



| Ground E         | Beam and Screw Pile Design Repor | t              | JP3626-CJB: AKB/SK   |
|------------------|----------------------------------|----------------|----------------------|
|                  |                                  | •              |                      |
| То:              | Colin                            | Ref:           | JP3626/CJB/GBPDR/001 |
| cc:              |                                  | Rev No:        | C0                   |
| Author:<br>Date: | JP<br>27/09/23                   | Chkd:<br>Appd: |                      |
| Project:         | 66 Priory Road NW6 3RE           |                |                      |

Client: CJB Piling & Underpinning

Subject: Ground Beam and Pile Design Report

# Content

- 1 Executive Summary
- 2 Abbreviations
- 3 Pile & Ground Beam Layout with Reinforcement Details
- 4 General Notes
- 5 Loadings
- 6 Soil Parameters
- 7 Screw Pile Design
- Appendix A Load check Graph
- Appendix B Ground Beam Calculations





JP3626-CJB: AKB/SK

## 1 – Executive Summary

1.1 Project Description

The detail design of piles and the ground beam is presented in this report. The Drawings used for the calculation purpose are Ref  $\{1.0\}$ 

### 1.2 Risk Assessment Notes

It is the client's responsibility to notify us about any underground services passing through the footprint of the extension. If no notification is provided, we will assume there is no underground services running through the footprint of the extension.

### 1.3 Piles & Ground Beam Details

- 1 The ground beam details are presented in section 3.
- 2 The pile details are presented in section 7.

## 1.4 References

| Ref.  | Doc. No. | Revision /<br>Date | Document Title     |
|-------|----------|--------------------|--------------------|
| [1.0] |          |                    | Priory Road Survey |





JP3626-CJB: AKB/SK

# 2 – Abbreviations

| bgl | Below ground level             |
|-----|--------------------------------|
| BGS | British Geological Survey      |
| Cu  | Undrained shear strength (kPa) |
| E'  | Drained Young's Modulus (kPa)  |
| OD  | Outer diameter                 |
| SPT | Standard penetration test      |





JP3626-CJB: AKB/SK

3 - Pile & Ground Beam Layout with Reinforcement Details



Note: All Pile reactions have been rounded up to the nearest higher multiple of 10. Minimum Pile reaction is taken as 50kN

The Ground Beam should be set out in accordance to the layout. This layout only provides the spacing between the piles.





### JP3626-CJB: AKB/SK



| JP MANN | Client: Colin                    | Drawing Title: Pile & Ground Beam |             | eam Layout | & Det | ails              |
|---------|----------------------------------|-----------------------------------|-------------|------------|-------|-------------------|
| JP MANN | Contract: 66 Priory Road NW6 3RE | Scale: NTS                        | Drawn: JP   | Approved   | : JP  | Date:<br>27.09.23 |
|         |                                  | Drawing No.: JP3<br>Sheet 1 of 1  | 626/CJB/001 | Rev: C     | 0     |                   |





JP3626-CJB: AKB/SK

- 4 General Notes
  - a. Concrete grade to be C28/35 DC-2.
  - b. Expansion joints will not be required.
  - c. Anti-heave measures
    - Provide 220mm Cellcore HX-B by CORDEK
    - Provide 75mm Claymaster by CORDEK





JP3626-CJB: AKB/SK

5 – Loadings

# **Applied Loads**







### JP3626-CJB: AKB/SK

#### Load Takedown Dead Load Live Load Beam 1 Wall 1.6 kN/m2 0.6 m = 0.96 kN/mх 0 kN/m 0.96 kN/m Total Total = = Pier 1.6 kN/m2 2.4 kN/m х 1.5 m =

\_





JP3626-CJB: AKB/SK

## 6 – Soil Parameters

A site investigation is not carried out on site. The following parameters have been obtained from BGS data.

