formation) weak medium density closely to medium spaced fractures chalk with flint bands proven up to 70.0m bgl.

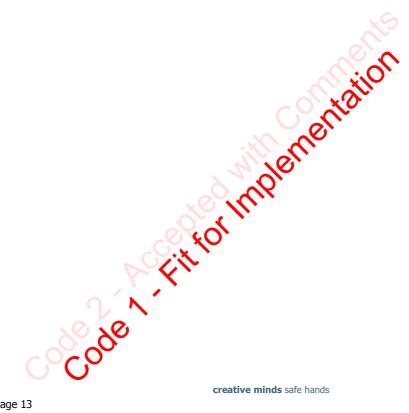
4.2 Groundwater

No obvious groundwater strikes were observed in any of the boreholes; however, the following should be noted:

- Small amounts of water were added to help facilitate drilling within the cable percussive boreholes.
- Due to the water flush technique during the rotary drilling operations, it was not possible to determine Additional information is available within the borehole records included within Appendix D. Water levels have been monitored subsequently to installation of the boreholes with the details included in Appendix L. 4.3 Evidence of land contamination any water strikes during drilling operations. However, loss of flush was frequent during drilling within

The presence of Made Ground was generally encountered across the site with frequent presence of extraneous material such as brick, concrete fragments and to lesser extent clinker appearamic. Otherwise, no obvious visual or olfactory evidence of hydrocarbon/chemical contamination was encountered with the Made Ground.

Levels of potential Volatile Organic Compounds (VOCs) were measured with a handheld PID meter, within the Made Ground of generally less than 10ppm (up to a maximum of 50ppm at ML000-CP066), increasing



to about 100ppm within or immediately beneath asphalt hardstanding (although up to 400ppm at ML000-CP035). Full PID readings are included within the logs in Appendix D long with the calibration certificate.

Some potential hydrocarbon contamination was identified whilst drilling the borehole ML000-CP003, within the River Terrace Deposits between 4.0-4.7 m bgl. Moderate potential hydrocarbon odour and surface oily type sheen was identified on the gravelly sand spoil. Below 4.7m, the River Terrace Deposit was underlain by the London Clay Formation stratum, suggesting the contamination sitting over the less permeable formation. Potential Volatile Organic Compounds of up to 1.6ppm were measured with the handheld PID meter within the potential hydrocarbon contaminated stratum.

The contaminated spoil associated with ML000-CP003 was segregated and appropriately stored before being disposed as non-hazardous waste. Waste characterisation results are included in Appendix K.

Clean drilling technique within ML000-CP003 was employed to prevent cross-contamination of the hydrocarbon onto deeper strata. This included the construction of a 1.5m thick bentonite seal between 4.5m and 6.0m depth and reduced casing from 200mm to 150mm.

Laboratory Testing 5

Geotechnical Laboratory Testing 5.1

Geotechnical tests were scheduled by HS2 Ltd through 4no. specific schedules. The testing was carried out by Professional Soils Laboratories Limited (PSL) at their laboratory in Doncaster, in accordance with their UKAS accreditation. The soil and rock testing is summarised in Table 3 with the results presented as Appendix J and the associated electronic data as Appendix M. Some testing is outstanding and will be submitted as an addendum once completed.

Table 4 – Summary of Geotechnical Testing

	Scheduled Tests	Number of Tests scheduled	Number of test completed
	K1.1 Moisture Content	159	159
	K1.2 Atterberg Limits 4 pt	123	123
	K1.4 Shrinkage Linear	18	18
	K1.8 Particle Density by Gas Jar or Pyknometer	25	24
Classification Tests	K1.9 Particle size distribution - Wet Sieving	43	39
	K1.11 Sedimentation - Pipette	38	37
	K2.1 Organic Matter Content	6	39 37 ente
	K2.2 Mass Loss on Ignition Organic	2	2
Compaction Related	K3.1 Compaction 2.5kg Rammer	C KO	4
Testing	K3.2 Compaction 4.5kg Rammer	4	4
	Coole A	I	<u> </u>

	Scheduled Tests	Number of Tests scheduled	Number of test completed
	K3.5 Dry Density Min Max Granular Soils	2	2
	K3.6 Moisture Condition Value at NMC	3	3
	K3.7 Moisture Condition Value / Moisture Content relationship	2	2
	K3.9 CBR Recompacted Remoulded	6	6
	K4.1 One-dimensional Consolidation Properties, Test Period 5 days	9	9
	K4.2 One-dimensional Consolidation Properties, Test Period greater than 5 days	9	8
	K4.3 Measurements of swelling pressure, test period 2 days	15	15
Compressibility,	K4.6.1 Measurement of Swelling Pressure of Stiff Clay, Test Period 7 days	5	5
Permeability, Durability Testing	K4.6.2 Measurements of expansibility of stiff clay, test period 5 days	5	5
	K5.13 Permeability in a triaxial cell, test period 4 days	2	5
	K5.14 Extra over Item K5.13 for test periods in excess of 4 days	4	lerre
	K6.4 Shear Strength of a set of three 60 mm x 60 mm square specimens by direct shear, test duration not exceeding 1 day per specimen	C. ROT	11
	cocode	X	
wyg.com	Page 15	creativ	e minds safe hands

	Scheduled Tests	Number of Tests scheduled	Number of test completed
	K6.6 Shear Strength of a set of three 300 mm x 300 mm square specimens by direct shear, test duration exceeding 1 day per specimen	1	0
	K6.16 Undrained shear strength of a single 100 mm diameter specimen in triaxial compression without the measurement of pore pressure	51	51
	K7.2 Consolidated undrained triaxial compression test with measurement of pore pressure (100mm specimens), single stage	4	4
Shear Strength	K7.11 Isotropically consolidated undrained triaxial compression test on 100mm diameter sample with mid-height porewater pressure measurement	7	8
(effective) Testing	K7.13 Anisotropically consolidated undrained triaxial compression test on 100mm diameter sample with small strain and shear wave velocity measurements	5	5
	K1.7 Density Chalk	28	28
	K8.14 Uniaxial Compressive Strength	8	and a
Chalk Testing	K8.14.1Uniaxial Compressive Strength with determination of young's modulus and Poisson's ratio	* COT	
	K8.21 Measurement of point load strength index of rock specimen (set of ten individual	4	5

	Scheduled Tests	Number of Tests scheduled	Number of test completed
	K8.22 Single measurement of point load strength on irregular rock lump or core sample (either axial or diametral test)	36	40
Ground/Groundwater Aggressivity	K9.4 BRE SD1 D	13	13
Detrographic Applysic	K12.2 X Ray Diffraction	3	3
Petrographic Analysis	K12.3 Optical Microscopy	1	1

Table 5 lists the soil samples scheduled by HS2 that were not tested by the laboratory and any amendments to the testing.

Table 5 – Summary of Amendments to schedule

Schedule Sample number	Original Scheduled Test affected	Amendments	Communication
2 RC007 – 44.59m	Uniaxial Compressive Strength - K08.14	Sample too short for UCS. Test not undertaken	Email from Franck Baudrain 25/9/2017
2 RC007 – 48.35	Point Load Strength - 3 sets - K08.21.1	Only one determination possible instead of 3 (absence of suitable material for testing)	
3 CR001 – 44.77m	Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1	Sample not available. Tests not undertaken	
3 CP0068 - 3.5m	Direct Shear Strength 300mm - K06.06	Insufficient sample. Test replaced as small shear box (60mm x 60mm)	Email from Ray Dobiecki 10/10/2017
3 CR001 – 44.77m (C5)	Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YN K08.14.1	Sample badly fractured. IPRCR001-44.77m split, photographed and chalk density/saturation moisture content and point load test undertaken. Unconfined compressive strength and elastic modulus undertaken on CR001 – 46m (C6)	Email from Ray Dobiecki 16/10/2017

chedule number	Sample	Original Scheduled Test affected	Amendments	Communication
3	RO002 – 48.23m (C47)	Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1	Sample too short for UCS Original sample replaced by RO002 – 48.98m (C48) for unconfined compressive strength and elastic modulus test	Email from Ray Dobiecki 16/10/2017
3	RO002 – 58.8m (C56)	Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1	Sample too short for UCS Original sample replaced by RO002 – 57.98m (C55) for unconfined compressive strength and elastic modulus test	Email from Ray Dobiecki 16/10/2017
3	CP001 - 5.2m	Particle size distribution - Wet Sieving - K01.09	Insufficient sample. Test not undertaken	Email from Ray
3	CR001 – 43.45m	Particle size distribution - Wet Sieving - K01.09	Sample is not suitable (rock). Test not undertaken	Email from Ray Dobiecki 14/12/2017
3	CR001 -	Uniaxial Compressive Strength YMPR - K08.14.1	Sample badly fractured. Test not undertaken.	o nP
3	RO002 – 44.43m	Particle size distribution - Wet Sieving - K01.09	Sample is not suitable (rock). Test not undertaken	Email from Ray Dobiecki 14/12/2017
3	RO002 – 48.23m	Uniaxial Compressive Strength YMPR - K08.14.1	Sample too short for UCS.	
3	RO002 – 58.80m	Uniaxial Compressive Strength YMPR - K08.14.1	Sample too short for UCS.	

www.wyg.com

Euston Station - Ground Investigation Factual Report Revision: Final P02

3 CP0035 - 22.5m Triaxial 100mm Single Stage - K06.16 Sample collapsed upon extrusion due to brittle nature of the material. Email from Ray Dobiecki 14/12/2017 4 CR002 - 43.05- 43.41 Density Chalk - K01.07 Particle size distribution - Wet Sieving K01.09 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 9 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 4 CR002 - 53.4- 53.57 Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 4 CR002 - 53.4- 53.57 Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 0riginal sample proposed to be replaced by CR002 - 51.57-54.71m for unconfined compressive strength and elastic modulus test but normal USC had already been completed on that sample. Email from Ray Dobiecki 06/11/2017 4 CR002 - 53.4- 53.57 Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 0 Point Load Strength - 3 sets - K08.21.1 Disxi and compressive Strength YMPR - K08.14.1 Sample too	Schedule number	Sample	Original Scheduled Test affected	Amendments	Communication	
4 CR002 - 43.05- 43.41 Density Chalk - K01.07 Particle size distribution - Wet Sieving - K01.09 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 9 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1 Original sample proposed to be replaced by CR002 - 45.5-45.8m for unconfined compressive strength and elastic modulus test but normal USC had already been completed on that sample. Email from Ray Dobiecki 06/11/2017 4 CR002 - 53.4- 53.57 Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017	3	CP0035 – 22.5m	Triaxial 100mm Single Stage - K06.16			
4 CR002 - 43.05- 43.41 Particle size distribution - Wet Sieving - K01.09 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017 9 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1 Original sample proposed to be replaced by CR002 - 45.5-45.8m for unconfined compressive strength and elastic modulus test but normal USC had already been completed on that sample. Dobiecki 06/11/2017 4 CR002 - 53.4- 53.57 Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Sample too short for UCS. Email from Ray Dobiecki 06/11/2017						
4 CR002 – 53.4- 53.57 Density Chalk - K01.07 Sample too short for UCS. Email from Ray Original sample proposed to be replaced by Point Load Strength - 3 sets - K08.21.1 Original sample proposed to be replaced by CR002 – 51 57-54 71m for unconfined Email from Ray	4		Particle size distribution - Wet Sieving - K01.09	PSD not undertaken as sample is not suitable		×S
4 CR002 – 53.4- 53.57 Density Chalk - K01.07 Sample too short for UCS. Email from Ray Original sample proposed to be replaced by CR002 – 51 57-54 71m for unconfined			Uniaxial Compressive Strength YMPR -	Original sample proposed to be replaced by CR002 – 45.5-45.8m for unconfined compressive strength and elastic modulus test but normal USC had already been completed on that		oentation
<u>80,80</u>	4		Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR -	Original sample proposed to be replaced by CR002 – 51.57-54.71m for unconfined compressive strength and elastic modulus test but normal USC had already been completed on	Dobiecki 06/11/2017	

Page 20

Schedule number	Sample	Original Scheduled Test affected	Amendments	Communication	
4	CR002 – 59.5- 59.87	Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1	UCS test cancelled.	Email from Ray Dobiecki 06/11/2017	
4	CR002 – 70.09- 70.4	Density Chalk - K01.07 Point Load Strength - 3 sets - K08.21.1 Uniaxial Compressive Strength YMPR - K08.14.1	Sample too short for UCS. Original sample proposed to be replaced by CR002 –69.04-69.25m for unconfined compressive strength and elastic modulus test but sample also too short for testing.	Email from Ray Dobiecki 06/11/2017	entation
			coede	Email from Ray Dobiecki 06/11/2017	ft.
www.wyg	j.com	Page	creative minds safe hands		

5.2 Chemical Laboratory Testing

5.2.1 Soil

Chemical testing was scheduled by HS2 Ltd. The testing was carried out by Jones Environmental at their laboratory in Deeside, in accordance with their UKAS / MCERTS accreditations.

The soil testing is summarised in Table 4 below and the results are presented as Appendix K with the electronic data as Appendix M.

Suite	Scheduled Tests	Number of Tests	
Suite E	Arsenic, boron, cadmium, chromium (total), copper, lead, mercury, nickel, zinc, pH, water soluble sulphate as SO4, total petroleum hydrocarbons, speciated Poly Aromatic Hydrocarbons (PAHs), phenols, cyanide (total), organic matter (SOM).	24	
Suite E1	Dependant option: phenols	2	
Suite E4	Dependant option: PAH in macadam	2	
Suite E6	Dependant option: hydrocarbons	1	XS
Suite E9	Dependant option: degreasing agents, odorous or high PID values	4	Contraction of the second seco
Suite F	Leachates – general	13	
Suite G	Leachates — organic	1	
Suite H	Asbestos Screen	50	
Suite H1	Asbestos Quantification	19	

Table 6 – Summary of Soil Chemical Testing

5.2.2 Groundwater Chemical testing was scheduled by HS2 Ltd. The testing was carried out by Jones Environmental at their laboratory in Decside in accordance with their Line (MCC/MCTER) laboratory in Deeside, in accordance with their UKAS/ MCERTS accreditations.