## 6.1 Geological Profile

| Strata      | Top level of<br>Strata | Strata Thickness          |
|-------------|------------------------|---------------------------|
|             | m bgl                  | (m)                       |
| Made Ground | 0                      | 1                         |
| Clay        | 1                      | 13<br>(BH ends at 14.0 m) |





## JP3626-CJB: AKB/SK

# 7 – Screw Pile Design

| SCREW PILE D          | ESIGN REPORT                  | CJB<br>PiresEdrateproreg     | JPN                     | ANN                | 66 priory<br>NW6 3                                    | Road<br>BRE       |
|-----------------------|-------------------------------|------------------------------|-------------------------|--------------------|-------------------------------------------------------|-------------------|
| Design by:            | Check By                      | Revision                     |                         | Ref. No.           | Date                                                  | 9                 |
| JP                    | JP                            | C0                           | JP                      | 3626-CJB           | 27/09/2                                               | 2023              |
|                       |                               |                              |                         |                    |                                                       |                   |
|                       | Soil C                        | ondition                     | s                       | ilty clay          |                                                       |                   |
|                       | Max. Safe Working             | Load, SWL for Piles          | 50                      | kN                 |                                                       |                   |
|                       | Required n                    | ninimum FOS                  | 2.5                     |                    |                                                       |                   |
|                       | Screw                         | Pile Type                    | 76R                     |                    |                                                       |                   |
|                       | Target P                      | enetration                   | 6.0                     | m                  |                                                       |                   |
|                       | Nos. of triple                | helix lead flight            | 1.0                     | nos                |                                                       |                   |
|                       | Length of triple              | e nelix lead flight          | 2.0                     | m                  |                                                       |                   |
|                       | Length of                     | plain follows                | 2.0                     | m                  |                                                       |                   |
|                       | Screw pile load               | d correlation chart          | See /                   | Appendix A         |                                                       |                   |
|                       |                               |                              |                         |                    | J                                                     |                   |
|                       | * or refusal wher             | n torque given in appendix A | A is achieved for the s | specified loading  |                                                       |                   |
| Screw Pile Geote      | chnical Capacity Ca           | alculation                   |                         | Soil Parameter     |                                                       |                   |
| Helix Dimension       |                               |                              |                         | γ'                 | 19                                                    | kN/m <sup>3</sup> |
|                       |                               |                              |                         | φ <b>'</b>         | 30                                                    | •                 |
| Target Penetration    | 6.0                           | m                            | 1                       | Na                 | 30                                                    |                   |
|                       |                               |                              |                         | Helix 1 - top      |                                                       |                   |
| Lower Helix 1 - top   |                               |                              |                         | σ' <sub>vb</sub>   | 85.5                                                  | kN/m <sup>2</sup> |
| Diameter              | 0.3                           | m                            |                         | Helix 2 - middle   |                                                       |                   |
| Anasa                 | 0.071                         | m²                           |                         | σ' <sub>vb</sub>   | 99.75                                                 | kN/m <sup>2</sup> |
| Ashaft                | 0.942                         | m²/m                         |                         | Helix 3 - bottom   |                                                       |                   |
| Depth below ground    | 4.50                          | m                            |                         | σ' <sub>vb</sub>   | 111.15                                                | kN/m <sup>2</sup> |
| Lower Helix 2 - middl | e                             |                              |                         | - 10               |                                                       |                   |
| Diameter              | 0.25                          | m                            |                         | Compression C      | apacity                                               |                   |
| Aase                  | 0.049                         | m²                           |                         | <u></u>            |                                                       |                   |
| Ashaft                | 0.785                         | m²/m                         |                         |                    |                                                       |                   |
| Depth below ground    | 5.25                          | m                            |                         | UEB =              | N <sub>α</sub> x σ' <sub>vb</sub> x A <sub>base</sub> |                   |
| Lower Helix 3 - botto | m                             |                              |                         | Helix 1 - top      | q vo bace                                             |                   |
| Diameter              | 0.20                          | m                            |                         | UEB1 =             | 181                                                   | kN                |
| Anasa                 | 0.031                         | m²                           |                         | Helix 2 - middle   |                                                       |                   |
| A <sub>shaff</sub>    | 0.628                         | m²/m                         |                         | UEB <sub>2</sub> = | 147                                                   | kN                |
| Depth below ground    | 5.85                          | m                            |                         | Helix 3 - bottom   |                                                       |                   |
|                       |                               |                              |                         | UEB <sub>3</sub> = | 105                                                   | kN                |
|                       |                               |                              |                         | Total UEB =        | 433                                                   | kN                |
|                       |                               |                              |                         | Comp load=         | 50                                                    | kN                |
|                       |                               |                              |                         | Comp FOS =         | 8.66                                                  |                   |
|                       |                               |                              |                         | > min              | FOS 2.5, sufficient of                                | capacity          |
|                       |                               |                              |                         |                    |                                                       |                   |
|                       |                               |                              |                         |                    |                                                       |                   |
| Abbreviations         |                               |                              |                         |                    |                                                       |                   |
| φı                    | Internal friction angle of so | il                           |                         |                    |                                                       |                   |
| γı                    | Effective soil density        |                              |                         |                    |                                                       |                   |
| σ' <sub>vb</sub>      | Effective overburden press    | sure at helix base           |                         |                    |                                                       |                   |
| CHS                   | Circular hollow section       |                              |                         |                    |                                                       |                   |
| Comp.                 | Compression                   |                              |                         |                    |                                                       |                   |
| FOS                   | Factor of safety              |                              |                         |                    |                                                       |                   |
| SWL                   | Safe working load             |                              |                         |                    |                                                       |                   |
| UEB                   | Ultimate End Bearing          |                              |                         |                    |                                                       |                   |
| ULS                   | Ultimate Shaft Friction       |                              |                         |                    |                                                       |                   |
|                       |                               |                              |                         |                    |                                                       |                   |