-00ê

The groundwater testing is summarised in Table 5 below and the results are presented as Appendix K with the electronic data as Appendix M.

Suite	Scheduled Tests	Number of Tests
Suite I	Arsenic, boron, cadmium, chromium (total), copper, lead, mercury, nickel, zinc, pH, sulphate as SO4, total petroleum hydrocarbons, PAHs, phenol and cyanide (total)	4
Suite I1	Dependant option: Speciated Hydrocarbons	4
Suite I2	VOCs and SVOCs	4
	Total Iron	4
	Total Manganese	4

5.2.3 Surface Water

No chemical testing was required as part of this works package in the absence of surface water within the site.

5.2.4 Land Gas Testing

Land gas testing was not undertaken as part of this work package.

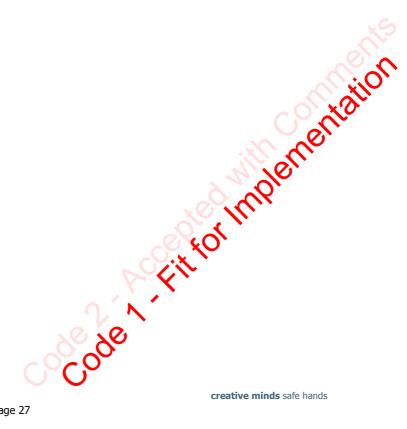
Monitoring 6

Groundwater/ground gas monitoring standpipes were installed in 9 of the 20 exploratory holes, as detailed in Table 9 below. Groundwater levels were monitored during the fieldwork period and are scheduled to be undertaken monthly for twelve months from completion of the fieldworks. Groundwater sampling on selected monitoring standpipes was undertaken on one occasion, generally completed on the first round of monitoring (where access was available). Groundwater sampling was completed following well development and purging (minimum of 3 wells volume) A full set of monitoring records up to the time of writing, are included as Appendix L. Additional monitoring data will be submitted through an addendum report (report number: 1G081-WYG-GT-REP-000-000002).

Table 8– Summary of Installation Response Z

Exploratory Hole	Installation diameter mm/type	Response Zone (Slotted section where applicable) mbgl	Targetted Geological Formation	
MI 000 CD002	50mm standpipe	2m to 4.5m (2m to 4.5m)	River Terrace Deposits	
ML000-CP003	35mm piezometer tip	14.5m to 15.5m (14.84m to 14.16m)	London Clay	
ML000-CP035	50mm standpipe	34.5m to 37.5m (35m to 37m)	Upnor Formation	
MLUUU-CPU35	35mm piezometer tip	39m to 40m (39.34m to 39.66m)	Thanet Sand	
	50mm standpipe	2m to 5m (2m to 5m)	Made Ground	l
ML000-CP066	35mm standpipe	35m to 40.5m (35.5m to 40m)	Upnor Formation & Thanet Sand	
	50mm standpipe	1.5m to 4m (2m to 4m)	River Terrace Deposits	*9
ML000-CP068	35mm standpipe	22m to 25m (22.5m to 25m)	Lambeth Group – Upper Mottled Beds	nation
ML000-CR001	35mm piezometer tip	14 m to 15m (14.34m to 14.66m)	London Clay	rta.
	35mm piezometer tip	29m to 30m (29.34 to 29.66m)	mbeth Group - Ower Mottled Recs	
	50mm standpipe	4m to 70m (44m to 70m)	aford Chalk Formation	l
ML000-CR002	35mm piezometer tip	2.5m to 23.5m (22.84m to 23.16m)	mbeth Group — Upper Mottled Beds	

2000e


Exploratory Hole	Installation diameter mm/type	Response Zone (Slotted section where applicable) mbgl	Targetted Geological Formation		
ML000-RC007	50mm standpipe	49.25m to 53.75m (49.25m to 52.25m)	Seaford Chalk Formation		
	Vibrating Wire	9m	London Clay		
	Piezometer (high entry ceramic tip with a 2.5	17m	London Clay		
ML000-RO001	litres of water for 3kg of cement and 1 kg of bentonite powder mix)	25m	Lambeth Group – Upper Mottled Beds		
	Vibrating Wire	11m	London Clay		
	Piezometer	19m	London Clay		
ML000-RO002	(high entry ceramic tip with a 2.5 litres of water for 3kg of cement and 1 kg of bentonite powder mix)	27m	Lambeth Group – Upper Mottled Beds	neints niion	
www.wy.com exetumes after the set of the set					

7 **Electronic Data**

Electronic data are included as Appendix M as follows:

- AGS 4 data. •
- ACAD plans in dwg format. •

Notes

1. Standards

All boring operations, sampling of soils, in situ testing and geotechnical laboratory testing have been carried out in accordance with the recommendations of the British Standards BS 5930(2015)⁽¹⁾, BS 1377 (1990)⁽²⁾ and BS10175 (2001)⁽³⁾.

Soil and rock descriptions follow the recommendations of BS 593. Where descriptions or classifications are based on other documents (e.g. BS 8004 (1986) or CIRIA Project Report 11 (1993)), this is stated in the report text.

2. Site methods

Unless specifically stated otherwise, the following methods are used for exploratory holes.

- Holes described as cable percussive are bored using a light cable percussive rig. Standard penetration tests are carried out where appropriate, as shown in the logs. Disturbed and undisturbed samples are taken from the exploratory holes at the depths on the records.
- Window sampling generally uses the windowless sampling method, using a tracked Geotool.
- Dynamic probes are usually heavy dynamic probes, using the same tracked Geotool used for window sampling.

3. **Definitions and abbreviations**

The following terms are used in the exploratory hole logs

Samples

- Undisturbed 102mm dia. sample U ΤW Thin Walled undisturbed 102mm dia. sample В Bulk sample D Small disturbed sample W Water sample
- CBR California Bearing Ratio test or CBR value obtained from Mexiprobe test

Core recovery and rock quality

TCR	Total core recovery (%)
SCR	Solid core recovery (%)
RQD	Rock quality designation (%)
FI	Fracture index
NR	No recovery
NI	Not intact

Lever nevel rose to this level (see Remarks a foot of log for details). The means depth below existing ground level unless otherwise specified. Values specified in soil descriptions given intervention and the total descriptions given intervention and the total description given intervention giventintervention givention givention given interventio

In situ tests

S	Standard penetration test (SPT)
Ν	SPT N value (blows/300mm)
HP	Hand penetrometer – shear strength
SV	Hand shear vane – shear strength
VOC	Volatile organic compounds (ppm)
PID	Photo-ionisation detector - used to detect the presence of
	VOCs.

Rotary drilling sizes


Nominal diameter (mm)			
Index letter	Borehole	Core	
Ν	75	54	×9
Н	99	76	
Р	120	92	
S	146	113	

Euston Station - Ground Investigation Factual Report **Revision: Final P02**

Appendices

See separate files.

Project: Euston Station						Location Detai				ils		Status				Borehole Number			
					Easting:			Northing	-		Final	Final, monitoring				ML000-R0001			
00						Level: Logger:	BK+S		Depth: Type:	30.00 RC	m	in	prog	ress	-	м	LUUU-K	0001	
	Client:	High Speed Two	(HS2) Limited						Inclinati								Sheet 1	of 3	
From (m) To (m)		Plant and Crew	6	Diame	ter Diam	Cas	Diam	Data		-	Progress	·			. (Scale:		1:50	
From (m) To (m) 0.00 1.20 1.20 28.20	Type Inspection Pit Rotary Core	Plant Used Hand Excavated T57 Geo	Crew A. Gogea S.Craig, D.Shield	Depth (m) 1.20 28.20	(mm) 300 146	Depth(m) 8.50	(mm) 150	Date 12/04 13/04	_	Time 18:00 16:00	Depth (10.20 17.70		ing (m) 5.50 8.50	Wate	r (m) 3 5	Checke Approv		NPP MH	
28.20 30.00	Rotary Open Hole	T57 Geo	S.Craig, D.Shield	30.00	146			13/04 18/04 19/04		18:00 13:30	26.70 30.00		8.50 8.50	0.	5	Start D	-	12/04/2017	
																Finish		19/04/2017	
		Strata Description				Legend	Depth (m)	Reduced Level	Water Inst / Level (m) Backfill						nd Rotary Coring				
		•		ta 0.10m			0.10	(mAOD) 24.64	Level (III)) Backilli	Depth (m 0.00	i) Ref ES1	Core Run	TCR 5	SCR RO	QD If	Tests / F PID 0.00m, 0		
MGR		t layer-0.00m to 0.02			/		0.10	24.04			0.05 0.10 - 0.4	ES2 5 B1					PID 0.05m, 0. PID 0.15m, 0.	.2ppm	
coarse SAND. Freq		w brick and brick frag of coal <20 x 30mm	ment <80 x 100, 15	% siity fine	e to		0.45	24.29			0.15 0.45 - 0.7	5 B2						-	
		brown brick (red, yel			/		0.75	23.99			0.75 - 1.2	0 ВЗ						-	
80mm. 35% of clay	yey silty fine to	onal coal fragments <2 coarse SAND. Occasio) x						1.00	ES4					PID 1.00m, 0	.1ppm 1	
metal cover rounde MGR							1.20	23.54							-	-		-	
		gravelly CLAY. Grave Rare roots, rare oyste		gular to														-	
MGR No recovery.		-																-	
,													1.20 2.70	0				2 -	
																		-	
																		-	
Stiff becoming very	y stiff fissured bi	rown orange CLAY wit	h occasional claysto	ne bands a	nd		2.70	22.04							-			-	
rare to occasional s LCAH	silt dustings. We	eathering Grade Db. (London Clay Form	MATION A3	Bi)													3 -	
																		-	
													2.70 4.20	57				-	
																		-	
											4.00 - 4.2	0 ES5					PID 4.00m, 0	.1ppm 4 -	
						<u> </u>								$\left \right $		-		-	
																		-	
																		-	
													4.20 5.70	100				5 -	
						=												-	
						<u> </u>												-	
																		×	
						F												6-	
						E													
													5.70 7.20	93					
																		-	
						<u></u>										C	2	7	
						 									X		1	-	
																		-	
													7.20	2				-	
						<u> </u>							8.70	93				8 -	
												X	Ρ					-	
							0 =-				_0	X						-	
Very stiff greyish b LCAH	orown CLAY. Wea	athering Grade Cc (LC	NDON CLAY FORMA	TION A3ii)			8.70	16.04			-C							-	
Lean											2							9 -	
						⊨							8.70 10.20	40				-	
						<u> </u>			2									-	
						F		20	5									-	
							-	0							+	+	-	10 -	
Observations / Remarks							\mathbf{G}	9				Drilling	1					nformation	
 Services cleared in accordance with PAS128 Category B. SBPT tests undertaken at 5.00m bgl, 10.95m bgl, 19.30m bgl and 21.50m bgl. 										From (m) 1.20	26.70	Return Min % 100	Colo	ur	Ty Wa	ter	Serial No.	Energy Ratio %	
 No obvious visual or olfactory evidence of contamination identified during pitting or drilling Borehole rotary cored in order to provide casing for the SBPT testing. Core samples briefly 							l on site	without	sub-	26.70 27.70	27.70 30.00	10 0			Wa Wa	ter			
sampling. 5. Borehole terminated at 30.00m bgl, short of the 50.00m bgl target following loss of flush.										Strike	Casing Seale	Ground ad Time	Rose To	1	Do '		Project	Number	
demobilisation did not allow for pulling out geobore S rods and cleaning out drilling head. 6. Vibrating wire piezometer installed at 9.00m bgl, 17.00m bgl and 25.00m bgl.										(m)	(m) (m)) (min)	(m)	-	Remark	3	1G081	- HES	
		installation and backfi			over w	as concr	eted in r	lace											

cfill, a vay n pl As part of the completion of the installation and backfull, an 8" driveway rated flu 7. PID limit of detection 0.10ppm.
 8. Features like bedding, fissures, selenite recorded in logs only if noted by logger.

Project: Euston Station								Locatior	s		Status				Borehole Number					
		-					Easting:	52930	4.44	Northing			Final	, mo	nito	rina				
	UX'	Location:	London				Level:	24.74		Depth:	30.00	m		prog			M	L000-I	RO001	
		Client:	High Speed Two	o (HS2) Limited			Logger:	BK+S		Type: Inclinatio	RC							Sheet 2	P of 3	\neg
		Metho	d, Plant and Crew		Diam	eter	Cas	sing				Progress	by Tim	e			Scale:		1:50	_
From (m)	To (m)	Туре	Plant Used	Crew	Depth (m)	Diam (mm)	Depth(m)	Diam (mm)	Date	-	Time	Depth (r	-	sing (m)	Wat	ter (m)	Check	ed By:	NPP	
0.00 1.20	1.20 28.20	Inspection Pit Rotary Core	Hand Excavated T57 Geo	A. Gogea S.Craig, D.Shield	1.20 28.20	300 146	8.50	150	12/04 13/04		18:00 16:00	10.20 17.70		5.50 8.50		3.3 0.5	Appro	ved By:	MH	
28.20	30.00	Rotary Open Hole	e T57 Geo	S.Craig, D.Shield	30.00	146			18/04 19/04		18:00 13:30	26.70 30.00		8.50 8.50		0.5 0.0	Start I	Date:	12/04/2017	7
																	Finish	Date:	19/04/2017	7
			Strata Description	n			Legend	Depth (m)	Reduced Level	Water	Inst /				oles, T	ests ar	d Rotar	y Coring		_
			•						(mAOD)	Level (m)	Backfill	Depth (m) Ref	Core Run	TCR	SCR R	QD If	Tests /	/ Results	
Very st	iff greyis	h brown CLAY. \	Veathering Grade Cc (LONDON CLAY FORMA	ATION A3ii)		10.20	14.54											-
Assume	ed zone o	of core loss. (Pos	ssibly London Clay A	2).																
																				-
Stiff da	rk grov (IAV Weatherin	g Grade Ab (LONDON		<u>۱</u>			10.85	13.89					10.20]
LCAW	ink grey c	LAT. Weddienin	g diade Ab (LONDON	CLAT TORMATION AZ,)		<u>L</u> -	-						10.20 11.70	57				11	1-
At	11.20m bg	l assumed zone of	cone loss				<u> </u>	-												-
							E	-												-
At	11.70m bg	al assumed zone of	core loss				L								\vdash	\vdash	\neg			
	sured da	rk grey CLAY. W	eathering Grade Ab (L	ONDON CLAY FORMA	TION A2)		E- <u>-</u> -	11.90	12.84										12	2
LCAW							E]
							F_=_							11.70 13.20	87					1
							F	-												-
1							F													.]
							F												13	3
At	13.20m b <u>g</u>	l assumed zone of	core loss				<u> </u>													-
																				-
														13.20						-
]						14.70	93				14	1 -
								1												-
							<u> </u>													-
							<u></u>										_			1
							<u></u>												15	5 -
							<u> </u>													-
							F							14.70 16.20	100					
							<u> </u>							10.20						
							<u> </u>													
							F -												16	
																				