## JP3626-CJB: AKB/SK

|            |                     | Pile load ta               | ible         |               |
|------------|---------------------|----------------------------|--------------|---------------|
|            | Pile No             | SLS load(kN)               | Torque (kNm) | Pressue (bar) |
|            | 1                   | 50                         | 4.5          | 53            |
|            | 2                   | 50                         | 4.5          | 53            |
|            | 3                   | 50                         | 4.5          | 53            |
|            |                     |                            |              |               |
|            |                     |                            |              |               |
| Appendix A |                     |                            |              |               |
|            | Torque Motor Head - | Digga MM-10K               |              |               |
|            |                     |                            |              |               |
|            | SWL                 | Safe working load          | 50           | kN            |
|            | FOS                 | Factor of safety           | 2.5          |               |
|            | R                   | Empirical torque factor =  | 28           |               |
|            | UL                  | Ultimate load (SWL x FOS)  | 125          | kN            |
|            |                     | Pressure corelation factor | 11.78        |               |
|            | T =                 | (SWL x FOS) / R            | 4.5          | kNm           |
|            | т                   | Torque                     | 4.5          | kNm           |
|            | Р                   | Pressure                   | 53           | bar           |
|            |                     |                            |              |               |
|            |                     |                            |              |               |
|            |                     |                            |              |               |





### JP3626-CJB: AKB/SK

# Appendix A – Check Graph







JP3626-CJB: AKB/SK

# Appendix B – Ground Beam Calculations

| JP MANN | Project<br>66 Priory Road NW6 3RE |                   |                |                   | Job Ref.<br>JP3626  |                   |
|---------|-----------------------------------|-------------------|----------------|-------------------|---------------------|-------------------|
|         | Section<br>Beam 1                 |                   |                |                   | Sheet no./rev.<br>1 |                   |
|         | Calc. by<br>JP                    | Date<br>9/25/2023 | Chk'd by<br>JP | Date<br>9/25/2023 | App'd by<br>JP      | Date<br>9/25/2023 |





| Project<br>66 Priory Road | NW6 3RE           |                |                   | Job Ref.<br>JP3626  |                   |
|---------------------------|-------------------|----------------|-------------------|---------------------|-------------------|
| Section<br>Beam 1         |                   |                |                   | Sheet no./rev.<br>2 |                   |
| Calc. by<br>JP            | Date<br>9/25/2023 | Chk'd by<br>JP | Date<br>9/25/2023 | App'd by<br>JP      | Date<br>9/25/2023 |