							<u> </u>	-												-
							<u> </u>							16.20				\mathbf{O}		-
							E	-						17.70	100		C		17	7-
							E	-												-
At	17.45m bg	n nedium strong t	o strong claystone with loo	alised mineral veining			<u> </u>													-
Assume	ed zone o	of core loss. (Pos	sibly LONDON CLAY A	2).				17.70	7.04						3		_			
														0					18	3-
													X	D						-
													()	17.70 19.20	27					1
		ark grey CLAY OON CLAY FORM	with some silty/sandy	partings and dusting. V	Weathering	g	E	18.80	5.94			6								5
LCAW		JUN CLAT FURP					<u>E</u> -												19	"
							Ľ													
							F			12				19.20 20.70	100					
							F		20	5]
							\vdash		0						\vdash	\vdash	_	-	20) -
Observa	itions / R	emarks					.1	C:	9	1		1	Drilling	g Fluid	1	L	_	Hammer	Informatio	n
			with PAS128 Categor		bal			$\mathbf{\nabla}$			From (m)	To (m)	Return Mir %	Colc	ur	Ту		Serial No.	Energy Ratio	o %
3. No ob	ovious vis	sual or olfactory	m bgl, 10.95m bgl, 19 evidence of contamina	tion identified during	pitting or o						1.20 26.70 27.70	26.70 27.70 30.00	100 10 0			Wa Wa Wa	ter			
 Boreh sampling 		y cored in order	to provide casing for	the SBPT testing. Core	e samples l	briefly (described	d on site	without	sub-			Ground	dwater				Projec	t Number	
5. Boreh	nole term		n bgl, short of the 50.0 pulling out geobore S r				ime cons	straint fo	or the		Strike ((m)	Casing Seale (m) (m)	d Time (min)	Rose To (m)		Remark	s	-		
6. Vibrat	ting wire	piezometer inst	alled at 9.00m bgl, 17.	00m bgl and 25.00m b	bgl.			atad in -										1G08	1 - HES	>

L6. As part of the completion of the installation and backfill, an 8" driveway rated flu.
7. PID limit of detection 0.10ppm.
8. Features like bedding, fissures, selenite recorded in logs only if noted by logger.

	Project:	Euston Station					Locatior	n Deta	ils			Statu	JS		Borehole N	umber
	-				Easting			Northin	-		Final	. moi	nitorin			
and the second s	Location:	London			Level: Logger		mAOD T	Depth: Type:	30.00 RC	m		prog			4L000-F	0001
	Client:	High Speed Two	(HS2) Limited		Logger	DICIS	•		ion: 90°						Sheet 3	of 3
	Metho	d, Plant and Crew		Diameter		asing			Drilling	Progress	by Time	е		Scal	e:	1:50
From (m) To (m) 0.00 1.20	Type Inspection Pit	Plant Used Hand Excavated	Crew A. Gogea	Depth (m) Dia (mr 1.20 30	1) Depui(ii	i) Diam (mm) 150	Date 12/04		Time 18:00	Depth (10.20		ing (m) 5.50	Water (n		ked By:	NPP
1.20 28.20 28.20 30.00	Rotary Core Rotary Open Hole	T57 Geo T57 Geo	S.Craig, D.Shield S.Craig, D.Shield	28.20 14 30.00 14	5		13/04 18/04 19/04		16:00 18:00 13:30	17.70 26.70 30.00		8.50 8.50 8.50	3.3 0.5 0.5 0.0		oved By: Date:	MH 12/04/2017
							15/04		13.30	30.00		0.50	0.0		h Date:	19/04/2017
			1	II			Reduced	Water	Teret (Samp	les, Tests	and Rot	ary Coring	
		Strata Description	1		Legend	Depth (m) Level (mAOD)	Level (m	Inst / Backfill	Depth (m	i) Ref	Core Run	TCR SCR	RQD	If Tests /	Results
		vith some silty/sandy pa	rtings and dusting. V	Veathering	- <u>-</u>											
Grade Ab (LOND LCAW	JON CLAY FORM	ATION A2)														-
																-
																-
		ith some silt dusting. (L	AMBETH GROUP - U	PPER		21.00	3.74									21 -
MOTTLED CLAY)															-
												20.70 22.20	100			-
		red) CLAY with some s	ilty dusting. (LAMBE	TH GROUP -		21.70	3.04									-
UPPER MOTTLE	D CLAY).															22 -
Assumed zone o	of core loss.					22.20	2.54									-
																-
Stiff multicolour	ed (grey, brown,	red) CLAY with some s	ilty dusting. (LAMBE	TH GROUP -		22.70	2.04									-
UPPER MOTTLEI UMCL		,	,									22.20 23.70	67			23 -
OFICE																
																-
Assumed as a	f anna lasa (Daa					23.70	1.04									-
Assumed zone d	or core ioss. (Pos	sibly LAMBETH GROUP	- UPPER MOTTLED B	EDS)												24
	ed CLAY with sor	me silt dusting. (LAMBE	TH GROUP - UPPER I	MOTTLED		24.10	0.64									24 -
CLAY) UMCL												23.70	73			-
												25.20				-
																-
					E											25 -
																-
																-
												25.20				
					E-3							26.70	100			26 -
																-
					<u><u></u> <u></u> <u></u></u>											-
					<u><u></u> <u></u> <u></u></u>											27 -
					<u><u></u> <u></u></u>	-										-
					<u><u></u> <u></u></u>	-						26.70 28.20	100			-
					-								2			-
					F -	-						ĻÒ				28 -
					F	-					X	b		$\left - \right $		-
					F	-				0	R.]				-
					F	-				LCY						-
					F	-			5	5						29 -
					F	-			X	Ĩ						
					F	-		0								-
					F											-
		and of Porchola at 22	00m			30.00	-5.26	2				L			_	30 -
Observations / D		End of Borehole at 30.0 Terminated	UUIII				5				Deilline	ر: ۲۱۰۱ م			Hammer	
Observations / Re 1. Services cleare		with PAS128 Category	В.			$\mathbf{\cup}$			From (m)	To (m)	Drilling Return Min %	Colo	ur	Туре	Serial No.	Information Energy Ratio %
2. SBPT tests und	dertaken at 5.00	m bgl, 10.95m bgl, 19.3 evidence of contamination	0m bgl and 21.50m		na.				1.20 26.70	26.70 27.70	100 10			Water Water		
4. Borehole rotar		to provide casing for th				ed on site	without	sub-	27.70	30.00	Ground	water		Water	Droject	Number
		bgl, short of the 50.00			. Time co	nstraint f	or the		Strike (m)	Casing Seale (m) (m)	d Time	Rose To (m)	Rer	narks		NUTIDEI
		ulling out geobore S roo Iled at 9.00m bgl, 17.00)m bgl and 25.00m b												1G08:	L - HES

L6. As part of the completion of the installation and backfill, an 8" driveway rated flu
PID limit of detection 0.10ppm.
8. Features like bedding, fissures, selenite recorded in logs only if noted by logger. of th

	Drojacti	Euston Station		Locatio	n Details:	Status	Borehole Number	
	Project:	Euston Station	Easting:	529304.44	Northing:	182662.30	Final,	
wyg.	Location:	London	Level:	24.74	Depth:	30.00	monitoring in	ML000-R0001
	Client:	High Speed Two (HS2) Limited	Logger:	BK+ST	Type:	RC	progress	
	Client.	nigh speed 1wo (nsz) Linited						Sheet 1 of 1

Discontinuity Data Sheet

						DISCO	ontinu	lity Da	ita She	et			
Discontinuity Set Reference	Top (m)	Base (m)	Туре	Dip (Deg)	SSR	MSR	Surface Appearance	Aperture Measurement	Aperture Observation	Infilling Material	Joint Roughness Coefficient	Wall Weathering Grade	Remarks
													nen
													Coluit
												U.x.	5
										Ň	ed		
										ACCOX			
									2				
								C					
													ncomment

WYG Arndale Court

Arndale Centre

Otley Road Leeds LS6 2UJ

Exova Jones Environmental

Registered Address : Exova (UK) Ltd, Lochend Industrial Estate, Newbridge, Midlothian, EH28 8P

Unit 3 Deeside Point Zone 3 Deeside Industrial Park Deeside CH5 2UA

Tel: +44 (0) 1244 833780 Fax: +44 (0) 1244 833781

Attention :	Franck Baudrain
Date :	8th May, 2017
Your reference :	A085215
Our reference :	Test Report 17/6883 Batch 2
Location :	HS2 Euston
Date samples received :	12th April, 2017
Status :	Final report
Issue :	1

Four samples were received for analysis on 12th April, 2017 of which two were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Compiled By:

Phil Sommerton BSc Project Manager

Client Name: Reference: Location:	A085215						Report : Solid Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub							
Contact: IE Job No.:	Franck Ba 17/6883													
J E Sample No.	37-42	43-48												
Sample ID	R0001	R0001												
Depth	0.15	1.00										e attached n ations and a		
COC No / misc													,	
Containers	VJT	VJT												
Sample Date	11/04/2017 13:45	11/04/2017 14:00												
Sample Type	Soil	Soil												
Batch Number	2	2									LOD/LOR	Units	Method	
Date of Receipt	12/04/2017	12/04/2017									LOD/LOR	UTILS	No.	
Arsenic #M	-	30.1									<0.5	mg/kg	TM30/PM15	
rsenic	16.9	-									<0.5	mg/kg	TM30/PM62	
Barium #M	-	202									<1	mg/kg	TM30/PM15	
Barium	454	-									<1	mg/kg	TM30/PM62	
Beryllium	-	1.4									<0.5	mg/kg	TM30/PM15	
Beryllium	1.3	-									<0.5	mg/kg	TM30/PM62	
Cadmium ^{#M}	-	<0.1									<0.1	mg/kg	TM30/PM15	
Cadmium Chromium ^{#M}	- 0.5	- 48.5									<0.1 <0.5	mg/kg mg/kg	TM30/PM62 TM30/PM15	
Chromium	21.8	-									<0.5	mg/kg	TM30/PM62	
copper #M	-	228									<1	mg/kg	TM30/PM15	
Copper	101	-									<1	mg/kg	TM30/PM62	
ead #M	-	662									<5	mg/kg	TM30/PM15	
ead	1700	-									<5	mg/kg	TM30/PM62	
lercury #M	-	5.3									<0.1	mg/kg	TM30/PM15	
lercury	1.2	-									<0.1	mg/kg	TM30/PM62	
lickel #M	-	32.6									<0.7	mg/kg	TM30/PM15	
lickel	19.5	-									<0.7	mg/kg	TM30/PM62	
Selenium #M	-	1									<1	mg/kg	TM30/PM15	
elenium	<1	-									<1	mg/kg	TM30/PM62	
'anadium	-	67									<1	mg/kg	TM30/PM15	
'anadium	42	-									<1	mg/kg	TM30/PM62	
Vater Soluble Boron #M	-	2.3									<0.1	mg/kg	TM74/PM32	
Vater Soluble Boron	0.2	-									<0.1	mg/kg	TM74/PM61	
linc ^{#M}	-	137									<5	mg/kg	TM30/PM15	
linc	412	-									<5	mg/kg	TM30/PM62	
												\bigcirc	\sim	
													<u>0</u>	
											1	0		
),		
										.0		5		
										XV.	<5 <5			
									0	2 ふ				
									CY	XU				
								~	C'	N.				
									X					
							(
							0	de	•					
								م ح						
							2	く						
							$\sim c$							