| Load combinations                         |                                      |                                    |
|-------------------------------------------|--------------------------------------|------------------------------------|
| Load combination 1                        | Support A                            | Dead 	imes 1.40                    |
|                                           |                                      | Imposed $	imes$ 1.60               |
|                                           | Span 1                               | $Dead \times 1.40$                 |
|                                           |                                      | Imposed $\times$ 1.60              |
|                                           | Support B                            | $Dead \times 1.40$                 |
|                                           |                                      | Imposed $	imes$ 1.60               |
|                                           | Span 2                               | $Dead \times 1.40$                 |
|                                           | •                                    | Imposed $\times$ 1.60              |
|                                           | Support C                            | $Dead \times 1.40$                 |
|                                           | cappoir c                            | Imposed $\times$ 1.60              |
|                                           | Snan 3                               |                                    |
|                                           | opan o                               |                                    |
|                                           | Our mant D                           |                                    |
|                                           | Support D                            |                                    |
|                                           |                                      | Imposed × 1.60                     |
|                                           | Span 4                               | $Dead \times 1.40$                 |
|                                           |                                      | Imposed $	imes$ 1.60               |
|                                           | Support E                            | $Dead \times 1.40$                 |
|                                           |                                      | Imposed $\times$ 1.60              |
| Analysis results                          |                                      |                                    |
| Maximum moment support A                  | $M_{A_{max}} = 0 \text{ kNm}$        | $M_{A_{red}} = 0 \text{ kNm}$      |
| Maximum moment span 1 at support          | M <sub>s1_max</sub> = <b>0</b> kNm   | M <sub>s1_red</sub> = <b>0</b> kNm |
| Maximum moment support B                  | M <sub>B_max</sub> = <b>-3</b> kNm   | M <sub>B_red</sub> = -3 kNm        |
| Maximum moment span 2 at 1275 mm          | M <sub>s2_max</sub> = 1 kNm          | M <sub>s2_red</sub> = 1 kNm        |
| Maximum moment support C                  | M <sub>C_max</sub> = <b>-3</b> kNm   | $M_{C_{red}} = -3 \text{ kNm}$     |
| Maximum moment span 3 at 1275 mm          | $M_{s3_max} = 1 \text{ kNm}$         | M <sub>s3_red</sub> = 1 kNm        |
| Maximum moment support D                  | M <sub>D_max</sub> = <b>-3</b> kNm   | $M_{D_{red}} = -3 \text{ kNm}$     |
| Maximum moment span 4 at support          | $M_{s4_max} = 0 \text{ kNm}$         | $M_{s4\_red} = 0 \text{ kNm}$      |
| Maximum moment support E                  | $M_{E_{max}} = 0 \text{ kNm}$        | M <sub>E_red</sub> = <b>0</b> kNm  |
| Maximum shear support A                   | $V_{A_{max}} = 0 \text{ kN}$         | $V_{A_{red}} = 0 kN$               |
| Maximum shear support A span 1 at 300 mm  | V <sub>A_s1_max</sub> = -2 kN        | $V_{A_{s1}_{red}} = -2 \text{ kN}$ |
| Maximum shear support B                   | V <sub>B_max</sub> = 7 kN            | $V_{B_{red}} = 7 \text{ kN}$       |
| Maximum shear support B span 1 at 204 mm  | V <sub>B_s1_max</sub> = -1 kN        | $V_{B_{s1}_{red}} = -1 kN$         |
| Maximum shear support B span 2 at 296 mm  | $V_{B_{s2}max} = 5 \text{ kN}$       | $V_{B_s2_{red}} = 5 \text{ kN}$    |
| Maximum shear support C                   | V <sub>C_max</sub> = -7 kN           | $V_{C_{red}} = -7 \text{ kN}$      |
| Maximum shear support C span 2 at 2250 mm | V <sub>C_s2_max</sub> = <b>-5</b> kN | $V_{C_{s2}red} = -5 kN$            |
| Maximum shear support C span 3 at 300 mm  | $V_{C_{s3}max} = 5 \text{ kN}$       | $V_{C_{s3_{red}}} = 5 \text{ kN}$  |
| Maximum shear support D                   | V <sub>D_max</sub> = -7 kN           | $V_{D_{red}} = -7 \text{ kN}$      |
| Maximum shear support D span 3 at 2250 mm | V <sub>D_s3_max</sub> = <b>-5</b> kN | $V_{D_s3_{red}} = -5 \text{ kN}$   |
| Maximum shear support D span 4 at 300 mm  | $V_{D_s4_max} = 1 \text{ kN}$        | $V_{D_s4_{red}} = 1 \text{ kN}$    |
| Maximum shear support E                   | V <sub>E_max</sub> = <b>0</b> kN     | $V_{E_{red}} = 0 kN$               |
| Maximum shear support E span 4 at 200 mm  | V <sub>E_s4_max</sub> = 2 kN         | $V_{E_s4_{red}} = 2 \text{ kN}$    |
| Maximum reaction at support A             | R <sub>A</sub> = <b>0</b> kN         |                                    |