	WYG				Report :	Solid					
	A085215 HS2 Eusto	.			0.11 1. 1/ /		1.050	· · ·			
	Franck Ba				Solids: V=	60g VOC jai	r, J=250g gla	ass jar, T=p	lastic tub		
	17/6883	durum									
		10.10									
J E Sample No.	37-42	43-48									
Sample ID	R0001	R0001									
Depth	0.15	1.00							Please se	e attached n	otes for all
COC No / misc										ations and ad	
Containers	VJT	VJT									
Sample Date 1	11/04/2017 13:45	11/04/2017 14:00									
Sample Type	Soil	Soil									
Batch Number	2	2									
									LOD/LOR	Units	Method No.
Date of Receipt	12/04/2017	12/04/2017									
AH MS	<0.40.	<0.04							<0.04	ma/ka	TM4/PM8
cenaphthylene	<0.40 _{AA} 1.42 _{AA}	<0.04							<0.04	mg/kg mg/kg	TM4/PM8 TM4/PM8
cenaphthene #M	1.42 _{AA} 2.48 _{AA}	<0.03							<0.03	mg/kg	TM4/PM8
luorene #M	2.32 _{AA}	<0.04							<0.04	mg/kg	TM4/PM8
henanthrene #M	24.11 _{AA}	0.12							<0.03	mg/kg	TM4/PM8
nthracene #	10.68 _{AA}	<0.04							<0.04	mg/kg	TM4/PM8
luoranthene #M	52.31 _{AA}	0.17							< 0.03	mg/kg	TM4/PM8
yrene #	40.11 _{AA}	0.15							<0.03	mg/kg	TM4/PM8
enzo(a)anthracene#	22.11 _{AA}	0.12							<0.06	mg/kg	TM4/PM8
hrysene #M	19.89 _{AA}	0.11							<0.02	mg/kg	TM4/PM8
enzo(bk)fluoranthene #M	32.39 _{AA}	0.16							<0.07	mg/kg	TM4/PM8
enzo(a)pyrene [#]	19.93 _{AA}	0.10							<0.04	mg/kg	TM4/PM8
deno(123cd)pyrene #M	12.09 _{AA}	0.07							<0.04	mg/kg	TM4/PM8
bibenzo(ah)anthracene #	3.06 _{AA}	<0.04							<0.04	mg/kg	TM4/PM8
enzo(ghi)perylene #	10.69 _{AA}	0.07							<0.04	mg/kg	TM4/PM8
AH 16 Total	253.6 _{AA}	1.1							<0.6	mg/kg	TM4/PM8
enzo(b)fluoranthene	23.32 _{AA}	0.12							<0.05	mg/kg	TM4/PM8
enzo(k)fluoranthene	9.07 _{AA}	0.04							<0.02	mg/kg	TM4/PM8
AH Surrogate % Recovery	100 _{AA}	106							<0	%	TM4/PM8
PH >C8-C10 ^{#M}	6	<5							<5	mg/kg	TM5/PM8
PH >C10-C12 ^{#M}	<10	<10							<10	mg/kg	TM5/PM8
PH >C12-C16 #M	41	<10							<10	mg/kg	TM5/PM8
PH >C16-C21 #M	535	<10							<10	mg/kg	TM5/PM8
PH >C21-C40	2824	<10							<10	mg/kg	TM5/PM8
PH >C8-C40	3406	<30							<30	mg/kg	TMORPMS
	_	-									<u>e</u>
1TBE #	<5	<5							<5	ug/ka	TM31/PM12
enzene *	<5	<5							<5 <5	C	TM31/PM12 TM31/PM12
oluene thylbenzene [#]	<5 <5	<5 <5						>	-5	ug kg ug/kg	TM31/PM12 TM31/PM12
n/p-Xylene [#]	<5	<5						0		ug/kg ug/kg	TM31/PM12
-Xylene #	<5	<5						XO	5	ug/kg	TM31/PM12
							0	21		-99	
otal Phenols HPLC	<0.15	<0.15					-CY	्र्	<0.15	mg/kg	TM26/PM21
						•	C/				
latural Moisture Content	-	24.1					$\sim \mathbf{X}$	•	<0.1	%	PM4/PM0
latural Moisture Content	15.8	-							<0.1	%	PM4/PM0
lexavalent Chromium #	<0.3	<0.3							<0.3	mg/kg	TM38/PM20
	NDP	48.5			20	26			<0.5	mg/kg	NONE/NONE
hromium III											

Reference: Location: Contact:	WYG A085215 HS2 Eusto Franck Ba 17/6883				Report :	Solid						
Location: Contact: JE Job No.: J E Sample No.	HS2 Euste Franck Ba											
Contact: JE Job No.: J E Sample No.	Franck Ba											
JE Job No.: J E Sample No.					Solids: V=	60g VOC jai	r, J=250g gla	ass jar, T=p	lastic tub			
J E Sample No.		auran										
	37-42	43-48							1			
Sample ID	-											
	R0001	R0001										
Depth	0.15	1.00							Please se	e attached n	otes for all	
COC No / misc									abbrevi	ations and a	cronyms	
Containers	VJT	VJT										
Sample Date	11/04/2017 13:45	11/04/2017 14:00										
Sample Type	Soil	Soil										
Batch Number	2	2							LOD/LOR	Units	Method	
Date of Receipt	12/04/2017	12/04/2017								5	No.	
Free Cyanide	<0.5	<0.5							<0.5	mg/kg	TM89/PM45	
Fotal Cyanide #M	<0.5	<0.5							<0.5	mg/kg	TM89/PM45	
Organic Matter	NDP	15.1							<0.2	%	TM21/PM24	
bH ^{#M}	8.70	7.86							<0.01	pH units	TM73/PM11	
]
											(
												Ś
										~ (X	
										G	\sim	
											N.	
									11	0		
									1	\sim		
									いろ	K		
								XV.	N.			
							0	Xc				
							0	$\mathbf{x}^{\mathbf{v}}$				
						7	20					
					(
					.0	0.	•					
					00	0						
				6	079	D -						1

Client Name: Reference: Location: Contact: JE Job No.:	WYG A085215 HS2 Euste Franck Ba 17/6883				Report : Solids: V=		r, J=250g gla	ass jar, T=p	lastic tub		
J E Sample No.	37-42	43-48									
Sample ID	R0001	R0001									
Depth	0.15	1.00									
COC No / misc		1.00								e attached n ations and a	
Containers		VJT									
Sample Date		11/04/2017 14:00									
Sample Type	Soil	Soil								n	1
Batch Number	2	2							LOD/LOR	Units	Method
Date of Receipt	12/04/2017	12/04/2017									No.
Dissolved Arsenic	2.5	5.1							<0.9	ug/l	TM30/PM14
Dissolved Barium	59.4	17.6							<1.8	ug/l	TM30/PM14
Dissolved Beryllium	<0.5	<0.5							<0.5	ug/l	TM30/PM14
Dissolved Boron	17	130							<12	ug/l	TM30/PM14
Dissolved Cadmium	< 0.03	<0.03							<0.03	ug/l	TM30/PM14 TM30/PM14
Dissolved Chromium Dissolved Copper	12.1 10	1.2 12							<0.2 <3	ug/l ug/l	TM30/PM14
Dissolved Copper	25.1	<0.4							<0.4	ug/i ug/i	TM30/PM14 TM30/PM14
Dissolved Lead	0.8	2.0							<0.4	ug/l	TM30/PM14 TM30/PM14
Dissolved Selenium	1.8	<1.2							<1.2	ug/l	TM30/PM14
Dissolved Vanadium	0.8	5.0							<0.6	ug/l	TM30/PM14
Dissolved Zinc	5.8	5.8							<1.5	ug/l	TM30/PM14
Mercury Dissolved by CVAF	0.15	2.62							<0.01	ug/l	TM61/PM38
Fotal Cyanide	<0.01	<0.01							<0.01	mg/l	TM89/PM0
Dissolved Chromium III	0.004	<0.002							<0.002	mg/l	NONE/NONE
Hexavalent Chromium	0.008 8.21	<0.002 7.75							<0.002 <0.01	mg/l pH units	TM38/PM0 TM73/PM0
								× 0 × 0		Ser	ente
					000	de					

Client Name:	WYG
Reference:	A085215
Location:	HS2 Euston
Contact:	Franck Baudrain

Note:

Analysis was carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Samples are retained for not less than 6 months from the date of analysis unless specifically requested. Opinions, including ACM type and Asbestos level, lie outside the scope of our UKAS accreditation.