| JP MANN                                                                                                                                                                                                                                                                                                                                                                                    | Project<br>66 Priory Road                                | NW6 3RE                                                                                                                                                                                                                                                               |                                                   |                   | Job Ref.<br>JP3626  |                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------|---------------------|-------------------|
|                                                                                                                                                                                                                                                                                                                                                                                            | Section<br>Beam 1                                        |                                                                                                                                                                                                                                                                       |                                                   |                   | Sheet no./rev.<br>3 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                            | Calc. by<br>JP                                           | Date<br>9/25/2023                                                                                                                                                                                                                                                     | Chk'd by<br>JP                                    | Date<br>9/25/2023 | App'd by<br>JP      | Date<br>9/25/2023 |
| Unfactored dead load reaction at su<br>Maximum reaction at support B<br>Unfactored dead load reaction at su<br>Maximum reaction at support C<br>Unfactored dead load reaction at su<br>Maximum reaction at support D<br>Unfactored dead load reaction at su<br>Maximum reaction at support E<br>Unfactored dead load reaction at su<br><b>Rectangular section details</b><br>Section width | ipport A<br>ipport B<br>ipport C<br>ipport D<br>ipport E | $R_{A\_Dead} = 0 \text{ kN}$ $R_{B} = 11 \text{ kN}$ $R_{B\_Dead} = 8 \text{ kN}$ $R_{C} = 14 \text{ kN}$ $R_{C\_Dead} = 10 \text{ kN}$ $R_{D} = 11 \text{ kN}$ $R_{D\_Dead} = 8 \text{ kN}$ $R_{E} = 0 \text{ kN}$ $R_{E\_Dead} = 0 \text{ kN}$ $b = 350 \text{ mm}$ | I                                                 |                   |                     |                   |
| Section depth                                                                                                                                                                                                                                                                                                                                                                              | ▲ 350                                                    | h = <b>350</b> mm                                                                                                                                                                                                                                                     |                                                   |                   |                     |                   |
|                                                                                                                                                                                                                                                                                                                                                                                            |                                                          | ◀350-                                                                                                                                                                                                                                                                 |                                                   |                   |                     |                   |
| <b>Concrete details</b><br>Concrete strength class<br>Characteristic compressive cube st<br>Modulus of elasticity of concrete<br>Maximum aggregate size                                                                                                                                                                                                                                    | rength                                                   | <b>C28/35</b><br>f <sub>cu</sub> = <b>35</b> N/mm <sup>2</sup><br>E <sub>c</sub> = 20kN/mm <sup>2</sup><br>h <sub>agg</sub> = <b>20</b> mm                                                                                                                            | <sup>2</sup> + 200 × f <sub>cu</sub> = <b>2</b> 7 | <b>7000</b> N/mm² |                     |                   |
| Reinforcement details<br>Characteristic yield strength of reinf<br>Characteristic yield strength of shea                                                                                                                                                                                                                                                                                   | orcement<br>ar reinforcement                             | f <sub>y</sub> = <b>500</b> N/mm <sup>2</sup><br>f <sub>yv</sub> = <b>500</b> N/mm                                                                                                                                                                                    | 2                                                 |                   |                     |                   |
| Nominal cover to reinforcement<br>Nominal cover to top reinforcement<br>Nominal cover to bottom reinforcem<br>Nominal cover to side reinforcement                                                                                                                                                                                                                                          | ient<br>t                                                | c <sub>nom_t</sub> = <b>40</b> mm<br>c <sub>nom_b</sub> = <b>50</b> mm<br>c <sub>nom_s</sub> = <b>40</b> mm                                                                                                                                                           |                                                   |                   |                     |                   |

| JP MANN                            | 66 Priory R       | ProjectJob Ref.66 Priory Road NW6 3REJP3626 |                                          |                                           |                         |                      |  |  |
|------------------------------------|-------------------|---------------------------------------------|------------------------------------------|-------------------------------------------|-------------------------|----------------------|--|--|
| CONSULTANTS                        | Section<br>Beam 1 |                                             |                                          |                                           |                         | Sheet no./rev.       |  |  |
|                                    | Calc. by<br>JP    | Date<br>9/25/2023                           | Chk'd by<br>JP                           | Date<br>9/25/2023                         | App'd by<br>JP          | Date<br>9/25/202     |  |  |
| Support B                          |                   |                                             |                                          |                                           |                         |                      |  |  |
|                                    |                   | • <b>_</b> ]                                | $3 \text{ x } 12_{\varphi} \text{ bars}$ |                                           |                         |                      |  |  |
|                                    | 20                |                                             | 2 x 8₀ shear le                          | eas at 200 c/c                            |                         |                      |  |  |
|                                    | с<br>С            |                                             | φ                                        | -9                                        |                         |                      |  |  |
|                                    |                   | لب                                          | $3 \text{ x } 12_{\varphi}$ bars         |                                           |                         |                      |  |  |
|                                    | <b> </b>          | 350►                                        |                                          |                                           |                         |                      |  |  |
|                                    |                   |                                             |                                          |                                           |                         |                      |  |  |
| Design moment resistance of        | rectangular se    | ection (cl. $3.4.4$ )<br>M = abs(Ma         | ) <b>- 3</b> kNm                         |                                           |                         |                      |  |  |
| Design bending moment              |                   | $d = b - C_{normation}$                     | ed) – 3 KINIII<br>- du - duar / 2 = 2    | <b>96</b> mm                              |                         |                      |  |  |
| Pedietribution ratio               |                   | $\beta_{1} = \min(1 - 1)$                   | $(- \psi_0 - \psi_{00}) / 2 - 2$         | .50 mm                                    |                         |                      |  |  |
| Redistribution ratio               |                   | $p_b = \min\{1 - \min_B, 1\} = 1.000$       |                                          |                                           |                         |                      |  |  |
|                                    |                   | K - M / (D × 0                              | $1^{-} \times 1_{cu} = 0.003$            |                                           |                         |                      |  |  |
|                                    |                   | K = 0.150                                   | K'> K                                    | - No compressi                            | on reinforcen           | nont is roa          |  |  |
| l ever arm                         |                   | $z = min(d \times (d))$                     | 0 5 + (0 25 - K                          | $(0.9)^{0.5} 0.95 \times c$               | l) = <b>281</b> mm      | ient is requ         |  |  |
| Depth of neutral axis              |                   | z = (d - z) / 0                             | 45 = 33  mm                              | (0.9) ), 0.93 × 0                         | () <b>- 201</b> mm      |                      |  |  |
| Area of tension reinforcement re   | auired            | $A_{area} = M / (0)$                        | .=3 = <b>33</b> mm                       | <b>4</b> mm <sup>2</sup>                  |                         |                      |  |  |
| Tension reinforcement provided     | quillou           | 3 × 124 bars                                |                                          |                                           |                         |                      |  |  |