Where the sample is not taken by a Jones Environmental Laboratory consultant, Jones Environmental Laboratory cannot be responsible for inaccurate or unrepresentative sampling.

Signed on behalf of Jones Environmental Laboratory:

N Mar

Ryan Butterworth Asbestos Team Leader

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Date Of Analysis	Analysis	Result	
17/6883	2	R0001	0.15	39	02/05/2017	Mass of Dry Sample	46.6 (g)	
					02/05/2017	General Description (Bulk Analysis)	soil-stones	
					02/05/2017	Asbestos Fibres	Fibre Bundles	
					02/05/2017	Asbestos ACM	NAD	
					02/05/2017	Asbestos Type	Chrysotile	
					02/05/2017	Asbestos Level Screen	<0.1%	
					05/05/2017	Asbestos Gravimetric Quantification	<0.001 (mass %)	
					05/05/2017	Asbestos PCOM Quantification (Fibres)	<0.001 (mass %)	
					05/05/2017	Asbestos Gravimetric & PCOM Total	<0.001 (mass %)	
								2
								\sim
								<u>:0</u> `
							~ 0 × \sim	ア
							Υ˜ X	
							$\mathcal{O}_1 \mathbf{\hat{V}}_1$	
						2		
						\sim		

Matrix : Solid

WYG
A085215
HS2 Euston
Franck Baudrain

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	NDP Reason	
17/6883	2	R0001	0.15	37-42	Asbestos detected in sample	
						XC
					ittorente	KO.
						l I
					and the second s	
					- n jei	
					× CINY	
					i i i i i i i i i i i i i i i i i i i	
					Reptier Connite	

Client Name:WYGReference:A085215Location:HS2 EustonContact:Franck Baudrain

J E Job No.	Batch	Sample ID	Depth	J E Sample No.	Analysis	Reason
17/6883	2	R0001	0.15	37-42	Cyanide, EPH, GRO, PAH	Sample holding time exceeded
17/6883	2	R0001	0.15	37-42	GRO	Solid Samples were received at a temperature above 9°C.
17/6883	2	R0001	1.00	43-48	Cyanide, EPH, GRO, PAH	Sample holding time exceeded
17/6883	2	R0001	1.00	43-48	GRO	Solid Samples were received at a temperature above 9°C.
						e container and a container an

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating.

Only analyses which are accredited are recorded as deviating if set criteria are not met.

Matrix : Solid

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

JE Job No.: 17/6883

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

Samples must be received in a condition appropriate to the requested analyses. All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. If this is not the case you will be informed and any test results that may be compromised highlighted on your deviating samples report.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to the total, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Accordable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculations required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory provedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report is well with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

ABBREVIATIONS and ACRONYMS USED

ISO17025 (UKAS) accredited - UK.
ISO17025 (SANAS) accredited - South Africa.
Indicates analyte found in associated method blank.
Dilution required.
MCERTS accredited.
Not applicable
No Asbestos Detected.
None Detected (usually refers to VOC and/SVOC TICs).
No Determination Possible
Calibrated against a single substance
Surrogate recovery outside performance criteria. This may be due to a matrix effect.
Results expressed on as received basis.
AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
Result outside calibration range, results should be considered as indicative only and are not accredited.
Analysis subcontracted to a Jones Environmental approved laboratory.
Samples are dried at 35°C ±5°C
Suspected carry over
Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
Matrix Effect
No Fibres Detected
AQC Sample
Blank Sample
Client Sample
Trip Blank Sample
Outside Calibration Range
x10 Dilution

Method Code Appendix

JE Job No: 17/6883

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis	
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.					
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR	Yes	
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465 and BS1377.	PM0	No preparation is required.			AR		×5
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes	tation
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes	XOU .
TM4	Modified USEPA 8270 method for the solvent extraction and determination of 16 PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes	Yes	AR	Ves	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.		NOX.	AR	Yes	
TM5	Modified USEPA 8015B method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) with carbon banding within the range C8-C40 GC-FID.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes	
TM21	Modified USEPA 415.1. Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.			AD	Yes	
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM21	As received solid or water samples are extracted in Methanol: Sodium Hydroxide (J.1M NaOH) (60:40) by orbital shaker.			AR	Yes	

Method Code Appendix

JE Job No: 17/6883

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis	
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM14	Analysis of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for dissolved metals and acidified if required.			AR	Yes	
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes	
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes	Yes	AD	Yes	25
ТМ30	Determination of Trace Metal elements by ICP-OES (Inductively Coupled Plasma - Optical Emission Spectrometry). Modified US EPA Method 200.7, 6010B and BS EN ISO 11885 2009	PM62	Acid digestion of as received solid samples using Aqua Regia refluxed at 112.5 °C.			AR	Yes	NON
TM31	Modified USEPA 8015B. Determination of Methyltertbutylether, Benzene, Toluene, Ethylbenzene and Xylene by headspace GC-FID.	PM12	Modified US EPA method 5021. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes	XOU .
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM0	No preparation is required.			AR	Yes	
TM38	Soluble Ion analysis using the Thermo Aquakem Photometric Automatic Analyser. Modified US EPA methods 325.2, 375.4, 365.2, 353.1, 354.1	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes	×Q×	AR	Yes	
TM61	Modified US EPA methods 245.7 and 200.7. Determination of Mercury by Cold Vapour Atomic Fluorescence.	PM38	Samples are brominated to reduce all mercury compounds to Mercury (II) which is analysed using method TM061.	P C		AR	Yes	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	~		AR	Yes	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres proto spestos identification using TM065.			AR		

Method Code Appendix

JE Job No: 17/6883

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis	
TM65	Asbestos Bulk Identification method based on HSG 248.	PM42	Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.	Yes		AR		
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM0	No preparation is required.			AR	Yes	
ТМ73	Modified US EPA methods 150.1 and 9045D and BS1377:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes	Yes	AR	No	×5
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM32	Hot water soluble boron is extracted from dried and ground samples using a 20:1 ratio.	Yes	Yes	AD	Yes	tation
TM74	Analysis of water soluble boron (20:1 extract) by ICP-OES.	PM61	As received solid samples are extracted with hot water in a 20:1 ratio of water to soil ready for analysis by ICP.			AR	Yes	XOU
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM0	No preparation is required.			AR	Yes	
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.		×Q×	AR	Yes	
TM89	Modified USEPA method OIA-1667. Determination of cyanide by Flow Injection Analyser. Where WAD cyanides are required a Ligand displacement step is carried out before analysis.	PM45	As received solid samples are extracted with 1M NaOH by orbital shaker for Cyanide and Thiocyanate analysis.	Yes		AR	Yes	
NONE	No Method Code	NONE	No Method Code	~		AR	Yes	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at ther 35°C or 105°C. Calculation based on ISO 11465 and BS1377.			AR		