| Area of tension reinforcement p    | ovided            | $\Delta_{a, rray} = 339$                    | mm <sup>2</sup>                          |                                           |                         |                      |  |  |
| Minimum area of reinforcement      | ovided            | $A_{s,piov} = 0.001$                        | $3 \times h \times h = 159$              | mm <sup>2</sup>                           |                         |                      |  |  |
| Maximum area of reinforcement      |                   | $\Delta_{\rm s,min} = 0.001$                | $\nabla h \times h = 4900$               | mm <sup>2</sup>                           |                         |                      |  |  |
|                                    | PASS - Ar         | As,max - 0.04                               | nt provided is                           | areater than ar                           | ea of reinford          | ement rea            |  |  |
| Destangular costion in choose      | 1 A33 - AN        |                                             | in provided is                           | greater than a                            |                         | ementreq             |  |  |
| Rectangular section in snear       | 4                 | M = aba/min/barbornet                       |                                          | $)) = 1   \mathbf{k} \mathbf{N}  $        |                         |                      |  |  |
| Design shear stress                | 4 11111           | v = Abs(mm)                                 | $VB_{s1}_{max}, VB_{s1}_{max}$           | red) = 1 KIN                              |                         |                      |  |  |
| Design concrete choor stroop       |                   | $v = 0.70 \times m$                         | ) = 0.014 N/IIII                         | / (b x d)1/3) x i                         | max(1 (400 /d           | $(1/4) \times (min)$ |  |  |
| 401/2511/3/27                      |                   | Vc = 0.79 × 11                              | IIII(3,[100 × As,p                       |                                           | nax(1, (40070           | )                    |  |  |
| 40)7 23) <sup>33</sup> 7 γm        |                   | v 0 525 N                                   | mm <sup>2</sup>                          |                                           |                         |                      |  |  |
| Allowable design shear stress      |                   | $v_c = 0.323 N_c$                           | 8 N/mm <sup>2</sup> × (f/                | 1 N/mm <sup>2</sup> ) <sup>0.5</sup> 5 N/ | $mm^2$ ) = <b>4 733</b> | N/mm <sup>2</sup>    |  |  |
| The was to design should be design |                   | villax initi(0.                             | ASS - Design s                           | hear stress is l                          | ess than max            | imum allow           |  |  |
| Value of v from Table 3.7          |                   | v < 0.5vc                                   |                                          |                                           |                         |                      |  |  |
| Design shear resistance require    | d                 | $v_s = max(v - v)$                          | vc. 0.4 N/mm²) :                         | = <b>0.400</b> N/mm <sup>2</sup>          |                         |                      |  |  |
| Area of shear reinforcement req    | uired             | $A_{sv,reg} = v_s \times I$                 | $(0.87 \times f_{yy}) =$                 | <b>322</b> mm²/m                          |                         |                      |  |  |
| Shear reinforcement provided       |                   | $2 \times 8\phi$ legs a                     | t 200 c/c                                |                                           |                         |                      |  |  |
| Area of shear reinforcement pro    | vided             | A <sub>sv.prov</sub> = 503                  | mm²/m                                    |                                           |                         |                      |  |  |
| •                                  |                   | PASS - Area of                              | shear reinford                           | cement provided                           | l exceeds mii           | nimum req            |  |  |
|                                    |                   |                                             |                                          |                                           |                         |                      |  |  |
| Maximum longitudinal spacing       |                   | $s_{vl,max} = 0.75$                         | × d = <b>222</b> mm                      |                                           |                         |                      |  |  |

| JP MANN                                        | Project     Job Ref.       66 Priory Road NW6 3RE     JP3626       Section     Sheet no./rev.       Beam 1     5 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                | Job Ref.<br>JP3626          |                                   |
|------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------|-----------------------------|-----------------------------------|
|                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
|                                                | Calc. by<br>JP                                                                                                   | Date<br>9/25/2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Chk'd by<br>JP                             | Date<br>9/25/2023              | App'd by<br>JP              | Date<br>9/25/2023                 |
| Design shear stress                            |                                                                                                                  | $v = V / (b \times d)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) = <b>0.052</b> N/mn                      | m²                             |                             |                                   |
| Design concrete shear stress                   |                                                                                                                  | $v_{c} = 0.79 \times min(3, [100 \times A_{s, prov} / (b \times d)]^{1/3}) \times max(1, (400 / d)^{1/4}) \times (min(f_{cu}, b_{cu})) \times (min(f_{cu}, $ |                                            |                                |                             |                                   |
| 40) / 25) <sup>1/3</sup> / γ <sub>m</sub>      |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
|                                                |                                                                                                                  | vc = <b>0.525</b> N/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mm <sup>2</sup>                            |                                |                             |                                   |
| Allowable design shear stress                  |                                                                                                                  | $v_{max} = min(0.8 \text{ N/mm}^2 \times (f_{cu}/1 \text{ N/mm}^2)^{0.5}, 5 \text{ N/mm}^2) = 4.733 \text{ N/mm}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                |                             |                                   |
| Volue of v from Table 2.7                      |                                                                                                                  | <b>P</b> A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 155 - Design s                             | snear stress is le             | ess than maxii              | num allowable                     |
| Value OLV ITOTIL LADIE 3.7                     |                                                                                                                  | $v = 0.3v_c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                |                             |                                   |
| Area of choor reinforcement required           |                                                                                                                  | $v_s = max(v - v_c, 0.4  v/      ^) = 0.400  v/      ^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            |                                |                             |                                   |
| Area of shear reinforcement required           |                                                                                                                  | $r_{\text{SV,req}} = v_{\text{S}} \times b / (0.07 \times 1\text{yy}) = 322 \text{ IIIII}^{/11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            |                                |                             |                                   |
| Shear reinforcement provided                   |                                                                                                                  | $2 \times 00^{10}$ eys at 200 c/c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                |                             |                                   |
| Area of shear reinforcement prov               | laea                                                                                                             | $A_{sv,prov} = 503$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mm <sup>-</sup> /m                         | comont providor                | l avcaads min               | imum roquiroo                     |
| Maximum longitudinal spacing                   |                                                                                                                  | - 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sim d = 222 \text{ mm}$                  | cement provided                |                             | iniuni required                   |
|                                                | PASS - Lon                                                                                                       | Svi,max - 0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | na of shoar ra                             | inforcement pro                | wided is less               | than maximum                      |
| 0                                              | 1 400 - 2011                                                                                                     | gitualiiai Spaci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ng or shear re                             |                                |                             |                                   |
| Spacing of reinforcement (cl 3.12.11)          |                                                                                                                  | $a = (b - 2) \cdot (a - 1 + b + b - (2)) \cdot (b - 1) + - 100$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
| Actual distance between bars in t              | tension                                                                                                          | $s = (b - 2 \times (c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cnom_s + Φv + Φtop                         | p/∠)) /(Ntop - 1) - Φto        | <sub>op</sub> = 109 mm      |                                   |
| Minimum distance between ba                    | rs in tension (cl                                                                                                | 3.12.11.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                            |                                |                             |                                   |
| Minimum distance between bars                  | in tension                                                                                                       | s <sub>min</sub> = h <sub>agg</sub> + §                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5 mm = <b>25</b> mm                        |                                |                             |                                   |
|                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P                                          | ASS - Satisfies t              | he minimum s                | pacing criteria                   |
| Maximum distance between ba                    | ars in tension (c                                                                                                | l 3.12.11.2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                |                             |                                   |
| Design service stress                          |                                                                                                                  | $f_{s} = (2 \times f_{y} \times A_{s,req}) / (3 \times A_{s,prov} \times \beta_{b}) = 24.0 \text{ N/mm}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                |                             |                                   |
| Maximum distance between bars in tension       |                                                                                                                  | s <sub>max</sub> = min(47000 N/mm / f <sub>s</sub> , 300 mm) = <b>300</b> mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                |                             |                                   |
|                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PA                                         | ASS - Satisfies th             | he maximum s                | pacing criteria                   |
| Span to depth ratio (cl. 3.4.6)                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
| Basic span to depth ratio (Table 3.9)          |                                                                                                                  | span_to_depth <sub>basic</sub> = <b>7.0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                |                             |                                   |
| Design service stress in tension reinforcement |                                                                                                                  | $f_{s} = (2 \times f_{y} \times A_{s,req}) / (3 \times A_{s,prov} \times \beta_{b}) = 24.0 \text{ N/mm}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                            |                                |                             |                                   |
| Modification for tension reinforce             | ment                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
|                                                | f <sub>tens</sub> =                                                                                              | = min(2.0, 0.55 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + (477N/mm² -                              | $f_{s}) / (120 \times (0.9 N/$ | /mm² + (M / (b :            | × d²))))) = <b>2.000</b>          |
| Modification for compression rein              | nforcement                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
|                                                | f <sub>cor</sub>                                                                                                 | <sub>mp</sub> = min(1.5, 1 +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\cdot$ (100 $\times$ A <sub>s2,prov</sub> | / (b × d)) / (3 + (1           | $00 	imes A_{s2,prov}$ / (k | o × d)))) = <b>1.098</b>          |
| Modification for span length                   |                                                                                                                  | $f_{long} = 1.000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            |                                |                             |                                   |
| Allowable span to depth ratio                  |                                                                                                                  | $span\_to\_depth_{allow} = span\_to\_depth_{basic} \times f_{tens} \times f_{comp} = \textbf{15.4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            |                                |                             |                                   |
| Actual span to depth ratio                     |                                                                                                                  | span_to_depth <sub>actual</sub> = $L_{s1}$ / d = <b>1.7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                            |                                |                             |                                   |
|                                                |                                                                                                                  | PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | SS - Actual sp                             | oan to depth ratio             | o is within the             | allowable limit                   |
|                                                |                                                                                                                  | PA:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SS - Actual                                | sp:                            | span to depth ratio         | span to depth ratio is within the |
|                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |
|                                                |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                |                             |                                   |